第一方案 高三一轮复习(文理通用)第八章 平面解析几何第八节 抛物线
人教版高中总复习一轮数学精品课件 第8章 解析几何 8.7 抛物线
![人教版高中总复习一轮数学精品课件 第8章 解析几何 8.7 抛物线](https://img.taocdn.com/s3/m/12377c4511a6f524ccbff121dd36a32d7275c76b.png)
2
1 +2
P(- ,
),
2
2
所以点 P 必在抛物线的准线上,且 PM 平行于 x 轴,所以①⑤正确.
两条切线的斜率之积为 k1k2= · =-1,
1 2
所以 AP⊥PB,故②正确.
因为 PM 平行于 x 轴,
所以
1
1 21 +22
∵点 A(1,1)在抛物线 C
1
上,∴1=2p,∴p= .
2
∴抛物线 C 的方程为 x =y,∴抛物线 C 的准线为
∵点 A(1,1),B(0,-1),∴直线 AB 的方程为 y=2x-1.
2
1
y=-4,故
A 错误.
= 2-1,
联立抛物线 C 与直线 AB 的方程,得 2
消去 y,
= ,
解题心得在涉及抛物线的焦点、顶点、准线的问题中,要注意利用几何
图形直观、形象地解题.涉及抛物线上的关键点时,应运用代入的技巧,从
代数的角度进行定量分析.
对点训练2
(1)过抛物线y2=2px(p>0)的焦点F作抛物线的弦,与抛物线交于A,B两点,M
为AB的中点,分别过A,B两点作抛物线的切线l1,l2相交于点P,△PAB常被称
1
因为|PA|= |AB|,所以
2
9
C.
7
D.2
3(1 + 2) = 2 + 2,
31 = 2 .
12 = 41 ,
2
又 2
易得 x1=3.
2 = 42 ,
故点 A 到抛物线 C 的焦点的距离为
2
高考数学统考一轮复习 第八章 平面解析几何 第八节 直线与圆锥曲线的综合问题 第2课时 定点、定值
![高考数学统考一轮复习 第八章 平面解析几何 第八节 直线与圆锥曲线的综合问题 第2课时 定点、定值](https://img.taocdn.com/s3/m/0bad11af767f5acfa0c7cd99.png)
学习资料第八章平面解析几何第八节直线与圆锥曲线的综合问题第二课时定点、定值、探究性问题课时规范练1.已知抛物线C:x2=2py(p>0),圆O:x2+y2=1.(1)若抛物线C的焦点F在圆O上,且A为抛物线C和圆O的一个交点,求|AF|;(2)若直线l与抛物线C和圆O分别相切于点M,N,求|MN|的最小值及相应p的值.解析:(1)由题意得F(0,1),从而抛物线C:x2=4y。
解方程组错误!得y=-2±错误!。
不妨设y A=错误!-2,∴|AF|=5-1。
(2)设M(x0,y0)(y0>0),则切线l:y=错误!(x-x0)+y0,结合x错误!=2py0,整理得x0x-py-py0=0。
由ON⊥l且|ON|=1得错误!=1,即|py0|=错误!=错误!,∴p=错误!且y错误!-1>0.∴|MN|2=|OM|2-1=x20+y错误!-1=2py0+y错误!-1=错误!+y错误!-1=4+错误!+(y 错误!-1)≥8,当且仅当y0=3时等号成立.∴|MN|的最小值为2错误!,此时p=错误!.2.已知椭圆C的方程为错误!+错误!=1,A是椭圆上的一点,且A在第一象限内,过A且斜率等于-1的直线与椭圆C交于另一点B,点A关于原点的对称点为D.(1)证明:直线BD的斜率为定值;(2)求△ABD面积的最大值.解析:(1)证明:设D(x1,y1),B(x2,y2),则A(-x1,-y1),直线BD的斜率k=错误!,由错误!两式相减得错误!=-错误!×错误!,∵k AB=错误!=-1,∴k=错误!=错误!,故直线BD的斜率为定值错误!.(2)连接OB(图略),∵A,D关于原点对称,∴S△ABD=2S△OBD,由(1)可知BD的斜率k=错误!,设BD的方程为y=错误!x+t,∵D在第三象限,∴-错误!<t<1且t≠0,O到BD的距离d=错误!=错误!,由错误!,整理得3x2+4tx+4t2-8=0,∴x1+x2=-错误!,x1x2=错误!,∴S△ABD=2S△OBD=2×错误!×|BD|×d=错误!错误!×错误!=|t|×错误!=|t|·错误!=错误!·错误!≤2错误!。
高考数学一轮复习 第八章 平面解析几何 第八节 抛物线教案(含解析)-高三全册数学教案
![高考数学一轮复习 第八章 平面解析几何 第八节 抛物线教案(含解析)-高三全册数学教案](https://img.taocdn.com/s3/m/f4d699e010a6f524cdbf8530.png)
第八节 抛物线1.抛物线的定义满足以下三个条件的点的轨迹是抛物线: (1)在平面内;(2)动点到定点F 的距离与到定直线l 的距离相等; (3)定点不在定直线上.2.抛物线的标准方程和几何性质标准方程y 2=2px(p >0)y 2=-2px(p >0)x 2=2py(p >0)x 2=-2py (p >0)p 的几何意义:焦点F 到准线l 的距离图形顶点 O (0,0)对称轴 y =0 x =0焦点 F ⎝⎛⎭⎪⎫p 2,0 F ⎝ ⎛⎭⎪⎫-p 2,0 F ⎝⎛⎭⎪⎫0,p 2 F ⎝ ⎛⎭⎪⎫0,-p 2离心率 e =1准线方程 x =-p2x =p 2y =-p 2y =p 2范围 x ≥0,y ∈Rx ≤0,y ∈Ry ≥0,x ∈Ry ≤0,x ∈R开口方向 向右向左 向上向下焦半径 (其中P (x 0,y 0))|PF |=x 0+p2|PF |=-x 0+p2|PF |=y 0+p2|PF |=-y 0+p21.(2018·杭州七校联考)抛物线C :y =ax 2的准线方程为y =-14,则其焦点坐标为________,实数a 的值为________. 解析:由题意得焦点坐标为⎝⎛⎭⎪⎫0,14,抛物线C 的方程可化为x 2=1a y ,由题意得-14a =-14,解得a =1. 答案:⎝⎛⎭⎪⎫0,1412.焦点在直线2x +y +2=0上的抛物线的标准方程为________.答案:y 2=-4x 或x 2=-8y3.(教材习题改编)抛物线y =4x 2的焦点坐标为__________;准线方程为____________.解析:抛物线的标准方程为x 2=14y ,所以焦点坐标为⎝⎛⎭⎪⎫0,116,准线方程为y =-116.答案:⎝⎛⎭⎪⎫0,116y =-1161.抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与直线垂直的直线.2.抛物线标准方程中参数p 易忽视,只有p >0才能证明其几何意义是焦点F 到准线l 的距离,否则无几何意义.3.抛物线的标准方程的形式要注意,根据方程求焦点坐标或准线方程时,要注意标准形式的确定.[小题纠偏]1.平面内到点(1,1)与到直线x +2y -3=0的距离相等的点的轨迹是( )A .椭圆B .双曲线C .抛物线D .一条直线答案:D2.抛物线8x 2+y =0的焦点坐标为________. 解析:由8x 2+y =0,得x 2=-18y .∴2p =18,p =116,∴焦点为⎝ ⎛⎭⎪⎫0,-132.答案:⎝⎛⎭⎪⎫0,-132考点一 抛物线定义及应用重点保分型考点——师生共研[典例引领]1.(2019·温州十校联考)设抛物线C :y =14x 2的焦点为F ,直线l 交抛物线C 于A ,B 两点,|AF |=3,线段AB 的中点到抛物线C 的准线的距离为4,则|BF |=( )A.72 B .5 C .4D .3解析:选B 抛物线C 的方程可化为x 2=4y ,由线段AB 的中点到抛物线C 的准线的距离为4,可得|AF |+|BF |=8,又|AF |=3,所以|BF |=5.2.已知M 是抛物线x 2=4y 上一点,F 为其焦点,点A 在圆C :(x +1)2+(y -5)2=1上,则|MA |+|MF |的最小值是( )A .4B .5C .6D .7解析:选B 依题意,由点M 向抛物线x 2=4y 的准线l :y =-1引垂线,垂足为M 1(图略),则有|MA |+|MF |=|MA |+|MM 1|,结合图形可知|MA |+|MM 1|的最小值等于圆心C (-1,5)到y =-1的距离再减去圆C 的半径,即等于6-1=5,因此|MA |+|MF |的最小值是5,故选B.[由题悟法]应用抛物线定义的2个关键点(1)由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化.(2)注意灵活运用抛物线上一点P (x ,y )到焦点F 的距离|PF |=|x |+p 2或|PF |=|y |+p2.[即时应用]1.如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF |-1|AF |-1B.|BF |2-1|AF |2-1C.|BF |+1|AF |+1D.|BF |2+1|AF |2+1解析:选A 由图形可知,△BCF 与△ACF 有公共的顶点F ,且A ,B ,C 三点共线,易知△BCF 与△ACF 的面积之比就等于|BC ||AC |.由抛物线方程知其焦点F (1,0),作准线l ,则l 的方程为x =-1.∵点A ,B 在抛物线上,过A ,B 分别作AK ,BH 与准线垂直,垂足分别为点K ,H ,且与y 轴分别交于点N ,M .由抛物线定义,得|BM |=|BF |-1,|AN |=|AF |-1.在△CAN 中,BM ∥AN ,∴|BC ||AC |=|BM ||AN |=|BF |-1|AF |-1.2.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A.355 B .2C.115D .3解析:选B 由题可知l 2:x =-1是抛物线y 2=4x 的准线,设抛物线的焦点为F (1,0),则动点P 到l 2的距离等于|PF |,则动点P 到直线l 1和直线l 2的距离之和的最小值,即焦点F 到直线l 1:4x -3y +6=0的距离,所以最小值是|4-0+6|5=2.考点二 抛物线的标准方程与几何性质题点多变型考点——多角探明[锁定考向]抛物线的标准方程及性质是高考的热点,多以选择题、填空题形式出现.常见的命题角度有: (1)求抛物线方程;(2)抛物线的对称性.[题点全练]角度一:求抛物线方程1.(2019·台州重点校联考)已知直线l 过抛物线y 2=-2px (p >0)的焦点,且与抛物线交于A ,B 两点,若线段AB 的长是8,AB 的中点到y 轴的距离是2,则此抛物线的方程是( )A .y 2=-12x B .y 2=-8x C .y 2=-6xD .y 2=-4x解析:选B 过A ,B 分别作抛物线的准线的垂线,垂足分别为A 1,B 1,由抛物线定义知|AF |=|AA 1|,|BF |=|BB 1|,则|AA 1|+|BB 1|=2⎝⎛⎭⎪⎫2+p 2=8,解得p =4,所以此抛物线的方程是y 2=-8x .角度二:抛物线的对称性2.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)分别交于O ,A ,B 三点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =( )A .1 B.32C .2D .3解析:选B 双曲线的渐近线方程为y =±bax ,因为双曲线的离心率为2, 所以1+b 2a 2=2,ba = 3.由⎩⎪⎨⎪⎧y =3x ,y 2=2px ,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =2p 3,y =23p 3.由曲线的对称性及△AOB 的面积得, 2×12×23p 3×2p 3=3,解得p 2=94,即p =32⎝ ⎛⎭⎪⎫p =-32舍去.[通法在握]求抛物线方程的3个注意点(1)当坐标系已建立时,应根据条件确定抛物线方程属于四种类型中的哪一种;(2)要注意把握抛物线的顶点、对称轴、开口方向与方程之间的对应关系;(3)要注意参数p 的几何意义是焦点到准线的距离,利用它的几何意义来解决问题.[演练冲关]1.(2019·宁波质检)已知点M 是抛物线C :y 2=2px (p >0)上一点,F 为C 的焦点,MF 的中点坐标是(2,2),则p 的值为( )A .1B .2C .3D .4解析:选D 抛物线C :y 2=2px (p >0)的焦点为F ⎝ ⎛⎭⎪⎫p 2,0,设M ⎝ ⎛⎭⎪⎫y 212p ,y 1,由中点坐标公式可知p 2+y 212p =2×2,y 1+0=2×2,解得p =4.2.(2019·丽水高三质检)过抛物线C :y 2=4x 的焦点F 的直线l 与抛物线C 交于P ,Q 两点,与抛物线准线交于M ,且FM =3FP ,则|FP |=( )A.32 B.23C.43D.34解析:选C 设直线l 的倾斜角为θ,如图所示,过点P 作PN 垂直准线于点N ,由抛物线定义知|PN |=|PF |.∵FM =3FP ,∴|FM |=3|FP |,即|PM |=2|PN |.在Rt △MNP 中,cos ∠MPN =12,∵PN ∥x 轴,∴cos θ=12,由抛物线焦半径的性质可得|PF |=p 1+cos θ=21+12=43,即|FP |=43.考点三 直线与抛物线的位置关系重点保分型考点——师生共研[典例引领](2018·长兴中学模拟)已知抛物线C 1:y 2=2px (p >0)的焦点为F ,P 为C 1上一点,|PF |=4,点P 到y 轴的距离等于3.(1)求抛物线C 1的标准方程;(2)设A ,B 为抛物线C 1上的两个动点,且使得线段AB 的中点D 在直线y =x 上,P (0,2)为定点,求△PAB 面积的最大值.解:(1)由题意,p2+3=4,∴p =2,所以抛物线C 1的标准方程为y 2=4x .(2)设直线AB :x =ty +b ,A (x 1,y 1),B (x 2,y 2).联立方程⎩⎪⎨⎪⎧x =ty +b ,y 2=4x消元化简得y 2-4ty -4b =0,Δ=16t 2+16b >0.且y 1+y 2=4t ,x 1+x 2=t (y 1+y 2)+2b =4t 2+2b , 所以D (2t 2+b,2t ),2t 2+b =2t . 由Δ>0得0<t <2.所以点P 到直线AB 的距离d =|-2t -b |1+t 2=|2t 2-4t |1+t2,所以|AB|=1+t216t2+16b=41+t22t-t2,所以S△ABP=12|AB|d=12×41+t22t-t2|2t2-4t|1+t2=22t-t2·|2t2-4t|.令m=2t-t2,则m∈(0,1],且S△ABP=4m3.由函数单调性可知,(S△ABP)max=4.[由题悟法]解决直线与抛物线位置关系问题的2种常用方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用弦长公式.[即时应用]如图所示,已知抛物线C:y2=4x的焦点为F,直线l经过点F且与抛物线C相交于A,B两点.(1)若线段AB的中点在直线y=2上,求直线l的方程;(2)若线段|AB|=20,求直线l的方程.解:(1)由已知,得抛物线的焦点为F(1,0).因为线段AB的中点在直线y=2上,所以直线l 的斜率存在,设直线l 的斜率为k ,A (x 1,y 1),B (x 2,y 2),AB 的中点M (x 0,y 0),由⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,得(y 1+y 2)(y 1-y 2)=4(x 1-x 2),所以2y 0k =4.又y 0=2,所以k =1,故直线l 的方程是y =x -1.(2)设直线l 的方程为x =my +1,与抛物线方程联立得⎩⎪⎨⎪⎧x =my +1,y 2=4x ,消去x ,得y 2-4my -4=0,所以y 1+y 2=4m ,y 1y 2=-4,Δ=16(m 2+1)>0. |AB |=m 2+1|y 1-y 2| =m 2+1·y 1+y 22-4y 1y 2=m 2+1·4m2-4×-4=4(m 2+1).所以4(m 2+1)=20,解得m =±2,所以直线l 的方程是x =±2y +1,即x ±2y -1=0. 一抓基础,多练小题做到眼疾手快1.(2019·湖州质检)已知抛物线y 2=2px (p >0),点C (-4,0),过抛物线的焦点作垂直于x 轴的直线,与抛物线交于A ,B 两点,若△CAB 的面积为24,则以直线AB 为准线的抛物线的标准方程是( )A .y 2=4x B .y 2=-4xC .y 2=8xD .y 2=-8x解析:选D ∵AB ⊥x 轴,且AB 过点F ,∴AB 是焦点弦,∴|AB |=2p ,∴S △CAB =12×2p ×⎝ ⎛⎭⎪⎫p 2+4=24,解得p =4或p =-12(舍去),∴直线AB 的方程为x =2,∴以直线AB 为准线的抛物线的标准方程是y 2=-8x ,故选D.2.(2018·江山质检)在抛物线y 2=2px (p >0)上,横坐标为4的点到焦点的距离为5,则p 的值为( )A.12 B .1 C .2D .3解析:选C 由抛物线的定义可知,4+p2=5,解得p =2.3.(2018·珠海模拟)已知抛物线y 2=4x 的焦点为F ,准线为l ,点P 为抛物线上一点,且在第一象限,PA ⊥l ,垂足为A ,|PF |=4,则直线AF 的倾斜角等于( )A.7π12B.2π3C.3π4D.5π6解析:选B 由抛物线y 2=4x 知焦点F (1,0),准线l 的方程为x =-1,由抛物线定义知|PA |=|PF |=4,所以点P 的坐标为(3,23),因此点A 的坐标为(-1,23),所以k AF =23-0-1-1=-3,所以直线AF 的倾斜角为2π3.4.(2019·宁波六校联考)已知抛物线C :y 2=23x ,过焦点F 且斜率为3的直线与C 相交于P ,Q 两点,且P ,Q 两点在准线上的投影分别为M ,N 两点,则S △MFN =( )A .8B .23C .4 3D .83解析:选B 法一:由题意可得p =3,F ⎝⎛⎭⎪⎪⎫32,0.不妨设点P 在x 轴上方,由抛物线定义可知|PF |=|PM |,|Q F |=|Q N |,设直线P Q 的倾斜角为θ,则tan θ=3,∴θ=π3,由抛物线焦半径的性质可知,|PF |=p 1-cos θ=31-cosπ3=23,|Q F |=p1+cos θ=31+cosπ3=233,∴|MN |=|P Q|sin θ=(|PF |+|Q F |)·sin π3=833×32=4,∴S △MFN =12|MN |·p =12×4×3=2 3. 法二:由题意可得F ⎝⎛⎭⎪⎪⎫32,0,直线P Q 的方程为y =3⎝⎛⎭⎪⎪⎫x -32=3x -32,与抛物线方程y 2=23x联立,得⎝⎛⎭⎪⎫3x -322=23x ,即3x 2-53x +94=0,设P (x 1,y 1),Q(x 2,y 2),则x 1+x 2=533,∴|P Q|=x 1+x 2+p =533+3=833,∵直线P Q 的斜率为3,∴直线P Q 的倾斜角为π3.∴|MN |=|P Q|sinπ3=833×32=4,∴S △MFN =12×4×3=2 3. 5.已知点P 在抛物线y 2=4x 上,且点P 到y 轴的距离与其到焦点的距离之比为12,则点P 到x 轴的距离为________.解析:设点P 的坐标为(x P ,y P ),抛物线y 2=4x 的准线方程为x =-1,根据抛物线的定义,点P 到焦点的距离等于点P 到准线的距离,故x Px P --1=12,解得x P =1,所以y 2P =4,所以|y P |=2. 答案:2二保高考,全练题型做到高考达标1.(2018·临海期初)动圆过点(0,1),且与直线y =-1相切,则动圆圆心的轨迹方程为( )A .y =0B .x 2+y 2=1 C .x 2=4yD .y 2=4x解析:选C 设动圆圆心M (x ,y ),则x 2+y -12=|y +1|,解得x 2=4y .2.(2018·绍兴二模)已知抛物线C :y 2=4x 的焦点为F ,直线y =3(x -1)与抛物线C 交于A ,B 两点(A 在x 轴上方).若AF =mFB ,则m 的值为( )A. 3B.32C .2D .3解析:选D 直线方程为x =33y +1,代入y 2=4x 可得y 2-433y -4=0,则y A =23,y B =-233,所以|y A |=3|y B |,因为AF =mFB ,所以m =3.3.(2018·宁波十校联考)已知抛物线x 2=4y ,过焦点F 的直线l 交抛物线于A ,B 两点(点A 在第一象限),若直线l 的倾斜角为30°,则|AF ||BF |的值等于( )A .3B.52C .2D.32解析:选A 由题可得,F (0,1),设l :y =33x +1,A (x 1,y 1),B (x 2,y 2).将直线方程与抛物线方程联立,消去x ,化简得3y 2-10y +3=0,解得y 1=3,y 2=13.由抛物线的定义可知|AF ||BF |=y 1+1y 2+1=3+113+1=3. 4.已知P 为抛物线y =12x 2上的动点,点P 在x 轴上的射影为点M ,点A的坐标是⎝⎛⎭⎪⎫6,172,则|PA |+|PM |的最小值是()A .8B.192C .10D.212解析:选B 依题意可知焦点F ⎝⎛⎭⎪⎫0,12,准线方程为y =-12,延长PM 交准线于点H (图略).则|PF |=|PH |,|PM |=|PF |-12,|PM |+|PA |=|PF |+|PA |-12,即求|PF |+|PA |的最小值. 因为|PF |+|PA |≥|FA |, 又|FA |=62+⎝ ⎛⎭⎪⎫172-122=10.所以|PM |+|PA |≥10-12=192,故选B.5.(2019·嘉兴六校联考)已知抛物线C :y 2=2px (p >0)的焦点为F ,点M 在抛物线C 上,且|MO |=|MF |=32(O 为坐标原点),则OM ·MF =( )A .-74B.74C.94D .-94解析:选A 设M (m ,2pm ),抛物线C 的焦点F 的坐标为⎝ ⎛⎭⎪⎫p 2,0,因为|MO |=|MF |=32,所以m 2+2pm =94 ①,m +p 2=32②,由①②解得m =12,p =2,所以M ⎝ ⎛⎭⎪⎫12,2,F (1,0),所以OM =⎝ ⎛⎭⎪⎫12,2,MF=⎝ ⎛⎭⎪⎫12,-2,故OM ·MF =14-2=-74.6.(2018·宁波期初)已知抛物线x 2=4y 的焦点为F ,若点M 在抛物线上,|MF |=4,O 为坐标原点,则∠MFO =________.解析:由题可得,p =2,焦点在y 轴正半轴,所以F (0,1). 因为|MF |=4,所以M (±23,3).所以tan ∠MFO =-tan(π-∠MFO )=-233-1=-3,所以∠MFO =2π3.答案:2π37.设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为________.解析:如图,由题可知F ⎝ ⎛⎭⎪⎫p 2,0,设P 点坐标为⎝ ⎛⎭⎪⎫y 202p ,y 0(y 0>0),则OM ―→=OF ―→+FM ―→=OF ―→+13FP ―→=OF ―→+13(OP ―→-OF ―→)=13OP ―→+23OF ―→=⎝ ⎛⎭⎪⎫y 206p +p 3,y 03,k OM =y 03y 206p +p 3=2y 0p +2p y 0≤222=22,当且仅当y 20=2p 2时等号成立,所以直线OM 的斜率的最大值为22.答案:228.(2018·嵊州一模)设抛物线y 2=4x 的焦点为F ,过点M (5,0)的直线与抛物线相交于A ,B 两点,与抛物线的准线相交于C 点,|BF |=3,则△BCF 与△ACF 的面积之比S △BCFS △ACF=________.解析:设点A 在第一象限,B 在第四象限,A (x 1,y 1),B (x 2,y 2),直线AB 的方程为x =my + 5.由y 2=4x ,得p =2,因为|BF |=3=x 2+p2=x 2+1,所以x 2=2,则y 22=4x 2=4×2=8,所以y 2=-22,由⎩⎪⎨⎪⎧y 2=4x ,x =my +5,得y 2-4my -45=0,则y 1y 2=-45,所以y 1=10,由y 21=4x 1,得x 1=52.过点A 作AA ′垂直于准线x=-1,垂足为A ′,过点B 作BB ′垂直于准线x =-1,垂足为B ′,易知△CBB ′∽△CAA ′,所以S △BCF S △ACF =|BC ||AC |=|BB ′||AA ′|.又|BB ′|=|BF |=3,|AA ′|=x 1+p 2=52+1=72,所以S △BCF S △ACF =372=67.答案:679.(2018·杭州高三检测)如图,过抛物线M :y =x 2上一点A (点A 不与原点O 重合)作抛物线M 的切线AB交y 轴于点B ,点C 是抛物线M 上异于点A 的点,设G 为△ABC 的重心(三条中线的交点),直线CG 交y 轴于点D .(1)设A (x 0,x 20)(x 0≠0),求直线AB 的方程; (2)求|OB ||OD |的值.解:(1)因为y ′=2x ,所以直线AB 的斜率k =y ′|x =x 0=2x 0, 所以直线AB 的方程为y -x 20=2x 0(x -x 0), 即y =2x 0x -x 20.(2)由(1)得,点B 的纵坐标y B =-x 20, 所以AB的中点坐标为⎝ ⎛⎭⎪⎫x 02,0.设C (x 1,y 1),G (x 2,y 2),直线CG 的方程为x =my +x 02.由⎩⎪⎨⎪⎧x =my +x 02,y =x 2,得m 2y 2+(mx 0-1)y +x 204=0.因为G 为△ABC 的重心,所以y 1=3y 2. 由根与系数的关系,得y 1+y 2=4y 2=1-mx 0m 2,y 1y 2=3y 22=x 204m 2.所以y 22=1-mx 0216m4=x 2012m2, 解得mx 0=-3±2 3.所以点D 的纵坐标y D =-x 02m =x 206±43,故|OB ||OD |=⎪⎪⎪⎪⎪⎪y B y D =43±6. 10.(2018·台州模拟)已知抛物线C 1:y 2=4x 和C 2:x 2=2py (p >0)的焦点分别为F 1,F 2,点P (-1,-1),且F 1F 2⊥OP (O 为坐标原点).(1)求抛物线C 2的方程;(2)过点O 的直线交C 1的下半部分于点M ,交C 2的左半部分于点N ,求△PMN 面积的最小值.解:(1)由题意知F 1(1,0),F 2⎝ ⎛⎭⎪⎫0,p 2,则F 1F 2―→=⎝⎛⎭⎪⎫-1,p 2,∵F 1F 2⊥OP ,∴F 1F 2―→·OP ―→=⎝⎛⎭⎪⎫-1,p 2·(-1,-1)=1-p 2=0,∴p =2,∴抛物线C 2的方程为x 2=4y . (2)设过点O 的直线为y =kx (k <0),联立⎩⎪⎨⎪⎧ y =kx ,y 2=4x 得M ⎝ ⎛⎭⎪⎫4k2,4k ,联立⎩⎪⎨⎪⎧y =kx ,x 2=4y 得N (4k,4k 2),从而|MN |=1+k2·⎪⎪⎪⎪⎪⎪4k 2-4k =1+k2·⎝ ⎛⎭⎪⎫4k 2-4k , 又点P 到直线MN 的距离d =|k -1|1+k2,故S △PMN =12·|k -1|1+k2·1+k 2·⎝ ⎛⎭⎪⎫4k 2-4k =21-k 1-k3k 2=21-k21+k +k2k 2=2⎝⎛⎭⎪⎫k +1k -2⎝ ⎛⎭⎪⎫k +1k +1,令t =k +1k(t ≤-2),则S △PMN =2(t -2)(t +1)≥8,当t =-2,即k =-1时,S △PMN 取得最小值.即当过点O 的直线为y =-x 时,△PMN 面积的最小值为8. 三上台阶,自主选做志在冲刺名校1.(2018·台州高三模拟)已知抛物线x 2=2py (p >0),点M 是抛物线的准线与y 轴的交点,过点A (0,λp )(λ∈R)的动直线l交抛物线于B ,C 两点.(1)求证:MB ·MC ≥0,并求等号成立时实数λ的值; (2)当λ=2时,设分别以OB ,OC (O 为坐标原点)为直径的两圆相交于另一点D ,求|DO |+|DA |的最大值.解:(1)由题意知动直线l 的斜率存在,且过点A (0,λp ), 则可设动直线l 的方程为y =kx +λp ,代入x 2=2py (p >0),消去y 并整理得x 2-2pkx -2λp 2=0,Δ=4p 2(k 2+2λ)>0,设B (x 1,y 1),C (x 2,y 2), 则x 1+x 2=2pk ,x 1x 2=-2λp 2,y 1y 2=(kx 1+λp )(kx 2+λp )=k 2x 1x 2+λpk (x 1+x 2)+λ2p 2=λ2p 2,y 1+y 2=k (x 1+x 2)+2λp =2pk 2+2λp =2p (k 2+λ).因为抛物线x 2=2py 的准线方程为y =-p2,所以点M的坐标为⎝⎛⎭⎪⎫0,-p 2,所以MB =⎝ ⎛⎭⎪⎫x 1,y 1+p 2,MC =⎝ ⎛⎭⎪⎫x 2,y 2+p 2,所以MB ·MC =x 1x 2+⎝⎛⎭⎪⎫y 1+p 2⎝ ⎛⎭⎪⎫y 2+p 2=x 1x 2+y 1y 2+p 2(y 1+y 2)+p 24=-2λp 2+λ2p 2+p2[2p (k 2+λ)]+p 24=p2⎣⎢⎡⎦⎥⎤k 2+⎝⎛⎭⎪⎫λ-122≥0,当且仅当k =0,λ=12时等号成立.(2)由(1)知,当λ=2时,x 1x 2=-4p 2,y 1y 2=4p 2, 所以OB ·OC =x 1x 2+y 1y 2=0, 所以OB ⊥OC .设直线OB 的方程为y =mx (m ≠0),与抛物线的方程x 2=2py 联立可得B (2pm,2pm 2),所以以OB 为直径的圆的方程为x 2+y 2-2pmx -2pm 2y =0. 因为OB ⊥OC ,所以直线OC 的方程为y =-1mx .同理可得以OC 为直径的圆的方程为 x 2+y 2+2p m x -2pm2y =0,即m 2x 2+m 2y 2+2pmx -2py =0,将两圆的方程相加消去m ,得x 2+y 2-2py =0, 即x 2+(y -p )2=p 2,所以点D 的轨迹是以OA 为直径的圆, 所以|DA |2+|DO |2=4p 2,由|DA |2+|DO |22≥⎝⎛⎭⎪⎫|DA |+|DO |22, 得|DA |+|DO |≤22p ,当且仅当|DA |=|DO |=2p 时,等号成立. 故(|DA |+|DO |)max =22p .2.如图所示,抛物线关于x 轴对称,它的顶点在坐标原点,点P (1,2),A (x 1,y 1),B (x 2,y 2)均在抛物线上.(1)写出该抛物线的方程及其准线方程.(2)当PA 与PB 的斜率存在且倾斜角互补时,求y 1+y 2的值及直线AB 的斜率.解:(1)由已知条件,可设抛物线的方程为y 2=2px (p >0). 因为点P (1,2)在抛物线上, 所以22=2p ×1, 解得p =2.故所求抛物线的方程是y 2=4x ,准线方程是x =-1. (2)设直线PA 的斜率为k PA ,直线PB 的斜率为k PB .则k PA =y 1-2x 1-1(x 1≠1),k PB =y 2-2x 2-1(x 2≠1),因为PA 与PB 的斜率存在且倾斜角互补, 所以k PA =-k PB .由A (x 1,y 1),B (x 2,y 2)均在抛物线上,得⎩⎪⎨⎪⎧y 21=4x 1,①y 22=4x 2,②所以y 1-214y 21-1=-y 2-214y 22-1,所以y 1+2=-(y 2+2).所以y 1+y 2=-4.由①-②得,y 21-y 22=4(x 1-x 2),所以k AB =y 1-y 2x 1-x 2=4y 1+y 2=-1(x 1≠x 2).。
高考数学一轮复习第八章解析几何8.7抛物线课件文
![高考数学一轮复习第八章解析几何8.7抛物线课件文](https://img.taocdn.com/s3/m/49d0478df524ccbff12184f6.png)
解析:M 到准线的距离等于 M 到焦点的距离, 1 又准线方程为 y=-16, 1 15 设 M(x,y),则 y+16=1,∴y=16. 15 答案:16
考向一 抛物线的定义及标准方程 [互动讲练型] [例 1] (1)[2019· 广州模拟]如果 P1,P2,…,Pn 是抛物线 C: y2=4x 上的点,它们的横坐标依次 x1,x2,…,xn,F 是抛物线 C 的焦点,若 x1+x2+…+xn=10,则|P1F|+|P2F|+…+|PnF|=( ) A.n+10 B.n+20 C.2n+10 D.2n+20 (2)已知点 P 是抛物线 y2=2x 上的动点, 点 P 到准线的距离为 d, 7 且点 P 在 y 轴上的射影是 M,点 A2,4,则|PA|+|PM|的最小值是 ( ) 7 9 A.2 B.4 C.2 D.5
2
2.[2019· 河南九校联考]若抛物线 y2=4x 的准线为 l,P 是抛物 线上任意一点,则 P 到准线 l 的距离与 P 到直线 3x+4y+7=0 的 距离之和的最小值是( ) 13 14 A .2 B. 5 C. 5 D.3
解析:由抛物线定义可知点 P 到准线 l 的距离等于点 P 到焦点 F 的距离,由抛物线 y2=4x 及直线方程 3x+4y+7=0 可得直线与 抛物线相离.∴点 P 到准线 l 的距离与点 P 到直线 3x+4y+7=0 的距离之和的最小值为点 F(1,0)到直线 3x+4y+7=0 的距离,即 |3+7| 2 2=2.故选 A. 3 +4 答案:A
二、必明 2 个易误点 1.抛物线的定义中易忽视“定点不在定直线上”这一条件, 当定点在定直线上时,动点的轨迹是过定点且与直线垂直的直线. 2. 抛物线标准方程中参数 p 易忽视只有 p>0, 才能证明其几何 意义是焦点 F 到准线 l 的距离,否则无几何意义.
【创新方案】高三数学一轮复习 第八章 平面解析几何(8课时)讲解与练习 文
![【创新方案】高三数学一轮复习 第八章 平面解析几何(8课时)讲解与练习 文](https://img.taocdn.com/s3/m/74aa8e34a76e58fafab00379.png)
第一节 直线的倾斜角与斜率、直线的方程[备考方向要明了][归纳·知识整合]1.直线的倾斜角与斜率 (1)直线的倾斜角①一个前提:直线l 与x 轴相交; 一个基准:取x 轴作为基准;两个方向:x 轴正方向与直线l 向上方向.②当直线l 与x 轴平行或重合时,规定:它的倾斜角为0°. ③倾斜角的取值范围为[0,π). (2)直线的斜率①定义:若直线的倾斜角θ不是90°,则斜率k =tan_α.②计算公式:若由A (x 1,y 1),B (x 2,y 2)确定的直线不垂直于x 轴,则k =y 2-y 1x 2-x 1. [探究] 1.直线的倾角θ越大,斜率k 就越大,这种说法正确吗?提示:这种说法不正确.由k =tan θ⎝ ⎛⎭⎪⎫θ≠π2知,当 θ∈⎝⎛⎭⎪⎫0,π2时,θ越大,斜率越大且为正;当θ∈⎝ ⎛⎭⎪⎫π2,π时,θ越大,斜率也越大且为负.但综合起来说是错误的. 2.两条直线的斜率与它们平行、垂直的关系[探究] 2.两条直线l 1,l 2垂直的充要条件是斜率之积为-1,这句话正确吗? 提示:不正确,当一条直线与x 轴平行,另一条与y 轴平行时,两直线垂直,但一条直线斜率不存在.3.直线方程的几种形式[探究] 3.过两点P 1(x 1,y 1),P 2(x 2,y 2)的直线是否一定可用两点式方程表示? 提示:当x 1=x 2,或y 1=y 2时,由两点式方程知分母此时为零,所以不能用两点式方程表示.[自测·牛刀小试]1.(教材习题改编)若直线x =2的倾斜角为α,则α( ) A .等于0 B .等于π4C .等于π2D .不存在解析:选C 因为直线x =2垂直于x 轴,故其倾斜角为π2.2.(教材习题改编)过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为( ) A .1B .4C .1或3D .1或4解析:选A 由题意知,4-mm +2=1,解得m =1.3.过两点(0,3),(2,1)的直线方程为( ) A .x -y -3=0 B .x +y -3=0 C .x +y +3=0D .x -y +3=0解析:选B 直线斜率为3-10-2=-1,其方程为y =-x +3,即x +y -3=0.4.直线l 的倾斜角为30°,若直线l 1∥l ,则直线l 1的斜率k 1=________;若直线l 2⊥l ,则直线l 2的斜率k 2=__________.解析:∵l 1∥l 2,∴k l 1=tan 30°=33. ∵l 2⊥l ,∴k l 2=-1k l=- 3.答案:33- 3 5.已知A (3,5),B (4,7),C (-1,x )三点共线,则x 等于________. 解析:因为k AB =7-54-3=2,k AC =x -5-1-3=-x -54.A ,B ,C 三点共线,所以k AB =k AC ,即-x -54=2,解得x =-3. 答案:-3[例1] (1)直线x sin α+y +2=0的倾斜角的取值范围是( ) A .[0,π)B.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,πC.⎣⎢⎡⎦⎥⎤0,π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫π2,π(2)已知两点A (m ,n ),B (n ,m )(m ≠n ),则直线AB 的倾斜角为________;(3)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 的斜率的取值范围为________.[自主解答] (1)设直线的倾斜角为θ,则有tan θ=-sin α,其中sin α∈[-1,1].又θ∈[0,π),所以0≤θ ≤π4或3π4≤ θ<π.(2)设直线AB 的倾斜角为θ,斜率为k ,则k =tan θ=m -nn -m=-1.又θ∈[0,π), 所以θ=3π4.(3)如右图,∵k AP =1-02-1=1,k BP =3-00-1=-3, ∴k ∈(-∞,- 3 ]∪[1,+∞).[答案] (1)B (2)3π4(3)(-∞,- 3 ]∪[1,+∞)若将P (1,0)改为P (-1,0),其他条件不变,求直线l 的斜率的取值范围. 解:∵P -1,,A,,B,3,∴k PA =1-02--=13,k PB =3-00--= 3.借助图形可知,直线l 的斜率的取值范围为13⎡⎢⎣.———————————————————斜率的求法(1)定义法:若已知直线的倾斜角α或α的某种三角函数值,一般根据k =tan α求斜率;(2)公式法:若已知直线上两点A (x 1,y 1),B (x 2,y 2),一般根据斜率公式k =y 2-y 1x 2-x 1(x 1≠x 2)求斜率.1.直线l :x sin 30°+y cos 150°+1=0的斜率是( ) A.33B. 3C .- 3D .-33解析:选A 设直线l 的斜率为k , 则k =-sin 30°cos 150°=33.2.若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( )A.13 B .-13C .-32D.23解析:选B 设P (x,1),Q (7,y ),则x +7=2,1+y =-2, 解得x =-5,y =-3,从而k l =1---5-7=-13.[例2] 若直线ax +2y -6=0与x +(a -1)y +a 2-1=0平行,则a =________. [自主解答] 因为两直线平行, 所以有a (a -1)=2,即a 2-a -2=0,解得a =2或a =-1. [答案] 2或-1 ———————————————————用一般式确定两直线位置关系的方法3.已知l 1的倾斜角为45°,l 2经过点P (-2,-1),Q (3,m ),若l 1⊥l 2,则实数m =________.解析:k 1=tan 45°=1,k 2=m +13+2,∵l 1⊥l 2,∴k 2=m +13+2=-1,解得m =-6.答案:-64.已知过点A (-2,m ),B (m,4)的直线与直线2x +y -1=0平行,则m 的值为________. 解析:由题意知,k AB =4-m m +2=-2,解得m =-8. 答案:-8[例3] (1)在等腰三角形AOB 中,AO =AB ,点O (0,0),A (1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( )A .y -1=3(x -3)B .y -1=-3(x -3)C .y -3=3(x -1)D .y -3=-3(x -1)(2)直线l 经过点P (3,2)且与x 轴、y 轴的正半轴分别交于A ,B 两点.△OAB 的面积为12,则直线l 的方程是________________________________________________.[自主解答] (1)因为AO =AB ,所以直线AB 的斜率与直线AO 的斜率互为相反数,所以k AB =-k OA =-3,所以直线AB 的点斜式方程为:y -3=-3(x -1).(2)法一:设直线l 的方程为x a +y b=1(a >0,b >0). 则有3a +2b =1,且12ab =12.解得a =6,b =4.所以所求直线l 的方程为x 6+y4=1,即2x +3y -12=0.法二:设直线l 的方程为y -2=k (x -3)(k <0), 令x =0,得y =2-3k >0; 令y =0,得x =3-2k>0.所以S △OAB =12(2-3k )⎝ ⎛⎭⎪⎫3-2k =12,解得k =-23,故所求直线方程为y -2=-23(x -3),即2x +3y -12=0.[答案] (1)D (2)2x +3y -12=0 ———————————————————求直线方程的常用方法(1)直接法:根据已知条件,选择恰当形式的直线方程,直接求出方程中系数,写出直线方程.(2)待定系数法:先根据已知条件设出直线方程.再根据已知条件构造关于待定系数的方程(组)求系数,最后代入求出直线方程.5.△ABC 的三个顶点为A (-3,0),B (2,1),C (-2,3),求: (1)BC 所在直线的方程;(2)BC 边上中线AD 所在直线的方程; (3)BC 边的垂直平分线DE 的方程.解:(1)因为直线BC 经过B (2,1)和C (-2,3)两点,由两点式得BC 的方程为y -13-1=x -2-2-2,即x +2y -4=0.(2)设BC 中点D 的坐标(x ,y ),则x =2-22=0,y =1+32=2. BC 边的中线AD 过点A (-3,0),D (0,2)两点,由截距式得AD 所在直线方程为x -3+y2=1,即2x -3y +6=0.(3)BC 的斜率k 1=-12,则BC 的垂直平分线DE 的斜率k 2=2,由点斜式得直线DE 的方程为y -2=2(x -0),即2x -y +2=0.1个关系——直线的倾斜角和斜率的关系(1)任何的直线都存在倾斜角,但并不是任意的直线都存在斜率. (2)直线的倾斜角α和斜率k 之间的对应关系:3 (1)明确直线方程各种形式的适用条件点斜式斜截式方程适用于不垂直于x 轴的直线;两点式方程不能表示垂直于x 、y 轴的直线;截距式方程不能表示垂直于坐标轴和过原点的直线.在应用时要结合题意选择合适的形式,在无特殊要求下一般化为一般式.(2)截距不是距离,距离是非负值,而截距可正可负,可为零,在与截距有关的问题中,要注意讨论截距是否为零.(3)求直线方程时,若不能断定直线是否具有斜率时,应注意分类讨论,即应对斜率存在与否加以讨论.易误警示——有关直线方程中“极端”情况的易误点[典例] (2013·常州模拟)过点P (-2,3)且在两坐标轴上的截距相等的直线l 的方程为_______________________________.[解析] 当截距不为0时,设所求直线方程为x a +ya=1,即x +y -a =0. ∵点P (-2,3)在直线l 上,∴-2+3-a =0, ∴a =1,所求直线l 的方程为x +y -1=0. 当截距为0时,设所求直线方程为y =kx ,则有 3=-2k ,即k =-32,此时直线l 的方程为y =-32x ,即3x +2y =0.综上,直线l 的方程为x +y -1=0或3x +2y =0. [答案] x +y -1=0或3x +2y =0 [易误辨析]1.因忽略截距为“0”的情况,导致求解时漏掉直线方程3x +2y =0而致错,所以可以借助几何法先判断,再求解,避免漏解.2.在选用直线方程时,常易忽视的情况还有: (1)选用点斜式与斜截式时忽视斜率不存在的情况;(2)选用两点式方程时忽视与x 轴垂直的情况及与y 轴垂直的情况. [变式训练]已知直线l 过(2,1),(m,3)两点,则直线l 的方程为________________. 解析:当m =2时,直线l 的方程为x =2;当m ≠2时,直线l 的方程为y -13-1=x -2m -2,即2x -(m -2)y +m -6=0.因为m =2时,方程2x -(m -2)y +m -6=0, 即为x =2,所以直线l 的方程为2x -(m -2)y +m -6=0. 答案:2x -(m -2)y +m -6=0一、选择题(本大题共6小题,每小题5分,共30分) 1.(2013·秦皇岛模拟)直线x +3y +1=0的倾斜角是( ) A.π6 B.π3 C.2π3D.5π6解析:选D 由直线的方程得直线的斜率为k =-33,设倾斜角为α,则tan α=-33,所以α=5π6.2.已知点A (1,-2),B (m,2),且线段AB 垂直平分线的方程是x +2y -2=0,则实数m 的值是( )A .-2B .-7C .3D .1解析:选C 由已知k AB =2,即4m -1=2,解得m =3. 3.若直线经过点(1,1),且与两坐标轴围成的三角形的面积为2,则这样的直线共有( )A .4条B .3条C .2条D .1条解析:选B 作图易得在第一、二、四象限各能围成一个.4.(2013·银川模拟)已知直线l 1:x +ay +6=0和l 2:(a -2)x +3y +2a =0,则l 1∥l 2的充要条件是a 等于( )A .3B .1C .-1D .3或-1解析:选C 由题意知,l 1∥l 2⇔1a -2=a 3≠62a, 即a =-1.5.直线2x -my +1-3m =0,当m 变化时,所有直线都过定点( )A.⎝ ⎛⎭⎪⎫-12,3B.⎝ ⎛⎭⎪⎫12,3C.⎝ ⎛⎭⎪⎫12,-3 D.⎝ ⎛⎭⎪⎫-12,-3 解析:选D 原方程可化为(2x +1)-m (y +3)=0,令⎩⎪⎨⎪⎧2x +1=0,y +3=0,解得x =-12,y =-3,故所有直线都过定点⎝ ⎛⎭⎪⎫-12,-3. 6.设a ,b ,c 分别是△ABC 中角A ,B ,C 所对边的边长,则直线x sin A +ay +c =0与直线bx -y sin B +sin C =0的位置关系是( )A .平行B .重合C .垂直D .相交但不垂直解析:选C 由已知得a ≠0,sin B ≠0,所以两条直线的斜率分别为k 1=-sin Aa,k 2=bsin B ,由正弦定理得k 1·k 2=-sin A a ·b sin B =-1,所以两条直线垂直. 二、填空题(本大题共3小题,每小题5分,共15分) 7.若直线l 的斜率为k ,倾斜角为α,而α∈⎣⎢⎡⎭⎪⎫π6,π4∪⎣⎢⎡⎭⎪⎫2π3,π,则k 的取值范围是________________.解析:当α∈⎣⎢⎡⎭⎪⎫π6,π4时,k =tan α∈⎣⎢⎡⎭⎪⎫33,1;当α∈⎣⎢⎡⎭⎪⎫2π3,π时,k =tan α∈[-3,0). 综上k ∈[-3,0)∪⎣⎢⎡⎭⎪⎫33,1. 答案:[-3,0)∪⎣⎢⎡⎭⎪⎫33,1 8.已知直线x -ky +1=0与直线y =kx -1平行,则k 的值为________. 解析:若两直线平行,则k =1k,解得k =±1.答案:±19.(2013·皖南八校联考)已知直线a 2x +y +2=0与直线bx -(a 2+1)y -1=0互相垂直,则|ab |的最小值为________.解析:∵两直线互相垂直,∴a 2b -(a 2+1)=0且a ≠0, ∴a 2b =a 2+1,∴ab =a 2+1a =a +1a,∴|ab |=⎪⎪⎪⎪⎪⎪a +1a =|a |+1|a |≥2(当且仅当a =±1时取等号).答案:2三、解答题(本大题共3小题,每小题12分,共36分)10.设直线l 的方程为x +my -2m +6=0,根据下列条件分别确定m 的值: (1)直线l 的斜率为1;(2)直线l 在x 轴上的截距为-3.解:(1)因为直线l 的斜率存在,所以m ≠0,于是直线l 的方程可化为y =-1m x +2m -6m.由题意得-1m=1,解得m =-1.(2)法一:令y =0,得x =2m -6.由题意得2m -6=-3,解得m =32.法二:直线l 的方程可化为x =-my +2m -6.由题意得2m -6=-3,解得m =32.11.已知两点A (-1,2),B (m,3). (1)求直线AB 的方程; (2)已知实数m ∈⎣⎢⎡⎦⎥⎤-33-1,3-1,求直线AB 的倾斜角α的取值范围. 解:(1)当m =-1时,直线AB 的方程为x =-1, 当m ≠-1时,直线AB 的方程为y -2=1m +1(x +1). (2)①当m =-1时,α=π2.②当m ≠-1时,m +1∈⎣⎢⎡⎭⎪⎫-33,0∪(]0,3, 即k =1m +1∈(-∞,- 3 ]∪⎣⎢⎡⎭⎪⎫33,+∞, 所以α∈⎣⎢⎡⎭⎪⎫π6,π2∪⎝ ⎛⎦⎥⎤π2,2π3.综合①②知,直线AB 的倾斜角α的取值范围为⎣⎢⎡⎦⎥⎤π6,2π3.12.如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.解:由题意可得k OA =tan 45°=1,k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ), 所以AB 的中点C ⎝⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在y =12x 上,且A ,P ,B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A (3, 3). 又P (1,0),所以k AB =k AP =33-1=3+32. 所以l AB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0.1.直线l 过点(-1,2)且与直线3y =2x +1垂直,则l 的方程是( ) A .3x +2y -1=0 B .3x +2y +7=0 C .2x -3y +5=0D .2x -3y +8=0解析:选A 法一:设所求直线l 的方程为3x +2y +C =0,则3×(-1)+2×2+C =0,得C =-1,即l 的方程为3x +2y -1=0.法二:由题意知,l 的斜率是k =-32,则直线l 的方程为y -2=-32(x +1),即3x +2y-1=0.2.直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( )A .-1<k <15B .k >1或k <12C .k >15或k <1D .k >12或k <-1解析:选D 设直线的斜率为k ,则直线方程为y -2=k (x -1),令y =0,得直线l 在x 轴上的截距为1-2k,则-3<1-2k <3,解得k >12或k <-1.3.已知A (3,0),B (0,4),动点P (x ,y )在线段AB 上移动,则xy 的最大值等于________. 解析:∵线段AB 的方程为x 3+y4=1(0≤x ≤3),∴y =4-43x ,代入xy 得xy =-43x 2+4x =-43·⎝ ⎛⎭⎪⎫x -322+3,∴由二次函数性质知,当x=32时,xy 的最大值等于3. 答案:34.已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B两点,如右图所示,求△ABO 的面积的最小值及此时直线l 的方程.解:法一:设A (a,0),B (0,b )(a >0,b >0),则直线l 的方程为x a +yb=1,∵l 过点P (3,2),∴3a +2b =1,b =2aa -3.从而S △ABO =12a ·b =12a ·2a a -3=a2a -3.故有S △ABO =a -2+a -+9a -3=(a -3)+9a -3+6 ≥2a -9a -3+6=12, 当且仅当a -3=9a -3, 即a =6时,(S △ABO )min =12,此时b =2×66-3=4.故所求直线l 的方程为x 6+y4=1,即2x +3y -12=0.法二:设直线方程为x a +y b=1(a >0,b >0), 代入P (3,2),得3a +2b =1≥26ab,得ab ≥24,从而S △AOB =12ab ≥12,当且仅当3a =2b 时,等号成立,此时k =-b a =-23,故所求直线l 的方程为2x +3y -12=0. 法三:依题意知,直线l 的斜率存在. 设直线l 的方程为y -2=k (x -3)(k <0),则有A ⎝⎛⎭⎪⎫3-2k,0,B (0,2-3k ),则S △AOB =12(2-3k )⎝ ⎛⎭⎪⎫3-2k =12⎣⎢⎡⎦⎥⎤12+-9k +4-k≥12⎣⎢⎡⎦⎥⎤12+2 -9k4-k =12(12+12)=12, 当且仅当-9k =4-k ,即k =-23时,等号成立. 故所求直线l 的方程为2x +3y -12=0.法四:如右图所示,过P 分别作x 轴,y 轴的垂线PM ,PN ,垂足分别为M ,N .设θ=∠PAM =∠BPN , 则S △AOB =S △PBN +S 四边形NPMO +S △PMA=12×3×3×tan θ+6+12×2×2×1tan θ =6+92tan θ+2tan θ≥6+292tan θ·2tan θ=12,当且仅当92tan θ=2tan θ,即tan θ=23时,S △AOB =12,此时直线l 的斜率为-23,其方程为2x +3y -12=0.第二节 直线的交点坐标与距离公式[备考方向要明了][归纳·知识整合]1.两条直线的交点设两条直线的方程为l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则两条直线的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解,(1)若方程组有唯一解,则两条直线相交,此解就是交点的坐标;(2)若方程组无解,则两条直线无公共点,此时两条直线平行,反之,亦成立. [探究] 1.如何用两直线的交点判断两直线的位置关系?提示:当两条直线有一个交点时,两直线相交;没有交点时,两条直线平行,有无数个交点时,两条直线重合.2.距离|P 1P 2|=x 2-x 12+y 2-y 12[探究] 2.使用点到直线的距离公式和两条平行线间的距离公式时应注意什么? 提示:使用点到直线距离公式时要注意将直线方程化为一般式.使用两条平行线间距离公式时,要将两直线方程化为一般式且x 、y 的系数对应相等.[自测·牛刀小试]1.(教材习题改编)原点到直线x +2y -5=0的距离是( ) A .1 B. 3 C .2 D. 5解析:选D d =|-5|12+22= 5.2.点A 在x 轴上,点B 在y 轴上,线段AB 的中点M 的坐标是(3,4),则AB 的长为( ) A .10 B .5 C .8D .6解析:选A 设A (a,0),B (0,b ),则a =6,b =8,即A (6,0),B (0,8).所以|AB |=-2+-2=36+64=10.3.若三条直线2x +3y +8=0,x -y -1=0和x +by =0相交于一点,则b =( ) A .-1 B .-12C .2D.12解析:选B 由⎩⎪⎨⎪⎧2x +3y +8=0,x -y -1=0,得⎩⎪⎨⎪⎧x =-1,y =-2,将其代入x +by =0,得b =-12.4.已知直线l 1与l 2:x +y -1=0平行,且l 1与l 2的距离是2,则直线l 1的方程为________.解析:设直线l 1的方程为x +y +λ=0,则 2=|-1-λ|12+12=|λ+1|2,解得λ=1或λ=-3.即直线l 1的方程为x +y +1=0或x +y -3=0.答案:x +y +1=0或x +y -3=05.点(2,3)关于直线x +y +1=0的对称点是________. 解析:设对称点为(a ,b ),则⎩⎪⎨⎪⎧b -3a -2=1,a +22+b +32+1=0,解得⎩⎪⎨⎪⎧a =-4,b =-3.答案:(-4,-3)[例1] (1)经过直线l 1:x +y +1=0与直线l 2:x -y +3=0的交点P ,且与直线l 3:2x -y +2=0垂直的直线l 的方程是________________.(2)已知两直线l 1:mx +8y +n =0与l 2:2x +my -1=0,若l 1与l 2相交,则实数m ,n 满足的条件是__________.[自主解答] (1)法一:由方程组⎩⎪⎨⎪⎧x +y +1=0,x -y +3=0,解得⎩⎪⎨⎪⎧x =-2,y =1,即点P (-2,1),∵l 3⊥l ,∴k =-12,∴直线l 的方程为y -1=-12(x +2),即x +2y =0.法二:∵直线l 过直线l 1和l 2的交点,∴可设直线l 的方程为x +y +1+λ(x -y +3)=0, 即(1+λ)x +(1-λ)y +1+3λ=0.∵l 与l 3垂直,∴2(1+λ)-(1-λ)=0,解得λ=-13.∴直线l 的方程为23x +43y =0,即x +2y =0.(2)因为两直线l 1与l 2相交,所以当m =0时,l 1的方程为y =-n 8,l 2的方程为x =12,两直线相交,此时m ,n 满足条件m =0,n ∈R ;当m ≠0时,由两直线相交.所以m 2≠8m,解得m ≠±4,此时,m ,n 满足条件m ≠±4,n ∈R .[答案] (1)x +2y =0 (2)m ≠±4,n ∈R若将本例(1)中条件“垂直”改为“平行”,试求l 的方程. 解:由方程组⎩⎪⎨⎪⎧x +y +1=0,x -y +3=0,解得⎩⎪⎨⎪⎧x =-2,y =1,即点P (-2,1).又l ∥l 3,即k =2,故直线l 的方程为y -1=2(x +2), 即2x -y +5=0. ——————————————————— 经过两条直线交点的直线方程的设法经过两相交直线A 1x +B 1y +C 1=0和A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(这个直线系方程中不包括直线A 2x +B 2y +C 2=0)或m (A 1x +B 1y +C 1)+n (A 2x +B 2y +C 2)=0.1.设直线l 1:y =k 1x +1,l 2:y =k 2x -1,其中实数k 1,k 2满足k 1k 2+2=0. (1)证明l 1与l 2相交;(2)证明l 1与l 2的交点在椭圆2x 2+y 2=1上.证明:(1)反证法:假设l 1与l 2不相交,则l 1与l 2平行,则有k 1=k 2,代入k 1k 2+2=0得k 21=k 22=-2,显然不成立,与已知矛盾,从而k 1≠k 2,即l 1与l 2相交.(2)由方程组⎩⎪⎨⎪⎧y =k 1x +1,y =k 2x -1,解得交点P 的坐标为⎝ ⎛⎭⎪⎫2k 2-k 1,k 2+k 1k 2-k 1,而2x 2+y 2=2⎝⎛⎭⎪⎫2k 2-k 12+⎝ ⎛⎭⎪⎫k 2+k 1k 2-k 12=8+k 22+k 21+2k 1k 2k 22+k 21-2k 1k 2=k 21+k 22+4k 21+k 22+4=1, 即交点P (x ,y )在椭圆2x 2+y 2=1上.[例2] 已知点P (2,-1).(1)求过P 点且与原点距离为2的直线l 的方程;(2)求过P 点且与原点距离最大的直线l 的方程,最大距离是多少?(3)是否存在过P 点且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由.[自主解答] (1)过P 点的直线l 与原点距离为2,而P 点坐标为(2,-1),可见, 过P (2,-1)且垂直于x 轴的直线满足条件, 此时l 的斜率不存在,其方程为x =2. 若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0.由已知得|-2k -1|k 2+1=2,解得k =34.此时l 的方程为3x -4y -10=0.综上,可得直线l 的方程为x =2或3x -4y -10=0.(2)作图可得过P 点与原点O 的距离最大的直线是过P 点且与PO 垂直的直线,如图.由l ⊥OP ,得k l k OP =-1, 所以k l =-1k OP=2.由直线方程的点斜式得y +1=2(x -2), 即2x -y -5=0.即直线2x -y -5=0是过P 点且与原点O 距离最大的直线,最大距离为|-5|5= 5.(3)由(2)可知,过P 点不存在到原点距离超过5的直线, 因此不存在过P 点且到原点距离为6的直线. ——————————————————— 求两条平行线间距离的两种思路(1)利用“化归”法将两条平行线间的距离转化为一条直线上任意一点到另一条直线的距离.(2)利用两平行线间的距离公式.2.已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,在坐标平面内求一点P ,使|PA |=|PB |,且点P 到直线l 的距离为2.解:设点P 的坐标为(a ,b ).∵A (4,-3),B (2,-1),∴线段AB 的中点M 的坐标为(3,-2).而AB 的斜率k AB =-3+14-2=-1,∴线段AB 的垂直平分线方程为y +2=x -3,即x -y -5=0. ∵点P (a ,b )在上述直线上, ∴a -b -5=0.①又点P (a ,b )到直线l :4x +3y -2=0的距离为2,∴|4a +3b -2|5=2, 即4a +3b -2=±10,②由①②联立可得⎩⎪⎨⎪⎧a =1,b =-4,或⎩⎪⎨⎪⎧a =277,b =-87.∴所求点P 的坐标为(1,-4)或⎝ ⎛⎭⎪⎫277,-87.[例3] 已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程. [自主解答] (1)设A ′(x ,y ),再由已知⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413,故A ′⎝ ⎛⎭⎪⎫-3313,413.(2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上. 设对称点M ′(a ,b ),则⎩⎪⎨⎪⎧2×⎝ ⎛⎭⎪⎫a +22-3×⎝ ⎛⎭⎪⎫b +02+1=0,b -0a -2×23=-1,得M ′⎝⎛⎭⎪⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又∵m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0. ——————————————————— 求点关于直线对称问题的基本方法(1)已知点与对称点的连线与对称轴垂直; (2)已知点与对称点的中点在对称轴上.利用以上两点建立方程组可求点关于直线的对称问题.3.直线y =2x 是△ABC 的一个内角平分线所在的直线,若点A (-4,2),B (3,1),求点C 的坐标.解:把A ,B 两点的坐标代入y =2x 知,A ,B 不在直线y =2x 上,因此y =2x 为∠ACB 的平分线,设点A (-4,2)关于y =2x 的对称点为A ′(a ,b ),则k AA ′=b -2a +4,线段AA ′的中点坐标为⎝ ⎛⎭⎪⎫a -42,b +22,∵⎩⎪⎨⎪⎧b -2a +4·2=-1,b +22=2·a -42,解得⎩⎪⎨⎪⎧a =4,b =-2,∴A ′(4,-2).∵y =2x 是∠ACB 平分线所在直线的方程,∴A ′在直线BC 上,∴直线BC 的方程为y +21+2=x -43-4,即3x +y -10=0. 由⎩⎪⎨⎪⎧y =2x ,3x +y -10=0,解得⎩⎪⎨⎪⎧x =2,y =4,∴C (2,4).1条规律——与已知直线垂直及平行的直线系的设法与直线Ax +By +C =0(A 2+B 2≠0)垂直和平行的直线方程可设为: (1)垂直:Bx -Ay +m =0; (2)平行:Ax +By +n =0.1种思想——转化思想在对称问题中的应用一般地,对称问题包括点关于点的对称,点关于直线的对称,直线关于点的对称,直线关于直线的对称等情况,上述各种对称问题最终化归为点的对称问题来解决.2个注意点——判断直线位置关系及运用两平行直线间的距离公式的注意点 (1)在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.两条直线都有斜率,可根据判定定理判断,若直线无斜率时,要单独考虑;(2)运用两平行直线间的距离公式d =|C 1-C 2|A 2+B 2的前提是将两方程中的x ,y 的系数化为分别相等.创新交汇——新定义下的直线方程问题1.直线方程是高考的常考内容,但一般不单独考查,常与圆、圆锥曲线、函数与导数、三角函数等内容相结合,以交汇创新的形式出现在高考中.2.解决新定义下的直线方程的问题,难点是对新定义的理解和运用,关键是要分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程中.[典例] (2013·上海模拟)在平面直角坐标系中,设点P (x ,y ),定义[OP ]=|x |+|y |,其中O 为坐标原点.对于以下结论:①符合[OP ]=1的点P 的轨迹围成的图形的面积为2; ②设P 为直线5x +2y -2=0上任意一点,则[OP ]的最小值为1; 其中正确的结论有________(填上你认为正确的所有结论的序号).[解析] ①由[OP ]=1,根据新定义得,|x |+|y |=1,上式可化为y =-x +1(0≤x ≤1),y =-x -1(-1≤x ≤0),y =x +1(-1≤x ≤0),y =x -1(0≤x ≤1),画出图象如图所示.根据图形得到四边形ABCD 为边长是2的正方形,所以面积等于2,故①正确;②当点P 为⎝ ⎛⎭⎪⎫25,0时,[OP ]=|x |+|y |=25+0<1,所以[OP ]的最小值不为1,故②错误;所以正确结论有①.[答案] ① [名师点评]1.本题有以下创新点(1)考查内容的创新,对解析几何问题与函数知识巧妙地结合创新.(2)考查新定义、新概念的理解和运用的同时考查思维的创新,本题考查了学生的发散思维,思维方向与思维习惯有所不同.2.解决本题的关键有以下两点(1)根据新定义,讨论x 的取值,得到y 与x 的分段函数关系式,画出分段函数的图象,即可求出该图形的面积;(2)认真观察直线方程,可举一个反例,得到[OP ]的最小值为1是假命题. 3.在解决新概念、新定义的创新问题时,要注意以下几点 (1)充分理解概念、定理的内涵与外延;(2)对于新概念、新结论要具体化,举几个具体的例子,代入几个特殊值;(3)注意新概念、新结论的正用会怎样,逆用会怎样,变形用又将会如何.[变式训练]四边形OABC 的四个顶点坐标分别为O (0,0),A (6,2),B (4,6),C (2,6),直线y =kx ⎝ ⎛⎭⎪⎫13<k <3把四边形OABC 分成两部分,S 表示靠近x 轴一侧那部分的面积.(1)求S =f (k )的函数表达式;(2)当k 为何值时,直线y =kx 将四边形OABC 分为面积相等的两部分.解:(1)如图所示,由题意得k OB =32.①当13<k <32时,直线y =kx 与线段AB :2x +y =14相交,由⎩⎪⎨⎪⎧y =kx ,2x +y =14,解得交点为P 1⎝⎛⎭⎪⎫14k +2,14k k +2.因为点P 1到直线OA :x -3y =0的距离为d =k -10k +,所以S =12|OA |·d =k -k +2;②当32≤k <3时,直线y =kx 与线段BC :y =6相交于点P 2⎝ ⎛⎭⎪⎫6k ,6, 所以S △OP 2C =12|P 2C |·6=-kk.又因为S 四边形OABC =S △AOB +S △OBC =14+6=20, 所以S =S 四边形OABC -S △OP 2C =26-18k.故S =f (k )=⎩⎪⎨⎪⎧k -k +2⎝ ⎛⎭⎪⎫13<k <32,26-18k ⎝ ⎛⎭⎪⎫32≤k <3.(2)若要直线y =kx 平分四边形OABC 的面积,由(1),知只需k -k +2=10,解得k=1716.一、选择题(本大题共6小题,每小题5分,共30分) 1.点(1,-1)到直线x -y +1=0的距离是( ) A.12 B.32 C.322D.22解析:选C d =|1--+1|12+-2=322. 2.(2013·海口模拟)直线l 1的斜率为2,l 1∥l 2,直线l 2过点(-1,1)且与y 轴交于点P ,则P 点坐标为( )A .(3,0)B .(-3,0)C .(0,-3)D .(0,3)解析:选D 由题意知,直线l 2的方程为y -1=2(x +1), 令x =0,得y =3,即点P 的坐标为(0,3).3.(2013·南昌模拟)P 点在直线3x +y -5=0上,且P 到直线x -y -1=0的距离为 2,则P 点坐标为( )A .(1,2)B .(2,1)C .(1,2)或(2,-1)D .(2,1)或(-1,2)解析:选C 设P (x,5-3x ),则d =|x -5+3x -1|12+-2=2,|4x -6|=2,4x -6=±2, 即x =1或x =2,故P (1,2)或(2,-1).4.(2013·南京调研)与直线3x -4y +5=0关于x 轴对称的直线方程为( ) A .3x +4y +5=0 B .3x +4y -5=0 C .-3x +4y -5=0D .-3x +4y +5=0 解析:选A 与直线3x -4y +5=0关于x 轴对称的直线方程是3x -4(-y )+5=0,即3x +4y +5=0.5.直线l 通过两直线7x +5y -24=0和x -y =0的交点,且点(5,1)到l 的距离为10.则l 的方程是( )A .3x +y +4=0B .3x -y +4=0C .3x -y -4=0D .x -3y -4=0解析:选C 由⎩⎪⎨⎪⎧7x +5y -24=0,x -y =0,得交点(2,2),设l 的方程为y -2=k (x -2),即kx -y +2-2k =0, ∵|5k -1+2-2k |k 2+-2=10,解得k =3.∴l 的方程为3x -y -4=0.6.曲线|x |2-|y |3=1与直线y =2x +m 有两个交点,则m 的取值范围是( )A .m >4或m <-4B .-4<m <4C .m >3或m <-3D .-3<m <3解析:选A 曲线|x |2-|y |3=1的草图如图所示.与直线y =2x +m 有两个交点.则m >4或m <-4.二、填空题(本大题共3小题,每小题5分,共15分) 7.已知坐标平面内两点A (x ,2-x )和B ⎝ ⎛⎭⎪⎫22,0,那么这两点之间距离的最小值是________.解析:d = ⎝⎛⎭⎪⎫x -222+2-x2=2⎝⎛⎭⎪⎫x -3242+14≥12.即最小值为12.答案:128.与直线x -y -2=0平行,且它们的距离为22的直线方程是________________. 解析:设与直线x -y -2=0平行的直线方程为x -y +c =0,则22=|c +2|12+-2,得c =2或c =-6,即所求直线方程为x -y +2=0或x -y -6=0.答案:x -y +2=0或x -y -6=09.平面上三条直线x +2y -1=0,x +1=0,x +ky =0,如果这三条直线将平面划分为六部分,则实数k 的所有取值为________(将你认为所有正确的序号都填上).①0 ②12③1 ④2 ⑤3解析:三条直线将平面分为6部分,则这三条直线相交于一点或有且只有两条平行,经验证可知,当k =0,1,2时均符合题意.答案:①③④三、解答题(本大题共3小题,每小题12分,共36分)10.过点P (0,1)作直线l 使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,求直线l 的方程.解:设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上, 代入l 2的方程得-a -3(2a -6)+10=0, 解得a =4,即点A (4,0)在直线l 上, 所以直线l 的方程为x +4y -4=0.11.光线从A (-4,-2)点射出,到直线y =x 上的B 点后被直线y =x 反射到y 轴上的C 点,又被y 轴反射,这时反射光线恰好过点D (-1,6),求BC 所在的直线方程.解:作出草图,如图所示,设A 关于直线y =x 的对称点为A ′,D关于y 轴的对称点为D ′,则易得A ′(-2,-4),D ′(1,6).由入射角等于反射角可得A ′D ′所在直线经过点B 与C .故BC 所在的直线方程为y -66+4=x -11+2,即10x -3y +8=0.12.已知直线l 经过直线2x +y -5=0与x -2y =0的交点P , (1)点A (5,0)到l 的距离为3,求l 的方程; (2)求点A (5,0)到l 的距离的最大值. 解:(1)∵经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0, ∴|10+5λ-5|+λ2+-2λ2=3,解得λ=2或λ=12. ∴l 的方程为x =2或4x -3y -5=0.(2)由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得交点P (2,1),如图,过P 作任一直线l ,设d 为点A 到l 的距离,则d ≤|PA |(当l ⊥PA 时等号成立). ∴d max =|PA |=10.1.记直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直时m 的取值集合为M ,直线x +ny +3=0与直线nx +4y +6=0平行时n 的取值集合为N ,则M ∪N =________.解析:当直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直时,m 满足(m +2)(m -2)+3m (m +2)=0,解得m =12或m =-2,故M =⎩⎨⎧⎭⎬⎫-2,12;直线x +ny +3=0与直线nx +4y +6=0平行,当n =0时,显然两直线不平行;当n ≠0时,两直线平行的充要条件是1n =n 4≠36,即n =-2,所以N ={-2}.故M ∪N =⎩⎨⎧⎭⎬⎫-2,12.答案:⎩⎨⎧⎭⎬⎫-2,122.已知 A (3,1)、B (-1,2),若∠ACB 的平分线在y =x +1上,则AC 所在直线方程是________________.解析:设点A 关于直线y =x +1对称的点A ′为(x 0,y 0),则⎩⎪⎨⎪⎧y 0-1x 0-3=-1,y 0+12=x 0+32+1,解得⎩⎪⎨⎪⎧x 0=0,y 0=4, 即A ′(0,4).故直线A ′B 的方程为2x -y +4=0.由⎩⎪⎨⎪⎧2x -y +4=0,y =x +1,得⎩⎪⎨⎪⎧x =-3,y =-2,即C (-3,-2).故直线AC 的方程为x -2y -1=0. 答案:x -2y -1=03.已知直线l 过点P (3,1)且被两平行线l 1:x +y +1=0,l 2:x +y +6=0截得的线段长为5,求直线l 的方程.解:法一:若直线l 的斜率不存在,则直线l 的方程为x =3, 此时与l 1,l 2的交点分别是A (3,-4),B (3,-9), 截得的线段长|AB |=|-4+9|=5,符合题意. 当直线l 的斜率存在时,设直线l 的方程为y =k (x -3)+1,分别与直线l 1,l 2的方程联立, 由⎩⎪⎨⎪⎧y =kx -+1,x +y +1=0,解得A ⎝⎛⎭⎪⎫3k -2k +1,1-4k k +1.由⎩⎪⎨⎪⎧y =k x -+1,x +y +6=0,解得B ⎝⎛⎭⎪⎫3k -7k +1,1-9k k +1.由两点间的距离公式,得⎝ ⎛⎭⎪⎫3k -2k +1-3k -7k +12+⎝ ⎛⎭⎪⎫1-4k k +1-1-9k k +12=25, 解得k =0,即所求直线方程为y =1. 综上可知,直线l 的方程为x =3或y =1.法二:设直线l 与l 1,l 2分别相交于A (x 1,y 1),B (x 2,y 2), 则x 1+y 1+1=0,x 2+y 2+6=0. 两式相减,得(x 1-x 2)+(y 1-y 2)=5.① 又(x 1-x 2)2+(y 1-y 2)2=25,②联立①②可得⎩⎪⎨⎪⎧x 1-x 2=5,y 1-y 2=0,或⎩⎪⎨⎪⎧x 1-x 2=0,y 1-y 2=5,由上可知,直线l 的倾斜角分别为0°和90°, 故所求的直线方程为x =3或y =1.法三:因为两平行线间的距离d =|6-1|2=522,如图,直线l 被两平行线截得的线段为5, 设直线l 与两平行线的夹为角θ,则sin θ=22, 所以θ=45°.因为两平行线的斜率是-1, 故所求直线的斜率不存在或为零. 又因为直线l 过点D (3,1), 所以直线l 的方程为x =3或y =1.4.已知直线l 在两坐标轴上的截距相等,且点A (1,3)到直线l 的距离为2,求直线l 的方程.解:(1)当直线l 在两坐标轴上的截距不为零时,可设方程为x +y +m =0(m ≠0), 由已知|1+3+m |12+12=2,解得m =-2或m =-6,故所求的直线方程为x+y-2=0或x+y-6=0.(2)当直线l在两坐标轴上的截距为零时,可设方程为y=kx,由已知|k-3|k2+-2=2,解得k=1或k=-7,故所求的直线方程为x-y=0或7x+y=0.综上,所求的直线方程为x+y-2=0或x+y-6=0或x-y=0或7x+y=0.第三节 圆的方程[备考方向要明了][归纳·知识整合]1.圆的定义(1)在平面内,到定点的距离等于定长的点的轨迹叫做圆. (2)确定一个圆的要素是圆心和半径. 2.圆的方程 (1)标准方程①两个条件:圆心(a ,b ),半径r ; ②标准方程:(x -a )2+(y -b )2=r 2. (2)圆的一般方程①一般方程:x 2+y 2+Dx +Ey +F =0; ②方程表示圆的充要条件为:D 2+E 2-4F >0;③圆心坐标⎝ ⎛⎭⎪⎫-D 2,-E 2,半径r =D 2+E 2-4F 2.[探究] 1.方程x 2+y 2+Dx +Ey +F =0一定表示圆吗? 提示:不一定.只有当D 2+E 2-4F >0时,上述方程才表示圆. 2.如何实现圆的一般方程与标准方程的互化? 提示:一般方程与标准方程互化,可用下图表示:圆的标准方程展开配方圆的一般方程3.点与圆的位置关系(1)理论依据:点与圆心的距离与半径的大小关系. (2)三个结论圆的标准方程(x -a )2+(y -b )2=r 2,点M (x 0,y 0) ①(x 0-a )2+(y 0-b )2=r 2⇔点在圆上; ②(x 0-a )2+(y 0-b )2>r 2⇔点在圆外; ③(x 0-a )2+(y 0-b )2<r 2⇔点在圆内.[自测·牛刀小试]1.(教材习题改编)圆x 2+y 2-4x +6y =0的圆心坐标是( ) A .(2,3) B .(-2,3) C .(-2,-3)D .(2,-3)解析:选D 圆的方程可化为(x -2)2+(y +3)2=13,所以圆心坐标是(2,-3). 2.已知方程x 2+y 2+2kx +4y +3k +8=0表示一个圆,则实数k 的取值范围是( ) A .-1<k <4 B .-4<k <1 C .k <-4或k >1D .k <-1或k >4解析:选D 由(2k )2+42-4(3k +8)=4(k 2-3k -4)>0,解得k <-1或k >4. 3.若点(2a ,a +1)在圆x 2+(y -1)2=5的内部,则a 的取值范围是( ) A .-1<a <1 B .0<a <1 C .-1<a <15D .-15<a <1解析:选A ∵点(2a ,a +1)在圆x 2+(y -1)2=5的内部, ∴(2a )2+a 2<5,解得-1<a <1.4.以线段AB :x +y -2=0(0≤x ≤2)为直径的圆的方程为( ) A .(x +1)2+(y +1)2=2 B .(x -1)2+(y -1)2=2 C .(x +1)2+(y +1)2=8D .(x -1)2+(y -1)2=8解析:选B ∵易得线段的中点即圆心为(1,1),线段的端点为(0,2),(2,0),∴圆的半径为r =2,∴圆的方程为(x -1)2+(y -1)2=2.5.(教材习题改编)经过圆(x -1)2+(y +1)2=2的圆心,且与直线2x +y =0垂直的直线方程是______________.解析:圆心为(1,-1),所求直线的斜率为12,所以直线方程为y +1=12(x -1),即x -2y -3=0.答案:x -2y -3=0[例1] (1)经过点A (5,2),B (3,-2),且圆心在直线2x -y -3=0上的圆的方程为______________.(2)已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程为________________.[自主解答] (1)法一:由题知k AB =2,A ,B 的中点为(4,0),设圆心为C (a ,b ). ∵圆过A (5,2),B (3,-2)两点, ∴圆心一定在线段AB 的垂直平分线上.则⎩⎪⎨⎪⎧b a -4=-12,2a -b -3=0,解得⎩⎪⎨⎪⎧a =2,b =1.∴C (2,1),r =|CA |=-2+-2=10.∴所求圆的方程为(x -2)2+(y -1)2=10. 法二:设圆的方程为(x -a )2+(y -b )2=r 2, 则⎩⎪⎨⎪⎧2a -b -3=0,-a 2+-b 2=r 2,-a 2+-2-b 2=r 2,解得⎩⎨⎧a =2,b =1,r =10,故圆的方程为(x -2)2+(y -1)2=10. 法三:设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则⎩⎪⎨⎪⎧25+4+5D +2E +F =0,9+4+3D -2E +F =0,2×⎝ ⎛⎭⎪⎫-D 2+E 2-3=0,解得D =-4,E =-2,F =-5.∴所求圆的方程为x 2+y 2-4x -2y -5=0.(2)根据题意可知圆心坐标为(-1,0),圆的半径长为|-1+0+3|2=2,故所求圆C 的方程为(x +1)2+y 2=2.[答案] (1)x 2+y 2-4x -2y -5=0(或(x -2)2+(y -1)2=10) (2)(x +1)2+y 2=2———————————————————求圆的方程的两种方法求圆的方程时,应根据条件选用合适的圆的方程,一般来说,求圆的方程有两种方法: ①几何法,通过研究圆的性质进而求出圆的基本量.②代数法,即设出圆的方程,用待定系数法求解.,若条件中圆心坐标明确时,常设为圆的标准方程,不明确时,常设为一般方程.1.求下列圆的方程:(1)圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2); (2)过三点A (1,12),B (7,10),C (-9,2).解:(1)法一:设圆的标准方程为(x -a )2+(y -b )2=r 2,则有⎩⎪⎨⎪⎧b =-4a ,-a 2+-2-b 2=r 2,|a +b -1|2=r ,解得a =1,b =-4,r =2 2.故所求圆的方程为(x -1)2+(y +4)2=8. 法二:过切点且与x +y -1=0垂直的直线为y +2=x -3.与y =-4x 联立可得圆心为(1,-4), 所以半径r =-2+-4+2=2 2.故所求圆的方程为(x -1)2+(y +4)2=8.(2)法一:设圆的一般方程为x 2+y 2+Dx +Ey +F =0. 则⎩⎪⎨⎪⎧1+144+D +12E +F =0,49+100+7D +10E +F =0,81+4-9D +2E +F =0,解得D =-2,E =-4,F =-95,所以所求圆的方程为x 2+y 2-2x -4y -95=0.法二:由A (1,12),B (7,10)得AB 的中点坐标为(4,11),k AB =-13,则AB 的中垂线方程为3x -y -1=0.同理得AC 的中垂线方程为x +y -3=0.联立⎩⎪⎨⎪⎧3x -y -1=0,x +y -3=0,得⎩⎪⎨⎪⎧x =1,y =2,。
高考数学一轮复习 第八章 平面解析几何 87 抛物线课件 文
![高考数学一轮复习 第八章 平面解析几何 87 抛物线课件 文](https://img.taocdn.com/s3/m/34977fd64b73f242326c5fed.png)
考点二 抛物线的标准方程 【例 2】 如图,过抛物线 y2=2px(p>0)的焦点 F 的直线 l 交抛物线于 点 A,B,交其准线于点 C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程 为( )
A.y2=9x C.y2=3x
B.y2=6x D.y2= 3x
2021/12/13
第二十四页,共四十六页。
答案 y2=16x 或 x2=-8y
2021/12/13
第十七页,共四十六页。
微考点·大课堂
考点例析 对点微练
2021/12/13
第十八页,共四十六页。
考点一 抛物线的定义及应用
【例 1】 (1)已知抛物线 x2=4y 上一点 A 纵坐标为 4,则点 A 到抛物线
焦点的距离为( )
A. 10
B.4
解析 由抛物线的方程可知 F(1,0),准线方程为 x=-1,设点 C(-1, t),t>0,则圆 C 的方程为(x+1)2+(y-t)2=1,因为∠FAC=120°,CA⊥y 轴,所以∠OAF=30°,在△AOF 中,OF=1,所以 OA= 3,即 t= 3, 故圆 C 的方程为(x+1)2+(y- 3)2=1。
答案 (1)D
2021/12/13
第二十七页,共四十六页。
(2)已知双曲线 C1:ax22-by22=1(a>0,b>0)的离心率为 2,若抛物线 C2:
x2=2py(p>0)的焦点到双曲线 C1 的渐近线的距离为 2,则抛物线 C2 的方程是
()
A.x2=16y
B.x2=8y
C.x2=8
3
3 y
C.5
D. 15
解析 (1)抛物线 x2=4y 的准线方程为 y=-1,点 A 到准线的距离为 5, 根据抛物线定义可知点 A 到焦点的距离为 5。故选 C。
高考数学一轮复习第八章平面解析几何8.7抛物线教学案苏教版
![高考数学一轮复习第八章平面解析几何8.7抛物线教学案苏教版](https://img.taocdn.com/s3/m/00b3e13cd0d233d4b14e69de.png)
高考数学一轮复习第八章平面解析几何8.7抛物线教学案苏教版[最新考纲] 1.掌握抛物线的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).2.理解数形结合思想.3.了解抛物线的实际背景及抛物线的简单应用.1.抛物线的定义满足以下三个条件的点的轨迹是抛物线:(1)在平面内;(2)动点到定点F的距离与到定直线l的距离相等;(3)定点不在定直线上.2.抛物线的标准方程与几何性质[常用结论]设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则(1)x 1x 2=p 24,y 1y 2=-p 2.(2)弦长|AB |=x 1+x 2+p =2psin 2α(α为弦AB 的倾斜角).(3)以弦AB 为直径的圆与准线相切.(4)通径:过焦点垂直于对称轴的弦,长度等于2p ,通径是过焦点最短的弦.一、思考辨析(正确的打“√”,错误的打“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( )(2)若直线与抛物线只有一个交点,则直线与抛物线一定相切.( )(3)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝ ⎛⎭⎪⎫a4,0,准线方程是x =-a4.( )(4)抛物线既是中心对称图形,又是轴对称图形. ( ) [答案](1)× (2)× (3)× (4)× 二、教材改编1.过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |等于( )A .9B .8C .7D .6B [抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.根据题意可得,|PQ |=|PF |+|QF |=x 1+1+x 2+1=x 1+x 2+2=8.]2.若抛物线y =4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A.1716B.1516C.78D .0B [M 到准线的距离等于M 到焦点的距离,又准线方程为y =-116,设M (x ,y ),则y +116=1,∴y =1516.]3.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( ) A .4 B .6 C .8D .12B [如图所示,抛物线的准线l 的方程为x =-2,F 是抛物线的焦点,过点P 作PA ⊥y 轴,垂足是A ,延长PA 交直线l 于点B ,则|AB |=2.由于点P 到y 轴的距离为4,则点P 到准线l 的距离|PB |=4+2=6,所以点P 到焦点的距离|PF |=|PB |=6.故选B.]4.顶点在原点,对称轴为坐标轴,且过点P (-4,-2)的抛物线的标准方程是 .y 2=-x 或x 2=-8y [若焦点在y 轴上,设抛物线方程为x 2=my ,由题意可知16=-2m ,∴m =-8,即x 2=-8y .若焦点在x 轴上,设抛物线方程为y 2=nx ,由题意,得4=-4n ,∴n =-1,∴y 2=-x .综上知,y 2=-x 或x 2=-8y .]考点1 抛物线的定义及应用 (1)应用抛物线定义的两个关键点①由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化.②注意灵活运用抛物线上一点P (x 0,y 0)到焦点F 的距离|PF |=|x 0|+p 2或|PF |=|y 0|+p2.(2)解决与过抛物线焦点的弦有关问题的重要途径是:“看到准线想焦点,看到焦点想准线”.(1)已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点|AF |+|BF |=3,则线段AB 的中点到准线的距离为( )A.52B.32C .1D .3 (2)设P 是抛物线y 2=4x 上的一个动点,若B (3,2),则|PB |+|PF |的最小值为 .(1)B (2)4 [(1)∵F 是抛物线y 2=x 的焦点, ∴F ⎝ ⎛⎭⎪⎫14,0,准线方程x =-14,设A (x 1,y 1),B (x 2,y 2),根据抛物线的定义可得 |AF |=x 1+14,|BF |=x 2+14,∴|AF |+|BF |=x 1+14+x 2+14=3.解得x 1+x 2=52,∴线段AB 的中点横坐标为54,∴线段AB 的中点到准线的距离为54+14=32.故选B.(2)如图,过点B 作BQ 垂直准线于点Q ,交抛物线于点P 1,则|P 1Q |=|P 1F |.则有|PB |+|PF |≥|P 1B |+|P 1Q |=|BQ |=4,即|PB |+|PF |的最小值为4.][母题探究]1.若将例(2)中的B 点坐标改为(3,4),试求|PB |+|PF |的最小值. [解] 由题意可知点B (3,4)在抛物线的外部.∵|PB |+|PF |的最小值即为B ,F 两点间的距离,F (1,0), ∴|PB |+|PF |≥|BF |=42+22=25,即|PB |+|PF |的最小值为2 5.2.若将例(2)中的条件改为:已知抛物线方程为y 2=4x ,直线l 的方程为x -y +5=0,在抛物线上有一动点P 到y 轴的距离为d 1,到直线l 的距离为d 2,求d 1+d 2的最小值.[解] 由题意知,抛物线的焦点为F (1,0). 点P 到y 轴的距离d 1=|PF |-1, 所以d 1+d 2=d 2+|PF |-1.易知d 2+|PF |的最小值为点F 到直线l 的距离, 故d 2+|PF |的最小值为|1+5|12+-12=32,所以d 1+d 2的最小值为32-1.与抛物线有关的最值问题的转换方法(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解.(2)将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决.(2017· 全国卷Ⅱ)已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |= .6 [如图,不妨设点M 位于第一象限内,抛物线C 的准线交x 轴于点A ,过点M 作准线的垂线,垂足为点B ,交y 轴于点P ,∴PM ∥OF .由题意知,F (2,0),|FO |=|AO |=2. ∵点M 为FN 的中点,PM ∥OF , ∴|MP |=12|FO |=1.又|BP |=|AO |=2, ∴|MB |=|MP |+|BP |=3.由抛物线的定义知|MF |=|MB |=3,故|FN |=2|MF |=6.]考点2 抛物线的标准方程及其性质求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程.(1)(2019·潍坊模拟)抛物线y 2=2px (p >0)的焦点为F ,O 为坐标原点,M 为抛物线上一点,且|MF |=4|OF |,△MFO 的面积为43,则抛物线的方程为( )A .y 2=6x B .y 2=8x C .y 2=16xD .y 2=15x 2(2)[一题多解]在平面直角坐标系xOy 中,设抛物线y 2=4x 的焦点为F ,准线为l ,P 为抛物线上一点,PA ⊥l ,A 为垂足.如果直线AF 的倾斜角为120°,那么|PF |= .(1)B (2)4 [(1)设M (x ,y ),因为|OF |=p2,|MF |=4|OF |,所以|MF |=2p ,由抛物线定义知x +p 2=2p ,所以x =32p ,所以y =±3p . 又△MFO 的面积为43,所以12×p2×3p =43,解得p =4(p =-4舍去).所以抛物线的方程为y 2=8x .(2)法一:抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.因为直线AF 的倾斜角为120°,所以∠AFO =60°.又tan 60°=y A1--1,所以y A =2 3.因为PA ⊥l ,所以y P =y A=2 3.将其代入y 2=4x ,得x P =3,所以|PF |=|PA |=3-(-1)=4.法二:抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.因为PA ⊥l ,所以|PA |=|PF |.又因为直线AF 的倾斜角为120°,所以∠AFO =60°,所以∠PAF =60°,所以△PAF 为等边三角形,所以|PF |=|AF |=1--1cos∠AFO=4.]在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.1.(2016·全国卷Ⅰ)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8B [设抛物线的方程为y 2=2px (p >0),圆的方程为x 2+y 2=r 2.∵|AB |=42,|DE |=25,抛物线的准线方程为x =-p2,∴不妨设A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5. ∵点A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5在圆x 2+y 2=r 2上,∴⎩⎪⎨⎪⎧16p 2+8=r 2,p 24+5=r 2,∴16p 2+8=p24+5,∴p =4(负值舍去).∴C 的焦点到准线的距离为4.]2.如图所示,过抛物线y 2=2px (p >0)的焦点F 的直线依次交抛物线及准线于点A ,B ,C ,若|BC |=2|BF |,且|AF |=4,则抛物线的方程为( )A .y 2=8x B .y 2=4x C .y 2=2x D .y 2=xB [如图,分别过点A ,B 作准线的垂线,交准线于点E ,D ,设准线与x 轴交于点G ,设|BF |=a ,则由已知得|BC |=2a ,由定义得|BD |=a ,故∠BCD =30° ,则在Rt△ACE 中,2|AE |=|AC |,又|AF |=4,∴|AC |=4+3a ,|AE |=4,∴4+3a =8,从而得a =43,∵AE ∥FG ,∴FG AE =CF AC ,即p 4=48,p =2.∴抛物线的方程为y 2=4x .故选B.] 考点3 直线与抛物线的位置关系 求解抛物线综合问题的方法。
高考数学一轮复习 第八章 平面解析几何 8.7 抛物线课件
![高考数学一轮复习 第八章 平面解析几何 8.7 抛物线课件](https://img.taocdn.com/s3/m/2158d0e1915f804d2a16c161.png)
焦点坐标为( B ) A.(-1,0)
B.(1,0)
C.(0,-1)
D.(0,1)
解析 由于抛物线 y2=2px(p>0)的准线方程为 x=-p2,由题意得-p2=-1,
p=2,焦点坐标为1,0,故选 B.
1 2345
解析答案
A
解析 由抛物线的定义,可得|AF|=x0+14, ∵|AF|=54x0,∴x0+14=54x0,∴x0=1.
标 y2=
-
x2=
x2=-
准 2px(p>0) 2px(p>0) 2py(p>0) 2py(p>0)
方 p的几何意义:焦点F到准线l的距离
答案
图形
顶点 对称轴
焦点
O(0,0)
y=0
Fp2,0
F-p2,0
x=0
F0,p2
F0,-p2
离心率
准线方 程 范围
开口方
x≥0, y∈R
e=1
x≤0, y≥0, y≤0, y∈R x∈R x∈R
解析答案
(2)设P是抛物线y2=4x上的一个动点,若B(3,2),则|PB|+|PF|的最小 值为____4____. 解析 如图,过点B作BQ垂直准线于Q,交抛物线于 点P1,则|P1Q|=|P1F|.则有|PB|+|PF|≥|P1B|+|P1Q|= |BQ|=4. 即|PB|+|PF|的最小值为4.
与抛物线的两个交点,求证:
①y1y2=-p2,x1x2=p42;
证明 由已知得抛物线焦点坐标为(p2,0). 由题意可设直线方程为 x=my+p2, 代入y2=2px,
得 y2=2pmy+2p,即 y2-2pmy-p2=0.
(*)
则y1,y2是方程(*)的两个实数根,所以y1y2=-p2.
2025版高考数学一轮总复习第八章平面解析几何8.7抛物线课件
![2025版高考数学一轮总复习第八章平面解析几何8.7抛物线课件](https://img.taocdn.com/s3/m/22a20551cd1755270722192e453610661ed95ae0.png)
( ×)
2.(2022年全国乙卷)设为抛物线: 2 = 4的焦点,点在上,点 3,0 ,若
= ,则 =(
A.2
B.2
√
)
2
C.3
D.3 2
解:由题意,得 1,0 ,则 = = 2,即点A到准线 = −1的距离为2,所以
3
16
,所以△
3
+
2 3
3
2
=
1
3
−1 =
2 3
,所以
3
13
,
3
不是等腰三角形,D错误.
【点拨】解决直线与抛物线公共点(交点)问题,要注意应用根与系数的关系及设而
不求、整体代换的技巧.另外,抛物线的几何性质及导数工具等的应用往往能简化运
算.有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的
(1)平面内与一个定点和一条定直线的距离相等的点的轨迹一定是抛物线.
( ×)
(2)抛物线既是中心对称图形,又是轴对称图形.
( ×)
(3)方程 = 2 > 0 表示的曲线是焦点在轴上的抛物线. ×
(
)
(4)抛物线 = 2 2 > 0 在某一点 0 , 0 处的切线斜率为20 . ( × )
方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数,只需一个条
件就可以确定抛物线的标准方程.
变式1(1) 已知动圆与定圆: + 2
圆心的轨迹是(
)
A.直线
B.椭圆
2
+ 2 = 1外切,且和直线 = 1相切,则动圆
C.双曲线
2022届高考数学统考一轮复习第8章平面解析几何第8节曲线与方程教师用书教案理新人教版
![2022届高考数学统考一轮复习第8章平面解析几何第8节曲线与方程教师用书教案理新人教版](https://img.taocdn.com/s3/m/74204e5bfd0a79563d1e72c1.png)
学习资料2022届高考数学统考一轮复习第8章平面解析几何第8节曲线与方程教师用书教案理新人教版班级:科目:曲线与方程[考试要求] 1.了解方程的曲线与曲线的方程的对应关系.2。
了解解析几何的基本思想和利用坐标法研究几何问题的基本方法。
3。
能够根据所给条件选择适当的方法求曲线的轨迹方程.1.曲线与方程的定义一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立如下的对应关系:那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.提醒:“曲线C是方程f(x,y)=0的曲线”是“曲线C上的点的坐标都是方程f(x,y)=0的解"的充分不必要条件.2.求动点的轨迹方程的基本步骤一、易错易误辨析(正确的打“√”,错误的打“×")(1)f(x0,y0)=0是点P(x0,y0)在曲线f(x,y)=0上的充要条件.()(2)方程x2+xy=x的曲线是一个点和一条直线.()(3)动点的轨迹方程和动点的轨迹是一样的.()(4)方程y =错误!与x =y 2表示同一曲线.( )[答案] (1)√ (2)× (3)× (4)×二、教材习题衍生 1.到点F (0,4)的距离比到直线y =-5的距离小1的动点M 的轨迹方程为( )A .y =16x 2B .y =-16x 2C .x 2=16yD .x 2=-16yC [由题意可知,动点M 到点F (0,4)的距离等于到直线y =-4的距离,故点M 的轨迹为以点F (0,4)为焦点,以y =-4为准线的抛物线,其轨迹方程为x 2=16y .]2.P 是椭圆x 29+错误!=1上的动点,过P 作椭圆长轴的垂线,垂足为M ,则PM 中点的轨迹方程为( )A .错误!x 2+错误!=1B .错误!+错误!y 2=1C .错误!+错误!=1D .错误!+错误!=1B [设中点坐标为(x ,y ),则点P 的坐标为(x,2y ),代入椭圆方程得错误!+错误!y 2=1。
高考数学统考一轮复习 第八章 平面解析几何 第八节 第2课时 定点、定值、探究性问题(教师文档)教
![高考数学统考一轮复习 第八章 平面解析几何 第八节 第2课时 定点、定值、探究性问题(教师文档)教](https://img.taocdn.com/s3/m/eba48d907fd5360cba1adbe2.png)
学习资料第八节第二课时 定点、定值、探究性问题授课提示:对应学生用书第174页考点一 圆锥曲线的定点问题[例] (2020·湖南郴州二模)已知抛物线C :x 2=2py (p >0)的焦点为F ,过F 的直线交抛物线于A ,B 两点.(1)若以A ,B 为直径的圆的方程为(x -2)2+(y -3)2=16,求抛物线C 的标准方程;(2)过A ,B 分别作抛物线的切线l 1,l 2,证明:l 1,l 2的交点在定直线上.[解析] (1)由抛物线的定义可得p +6=8,得p =2,故抛物线C 的标准方程为x 2=4y .(2)证明:由x 2=2py 得其焦点坐标为F 错误!。
设A 错误!,B 错误!,直线AB :y =kx +错误!,代入抛物线方程,得x 2-2kpx -p 2=0,∴x 1x 2=-p 2。
①对y =x 22p求导得y ′=错误!, ∴抛物线过点A 的切线的斜率为错误!,切线方程为y -错误!=错误!(x -x 1),② 抛物线过点B 的切线的斜率为错误!,切线方程为y -错误!=错误!(x -x 2),③ 由①②③得y =-错误!。
∴l 1与l 2的交点P 的轨迹方程是y =-错误!,即l 1,l 2的交点在定直线上.[破题技法] 定点问题主要是由线系(直线系)过定点问题具体来讲,若是证明直线过定点,可将直线设为斜截式,然后消掉一个参数,即得直线所过的定点;证明圆过定点时,常利用直径所对圆周角为直角转化为向量的数量积恒为零处理;证明其他曲线过定点的问题时,经常将曲线中的参变量集中在一起,令其系数等于零,解得定点.椭圆E :错误!+错误!=1(a >b >0)的左焦点为F 1,右焦点为F 2,离心率e =错误!。
过F 1的直线交椭圆于A ,B 两点,且△ABF 2的周长为8。
(1)求椭圆E 的方程;(2)设动直线l :y =kx +m 与椭圆E 有且只有一个公共点P ,且与直线x =4相交于点Q 。
高三数学一轮复习第八章椭圆双曲线抛物线课件文
![高三数学一轮复习第八章椭圆双曲线抛物线课件文](https://img.taocdn.com/s3/m/f511cbbee109581b6bd97f19227916888486b9fa.png)
如图所示,AB是抛物线y2=2px(p>0)过焦点F的一条弦(焦点弦),设A(x1, y1)、B(x2,y2),AB的中点M(x0,y0),过A、M、B分别向抛物线的准线作垂 线,垂足分别为C、E、D,则根据抛物线的定义有|AF|=|AC|、|BF|=| BD|,故|AB|=|AF|+|BF|=|AC|+|BD|,又|ME|是梯形ABDC的中位线,|AB|=| AC|+|BD|=2|ME|,故有下列结论:
从近两年的高考试题来看,抛物线的定义、标准方程、几何性 质,以及直线与抛物线的位置关系等是高考的热点,题型既有选择题 、填空题,又有解答题;客观题突出“小而巧”,主要考查抛物线的定 义、标准方程,主观题考查得较为全面,除考查定义、几何性质外,还 考查直线与抛物线的位置关系,考查基本运算能力、逻辑思维能力 、综合分析问题的能力,如2011年安徽、江西、陕西、辽宁、福建 、浙江等地高考数学试题中均有抛物线的相关试题.
⑤ 1 + 1 = 2 为定值.
|AF | |FB | p
(A)y2=-8x. (B)y2=8x.
(C)y2=-4x. (D)y2=4x. 【解析】由题意设抛物线方程为y2=2px(p&g物线方程为y2=8x.
2
【答案】B
1.抛物线的定义可以从以下几个方面理解、掌握:
(1)抛物线的定义还可叙述为“平面内与一个定点F和一条直线l的 距离的比等于1的点的轨迹叫做抛物线”.
y2=2px (p>0)
y2=-2px (p>0)
x2=2py (p>0)
p的几何意义:焦点F到准线l的距离
p
p
p
x=- 2
x= 2
y=- 2
2025版高考数学一轮总复习考点突破第八章平面解析几何8
![2025版高考数学一轮总复习考点突破第八章平面解析几何8](https://img.taocdn.com/s3/m/af5f481bf6ec4afe04a1b0717fd5360cba1a8da2.png)
第八章平面解析几何 8.7 抛物线考点一抛物线的定义及标准方程例1(1)【多选题】经过点的抛物线的标准方程为(AC)A. B. C. D.解:若抛物线的焦点在轴上,设抛物线的方程为.因为抛物线经过点,所以,解得.所以抛物线的方程为.若抛物线的焦点在轴上,设抛物线的方程为.因为抛物线经过点,所以,解得.所以抛物线的方程为.故选.(2)已知抛物线上的点到其焦点的距离为2,则该抛物线的标准方程为(A)A. B. C. D.解:抛物线的准线方程.因为抛物线上的点到其焦点的距离为2,所以,所以.即该抛物线的标准方程为.故选.(3)设是抛物线上的一个动点,为抛物线的焦点,若,则的最小值为4.解:如图,过点作垂直准线于点,交抛物线于点,则则有,即的最小值为4.故填4.【点拨】求抛物线标准方程的常用方法是待定系数法,其关键是推断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数,只需一个条件就可以确定抛物线的标准方程.变式1(1)已知动圆与定圆外切,且和直线相切,则动圆圆心的轨迹是(D)A. 直线B. 椭圆C. 双曲线D. 抛物线解:设动圆的圆心为点,半径为,则.又点到直线的距离等于,所以点到直线的距离为.所以.依据抛物线的定义,知动圆圆心的轨迹为抛物线.故选.(2)若点,在抛物线上,是坐标原点,正三角形的面积为,则该抛物线的方程是(A)A. B. C. D.解:依据对称性,可知轴,由于正三角形的面积是,故.故,正三角形的高为.故可设点的坐标为,代入抛物线方程得,解得.故所求抛物线的方程为.故选.(3)已知是抛物线的焦点,点,为抛物线上一点,点不在直线上,则的周长的最小值是(C)A. 4B. 6C.D.解:抛物线的焦点,准线为.如图,过点作准线于点,则的周长为.又,可知当,,三点共线时周长最小,为.故选.考点二抛物线的几何性质例2 【多选题】设抛物线的焦点为,准线为,为上一点,以为圆心,为半径的圆交于,两点.若,且的面积为,则(BCD)A. B. 是等边三角形C. 点到准线的距离为3D. 抛物线的方程为解:依据题意,作出图形如图所示.因为为半径的圆交于,两点,所以.又,所以为等边三角形,正确.因为,轴,所以,所以,,解得,所以,所以不正确.焦点到准线的距离为,所以正确.抛物线的方程为,所以正确.故选.【点拨】在解决与抛物线的性质有关的问题时,要留意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.变式2(1)设为坐标原点,直线与抛物线交于,两点.若,则的焦点坐标为(D)A. B. C. , D. ,解:(方法一)因为抛物线关于轴对称,直线关于轴对称,所以,两点关于轴对称.因为,所以,两点横、纵坐标的确定值相等.不妨设点,将点的坐标代入,得,解得.所以抛物线的焦点坐标为,.(方法二)将代入抛物线方程,可得直线与抛物线的交点坐标为,.不妨设,,则,.因为,所以,解得.所以抛物线的焦点坐标为,.故选.(2)已知抛物线的焦点为,准线与轴的交点为,为抛物线上的一点,且满足,则.解:过作准线的垂线,垂足为,则有,所以,.又,所以,即.故填.考点三直线与抛物线例3 [2024年新课标Ⅱ卷]【多选题】设为坐标原点,直线过抛物线的焦点,且与交于,两点,为的准线,则(AC)A. B.C. 以为直径的圆与相切D. 为等腰三角形解:对于,直线过点,所以抛物线的焦点为,所以,,故正确.对于,抛物线的方程为,设,,由消去并化简,得,解得,.所以,故错误.对于,设的中点为,点,,到直线的距离分别为,,.因为,即点到直线的距离等于的一半,所以以为直径的圆与直线相切,故正确.对于,由题意,得,,所以,,,所以不是等腰三角形,错误.故选.【点拨】解决直线与抛物线公共点(交点)问题,要留意应用根与系数的关系及设而不求、整体代换的技巧.另外,抛物线的几何性质及导数工具等的应用往往能简化运算.有关直线与抛物线的弦长问题,要留意直线是否过抛物线的焦点,若过抛物线的焦点,可干脆运用公式,若不过焦点,则必需用一般弦长公式.涉及弦的中点、斜率时,一般用“点差法”求解.变式3 [2024年新课标Ⅰ卷]【多选题】已知为坐标原点,点在抛物线上,过点的直线交于,两点,则(BCD)A. 的准线为B. 直线与相切C. D.解:将点的坐标代入抛物线方程,得,所以抛物线方程为,故准线方程为,故错误.,所以直线的方程为联立可得,解得,故正确.设过点的直线为,易知直线的斜率存在,设其方程为,,.联立得,所以所以或,.又,,所以,故正确.因为,,所以,而,故正确.故选.。
高三数学一轮复习第八章解析几何第8课时抛物线课件
![高三数学一轮复习第八章解析几何第8课时抛物线课件](https://img.taocdn.com/s3/m/838583780166f5335a8102d276a20029bd6463e5.png)
考点二 抛物线的标准方程与几何性质
标准 方程
y2=2px (p>0)
y2=-2px
x2=2py
(p>0)
离
x2=-2py (p>0)
图形
顶点
_O__(_0_,__0_) _
对称轴 焦点 离心率 准线 方程 范围
y=0
x=0
______________
_____________
3.抛物线性质的应用技巧 (1)利用抛物线方程确定及应用其焦点、准线时,关键是将抛物线方程化成标准 方程. (2)要结合图形分析,灵活运用平面图形的性质简化运算.
√ √
√ √ √
√ √
点拨 求解抛物线综合问题的方法 (1)研究直线与抛物线的位置关系一般用方程法,但涉及抛物线的弦长、中点、 距离等问题时,要注意“设而不求”“整体代入”“点差法”以及定义的灵活 应用. (2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物 线的焦点,可直接使用公式|AB|=x1+x2+p(焦点在x轴正半轴),若不过焦点, 则必须用弦长公式.
A.5 cm B.6 cm √C.7 cm D.8.25 cm
(3)(2021·新高考Ⅰ卷)已知O为坐标原点,抛物线C: y2=2px(p>0)的焦点为F,P为C上一点,PF与x轴垂 直,Q为x轴上一点,且PQ⊥OP.若|FQ|=6,则C的准 线方程为___________.
(2)以碗体的最低点为原点,向上方向为y轴,建立平面直角坐标系,如图所 示. 设碗体的抛物线方程为x2=2py(p>0),将点(5,6.25)代入, 得52=2p×6.25,解得p=2,则x2=4y, 设盖上碗盖后,碗盖内部最高点到碗底的垂直距离为h, 则两抛物线在第一象限的交点为(4,h-3), 代入到x2=4y中,得42=4(h-3),解得h=7.故选C.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5 也是 5,从而线段 AB 中点到准线距离是 ,故 AB 中点到 y 轴的 2 5 1 距离是 - =2. 2 2
•答案:2
•5.设抛物线y2=mx的准线与直线x=1的距离 为3,则抛物线的方程为__________.
m 解析:当 m>0 时,准线方程为 x=- 4 =-2,∴m=8; 此时抛物线方程为 y2=8x; m 当 m<0 时,准线方程为 x=- =4,∴m=-16. 4 此时抛物线方程为 y2=-16x.
8 4 ∴N( , ). 5 5
过抛物线 y2=2px(p>0)焦点 F 的直线交抛物线于 A, B 两点,过 B 点作其准线的垂线,垂足为 D,设 O 为坐标原点, → → 问:是否存在实数 λ,使AO=λOD?
【思路导引】 由抛物线方程得其焦点坐标和准线方程 → 按直线的斜率存在和不存在分情况讨论 → 由直线方程和抛物线方程组成方程组 → 研究A、D两点坐标的关系 → → → 求出向量AO、OD的坐标 → 探求λ的存在性
1 (2)由于直线 x=-2即为抛物线的准线, 故|PB|+d=|PB|+|PF|≥|BF|, 当且仅当 B、P、F 共线时取等号. 而|BF|= 1 12 2+2 +12= 2.
∴|PB|+d 的最小值为 2.
•【方法探究】
•提醒:建立函数关系后,一定要注意根据题 目的条件探求自变量的取值范围,即函数的定 义域.
• (2)抛物线的焦点弦的性质 •设AB是过抛物线 y2 =2px(p>0)焦点F的弦, A(x1,y1),B(x2,y2),则
3.如图,已知直线 l:y=kx-2 与抛物线 C:x2=-2py(p>0) → → 交于 A,B 两点,O 为坐标原点,OA+OB=(-4,-12).
(1)求直线 l 和抛物线 C 最 大值.
p 解析:(1)抛物线 y =2px(p>0)的准线为 x=-2,
2
p 于是 4+2=5,∴p=2. ∴抛物线方程为 y2=4x.
(2)∵点 A 的坐标是(4,4),由题意得 B(0,4),M(0,2), 4 3 又∵F(1,0),∴kFA= .∵MN⊥FA,∴kMN=- . 3 4 4 则 FA 的方程为 y= (x-1), 3 3 MN 的方程为 y-2=- x, 4 4 y=3x-1, 解方程组 y-2=-3x, 4 8 x=5. 得 y=4. 5
【思路导引】 由抛物线的定义知曲线段C是抛物线的一部分 → N是焦点,l2是准线 → 建系设出方程 → 根据题目的条件确定p的值 → 得方程,注明x,y的取值范围
【解析】 以直线 l1 为 x 轴, 线段 MN 的垂直平分线为 y 轴, 建立直角坐标系,由条件可知,曲线段 C 是以点 N 为焦点,以 l2 为准线的抛物线的一段.其中 A,B 分别为曲线段 C 的端点. 设曲线段 C 的方程为 y2=2px(p>0)(xA≤x≤xB,y>0), 其中 xA,xB 为 A,B 的横坐标,p=|MN|, p p 所以 M(- ,0),N( ,0).由|AM|= 17,|AN|=3 2 2 p2 得(xA+ ) +2pxA=17① 2 p2 (xA-2) +2pxA=9②
.
图形
y≥0,x∈R y≤0,x∈R y轴
p p (0,2) 原点O(0,0) (0,-2) p p y=-2 y=2
范围 对称轴 顶点坐标
焦点坐标
准线方程 离心率
e=1
•1.抛物线x2=4y上一点A的纵坐标为4,则点 A与抛物线焦点的距离为( ) •A.2 B.3 •C.4 D.5 •解析:点A与抛物线焦点的距离就是点A与抛 物线准线的距离,即4-(-1)=5. •答案:D
(2)当直线 AB 的斜率存在时, p 设直线 AB 的方程为 y=k(x-2)(k≠0), 设 A(x1,y1),B(x2,y2), p y12 y22 则 D(-2,y2),x1= 2p ,x2= 2p , p y=kx- 2 得 ky2-2py-kp2=0, 由 y2=2px p2 ∴y1y2=-p2,∴y2=-y , 1
y=kx-2, 解析:(1)由 2 x =-2py,
得 x2+2pkx-4p=0,
设 A(x1,y1),B(x2,y2),则 x1+x2=-2pk, y1+y2=k(x1+x2)-4=-2pk2-4, → → 因为OA+OB=(x1+x2,y1+y2) =(-2pk,-2pk2-4)=(-4,-12),
y02 y02 解析:由题意,设 P( 4 ,y0),则|PF|=|PM|= 4 +1=5, 1 ∴y0=± 4,S△MPF=2|PM||y0|=10.
•答案:D
•4.抛物线y2=2x上的两点A、B到焦点的距离 之和是5,则线段AB中点到y轴的距离是 ________. 1
解析:由抛物线定义可知,A、B 到准线 x=-2的距离之和
•1.若动圆与圆(x-2)2+y2=1外切,又与直线 x+1=0相切,求动圆圆心的轨迹方程. •解析:法一:设动圆半径为r,动圆圆心O′(x, y), •因动圆与圆(x-2)2+y2=1外切, •则O′到(2,0)的距离为r+1, •动圆与直线x+1=0相切,O′到直线x+1=0 的距离为r. •所以O′到(2,0)的距离与到直线x=-2的距离 相等,
-2pk=-4, 所以 -2pk2-4=-12, p=1. 解得 k=2.
所以直线 l 的方程为 y=2x-2, 抛物线 C 的方程为 x2=-2y.
(2)法一:设 P(x0,y0),依题意,抛物线过 P 的切线与 l 平行 1 2 时,△APB 面积最大,∵y=-2x , y′=-x,k=y′|x=x0=-x0=kl=2,∴x0=-2, 1 2 y0=-2x0 =-2,所以 P(-2,-2). 此时 P 到直线 l 的距离
-y12 → AO=(-x1,-y1)=( 2p ,-y1), p p p2 → OD=(-2,y2)=(-2,-y ), 1 → → 假设存在实数 λ,使AO=λOD, y12 p - 2p =-2λ, 则 p2 -y1=- λ, y1 y12 解得 λ= p2 ,
y12 → → ∴存在实数 λ= 2 ,使AO=λOD, p → → 综上所述,存在实数 λ,使AO=λOD.
y=2x-2 |2· -2--2-2| 4 4 5 d= = = 5 ,由 2 ,得 x2+ x =-2y 5 22+-12
【解析】
→ → 存在实数 λ,使AO =λOD .抛物线方程为 y2 =
p p 2px(p>0),则 F(2,0),准线 l:x=-2, (1)当直线 AB 的斜率不存在,即 AB⊥x 轴时,交点 A、B 坐 p p 标不妨设为:A(2,p),B(2,-p) p ∵BD⊥l,∴D(-2,-p), → =(-p,-p),OD=(-p,-p), → ∴AO 2 2 → → ∴存在 λ=1 使AO=λOD.
•2.抛物线的标准方程与几何性质
标准方程 y2=2px(p>0) y2=-2px(p>0)
图
形 x≥0,y∈R x≤0,y∈R x轴
p (2,0) p x=-2
范围
对称轴 顶点坐标
焦点坐标 准线方程
原点O(0,0)p (-2,0) p x=2 e=1
离心率
标准方程
x2=
2py(p>0)
.
-2py(p>0) x2=
2.抛物线 y=ax2 的准线方程是 y-2=0,则 a 的值是( 1 A. 8 C.8 1 B.- 8 D.-8
2
)
1 解析: 将抛物线的方程化为标准形式 x =ay, 其准线方程是 y 1 1 =- =2,a=- . 4a 8
•答案:B
3.从抛物线 y2=4x 上一点 P 引其准线的垂线,垂足为 M, 设抛物线的焦点为 F,且|PF|=5,则△MPF 的面积为( A.5 6 C.20 25 3 B. 4 D.10 )
法二:设动圆圆心坐标为 O′(x,y),动圆半径为 r,
|OO′|=r+1, 据题意有 |x--1|=r,
⇒ x-22+y2=x+2(x>-1), 化简得 y2=8x, 即动圆圆心的轨迹方程为 y2=8x.
如图所示,直线 l1 和 l2 相交于点 M,l1⊥l2,点 N∈ l1,以 A,B 为端点的曲线段 C 上任一点到 l2 的距离与到点 N 的 距离相等. 若△AMN 为锐角三角形, |AM|= 17, |AN|=3, 且|NB| =6,建立适当的坐标系,求曲线段 C 的方程.
•【思路导引】 (1)由定义知,抛物线上点P 到焦点F的距离等于点P到准线的距离d,求 |PA|+|PF|的问题可转化为|PA|+d的问题. •(2)把点P到直线的距离转化为到焦点的距离 即可解决.
【解析】
将 x=3 代入抛物线方程 y2=2x,得 y=± 6.
∵ 6>2,∴A 在抛物线内部,设抛物线上点 P 到准线 l:x 1 =-2的距离为 d,由定义知|PA|+|PF|=|PA|+d, 7 当 PA⊥l 时,|PA|+d 最小,最小值为2, 7 即(|PA|+|PF|)min=2. 此时 P 点纵坐标为 2,代入 y2=2x 得 x=2,∴P(2,2).
•【方法探究】 (1)已知抛物线的标准方程, 可以确定抛物线的开口方向、焦点的位置及p 的值,进一步确定抛物线的焦点坐标和准线方 程. •(2)求抛物线的标准方程常用待定系数法,即 利用题目中的已知条件确定p的值. •提醒:求抛物线的标准方程首先要确定其开 口方向,其次是确定p的值.
•2.如图所示,抛物线y2=2px(p>0)的焦点为F, A在抛物线上,其横坐标为4,且位于x轴上方, A到抛物线准线的距离等于5.过A作AB垂直于y 轴,垂足为B,OB的中点为M. •(1)求抛物线方程; •(2)过M作MN⊥FA,垂足为N, •求点N的坐标.
4 联立①②解得 xA=p,代入①式,并由 p>0,