2021版高三数学(新高考)一轮复习检测 (1)第1章第一讲集合的概念与运算

合集下载

2021·一轮数学参考答案(新高考)

2021·一轮数学参考答案(新高考)

$ $ 件&则)&4&所以
!'*&'"&所以 !%*&!+&
*&#&故 *&0&
满足题意

*
!!解析 "!#正确!因为%,!包含于%*!&所以/;0&但0+;/&所以 6 不存在!
/ 是0 的充分不必要条件! ""#错误!所有长方形的对角线相等&故命题是全称命题! "##正确!当0是/ 的必要条件时&有0</&故正确! "$#错误!有些量词可以省略&有些量词不能省略! 答案 "!#)"""#*""##)""$#*
6 6 6 6
3'#/"*'!& 2*%!/$& 解得'!/*-"!综上得**'!!故选 ,项! 4"*'!-*%!&
考点精讲
6 递进题组
!!'"解析
由已知得"0+&则"$
&+&所以$&+&于是""&!&即"&!
6 6
!!)'&"解析 依据子集定义&任何集合都是自身的子集&1 项正 确(单元素+构成的集合含一个元素+&不是空集&. 项错误(
6 槡*&解得*&+或#!故选 .项!

2021新高考数学(江苏专用)一轮复习学案:第一章第1节 集合的概念与运算 Word版含解析

2021新高考数学(江苏专用)一轮复习学案:第一章第1节 集合的概念与运算 Word版含解析

第1节集合的概念与运算考试要求1。

通过实例了解集合的含义,理解元素与集合的属于关系;针对具体问题能在自然语言、图形语言的基础上,用符号语言刻画集合;2。

理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中了解全集与空集的含义;3.理解两个集合的并集与交集的含义,能求两个简单集合的并集与交集;4.理解在给定集合中一个子集的补集的含义,能求给定子集的补集;5。

能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算,体会图形对理解抽象概念的作用.知识梳理1。

集合的概念(1)一定范围内某些确定的、不同的对象的全体构成一个集合,集合中的每一个对象称为该集合的元素.(2)集合中元素的三个特性:确定性、互异性、无序性.(3)集合的表示方法:列举法、描述法、Venn图法等.(4)集合按含有元素的个数可分为有限集、无限集、空集。

(5)特别地,自然数集记作N,正整数集记作N*或N+,整数集记作Z,有理数集记作Q,实数集记作R,复数集记作C.2.集合间的基本关系(1)子集:如果集合A的任意一个元素都是集合B的元素(若a∈A,则a∈B),那么集合A称为集合B的子集,记为A⊆B或B⊇A.(2)真子集:如果A⊆B,并且A≠B,那么集合A称为集合B的真子集,记为A B或B A.(3)空集:空集是任何集合的子集。

(4)相等:如果两个集合所含的元素完全相同,那么称这两个集合相等。

3。

集合的基本运算集合的并集集合的交集集合的补集符号表示A∪B A∩B若全集为S,则集合A的补集为∁SA图形表示集合表示{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈S,且x∉A}4。

集合的运算性质(1)A∩A=A,A∩∅=∅,A∩B=B∩A。

(2)A∪A=A,A∪∅=A,A∪B=B∪A。

(3)A∩(∁S A )=∅,A∪(∁S A)=S,∁S(∁S A)=A.[常用结论与微点提醒]1.若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个,非空子集有2n-1个,非空真子集有2n-2个。

第1章 第1讲集合的概念与运算-2021版高三数学(新高考)一轮复习课件共45张PPT

第1章 第1讲集合的概念与运算-2021版高三数学(新高考)一轮复习课件共45张PPT

第一章 集合与常用逻辑用语
高考一轮总复习 • 数学 • 新高考
返回导航
[解析] (1)B={x|x∈A}={1,2,3}=A,故选 C.
(2)∵集合 A={x|x=sin n3π,n∈Z}={0, 23,- 23},且 B⊆A,∴集合 B 的个 数为 23=8,故选 C.
(3)解法一:(列举法),由题意知
高考一轮总复习 • 数学 • 新高考
返回导航
(2)(多选题)(2020·湖南长郡中学模拟改编)已知集合 M={y|y=x-|x|,x∈R},N
={y|y=(12)x,x∈R},则下列不正确的是(ABD )
A.M=N
B.N⊆M
C.M=∁RN
D.(∁RN)∩M=∅
(3)已知集合 A={x|x2-3x-10≤0},B={x|mx+10>0},若 A⊆B,则 m 的取值范
返回导航
(3)若 a+2=1,则 a=-1,A={1,0,1},不合题意;若(a+1)2=1,则 a=0 或-
2,当 a=0 时,A={2,1,3},当 a=-2 时,A={0,1,1},不合题意;若 a2+3a+3=1,
则 a=-1 或-2,显然都不合题意;因此 a=0,所以 2 0200=1.
∵1∉A,∴a+2≠1,∴a≠-1;(a+1)2≠1,解得 a≠0,-2;a2+3a+3≠1 解
A.(-1,1)
B.(1,2)
C.(-1,+∞)
D.(1,+∞)
[解析] 由题意得A∪B={x|x>-1},即A∪B=(-1,+∞),故选C.
第一章 集合与常用逻辑用语
高考一轮总复习 • 数学 • 新高考
返回导航
6. (2019·全国卷Ⅱ,5分)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B

新课程2021高考数学一轮复习第一章第1讲集合的概念与运算课时作业含解析.doc

新课程2021高考数学一轮复习第一章第1讲集合的概念与运算课时作业含解析.doc

第1讲集合的概念与运算组基础关1.设集合P={x|0≤x≤2},m=3,则下列关系中正确的是()A.m⊆P B.m PC.m∈P D.m P答案 D解析∵3>2,∴m P.2.已知全集U=R,则表示集合M={x|x2+3x=0}和N={-3,0,3}关系的示意图是()答案 D解析因为集合M={-3,0},N={-3,0,3},所以M N,故选D.3.已知集合A={x|x=3k-1,k∈Z},则下列表示正确的是()A.-1A B.-11∈AC.3k2-1∈A D.-34A答案 C解析令k=0得x=-1,故-1∈A;令-11=3k-1,解得k=-103Z,故-11A;令-34=3k-1,解得k=-11∈Z,故-34∈A;对于3k2-1,因为k∈Z时,k2∈Z,所以3k2-1∈A.故选C.4.(2019·全国卷Ⅱ)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=()A.(-∞,1) B.(-2,1)C.(-3,-1) D.(3,+∞)答案 A解析A∩B={x|x2-5x+6>0}∩{x|x-1<0}={x|x<2或x>3}∩{x|x<1}={x|x<1}.故选A.5.若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a 等于( ) A.92 B.98 C .0 D .0或98 答案 D解析 当a =0时,A =⎩⎨⎧⎭⎬⎫23,符合题意;当a ≠0时,Δ=(-3)2-4×a ×2=0,解得a =98,此时A =⎩⎨⎧⎭⎬⎫43,符合题意.综上可知,a =0或98.6.(2020·茂名市摸底)已知集合M ={(x ,y )|y =3x 2},N ={(x ,y )|y =5x },则M ∩N 中元素的个数为( )A .0B .1C .2D .3 答案 C解析 解方程组⎩⎨⎧ y =3x 2,y =5x ,得⎩⎨⎧x =0,y =0或⎩⎨⎧x =53,y =253,所以M ∩N =⎩⎨⎧⎭⎬⎫(0,0),⎝⎛⎭⎫53,253.所以M ∩N 中元素的个数为2.7.设全集U =R ,A ={x |x 2-2x ≤0},B ={y |y =cos x ,x ∈R },则图中阴影部分表示的区间是( )A .[0,1]B .(-∞,-1]∪[2,+∞)C .[-1,2]D .(-∞,-1)∪(2,+∞)答案 D解析 A ={x |x 2-2x ≤0}=[0,2],B ={y |y =cos x ,x ∈R }=[-1,1].图中阴影部分表示∁U (A ∪B )=(-∞,-1)∪(2,+∞).8.集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为________. 答案 4解析 因为A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则⎩⎨⎧a 2=16,a =4,所以a =4.9.设集合A ={-1,1},集合B ={x |ax =1,a ∈R },则使得B ⊆A 的a 的所有取值构成的集合是________.答案 {-1,0,1}解析 因为B ⊆A ,所以①当B =∅时,可知a =0,显然成立.②当B ={1}时,可得a =1,符合题意.③当B ={-1}时,可得a =-1,符合题意.故满足条件的a 的取值集合是{-1,0,1}.10.已知a ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a ,1={a 2,a +b,0},则a 2019+b 2019=________.答案 -1解析 ∵⎩⎨⎧⎭⎬⎫a ,b a ,1={a 2,a +b,0},∴a ≠0.∴b =0,a 2=1,又a ≠1,∴a =-1, ∴a 2019+b 2019=-1.组 能力关1.设集合M ={x |x =5-4a +a 2,a ∈R },N ={y |y =4b 2+4b +2,b ∈R },则下列关系中正确的是( )A .M =NB .N ⊆MC .M ⊆ND .M ∩N =∅ 答案 A解析 因为集合M ={x |x =5-4a +a 2,a ∈R }={x |x =(a -2)2+1,a ∈R }={x |x ≥1},N ={y |y =(2b +1)2+1,b ∈R }={y |y ≥1}.所以M =N .2.(2019·衡水模拟)已知集合A ={x |log 2x <1},B ={x |0<x <c },若A ∪B =B ,则c 的取值范围是( )A .(0,1]B .[1,+∞)C .(0,2]D .[2,+∞) 答案 D解析 因为集合A ={x |log 2x <log 22}={x |0<x <2},B ={x |0<x <c },又由A ∪B =B ,得A ⊆B ,所以c ≥2.3.已知集合A =[1,+∞),B ={|x ∈R 12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是( )A .[1,+∞) B.⎣⎡⎦⎤12,1 C.⎣⎡⎭⎫23,+∞ D .(1,+∞)答案 A解析 因为A ∩B ≠∅,所以⎩⎪⎨⎪⎧2a -1≥1,2a -1≥12a ,解得a ≥1. 4.若x ∈A ,则1x ∈A ,就称A 是“伙伴关系”集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,13,12,1,2,3,4的所有非空子集中,具有“伙伴关系”的集合的个数为( )A .15B .16C .32D .256 答案 A解析 由题意得,满足题意的“伙伴关系”的集合由以下元素构成:-1,1,12,2,13,3,其中12和2,13和3必须同时出现.所以集合M 的所有非空子集中具有“伙伴关系”的集合的个数为24-1=15.5.设集合A ={0,-4},B ={x |x 2+2(a +1)x +a 2-1=0,x ∈R }.若A ∩B =B ,则实数a 的取值范围是________.答案 a ≤-1或a =1解析 ∵A ∩B =B ,∴B ⊆A .又A ={0,-4}, ∴B 的可能情况有∅,{-4},{0},{-4,0}. ①若B =∅,则Δ=4(a +1)2-4(a 2-1)<0, 解得a <-1.②若B ={-4},则a ∈∅. ③若B ={0},则a =-1. ④若B ={-4,0},则a =1. 综上可知,a ≤-1或a =1.6.设数集M =⎩⎨⎧⎭⎬⎫x ⎪⎪ m ≤x ≤m +34,N =⎩⎨⎧⎭⎬⎫x ⎪⎪n -13≤x ≤n ,且M ,N 都是集合U ={x |0≤x ≤1}的子集,定义b -a 为集合{x |a ≤x ≤b }的“长度”,则集合M ∩N 的长度的最小值为________,集合M ∪N 的长度的最小值为________.答案112 34解析 由已知得,当m =0且n =1或n -13=0且m +34=1时,M ∩N 的长度最小.当m =0且n =1时,M ∩N =⎩⎨⎧⎭⎬⎫x ⎪⎪ 23≤x ≤34,其长度为34-23=112. 当m =14且n =13时,M ∩N =⎩⎨⎧⎭⎬⎫x ⎪⎪ 14≤x ≤13, 其长度为13-14=112.综上可知,M ∩N 的长度的最小值为112.集合M 的长度为34,集合N 的长度为13,所以集合M ∪N 的长度的最小值为34.。

2021版高考文科数学一轮复习第一章 第1讲 集合的概念与运算

2021版高考文科数学一轮复习第一章 第1讲 集合的概念与运算

第1讲集合的概念与运算一、知识梳理1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N+(或N*)Z Q R[注意]N为自然数集(即非负整数集),包含0,而N+和N*的含义是一样的,表示正整数集,不包含0.2.集合间的基本关系表示关系自然语言符号语言Venn图子集集合A中所有元素都在集合B中(即若x∈A,则x∈B)A⊆B(或B⊇A)真子集集合A是集合B的子集,且集合B中至少有一个元素不在集合A中A B(或B A)集合相等集合A,B中元素相同A=B3.集合的基本运算集合的并集集合的交集集合的补集图形语言符号语言A∪B={x|x∈A或x∈B}A∩B={x|x∈A且x∈B}∁U A={x|x∈U且x∉A}(1)A∪B=A⇔B⊆A,A∩B=A⇔A⊆B.(2)A∩A=A,A∩∅=∅.(3)A∪A=A,A∪∅=A.(4)A∩(∁U A)=∅,A∪(∁U A)=U,∁U(∁U A)=A.二、教材衍化1.若集合P={x∈N|x≤ 2 018},a=22,则()A.a∈P B.{a}∈PC.{a}⊆P D.a∉P解析:选D.因为a=22不是自然数,而集合P是不大于 2 018的自然数构成的集合,所以a∉P.故选D.2.已知集合M={0,1,2,3,4},N={1,3,5},则集合M∪N的子集的个数为________.解析:由已知得M∪N={0,1,2,3,4,5},所以M∪N的子集有26=64(个).答案:64一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)若集合A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2},则A,B,C表示同一个集合.()(2)若a在集合A中,则可用符号表示为a⊆A.()(3)若A B,则A⊆B且A≠B.()(4)N+N Z.()(5)若A∩B=A∩C,则B=C.()答案:(1)×(2)×(3)√(4)√(5)×二、易错纠偏常见误区(1)忽视集合的互异性致错;(2)集合运算中端点取值致错;(3)忘记空集的情况导致出错.1.已知集合U={-1,0,1},A={x|x=m2,m∈U},则∁U A=________.解析:因为A={x|x=m2,m∈U}={0,1},所以∁U A={-1}.答案:{-1}2.已知集合A={x|(x-1)(x-3)<0},B={x|2<x<4},则A∩B=________,A∪B=________,(∁R A)∪B=________.解析:由已知得A={x|1<x<3},B={x|2<x<4},所以A∩B={x|2<x<3},A∪B={x|1<x<4},(∁R A)∪B={x|x≤1或x>2}.答案:(2,3)(1,4)(-∞,1]∪(2,+∞)3.已知集合M={x|x-a=0},N={x|ax-1=0},若M∩N=N,则实数a的值是________.解析:易得M={a}.因为M∩N=N,所以N⊆M,所以N=∅或N=M,所以a=0或a=±1.答案:0或1或-1集合的基本概念(师生共研)(1)已知集合A={1,2,3,4,5},B={(x,y)|x∈A且y∈A且x-y∈A},则B 中所含元素的个数为()A.3B.6C.8D.10(2)已知集合A={m+2,2m2+m},若3∈A,则m的值为________.【解析】(1)由x∈A,y∈A,x-y∈A,得x-y=1或x-y=2或x-y=3或x-y=4,所以集合B={(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4)},所以集合B中有10个元素.(2)因为3∈A,所以m+2=3或2m2+m=3.当m+2=3,即m=1时,2m2+m=3,此时集合A中有重复元素3,所以m =1不符合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),当m =-32时,m +2=12≠3,符合题意.所以m =-32.【答案】 (1)D (2)-32与集合中元素有关问题的求解策略1.已知集合A ={x |x ∈Z ,且32-x∈Z },则集合A 中的元素个数为( ) A .2 B .3 C .4D .5解析:选C.因为32-x∈Z ,所以2-x 的取值有-3,-1,1,3,又因为x ∈Z ,所以x 的值分别为5,3,1,-1,故集合A 中的元素个数为4. 2.设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =( )A .1B .-1C .2D .-2解析:选C.因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,a ≠0,所以a +b =0,则ba =-1,所以a =-1,b =1.所以b -a =2.3.设集合A ={0,1,2,3},B ={x |-x ∈A ,1-x ∉A },则集合B 中元素的个数为( ) A .1 B .2 C .3D .4解析:选A.若x ∈B ,则-x ∈A ,故x 只可能是0,-1,-2,-3,当0∈B 时,1-0=1∈A ;当-1∈B 时,1-(-1)=2∈A ;当-2∈B 时,1-(-2)=3∈A ; 当-3∈B 时,1-(-3)=4∉A ,所以B ={-3},故集合B 中元素的个数为1.集合间的基本关系(师生共研)(1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4(2)已知集合A ={x |-1<x <3},B ={x |-m <x <m },若B ⊆A ,则m 的取值范围为______. 【解析】 (1)由题意可得,A ={1,2},B ={1,2,3,4},又因为A ⊆C ⊆B ,所以C ={1,2}或{1,2,3}或{1,2,4}或{1,2,3,4}.(2)当m ≤0时,B =∅,显然B ⊆A . 当m >0时,因为A ={x |-1<x <3}. 当B ⊆A 时,在数轴上标出两集合,如图,所以⎩⎨⎧-m ≥-1,m ≤3,-m <m .所以0<m ≤1.综上所述,m 的取值范围为(-∞,1]. 【答案】 (1)D (2)(-∞,1][提醒]题目中若有条件B⊆A,则应分B=∅和B≠∅两种情况进行讨论.1.已知集合A={x|x2-2x>0},B={x|-5<x<5},则()A.A∩B=∅B.A∪B=RC.B⊆A D.A⊆B解析:选B.因为A={x|x>2或x<0},因此A∪B={x|x>2或x<0}∪{x|-5<x<5}=R.故选B.2.已知集合A={x|x2-2x-3≤0,x∈N+},则集合A的真子集的个数为()A.7 B.8C.15 D.16解析:选A.法一:A={x|-1≤x≤3,x∈N+}={1,2,3},其真子集有:∅,{1},{2},{3},{1,2},{1,3},{2,3}共7个.法二:因为集合A中有3个元素,所以其真子集的个数为23-1=7(个).3.设集合A={x|1<x<2},B={x|x<a},若A∩B=A,则a的取值范围是()A.{a|a≤2} B.{a|a≤1}C.{a|a≥1} D.{a|a≥2}解析:选D.由A∩B=A,可得A⊆B,又A={x|1<x<2},B={x|x<a},所以a≥2.故选D.集合的基本运算(多维探究)角度一集合的运算(1)(2019·高考全国卷Ⅰ)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=()A.{1,6} B.{1,7}C.{6,7} D.{1,6,7}(2)(2020·郑州市第一次质量预测)设全集U=R,集合A={x|-3<x<1},B={x|x+1≥0},则∁U(A∪B)=()A.{x|x≤-3或x≥1} B.{x|x<-1或x≥3}C.{x|x≤3} D.{x|x≤-3}【解析】(1)依题意得∁U A={1,6,7},故B∩∁U A={6,7}.故选C.(2)因为B={x|x≥-1},A={x|-3<x<1},所以A∪B={x|x>-3},所以∁U(A∪B)={x|x≤-3}.故选D.【答案】(1)C(2)D集合基本运算的求解策略角度二利用集合的运算求参数(1)设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是()A.-1<a≤2 B.a>2C.a≥-1 D.a>-1(2)集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为()A.0 B.1C.2 D.4【解析】(1)因为A∩B≠∅,所以集合A,B有公共元素,作出数轴,如图所示,易知a>-1.(2)根据并集的概念,可知{a,a2}={4,16},故a=4.【答案】(1)D(2)D根据集合的运算结果求参数的值或取值范围的方法(1)将集合中的运算关系转化为两个集合之间的关系.若集合中的元素能一一列举,则用观察法得到不同集合中元素之间的关系;若集合是与不等式有关的集合,则一般利用数轴解决,要注意端点值能否取到.(2)将集合之间的关系转化为解方程(组)或不等式(组)问题求解.(3)根据求解结果来确定参数的值或取值范围.1.(2019·高考天津卷)设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=()A.{2}B.{2,3}C.{-1,2,3} D.{1,2,3,4}解析:选D.通解:因为A∩C={1,2},B={2,3,4},所以(A∩C)∪B={1,2,3,4}.故选D.优解:因为B={2,3,4},所以(A∩C)∪B中一定含有2,3,4三个元素,故排除A,B,C,选D.2.(2020·宁夏石嘴山三中一模)已知集合A={-1,0,1,2},B={x|x2-1≥0},则下图中阴影部分所表示的集合为()A.{-1} B.{0}C.{-1,0} D.{-1,0,1}解析:选B.阴影部分对应的集合为A∩∁R B,B={x|x2-1≥0}={x|x≤-1或x≥1},则∁R B={x|-1<x<1},则A∩∁R B={0},故选B.3.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是()A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:选D.因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,解得m≥2或m≤-2.4.已知全集U=R,函数y=ln(1-x)的定义域为M,集合N={x|x2-x<0},则下列结论正确的是()A.M∩N=N B.M∩(∁U N)=∅C.M∪N=U D.M⊆(∁U N)解析:选A.由题意知M={x|x<1},N={x|0<x<1},所以M∩N=N.又∁U N={x|x≤0或x ≥1},所以M ∩(∁U N )={x |x ≤0}≠∅,M ∪N ={x |x <1}=M ,M ⃘(∁U N ),故选A.核心素养系列1 数学抽象——集合的新定义问题以集合为背景的新定义问题常以“问题”为核心,以“探究”为途径,以“发现”为目的,这类试题只是以集合为依托,考查考生对新概念的理解,充分体现了核心素养中的数学抽象.定义集合的商集运算为A B ={x |x =mn,m ∈A ,n ∈B }.已知集合A ={2,4,6},B={x |x =k 2-1,k ∈A },则集合BA∪B 中的元素个数为( )A .6B .7C .8D .9【解析】 由题意知,B ={0,1,2},B A ={0,12,14,16,1,13},则B A ∪B ={0,12,14,16,1,13,2},共有7个元素,故选B. 【答案】 B解决集合创新型问题的方法(1)要分析新定义的特点和本质,认清新定义对集合元素的要求,结合题目要求进行转化,并将其运用到具体的解题过程中.(2)要充分应用集合的有关性质及一些特殊方法(如特值法、排除法、数形结合法等),将新定义问题转化到已学的知识中进行求解.1.如果集合A 满足若x ∈A ,则-x ∈A ,那么就称集合A 为“对称集合”.已知集合A ={2x ,0,x 2+x },且A 是对称集合,集合B 是自然数集,则A ∩B =________.解析:由题意可知-2x =x 2+x , 所以x =0或x =-3.而当x =0时不符合元素的互异性,所以舍去. 当x =-3时,A ={-6,0,6}, 所以A ∩B ={0,6}. 答案:{0,6}2.设A ,B 是非空集合,定义A ⊗B ={x |x ∈A ∪B 且x ∉A ∩B }.已知集合A ={x |0<x <2},B={y|y≥0},则A⊗B=________.解析:由已知A={x|0<x<2},B={y|y≥0},又由新定义A⊗B={x|x∈A∪B且x∉A∩B},结合数轴得A⊗B={0}∪[2,+∞).答案:{0}∪[2,+∞)[基础题组练]1.已知全集U=R,集合A={x|x<-1或x>1},则∁U A=()A.(-∞,-1)∪(1,+∞) B.(-∞,-1]∪[1,+∞)C.(-1,1) D.[-1,1]解析:选D.因为全集U=R,集合A={x|x<-1或x>1},所以∁U A={x|-1≤x≤1},故选D.2.(2020·陕西西安模拟)设集合A={x∈Z|x>4},B={x|x2<100},则A∩B的元素个数为()A.3 B.4C.5 D.6解析:选C.因为B={x|-10<x<10},所以A∩B={x∈Z|4<x<10}={5,6,7,8,9}.所以A∩B的元素个数为5,故选C.3.已知集合A={0},B={-1,0,1},若A⊆C⊆B,则符合条件的集合C的个数为() A.1 B.2C.4 D.8解析:选C.由题意得,含有元素0且是集合B的子集的集合有{0},{0,-1},{0,1},{0,-1,1},即符合条件的集合C共有4个.故选C.4.已知全集U=R,集合A={x|x(x+2)<0},B={x||x|≤1},则如图所示的阴影部分表示的集合是()A.(-2,1)B.[-1,0]∪[1,2)C.(-2,-1)∪[0,1]D .[0,1]解析:选C.因为集合A ={x |x (x +2)<0},B ={x ||x |≤1},所以A ={x |-2<x <0},B ={x |-1≤x ≤1},所以A ∪B =(-2,1],A ∩B =[-1,0),所以阴影部分表示的集合为∁A ∪B (A ∩B )=(-2,-1)∪[0,1],故选C.5.(2020·江苏南京联合调研改编)已知全集U ={1,2,3,4,5},集合A ={1,3,4},B ={3,5},则A ∩B =______,∁U A =______.解析:因为全集U ={1,2,3,4,5},集合A ={1,3,4},B ={3,5},所以A ∩B ={3},则∁U A ={2,5}.答案:{3} {2,5}6.已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=________. 解析:由于A ∪B ={x |x ≤0或x ≥1},结合数轴,∁U (A ∪B )={x |0<x <1}.答案:{x |0<x <1}7.已知集合A ={1,2,3,4},集合B ={x |x ≤a ,a ∈R },A ∪B =(-∞,5],则a 的值是________.解析:因为集合A ={1,2,3,4},集合B ={x |x ≤a ,a ∈R },A ∪B =(-∞,5],所以a =5.答案:58.已知集合A ={x |-1<x ≤3},B ={x |m ≤x <1+3m }.(1)当m =1时,求A ∪B ;(2)当B ⊆∁R A 时,求实数m 的取值范围.解:(1)因为m =1时,B ={x |1≤x <4},所以A ∪B ={x |-1<x <4}.(2)∁R A ={x |x ≤-1或x >3}.当B =∅时,即m ≥1+3m ,解得m ≤-12; 当B ≠∅时,要使B ⊆∁R A 成立,则⎩⎪⎨⎪⎧m <1+3m ,1+3m ≤-1或⎩⎨⎧m <1+3m ,m >3,解得m >3. 综上可知,实数m 的取值范围是⎝⎛⎦⎤-∞,-12∪(3,+∞).[综合题组练]1.已知集合M ={y |y =x -|x |,x ∈R },N =⎩⎨⎧⎭⎬⎫y |y =⎝⎛⎭⎫13x ,x ∈R ,则下列选项正确的是( ) A .M =NB .N ⊆MC .M =∁R ND .∁R N ⃘M解析:选C.由题意得M ={y |y ≤0},N ={y |y >0},所以∁R N ={y |y ≤0},M =∁R N .故C 正确,A ,B ,D 错误.2.(创新型)如图所示的Venn 图中,A ,B 是非空集合,定义集合A ⊗B 为阴影部分表示的集合.若x ,y ∈R ,A ={x |2x -x 2≥0},B ={y |y =3x ,x >0},则A ⊗B =( )A .{x |0<x <2}B .{x |1<x ≤2}C .{x |x ≤1或x ≥2}D .{x |0≤x ≤1或x >2}解析:选D.因为A ={x |2x -x 2≥0}=[0,2],B ={y |y =3x ,x >0}=(1,+∞),所以A ∪B =[0,+∞),A ∩B =(1,2],由题图知A ⊗B =[0,1]∪(2,+∞),故选D.3.(2020·江西九江模拟)集合M ={x |2x 2-x -1<0},N ={x |2x +a >0},U =R .若M ∩(∁U N )=∅,则a 的取值范围是( )A .(1,+∞)B .[1,+∞)C .(-∞,1)D .(-∞,1]解析:选B.由集合M ={x |2x 2-x -1<0},N ={x |2x +a >0},可得M =⎝⎛⎭⎫-12,1,∁U N =⎝⎛⎦⎤-∞,-a 2.要使M ∩(∁U N )=∅,则-a 2≤-12,解得a ≥1,故选B. 4.已知集合A ={x |4≤2x ≤16},B =[a ,b ],若A ⊆B ,则实数a -b 的取值范围是________. 解析:集合A ={x |4≤2x ≤16}={x |22≤2x ≤24}={x |2≤x ≤4}=[2,4],因为A ⊆B ,所以a ≤2,b ≥4,所以a -b ≤2-4=-2,即实数a -b 的取值范围是(-∞,-2].答案:(-∞,-2]。

2021年高考数学一轮复习 1.1集合的概念与运算练习 理

2021年高考数学一轮复习 1.1集合的概念与运算练习 理

2021年高考数学一轮复习 1.1集合的概念与运算练习理1.(xx·北京卷)已知集合A={x|x2-2x=0},B={0,1,2},则A∩B=( ) A.{0} B.{0,1}C.{0,2} D.{0,1,2}解析:利用交集的概念求解,因为A={0,2},所以A∩B={0,2},故选C.答案:C2.集合M={y∈R|y=3x},N={-1,0,1},则下列结论正确的是( ) A.M∩N={0,1}B.M∪N=(1,+∞)C.(∁RM)∪N=(-∞,0)D.(∁RM)∩N={-1,0}解析:M={y∈R|y>0},∁RM={y|y≤0},∴(∁RM)∩N={-1,0}.故选D.答案:D3.设全集U=R,A={x|2x(x-2)<1},B={x|y=ln(1-x)},则图中阴影部分表示的集合为( )A.{x|x≥1} B.{x|x≤1}C.{x|0<x≤1} D.{x|1≤x<2}解析:∵A={x|0<x<2},B={x|x<1},图中的阴影部分可用集合(∁B)∩AU表示,B)∩A={x|x≥1}∩{x|0<x<2}={x|1≤x<2},故选D.∴(∁U答案:D4.已知集合A={1,3,m},B={1,m},A∪B=A,则m=( )A.0或 3 B.0或3C.1或 3 D.1或3解析:∵A∪B=A,∴B⊆A.∵A={1,3,m},B={1,m},∴m∈A.故m=m或m=3,解得m=0或m=3或m=1.又根据集合元素的互异性知,m≠1,∴m=0或m=3.故选B.答案:B5.(xx·山东卷)设集合A={x||x-1|<2},B={y|y=2x,x∈[0,2]},则A∩B=( )A.[0,2] B.(1,3)C.[1,3) D.(1,4)解析:先将集合化简,然后再结合数轴进行交集运算,因为A={x|-2<x -1<2}={x|-1<x<3},B={y|1≤y≤4},所以A∩B=[1,3),故选C.答案:CA=6.若全集U=R,集合A={x|x≥1}∪{x|x≤0},则∁U__________.答案:{x|0<x<1}7.已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)·(x-2)<0},且A∩B=(-1,n),则m=__________,n=__________.解析:由|x+2|<3,得-3<x+2<3,即-5<x<1,所以集合A={x|-5<x<1}.因为A∩B=(-1,n),所以-1是方程(x-m)(x-2)=0的根,所以代入得3(1+m)=0,所以m=-1.此时不等式(x+1)(x-2)<0的解为-1<x<2,所以A∩B=(-1,1),即n=1.答案:-1 1A 8.(xx·河南调研)设全集I={2,3,a2+2a-3},A={2,|a+1|},∁I={5},M={x|x=log2|a|},则集合M的所有子集是______________.解析:因为A∪(∁IA)=I,所以{2,3,a2+2a-3}={2,5,|a+1|},所以|a+1|=3且a2+ 2a-3=5,解得a=-4或a=2.所以M={log22,log2|-4|}={1,2}.答案:∅、{1}、{2}、{1,2}9.设集合A={x2,2x-1,-4},B={x-5,1-x,9},若A∩B={9},求A∪B.解析:由9∈A,可得x2=9或2x-1=9,解得x=±3或x=5.当x=3时,A={9,5,-4},B={-2,-2,9},B中元素重复,故舍去;当x=-3时,A={9,-7,-4},B={-8,4,9},A∩B={9}满足题意,故A∪B={-8,-7,-4,4,9};当x=5时,A={25,9,-4},B={0,-4,9},此时A∩B={-4,9}与A∩B={9}矛盾,故舍去.综上所述,A∪B={-8,-7,-4,4,9}.10.设全集I=R,已知集合M={x|(x+3)2≤0},N={x|x2+x-6=0}.(1)求(∁IM)∩N;(2)记集合A=(∁IM)∩N,已知集合B={x|a-1≤x≤5-a,a∈R},若B∪A =A,求实数a的取值范围.解析:(1)∵M={x|(x+3)2≤0}={-3},N={x|x2+x-6=0}={-3,2},∴∁I M ={x|x∈R 且x≠-3}, ∴(∁I M )∩N={2}. (2)A =(∁I M )∩N={2}, ∵A ∪B =A ,∴B ⊆A , ∴B =∅或B ={2},当B =∅时,a -1>5-a ,∴a>3; 当B ={2}时,⎩⎨⎧a -1=2,5-a =2.解得a =3,综上所述,所求a 的取值范围为{a|a≥3}.35503 8AAF 誯k23894 5D56 嵖L )35865 8C19 谙32377 7E79 繹w20237 4F0D伍26935 6937 椷30060 756C 畬825595 63FB 揻38906 97FA 韺。

2021版新高考数学一轮复习讲义:第一章第一讲 集合的概念与运算 (含解析)

2021版新高考数学一轮复习讲义:第一章第一讲 集合的概念与运算 (含解析)

第一章集合与常用逻辑用语第一讲集合的概念与运算ZHI SHI SHU LI SHUANG JI ZI CE知识梳理·双基自测知识梳理知识点一集合的基本概念一组对象的全体构成一个集合.(1)集合中元素的三大特征:确定性、互异性、无序性.(2)集合中元素与集合的关系:对于元素a与集合A,a∈A或a∉A,二者必居其一.(3)常见集合的符号表示.数集自然数集正整数集整数集有理数集实数集符号N N*Z Q R(4)(5)集合的分类:集合按元素个数的多少分为有限集、无限集,有限集常用列举法表示,无限集常用描述法表示.知识点二集合之间的基本关系关系定义表示相等集合A与集合B中的所有元素都相同A=B子集A中的任意一个元素都是B中的元素A⊆B真子集A是B的子集,且B中至少有一个元素不属于A A B 空集用∅表示.(2)若集合A中含有n个元素,则其子集个数为2n,真子集个数为2n-1,非空真子集的个数为2n-2.(3)空集是任何集合的子集,是任何非空集合的真子集.(4)若A⊆B,B⊆C,则A⊆C.知识点三集合的基本运算符号交集A∩B 并集A∪B 补集∁U A 语言图形语言意义A∩B={x|x∈A且x∈B}A∪B={x|x∈A或x∈B}∁U A={x|x∈U且x∉A}重要结论1.A∩A=A,A∩∅=∅.2.A∪A=A,A∪∅=A.3.A∩(∁U A)=∅,A∪(∁U A)=U,∁U(∁U A)=A.4.A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B⇔A∩(∁U B)=∅.双基自测题组一走出误区1.(多选题)下列命题错误的是(ABCD)A.集合A中含有三个元素0,1,x,且x2∈A,则实数x的值为1或-1或0.B.方程x-2 020+(y+2 021)2=0的解集为{2 020,-2 021}.C.若A∩B=A∩C,则B=C.D.设U=R,A={x|lg x<1},则∁U A={x|lg x≥1}={x|x≥10}.题组二走进教材2.(必修1P5B1改编)若集合P={x∈N|x≤ 2 021},a=45,则(D)A.a∈P B.{a}∈PC.{a}⊆P D.a∉P[解析]452=2 025>2 021,∴a∉P,故选D.3.(必修1P7T3(2)改编)若A={x|x=4k-1,k∈Z},B={x=2k-1,k∈Z},则集合A与B 的关系是(B)A.A=B B.A BC.A B D.A⊆B[解析]因为集合B={x|x=2k-1,k∈Z},A={x|x=4k-1,k∈Z}={x|x=2(2k)-1,k ∈Z},集合B表示2与整数的积减1的集合,集合A表示2与偶数的积减1的集合,所以A B,故选B.题组三考题再现4.(2019·全国卷Ⅰ,5分)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=(C)A.{1,6} B.{1,7}C .{6,7}D .{1,6,7}[解析] 依题意得∁U A ={1,6,7},故B ∩∁U A ={6,7}.故选C .5.(2019·北京,5分)已知集合A ={x |-1<x <2},B ={x |x >1},则A ∪B =( C ) A .(-1,1) B .(1,2) C .(-1,+∞)D .(1,+∞)[解析] 由题意得A ∪B ={x |x >-1},即A ∪B =(-1,+∞),故选C .6.(2019·全国卷Ⅱ,5分)设集合A ={x |x 2-5x +6>0},B ={x |x -1<0},则A ∩B =( A ) A .(-∞,1) B .(-2,1) C .(-3,-1)D .(3,+∞)[解析] 因为A ={x |x 2-5x +6>0}={x |x >3或x <2},B ={x |x -1<0}={x |x <1},所以A ∩B ={x |x <1},故选A .KAO DIAN TU PO HU DONG TAN JIU 考点突破·互动探究考点一 集合的基本概念——自主练透例1 (1)(多选题)已知集合A ={x |x =3k +1,k ∈Z },则下列表示正确的是( ABD ) A .-2∈A B .2 021∉A C .3k 2+1∉AD .-35∈A(2)(2019·华师大第二附中10月月考)已知集合A ={x |x ∈Z ,且32-x∈Z },则集合A 中的元素个数为( C )A .2B .3C .4D .5(3)已知集合A ={a +2,(a +1)2,a 2+3a +3},若1∈A ,则2 020a 的值为1;若1∉A ,则a 不可能取得的值为-2,-1,0,-1+52,-1-52.[解析] (1)当-2=3k +1时,k =-1∈Z ,故A 正确;当2 021=3k +1时,k =67313∉Z ,故B 正确;当-35=3k +1时,k =-12∈Z ,故D 正确.故选A 、B 、D .(2)∵32-x ∈Z ,∴2-x 的取值有-3,-1,1,3.又∵x ∈Z ,∴x 的取值为5,3,1,-1,故集合A中的元素个数为4,故选C .(3)若a +2=1,则a =-1,A ={1,0,1},不合题意;若(a +1)2=1,则a =0或-2,当a =0时,A ={2,1,3},当a =-2时,A ={0,1,1},不合题意;若a 2+3a +3=1,则a =-1或-2,显然都不合题意;因此a =0,所以2 0200=1.∵1∉A ,∴a +2≠1,∴a ≠-1;(a +1)2≠1,解得a ≠0,-2;a 2+3a +3≠1解得a ≠-1,-2.又∵a +2、(a +1)2、a 2+3a +3互不相等,∴a +2≠(a +1)2得a ≠-1±52;a +2≠a 2+3a+3得a ≠-1;(a +1)2≠a 2+3a +3得a ≠-2;综上a 的值不可以为-2,-1,0,-1+52,-1-52.名师点拨 ☞(1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型的集合.(2)集合中元素的互异性常常容易忽略,特别是含有字母的集合,在求出字母的值后,要注意检验集合中元素是否满足互异性.分类讨论的思想方法常用于解决集合问题.考点二 集合之间的基本关系——师生共研例2 (1)已知集合A ={1,2,3},集合B ={x |x ∈A },则集合A 与集合B 的关系为( C ) A .A ⊆B B .B ⊆A C .A =BD .不能确定(2)(2020·江西赣州五校协作体期中)已知集合A ={x |x =sin n π3,n ∈Z },且B ⊆A ,则集合B 的个数为( C )A .3B .4C .8D .15(3)(多选题)设集合M ={x |x =k 3+16,k ∈Z },N ={x |x =k 6+23,k ∈Z },则下面不正确的是( ACD )A .M =NB .M NC .NMD .M ∩N =∅(4)已知集合A ={x |x 2-2 020x +2 019<0},B ={x |x <a },若A ⊆B ,则实数a 的取值范围是[2_019,+∞).[解析] (1)B ={x |x ∈A }={1,2,3}=A ,故选C . (2)∵集合A ={x |x =sinn π3,n ∈Z }={0,32,-32},且B ⊆A ,∴集合B 的个数为23=8,故选C .(3)解法一:(列举法),由题意知 M ={…-12,-16,16,12,56,76,…}N ={…-16,0,16,13,12,23,56,…}显然M N ,故选A 、C 、D . 解法二:(描述法) M ={x |x =2k +16,k ∈Z },N ={x |x =k +46,k ∈Z } ∵2k +1表示所有奇数,而k +4表示所有整数(k ∈Z ) ∴M N ,故选A 、C 、D . (4)A ={x |1<x <2 019},∵A ⊆B , ∴借助数轴可得a ≥2 019,∴a 的取值范围为[2 019,+∞).名师点拨 ☞判断集合间关系的3种方法 列举法根据题中限定条件把集合元素表示出来,然后比较集合元素的异同,从而找出集合之间的关系.(如第(1)、(2)题)结构法从元素的结构特点入手,结合通分、化简、变形等技巧,从元素结构上找差异进行判断.(如第(3)题)数轴法在同一个数轴上表示出两个集合,比较端点之间的大小关系,从而确定集合与集合之间的关系.(如第(4)题)(1)(2020·辽宁锦州质检(一))集合M ={x |x =3n ,n ∈N },集合N ={x |x =3n ,n ∈N },则集合M 与集合N 的关系是( D )A .M ⊆NB .N ⊆MC .M ∩N =∅D .M ⊆/ N 且N ⊆/ M(2)(多选题)(2020·湖南长郡中学模拟改编)已知集合M ={y |y =x -|x |,x ∈R },N ={y |y =(12)x ,x ∈R },则下列不正确的是( ABD )A .M =NB .N ⊆MC .M =∁R ND .(∁R N )∩M =∅(3)已知集合A ={x |x 2-3x -10≤0},B ={x |mx +10>0},若A ⊆B ,则m 的取值范围是(-2,5).[解析] (1)因为1∈M,1∉N,6∈N,6∉M ,所以M ⊆/ N 且N ⊆/ M ,故选D .(2)由题意得y =x -|x |=⎩⎪⎨⎪⎧0,x ≥0,2x ,x <0,∴M =(-∞,0],N =(0,+∞),∴M =∁R N .故选A 、B 、D .(3)化简A ={x |x 2-3x -10≤0}={x |-2≤x ≤5},当m >0时,x >-10m ,因为A ⊆B ,所以-10m <-2,解得m <5,所以0<m <5.当m <0时,x <-10m ,因为A ⊆B ,所以-10m >5,解得m >-2,所以-2<m <0.当m =0时,B =R ,符合A ⊆B .综上所述,所求的m 的取值范围是(-2,5).考点三 集合的基本运算——多维探究角度1 集合的运算例3 (1)(2019·天津,5分)设集合A ={-1,1,2,3,5},B ={2,3,4},C ={x ∈R |1≤x <3},则(A ∩C )∪B =( D )A .{2}B .{2,3}C .{-1,2,3}D .{1,2,3,4}(2)(2019·全国卷Ⅰ,5分)已知集合M ={x |-4<x <2},N ={x |x 2-x -6<0},则M ∩N =( C ) A .{x |-4<x <3} B .{x |-4<x <-2} C .{x |-2<x <2}D .{x |2<x <3}(3)(2020·百校联考)已知集合A ={x |x -3≤0且4x -5>0},B ={y |y =13x +15,x ≥1},则∁B A=( C )A .[815,54]∪[3,+∞)B .[815,54)∪(3,+∞)C .[815,54]∪(3,+∞)D .[815,54)∪[3,+∞)[解析] (1)由条件可得A ∩C ={1,2},故(A ∩C )∪B ={1,2,3,4}.(2)方法一:∵N ={x |-2<x <3},M ={x |-4<x <2},∴M ∩N ={x |-2<x <2},故选C . 方法二:由题可得N ={x |-2<x <3}.∵-3∉N ,∴-3∉M ∩N ,排除A ,B ;∵2.5∉M ,∴2.5∉M ∩N ,排除D .故选C .(3)因为A ={x |x -3≤0且4x -5>0},B ={y |y =13x +15,x≥1},所以A =(54,3],B =[815,+∞),故∁B A =[815,54]∪(3,+∞).故选C .角度2 利用集合的运算求参数例4 (1)已知集合A ={0,1,2m },B ={x |1<22-x <4},若A ∩B ={1,2m },则实数m 的取值范围是( C )A .(0,12)B .(12,1)C .(0,12)∪(12,1)D .(0,1)(2)已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}≠∅,若A ∩B =B ,则实数m 的取值范围为[2,3].[解析] (1)B ={x |0<2-x <2}={x |0<x <2},∵A ∩B ={1,2m },∴0<2m <2且2m ≠1,即0<m <1且m ≠12,故选C .(2)由A ∩B =B 知,B ⊆A .又B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5.解得2≤m ≤3,则实数m 的取值范围为[2,3].[引申1]本例(2)中若B ={x |m +1≤x ≤2m -1}情况又如何? [解析] 应对B =∅和B ≠∅进行分类. ①若B =∅,则2m -1<m +1,此时m <2. ②若B ≠∅,由例得2≤m ≤3.由①②可得,符合题意的实数m 的取值范围为(-∞,3].[引申2]本例(2)中是否存在实数m ,使A ∪B =B ?若存在,求实数m 的取值范围;若不存在,请说明理由.[解析] 由A ∪B =B ,即A ⊆B 得⎩⎪⎨⎪⎧m +1≤-2,2m -1≥5,即⎩⎪⎨⎪⎧m ≤-3,m ≥3,不等式组无解,故不存在实数m ,使A ∪B =B . [引申3]本例(2)中,若B ={x |m +1≤x ≤1-2m },A B ,则m 的取值范围为(-∞,-3].[解析] 由题意可知⎩⎪⎨⎪⎧m +1≤-2,1-2m ≥5,解得m ≤-3.名师点拨 ☞集合的基本运算的关注点1.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提. 2.有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.3.注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图. 4.根据集合运算结果求参数,先把符号语言译成文字语言,然后应用数形结合求解. 〔变式训练2〕(1)(角度1)(2019·浙江,4分)已知全集U ={-1,0,1,2,3},集合A ={0,1,2},B ={-1,0,1},则(∁U A )∩B =( A )A .{-1}B .{0,1}C .{-1,2,3}D .{-1,0,1,3}(2)(角度1)设全集U =R ,集合A ={x |0≤x ≤2},B ={y |1≤y ≤3},则(∁U A )∪B =( D ) A .(2,3] B .(-∞,1]∪(2,+∞) C .[1,2)D .(-∞,0)∪[1,+∞)(3)(角度2)设集合M ={x |y =2x -x 2},N ={x |x ≥a },若M ∪N =N ,则实数a 的取值范围是( B )A .[0,2]B .(-∞,0]C .[2,+∞)D .(-∞,2][解析] (1)由题意可得∁U A ={-1,3},则(∁U A )∩B ={-1}.故选A .(2)∁U A ={x |x <0或x >2},则(∁U A )∪B ={x |x <0或x ≥1},故选D . (3)M ={x |0≤x ≤2},∵M ∪N =N ,∴M ⊆N ,∴a ≤0,故选B .MING SHI JIANG TAN SU YANG TI SHENG 名师讲坛┃·素养提升集合中的新定义问题例5 (2020·江西九江联考)设A ,B 是非空集合,定义A ⊗B ={x |x ∈A ∪B 且x ∉A ∩B }.已知M ={y |y =-x 2+2x ,0<x <2},N ={y |y =2x -1,x >0},则M ⊗N =(0,12]∪(1,+∞).[解析] M ={y |y =-x 2+2x,0<x <2}=(0,1],N ={y |y =2x -1,x >0}=(12,+∞),则M ∪N=(0,+∞),M ∩N =(12,1],所以M ⊗N =(0,12]∪(1,+∞).名师点拨 ☞集合新定义问题的“3定”(1)定元素:确定已知集合中所含的元素,利用列举法写出所有元素.(2)定运算:根据要求及新定义运算,将所求解集合的运算问题转化为集合的交集、并集与补集的基本运算问题,或转化为数的有关运算问题.(3)定结果:根据定义的运算进行求解,利用列举法或描述法写出所求集合中的所有元素. 〔变式训练3〕对于集合M ,N ,定义M -N ={x |x ∈M 且x ∉N },M ⊕N =(M -N )∪(N -M ),设A ={y |y =x 2-3x ,x ∈R },B ={y |y =-2x ,x ∈R },则A ⊕B =( C )A .(-94,0]B .[-94,0)C .(-∞,-94)∪[0,+∞)D .(-∞,-94]∪(0,+∞)[解析] A ={y |y ≥-94},B ={y |y <0},A -B ={y |y ≥0},B -A ={y |y <-94},(A -B )∪(B -9A)={y|y≥0或y<-4},故选C.。

2021年高考数学一轮复习 第一章 集合与常用逻辑用语 第1课 集合的概念及运算 文(含解析)

2021年高考数学一轮复习 第一章 集合与常用逻辑用语 第1课 集合的概念及运算 文(含解析)

2021年高考数学一轮复习第一章集合与常用逻辑用语第1课集合的概念及运算文(含解析)1.集合的含义与表示①集合中元素的三个特征:确定性、互异性、无序性.②集合中元素与集合的关系意义符号表示属于集合是集合的元素不属于集合不是集合的元素③集合的表示法:列举法、描述法、韦恩图.④常用数集的表示集合自然数集正整数集整数集有理数集实数集表示2.集合间的基本关系①子集:若对∀x∈A,都有x∈B,则A⊆B.②真子集:若A⊆B,但∃x∈B,且x∉A,则A B.③相等:若A⊆B,且B⊆A,则A=B.④空集是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算4.集合A元素的个数为n则①A的子集个数为.②A的真子集个数为.5. 集合的运算及性质,.【例1】(xx延庆一模)已知集合,,,则()A.或 B.或 C.或 D.或【答案】B【解析】∵,∴,∴或.若,则,满足.若,解得或.若,则,满足.若,显然不成立,综上:或.【变式】(xx黑龙江质检)设集合,,则()A. B. C. D.【答案】B【解析】∵,∴.【例2】(xx惠州调研)已知集合,,若,则实数的所有可能取值的集合为()A. B. C. D.【答案】D【解析】(1)若时,得,满足;(2)若时,得.,∴或,解得,或.故所求实数的值为,或,或.【变式】已知集合,且,则实数的取值范围是()A. B. C. D.【答案】C【解析】∵,∴.(1)当时,则,解得.(2)当时,则,解得.∴实数的取值范围是.【例3】(xx揭阳一模)已知集合,集合,则()A .B .C .D .【答案】D【解析】∵,,∴.【变式】(xx 山东高考)已知集合、均为全集的子集,且,,则( )A .B .C .D .【答案】A【解析】∵,∴且,∵,∴,,∴,或,或,或,∴,.【例4】(xx 珠海一模)设为全集,对集合,定义运算“”,满足,则对于任意集合,()A .B .C .D .【答案】D【解析】()[()]()()U U U X Y Z X Y Z X Y Z ⊕⊕=⊕=.【变式】设、为两个非空实数集合,定义集合,若,,则中元素的个数为( )A .9B .8C .7D .6【答案】B【解析】∵,,,∴当时,的值为1,2,6;当时,的值为3,4,8;当时,的值为6,7,11,∴,∴中有8个元素.第1课 集合的概念及运算的课后作业1.(xx 福建高考)若集合,则的子集个数为( )A .2B .3C .4D .16【答案】C【解析】∵,∴的子集为.2.(xx 惠州调研)已知集合,,则( )A .B .C .D .【答案】C【解析】,故.3.(xx 全国高考)设集合则中的元素个数为( )A .B .C .D .【答案】B【解析】,有4个元素.4.(xx 中山质检)设全集,集合,,则图中的阴影部分表示的集合为( )AB .C .D . .5.(xx·惠州一模)若集合 , ,则A∩B=( )A .-1B .{-1}C .{-1,5}D .{1,-1}【答案】B【解析】由集合A 中的方程,解得: 或,所以集合 ,由集合B 中的方程,解得: 或,所以集合 ,则 .故选B.6. (xx·新课标全国卷Ⅰ)已知集合 ,,则 ( )A .{1,4}B .{2,3}C .{9,16}D .{1,2}【答案】A【解析】因为,所以 .所以 .所以,故选A.7.(xx·梅州二模)已知集合 ,集合,且A∩B={1},则A∪B=( )A .{0,1,3}B .{1,2,4}C .{0,1,2,3}D .{0,1,2,3,4}【答案】C【解析】因为,集合 ,且A∩B={1},所以,解得: 或 ,当 时, ,不合题意,舍去;当 时, ,此时,所以 ,集合 ,则 .故选C.8.若全集 ,集合 ,则 ________.【答案】{x|0<x<1}9.(xx·上海卷)若集合 , ,则A∩B=________.【答案】⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 12<x <1 【解析】解得集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x >12,集合B ={x|-1<x <1},求得A∩B=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 12<x <1. 10.(xx·河南调研)设全集 , ,, ,则集合 的所有子集是________________.【答案】 、{1}、{2}、{1,2}【解析】因为,所以 ,所以|a +1|=3,且 ,解得 或 .所以 .11.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 6x +1≥1,x∈R , ,若 ,求实数m 的值. 【解析】由6x +1>1,得x -5x +1≤0,所以-1<x≤5,即A ={x|-1<x≤5}, 又A∩B={x|-1<x <4},所以4是方程 的根,于是,解得m=8.此时,符合题意,故实数m的值为8.12.设全集,已知集合,.(1)求;(2)记集合,已知集合,若B∪A=A,求实数的取值范围.【解析】(1)∵,,∴,.(2) ,∵,,∴或,当时,,∴;当时,,解得从而,综上所述,所求的取值范围为.t30464 7700 眀28956 711C 焜 28147 6DF3 淳L-23767 5CD7 峗25830 64E6 擦,ugt。

2021新高考数学一轮复习 第01章 1.1 集 合

2021新高考数学一轮复习 第01章 1.1 集 合

§1.1集合1.集合与元素(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N*(或N+)Z Q R2.集合的基本关系(1)子集:若对于任意的x∈A都有x∈B,则A⊆B;(2)真子集:若A⊆B,且A≠B,则A B;(3)相等:若A⊆B,且B⊆A,则A=B;(4)∅是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算表示运算文字语言集合语言图形语言记法交集属于A且属于B的所有元素组成的集合{x|x∈A,且x∈B} A∩B并集属于A或属于B的元素组成的集合{x|x∈A,或x∈B} A∪B概念方法微思考1.若一个集合A有n个元素,则集合A有几个子集,几个真子集.提示2n,2n-1.2.从A∩B=A,A∪B=A中可以分别得到集合A,B有什么关系?提示A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)任何一个集合都至少有两个子集.(×)(2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.(×)(3)若{x2,1}={0,1},则x=0,1.(×)(4)若P∩M=P∩N=A,则A⊆(M∩N).(√)题组二教材改编2.若集合A={x∈N|x≤ 2 021},a=22,则下列结论正确的是()A.{a}⊆A B.a⊆AC.{a}∈A D.a∉A答案 D3.已知集合A={a,b},若A∪B={a,b,c},满足条件的集合B有________个.答案 4解析因为(A∪B)⊇B,A={a,b},所以满足条件的集合B可以是{c},{a,c},{b,c},{a,b,c},所以满足条件的集合B有4个.4.设全集U=R,集合A={x|0≤x≤2},B={y|1≤y≤3},则(∁U A)∪B=________.答案(-∞,0)∪[1,+∞)解析因为∁U A={x|x>2或x<0},B={y|1≤y≤3},所以(∁U A)∪B=(-∞,0)∪[1,+∞).题组三易错自纠5.(多选)已知集合A={x|x2-2x=0},则有()A.∅⊆A B.-2∈AC.{0,2}⊆A D.A⊆{y|y<3}答案ACD解析易知A={0,2},A,C,D均正确.6.已知集合A={1,3,m},B={1,m},若B⊆A,则m=________.答案0或3解析因为B⊆A,所以m=3或m=m.即m=3或m=0或m=1,根据集合元素的互异性可知m≠1,所以m=0或3.7.已知集合M={x|x-a=0},N={x|ax-1=0},若M∩N=N,则实数a的值是________.答案0或1或-1解析易得M={a}.∵M∩N=N,∴N⊆M,∴N=∅或N=M,∴a=0或a=±1.集合的含义与表示1.已知集合A ={0,1,2},则集合B ={(x ,y )|x ≥y ,x ∈A ,y ∈A }中元素的个数是( ) A .1 B .3 C .6 D .9 答案 C解析 当x =0时,y =0;当x =1时,y =0或y =1; 当x =2时,y =0,1,2.故集合B ={(0,0),(1,0),(1,1),(2,0),(2,1),(2,2)},即集合B 中有6个元素.2.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈Z ⎪⎪32-x ∈Z,则集合A 中的元素个数为( ) A .2 B .3 C .4 D .5 答案 C 解析 因为32-x∈Z ,且x ∈Z ,所以2-x 的取值有-3,-1,1,3,所以x 的值分别为5,3,1,-1,故集合A 中的元素个数为4. 3.给出下列四个命题: ①{(x ,y )|x =1或y =2}={1,2};②{x |x =3k +1,k ∈Z }={x |x =3k -2,k ∈Z };③由英文单词“apple ”中的所有字母组成的集合有15个真子集;④设2 021∈{x ,x 2,x 2},则满足条件的所有x 组成的集合的真子集的个数为3. 其中正确的命题是________.(填序号) 答案 ②③④解析 ①中左边集合表示横坐标为1,或纵坐标为2的所有点组成的集合,即x =1和y =2两直线上所有点的集合,右边集合表示有两个元素1和2,左、右两集合的元素属性不同.②中3k +1,3k -2(k ∈Z )都表示被3除余1的数,易错点在于认为3k +1与3k -2中的k 为同一个值,对集合的属性理解错误.③中集合有4个元素,其真子集的个数为24-1=15(个).④中x =-2 021或x =- 2 021,满足条件的所有x 组成的集合为{-2 021,- 2 021},其真子集有22-1=3个.所以②③④正确.思维升华 解决集合含义问题的关键有三点:一是确定构成集合的元素;二是确定元素的限制条件;三是根据元素的特征(满足的条件)构造关系式解决相应问题.特别提醒:含字母的集合问题,在求出字母的值后,需要验证集合的元素是否满足互异性.集合间的基本关系例1 (1)集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪ x =n 2+1,n ∈Z ,N =⎩⎨⎧⎭⎬⎫y ⎪⎪y =m +12,m ∈Z ,则两集合M ,N 的关系为( ) A .M ∩N =∅ B .M =N C .M ⊆N D .N ⊆M答案 D解析 由题意,对于集合M ,当n 为偶数时,设n =2k (k ∈Z ),则x =k +1(k ∈Z ),当n 为奇数时,设n =2k +1(k ∈Z ),则x =k +1+12(k ∈Z ),∴N ⊆M ,故选D.(2)已知集合A ={x ∈R |x 2-3x +2=0},B ={x ∈N |0<x <5},则满足条件A ⊆C ⊆B 的集合C 的个数为________. 答案 4解析由题意可得,A={1,2},B={1,2,3,4}.又∵A⊆C⊆B,∴C={1,2}或{1,2,3}或{1,2,4}或{1,2,3,4},∴有4个.(3)已知集合A={x|x2-2 021x+2 020<0},B={x|x<a},若A⊆B,则实数a的取值范围是________________________________________________________________________.答案[2 020,+∞)解析由x2-2 021x+2 020<0,解得1<x<2 020,故A={x|1<x<2 020}.又B={x|x<a},A⊆B,如图所示,可得a≥2 020.思维升华(1)空集是任何集合的子集,在涉及集合关系时,必须考虑空集的情况,否则易造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn图等来直观解决这类问题.跟踪训练1(1)已知集合A={x|y=1-x2},B={x|x=m2,m∈A},则()A.A B B.B AC.A⊆B D.B=A答案 B解析由题意知A={x|y=1-x2},所以A={x|-1≤x≤1}.所以B={x|x=m2,m∈A}={x|0≤x≤1},所以B A ,故选B.(2)已知集合A ={x |(x +1)(x -6)≤0},B ={x |m -1≤x ≤2m +1}.若B ⊆A ,则实数m 的取值范围为________.答案 (-∞,-2)∪⎣⎡⎦⎤0,52 解析 A ={x |-1≤x ≤6}. ∵B ⊆A ,∴B =∅或B ≠∅.当B =∅时,m -1>2m +1,即m <-2.符合题意. 当B ≠∅时,⎩⎪⎨⎪⎧m -1≤2m +1,m -1≥-1,2m +1≤6.解得0≤m ≤52.得m <-2或0≤m ≤52.集合的基本运算命题点1 集合的运算例2 (1)(2019·日照模拟)已知集合A ={x |x 2-2x -3≤0},B ={x |x <2},则A ∩B 等于( ) A .(1,3) B .(1,3] C .[-1,2) D .(-1,2)答案 C解析 因为A ={x |x 2-2x -3≤0}={x |-1≤x ≤3},B ={x |x <2},所以A ∩B =[-1,2).(2)(2020·沈阳检测)已知全集U={1,3,5,7},集合A={1,3},B={3,5},则如图所示的阴影区域表示的集合为()A.{3} B.{7} C.{3,7} D.{1,3,5}答案 B解析由图可知,阴影区域为∁U(A∪B).由题意知,A∪B={1,3,5},U={1,3,5,7},则由补集的概念知,∁U(A∪B)={7}.故选B.命题点2利用集合的运算求参数例3(1)已知集合A={x|x2-3x<0},B={1,a},且A∩B有4个子集,则实数a的取值范围是()A.(0,3) B.(0,1)∪(1,3)C.(0,1) D.(-∞,1)∪(3,+∞)答案 B解析因为A∩B有4个子集,所以A∩B中有2个不同的元素,所以a∈A,所以a2-3a<0,解得0<a<3.又a≠1,所以实数a的取值范围是(0,1)∪(1,3),故选B.(2)已知集合A={x|x<a},B={x|x2-3x+2<0},若A∩B=B,则实数a的取值范围是() A.a<1 B.a≤1C.a>2 D.a≥2答案 D解析集合B={x|x2-3x+2<0}={x|1<x<2},由A∩B=B可得B⊆A,作出数轴如图.可知a≥2.本例(2)中,若集合A={x|x>a},其他条件不变,则实数a的取值范围是________.答案(-∞,1]解析∵A={x|x>a},B={x|1<x<2},由B⊆A结合数轴观察(如图).可得a≤1.思维升华(1)一般来讲,集合中的元素若是离散的,可用Venn图表示;数集中的元素若是连续的,则可用数轴表示,此时要注意端点的情况.(2)运算过程中要注意集合间的特殊关系的使用,灵活使用这些关系,会使运算简化.跟踪训练2(1)(2019·全国Ⅰ)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A等于()A.{1,6} B.{1,7}C.{6,7} D.{1,6,7}答案 C解析∵U={1,2,3,4,5,6,7},A={2,3,4,5},∴∁U A={1,6,7}.又B={2,3,6,7},∴B∩∁U A={6,7}.(2)设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是()A.-1<a≤2 B.a>2C.a≥-1 D.a>-1答案 D解析在数轴上画出集合A,B(如图),观察可知a >-1.解决以集合为背景的新定义问题,要抓住两点:(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,应用到具体的解题过程之中.(2)用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素.例1 对于集合M ,定义函数f M (x )=⎩⎪⎨⎪⎧-1,x ∈M ,1,x ∉M .对于两个集合A ,B ,定义集合A △B ={x |f A (x )·f B (x )=-1}.已知A ={2,4,6,8,10},B ={1,2,4,8,12},则用列举法写出集合A △B 的结果为________. 答案 {1,6,10,12}解析 要使f A (x )·f B (x )=-1,必有x ∈{x |x ∈A 且x ∉B }∪{x |x ∈B 且x ∉A }={1,6,10,12},所以A △B ={1,6,10,12}.例2 (多选)设P 是一个数集,且至少含有两个数,若对任意a ,b ∈P ,都有a +b ,a -b ,ab ,ab ∈P (除数b ≠0),则称P 是一个数域,例如有理数集Q 是数域,下列命题中正确的是( ) A .数域必含有0,1两个数 B .整数集是数域C .若有理数集Q ⊆M ,则数集M 必为数域D .数域必为无限集 答案 AD解析 当a =b 时,a -b =0,ab =1∈P ,故可知A 正确.当a =1,b =2时,12∉Z 不满足条件,故可知B 不正确.当M 比Q 多一个元素i 时,则会出现1+i ∉M ,所以它也不是一个数域,故可知C 不正确. 根据数域的性质易得数域有无限多个元素,必为无限集,故可知D 正确.例3 已知集合A ={x ∈N |x 2-2x -3≤0},B ={1,3},定义集合A ,B 之间的运算“*”:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中的所有元素数字之和为( ) A .15 B .16 C .20 D .21 答案 D解析 由x 2-2x -3≤0,得(x +1)(x -3)≤0,得A ={0,1,2,3}.因为A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },所以A *B 中的元素有:0+1=1,0+3=3,1+1=2,1+3=4,2+1=3(舍去),2+3=5,3+1=4(舍去),3+3=6,所以A *B ={1,2,3,4,5,6},所以A *B 中的所有元素数字之和为21.1.下列各组集合中表示同一集合的是()A.M={(3,2)},N={(2,3)}B.M={2,3},N={3,2}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={2,3},N={(2,3)}答案 B2.已知集合M={x|x2-x-6=0},则下列表述正确的是()A.{-2}∈M B.2∈MC.-3∈M D.3∈M答案 D解析∵集合M={x|x2-x-6=0}.∴集合M={-2,3},∴-2∈M,3∈M,故选D.3.(2018·全国Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为() A.9 B.8 C.5 D.4答案 A解析将满足x2+y2≤3的整数x,y全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A.4.已知集合A={x∈N*|x2-3x-4<0},则集合A的真子集有()A.7个B.8个C.15个D.16个答案 A解析 ∵集合A ={x ∈N *|x 2-3x -4<0}={x ∈N *|-1<x <4}={1,2,3}, ∴集合A 中共有3个元素,∴真子集有23-1=7(个).5.已知集合M ={x |x >4或x <1},N =[-1,+∞),则M ∩N 等于( ) A .(-∞,+∞) B .(-1,1)∪(4,+∞) C .∅ D .[-1,1)∪(4,+∞)答案 D解析 因为M ={x |x >4或x <1},N =[-1,+∞),所以M ∩N =[-1,1)∪(4,+∞). 6.(2020·山东模拟)设集合A ={(x ,y )|x +y =2},B ={(x ,y )|y =x 2},则A ∩B 等于( ) A .{(1,1)} B .{(-2,4)} C .{(1,1),(-2,4)} D .∅答案 C解析 首先注意到集合A 与集合B 均为点集,联立⎩⎪⎨⎪⎧ x +y =2,y =x 2,解得⎩⎪⎨⎪⎧ x =1,y =1或⎩⎪⎨⎪⎧x =-2,y =4.从而集合A ∩B ={(1,1),(-2,4)}.7.(多选)已知集合A ={x |-1<x ≤3},集合B ={x ||x |≤2},则下列关系式正确的是( ) A .A ∩B =∅B .A ∪B ={x |-2≤x ≤3}C .A ∪∁R B ={x |x ≤-1或x >2}D .A ∩∁R B ={x |2<x ≤3} 答案 BD解析 ∵A ={x |-1<x ≤3},B ={x ||x |≤2}={x |-2≤x ≤2}, ∴A ∩B ={x |-1<x ≤3}∩{x |-2≤x ≤2}={x |-1<x ≤2},A 不正确; A ∪B ={x |-1<x ≤3}∪{x |-2≤x ≤2}={x |-2≤x ≤3},B 正确; ∵∁R B ={x |x <-2或x >2},∴A ∪∁R B ={x |-1<x ≤3}∪{x |x <-2或x >2}={x |x <-2或x >-1},C 不正确; A ∩∁R B ={x |-1<x ≤3}∩{x |x <-2或x >2}={x |2<x ≤3},D 正确.8.(多选)已知集合A ={x |x 2-3x +2≤0},B ={x |2<2x ≤8},则下列判断不正确的是( )A .A ∪B =B B .(∁R B )∪A =RC .A ∩B ={x |1<x ≤2}D .(∁R B )∪(∁R A )=R答案 ABD解析 因为x 2-3x +2≤0,所以1≤x ≤2,所以A ={x |1≤x ≤2}; 因为2<2x ≤8,所以1<x ≤3,所以B ={x |1<x ≤3}. 所以A ∪B ={x |1≤x ≤3},A ∩B ={x |1<x ≤2}.(∁R B )∪A ={x |x ≤2或x >3},(∁R B )∪(∁R A )={x |x ≤1或x >2}.9.设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B =________. 答案 {1,3}解析 ∵A ∩B ={1},∴1∈B . ∴1-4+m =0,即m =3. ∴B ={x |x 2-4x +3=0}={1,3}.10.(2019·湖北黄石一中模拟)设集合M ={y |y =2cos x ,x ∈[0,5]},N ={x |y =log 2(x -1)},则M ∩N =________. 答案 {x |1<x ≤2}解析 ∵M ={y |y =2cos x ,x ∈[0,5]}={y |-2≤y ≤2},N ={x |y =log 2(x -1)}={x |x >1}, ∴M ∩N ={y |-2≤y ≤2}∩{x |x >1}={x |1<x ≤2}.11.设集合A ={-1,1,2},B ={a +1,a 2-2},若A ∩B ={-1,2},则a 的值为________. 答案 -2或1解析 ∵集合A ={-1,1,2},B ={a +1,a 2-2},A ∩B ={-1,2},∴⎩⎪⎨⎪⎧a +1=-1,a 2-2=2或⎩⎪⎨⎪⎧a +1=2,a 2-2=-1,解得a =-2或a =1. 经检验,a =-2和a =1均满足题意.12.已知集合A ={x |x 2+x =0,x ∈R },则集合A 中的元素为________.若集合B 满足B ⊆A ,则集合B 的个数是________. 答案 -1,0 4解析 解方程x 2+x =0得x =-1或x =0, 所以集合A ={x |x 2+x =0,x ∈R }={-1,0},故集合A中的元素为-1,0.因为集合B满足B⊆A,所以集合B的个数为22=4.13.(2020·青岛模拟)已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B =(-1,n),则m=______,n=________.答案-1 1解析A={x∈R||x+2|<3}={x∈R|-5<x<1},由A∩B=(-1,n),可知m<1,则B={x|m<x<2},画出数轴,可得m=-1,n=1.14.设常数a∈R,集合A={x|(x-1)(x-a)≥0},B={x|x≥a-1},若A∪B=R,则a的取值范围为________.答案(-∞,2]解析当a>1时,A=(-∞,1]∪[a,+∞),B=[a-1,+∞),当且仅当a-1≤1时,A∪B=R,故1<a≤2;当a=1时,A=R,B={x|x≥0},A∪B=R,满足题意;当a<1时,A=(-∞,a]∪[1,+∞),B=[a-1,+∞),又∵a-1<a,∴A∪B=R,故a<1满足题意,综上知a∈(-∞,2].15.(多选)设S为复数集C的非空子集.若对任意x,y∈S,都有x+y,x-y,xy∈S,则称S为封闭集.下列命题中是真命题的有()A.集合S={a+b i|a,b为整数,i为虚数单位}为封闭集B.若S为封闭集,则一定有0∈SC.封闭集一定是无限集D.若S为封闭集,则满足S⊆T⊆C的任意集合T也是封闭集答案AB解析两个复数的和、差、积仍是复数,且运算后的实部、虚部仍为整数,所以集合S={a+b i|a,b为整数,i为虚数单位}为封闭集,A正确.当S为封闭集时,因为x-y∈S,取x=y,得0∈S,B正确.对于集合S={0},显然满足所有条件,但S是有限集,C错误.取S={0},T={0,1},满足S⊆T⊆C,但由于0-1=-1不属于T,故T不是封闭集,D错误.16.当两个集合有公共元素,且互不为对方的子集时,我们称这两个集合“相交”.对于集合M ={x |ax 2-1=0,a >0},N =⎩⎨⎧⎭⎬⎫-12,12,1,若M 与N “相交”,则a =________.答案 1 解析 M =⎩⎨⎧⎭⎬⎫-1a ,1a ,由1a =12,得a =4,由1a=1,得a =1. 当a =4时,M =⎩⎨⎧⎭⎬⎫-12,12,此时M ⊆N ,不合题意;当a =1时,M ={-1,1},满足题意.。

2021年高考数学一轮复习第1章集合与常用逻辑用语第1讲集合的概念与运算增分练

2021年高考数学一轮复习第1章集合与常用逻辑用语第1讲集合的概念与运算增分练

2021年高考数学一轮复习第1章集合与常用逻辑用语第1讲集合的概念与运算增分练1.[xx·全国卷Ⅱ]设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B =( )A.{1,-3} B.{1,0}C.{1,3} D.{1,5}答案C解析∵A∩B={1},∴1∈B.∴1-4+m=0,即m=3.∴B={x|x2-4x+3=0}={1,3}.故选C.2.若集合M={x||x|≤1},N={y|y=x2,|x|≤1},则( )A.M=N B.M⊆NC.N⊆M D.M∩N=∅答案 C解析M={x||x|≤1}=[-1,1],N={y|y=x2,|x|≤1}=[0,1],所以N⊆M.故选C.3.[xx·山东高考]设函数y=4-x2的定义域为A,函数y=ln (1-x)的定义域为B,则A∩B=( )A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)答案 D解析∵4-x2≥0,∴-2≤x≤2,∴A=[-2,2].∵1-x>0,∴x<1,∴B=(-∞,1),∴A∩B=[-2,1).故选D.4.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是( )A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)答案 D解析因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,解得m≥2或m≤-2.故选D.5.[xx·全国卷Ⅲ]已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为( )A.3 B.2C.1 D.0答案 B解析集合A表示以原点O为圆心,半径为1的圆上的所有点的集合,集合B表示直线y =x 上的所有点的集合.由图形可知,直线与圆有两个交点,所以A ∩B 中元素的个数为2.故选B.6.已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4答案 D解析 集合B ={1,2,3,4},有4个元素,集合A ={1,2},则集合C 的个数问题可转化为{3,4}的子集个数问题,即22=4.7.[xx·陕西模拟]设全集U =R ,集合A ={|x ∈Z x3-x≥0},B ={x ∈Z |x 2≤9},则图中阴影部分表示的集合为( )A .{1,2}B .{0,1,2}C .{x |0≤x <3}D .{x |0≤x ≤3}答案 B解析 题图中阴影部分表示的是A ∩B ,因为A ={|x ∈Z x x -3≤0}={|x ∈Z ⎩⎪⎨⎪⎧x x -3≤0,x -3≠0}={x ∈Z |0≤x <3}={0,1,2},B ={x ∈Z |-3≤x ≤3}={-3,-2,-1,0,1,2,3},所以A ∩B ={0,1,2}.故选B.8.设集合A ={x |-1≤x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是________. 答案 (-1,+∞)解析 因为A ∩B ≠∅,所以集合A ,B 有公共元素,作出数轴,如图所示,易知a >-1.9.[xx·郑州模拟]已知集合A ={x ∈R ||x +2|<3},集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪x -mx -2<0,且A ∩B =(-1,n ),则m =________,n =________.答案 -1 1解析 A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1}, 由A ∩B =(-1,n ),可知m <1,则B ={x |m <x <2},画出数轴,可得m =-1,n =1.10.设m ,n ∈R ,集合{1,m ,m +n }=⎩⎨⎧⎭⎬⎫0,n ,n m ,则m -n =________. 答案 -2解析 ∵{1,m ,m +n }=⎩⎨⎧⎭⎬⎫0,n ,n m 且m ≠0,∴m +n =0, 即m =-n ,于是n m=-1.∴由两集合相等,得m =-1,n =1,∴m -n =-2.[B 级 知能提升]1.已知集合A ={|y y =⎝ ⎛⎭⎪⎫12x,x ∈R },B ={-2,-1,1,2},则下列结论正确的是( )A .A ∩B ={-2,-1} B .(∁R A )∪B =(-∞,0)C .A ∪B =(0,+∞)D .(∁R A )∩B ={-2,-1}答案 D解析 因为A =(0,+∞),所以A ∩B ={1,2},(∁R A )∪B ={y |y ≤0或y =1,2},A ∪B ={y |y >0或y =-1,-2},(∁R A )∩B ={-1,-2}.所以D 正确.2.[xx·湖南模拟]设常数a ∈R ,集合A ={x |(x -1)(x -a )≥0},B ={x |x ≥a -1},若A ∪B =R ,则a 的取值范围为( )A .(-∞,2)B .(-∞,2]C .(2,+∞)D .[2,+∞)答案 B解析 集合A 讨论后利用数轴可知⎩⎪⎨⎪⎧a ≥1,a -1≤1或⎩⎪⎨⎪⎧a ≤1,a -1≤a .解得1≤a ≤2或a ≤1,即a ≤2.故选B.3.已知数集A ={a 1,a 2,…,a n }(1≤a 1<a 2<…<a n ,n ≥2)具有性质P :对任意的i ,j (1≤i ≤j ≤n ),a i a j 与a ja i两数中至少有一个属于A ,则称集合A 为“权集”,则( )A .{1,3,4}为“权集”B .{1,2,3,6}为“权集”C .“权集”中元素可以有0D .“权集”中一定有元素1答案 B解析 由于3×4与43均不属于数集{1,3,4},故A 不正确;由于1×2,1×3,1×6,2×3,62,63,11,22,33,66都属于数集{1,2,3,6},故B 正确;由“权集”的定义可知a ja i 需有意义,故不能有0,同时不一定有1,故C ,D 错误.4.已知集合A ={x ∈R |x 2-ax +b =0},B ={x ∈R |x 2+cx +15=0},A ∩B ={3},A ∪B ={3,5}.(1)求实数a ,b ,c 的值;(2)设集合P ={x ∈R |ax 2+bx +c ≤7},求集合P ∩Z .解 (1)因为A ∩B ={3},所以3∈B ,所以32+3c +15=0,c =-8,所以B ={x ∈R |x 2-8x +15=0}={3,5}.又因为A ∩B ={3},A ∪B ={3,5},所以A ={3},所以方程x 2-ax +b =0有两个相等的实数根都是3,所以a =6,b =9,所以a =6,b =9,c =-8.(2)不等式ax 2+bx +c ≤7即6x 2+9x -8≤7, 所以2x 2+3x -5≤0, 所以-52≤x ≤1,所以P ={|x -52≤x ≤1},所以P ∩Z ={|x -52≤x ≤1}∩Z ={-2,-1,0,1}.5.[xx·南宁段考]已知集合P ={x |a +1≤x ≤2a +1},Q ={x |x 2-3x ≤10}. (1)若a =3,求(∁R P )∩Q ;(2)若P ∪Q =Q ,求实数a 的取值范围. 解 (1)因为a =3,所以P ={x |4≤x ≤7}, ∁R P ={x |x <4或x >7}.又Q ={x |x 2-3x -10≤0}={x |-2≤x ≤5},所以(∁R P )∩Q ={x |x <4或x >7}∩{x |-2≤x ≤5}={x |-2≤x <4}.(2)当P ≠∅时,由P ∪Q =Q 得P ⊆Q ,所以⎩⎪⎨⎪⎧a +1≥-2,2a +1≤5,2a +1≥a +1,解得0≤a ≤2;当P =∅,即2a +1<a +1时,有P ⊆Q ,得a <0. 综上,实数a 的取值范围是(-∞,2].。

2021年高考数学一轮复习第1章集合与常用逻辑用语第1讲集合的概念与运算学案

2021年高考数学一轮复习第1章集合与常用逻辑用语第1讲集合的概念与运算学案

2021年高考数学一轮复习第1章集合与常用逻辑用语第1讲集合的概念与运算学案考点1 集合与元素1.集合中元素的三个特征:确定性、互异性、无序性.2.元素与集合的关系是属于或不属于两种,用符号∈或∉表示.3.集合的表示法:列举法、描述法、图示法.4.常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN*(或N+)Z Q R表示关系文字语言符号语言相等集合A与集合B中的所有元素相同A⊆B且B⊆A⇔A=B 子集A中任意一个元素均为B中的元素A⊆B或B⊇A 真子集A中任意一个元素均为B中的元素,且B中至少有一个元素不是A中的元素A B或B A空集空集是任何集合的子集,是任何非空集合的真子集∅⊆A∅B(B≠∅)[必会结论]1.若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n-1,非空真子集的个数为2n-2.2.A ⊆B ⇔A ∩B =A ⇔A ∪B =B .3.A ∩(∁U A )=∅;A ∪(∁U A )=U ;∁U (∁U A )=A .[考点自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)集合{x |y =x -1}与集合{y |y =x -1}是同一个集合.( )(2)已知集合A ={x |mx =1},B ={1,2},且A ⊆B ,则实数m =1 或m =12.( )(3)M ={x |x ≤1},N ={x |x >ρ},要使M ∩N =∅,则ρ所满足的条件是ρ≥1.( ) (4)若集合A ={-1,1},B ={0,2},则集合{z |z =x +y ,x ∈A ,y ∈B }中有4个元素.( ) (5)若5∈{1,m +2,m 2+4},则m 的取值集合为{1,-1,3}.( ) 答案 (1)× (2)× (3)√ (4)× (5)×2.[xx·北京高考]若集合A ={x |-2<x <1},B ={x |x <-1或x >3},则A ∩B =( ) A .{x |-2<x <-1} B .{x |-2<x <3} C .{x |-1<x <1} D .{x |1<x <3}答案 A解析 ∵A ={x |-2<x <1},B ={x |x <-1或x >3}, ∴A ∩B ={x |-2<x <-1}.故选A.3.[课本改编]已知集合A ={x |x 2-2x -3≤0},B ={x |0<x ≤4},则A ∪B =( ) A .[-1,4] B .(0,3]C .(-1,0]∪(1,4]D .[-1,0]∪(1,4]答案 A解析 A ={x |x 2-2x -3≤0}={x |-1≤x ≤3},故A ∪B =[-1,4].选A. 4.[xx·全国卷Ⅰ]已知集合A ={x |x <1},B ={x |3x<1},则( ) A .A ∩B ={x |x <0} B .A ∪B =R C .A ∪B ={x |x >1} D .A ∩B =∅答案 A解析 ∵B ={x |3x<1},∴B ={x |x <0}.又A ={x |x <1},∴A ∩B ={x |x <0},A ∪B ={x |x <1}. 故选A.5.[xx·重庆模拟]已知集合A ={x ∈N |πx <16},B ={x |x 2-5x +4<0},则A ∩(∁R B )的真子集的个数为( )A .1B .3C .4D .7答案 B解析 因为A ={x ∈N |πx<16}={0,1,2},B ={x |x 2-5x +4<0}={x |1<x <4},故∁R B ={x |x ≤1或x ≥4},故A ∩(∁R B )={0,1},故A ∩(∁R B )的真子集的个数为3.故选B.板块二 典例探究·考向突破 考向 集合的基本概念例1 (1)[xx·郑州模拟]已知集合A ={x |y =1-x 2,x ∈Z },B ={p -q |p ∈A ,q ∈A },则集合B 中元素的个数为( )A .1B .3C .5D .7答案 C解析 由题意知A ={-1,0,1},当p =-1,q =-1,0,1时,p -q =0,-1,-2;当p =0,q =-1,0,1时,p -q =1,0,-1;当p =1,q =-1,0,1时,p -q =2,1,0.根据集合中元素的互异性可知,集合B 中的元素为-2,-1,0,1,2,共计5个,选C.(2)已知集合A ={a 2,a +1,-3},B ={a -3,a -2,a 2+1},若A ∩B ={-3},则a =________.答案 -1解析 由A ∩B ={-3}知,-3∈B .又a 2+1≥1,故只有a -3,a -2可能等于-3.①当a -3=-3时,a =0,此时A ={0,1,-3},B ={-3,-2,1},A ∩B ={1,-3}.故a =0舍去.②当a -2=-3时,a =-1,此时A ={1,0,-3},B ={-4,-3,2}, 满足A ∩B ={-3},故a =-1. 触类旁通解决集合概念问题的一般思路(1)研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件,当集合用描述法表示时,注意弄清其元素表示的意义是什么.本例(1)集合B 中的代表元素为实数p -q .(2)要深刻理解元素的互异性,在解决集合中含有字母的问题时,一定要返回代入验证,防止与集合中元素的互异性相矛盾.【变式训练1】 (1)[xx·昆明模拟]若集合A ={x |x 2-9x <0,x ∈N *},B ={|y 4y∈N *,y ∈N *,则A ∩B 中元素的个数为________.答案 3解析 解不等式x 2-9x <0可得0<x <9,所以A ={x |0<x <9,x ∈N *}={1,2,3,4,5,6,7,8},又4y∈N *,y ∈N *,所以y 可以为1,2,4,所以B ={1,2,4},所以A ∩B =B ,A ∩B 中元素的个数为3.(2)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________. 答案 -32解析 因为3∈A ,所以m +2=3或2m 2+m =3. 当m +2=3,即m =1时,2m 2+m =3,此时集合A 中有重复元素3, 所以m =1不符合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3符合题意.所以m =-32.考向 集合间的基本关系例 2 已知集合A ={x |x <-3或x >7},B ={x |x <2m -1},若B ⊆A ,则实数m 的取值范围是________.答案 (-∞,-1]解析 由题意知2m -1≤-3,m ≤-1,∴m 的取值范围是(-∞,-1].本例中的B 改为B ={x |m +1≤x ≤2m -1},其余不变,该如何求解?解 当B =∅时,有m +1>2m -1,则m <2.当B ≠∅时,⎩⎪⎨⎪⎧m +1≤2m -1,2m -1<-3或⎩⎪⎨⎪⎧m +1≤2m -1,m +1>7,解得m >6.综上可知m 的取值范围是(-∞,2)∪(6,+∞).本例中的A 改为A ={x |-3≤x ≤7},B 改为B ={x |m+1≤x ≤2m -1},又该如何求解?解 当B =∅时,满足B ⊆A ,此时有m +1>2m -1,即m <2;当B ≠∅时,要使B ⊆A ,则有⎩⎪⎨⎪⎧m +1≥-3,2m -1≤7,m ≥2,解得2≤m ≤4.综上可知m 的取值范围是(-∞,4]. 触类旁通根据两集合的关系求参数的方法(1)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn 图等来直观解决这类问题.【变式训练2】 设A ={x |x 2-8x +15=0},B ={x |ax -1=0}. (1)若a =15,试判定集合A 与B 的关系;(2)若B A ,求实数a 组成的集合C .解 (1)由x 2-8x +15=0, 得x =3或x =5,∴A ={3,5}.若a =15,由ax -1=0,得15x -1=0,即x =5.∴B ={5}.∴B A . (2)∵A ={3,5},又BA ,故若B =∅,则方程ax -1=0无解,有a =0; 若B ≠∅,则a ≠0,由ax -1=0,得x =1a.∴1a =3或1a =5,即a =13或a =15. 故C =⎩⎨⎧⎭⎬⎫0,13,15. 考向 集合的基本运算命题角度1 集合的交集及运算例 3 [xx·山东高考]设集合M ={x ||x -1|<1},N ={x |x <2},则M ∩N =( ) A .(-1,1) B .(-1,2) C .(0,2) D .(1,2)答案 C解析 ∵M ={x |0<x <2},N ={x |x <2}, ∴M ∩N ={x |0<x <2}∩{x |x <2}={x |0<x <2}. 故选C.命题角度2 集合的并集及运算例 4 [xx·武汉模拟]设全集U =R ,集合A ={x |2x -x 2>0},B ={y |y =e x+1},则A ∪B 等于( )A .{x |x <2}B .{x |1<x <2}C .{x |x >1}D .{x |x >0}答案 D解析 由2x -x 2>0得0<x <2,故A ={x |0<x <2},由y =e x+1得y >1,故B ={y |y >1},所以A ∪B ={x |x >0}.故选D.命题角度3 集合的补集及运算例 5 [xx·浙江高考]已知集合P ={x ∈R |1≤x ≤3},Q ={x ∈R |x 2≥4},则P ∪(∁R Q )=( )A .[2,3]B .(-2,3]C .[1,2)D .(-∞,-2]∪[1,+∞) 答案 B解析 ∵Q =(-∞,-2]∪[2,+∞),∴∁R Q =(-2,2),∴P ∪(∁R Q )=(-2,3].故选B.命题角度4 抽象集合的运算例 6 [xx·唐山统一测试]若全集U=R,集合A={|x x+1x-6≤0,B={x|2x<1},则下图中阴影部分表示的集合是( )A.{x|2<x<3} B.{x|-1≤x<0}C.{x|0≤x<6} D.{x|1≤x≤6}答案 C解析A={x|-1≤x<6},B={x|x<0},A∩(∁U B)={x|0≤x<6}.选C项.触类旁通集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图.核心规律解决集合问题,要正确理解有关集合的含义,认清集合元素的属性;再依据元素的不同属性,采用不同的方法对集合进行化简求解,一般的规律为:(1)若给定的集合是不等式的解集,用数轴来解;(2)若给定的集合是点集,用数形结合法求解;(3)若给定的集合是抽象集合,用Venn图求解.满分策略1.元素的属性:描述法表示集合问题时,认清集合中元素的属性(是点集、数集或其他情形)是正确求解集合问题的先决条件.2.元素的互异性:在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.3.空集的特殊性:在解决有关A∩B=∅,A⊆B等集合问题时,要先考虑∅是否成立,以防漏解.板块三启智培优·破译高考创新交汇系列1——集合中的创新性问题[xx·吉林模拟]设全集U={1,2,3,4,5,6},且U的子集可表示由0,1组成的6位字符串,如:{2,4}表示的是自左向右的第2个字符为1,第4个字符为1,其余字符均为0的6位字符串010100,并规定空集表示的字符串为000000.(1)若M={2,3,6},则∁U M表示的6位字符串为________;(2)已知A={1,3},B⊆U,若集合A∪B表示的字符串为101001,则满足条件的集合B 的个数是________.解题视点考查新定义问题,关键是正确理解题目中的新定义,利用集合间的关系及运算解决问题.解析(1)由已知得,∁U M={1,4,5},则∁U M表示的6位字符串为100110.(2)由题意可知A∪B={1,3,6},而A={1,3},B⊆U,则B可能为{6},{1,6},{3,6},{1,3,6},故满足条件的集合B的个数是4.答案(1)100110 (2)4答题启示解决以集合为背景的新定义问题,要抓住两点:(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在;(2)用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的运算与性质.跟踪训练设A是整数集的一个非空子集,对于k∈A,如果k-1∉A且k+1∉A,那么k是A的一个“孤立元”,给定A={1,2,3,4,5},则A的所有子集中,只有一个“孤立元”的集合共有( )A.10个B.11个C.12个D.13个答案 D解析“孤立元”是1的集合:{1},{1,3,4},{1,4,5},{1,3,4,5}.“孤立元”是2的集合:{2},{2,4,5}.“孤立元”是3的集合:{3}.“孤立元”是4的集合:{4},{1,2,4}.“孤立元”是5的集合:{5},{1,2,5},{2,3,5},{1,2,3,5}.共有13个.故选D.板块四模拟演练·提能增分[A级基础达标]1.[xx·全国卷Ⅱ]设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=( )A.{1,-3} B.{1,0}C.{1,3} D.{1,5}答案 C解析 ∵A ∩B ={1},∴1∈B . ∴1-4+m =0,即m =3.∴B ={x |x 2-4x +3=0}={1,3}.故选C.2.若集合M ={x ||x |≤1},N ={y |y =x 2,|x |≤1},则( ) A .M =N B .M ⊆N C .N ⊆M D .M ∩N =∅答案 C解析 M ={x ||x |≤1}=[-1,1],N ={y |y =x 2,|x |≤1}=[0,1],所以N ⊆M .故选C. 3.[xx·山东高考]设函数y =4-x 2的定义域为A ,函数y =ln (1-x )的定义域为B ,则A ∩B =( )A .(1,2)B .(1,2]C .(-2,1)D .[-2,1)答案 D解析 ∵4-x 2≥0,∴-2≤x ≤2,∴A =[-2,2]. ∵1-x >0,∴x <1,∴B =(-∞,1),∴A ∩B =[-2,1). 故选D.4.已知集合A ={x |x 2≥4},B ={m }.若A ∪B =A ,则m 的取值范围是( ) A .(-∞,-2) B .[2,+∞)C .[-2,2]D .(-∞,-2]∪[2,+∞)答案 D解析 因为A ∪B =A ,所以B ⊆A ,即m ∈A ,得m 2≥4,解得m ≥2或m ≤-2.故选D. 5.[xx·全国卷Ⅲ]已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0答案 B解析 集合A 表示以原点O 为圆心,半径为1的圆上的所有点的集合,集合B 表示直线y =x 上的所有点的集合.由图形可知,直线与圆有两个交点,所以A ∩B 中元素的个数为2.故选B.6.已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4答案 D解析 集合B ={1,2,3,4},有4个元素,集合A ={1,2},则集合C 的个数问题可转化为{3,4}的子集个数问题,即22=4.7.[xx·陕西模拟]设全集U =R ,集合A ={|x ∈Z x3-x≥0},B ={x ∈Z |x 2≤9},则图中阴影部分表示的集合为( )A .{1,2}B .{0,1,2}C .{x |0≤x <3}D .{x |0≤x ≤3}答案 B解析 题图中阴影部分表示的是A ∩B ,因为A ={|x ∈Z x x -3≤0}={|x ∈Z ⎩⎪⎨⎪⎧x (x -3)≤0,x -3≠0}={x ∈Z |0≤x <3}={0,1,2},B ={x ∈Z |-3≤x ≤3}={-3,-2,-1,0,1,2,3},所以A ∩B ={0,1,2}.故选B.8.设集合A ={x |-1≤x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是________. 答案 (-1,+∞)解析 因为A ∩B ≠∅,所以集合A ,B 有公共元素,作出数轴,如图所示,易知a >-1.9.[xx·郑州模拟]已知集合A ={x ∈R ||x +2|<3},集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪x -mx -2<0,且A ∩B =(-1,n ),则m =________,n =________.答案 -1 1解析 A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1}, 由A ∩B =(-1,n ),可知m <1,则B ={x |m <x <2},画出数轴,可得m =-1,n =1.10.设m ,n ∈R ,集合{1,m ,m +n }=⎩⎨⎧⎭⎬⎫0,n ,n m ,则m -n =________.答案 -2解析 ∵{1,m ,m +n }=⎩⎨⎧⎭⎬⎫0,n ,n m 且m ≠0,∴m +n =0, 即m =-n ,于是n m=-1.∴由两集合相等,得m =-1,n =1,∴m -n =-2.[B 级 知能提升]1.已知集合A ={|y y =⎝ ⎛⎭⎪⎫12x,x ∈R },B ={-2,-1,1,2},则下列结论正确的是( )A .A ∩B ={-2,-1} B .(∁R A )∪B =(-∞,0)C .A ∪B =(0,+∞)D .(∁R A )∩B ={-2,-1}答案 D解析 因为A =(0,+∞),所以A ∩B ={1,2},(∁R A )∪B ={y |y ≤0或y =1,2},A ∪B ={y |y >0或y =-1,-2},(∁R A )∩B ={-1,-2}.所以D 正确.2.[xx·湖南模拟]设常数a ∈R ,集合A ={x |(x -1)(x -a )≥0},B ={x |x ≥a -1},若A ∪B =R ,则a 的取值范围为( )A .(-∞,2)B .(-∞,2]C .(2,+∞)D .[2,+∞)答案 B解析 集合A 讨论后利用数轴可知⎩⎪⎨⎪⎧a ≥1,a -1≤1或⎩⎪⎨⎪⎧a ≤1,a -1≤a .解得1≤a ≤2或a ≤1,即a ≤2.故选B.3.已知数集A ={a 1,a 2,…,a n }(1≤a 1<a 2<…<a n ,n ≥2)具有性质P :对任意的i ,j (1≤i ≤j ≤n ),a i a j 与a ja i两数中至少有一个属于A ,则称集合A 为“权集”,则( )A .{1,3,4}为“权集”B .{1,2,3,6}为“权集”C .“权集”中元素可以有0D .“权集”中一定有元素1答案 B解析 由于3×4与43均不属于数集{1,3,4},故A 不正确;由于1×2,1×3,1×6,2×3,62,63,11,22,33,66都属于数集{1,2,3,6},故B 正确;由“权集”的定义可知a ja i 需有意义,故不能有0,同时不一定有1,故C ,D 错误.4.已知集合A ={x ∈R |x 2-ax +b =0},B ={x ∈R |x 2+cx +15=0},A ∩B ={3},A ∪B ={3,5}.(1)求实数a ,b ,c 的值;(2)设集合P ={x ∈R |ax 2+bx +c ≤7},求集合P ∩Z .解 (1)因为A ∩B ={3},所以3∈B ,所以32+3c +15=0,c =-8,所以B ={x ∈R |x 2-8x +15=0}={3,5}.又因为A ∩B ={3},A ∪B ={3,5},所以A ={3},所以方程x 2-ax +b =0有两个相等的实数根都是3,所以a =6,b =9,所以a =6,b =9,c =-8.(2)不等式ax 2+bx +c ≤7即6x 2+9x -8≤7, 所以2x 2+3x -5≤0, 所以-52≤x ≤1,实用文档 所以P ={|x -52≤x ≤1}, 所以P ∩Z ={|x -52≤x ≤1}∩Z ={-2,-1,0,1}. 5.[xx·南宁段考]已知集合P ={x |a +1≤x ≤2a +1},Q ={x |x 2-3x ≤10}.(1)若a =3,求(∁R P )∩Q ;(2)若P ∪Q =Q ,求实数a 的取值范围.解 (1)因为a =3,所以P ={x |4≤x ≤7},∁R P ={x |x <4或x >7}.又Q ={x |x 2-3x -10≤0}={x |-2≤x ≤5},所以(∁R P )∩Q ={x |x <4或x >7}∩{x |-2≤x ≤5}={x |-2≤x <4}.(2)当P ≠∅时,由P ∪Q =Q 得P ⊆Q , 所以⎩⎪⎨⎪⎧ a +1≥-2,2a +1≤5,2a +1≥a +1,解得0≤a ≤2;当P =∅,即2a +1<a +1时,有P ⊆Q ,得a <0.综上,实数a 的取值范围是(-∞,2].。

2021版高考数学一轮复习第一章01集合的概念与运算 练案(含解析)

2021版高考数学一轮复习第一章01集合的概念与运算 练案(含解析)

2021版高考数学一轮复习第一章01集合的概念与运算 练案(含解析)第一讲 集合的概念与运算A 组基础巩固一、单选题个元3中至少有A ,集合}k 2<log x |1<N ∈x {=A 已知集合)河北衡水中学调研(2020·.1素,则( C )A .k >8 B .k ≥8 C .k >16D .k ≥16 C.,故选16=4>2k ,所以>4k 2log 个元素,所以3中至少有A 因为集合 ]解析[ )A (=B ∩A ,则≤1}2x |x {=B ,1,0,1,2}-{=A 已知集合)分5,Ⅲ全国卷(2019·.2A .{-1,0,1} B .{0,1} C .{-1,1}D .{0,1,2} [解析] 集合B ={x |-1≤x ≤1},则A ∩B ={-1,0,1}.集的个数真子B ∩A ,则1,0,1,2,3}-{=B ,)<2}x -(22|log R ∈x {=A .已知集合3( B )A .8 B .7 C .4D .6 -{=B ∩A ,2,2)-(=A ,即<2x 2<,得-<4x -0<2,则)<2x -(22log 由题 ]解析[7.=1-32真子集的个数为B ∩A ,则1,0,1}x4=y |y {=B ,)}2x -ln(1=y |x {=A ,R =U 已知全集)郑州市第二次质量预测(2020·.4) D (=)B U ∁∩(A ,则}2-A .(-1,0) B .[0,1) C .(0,1)D .(-1,0] =)B U ∁∩(A ,所以≤0}y |y {=B U ∁,所以>0}y |y {=B ,1,1)-(=>0}2x -|1x {=A ]解析[(-1,0],故选D.=T ,集合}6-x -)12(=x 2+2x |2x {=P 设集合)安徽天长一中第二次质量检测(2020·.5{x |mx +1=0}.若T ⊆P ,则实数m 的取值组成的集合是( C )}12,13{.A}13{.B}13,0,12-{.C}12-{.D ∴,0=6-x +2x ,即6+x =x 2+2x ∴,6+x 2=x 2+2x 2,得6-x -)12(=x 2+2x 2由 ]解析[1m 或-2=1m ,得-P ⊆T ,由}1m -{=T ,则≠0m 若.P ∅⊆=T ,则0=m .若3},-{2=P 集合 C..故选}13,0,12-{的取值组成的集合是m 综上,实数.13=m 或12=-m ,得3=-,|<2}a -x ||x {=B ,1)<1}-x (2|log x {=A 已知集合)武汉市武昌区高三调考(2020·.6若A ⊆B ,则实数a 的取值范围为( B )A .(1,3) B .[1,3] C .[1,+∞)D .(-∞,3] -a 得|<2a -x |.由(1,3)=A ,所以<3x 1<,即1<2-x 0<,得1)<1-x (2log 由 ]解析[a,所以实数3≤a 1≤解得⎩⎪⎨⎪⎧a -2≤1,a +2≥3,,所以B ⊆A .因为2)+a ,2-a (=B ,即2+a <x 2<的取值范围为[1,3],故选B.xsin(5=y |y {=B ,}Z ∈x ,-x2+x +6=y |x {=A 已知集合)人大附中月考(2020·.7+φ)},则A ∩B 中元素的个数为( C )A .3 B .4 C .5D .6 ,-2-{=A ∴,≤3x 2≤,-2)≤0+x 3)(-x (,6≥0+x +2x 满足-A 集合 ]解析[ 5.中元素个数为B ∩A ,可知1,0,1,2},-2-{=B ∩A ,所以]5,5-[=B ,1,0,1,2,3}二、多选题,则下1=-a ,≤1}2x |N ∈x {=A 若集合)四川凉山州第二次诊断性检测改编(2020·.8列结论不正确的是( BCD )A .a ∉A B .a ∈A C .{a }∈AD .{a }∉A。

2021年高考数学一轮复习 第1讲 集合的概念和运算 同步检测 文

2021年高考数学一轮复习 第1讲 集合的概念和运算 同步检测 文

2021年高考数学一轮复习第1讲集合的概念和运算同步检测文一、选择题1.已知集合A={y|x2+y2=1}和集合B={y|y=x2},则A∩B等于( ) A.(0,1) B.[0,1]C.(0,+∞) D.{(0,1),(1,0)}解析∵A={y|x2+y2=1},∴A={y|-1≤y≤1}.又∵B={y|y=x2},∴B={y|y≥0}.A∩B={y|0≤y≤1}.答案 B2. 设全集U=M∪N={1,2,3,4,5},M∩∁UN={2,4},则N=( )A.{1,2,3} B.{1,3,5}C.{1,4,5} D.{2,3,4}解析由M∩∁UN={2,4}可得集合N中不含有元素2,4,集合M中含有元素2,4,故N={1,3,5}.答案 B3.设集合U={x|x<5,x∈N*},M={x|x2-5x+6=0},则∁U M=( ).A.{1,4} B.{1,5} C.{2,3} D.{3,4}解析U={1,2,3,4},M={x|x2-5x+6=0}={2,3},∴∁U M={1,4}.答案A4.若A ={2,3,4},B ={x|x =n·m,m ,n ∈A ,m≠n},则集合B 中的元素个数是( ).A .2B .3C .4D .5解析 B ={x|x =n·m,m ,n ∈A ,m≠n}={6,8,12}.答案 B5.设集合M ={1,2},N ={a2},则“a=1”是“N ⊆M”的( ).A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件解析 若N ⊆M ,则需满足a2=1或a2=2,解得a =±1或a =± 2.故“a =1”是“N ⊆M”的充分不必要条件.答案 A6.设集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x 24+3y 24=1,B ={y |y =x 2},则A ∩B =( ). A .[-2,2]B .[0,2]C .[0,+∞)D .{(-1,1),(1,1)}解析 A ={x |-2≤x ≤2},B ={y |y ≥0},∴A ∩B ={x |0≤x ≤2}=[0,2]. 答案 B二、填空题7.设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =________.解析∵3∈B,又a2+4≥4,∴a+2=3,∴a=1.答案18.已知集合A={0,2,a2},B={1,a},若A∪B={0,1,2,4},则实数a的值为________.解析若a=4,则a2=16∉(A∪B),所以a=4不符合要求,若a2=4,则a=±2,又-2∉(A∪B),∴a=2.答案29.给定集合A,若对于任意a,b∈A,有a+b∈A,且a-b∈A,则称集合A为闭集合,给出如下三个结论:①集合A={-4,-2,0,2,4}为闭集合;②集合A={n|n=3k,k∈Z}为闭集合;③若集合A1,A2为闭集合,则A1∪A2为闭集合.其中正确结论的序号是________.解析①中,-4+(-2)=-6∉A,所以不正确.②中设n1,n2∈A,n1=3k1,n2=3k2,n1+n2∈A,n1-n2∈A,所以②正确.③令A1={n|n=3k,k∈Z},A2={n|n=2k,k∈Z},3∈A1,2∈A2,但是,3+2∉A1∪A2,则A1∪A2不是闭集合,所以③不正确.答案②10.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 6x +1≥1,x ∈R ,B ={x |x 2-2x -m <0},若A ∩B ={x |-1<x <4},则实数m 的值为________.解析 由6x +1≥1,得x -5x +1≤0, ∴-1<x ≤5,∴A ={x |-1<x ≤5}.又∵B ={x |x 2-2x -m <0},A ∩B ={x |-1<x <4},∴有42-2×4-m =0,解得m =8.此时B ={x |-2<x <4},符合题意,故实数m 的值为8.答案 8三、解答题11.若集合A ={-1,3},集合B ={x |x 2+ax +b =0},且A =B ,求实数a ,b . 解 ∵A =B ,∴B ={x |x 2+ax +b =0}={-1,3}.∴⎩⎨⎧ -a =-1+3=2,b =-1×3=-3,∴a =-2,b =-3.12.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},分别求适合下列条件的a 的值.(1)9∈(A ∩B );(2){9}=A ∩B .解 (1)∵9∈(A ∩B ),∴9∈A 且9∈B ,∴2a -1=9或a 2=9,∴a =5或a =-3或a =3,经检验a=5或a=-3符合题意.∴a=5或a=-3.(2)∵{9}=A∩B,∴9∈A且9∈B,由(1)知a=5或a=-3.当a=-3时,A={-4,-7,9},B={-8,4,9},此时A∩B={9},当a=5时,A={-4,9,25},B={0,-4,9},此时A∩B={-4,9},不合题意.∴a=-3.13.设A={x|x2-8x+15=0},B={x|ax-1=0}.(1)若a=15,试判定集合A与B的关系;(2)若B⊆A,求实数a组成的集合C.解由x2-8x+15=0,得x=3或x=5.∴A={3,5}.(1)当a=15时,由15x-1=0,得x=5.∴B={5},∴B A.(2)∵A={3,5}且B⊆A,∴若B=∅,则方程ax-1=0无解,有a=0.若B≠∅,则a≠0,由方程ax-1=0,得x=1 a ,∴1a=3或1a=5,即a=13或a=15,∴C =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫0,13,15. 14.设集合A ={x2,2x -1,-4},B ={x -5,1-x,9},若A∩B={9},求A ∪B. 解 由9∈A ,可得x2=9或2x -1=9,解得x =±3或x =5.当x =3时,A ={9,5,-4},B ={-2,-2,9},B 中元素重复,故舍去; 当x =-3时,A ={9,-7,-4},B ={-8,4,9},A∩B={9}满足题意,故A ∪B ={-7,-4,-8,4,9};当x =5时,A ={25,9,-4},B ={0,-4,9},此时A∩B={-4,9}与A∩B={9}矛盾,故舍去.综上所述,A ∪B ={-8,-4,4,-7,9}.21082 525A 剚21891 5583 喃33415 8287 芇n(27780 6C84 沄25016 61B8 憸AH39220 9934 餴}38858 97CA 韊30012 753C 甼24208 5E90 庐。

2021版高考数学一轮复习第一章集合与常用逻辑用语第1讲集合的概念与运算高效演练分层突破文新人教A版

2021版高考数学一轮复习第一章集合与常用逻辑用语第1讲集合的概念与运算高效演练分层突破文新人教A版

第1讲集合的概念与运算[基础题组练]1.已知全集U=R,集合A={x|x<-1或x>1},则∁U A=( )A.(-∞,-1)∪(1,+∞) B.(-∞,-1]∪[1,+∞)C.(-1,1) D.[-1,1]解析:选D.因为全集U=R,集合A={x|x<-1或x>1},所以∁U A={x|-1≤x≤1},故选D.2.(2020·辽宁辽阳期末)设集合A={x∈Z|x>4},B={x|x2<100},则A∩B的元素个数为( )A.3 B.4C.5 D.6解析:选C.因为B={x|-10<x<10},所以A∩B={x∈Z|4<x<10}={5,6,7,8,9}.所以A∩B的元素个数为5,故选C.3.已知集合A={0},B={-1,0,1},若A⊆C⊆B,则符合条件的集合C的个数为( ) A.1 B.2C.4 D.8解析:选C.由题意得,含有元素0且是集合B的子集的集合有{0},{0,-1},{0,1},{0,-1,1},即符合条件的集合C共有4个.故选C.4.已知全集U=R,集合A={x|x(x+2)<0},B={x||x|≤1},则如图所示的阴影部分表示的集合是( )A.(-2,1)B.[-1,0]∪[1,2)C.(-2,-1)∪[0,1]D.[0,1]解析:选C.因为集合A={x|x(x+2)<0},B={x||x|≤1},所以A={x|-2<x<0},B={x|-1≤x≤1},所以A∪B=(-2,1],A∩B=[-1,0),所以阴影部分表示的集合为∁A∪B(A∩B)=(-2,-1)∪[0,1],故选C.5.(2020·江苏南京联合调研改编)已知全集U={1,2,3,4,5},集合A={1,3,4},B={3,5},则A∩B=______,∁U A=______.解析:因为全集U={1,2,3,4,5},集合A={1,3,4},B={3,5},所以A∩B={3},则∁U A ={2,5}.答案:{3} {2,5}6.已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=________. 解析:由于A ∪B ={x |x ≤0或x ≥1},结合数轴,∁U (A ∪B )={x |0<x <1}. 答案:{x |0<x <1}7.已知集合A ={1,2,3,4},集合B ={x |x ≤a ,a ∈R },A ∪B =(-∞,5],则a 的值是________.解析:因为集合A ={1,2,3,4},集合B ={x |x ≤a ,a ∈R },A ∪B =(-∞,5],所以a =5.答案:58.已知集合A ={x |-1<x ≤3},B ={x |m ≤x <1+3m }. (1)当m =1时,求A ∪B ;(2)当B ⊆∁R A 时,求实数m 的取值范围. 解:(1)因为m =1时,B ={x |1≤x <4}, 所以A ∪B ={x |-1<x <4}. (2)∁R A ={x |x ≤-1或x >3}.当B =∅时,即m ≥1+3m ,解得m ≤-12;当B ≠∅时,要使B ⊆∁R A 成立, 则⎩⎪⎨⎪⎧m <1+3m ,1+3m ≤-1或⎩⎪⎨⎪⎧m <1+3m ,m >3,解得m >3.综上可知,实数m 的取值范围是⎝⎛⎦⎥⎤-∞,-12∪(3,+∞).[综合题组练]1.已知集合M ={y |y =x -|x |,x ∈R },N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y |y =⎝ ⎛⎭⎪⎫13x ,x ∈R ,则下列选项正确的是( )A .M =NB .N ⊆MC .M =∁R ND .∁R N ⃘M解析:选C.由题意得M ={y |y ≤0},N ={y |y >0},所以∁R N ={y |y ≤0},M =∁R N .故C 正确,A ,B ,D 错误.2.(创新型)如图所示的Venn 图中,A ,B 是非空集合,定义集合A ⊗B 为阴影部分表示的集合.若x ,y ∈R ,A ={x |2x -x 2≥0},B ={y |y =3x,x >0},则A ⊗B =( )A .{x |0<x <2}B .{x |1<x ≤2}C .{x |x ≤1或x ≥2}D .{x |0≤x ≤1或x >2}解析:选D.因为A ={x |2x -x 2≥0}=[0,2],B ={y |y =3x,x >0}=(1,+∞),所以A ∪B =[0,+∞),A ∩B =(1,2],由题图知A ⊗B =[0,1]∪(2,+∞),故选D.3.(2020·济南外国语学校月考)集合M ={x |2x 2-x -1<0},N ={x |2x +a >0},U =R .若M ∩(∁U N )=∅,则a 的取值范围是( )A .(1,+∞)B .[1,+∞)C .(-∞,1)D .(-∞,1]解析:选B.由集合M ={x |2x 2-x -1<0},N ={x |2x +a >0},可得M =⎝ ⎛⎭⎪⎫-12,1,∁U N =⎝ ⎛⎦⎥⎤-∞,-a 2.要使M ∩(∁UN )=∅,则-a 2≤-12,解得a ≥1,故选B. 4.已知集合A ={x |4≤2x≤16},B =[a ,b ],若A ⊆B ,则实数a -b 的取值范围是________. 解析:集合A ={x |4≤2x≤16}={x |22≤2x ≤24}={x |2≤x ≤4}=[2,4], 因为A ⊆B ,所以a ≤2,b ≥4,所以a -b ≤2-4=-2, 即实数a -b 的取值范围是(-∞,-2]. 答案:(-∞,-2]。

2021年高考数学大一轮复习 第1章 第1节 集合的概念与运算课时作业 理

2021年高考数学大一轮复习 第1章 第1节 集合的概念与运算课时作业 理

理一、选择题1.(xx·包头一中)下列说法中,正确的是( )A.任何一个集合必有两个子集B.若A∩B=∅,则A,B中至少有一个∅C.任何集合必有一个真子集D.若S为全集,且A∩B=S,则A=B=S答案:D解析:∅只有一个子集,是它本身,所以不选A;B选项只要举个例子,如M={1,2},N={3,4},且M∩N=∅,但M,N都不是空集,所以不选B;空集没有真子集,所以不选C;排除了A,B,C,故应选D.2.(xx·潍坊模拟)设集合A={1,2,3},B={4,5},C={x|x=b-a,a∈A,b∈B},则C中元素个数是( )A.3 B.4C.5 D.6答案:B解析:∵A={1,2,3},B={4,5},∴C={x|x=b-a,a∈A,b∈B}={1,2,3,4},∴C中共有4个元素.故应选B.3.若集合A={0,1,2,x},B={1,x2},A∪B=A,则满足条件的实数x的个数为( )A.1 B.2C.3 D.4答案:B解析:因为A={0,1,2,x},B={1,x2},A∪B=A,所以B⊆A,所以x2=0或x2=2或x2=x,解得x=0或2或-2或1,经检验,当x=2或-2时满足题意,故应选B.4.(xx·辽宁)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A ∪B)=( )A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}答案:D解析:∵A={x|x≤0},B={x|x≥1},∴A∪B={x|x≤0或x≥1},在数轴上表示出来,如图.∴∁U(A∪B)={x|0<x<1}.故应选D.5.(xx·淄博阶段性诊断)已知集合U={a,b,c,d,e},M={a,d},N={a,c,e},则M∪(∁U N)为( )A.{a,c,d,e} B.{a,b,d}C.{b,d} D.{d}答案:B解析:∵∁U N={b,d},∴M∪(∁U N)={a,d}∪{b,d}={a,b,d},故应选B.6.已知非空集合A,B,全集U=A∪B,集合M=A∩B,集合N=(∁U B)∪(∁A),则( )UA.M∪N=M B.M∩N=∅C.M=N D.M⊆N答案:B解析:作出满足题意的Venn图,如图所示,容易知道M∩N=∅,故应选B.7.设集合B={a1,a2,…,a n},J={b1,b2,…,b m},定义集合B⊕J={(a,b)|a=a+a2+…+a n,b=b1+b2+…+b m},已知B={51,21,28},J=1{89,70,52},则B⊕J的子集为( )A.(100,211) B.{(100,211)}C.∅,{100,211} D.∅,{(100,211)}答案:D解析:求一集合的子集,其中必有∅,又因为集合B⊕J是点集,观察选项,可得答案为D项.故应选D.8.已知两个非空集合A={x|x(x-3)<4},B={x|x≤a},若A∩B=B,则实数a的取值范围为( )A.(-1,1) B.(-2,2)C.[0,2) D.(-∞,2)答案:C解析:解不等式x(x-3)<4,得-1<x<4,所以A={x|-1<x<4};又B 是非空集合,所以a≥0,B={x|0≤x≤a2}.而A∩B=B⇔B⊆A,借助数轴可知a2<4,解得0≤a<2,故应选C.9.(xx·日照第一中学月考)对于集合M,N,定义M-N={x|x∈M且x∉N},M⊕N=(M-N)∪(N-M),设A={y|y=3x,x∈R},B={y|y=-(x-1)2+2,x ∈R},则A⊕B等于( )A.[0,2) B.(0,2]C.(-∞,0]∪(2,+∞)D.(-∞,0)∪[2,+∞)答案:C解析:由题可知,集合A={y|y>0},B={y|y≤2},所以A-B={y|y>2},B -A={y|y≤0},所以A⊕B=(-∞,0]∪(2,+∞),故应选C.10.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x 2+52x +1=0,B ={y |y =x 2+a ,x ∈R },若A ∩B ≠∅,则a 的取值范围是( )A.⎝ ⎛⎦⎥⎤-∞,-12B .⎝ ⎛⎭⎪⎫-12,+∞C.⎣⎢⎡⎦⎥⎤-4,-14D .(-∞,-2]答案:A解析:因为A ={x |2x2+5x +2=0}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-2,-12,B ={y |y =x 2+a ,x ∈R }=[a ,+∞),又A ∩B ≠∅,所以a ≤-12.故应选A.二、填空题11.(xx·济南一中等四校联考)已知集合U ={2,3,a 2+2a -3},A ={|2a -1|,2},∁U A ={5},则实数a 的值为________.解析:根据已知得⎩⎨⎧a 2+2a -3=5,|2a -1|=3,解得a =2.12.(xx·重庆)设全集U ={n ∈N |1≤n ≤10},A ={1,2,3,5,8},B ={1,3,5,7,9},则(∁U A )∩B =________.答案:{7,9}解析:∵U ={n ∈N |1≤n ≤10},A ={1,2,3,5,8},∴∁U A ={4,6,7,9,10}.又∵B ={1,3,5,7,9},∴(∁U A )∩B ={7,9}.13.已知集合A ={x |x 2-2x -3>0},B ={x |x 2+ax +b ≤0},若A ∪B =R ,A ∩B ={x |3<x ≤4},则a +b 的值等于________.答案:-7解析:A ={x |x <-1或x >3},∵A ∪B =R ,A ∩B ={x |3<x ≤4},∴B ={x |-1≤x ≤4},∴a =-(-1+4)=-3,b =(-1)×4=-4,∴a +b =-7.14.已知集合P ={-1,m },Q =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x -1<x <34,若P ∩Q ≠∅,则整数m =________.答案:0解析:由{-1,m }∩⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1<x <34≠∅,可得-1<m <34,由此可得整数m=0.15.已知集合M ={x |-1<x <2},N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y |y =12x 2-1,x ∈M ,则M ∩N =________.答案:(-1,1)解析:集合N 实为函数y =12x 2-1,x ∈(-1,2)的值域,所以N =[-1,1),M ∩N =(-1,1).%34880 8840 血7{ 34156 856C 蕬28351 6EBF 溿o20314 4F5A 佚38983 9847 顇];Z9i。

2021高三统考北师大版数学一轮学案:第1章第1讲 集合及其运算

2021高三统考北师大版数学一轮学案:第1章第1讲 集合及其运算

第一章集合与常用逻辑用语第1讲集合及其运算基础知识整合1.集合与元素(1)集合中元素的三个特征:□01确定性、□02互异性、□03无序性.(2)元素与集合的关系是□04属于或□05不属于两种,用符号□06∈或□07∉表示.(3)集合的表示法:□08列举法、□09描述法、□10图示法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号□11N□12N*(或N+)□13Z□14Q□15R2.集合间的基本关系表示关系文字语言符号语言相等集合A与集合B中的所有元素□16相同□17A⊆B且□18B⊆A⇔A=B子集A中任意一个元素均为B中的元素□19A⊆B或B⊇A真子集A中任意一个元素均为B中的元素,且B中至少有一个元素不是A中的元素□20A B或B A空集空集是□21任何集合的子集,是□22任何非空集合的真子集∅⊆A∅B(B≠∅)3.集合的基本运算并集交集补集图形符号A∪B=□23{x|x∈A或x∈B}A∩B=□24{x|x∈A且x∈B}∁U A=□25{x|x∈U且x∉A}1.若有限集A中有n个元素,则集合A的子集个数为2n,真子集的个数为2n-1,非空真子集的个数为2n-2.2.A∪∅=A,A∪A=A,A⊆(A∪B),B⊆(A∪B).3.A∩∅=∅,A∩A=A,A∩B⊆A,A∩B⊆B.4.A∩B=A∪B⇔A=B.5.A⊆B⇔A∩B=A⇔A∪B =B⇔(∁U A)⊇(∁U B)⇔A∩(∁U B)=∅.6.A∩(∁U A)=∅;A∪(∁U A)=U;∁U(∁U A)=A.7.(∁U A)∩(∁U B)=∁U(A∪B),(∁U A)∪(∁U B)=∁U(A∩B).8.如图所示,用集合A,B表示图中Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分所表示的集合分别是A∩B,A∩(∁U B),B∩(∁U A),∁U(A∪B).9.card(A∪B)=card(A)+card(B)-card(A∩B).1.(2019·浙江高考)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁U A)∩B=()A.{-1} B.{0,1}C.{-1,2,3} D.{-1,0,1,3}答案 A解析∵U={-1,0,1,2,3},A={0,1,2},∴∁U A={-1,3}.又B={-1,0,1},∴(∁U A )∩B ={-1}.故选A .2.已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},A ∩(∁U B )={3},则B =( )A .{1,2}B .{1,2,4}C .{2,4}D .∅答案 A解析 结合Venn 图(如图)可知B ={1,2},故选A .3.(2019·河南百校联盟联考)已知集合A ={(x ,y )|y =x +1,x ∈R },集合B ={(x ,y )|y =x 2,x ∈R },则集合A ∩B 的子集个数为( )A .1B .2C .3D .4答案 D解析 因为直线y =x +1与抛物线y =x 2有2个交点,所以集合A ∩B 有2个元素,故A ∩B 的子集有4个,故选D .4.(2019·辽宁丹东测试二)已知集合A ={-1,2},B ={x |ax =1},若B ⊆A ,则由实数a 的所有可能的取值组成的集合为( )A .⎩⎨⎧⎭⎬⎫1,12B .⎩⎨⎧⎭⎬⎫-1,12C .⎩⎨⎧⎭⎬⎫0,1,12 D .⎩⎨⎧⎭⎬⎫-1,0,12 答案 D解析 若B 为空集,则方程ax =1无解,解得a =0;若B 不为空集,则a ≠0,由ax =1解得x =1a ,所以1a =-1或1a =2,解得a =-1或a =12,则由实数a 的所有可能的取值组成的集合为⎩⎨⎧⎭⎬⎫-1,0,12,故选D .5.(2020·镇海中学摸底)设集合A ={y |y =x 2-1},B ={x |y =x 2-1},则下列结论正确的是( )A .A =B B .A ⊆BC .B ⊆AD .A ∩B ={x |x ≥1}答案 D解析 ∵A ={y |y =x 2-1}={y |y ≥0},B ={x |y =x 2-1}={x |x ≥1或x ≤-1},∴A ∩B ={x |x ≥1},故选D .6.(2018·全国卷Ⅱ)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( )A .9B .8C .5D .4 答案 A解析 ∵x 2+y 2≤3,∴x 2≤3.∵x ∈Z ,∴x =-1,0,1.当x =-1时,y =-1,0,1;当x =0时,y =-1,0,1;当x =1时,y =-1,0,1,综上,A 中元素共有9个,故选A .核心考向突破考向一 集合的基本概念例1 (1)(2019·辽宁沈阳模拟)已知集合A ={y |y =x 2+2x +1},B ={x |y =x 2+2x +1},则集合A 与集合B 的关系为( )A .A =B B .A ∈BC .B ⊆AD .A B 答案 D解析 集合A 表示二次函数y =x 2+2x +1=(x +1)2中y 的取值范围,显然y ≥0,即A ={y |y ≥0};集合B 表示函数y =x 2+2x +1中x 的取值范围,易知x ∈R ,即B =R ,所以AB .故选D .(2)已知a ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,ba ,1={a 2,a +b,0},则a +b 为( )A .1B .0C .-1D .±1答案 C解析 由已知得a ≠0,则ba =0,所以b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =1应舍去.因此a =-1,故a +b =-1,故选C .解决集合概念问题的一般思路(1)研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件.解本例(1)时要注意,集合A 是函数值域构成的数集,集合B 是函数定义域构成的数集.(2)本例(2)中参数的确定,往往要对集合中的元素进行分类讨论,构造方程组求解.同时注意对元素互异性的检验.[即时训练] 1.(2020·河南洛阳一中月考)设集合A ={0,1,2,3},B ={x |-x ∈A,1-x ∉A },则集合B 中元素的个数为( )A .1B .2C .3D .4答案 A解析 若x ∈B ,则-x ∈A ,故x 只可能是0,-1,-2,-3.当0∈B 时,1-0=1∈A ;当-1∈B 时,1-(-1)=2∈A ;当-2∈B 时,1-(-2)=3∈A ;当-3∈B 时,1-(-3)=4∉A ,所以B ={-3},故集合B 中元素的个数为1,故选A .2.设集合A =⎩⎨⎧⎭⎬⎫5,ba ,a -b ,B ={b ,a +b ,-1},若A ∩B ={2,-1},则A ∪B =( )A .{2,3}B .{-1,2,5}C .{2,3,5}D .{-1,2,3,5}答案 D解析 由A ∩B ={2,-1},可得⎩⎪⎨⎪⎧ba=2,a -b =-1或⎩⎪⎨⎪⎧ba =-1,a -b =2.当⎩⎪⎨⎪⎧ba =2,a -b =-1时,⎩⎨⎧a =1,b =2,此时B ={2,3,-1},所以A ∪B ={-1,2,3,5};当⎩⎪⎨⎪⎧ba =-1,a -b =2时,⎩⎨⎧a =1,b =-1,此时不符合题意,舍去.故选D .考向二 集合间的基本关系例2 (1)(2019·山东日照模拟)已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x -2x ≤0,x ∈N ,B ={x |x≤2,x ∈Z },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .4D .8答案 D解析 由x -2x ≤0得0<x ≤2,故A ={1,2};由x ≤2得0≤x ≤4,故B ={0,1,2,3,4}.满足条件A ⊆C ⊆B 的集合C 的个数为23=8,故选D .(2)已知集合A ={x |(x +1)(x -6)≤0},B ={x |m -1≤x ≤2m +1}.若B ⊆A ,则实数m 的取值范围为________.答案 m <-2或0≤m ≤32解析 A ={x |-1≤x ≤6},若B ⊆A ,则当B =∅时,有m -1>2m +1,即m <-2时,符合题意.当B ≠∅时,有⎩⎪⎨⎪⎧m -1≤2m +1,m -1≥-1,2m +1≤6,解得0≤m ≤52.综上,得实数m 的取值范围是m <-2或0≤m ≤52.(1)解本例(1)时,要能够将集合间的关系进行等价转化,转化为集合C 中哪些元素必有,哪些元素可能有,不要忽略任何非空集合是它自身的子集.(2)已知两个集合之间的关系求参数时,要明确集合中的元素,对子集是否为空集进行分类讨论,做到不漏解.①若集合元素是一一列举的,依据集合间的关系,转化为解方程(组)求解,此时注意集合中元素的互异性;②若集合表示的是不等式的解集,常依据数轴转化为不等式(组)求解,此时需注意端点值能否取到.[即时训练] 3.集合M =⎩⎨⎧⎭⎬⎫x |x =n 2+1,n ∈Z ,N =⎩⎨⎧⎭⎬⎫y |y =m +12,m ∈Z ,则两集合M ,N 的关系为( )A .M ∩N =∅B .M =NC .M ND .NM答案 D 解析∵M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x =n +22,n ∈Z ,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y |y =2m +12,m ∈Z ,又n +2为整数,2m +1为奇数,∴N M ,故选D .4.设A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0}, (1)若B ⊆A ,则实数a 的取值范围为________; (2)若A ⊆B ,则实数a 的取值范围为________. 答案 (1)a ≤-1或a =1 (2)a =1 解析 由题意,得A ={-4,0}.(1)∵B ⊆A ,∴B =∅或B ={-4}或B ={0}或B ={-4,0}. 当B =∅时,x 2+2(a +1)x +a 2-1=0无解,即 Δ=4(a +1)2-4(a 2-1)=8a +8<0,解得a <-1.当B ={-4}或B ={0}时,x 2+2(a +1)x +a 2-1=0有两个相等的实数根,则Δ=8a +8=0,∴a =-1,此时B ={0},符合条件.当B ={-4,0}时,-4和0是方程x 2+2(a +1)x +a 2-1=0的两个根,则⎩⎪⎨⎪⎧Δ=8a +8>0,-4+0=-2(a +1),-4×0=a 2-1,解得a =1.综上所述,a ≤-1或a =1.(2)∵A ⊆B ,∴B ={-4,0}.由(1)知a =1.精准设计考向,多角度探究突破 考向三 集合的基本运算角度1 集合间的交、并、补运算例3 (1)已知全集U =Z ,P ={-2,-1,1,2},Q ={x |x 2-3x +2=0},则图中阴影部分表示的集合为( )A .{-1,-2}B .{1,2}C .{-2,1}D .{-1,2}答案 A解析 易知所求集合为P ∩(∁U Q ),因为Q ={1,2},所以P ∩(∁U Q )={-1,-2},故选A .(2)(2019·海口模拟)已知全集U =R ,集合A ={x |x 2-x -6≤0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x +1x -4>0,那么集合A ∩(∁U B )=( )A .{x |-2≤x <4}B .{x |x ≤3或x ≥4}C .{x |-2≤x <-1}D .{x |-1≤x ≤3}答案 D解析依题意A={x|-2≤x≤3},B={x|x<-1或x>4},故∁U B={x|-1≤x≤4},故A∩(∁U B)={x|-1≤x≤3},故选D.(1)集合基本运算的求解策略①当集合是用列举法表示的数集时,可以通过列举集合的元素进行运算,也可借助Venn图运算.②当集合是用不等式表示时,可运用数轴求解.对于端点处的取舍,可以单独检验.(2)集合的交、并、补运算口诀交集元素仔细找,属于A且属于B;并集元素勿遗漏,切记重复仅取一;全集U是大范围,去掉U中A元素,剩余元素成补集.[即时训练] 5.(2019·洛阳模拟)已知全集U=R,集合A={x|x2-3x-4>0},B={x|-2≤x≤2},则如图所示阴影部分所表示的集合为()A.{x|-2≤x<4} B.{x|x≤2或x≥4}C.{x|-2≤x≤-1} D.{x|-1≤x≤2}答案 D解析依题意得A={x|x<-1或x>4},因此∁R A={x|-1≤x≤4},题中的阴影部分所表示的集合为(∁R A)∩B={x|-1≤x≤2},故选D.6.(2020·唐山模拟)若集合A={x|-1<x<1,x∈R},B={x|y=x-2,x∈R},则A∪B=()A.[0,1) B.(-1,+∞)C.(-1,1)∪[2,+∞) D.∅答案 C解析由题意得B={x|x≥2},所以A∪B={x|-1<x<1或x≥2},故选C.角度2利用集合运算求参数例4(1)(2019·广西南宁模拟)设集合A={x|x(4-x)≥3},B={x|x>a},若A∩B=A,则a的取值范围是()A.a≤1 B.a<1C.a≤3 D.a<3答案 B解析由x(4-x)≥3解得1≤x≤3,即集合A={x|1≤x≤3}.因A∩B=A,则A⊆B,而B={x|x>a},所以a<1,故选B.(2)集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为()A.0 B.1C.2 D.4答案 D解析根据并集的概念,可知{a,a2}={4,16},故a=4.故选D.将两个集合之间的关系准确转化为参数所满足的条件时,应注意子集与真子集的区别,此类问题多与不等式(组)的解集相关.确定参数所满足的条件时,一定要把端点值代入进行验证,否则易产生增解或漏解.本例(1)易忽视a≠1,而误选A.[即时训练]7.设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是()A.-1<a≤2 B.a>2C.a≥-1 D.a>-1答案 D解析因为A∩B≠∅,所以集合A,B有公共元素,作出数轴,如图所示,易知a>-1.故选D.8.已知集合P={y|y2-y-2>0},Q={x|x2+ax+b≤0},若P∪Q=R,P∩Q =(2,3],则a+b=________.答案-5解析P={y|y2-y-2>0}={y|y>2或y<-1},∵P∪Q=R,P∩Q=(2,3],∴Q={x|-1≤x≤3},∴-1,3是方程x2+ax+b=0的两根,由根与系数的关系得,-a=-1+3=2,b=-3,∴a+b=-5.第1讲函数及其表示1.(2019·宁夏银川模拟)已知集合A={x∈N|x2-2x-3≤0},B={1,3},定义集合A,B之间的运算“*”:A*B={x|x=x1+x2,x1∈A,x2∈B},则A*B中的所有元素之和为()A.15 B.16C.20 D.21答案 D解析由x2-2x-3≤0,得(x+1)(x-3)≤0,即-1≤x≤3,故集合A={0,1,2,3}.∵A*B={x|x=x1+x2,x1∈A,x2∈B},∴A*B中的元素有0+1=1,0+3=3,1+1=2,1+3=4,2+1=3(舍去),2+3=5,3+1=4(舍去),3+3=6.∵A*B ={1,2,3,4,5,6},∴A*B中的所有元素之和为21.2.已知非空集合A,B满足以下两个条件:(1)A∪B={1,2,3,4},A∩B=∅;(2)A的元素个数不是A中的元素,B的元素个数不是B中的元素.则有序集合对(A,B)的个数为()A.1 B.2C.4 D.6解析 若集合A 中只有1个元素,则集合B 中有3个元素,则1∉A,3∉B ,即3∈A,1∈B ,此时有1对;同理,若集合B 只有1个元素,则集合A 中有3个元素,有1对;若集合A 中有2个元素,则集合B 中有2个元素,2∉A ,2∉B ,不满足条件.所以满足条件的有序集合对(A ,B )的个数为1+1=2,故选B .答题启示解决以集合为背景的新定义问题,要抓住两点:(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在;(2)用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的运算与性质.对点训练1.如图所示的Venn 图中,A ,B 是两个非空集合,定义集合A ⊗B 为阴影部分表示的集合.若x ,y ∈R ,A ={x |y =2x -x 2},B ={y |y =3x ,x >0},则A ⊗B 为( )A .{x |0<x <2}B .{x |1<x ≤2}C .{x |0≤x ≤1或x ≥2}D .{x |0≤x ≤1或x >2}答案 D解析 ∵A ={x |0≤x ≤2},B ={y |y >1},∴A ∪B ={x |x ≥0},A ∩B ={x |1<x ≤2},∴A ⊗B =∁A ∪B (A ∩B )={x |0≤x ≤1或x >2}.2.定义集合的商集运算为A B =⎩⎨⎧⎭⎬⎫x |x =m n ,m ∈A ,n ∈B ,已知集合A ={2,4,6},B =⎩⎨⎧⎭⎬⎫x |x =k 2-1,k ∈A ,则集合BA ∪B 中的元素个数为( )A .6B .7C .8D .9解析 由题意知,B ={0,1,2},B A =⎩⎨⎧⎭⎬⎫0,12,14,16,1,13,则BA ∪B =⎩⎨⎧⎭⎬⎫0,12,14,16,1,13,2,共有7个元素,故选B .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[练案1]第一章集合与常用逻辑用语第一讲集合的概念与运算A组基础巩固一、单选题1.(2020·河北衡水中学调研)已知集合A={x∈N|1<x<log2k},集合A中至少有3个元素,则( C )A.k>8 B.k≥8C.k>16 D.k≥16[解析] 因为集合A中至少有3个元素,所以log2k>4,所以k>24=16,故选C.2.(2019·全国卷Ⅲ,5分)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B =( A )A.{-1,0,1} B.{0,1}C.{-1,1} D.{0,1,2}[解析] 集合B={x|-1≤x≤1},则A∩B={-1,0,1}.3.已知集合A={x∈R|log2(2-x)<2},B={-1,0,1,2,3},则A∩B真子集的个数( B )A.8 B.7C.4 D.6[解析] 由题log2(2-x)<2,则0<2-x<4,得-2<x<2,即A=(-2,2),A∩B ={-1,0,1},则A∩B真子集的个数为23-1=7.4.(2020·郑州市第二次质量预测)已知全集U=R,A={x|y=ln(1-x2)},B={y|y=4x-2},则A∩(∁UB)=( D )A.(-1,0) B.[0,1)C.(0,1) D.(-1,0][解析] A={x|1-x2>0}=(-1,1),B={y|y>0},所以∁UB={y|y≤0},所以A∩(∁UB)=(-1,0],故选D.5.(2020·安徽天长一中第二次质量检测)设集合P={x|2x2+2x=(12)-x-6},集合T ={x|mx +1=0}.若T ⊆P ,则实数m 的取值组成的集合是( C )A .{13,12}B .{13}C .{-12,0,13}D .{-12}[解析] 由2x 2+2x =(12)-x -6,得2x 2+2x =2x +6,∴x 2+2x =x +6,即x 2+x-6=0,∴集合P ={2,-3}.若m =0,则T =∅⊆P.若m ≠0,则T ={-1m },由T ⊆P ,得-1m =2或-1m =-3,得m =-12或m =13.综上,实数m 的取值组成的集合是{-12,0,13}.故选C.6.(2020·武汉市武昌区高三调考)已知集合A ={x|log 2(x -1)<1},B ={x||x -a|<2},若A ⊆B ,则实数a 的取值范围为( B )A .(1,3)B .[1,3]C .[1,+∞)D .(-∞,3][解析] 由log 2(x -1)<1,得0<x -1<2,即1<x<3,所以A =(1,3).由|x -a|<2得a -2<x<a +2,即B =(a -2,a +2).因为A ⊆B ,所以⎩⎨⎧a -2≤1,a +2≥3,解得1≤a ≤3,所以实数a 的取值范围为[1,3],故选B.7.(2020·人大附中月考)已知集合A ={x|y =-x 2+x +6,x ∈Z},B ={y|y =5sin(x +φ)},则A ∩B 中元素的个数为( C )A .3B .4C .5D .6[解析] 集合A 满足-x 2+x +6≥0,(x -3)(x +2)≤0,-2≤x ≤3,∴A ={-2,-1,0,1,2,3},B =[-5,5],所以A ∩B ={-2,-1,0,1,2},可知A ∩B 中元素个数为5.二、多选题8.(2020·四川凉山州第二次诊断性检测改编)若集合A ={x ∈N|x 2≤1},a =-1,则下列结论不正确的是( BCD )A .a ∉ AB .a ∈AC .{a}∈AD .{a}∉ A[解析] 集合A ={x ∈N|x 2≤1}={0,1},a =-1,根据元素和集合的关系得到a ∉ A.故选B 、C 、D.9.(2020·湖南长沙市统考改编)设集合M ={x|x =4n +1,n ∈Z},N ={x|x =2n +1,n ∈Z},则下面不正确的是( BCD )A .MNB .NMC .M ∈ND .N ∈M[解析] 对于集合N ,当n =2k 时,x =4k +1(k ∈Z);当n =2k -1时,x =4k -1(k ∈Z).故N ={x|x =4k +1或x =4k -1,k ∈Z},所以M N ,故选B 、C 、D.10.(2020·河北九校第二次联考改编)已知集合M ={x|x<2},N ={x|x 2-x<0},则下列不正确的是( ACD )A .M ∪N =RB .M ∪(∁R N)=RC .N ∪(∁R M)=RD .M ∩N =M[解析] 因为N ={x|x 2-x<0}={x|0<x<1},所以∁R N ={x|x ≤0或x ≥1},所以M ∪∁R N =R.故选A 、C 、D.三、填空题11.(2019·江苏,5分)已知集合A ={-1,0,1,6},B ={x|x>0,x ∈R},则A ∩B =__{1,6}__.[解析] A ∩B ={1,6}.12.2∈{x 2+x,2x}则x =__-2__;-2∉{x 2+x,2x},则x ≠__0且x ≠1,且x ≠-1__.[解析] x 2+x =2得x =-2或1(舍去),2x =2得x =1(舍去),综上x =-2;不属于按属于处理,-2=x 2+x 无解.-2=2x ,得x =-1,又x 2+x 与2x 不同,∴x ≠0,1.13.已知集合A ={x||x|≤1},B ={x|y =1-3x},则A ∩B = [-1,13] ,(∁R A)∪B = (-∞,13]∪(1,+∞) .[解析] A ={x|-1≤x ≤1},B ={x|x ≤13},A ∩B ={x|-1≤x ≤13},∁U A ={x|x<-1或x>1},(∁U A)∪B ={x|x ≤-13或x>1}.14.(2020·安徽省示范高中测试)已知集合A ={x|x -a ≤0},B ={1,2,3},若A ∩B ≠∅,则a 的取值范围为__[1,+∞)__.[解析] 集合A ={x|x ≤a},集合B ={1,2,3},若A ∩B ≠∅,则1,2,3这三个元素至少有一个在集合A 中,若2或3在集合A 中,则1一定在集合A 中,因此只要保证1∈A 即可,所以a ≥1,故填[1,+∞).B 组能力提升1.(多选题)(2020·河北石家庄二中模拟改编)设集合A ={y|y =-e x +4},B ={x|y =lg[(x +2)(3-x)]},则下列关系不正确的是( ABD )A .A ⊆BB .A ∩B =∅C .(∁R A)⊆(∁R B)D .(∁R B)⊆A[解析] 由题意得A ={y|y<4},B ={x|(x +2)(3-x)>0}={x|-2<x<3},∴B ⊆A ,只有C 正确.故选A 、B 、D.2.(2020·北京人大附中月考)定义集合运算:A ★B ={z|z =x 2-y 2,x ∈A ,y ∈B}.设集合A ={1,2},B ={-1,0},则集合A ★B 的元素之和为( C )A .2B .1C .3D .4[解析] 当⎩⎨⎧x =1,y =-1时,z =0;当⎩⎨⎧x =1,y =0或⎩⎨⎧x =2,y =-1时,z =1;当⎩⎨⎧x =2,y =0时,z =2.∴A ★B ={0,1,2},A ★B 所有元素之和为0+1+2=3.故选C.3.(2020·湖南长沙一中月考)设集合M ={x|x 2+y 2=2,x ∈R ,y ∈R},N ={y|y =x 2,x ∈R},则M ∩N =( B )A .{(-1,1),(1,1)}B .[0,2]C.[0,2] D.[-2,2][解析] ∵M={x|x2+y2=2,x∈R,y∈R},∴M=[-2,2].∵N={y|y=x2,x∈R},∴N=[0,+∞),∴M∩N=[0,2],故选B.4.(2020·湖北孝感模拟)已知集合A={x|y=ln(1-2x)},B={x|x2≤x},则∁A∪B(A∩B)=( C )A.(-∞,0) B.(-12,1]C.(-∞,0)∪[12,1] D.(-12,0][解析] 根据题意可知A=(-∞,12),B=[0,1],所以A∪B=(-∞,1],A∩B=[0,12),所以∁A∪B(A∩B)=(-∞,0)∪[12,1],故选C.5.(2020·安徽合肥模拟)已知集合A={x|x≥1},B={x∈R|12≤x≤2a-1},若A∩B≠∅,则实数a的取值范围是( A )A.[1,+∞) B.[12,1]C.[23,+∞) D.(1,+∞)[解析] 因为A∩B≠∅,所以2a-1≥1且2a-1≥12,解得a≥1,故选A.。

相关文档
最新文档