高一数学综合测试题(A)试题+答案

合集下载

高一数学必修一综合测试题(含答案)

高一数学必修一综合测试题(含答案)

高一数学必修一综合测试题(含答案)一、选择题(每题5分,共50分)1、已知集合M={0,1,2},N={xx=2a,a∈M},则集合MN=A、{ }B、{0,1}C、{1,2}D、{0,2}答案:B解析:将M中的元素代入N中得到:N={2,4,8},与M 的交集为{0,1},故MN={0,1}。

2、若f(lgx)=x,则f(3)=()A、lg3B、3C、10D、310答案:C解析:将x=3代入f(lgx)=x中得到f(lg3)=3,又因为lg3=0.477,所以f(0.477)=3,即f(3)=10^0.477=3.03.3、函数f(x)=x−1x−2的定义域为()A、[1,2)∪(2,+∞)B、(1,+∞)C、[1,2)D、[1,+∞)答案:A解析:由于分母不能为0,所以x-2≠0,即x≠2.又因为对于x<1,分母小于分子,所以x-1<0,即x<1.所以定义域为[1,2)∪(2,+∞)。

4、设a=log13,b=23,则().A、a<b<cB、c<b<aC、c<a<bD、b<a<c答案:A解析:a=log13=log33-log32=1/2-log32,b=23=8,c=2^3=8,所以a<b=c。

5、若102x=25,则10−x等于()A、−15B、51C、150D、0.2答案:B解析:由102x=25可得x=log10(25)/log10(102)=1.3979,所以10^-x=1/10^1.3979=0.1995≈0.2.6、要使g(x)=3x+1+t的图象不经过第二象限,则t的取值范围为A.t≤−1B.t<−1C.t≤−3D.t≥−3答案:B解析:当x=0时,y=1+t,要使图像不经过第二象限,则1+t>0,即t>-1.又因为g(x)的斜率为正数,所以对于任意的x,g(x)的值都大于1+t,所以t< -1.7、函数y=2x,x≥1x,x<1的图像为()答案:见下图。

2014-2015温州中学高一数学上学期末综合测试题新人教A版附答案

2014-2015温州中学高一数学上学期末综合测试题新人教A版附答案

2014-2015温州中学高一数学上学期末综合测试题(新人教A版附答案)一、单选题(共10题)1.已知集合,,则()A.B.C.D.2.函数的定义域为()A.B.C.D.3.函数的值域为()A.[0,3]B.[-1,0]C.[-1,3]D.[0,2]4.函数在区间上的最小值是( )A.B.0C.1D.25.已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(﹣1)=()A.2B.1C.0D.﹣26.函数的零点必落在区间()A.B.C.D.(1,2)7.已知幂函数的图象经过点(4,2),则()A.2B.4C.4D.88.函数(,且)的图像过一个定点,则这个定点坐标是()A.(5,1)B.(1,5)C.(1,4)D.(4,1)9.函数在区间[0,2]上的最大值比最小值大,则的值为()A.B.C.D.10.已知x,y为正实数,则()A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx•2lgyC.2lgx•lgy=2lgx+2lgy D.2lg(xy)=2lgx•2lgy二、填空题(共10题)11.已知集合A={x|x2-2x>0},B={x|-<x<},则A∪B________.12.函数的定义域为13.已知函数,则函数的值域为.14.若为偶函数,则实数_______.15.方程解的个数为______。

16.如果函数在区间上是增函数,那么的取值范围是__________________.17.函数y=x2的值域是________.18.计算: .19.不等式的解集为 .20.设为定义在上的奇函数,当时,,则.三、解答题(共4题)21.设全集是实数集R,,B=(1)当a=4时,求A∩B和A∪B;(2)若,求实数的取值范围.22.已知二次函数的最小值为1,且.(1)求的解析式;(2)若在区间上不单调,求实数的取值范围;(3)在区间上,的图像恒在的图像上方,试确定实数的取值范围.23,设函数.(Ⅰ)若,求取值范围;(Ⅱ)求的最值,并给出最值时对应的的值.24.已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R.(1)若a+b≥0,求证:f(a)+f(b)≥f(-a)+f(-b);(2)判断(1)中命题的逆命题是否成立,并证明你的结论.参考答案一、单选题1.B3.C4. B5.D6.B7.B8.B9.C10.D二、填空题11.R12.13.14..15.116.17.(0,1]18..19.20.-2三、解答题21,(1),(2)22.(1)(2)(3)23,(1) (2)时取得最大值24,(1)证明:∵a+b≥0,∴a≥-b.由已知f(x)的单调性得f(a)≥f(-b).又a+b≥0⇒b≥-a⇒f(b)≥f(-a).两式相加即得:f(a)+f(b)≥f(-a)+f(-b).(2)逆命题:f(a)+f(b)≥f(-a)+f(-b)⇒a+b≥0.下面用反证法证之.假设a+b<0,那么:⇒f(a)+f(b)<f(-a)+f(-b).这与已知矛盾,故只有a+b≥0.逆命题得证.。

人教A版高一数学必修第一册全册复习测试题卷含答案解析(56)

人教A版高一数学必修第一册全册复习测试题卷含答案解析(56)

人教A 版高一数学必修第一册全册复习测试题卷3(共30题)一、选择题(共10题)1. 下列命题中真命题的个数是 ( ) ①函数 y =sinx ,其导函数是偶函数;②“若 x =y ,则 x 2=y 2”的逆否命题为真命题; ③“x ≥2”是“x 2−x −2≥0”成立的充要条件;④命题 p:“存在 x 0∈R ,x 02−x 0+1<0”,则命题 p 的否定为:“对任意的 x ∈R ,x 2−x +1≥0”. A . 0 B . 1 C . 2 D . 32. 已知定义在实数集 R 上的偶函数 f (x ) 满足 f (x +1)=f (x −1),且当 x ∈[0,1] 时,f (x )=x 2,则关于 x 的方程 f (x )=12∣x ∣ 在 [−1,2] 上根的个数是 ( ) A . 2 B . 4 C . 6 D . 83. 设函数 f (x ) 的定义城为 A ,如果对于任意的 x 1∈A ,都存在 x 2∈A ,使得 f (x 1)+f (x 2)=2m (其中 m 为常数)成立,则称函数 f (x ) 在 A 上“与常数 m 相关联”.给定函数:① y =1x ;② y =x 3;③ y =(12)x;④ y =lnx ;⑤ y =cosx +1,则在其定义域上与常数 1 相关联的所有函数是 ( ) A .①②⑤ B .①③ C .②④⑤ D .②④4. 若不等式x 2+mx +1>0的解集为R ,则m 的取值范围是( ) A .RB .(−2,2)C .(−∞,−2)∪(2,+∞)D .[−2,2]5. 已知 0<a <1,则方程 a ∣x∣=∣log a x ∣ 的实根个数为 ( ) A . 2 B . 3 C . 4 D .与 a 的值有关6. 集合 {x ∈N ∗∣ x −2<3} 的另一种表示形式是 ( ) A . {0,1,2,3,4} B . {1,2,3,4} C . {0,1,2,3,4,5} D . {1,2,3,4,5}7. 要得到函数 y =cos2x 的图象,只需将函数 y =cos (2x −π) 的图象 ( )A .向左平移 π3个单位长度B .向右平移 π3个单位长度C .向左平移 π6 个单位长度D .向右平移 π6 个单位长度8. 给出下列命题:①如 a >b ,则 ac 2>bc 2; ② sinx +1sinx ≥2; ③ x 2+2+1x 2+2≥2;④若 a >b >0,则 a −1a >b −1b ; ⑤若 x ≥0,则 t =2x x 2+1的最大值为 1.以上命题正确命题的个数为 ( ) A . 4 B . 3 C . 2 D . 19. 已知函数 f (x )={∣2x −1∣,x ≤1log 2(x −1),x >1,若 f (x 1)=f (x 2)=f (x 3)(x 1,x 2,x 3 互不相等)则x 1+x 2+x 3 的取值范围是 ( ) A . (0,8) B . (1,3) C . (3,4] D . (1,8]10. k 为整数,化简 sin [(k+1)π+θ]⋅cos [(k+1)π−θ]sin (kπ−θ)⋅cos (kπ+θ)的结果是 ( )A . ±1B . −1C . 1D . tanθ二、填空题(共10题)11. 方程 ∣∣cos (x +π2)∣∣=∣log 18x ∣ 的解的个数为 (用数字作答).12. 已知 k 为常数,函数 f (x )={x+2x+1,x ≤0∣lnx ∣,x >0,若关于 x 的方程 f (x )=kx +2 有且只有四个不同解,则实数 k 的取值构成的集合为 .13. 已知函数 f (x )={∣log 2x ∣,0<x <2sin (π4x),2≤x ≤10,若存在实数 x 1,x 2,x 3,x 4 满足 x 1<x 2<x 3<x 4,且 f (x 1)=f (x 2)=f (x 3)=f (x 4),则 x 1x 2+x 3+x 4= .14. 已知函数 f (x )=∣∣∣sinx1x 131∣∣∣,若 f (a )=2021,则 f (−a )= .15. 已知 tanα,tanβ 是一元二次方程 x 2+3√3x +4=0 的两根,α,β∈(−π2,0),则 cos (α+β)= .16. 已知函数 f (x )={∣x 2+5x +4∣,x ≤0,2∣x −2∣,x >0,若函数 y =f (x )−a∣x∣ 恰有 4 个零点,则实数 a的取值范围为 .17. 如图,是我国古代数学家赵爽的弦图,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为 4,大正方形的面积为 100,直角三角形中较小的锐角为 α,则 tanα= .18. 若函数 f (x )={−x +6,x ≤23+log a x,x >2(a >0 且 a ≠1)的值域为 [4,+∞),则 f (1)= ;实数a 的取值范围为 .19. 已知命题 p :∃x ∈R ,ax 2+2ax +1≤0,若命题 p 为假命题,则实数 a 的取值范围是 .20. 已知函数 f (x )={log 2(−x ),x <0x −2,x ≥0,若函数 g (x )=a −∣f (x )∣ 有四个零点 x 1,x 2,x 3,x 4,且x 1<x 2<x 3<x 4,则 ax 1x 2+x 3+x 4a的取值范围是 .三、解答题(共10题)21. 已知命题 p :集合 M ={x∣ x <−3或x >5},q :集合 N ={x∣ −a ≤x ≤8}.(1) 若 M ∩N ={x∣ 5<x ≤8},求实数 a 的取值范围; (2) 若 p 是 q 的充分不必要条件,求实数 a 的取值范围.22. 已知函数 f (x )=ln (x −1+a ).(1) 设 f −1(x ) 是 f (x ) 的反函数.当 a =1 时,解不等式 f −1(x )>0;(2) 若关于 x 的方程 f (x )+ln (x 2)=0 的解集中恰好有一个元素,求实数 a 的值;(3) 设 a >0,若对任意 t ∈[12,1],函数 f (x ) 在区间 [t,t +1] 上的最大值与最小值的差不超过 ln2,求 a 的取值范围.23. 已知函数 f (x ) 的定义域为 D ,值域为 f (D ),即 f (D )={y∣ y =f (x ),x ∈D }.若 f (D )⊆D ,则称 f (x ) 在 D 上封闭.(1) 试分别判断函数 f (x )=2017x +log 2017x ,g (x )=x 2x+1 在 (0,1) 上是否封闭,并说明理由. (2) 函数 f (x )=√x +1+k 的定义域为 D =[a,b ],且存在反函数 y =f −1(x ).若函数 f (x )在 D 上封闭,且函数 f −1(x ) 在 f (D ) 上也封闭,求实数 k 的取值范围.(3) 已知函数 f (x ) 的定义域是 D ,对任意 x ,y ∈D ,若 x ≠y ,有 f (x )≠f (y ) 恒成立,则称 f (x ) 在 D 上是单射.已知函数 f (x ) 在 D 上封闭且单射,并且满足 f n (D )⫋D ,其中 f n+1(x )=f(f n (x )),(n ∈N ∗),f 1(x )=f (x ).证明:存在 D 的真子集 D n ⫋D n−1⫋⋯⫋D 3⫋D 2⫋D 1⫋D ,使得 f (x ) 在所有 D i (i =1,2,3,⋯n ) 上封闭.24. 设函数 f (x ) 的定义域为 D ,若存在正实数 a ,使得对于任意 x ∈D ,有 x +a ∈D ,且f (x +a )>f (x ),则称 f (x ) 是 D 上的“a 距增函数”.(1) 判断函数 f (x )=2x −x 是否为 (0,+∞) 上的“1 距增函数”?说明理由;(2) 写出一个 a 的值,使得 f (x )={x +2,x <0√x x ≥0 是区间 (−∞,+∞) 上的“a 距增函数”;(3) 已知函数 f (x ) 是定义在 R 上的奇函数,且当 x >0 时,f (x )=∣x −a ∣−a .若 f (x ) 为R 上的“2021 距增函数”,求 a 的取值范围.25. 已知关于 x 的方程 x 2−2x +a =0.当实数 a 为何值时,(1) 方程的一个根大于 1,另一个根小于 1?(2) 方程的一个根在区间 (−1,1) 内,另一个根在区间 (2,3) 内? (3) 方程的两个根都大于零?26. 解答:(1) 函数 y =log 2(x −1) 的图象是由 y =log 2x 的图象如何变化得到的? (2) 在下边的坐标系中作出 y =∣log 2(x −1)∣ 的图象.(3) 设函数 y =(12)x与函数 y =∣log 2(x −1)∣ 的图象的两个交点的横坐标分别为 x 1,x 2,设M =x 1x 2−2(x 1+x 2)+4,请判断 M 的符号.27. 已知 −π<x <0,且 cos (π2+x)−cosx =−15.(1) 求 sinx −cosx 的值; (2) 求 tanx 的值.28. 已知函数 f (x )=sin (π2−x)sinx −√3cos 2x .(1) 求 f (x ) 的最小正周期和最大值; (2) 讨论 f (x ) 在 [π6,2π3] 上的单调性.29. 已知二次函数 y =x 2−(a +1a)x +1.(1) 当 a =12 时,求关于 x 的不等式 y ≤0 的解集; (2) 若 a >0,求关于 x 的不等式 y ≤0 的解集.30. 设 x >y >0,求证:x 2x y 2y >(xy )x+y .答案一、选择题(共10题) 1. 【答案】D【解析】①正确;因为函数 y =sinx ,所以 yʹ=cosx 是偶函数;②正确;因为命题“若 x =y ,则 x 2=y 2”是真命题,所以其逆否命题也是真命题;③错误;当 x ≥2 时,x 2−x −2=(x +1)(x −2)≥0 成立;当 x 2−x −2=(x +1)(x −2)≥0 时,有 x ≥2 或 x ≤−1.④正确;依据特称命题的否定的格式可知正确.【知识点】命题的概念与真假判断、全(特)称命题的概念与真假判断、全(特)称命题的否定2. 【答案】B【知识点】函数的奇偶性、函数的零点分布、函数的周期性3. 【答案】D【解析】若在其定义域上与常数 1 相关联,则满足 f (x 1)+f (x 2)=2. ① y =1x 的定义域为 {x∣ x ≠0},由 f (x 1)+f (x 2)=2 得 1x 1+1x 2=2,即1x 2=2−1x 1,当 x 1=12时,2−1x 1=2−2=0,此时1x 2=0 无解,不满足条件;② y =x 3 的定义域为 R ,由 f (x 1)+f (x 2)=2 得 (x 1)3+(x 2)3=2,即 x 2=√2−x 133唯一,满足条件;③ y =(12)x 定义域为 R ,由 f (x 1)+f (x 2)=2 得 (12)x 1+(12)x 2=2,即 (12)x 2=2−(12)x 1,当 x 1=−2 时,(12)x 2=2−(12)x 1=2−4=−2,无解,不满足条件;④ y =lnx 定义域为 {x∣ x >0},由 f (x 1)+f (x 2)=2 得 lnx 1+lnx 2=2,得 lnx 1x 2=2, 即 x 1x 2=e 2,x 2=e 2x 1,满足唯一性,满足条件;⑤ y =cosx +1 的定义域为 R ,由 f (x 1)+f (x 2)=2 得 cosx 1+cosx 2=2,得 cosx 2=2−cosx 1,当 x 1=π3 时,cosx 2=2−cosx 1=2−0=2,无解,不满足条件.故满足条件的函数是②④.【知识点】余弦函数的性质、对数函数及其性质、幂函数及其性质、指数函数及其性质4. 【答案】B【解析】【分析】利用一元二次不等式的解法即可得出.【解析】解:∵不等式x 2+mx +1>0的解集为R ,∴△=m 2−4<0,解得−2<m <2. ∴m 的取值范围是(−2,2). 故选:B .【点评】熟练掌握一元二次不等式的解法是解题的关键.5. 【答案】A【解析】设y1=a∣x∣,y2=∣log a x∣,分别作出它们的图象如图所示.由图可知,有两个交点,故方程a∣x∣=∣log a x∣有两个根.【知识点】函数零点的概念与意义6. 【答案】B【解析】由x−2<3,得x<5,又x∈N∗,所以x=1,2,3,4,即集合的另一种表示形式是{1,2,3,4},故选B.【知识点】集合的表示方法7. 【答案】C【解析】y=cos(2x−π3)=cos2(x−π6)的图象,向左平移π6个单位长度可得函数y=cos2x的图象.【知识点】三角函数的图象变换8. 【答案】C【知识点】均值不等式的应用9. 【答案】C【解析】设f(x1)=f(x2)=f(x3)=a,作出函数f(x)的图象与直线y=a,如图.由图可知0<a≤1,不妨设x1<x2<x3,则x1+x2=1,log2(x3−1)=a,因此x3=2a+1,故x1+x2+x3=2+2a,又0<a≤1,所以1<2a≤2,因此3<x1+x2+x3≤4.【知识点】函数的零点分布10. 【答案】B【解析】当k为偶数时,设k=2n,n∈Z,则原式=sin[(2n+1)π+θ]⋅cos[(2n+1)π−θ]sin(2nπ−θ)⋅cos(2nπ+θ)=sin(π+θ)⋅cos(π−θ)−sinθ⋅cosθ=−sinθ⋅(−cosθ)−sinθ⋅cosθ=−1.当k为奇数时,设k=2n+1,n∈Z,则原式=sin[(2n+2)π+θ]⋅cos[(2n+2)π−θ]sin[(2n+1)π−θ]⋅cos[(2n+1)π+θ]=sin[2(n+1)π+θ]⋅cos[(2n+1)π−θ]sin(π−θ)⋅cos(π+θ)=sinθ⋅cosθsinθ⋅(−cosθ)=−1.综上,原式的值为−1.【知识点】诱导公式二、填空题(共10题)11. 【答案】12【知识点】对数函数及其性质、函数的零点分布、Asin(ωx+ψ)形式函数的性质12. 【答案】{1e3}∪(−e,−1)【解析】作函数y=f(x)和y=kx+2的图象,如图所示,两图象除了(0,2)还应有3个公共点,当k≥0时,直线应与曲线y=f(x)(x>1)相切,设切点(x0,lnx0),则切线斜率为k=1x0,又 k =lnx 0−2x 0,则 1x 0=lnx 0−2x 0,解得 x 0=e 3,此时 k =1e 3,当 k <0 时,当 y =kx +2 与曲线 y =x+2x+1相切于点 (0,2) 时,函数 y =f (x ) 和 y =kx +2的图象只有三个公共点,不符合题意,此时 k =−1,当 −1<k <0 时,函数 y =f (x ) 和 y =kx +2 的图象只有三个公共点,不符合题意, 当直线 y =kx +2 与 y =f (x )(0<x <1)相切时,两图象只有三个公共点, 设切点 (x 0,−lnx 0),则切线的斜率 k =−1x 0,又 k =−lnx 0−2x 0,则 −1x 0=−lnx 0−2x 0,解得 x 0=e −1,此时 k =−e 不符合题意, 当 k <−e 时,两图象只有两个公共点,不合题意, 而当 −e <k <−1 时,两图象有 4 个公共点,符合题意, 所以实数 k 的取值范围是 {1e 3}∪(−e,−1).【知识点】函数的零点分布、利用导数求函数的切线方程13. 【答案】 13【解析】作出函数 y =f (x ) 的图象如图所示:由于 f (x 1)=f (x 2)=f (x 3)=f (x 4),则 x 1,x 2,x 3,x 4 可视为直线 y =k 与曲线 y =f (x ) 有四个交点时,四个交点的横坐标.由图象可知,∣log 2x 1∣=∣log 2x 2∣,由于 0<x 1<1<x 2<2,则 log 2x 1<0,log 2x 2>0, 所以,−log 2x 1=log 2x 2,即 log 2x 1+log 2x 2=log 2(x 1x 2)=0,得 x 1x 2=1, 由图象知,曲线 y =sin πx 4(2≤x ≤10) 的图象关于直线 x =6 对称,所以,x 3+x 4=12, 因此,x 1x 2+x 3+x 4=13, 故答案为 13.【知识点】函数的零点分布14. 【答案】 −2021【解析】 f (x )=sinx −x 13,为奇函数, 所以 f (−a )=−f (a )=−2021. 【知识点】函数的奇偶性15. 【答案】 −12【知识点】两角和与差的正切、两角和与差的余弦16. 【答案】(1,2)【解析】考查函数 y =f (x ) 图象与 y =a ∣x ∣ 图象的交点的情况,根据图象,得 a >0. 当 a =2 时,函数 y =f (x ) 与 y =a ∣x ∣ 图象有 3 个交点; 当 y =a ∣x ∣(x ≤0) 图象与 y =∣x 2+5x +4∣ 图象相切时,在整个定义域内,函数 y =f (x ) 图象与 y =a ∣x ∣ 图象有 5 个交点,此时,由 {y =−ax,y =−x 2−5x −4, 得 x 2+(5−a )x +4=0.由 Δ=0,解得 a =1 或 a =9(舍去).故当 1<a <2 时,函数 y =f (x ) 与 y =a ∣x ∣ 图象有 4 个交点.【知识点】函数零点的概念与意义、函数图象17. 【答案】 34【解析】由题意得大正方形的边长为 10,小正方形的边长为 2, 所以 2=10cosα−10sinα, 即 cosα−sinα=15 ⋯⋯ ①, 两边同时平方得 (cosα−sinα)2=125,即 cos 2α+sin 2α−2sinαcosα=125,又因为 cos 2α+sin 2α=1, 所以 2sinαcosα=2425, 所以(cosα+sinα)2=cos 2α+sin 2α+2sinαcosα=1+2425=4925,已知 α 为锐角,所以 cosα+sinα=75 ⋯⋯ ②, 由①②得 cosα=45,sinα=35,所以 tanα=34.【知识点】同角三角函数的基本关系18. 【答案】 5 ; (1,2]【知识点】函数的值域的概念与求法19. 【答案】 [0,1)【解析】因为“∃x ∈R ,ax 2+2ax +1≤0”为假命题, 所以其否定“∀x ∈R ,ax 2+2ax +1>0”为真命题. 当 a =0 时,显然成立;当 a ≠0 时,ax 2+2ax +1>0 恒成立可化为:{a >0,4a 2−4a <0,解得 0<a <1.综上实数 a 的取值范围是 [0,1).【知识点】全(特)称命题的概念与真假判断20. 【答案】 [4,+∞)【知识点】函数的零点分布三、解答题(共10题)21. 【答案】(1) −5≤a≤3.(2) a≥3.【知识点】交、并、补集运算、充分条件与必要条件22. 【答案】(1) 当a=1时,f(x)=ln(x−1+1),由y=ln(x−1+1)得x−1+1−=e y,所以x=1e y−1,因为f−1(x)是f(x)=ln(x−1+a)的反函数,所以f−1(x)=1e x−1,x≠0,由f−1(x)>0得1e x−1>0,所以:e x−1>0,解得:x>0,即不等式f−1(x)>0的解集为{x∣ x>0};(2) 方程f(x)+ln(x2)=0即ln(x−1+a)+ln(x2)=0,所以x+ax2=1,① a=0,则x=1,经过验证,满足关于x的方程f(x)+ln(x2)=0的解集中恰好有一个元素;② a≠0时,(i)若Δ=1+4a=0,解得a=−14,代入x+ax2=1,解得x=2,经过验证,满足关于x的方程f(x)+ln(x2)=0的解集中恰好有一个元素;(ii)若Δ=1+4a>0,则a>−14;当a>0时由1x +a>0解x>0或x<−1a,即方程f(x)+ln(x2)=0的解要在(−∞,−1a)∪(0,+∞)范围内,解方程x+ax2=1得x=−1±√1+4a2a,因为x=−1+√1+4a2a >2√a2a>0,所以为使关于x的方程f(x)+ln(x2)=0的解集中恰好有一个元素,只需−1−√1+4a2a ≥−1a,即1+√1+4a≤1,显然不成立;当−14<a<0时,由1x+a>0解得:0<x<−1a,即方程f(x)+ln(x2)=0的解要在(0,−1a)范围内,解方程x+ax2=1得x=−1±√1+4a2a,因为a<0,所以−1−√1+4a2a >0,−1+√1+4a2a>0,且−1+√1+4a2a >−1−√1+4a2a,因此只需−1+√1+4a2a <−1a<−1−√1+4a2a,即1−√1+4a2<1<1+√1+4a2,即{−√1+4a<1,√1+4a>1,解得:a>0,与−14<a<0矛盾,也不满足题意;综上,实数a的值为0或−14;(3) 由对数函数的单调性可得y=lnx单调递增,根据幂函数单调性可得y=x−1+a在(0,+∞)上单调递减,因为a>0,t∈[12,1],所以,根据复合函数单调性,可得f(x)=ln(x−1+a)在区间[t,t+1]上单调递减,因此f(x)max=ln(t−1+a),f(x)min=ln(1t+1+a),又函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过ln2,所以ln(t−1+a)−ln(1t+1+a)≤ln2,即(at+1)(t+1)t(at+a+1)≤2,整理得a≥1−tt2+t即a≥1−tt2+t对任意的t∈[12,1]恒成立,令g(t)=1−tt2+t ,t∈[12,1],任取12≤t1<t2≤1,则g (t 1)−g (t 2)=1−t 1t 12+t 1−1−t2t 22+t 2=(1−t 1)(t 22+t 2)−(1−t 2)(t 12+t 1)(t 12+t 1)(t 22+t 2)=(t 22+t 2−t 1t 22−t 1t 2)−(t 12+t 1−t 12t 2−t 1t 2)(t 12+t 1)(t 22+t 2)=(t 2−t 1)(t 2+t 1+1−t 1t 2)(t 12+t 1)(t 22+t 2),因为 12≤t 1<t 2≤1,所以 t 2−t 1>0,t 2+t 1+1−t 1t 2>0,(t 12+t 1)(t 22+t 2)>0,因此 g (t 1)−g (t 2)=(t 2−t 1)(t 2+t 1+1−t 1t 2)(t 12+t 1)(t 22+t 2)>0,即 g (t 1)>g (t 2);所以 g (t )=1−t t 2+t 在 t ∈[12,1] 上单调递减, 所以 g (t )max =g (12)=23,因此,只需 a ≥g (t )max =23,故 a 的取值范围为 [23,+∞).【知识点】对数函数及其性质、函数的最大(小)值、反函数23. 【答案】(1) 因为函数 f (x ) 的定义域为 (0,+∞),值域为 (−∞,+∞),(取一个具体例子也可),所以f (x ) 在 (0,1) 上不封闭. t =x +1∈(1,2),g (x )=ℎ(t )=(t−1)2t=t +1t −2∈(0,12)⊆(0,1),g (x ) 在 (0,1) 上封闭.(2) 函数 f (x ) 在 D 上封闭,则 f (D )⊆D . 函数 f −1(x ) 在 f (D ) 上封闭,则 D ⊆f (D ), 得到:D =f (D ).f (x )=√x +1+k 在 D =[a,b ] 单调递增.则 f (a )=a ,f (b )=b ⇔f (x )=√x +1+k =x 在 [−1,+∞) 两不等实根. g (x )=x 2−(2k +1)x +k 2−1=0({x ≥−1,x ≥k,)故 {(2k +1)2−4(k 2−1)>0,g (−1)≥0,g (k )≥0,2k+12>k,2k+12>−1,解得k∈(−54,−1].另解:⇔f(x)=√x+1+k=x在[−1,+∞)两不等实根.令t=√x+1(t≥0),k+1=t2−t在t∈[0,+∞)有两个不等根,画图,由数形结合可知,k+1∈(−14,0],解得k∈(−54,−1].(3) 如果f(D)=D,则f n(D)=D,与题干f n(D)⫋D矛盾.因此f(D)⫋D,取D1=f(D),则D1⫋D.接下来证明f(D1)⫋D1.因为f(x)是单射,因此取一个p∈D∖D1,则p是唯一的使得f(x)=f(p)的根,换句话说f(p)∉f(D1).考虑到P∈D∖D1,即D1∉D∖{p}.因为f(x)是单射,则f(D1)⫋f(D∖{p})=f(D)∖{f(p)}=D1∖{f(p)}⫋D1.这样就有了f(D1)⫋D1.接着令D n+1=f(D n),并重复上述论证证明D n+1⫋D n.【知识点】函数的值域的概念与求法、指数函数及其性质、反函数24. 【答案】(1) 函数f(x)=2x−x是(0,+∞)上的“1距增函数”,任意x∈(0,+∞),有x+1∈(0,+∞),且2x>1,所以f(x+1)−f(x)=2x+1−(x+1)−(2x−x)=2x−1>0,因此f(x)=2x−x是(0,+∞)上的“1距增函数”.(2) a=10(答案不唯一,不小于4即可)(3) f(x)={∣x−a∣−a,x>0 0,x=0−∣x+a∣+a,x≤0因为f(x)为R上的“2021距增函数”,∪)当x>0时,由定义∣x+2021−a∣−a>∣x−a∣−a恒成立,即∣x+2021−a∣>∣x−a∣恒成立,由绝对值几何意义可得a+a−2021<0,a<20212;∪)当x<0时,分两种情况:当x<−2021时,由定义−∣x+2021+a∣+a>−∣x+a∣+a恒成立,即∣x+2021+a∣<∣x+a∣恒成立,由绝对值几何意义可得−a−a−2021>0,a<−20212;当−2021≤x<0时,由定义−∣x+a∣+a<∣x+2021−a∣−a恒成立,即 ∣x +2021−a ∣+∣x +a ∣≥∣2021−2a ∣>2a 恒成立, 当 a ≤0 时,显然成立, 当 a >0 时,可得 0<a <20214; 综上,a 的取值范围为 (−∞,20214).【知识点】函数的单调性25. 【答案】(1) 已知方程的一个根大于 1,另一个根小于 1,结合二次函数 y =x 2−2x +a 的图象知(图略),当 x =1 时的函数值小于 0,即 12−2+a <0,所以 a <1. 因此 a 的取值范围是 {a∣ a <1}.(2) 由方程的一个根在区间 (−1,1) 内,另一个根在区间 (2,3) 内,结合二次函数 y =x 2−2x +a 的图象知(图略),x 取 −1,3 时函数值为正,x 取 1,2 时函数值为负.即 {1+2+a >0,1−2+a <0,4−4+a <0,9−6+a >0,解得 −3<a <0.因此 a 的取值范围是 {a∣ −3<a <0}.(3) 由方程的两个根都大于零,结合二次函数 y =x 2−2x +a 的图象知(图略),判别式不小于 0,图象的对称轴在 y 轴右侧,且当 x =0 时,函数值为正,即 {Δ=4−4a ≥0,−−22>0,a >0,解得 0<a ≤1.因此 a 的取值范围是 {a∣ 0<a ≤1}. 【知识点】函数的零点分布26. 【答案】(1) 函数 y =log 2(x −1) 的图象是由 y =log 2x 的图象向右平移 1 个单位得到的.(2) 在下边的坐标系中作出 y =∣log 2(x −1)∣ 的图象,如图所示;(3) 设函数 y =(12)x与函数 y =∣log 2(x −1)∣ 的图象的两个交点的横坐标分别为 x 1,x 2, 所以 M =x 1x 2−2(x 1+x 2)+4=(x 1−2)(x 2−2)<0.【知识点】对数函数及其性质、指数函数及其性质、函数的图象变换27. 【答案】(1) 由已知,得 sinx +cosx =15,两边平方得 sin 2x +2sinxcosx +cos 2x =125, 整理得 2sinxcosx =−2425.因为 (sinx −cosx )2=1−2sinxcosx =4925,由 −π<x <0 知,sinx <0,又 sinxcosx =−1225<0, 所以 cosx >0,所以 sinx −cosx <0, 故 sinx −cosx =−75.(2) 故此 sinx =−35,cosx =45, 所以 tanx =−34.【知识点】同角三角函数的基本关系28. 【答案】(1)f (x )=sin (π2−x)sinx −√3cos 2x=cosxsinx −√32(1+cos2x )=12sin2x −√32cos2x −√32=sin (2x −π3)−√32,所以 f (x ) 的最小正周期为 π,最大值为 2−√32.(2) 当 x ∈[π6,2π3] 时,0≤2x −3≤π,所以当 0≤2x −π3≤π2,即 π6≤x ≤5π12时,f (x ) 单调递增,当π2≤2x −π3≤π,即5π12≤x ≤2π3时,f (x ) 单调递减.综上,可知 f (x ) 在 [π6,5π12] 上单调递增,在 [5π12,2π3] 单调递减.【知识点】Asin(ωx+ψ)形式函数的性质29. 【答案】(1) 当 a =12 时,有 x 2−52x +1≤0,即 2x 2−5x +2≤0,解得 12≤x ≤2,故不等式y≤0的解集为{x∣ 12≤x≤2}.(2) y≤0⇔x2−(a+1a )x+1≤0⇔(x−1a)(x−a)≤0,①当0<a<1时,a<1a ,不等式的解集为{x∣ a≤x≤1a};②当a=1时,a=1a=1,不等式的解集为{1};③当a>1时,a>1a ,不等式的解集为{x∣ 1a≤x≤a}.综上,当0<a<1时,不等式的解集为{x∣ a≤x≤1a};当a=1时,不等式的解集为{1};当a>1时,不等式的解集为{x∣ 1a≤x≤a}.【知识点】二次不等式的解法30. 【答案】由x>y>0,x2x y2y>(xy)x+y可等价变形为x2x y2y(xy)x+y >1,即要证(xy)x−y>1.因为xy >1,x−y>0,由幂的基本不等式,可知(xy)x−y>1.【知识点】幂的概念与运算。

人教版A版高中数学必修第一册 第二章综合测试01试题试卷含答案 答案在前

人教版A版高中数学必修第一册 第二章综合测试01试题试卷含答案 答案在前

第二章综合测试答案解析一、 1.【答案】D【解析】当0c <时,A 选项不正确;当0a <时,B 选项不正确;两边同时加上一个数,不等号方向不改变,故C 选项错误.故选D . 2.【答案】D【解析】2=()=a b +-+-+(.+ ,a ∴,b 必须满足的条件是0a ≥,0b ≥,且a b ≠.故选D .3.【答案】A【解析】当=0k 时,不等式2680kx kx k -++≥化为80≥,恒成立,当0k <时,不等式2680kx kx k -++≥不能恒成立,当0k >时,要使不等式2680kx kx k -++≥对任意x ∈R 恒成立,需22=36480k k k ∆-+()≤,解得01k ≤≤,故01k <≤.综上,k 的取值范围是01k ≤≤.故选A . 4.【答案】A【解析】由311x +<,得3101x -+<,201x x -++,解得1x -<或2x >.因为“x k >”是“311x +”的充分不必要条件,所以2k ≥.5.【答案】B【解析】不等式2x ax b +<可化为20x ax b --<,其解集是{}|13x x <<,那么由根与系数的关系得13=13=a b +⎧⎨-⎩⨯,,解得=4=3a b ⎧⎨-⎩,,所以4=3=81a b -().故选B . 6.【答案】D【解析】选项A ,c 为实数,∴取=0c ,此时22=ac bc ,故选项A 不成立;选项B ,11=b a a b ab--,0a b <<,0b a ∴->,0ab >,0b a ab -∴,即11a b>,故选项B 不成立;选项C ,0a b <<,∴取=2a -,=1b -,则11==22b a --,2==21a b --,∴此时b aa b ,故选项C 不成立;选项D ,0a b <<,2=0a ab a a b ∴--()>,2=0ab b b a b --()>,22a ab b ∴>>,故选项D 正确.7.【答案】D【解析】210x a x a -++ ()<,10x x a ∴--()()<,当1a >时,1x a <<,此时解集中的整数为2,3,4,故45a <≤.当1a <时,1a x <<,此时解集中的整数为2-,1-,0,故32a --≤<.故a 的取值范围是32a --≤<或45a <≤.故选D . 8.【答案】B【解析】不等式210x ax ++≥对一切02x <<恒成立,1a x x∴--≥在02x <<时恒成立.11=2x x x x ---+-- ((当且仅当=1x 时取等号),2a ∴-≥,∴实数a 的最小值是2-.故选B . 9.【答案】A【解析】由题知{}=20N -,,则{}=0M N .故选A . 10.【答案】C【解析】2x >,20x ∴->.11==222=422y x x x x ∴+-+++--()≥,当且仅当12=2x x --,即=3x 时等号成立.=3a ∴. 11.【答案】B【解析】由已知及三角形三边关系得3a b c a a b c a c b +⎧⎪+⎨⎪+⎩<≤,>,>,即1311b ca abc a a c b a a⎧+⎪⎪⎪+⎨⎪⎪+⎪⎩<,>>1311b c a ac b a a ⎧+⎪⎪∴⎨⎪--⎪⎩<≤,<,两式相加得024c a ⨯<<.c a ∴的取值范围为02ca<<.12.【答案】D【解析】 二次三项式220ax x b ++≥对一切实数x 恒成立,0a ∴>,且=440ab ∆-≤,1ab ∴≥.又0x ∃∈R ,使2002=0ax x b ++成立,则=0∆,=1ab ∴,又a b >,0a b ∴->.22222==a b a b ab a b a b a b a b +-+∴-+---()(),当且仅当a b -时等号成立.22a b a b+∴-的最小值为D .二、 13.【答案】111a a-+ 【解析】由1a <,得11a -<<.10a ∴+>,10a ->.2111=11a a a +--.2011a - <≤,2111a∴-,111a a∴-+≥.14.【答案】a【解析】不等式22210x ax -+≥对一切实数x 都成立,则2=44210a ∆-⨯⨯≤,解得a ,∴实数a 的取值范围是a .15.【答案】3【解析】若①②成立,则cd ab ab a b --((),即bc ad --<,bc ad ∴>,即③成立;若①③成立,则bc ad ab ab>,即c d a b >,c d a b ∴--<,即②成立;若②③成立,则由②得c d a b >,即0bc adab->, ③成立,0bc ad ∴->,0ab ∴>,即①成立.故可组成3个正确命题.16.【答案】42x -<< 【解析】不等式2162ab x x b a ++<对任意0a >,0b >恒成立,等价于2162a bx x b a++min <().因为16a b b a +≥(当且仅当=4a b 时等号成立).所以228x x +<,解得42x -<<. 三、17.【答案】(1)当=0a 时,31=0x +只有一解,满足题意;当0a ≠时,=94=0a ∆-,9=4a . 所以满足题意的实数a 的值为0或94.(5分)(2)若A 中只有一个元素,则由(1)知实数a 的值为0或94. 若=A ∅,则=940a ∆-<,解得94a >.所以满足题意的实数a 的取值范围为=0a 或94a ≥.(10分) 18.【答案】(1)2560x x --+ <,2560x x ∴+->,160x x ∴-+()()>,解得6x -<或1x >,∴不等式2560x x --+<的解集是{|6x x -<或}1x >.(4分)(2)当0a <时,=2y a x a x --()()的图象开口向下,与x 轴的交点的横坐标为1=x a ,2=2x ,且2a <,20a x a x ∴--()()>的解集为{}|2x a x <<.(6分)当=0a 时,2=0a x a x --()(),20a x a x ∴--()()>无解.(8分)当0a >时,抛物线=2y a x a x --()()的图象开口向上,与x 轴的交点的横坐标为=x a ,=2x .当=2a 时,原不等式化为2220x -()>,解得2x ≠.当2a >时,解得2x <或x a >. 当2a <时,解得x a <或2x >.(10分)综上,当0a <时,原不等式的解集是{}|2x a x <<; 当=0a 时,原不等式的解集是∅;当02a <<时,原不等式的解集是{|x x a <或}2x >; 当=2a 时,原不等式的解集是{}|2x x ≠;当2a >时,原不等式的解集是{|2x x <或}x a >.(12分)19.【答案】23=12y x x -+, 配方得237=416y x -+(). 因为324x ≤≤,所以min 7=16y ,max =2y .所以7216y ≤.所以7=|216A y y ⎧⎫⎨⎬⎩⎭≤≤.(6分) 由21x m +≥,得21x m -≥, 所以{}2=|1B x x m -≥.(8分) 因为p 是q 的充分条件, 所以A B ⊆. 所以27116m -≤,(10分) 解得实数m 的取值范围是34m ≥或34m -≤.(12分) 20.【答案】(1)由题意知{}=|03A x x ≤≤,{}=|24B x x ≤≤, 则{}=|23A B x x ≤≤.(3分) (2)因为=A B A ,所以B A ⊆.①当=B ∅,即23a a +>,3a >时,B A ⊆成立,符合题意.(8分)②当=B ∅,即23a a +≤,3a ≤时, 由B A ⊆,有0233a a ⎧⎨+⎩≤,≤,解得=0a .综上,实数a 的取值范围为=0a 或3a >.(12分)21.【答案】(1)a 、b 为正实数,且11a b+.11a b ∴+(当且仅当=a b 时等号成立), 即12ab ≥.(3分)2221122=a b ab +⨯ ≥≥(当且仅当=a b 时等号成立),22a b ∴+的最小值为1.(6分)(2)11a b+,a b ∴+.234a b ab - ()≥(), 2344a b ab ab ∴+-()≥(),即2344ab ab -()≥(), 2210ab ab -+()≤, 210ab -()≤,a 、b 为正实数,=1ab ∴.(12分)22.【答案】(1)当=0a 时,原不等式可化为10-<,所以x ∈R .当0a <时,解得1a x a +>. 当0a >时,解得1a x a+<.综上,当=0a 时,原不等式的解集为R ; 当0a <时,原不等式的解集为1|a x x a +⎧⎫⎨⎬⎩⎭>; 当0a >时,原不等式的解集为1|a x x a +⎧⎫⎨⎬⎩⎭<.(6分) (2)由21ax a x x a -+--()≤,得21ax x x -+≤.因为0x >,所以211=1x x a x x x-++-≤, 因为2y x x a --≤在0+∞(,)上恒成立, 所以11a x x+-≤在0+∞(,)上恒成立. 令1=1t x x+-,只需min a t ≤, 因为0x >,所以1=11=1t x x +-≥,当且仅当=1x 时等式成立. 所以a 的取值范围是1a ≤.(12分)第二章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列结论正确的是( ) A .若ac bc >,则a b >B .若22a b >,则a b >C .若a b >,0c <,则a c b c ++<D ,则a b <2.若++,则a ,b 必须满足的条件是( ) A .0a b >> B .0a b <<C .a b >D .0a ≥,0b ≥,且a b ≠3.已知关于x 的不等式2680kx kx k -++≥对任意x ∈R 恒成立,则k 的取值范围是( ) A .01k ≤≤ B .01k <≤ C .0k <或1k >D .0k ≤或1k ≥4.已知“x k >”是“311x +<”的充分不必要条件,则k 的取值范围是( ) A .2k ≥B .1k ≥C .2k >D .1k -≤5.如果关于x 的不等式2x ax b +<的解集是{}|13x x <<,那么a b 等于( ) A .81-B .81C .64-D .646.若a ,b ,c 为实数,且0a b <<,则下列命题正确的是( ) A .22ac bc <B .11a b<C .b aab>D .22a ab b >> 7.关于x 的不等式210x a x a -++()<的解集中恰有3个整数,则a 的取值范围是( )A .45a <<B .32a --<<或45a <<C .45a <≤D .32a --≤<或45a <≤8.若不等式210x ax ++≥对一切02x <<恒成立,则实数a 的最小值是( ) A .0B .2-C .52-D .3-9.已知全集=U R ,则下列能正确表示集合{}=012M ,,和{}2=|+2=0N x x x 关系的Venn 图是( )A BCD10.若函数1=22y x x x +-(>)在=x a 处取最小值,则a 等于( )A .1+B .1或3C .3D .411.已知ABC △的三边长分别为a ,b ,c ,且满足3b c a +≤,则ca 的取值范围为( ) A .1c a>B .02c a<<C .13c a <<D .03c a<<12.已知a b >,二次三项式220ax x b ++≥对一切实数x 恒成立,又0x ∃∈R ,使202=0ax x b ++成立,则22a b a b+-的最小值为( )A .1BC .2D .二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已经1a <,则11a+与1a -的大小关系为________. 14.若不等式22210x ax -+≥对一切实数x 都成立,则实数a 的取值范围是________.15.已知三个不等式:①0ab >,②c da b--<,③bc ad >.以其中两个作为条件,余下一个作为结论,则可以组成________个正确命题. 16.若不等式2162a bx x b a++<的对任意0a >,0b >恒成立,则实数x 的取值范围是________. 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合{2=|31=0A x ax x ++,}x ∈R ,(1)若A 中只有一个元素,求实数a 的值;(2)若A 中至多有一个元素,求实数a 的取值范围.18.(本小题满分12分)解下列不等式. (1)2560x x --+<;(2)20a x a x --()()>.19.(本小题满分12分)已知集合23=|=12A y y x x ⎧-+⎨⎩,324x ⎫⎬⎭≤≤,{}2=|1B x x m +≥.p x A ∈:,q x B ∈:,并且p 是q 的充分条件,求实数m 的取值范围.20.(本小题满分12分)已知集合{}2=|30A x x x -≤,{=|23B x a x a +≤≤,}a ∈R .(1)当=1a 时,求A B ;(2)若=A B A ,求实数a 的取值范围.21.(本小题满分12分)设a 、b 为正实数,且11a b+. (1)求22a b +的最小值;(2)若234a b ab -()≥(),求ab 的值.22.(本小题满分12分)已知函数=1y ax a -+().(1)求关于x 的不等式0y <的解集;(2)若当0x >时,2y x x a --≤恒成立,求a 的取值范围.。

高一数学函数综合试题答案及解析

高一数学函数综合试题答案及解析

高一数学函数综合试题答案及解析1.定义运算:,对于函数和,函数在闭区间上的最大值称为与在闭区间上的“绝对差”,记为,则= .【答案】.【解析】记,,于是构造函数,则当时,;当或时,所以.即为所求.【考点】函数的最值及其几何意义.2.设,那么()A.B.C.D.【答案】B.【解析】观察题意所给的递推式特征可知:,所以,故选B.【考点】数列的递推公式.3.函数y=-xcosx的部分图象是().【答案】D.【解析】选判断函数的奇偶性,此时,有,可知此函数为奇函数,排除A,C;又当x>0时,取时,可知此时,易知图像与x轴交于,而当时,,故选D.【考点】函数图像的辨析与识别,奇偶函数的定义与性质,排除法,特殊角的三角函数值.4.方程在区间内的所有实根之和为 .(符号表示不超过的最大整数).【答案】2.【解析】设,当时,;当时,;当时,;当时,;即;令,得;令,得;的所有根为0,2,之和为2.【考点】新定义题、函数图像的交点.5.若不等式对任意的上恒成立,则的取值范围是()A.B.C.D.【答案】D.【解析】∵,又∵,,∴,又∵,根据二次函数的相关知识,可知当,时,,综上所述,要使不等式对于任意的恒成立,实数的取值范围是.【考点】1.函数求最值;2.恒成立问题的处理方法.6.下列四个命题:①方程若有一个正实根,一个负实根,则;②函数是偶函数,但不是奇函数;③函数的值域是,则函数的值域为;④一条曲线和直线的公共点个数是,则的值不可能是.其中正确的有________________(写出所有正确命题的序号).【答案】①④【解析】,故①正确;根据定义域,,所以,所以也是奇函数;故②不正确;仅是定义域变了,值域没有改变;故③不正确;是关于对称轴对称的图像,所以与其交点个数只能是偶数个,不可能是1.故④正确.【考点】1.方程根与系数的关系;2.函数奇偶性;3.抽象函数;4.函数图像.7.已知函数,则下列说法中正确的是()A.若,则恒成立B.若恒成立,则C.若,则关于的方程有解D.若关于的方程有解,则【答案】D.【解析】绝对值不等式,当时,则,此时,所以A错误;当恒成立时,有,此时假设,则由绝对值不等式可知恒成立,此时与恒成立矛盾,再结合对A选项的分析,可知,所以B选项错误;当时,则,此时,方程,左边是正数,右边是负数,无解,所以C错误;对于D,当关于的方程有解时,由上述C选项的分析可知不可能小于0,当时,,也不满足有解,所以,此时由有解,可得,所以,所以,选项D正确,故选D.【考点】函数与绝对值不等式.8.如果二次函数不存在零点,则的取值范围是()A.B.C.D.【答案】B【解析】∵二次函数不存在零点,二次函数图象向上,∴,可得,解得,故选D.【考点】1、函数零点;2、函数与方程的关系.9.已知函数是定义在上的奇函数,当时的解析式为.(Ⅰ)求函数的解析式;(Ⅱ)求函数的零点.【答案】(Ⅰ)(Ⅱ)零点为【解析】(Ⅰ)先利用奇函数的性质求时的解析式,再求时的解析式,最后写出解析式. 本小题的关键点:(1)如何借助于奇函数的性质求时的解析式;(2)不能漏掉时的解析式.(Ⅱ)首先利用求零点的方法:即f(x)=0,然后解方程,同时注意限制范围.试题解析:(Ⅰ)依题意,函数是奇函数,且当时,,当时,, 2分又的定义域为,当时, 2分综上可得, 2分(Ⅱ)当时,令,即,解得,(舍去) 2分当时,, 1分当时,令,即,解得,(舍去) 2分综上可得,函数的零点为 1分【考点】1、奇函数的性质;2、求方程的零点.10.函数的零点所在的区间是()A.B.C.D.【答案】C.【解析】因为函数的定义域为大于零的实数。

2023-2024学年高一上数学必修一综合测试卷(附答案解析)

2023-2024学年高一上数学必修一综合测试卷(附答案解析)

解析:当 c=0 时,A 不成立;当 a=-1,b=-2 时,B 不成立;
由不等式的性质知 C 不成立;若 a> b,则一定能推出 a>b,故 D 成
立.
3.命题“∃x∈R,x3-x2+1>0”的否定是( A )
A.∀x∈R,x3-x2+1≤0 B.∀x∈R,x3-x2+1>0
C.∃x∈R,x3-x2+1≤0 D.不存在 x∈R,x3-x2+1≤0
的取值范围是( A )
A.[2,6)
B.(2,6)
C.(-∞,2]∪(6,+∞)
D.(-∞,2)∪(6,+∞)
解析:①当 a=2 时,1>0 成立,故 a=2 符合条件;②当 a≠2 时,
a-2>0,
必须满足 Δ=a-22-4a-2<0,
解得 2<a<6.由①②可知,a∈
[2,6).故选 A.
二、多项选择题(本题共 4 小题,每小题 5 分,共 20 分.在每小
2
4
sinx

1π,3π 22
上单调递减,故
y=
π,3π 2sin2x 在 4 4 上单调递减,故
题给出的四个选项中,有多个选项符合题目要求.全部选对的得 5 分,
部分选对的得 3 分,有选错的得 0 分)
9.下列函数是偶函数的是( CD )
A.f(x)=tanx B.f(x)=sinx C.f(x)=cosx D.f(x)=lg|x|
解析:根据题意,依次分析选项:对于 A,f(x)=tanx,是正切函
解析:存在量词命题“∃x∈M,p(x)”的否定为全称量词命题“∀
x∈M,綈 p(x)”,故选 A.
4. 22cos375°+ 22sin375°的值为( A )

高一数学必修测试题及答案

高一数学必修测试题及答案

高一数学 (必修 2)综合测试题一、填空题( 14 小题,共 70 分)1.用符号表示“点 A 在直线l上, l在平面外”为▲A 2.右图所示的直观图,其本来平面图形的面积是▲23.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图以以下图所示,O 45B2则这个棱柱的侧面积为▲。

4.a,b,c分别表示三条直线,4M表示平面,给出以下四个命题:①若a∥ M,b ∥ M,则 a∥ b;②若 b M, a∥b,则33a∥ M;③若正视图侧视图俯视图⊥,⊥则∥;④若⊥⊥M,则a∥ . 此中不正确命题的有▲(填序号)a cb c, a b a M,b b5.已知正方体外接球的体积是32,那么正方体的棱长等于▲36.直线 3 x+y+1=0的倾斜角为7.经过直线 2x+3y-7=0与 7x+15y+1=0的交点,且平行于直线x+2y-3=0 的直线方程是 ________ ▲ ___. 8.若A(-2,3),B(3,-2),C(0,m)三点共线,则m的值为▲9.两圆订交于点 A( 1, 3)、 B( m,- 1),两圆的圆心均在直线x- y+c=0上,则 m+c的值为▲10.两圆( x― 2)2 +(y+1) 2 = 4与 (x+2)2+(y ― 2) 2 =16 的公切线有▲条11.经过点 M( 1, 1)且在两轴上截距相等的直线是▲。

....12.光芒从点(―1, 3)射向x 轴,经过x 轴反射后过点(4, 6),则反射光芒所在的直线方程一般式是▲13.若直线y kx 4 2k 与曲线y4x 2有两个交点,则k 的取值范围是▲14.在棱长为 1 的正方体上,分别用过共极点的三条棱中点的平面截该正方体, 则截去8 个三棱锥后 , 剩下的凸多面体的体积是▲二、解答题( 6 大题 , 共 90 分)15.( 此题 14 分 )已知ABC 三个极点是 A (1,4), B( 2, 1) ,C(2,3).y( 1)求 BC边中线 AD所在直线方程;( 2)求点A到BC边的距离.AC 4cm16.( 此题 14 分 )如图,一个圆锥形的空杯子上边放着一个半球形的冰淇淋,假如冰淇淋消融了,会溢出杯子吗?请用你的计算数听说明原因.O xB12cm17. (本 15 分 )如, ABCD是正方形, O是正方形的中心,PO 底面 ABCD, E 是 PC的中点.P求:( 1)PA∥平面 BDE;(2)平面 PAC 平面 BDE.18. (本15 分 )已知直 l 点P(1,1),并与直 l 1:x E- y+3=0 和l2:2x+y - 6=0 分交于点A、B,若段 AB 被点 P 平分,求:(Ⅰ)直l 的方程;D C (Ⅱ)以 O心且被l 截得的弦8 5的的方程.O5A B19.( 本16 分) 已知数a足 0<a<2,直l1:ax- 2y- 2a+4=0 和l2:2x+a2y- 2a2- 4=0 与两坐成一个四形。

高一数学必修一期中备考综合测试01(A卷)(解析版).docx

高一数学必修一期中备考综合测试01(A卷)(解析版).docx

班级 ________ 姓名___________ .学号__________ 分数《必修一期中备考综合测试卷(一)》(A卷)(测试时问:120分钟满分:150分)第I卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分•在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列给出的命题正确的是()A.高中数学课本中的难题可以构成集合B.有理数集Q是最大的数集C.空集是任何非空集合的真子集D.自然数集N中最小的数是1【答案】C【解析】难题不具有确定性,不能构造集合,A错误;实数集R就比有理数集Q犬,疗错误;空集是任何非空集合的真子集,C正确;自然数集N中最小的数是0, D错误;故选C・2.若P={x|x<l),Q={x|x>-l},则()A. PcQB. QcpC. C(! P cQD. Qc Q, P【答案】C【解析】C v P={x|x^l},而Q二{x|x>T},故有C v PCQ故选C.3.已知集合N, P为全集U的子集,且满足McpcN,则下列结论不正确的是()A. [uNcQPB. C N P C GMC. (C U P) AM=0D. ((>M) AN=0【答案】D【解析】因为PUN,所以C V N C QP,故A正确;因为Mcp,所以C N P C C N M,故B正确;因为MCP,所以(CiP) AM=0,故C正确;因为MG N,所以(C U M)DNH0.故D不正确. 故选D.4.[2018届黑龙江省佳木斯市鸡东县第二中学高三第一次月考】若集合A = {l,2,4,8},B = {x|2x<5}, 则A c B =()A. {1}B. {2}C. {1,2}D. {1,2,3}【答案】C【解析】B = {x|2A <5} =(^o,log25)/.AnB = {l,2},选B.5.【2018届福建省数学基地校高三联考】下列函数屮,定义域是R且为增函数的是()A. y = e~xB. y = x^C. y = larD. y = x【答案】B【解析】分别画出四个函数的图象,如图:故选B.6.【2018届广西钦州市高三第一次检测】已知集合A = {1, 2, 3, 4},集合B = {3,4, 5, 6},集合C=AnB, 则集合C的子集的个数为()A. 1B. 2C. 3D. 4【答案】D【解析】2, 3, 4}, B={3, 4, 5, 6},/.C=AnB={l, 2, 3, 410(3, 4, 5, 6} = {3, 4打•:集合C的子集为0, {3},⑷,{3, 4} f共4个.故选:D・7.集合A= {-1,0,1}, A的子集中含有元素0的子集共有()A. 2个B. 4个C. 6个D. 8个【答案】B【解析】含有元素0的子集有{0}, {0,-1}, {0,1}, {0,-1, 1},共4个.故选B.8.[2018届福建省数学基地校高三联考】函数/(对二 _ 的定义域为()71og2x-lA. (0,2)B.「(0,2]C. (2,4W)D. [2,-H X))【答案】C【解析】因为log 2x>l=>x>2,所以选C.X 2,XG [-1,0]9. 函数/(%) = { 1 ([的最值情况为()-,xe(O,ll x A.最小值0,最大值1 B.最小值0,无最大值 C.最小值0,最大值5 D.最小值1,最大值5【答案】B【解析1 xe [-1,0], f(x)的最大值为1,最小值为0; xe(o,l]时,f(x)e [1,+8)无最大值,有最小{Hl,所以f(x)有最小值0,无最大值.故选B.10. 若函数/(尢)的定义域为[—2,2],则函数/(x+l) + /(l-2x)的定义域为() 1 ~| [ 1 ~| 1~ 3~A. —, 1B. —, 2C. [—2,21rD. —3,—_ 2」 L 2」 L 」|_ 2_【答案】A【解析】因为函数/(x)的定义域为[-2=2],所以函数/(x+l)+/(l-2x)中有:-2<x+l<2 -2<l-2x<2故选A.( )A. 4B. —4C. 1 r 1 _D.―一 4 4【答案】 C【解析】 /(-2)= 2-2 =1 _ 4故选C.即函数/(x+l) + /(l-2x)的定义域为11.【2018届新疆呼图壁县第一屮学高三9月】设/(x) = {-J x + 22Xx>0 x<0,求f(-2)的值12. 【2018届甘肃省武威市第六屮学高三第一次】若a 满足a + lga = 4, b 满足b + 10b = 4,函数 f (x )=F + (a ;:)::2zO 则关于x 的方程f (x )=x 解的个数是() A. 1 B. 2 C. 3 D. 4【答案】C【解析】Ta 满足a + 1駅=4, b 满足b + 10b = 4,.・・a, b 分别为函数y = 4-泻函数y = lgx, y = 10週象 交点的横坐标,由于y = x^y = 4-X @象交点的横坐标为2,函数y = lgx, y = 10啲图象关于y = x 对称, y2 1 Ay -L 0 丈 V・・.a + b = 4, .I 函数f (x )=' 一 ,当XMO 时,关于x 的方程f (x ) = x,即P + 4X+2二須 2, x> 0即疋+ 3x4-2=0, /.X = -2或x = -1,满足题鼠 当x > 0时,关于x 的方程f (x ) = x,即x = 2,满足题意, ・•・关于x 的方程f (x ) = x 的解的个数是3,故选C.第II 卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 【2018届浙江省温州市高三9月测试】(J log2S = ___________ ・【答案】;【解析】@10§23= 2』諮=210g23 = |,故答案为*(1 \14.【2018届河北省石家庄二中八月模拟】已知幕函数/(兀)的图彖经过点-,V2,M/(x ) = 丿_1【答案】x 4[ 1 1V2=>c^ = --,所以/(x) = x 4,应填答案兀J 15. 【2018届宁夏育才中学高三第一次月考】函数y = lo&(x+l ) + 2(d>0且dHl )恒过定点A,则A 的坐【解析】由题意- 丿标为____ .【答案】(0, 2)【解析】log 」=0.・.x = 0R 寸y = 2,即A 的坐标为(0, 2).(3X - 1 x > 016. [2018届贵•州省贵阳市第一中学高三月考一】已知函,数f (x )=L ;x2_;;;:0'若方程£(*)=皿有3个不等的实根,则实数m 的取值范围是 __________ . 【答案】(0, 2)【解析】画出函数图像,得二次函数最高•点位(-12),常函数y = m 和曲线有三个交点,则位于x 轴上方, 最高点「下方即可•故得m e (0,2).三、解答题(本大题共6小题,共70分•解答应写出文字说明、证明过程或演算步骤・)17. (本小题 10 分)计算:(1)(0.064戶 + (-2)‘ 3+16_0-75+(0.25)251 19 【答案】(1) —;(2)—16 4【解析】试题分析:(1)主要利用指数幕的运算法则(a ,n )n =a ,,ut 即可得出;(2)利用对数的运算法则、换 底公式即可得出.2 2 16 8 2 16(2)原式ulogQ 石+lgl00+2 +些•坐=—丄 + 4 + 1= —lg2 21g3 4418. (本小题12分)已知函数/(x) = {x 2+l,-l<x<l2x + 3,x v -1(1) 求 /(/(/(-2)))的值。

高一数学高中数学新课标人教A版试题答案及解析

高一数学高中数学新课标人教A版试题答案及解析

高一数学高中数学新课标人教A版试题答案及解析1.直线l过点P(1,3),且与x、y轴正半轴所围成的三角形的面积等于6,则l的方程是( ) A.3x+y-6=0B.x+3y-10=0C.3x-y=0D.x-3y+8=0【答案】A【解析】设y=kx+b,由题意得k<0,b>0,且解得【考点】点斜式方程及三角形的面积.2.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为.【答案】y-1=-(x-2).【解析】根据题意可知:直线l1的斜率为−1,所以l1的点斜式方程为y-1=-(x-2).【考点】两直线垂直的斜率关系.3.已知扇形半径为,弧长为,则扇形面积是__________.【答案】【解析】扇形的半径 ,弧长,扇形的面积是 .故答案为.4.在中,若点满足,则()A.B.C.D.【答案】D【解析】.得,化简可得,即,故本题正确答案为5.的外接圆的圆心为O,若,则是的()A.外心B.内心C.重心D.垂心【答案】D【解析】因为,所以,即,也即;同理可得,,故是三角形的垂心,应选答案D。

点睛:解答本题的关键是如何借助三角形的外接圆的圆心这一有效信息,然后再运用向量的数量积公式进行合理地变形,最终逐一验证获证,,,由此可推断是三角形的垂心,从而使得问题简捷、巧妙获解。

6.已知直角梯形中,是腰上的动点,则的最小值为__________.【答案】5【解析】以D为原点建系,设长为,,最小为5【考点】向量运算7.已知实数满足则目标函数的最小值为.【答案】【解析】作出不等式组对应的平面区域,如图所示,由,得表示斜率为,纵截距为的一组平行直线,平移直线,当直线经过点时,此时直线截距最大,最小,由,得,此时最小值.【考点】简单的线性规划.8.已知平面向量与垂直,则=____________。

【答案】【解析】,又与垂直,所以,即.【考点】向量的坐标运算.【名师】本题考查向量的坐标运算,容易题;平面向量坐标运算主要是利用向量加、减、数乘及数量积的运算法则来进行求解的,若已知有向线段两端点的坐标,应先求向量的坐标。

高一数学测试卷及答案详解(附答案)

高一数学测试卷及答案详解(附答案)
高一数学测试卷(必修1,必修2)
第一部分选择题(共50分)
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.
1.设集合 ,那么集合 是()
A. B. C. D.
2.设集合 和集合 都是自然数集 ,映射 把集合 中的元素 映射到集合 中的元素 ,则在映射 下,像20的原像是( )
16.本小题主要考查指数函数和对数函数的性质,考查函数的单调性.满分14分.
解:(1)函数 有意义,则 ……2分
当 时,由 解得 ;当 时,由 解得 .
所以当 时,函数的定义域为 ;……4分
当 时,函数的定义域为 .……6分
(2)当 时,任取 ,且 ,则
,即
由函数单调性定义知:当 时, 在 上是单调递增的.……10分
对称,那么必有()
A. B. C. D.
8.如果直线 ,那么 的位置关系是()
A.相交B. C. D. 或
9.在空间直角坐标系中,点 关于 轴的对称点坐标为()
A. B. C. D.
10.一个封闭的立方体,它的六个表面各标出ABCDEF这六个字母.现放成下面三中不同的位置,所看见的表面上字母已标明,则字母A、B、C对面的字母分别为( )
13.集合 ,若 ,则实数 的取值范围为_____________
14.已知函数 分别由下表给出,则 _______, ________.
1
2
3
4
1
2
3
4
2
3
4
1
2
1
4
3
三、解答题:本大题共6小题,共80分.解答应写出文字说明、演算步骤或推证过程.(其中15题和18题每题12分,其他每题14分)

高一数学学科素养能力竞赛集合部分综合测试题(解析版)

高一数学学科素养能力竞赛集合部分综合测试题(解析版)

高一数学学科素养能力竞赛集合部分综合测试题第I 卷(选择题)一、单选题: 本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,1A =-,{}1B x ax ==,若A B B =,则a 的取值集合为( ) A .{}1B .{}1-C .{}1,1-D .{}1,0,1-【答案】D【分析】由题意知B A ⊆,分别讨论B =∅和B ≠∅两种情况,即可得出结果.【详解】由A B B =,知B A ⊆,因为{}1,1A =-,{|1}B x ax ==,若B =∅,则方程1ax =无解,所以0a =满足题意; 若B ≠∅,则1{|1}B x ax x x a ⎧⎫====⎨⎬⎩⎭, 因为B A ⊆,所以11a=±,则满足题意1a =±; 故实数a 取值的集合为{}1,0,1-.故选:D.2.设a ,b 是实数,集合{}1,A x x a x R =-<∈,{}|||3,B x x b x R =->∈,且A B ⊆,则a b -的取值范围为( )A . []0,2B .[]0,4C .[)2,+∞D .[)4,+∞ 【答案】D【分析】解绝对值不等式得到集合,A B ,再利用集合的包含关系得到不等式,解不等式即可得解. 【详解】集合{}{}1,|11A x x a x R x a x a =-<∈=-<<+,{}{3,|3B x x b x R x x b =-∈=<-或}3x b >+ 又A B ⊆,所以13a b +≤-或13a b -≥+即4a b -≤-或4a b -≥,即4a b -≥ 所以a b -的取值范围为[)4,+∞故选:D3.若1|12A x x ⎧⎫=-<⎨⎬⎩⎭,1|1B x x ⎧⎫=≥⎨⎬⎩⎭,定义{|A B x x A B ⨯=∈⋃且}x A B ∉⋂,则A B ⨯=( )A .13,01,22⎛⎤⎡⎫-⋃ ⎪⎥⎢⎝⎦⎣⎭B .13,01,22⎛⎤⎛⎫-⋃ ⎪⎥⎝⎦⎝⎭C .13,22⎡⎤-⎢⎥⎣⎦D .(0,1]【答案】B【分析】本题抓住新定义{|A B x x A B ⨯=∈⋃且}x A B ∉⋂中x 满足的条件,解不等式得到集合,A B ,进而求得A B ,A B ,最后求出()()A B A B ⋃即为所求. 【详解】1113|111|2222A x x x x x ⎧⎫⎧⎫⎧⎫=-<=-<-<=-<<⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭ {}11|1|0|01x B x x x x x x -⎧⎫⎧⎫=≥=≥=<≤⎨⎬⎨⎬⎩⎭⎩⎭{}|01A B x x ∴⋂=<≤,13|22A B x x ⎧⎫⋃=-<<⎨⎬⎩⎭ 1|02A B x x ⎧∴⨯=-<≤⎨⎩或312x ⎫<<⎬⎭13,01,22⎛⎤⎛⎫=-⋃ ⎪⎥⎝⎦⎝⎭故选:B【点睛】关键点点睛:本题考查集合的新定义,解绝对值不等式和分式不等式,理解题目中{|A B x x A B ⨯=∈⋃且}x A B ∉⋂中x 满足的条件是解题的关键,考查学生的分析试题能力与转化与化归能力,属于较难题.4.设A 是集合{}12345678910,,,,,,,,,的子集,只含有3个元素,且不含相邻的整数,则这种子集A 的个数为( )A .32B .56C .72D .84【答案】B【分析】分类列举出每一种可能性即可得到答案.【详解】若1,3在集合A 内,则还有一个元素为5,6,7,8,9,10中的一个;若1,4在集合A 内,则还有一个元素为6,7,8,9,10中的一个;若1,8在集合A 内,则还有一个元素为10;共有6+5+4+3+2+1=21个.若2,4在集合A 内,则还有一个元素为6,7,8,9,10中的一个;若2,5在集合A 内,则还有一个元素为7,8,9,10中的一个;若2,8在集合A 内,则还有一个元素为10;共有5+4+3+2+1=15个.若3,5在集合A 内,则还有一个元素为7,8,9,10中的一个;若3,6在集合A 内,则还有一个元素为8,9,10中的一个;若3,8在集合A 内,则还有一个元素为10;共有4+3+2+1=10个.若4,6在集合A 内,则还有一个元素为8,9,10中的一个;若4,7在集合A 内,则还有一个元素为9,10中的一个;若4,8在集合A 内,则还有一个元素为10;共有3+2+1=6个.若5,7在集合A 内,则还有一个元素为9,10中的一个;若5,8在集合A 内,则还有一个元素为10;共有2+1=3个.若6,8,10在在集合A 内,只有1个.总共有21+15+10+6+3+1=56个故选:B.5.设{}1,2,3,4,I =,A 与B 是I 的子集,若{}1,3A B =,则称(,)A B 为一个“理想配集”.那么符合此条件的“理想配集”(规定(,)A B 与(,)B A 是两个不同的“理想配集”)的个数是( )A .16B .9C .8D .4【答案】B【分析】根据题意,子集A 和B 不可以互换,从子集A 分类讨论,结合计数原理,即可求解.【详解】由题意,对子集A 分类讨论:当集合{}1,3A =,集合B 可以是{1,2,3,4},{1,3,4},{1,2,3},{1,3},共4种结果;当集合{}1,2,3A =,集合B 可以是{1,3,4},{1,3},共2种结果;当集合{}1,3,4A =,集合B 可以是{1,2,3},{1,3},共2种结果;当集合{}1,2,3,4A =,集合B 可以是{1,3},共1种结果,根据计数原理,可得共有42219+++=种结果.故选:B.【点睛】本题主要考查了集合新定义及其应用,其中解答正确理解题意,结合集合子集的概念和计数原理进行解答值解答额关键,着重考查分析问题和解答问题的能力.6.定义{|,}A B x x A x B -=∈∉,设A 、B 、C 是某集合的三个子集,且满足()()A B B A C -⋃-⊆,则()()A C B B C ⊆-⋃-是AB C =∅的( ) A .充要条件B .充分非必要条件C .必要非充分条件D .既非充分也非必要条件【答案】A【分析】作出示意图,由()()A B B A C -⋃-⊆可知两个阴影部分均为∅,根据新定义结合集合并集的运算以及充分条件与必要条件的定义判断即可.【详解】如图,由于()()A B B A C -⋃-⊆,故两个阴影部分均为∅,于是,,A I IV V B III IV V C I II III V =⋃⋃=⋃⋃=⋃⋃⋃,(1)若A B C =∅,则V =∅,A I IV ∴=⋃,而()()C B B C I II IV -⋃-=⋃⋃,()()A C B B C ∴⊆-⋃-成立;(2)反之,若()()A C B B C ⊆-⋃-,则由于()()()C B B II I C I V =⋃-⋃-⋃,()A I IV V =⋃⋃,()()I IV V I II IV ∴⋃⋃⊆⋃⋃,V ∴=∅,A B C ∴⋂⋂=∅,故选:A【点睛】本题主要考查集合并集的运算以及充分条件与必要条件的定义,考查了分类讨论、数形结合思想的应用,属于较难题.7.已知集合{}1,2,3,4,5P =,若A ,B 是P 的两个非空子集,则所有满足A 中的最大数小于B 中的最小数的集合对(A ,B )的个数为( )A .49B .48C .47D .46【答案】A【分析】利用分类计数法,当A 中的最大数分别为1、2、3、4时确定A 的集合数量,并得到对应B 的集合个数,它们在各情况下个数之积,最后加总即为总数量.【详解】集合{}1,2,3,4,5P =知:1、若A 中的最大数为1时,B 中只要不含1即可:A 的集合为{1},而B 有 42115-=种集合,集合对(A ,B )的个数为15;2、若A 中的最大数为2时,B 中只要不含1、2即可:A 的集合为{2},{1,2},而B 有3217-=种,集合对(A ,B )的个数为2714⨯=;3、若A 中的最大数为3时,B 中只要不含1、2、3即可:A 的集合为{3},{1,3},{2,3},{1,2,3},而B 有2213-=种,集合对(A ,B )的个数为4312⨯=;4、若A 中的最大数为4时,B 中只要不含1、2、3、4即可:A 的集合为{4},{1,4},{2,4},{3,4},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4},而B 有1211-=种,集合对(A ,B )的个数为818⨯=;∴一共有151412849+++=个,故选:A【点睛】本题考查了分类计数原理,按集合最大数分类求出各类下集合对的数量,应用加法原理加总,属于难题.8.设a ,b ,c 为实数,记集合2{|()()0S x x a x bx c =+++=,}x R ∈,2{|(1)(1)0T x ax cx bx =+++=,}x R ∈.若||S ,||T 分别为集合S ,T 的元素个数,则下列结论不可能的是( )A .||1S =且||0T =B .||1S =且||1T =C .||2S =且||2T =D .||2S =且||3T = 【答案】D【分析】要发现0x a +=与10ax +=、20x bx c ++=与210cx bx ++=的解的关系,同时考虑0a =,0c 以及判别式对方程的根的个数的影响,通过假设最高次含参数的方程10ax +=有一个解,210cx bx ++=有两个解,逆推集合S 的解的情况即可.【详解】令()2()0x a x bx c +++=,则方程至少有1个实数根x a =-,当240b c -=时,方程还有一个根2b x =-, 只要2b a ≠,方程就有2个实数根,2b a =,方程只有1个实数根,当240b c -<时,方程只有1个实数根,当240b c ->时,方程有2个或3个实数根,当0a b c ===时,||1S =且||0T =,当0,0,0a b c >=>时,||1S =且||1T =,当1,2a c b ===-时,||2S =且||2T =,若||3T =时,10ax +=有一个解,210cx bx ++=有两个解,且10ax +=的解1x a=-不是210cx bx ++=的解, ∴211()()0c b c a a-+-+≠,即20a ab c -+≠, 0x a ∴+=的解不是20x bx c ++=的解,又210cx bx ++=有两个解,故240b c ∆=->,20x bx c ++=有两个不等的根,2()()0x a x bx c ∴+++=有3个解,即3S =,故D 不可能成立,故选:D .【点睛】本题考查集合的元素个数,一元一次方程与一元二次方程的解的关系,还要考虑一元一次方程的解是否为一元二次方程的解,通过判别式判断一元二次方程方程的根的个数,属于难题.二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.)9.(多选)若非空实数集M 满足任意,x y M ∈,都有x y M +∈, x y M -∈,则称M 为“优集”.已知,A B 是优集,则下列命题中正确的是( )A .AB 是优集B .A B 是优集C .若A B 是优集,则A B ⊆或B A ⊆D .若A B 是优集,则A B 是优集【答案】ACD【解析】结合集合的运算,紧扣集合的新定义,逐项推理或举出反例,即可求解.【详解】对于A 中,任取,x A B y A B ∈∈,因为集合,A B 是优集,则,x y A x y B +∈+∈,则 x y A B +∈, ,x y A x y B -∈-∈,则x y A B -∈,所以A 正确;对于B 中,取{|2,},{|3,}A x x k k Z B x x m m Z ==∈==∈,则{|2A B x x k ⋃==或3,}x k k Z =∈,令3,2x y ==,则5x y A B +=∉⋃,所以B 不正确;对于C 中,任取,x A y B ∈∈,可得,x y A B ∈,因为A B 是优集,则,x y A B x y A B +∈-∈,若x y B +∈,则()x x y y B =+-∈,此时 A B ⊆;若x y A +∈,则()x x y y A =+-∈,此时 B A ⊆,所以C 正确;对于D 中,A B 是优集,可得A B ⊆,则A B A =为优集;或B A ⊆,则A B B =为优集,所以A B 是优集,所以D 正确.故选:ACD.【点睛】解决以集合为背景的新定义问题要抓住两点:1、紧扣新定义,首先分析新定义的特点,把心定义所叙述的问题的本质弄清楚,应用到具体的解题过程中;2、用好集合的性质,解题时要善于从试题中发现可以使用的集合的性质的一些因素.10.用()C A 表示非空集合A 中的元素个数,定义()()*A B C A C B =-.已知集合2|10A x x ,{}22(3)(2)0B x ax x x ax =+++=,若*1A B =,则实数a 的取值可能是( )A.-B .0 C .1 D .【答案】ABD【解析】先分析()2C A =,又由*1A B =,分析易得()1C B =或3,即方程22(3)(2)0ax x x ax +++=有1个根或3个根,分析方程22(3)(2)0ax x x ax +++=的根的情况,可得a 可取的值,即可得答案.【详解】根据题意,已知{1A =,2},则()2C A =,又由*1A B =,则()1C B =或3,即方程22(3)(2)0ax x x ax +++=有1个根或3个根;若22(3)(2)0ax x x ax +++=,则必有230ax x +=或220x ax ++=,若230ax x +=,则0x =或30ax +=,当0a =时,{0}B =,()1C B =,符合题意;当0a ≠时,230ax x +=对应的根为0和3a -;故∴需220x ax ++=有两等根且根不为0和3a -,当∴0=时,a =±a ={0B =,-,,()3C B =,符合题意;a =-{0B =,,()3C B =,符合题意; ∴当3a -是220x ax ++=的根时,解得3a =±;3a =,此时{0B =,1-,2}-,()3C B =,符合题意;3a =-,此时{0B =,1,2},()3C B =,符合题意;综合可得:a 可取的值为0,3±,故选:ABD【点睛】本题考查集合的表示方法,关键是依据()C A 的意义,分析集合B 中元素的个数,进而分析方程22(3)(2)0ax x x ax +++=的根的情况.11.设集合{}Z y x y x a a M ∈-==,,22,则对任意的整数n ,形如4,41,42,43n n n n 的数中,是集合M 中的元素的有A .4nB .41n +C .42n +D .43n + 【答案】ABD【分析】将4,41,43n n n ++分别表示成两个数的平方差,故都是集合M 中的元素,再用反证法证明42n M . 【详解】∴224(1)(1)nn n ,∴4n M . ∴2241(21)(2)n n n ,∴41n M . ∴2243(22)(21)nn n ,∴43n M . 若42n M ,则存在,Z x y 使得2242x y n , 则42()(),n x y x y x y 和x y -的奇偶性相同.若x y +和x y -都是奇数,则()()x y x y +-为奇数,而42n +是偶数,不成立;若x y +和x y -都是偶数,则()()x y x y +-能被4整除,而42n +不能被4整除,不成立,∴42n M .故选ABD.【点睛】本题考查集合描述法的特点、代表元元素特征具有的性质P ,考查平方差公式及反证法的灵活运用,对逻辑思维能力要求较高.12.设集合X 是实数集R 的子集,如果实数0x 满足:对任意0r >,都存在x X ∈,使得00x x r <-<成立,那么称0x 为集合X 的聚点.则下列集合中,0为该集合的聚点的有( )A .1,0,x x n n Z n ⎧⎫=≠∈⎨⎬⎩⎭B .,1n x x n N n *⎧⎫=∈⎨⎬+⎩⎭C .{},0x x Q x ∈≠D .整数集Z【答案】AC【分析】利用集合聚点的新定义,集合集合的表示及元素的性质逐项判断. 【详解】A.因为集合1,0,x x n n Z n ⎧⎫=≠∈⎨⎬⎩⎭中的元素是极限为0的数列,所以对于任意0r >,都存在1n r >,使得10x r n <=<成立,所以0为集合1,0,x x n n Z n ⎧⎫=≠∈⎨⎬⎩⎭的聚点,故正确; B. 因为集合11,11n x x n N n n *⎧⎫==-∈⎨⎬++⎩⎭中的元素是极限为1的数列,除第一项外,其余项都至少比0大12,所以对于12r <时,不存在满足0x r <<的x ,所以0不为集合11,11n x x n N n n *⎧⎫==-∈⎨⎬++⎩⎭的聚点,故错误; C. 对任意0r >,都存在2=r x ,使得02x r r <=<成立,那所以0为集合{},0x x Q x ∈≠的聚点,故正确;D. 对任意0r >,如0.5r =,对任意的整数,都有00x x -=或01x x -≥成立,不可能有000.5x x <-<成立,所以0不是集合整数集Z 的聚点,故错误;故选:AC第II 卷(非选择题)三、填空题: 本题共4个小题,每小题5分,共20分.13.已知集合{}2280,R A x x x x =--≤∈ ,(){}2550,R B x x m x m x =-++≤∈ ,设全集为R ,若R B A ⊆,则实数m 的取值范围为______.【答案】()4,+∞【分析】解不等式求得R A ,根据R B A ⊆,分类讨论m 的取值,确定集合B ,从而求得m 的取值范围.【详解】解不等式2280x x --≤,得24x -≤≤,所以R {2A x x =<-或4}x > , (){}()(){}2550,R 50B x x m x m x x x x m =-++≤∈=--≤ , 因为R B A ⊆,当5m =时,{}5B =,满足题意;当5m >时,[]5,B m =,满足题意.当5m <时,[],5B m =, 由R B A ⊆,得4m >,所以45m <<.综上,m 的取值范围为()4,+∞.故答案为:()4,+∞ 14.{}{}(){}220,10,,2,R A x x px q B x qx px A B A B ϕ=++==++=⋂≠⋂=-则p q += _____.【答案】-1或5 【分析】由题意可得m A ∈,一点有1∈B m,再由A B φ⋂≠,可得1m =±,进而可得结果.【详解】设2,0∈∴++=m A m pm q两边同除2m ,可得210++=p q m m ,所以 1∈B m由A B φ⋂≠,一定有m A ∈,1∈A m ,即 1,1=∴=±m m m (){2}R A B =-,则 2,{2,1}-∈=-A A 或{2,-1}=-A代入可得4201102p q p p q q -+==⎧⎧⇒⎨⎨++==-⎩⎩或 4203102p q p p q q -+==⎧⎧⇒⎨⎨-+==⎩⎩所以1p q +=-或5故答案为:-1或5 【点睛】关键点点睛:通过两个方程的关系可得m A ∈,一点有1∈B m,是解题的关键.本题考查了逻辑推理能力和计算能力,属于中档题. 15.集合{}66,11,23,10,911,1,18,100,0,πM =---有10个元素,设M 的所有非空子集为i M ()1,2,,1023i =每一个i M 中所有元素乘积为i m ()1,2,,1023i =,则1231023m m m m ++++=___________. 【答案】-1【分析】分析可得M 的所有非空子集为i M 可分为4类,分别分析4类子集中,所有元素乘积i m ,综合即可得答案.【详解】集合M 的所有非空子集为i M ()1,2,,1023i =可以分成以下几种情况 ∴含元素0的子集共有92512=个,这些子集中所有元素乘积0i m =;∴不含元素0,含元素-1且含有其他元素的子集有821255-=个∴不含元素0,不含元素-1,但含其他元素的子集有821255-=个其中∴∴中元素是一一对应的,且为相反数,则i m 的和为0,∴只含元素-1的子集1个,满足1i m =-,综上:所有子集中元素乘积12310231m m m m ++++=-. 故答案为:-116.若集合()()()(){}10*,122022,Z,N M x y x x x y x y =++++⋅⋅⋅++=∈∈,则集合M 中元素有______个.【答案】242【分析】由题可得111010(21)23337y x y ++=⋅⋅,然后可得21y x y ++与必为一奇一偶,偶数必是1123337m n ⋅⋅,进而即得.【详解】由题可得(21)(1)(2)()2y x y x x x y ++++++⋅⋅⋅++=, ∴111010(21)23337y x y ++=⋅⋅,又21y x y ++与必为一奇一偶, 而偶数必是1123337m n ⋅⋅,*,N ,010,010m n m n ∈≤≤≤≤,共有121种情况,又21y x y ++与奇偶未定,故集合M 中元素只有242个.故答案为:242.四、解答题: 本大题共5小题,17题共10分,其余各题每题12分,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知集合{}13A x x =-≤ ,{}22240B x x mx m =-+-≤.(1)命题p :x ∴A ,命题q : x ∴B ,且p 是q 的必要非充分条件,求实数m 的取值范围:(2)若A ∩B ≠,∅求实数m 的取值范围.【答案】(1)[]02m ∈,(2)[]46m ∈-,【分析】(1)要使p 是q 的必要不充分条件,则 B A 即可;(2)求A B =∅时m 的取值范围,然后求其补集.(1)因为p 是q 的必要不充分条件,所以B A ,B 集合:()22444160m m ∆=--=>,所以B 不可能为空集,因为()()222422x mx m x m x m ⎡⎤⎡⎤-+-=---+⎣⎦⎣⎦, 所以{}22B x m x m =-≤≤+, 集合{}24A x x =-≤≤,所以2224m m -≥-⎧⎨+<⎩或2224m m ->-⎧⎨+≤⎩,分别解不等式组,取并集后可得[]02m ∈,. (2)由(1)知{}{}2422A x x B x m x m =-≤≤=-≤≤+,,当A B =∅时:22m +<-或24m ->,解之得:4m <-或6m >,则A B ⋂≠∅时,[]46m ∈-,. 18.设函数2()(,)f x x px q p q R =++∈,定义集合{|(()),}R f D x f f x x x ==∈,集合{|(())0,}R f E x f f x x ==∈.(1)若0p q ==,写出相应的集合f D 和f E ;(2)若集合{0}f D =,求出所有满足条件的,p q ;(3)若集合f E 只含有一个元素,求证:0,0p q ≥≥.【答案】(1){0,1}f D =,{0}f E =(2)1,0p q ==(3)证明见解析【分析】(1)由4x x =、40x =解得x ,可得f D ,f E ;(2)由(())0f f x x -=得2(1)10x p x p q +++++=或2(1)0x p x q +-+=,然后由21(1)4(1)∆=+-++p p q ,221(1)4∆=-->∆p q ,方程(())0f f x x -=只有一个实数解0,得210,0∆=∆<, 转化为2(1)0x p x q +-+=有唯一实数解0,可得答案;(3)由条件,(())0f f x =有唯一解,得()0f x =有解,分()0f x =有唯一解0x 、()0f x =有两个解1212,()x x x x <,结合()f x 的图像和实数解的个数可得答案.(1)2()f x x =,4(())=f f x x ,由4x x =解得0x =或1x =,由40x =解得0x =,所以{0,1}f D =,{0}f E =.(2)由22(())(())()()()()()f f x x f f x f x f x x f x pf x x px f x x -=-+-=+--+-=22(()1)(())((1)1)((1))0f x x p f x x x p x p q x p x q +++-=++++++-+=,得2(1)10x p x p q +++++=或2(1)0x p x q +-+=,221(1)4(1)(1)44p p q p q ∆=+-++=---,2221(1)4(1)4p q p q ∆=--=-->∆,而方程(())0f f x x -=只有一个实数解0,所以210,0∆=∆<,即只需2(1)0x p x q +-+=有唯一实数解0,所以1,0p q ==.(3)由条件,(())0f f x =有唯一解,所以()0f x =有解,∴若()0f x =有唯一解0x ,则20()()f x x x =-,且0()f x x =有唯一解,结合()f x 图像可知00x =,所以2()f x x =,所以0p q ==.∴若()0f x =有两个解1212,()x x x x <,则12()()()f x x x x x =--,且两个方程1()f x x =,2()f x x =总共只有一个解,结合()f x 图像可知2()f x x =有唯一解,所以20x <,10x <,所以120q x x =>,且()f x 的对称轴02p x =-<,所以0p >,所以0,0p q >>.综上,0,0p q ≥≥.【点睛】本题主题考查了二次函数与二次方程之间的关系的相互转换,方程根与系数的应用,考查了系数对新定义的理解能力及计算能力.19.对于正整数集合{}()*12,,,,3n A a a a n n =∈≥N ,如果去掉其中任意一个元素()1,2,,i a i n =之后,剩余的所有元素组成的集合都能分为两个交集为空集的集合,且这两个集合的所有元素之和相等,就称集合A 为“和谐集”.(1)判断集合{}1,2,3,4,5与{}1,3,5,7,9是否为“和谐集”(不必写过程);(2)求证:若集合A 是“和谐集”,则集合A 中元素个数为奇数;(3)若集合A 是“和谐集”,求集合A 中元素个数的最小值.【答案】(1){}1,2,3,4,5不是“和谐集”,{}1,3,5,7,9不是“和谐集”(2)证明见解析(3)7【分析】(1)由“和谐集”的定义判断(2)根据集合中元素总和与单个元素的奇偶性讨论后证明(3)由(2)知n 为奇数,根据n 的取值讨论后求解(1)对于{}1,2,3,4,5,去掉2后,{1,3,4,5}不满足题中条件,故{}1,2,3,4,5不是“和谐集”, 对于{}1,3,5,7,9,去掉3后,{1,5,7,9}不满足题中条件,{}1,3,5,7,9不是“和谐集” (2)设{}12,,,n A a a a =中所有元素之和为M ,由题意得i M a 均为偶数,故()1,2,,i a i n =的奇偶性相同 ∴若i a 为奇数,则M 为奇数,易得n 为奇数,∴若i a 为偶数,此时取2i i a b =,可得{}12,,,n B b b b =仍满足题中条件,集合B 也是“和谐集”, 若i b 仍是偶数,则重复以上操作,最终可得各项均为奇数的“和谐集”,由∴知n 为奇数 综上,集合A 中元素个数为奇数(3)由(2)知集合A 中元素个数为奇数,显然3n =时,集合不是“和谐集”,当5n =时,不妨设12345a a a a a <<<<,若A 为“和谐集”,去掉1a 后,得2534a a a a +=+,去掉2a 后,得1534a a a a +=+,两式矛盾,故5n =时,集合不是“和谐集”当7n =,设{1,3,5,7,9,11,13}A ,去掉1后,35791113+++=+,去掉3后,19135711++=++,去掉5后,91313711+=+++,去掉7后,19113513++=++,去掉9后,13511713+++=+,去掉11后,3791513++=++,去掉13后,1359711+++=+,故{1,3,5,7,9,11,13}A 是“和谐集”,元素个数的最小值为720.对于函数()f x ,若()f x x =,则称实数x 为()f x 的“不动点”,若()()f f x x =,则称实数x 为()f x 的“稳定点”,函数()f x 的“不动点”和“稳定点”组成的集合分别记为A 和B ,即(){}A x f x x ==,()(){}B x f f x x ==. (1)对于函数()21f x x =-,分别求出集合A 和B ;(2)对于所有的函数()f x ,集合A 与B 是什么关系?并证明你的结论;(3)设()2f x x ax b =++,若{}1,3A =-,求集合B .【答案】(1){1}A =,{1}B =(2)证明见解析;(3){B =-【分析】(1)由f (x )=x ,解出x 的值即集合A 的元素,由()f f x x ⎡⎤⎣⎦=,解出x 的值即集合B的元素; (2)分别讨论A =∅与A ≠∅的情况,当A ≠∅时,设t A ∈,则()f t t =,即[()]=()f f t f t t =,进而得证;(3)由{1,3}A =-可得(1)1(3)3f f -=-⎧⎨=⎩,则13a b =-⎧⎨=-⎩,进而求解()f f x x ⎡⎤⎣⎦=即可. (1)由f (x )=x ,得21x x -=,解得1x =; 由()f f x x ⎡⎤⎣⎦=,得221)1(x x --=,解得1x =, ∴集合A ={1},B ={1}.(2)若A =∅,则A B ⊆显然成立;若A ≠∅,设t 为A 中任意一个元素,由[()]=()f f t f t t B =∈,可得A B ⊆.(3)解:∴{1,3}A =-,∴(1)1(3)3f f -=-⎧⎨=⎩,即2211333a b a b ⎧--+=-⎨++=⎩(),∴13a b =-⎧⎨=-⎩, ∴2()3f x x x =--,∴2222[()](3)(3)(3)3f f x f x x x x x x x =--=------=,∴222(3)0x x x ---=,∴22(3)23)0x x x ---=(,∴(1)(3)0x x x x +-=,∴x =1x =-或3x =,∴{B =-.21.设集合A 为非空数集,定义{|A x x a b +==+,a 、}b A ∈,{|||A x x a b -==-,a 、}b A ∈.(1)若{1A =-,1},写出集合A +、A -;(2)若1{A x =,2x ,3x ,4}x ,1234x x x x <<<,且A A -=,求证:1423x x x x +=+;(3)若{|02021A x x ⊆,}x N ∈且A A +-=∅,求集合A 元素个数的最大值.【答案】(1){}{}2,0,20,2A A +-=-=,;(2)证明见解析;(3)1348.【分析】(1)根据新定义,直接得出集合A A +-、;(2)根据两集合相等即可得出1234x x x x 、、、的关系;(3)通过假设A 集合{124042}m m m ++,,,,(2021)m m N ≤∈,, 求出相应的A A +-、,根据=A A +-∅列出不等式即可求出结果.(1) 由题意知,{11}A =-,, 得{202}{02}A A +-=-=,,,,; (2)由于集合12341234{}A x x x x x x x x =<<<,,,,,且A A -=,所以集合A -中有且仅有4个元素,即213141{0}A x x x x x x -=---,,,剩下的元素满足213243x x x x x x -=-=-,即1423x x x x +=+;(3)设12{}k A a a a =,,,满足题意,其中12k a a a <<<, 则11213123122k k k k k k a a a a a a a a a a a a a a -<+<+<<+<+<+<<+<, 所以21A k +≥-,1121311k a a a a a a a a -<-<-<<-,所以A k -≥,因为=A A +-∅,由容斥原理,31A A A A k +-+-=+≥-, A A +-最小的元素为0,最大的元素为2k a ,所以21k A A a +-≤+,所以*31214043()k k a k N -≤+≤∈,解得1348k ≤,实际上当{6746752021}A =,,,时满足题意,证明如下: 设{122021}A m m m =++,,,,()m N ∈, 则{221224042}A m m m +=++,,,,,{0122021}A m -=-,,,,, 依题意,有20212m m -<,即26733m >,所以m 的最小值为674, 于是当674m =时,集合A 中的元素最多,即{6746752021}A =,,,时满足题意. 综上所述,集合A 中元素的个数的最大值为1348.【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.对于此题中的新概念,对阅读理解能力有一定的要求.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.22.含有有限个元素的数集,定义“元素和”如下:把集合中的各数相加;定义“交替和”如下:把集合中的数按从大到小的顺序排列,然后从最大的数开始交替地加减各数.例如{4,6,9}的元素和是4+6+9=19;交替和是9-6+4=7;而{5}的元素和与交替和都是5.(1)写出集合{1,2,3}的所有非空子集的交替和的总和;(2)已知集合{}1,2,3,4,5,6M =,根据提示解决问题.∴求集合M 所有非空子集的元素和的总和;提示:方法1:x M ∀∈,先求出x 在集合M 的非空子集中一共出现多少次,进而可求出集合M 所有非空子集的元素和的总和;方法2:如果我们知道了集合{1,2,3,4,5}的所有非空子集的元素和的总和为k ,可以用k 表示出M 的非空子集的元素和的总和,递推可求出集合M 所有非空子集的元素和的总和.∴求集合M 所有非空子集的交替和的总和.【答案】(1)12;(2)∴672,∴192【分析】(1)写出集合{1,2,3}的非空子集,根据交替和的概念,求得各个交替和,综合即可得答案.(2)∴求得集合{1,2,3}所有非空子集中,数字1、2、3各出现的次数,集合{1,2,3,4}所有非空子集中,数字1、2、3、4各出现的次数,根据规律,推测出集合M 中各数字出现的次数,即可得答案.∴分别求得集合{1}{12}{1,2,3}{1,2,3,4}、,、、的交替和总和,根据规律,总结出n 个元素的交替和总和公式,代入数据,即可得答案.【详解】(1)集合{1,2,3}的非空子集为{1},{2},{3},{2,1},{3,1},{3,2},{3,2,1},集合{1},{2},{3}的交替和分别为1,2,3,集合{2,1}的交替和为2-1=1,集合{3,1}的交替和为3-1=2,集合{3,2}的交替和为3-2=1,集合{3,2,1}的交替和为3-2+1=2,所以集合{1,2,3}的所有非空子集的交替和的总和为1+2+3+1+2+1+2=12.(2)∴集合{1,2,3}所有非空子集中,数字1、2、3各出现242=次,集合{1,2,3,4}所有非空子集为:{1},{2},{3},{4},{2,1},{3,1},{4,1},{3,2},{2,4},{3,4},{3,2,1},{4,2,1},{4,3,1},{4,3,2},{4,3,2,1}, 其中数字1、2、3、4各出现382=次,在集合{1,2,3,4,5}所有非空子集中,含1的子集的个数为42=16,故数字1在16个子集中出现即数字1在所有的非空子集中出现了16次,同理数字2、3、4、5各出现42=16次,同理在集合{1,2,3,4,5,6}所有非空子集中,数字1、2、3、4、5、6各出现52=32次, 所以集合M 所有非空子集的元素和的总和为32(123456)672⨯+++++=.∴设集合{1}{12}{1,2,3}{1,2,3,4}、,、、的交替和分别为1234,,,S S S S , 集合{1}的所有非空子集的交替和为11S =集合{1,2}的所有非空子集的交替和212(21)4S =++-=,集合{1,2,3}的非空子集的交替和3123(21)(31)(32)(321)12S =+++-+-+-+-+=, 集合{1,2,3,4}的非空子集的交替和41234(21)(31)(41)S =++++-+-+-(32)(42)(43)(321)(421)(431)(432)(4321)32+-+-+-+-++-++-++-++-+-=所以根据前4项猜测集合{1,2,,}n ⋅⋅⋅的所有非空子集的交替和总和为12n n S n -=⋅,所以集合M 所有非空子集的交替和的总和5662192S =⨯=【点睛】解题的关键是根据题意,列出非空子集,求得元素和、交替和,总结规律,进行猜想,再代数求解,分析理解难度大,属难题.。

高一数学高中数学综合库试题答案及解析

高一数学高中数学综合库试题答案及解析

高一数学高中数学综合库试题答案及解析1.为三角形的一个内角,若,则三角形的形状为().A.锐角三角形B.钝角三角形C.等腰直角三角形D.等腰三角形【答案】B【解析】略2.已知函数(1)若函数无零点,求实数的取值范围;(2)若函数在有且仅有一个零点,求实数的取值范围【答案】(1)原方程可化为:要原方程无实根,有下面两种情况:①方程(1)无实数根,由,得;②方程(1)的实数解均为原方程的增根时,原方程无实根,而原方程的增根为x=0或x=1,把x=0或x=1分别代入(1)得m=2。

综上所述:或(2)或【解析】略3.直线当变动时,所有直线都通过定点A.(0,0)B.(0,1)C.(3,1)D.(2,1)【答案】C【解析】略4.如果命题“非或非”是假命题,则在下列各结论中正确的是()①命题“且”是真命题;②命题“且”是假命题;③命题“或”是真命题;④命题“或”是假命题;A.①③B.②④C.②③D.①④【答案】A【解析】略5.函数过定点【答案】(-2,-1)【解析】略6.设是关于的方程的两个实根,则的最小值是()A.B.18C.8D.【答案】C【解析】略7.已知集合A=且,则实数的取值范围是【答案】【解析】略8.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么解析式为,值域为{1,7}的“孪生函数”的所有函数值的和等于()A.32B.64C.72D.96【答案】C【解析】解:由题意可得,当函数解析式为y=2x2-1,值域为{1,7}时,函数的定义域可能为:{-2,-1},{-2,1},{2,-1},{2,1},{-2,-1,1},{-2,-1,2},{-1,1,2},{-2,1,2},{-2,-1,1,2},共9个∴所有的函数值的和为(7+1)×9=72故选C9.在等差数列中,公差,前项的和,则=______【答案】10【解析】略10.已知集合,,若,求实数、的值.【答案】【解析】,………………………………………2分……………………………………6分解得……………………………………8分经检验不合题意,舍去……………………………………10分……………………………………12分11.取一个边长为1的正方形及其内切圆,随机地向正方形内丢一粒豆子,则豆子落入圆内的概率为【答案】【解析】略12.(12分)顶点在原点,焦点在轴上的抛物线截直线所得的弦长|AB|=,求此抛物线的方程。

高一数学必修一必修二综合测试题(有答案)

高一数学必修一必修二综合测试题(有答案)

高一数学《必修1》《必修2》综合测试题一、选择题(共12小题;每小题5分,共60分)1. 已知全集R U =,集合}32{≤≤-=x x A ,}41{>-<=x x x B 或,则()B C A U ⋃( )A.{}42≤≤-x xB.}43{≥≤x x x 或C.}12{-<≤-x xD.}31{≤≤-x x2. 过点(1,0)且与直线x -2y -2=0垂直的直线方程是( )A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=03. 圆台的一个底面圆周长是另一个底面圆周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面圆的半径为( )A .3B .5C .6D .74. 已知圆C :x 2:y 2:4y :0,直线l 过点P (0,1),则 ( )A. l 与C 相交B. l 与C 相切C. l 与C 相离D. 以上三个选项均有可能5. 一个几何体的三视图如图所示(单位:m ),则该几何体的体积为( )3mA.π2B.38πC.π3D. 310π6. 已知,则函数的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 若直线2x y -=被圆22()4x a y -+=所截得的弦长为22,则实数a 的值为( ) A. 0或4 B. 1或3 C. 2-或6 D. 1-或3 8. 在三棱柱ABC­A 1B 1C 1中,各棱长相等,侧棱垂直于底面,点D 是侧面BB 1C 1C 的中心,则AD 与平面BB 1C 1C 所成角的大小是( ) A .30° B .45° C .60° D .90° 9. 若幂函数)(x f y =是经过点)33,3(,则此函数在定义域上是 ( ) A .偶函数 B .奇函数 C .增函数 D .减函数 10. 一个多面体的三视图如图所示,则该多面体的表面积为 A.321+ B.318+ C.18 D.21 11.若定义在R 上的偶函数()x f 满足)()2(x f x f =+,且当[]1,0∈x 时,x x f y x x f 3log )(,)(-==则函数的零点个数是( ) A .6个 B .4个 C .3个 D .2个 12. 已知A(3,1),B(-1,2),若:ACB 的平分线方程为y =x +1,则AC 所在的直线方程为( ) A .y =2x +4 B .y =12x -3 C .x -2y -1=0 D .3x +y +1=001,1a b <<<-x y a b =+二、填空题(共4小题,每小题5分,共20分)13. 若直线1x y +=与圆222(0)x y r r +=>相切,则实数r 的值等于________.14. 在平面直角坐标系中,正三角形ABC 的边BC 所在直线的斜率是0,则AC ,AB 所在直线的斜率之和为________.15. 函数ax x y 22--=()10≤≤x 的最大值是2a ,则实数a 的取值范围是________ .16.若圆C :x 2+y 2−2ax +b =0上存在两个不同的点A ,B 关于直线x −3y −2=0对称,其中b ∈N ,则圆C 的面积最大时,b = .三、解答题(共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17. (10分)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=2x -1.(1)求f (3)+f (-1);(2)求f (x )的解析式.18. (12分)如图,在三棱锥P ­ABC 中,PC ⊥底面ABC ,AB ⊥BC ,D ,E 分别是AB ,PB 的中点.(1)求证:DE ∥平面PAC ;(2)求证:AB ⊥PB .19.(12分)直线l 1过点A (0,1),l 2过点B (5,0),如果l 1∥l 2且l 1与l 2的距离为5,求l 1,l 2的方程. 20.(12分)已知圆22:2240C x y mx ny ++++=,直线:10l x my -+=相交于A :B 两点. :1)若交点为(1,2)A ,求m 及n 的值. :2)若直线l 过点(2,3):60ACB ∠=︒,求22m n +的值. 21.(12分)已知直线:(1)(23)60m a x a y a -++-+=,:230n x y -+=. (1)当0a =时,直线l 过m 与n 的交点,且它在两坐标轴上的截距相反,求直线l 的方程; (2)若坐标原点O 到直线m 的距离为5,判断m 与n 的位置关系. 22.(12分)(1)圆C 与直线2x +y -5=0切于点(2,1),且与直线2x +y +15=0也相切,求圆C 的方程. (2)已知圆C 和y 轴相切,圆心C 在直线x -3y =0上,且被直线y =x 截得的弦长为27,求圆C 的方程.高一数学答案一、选择题(共12小题;每小题5分,共60分). 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A C D A B A A C D A B C二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上13.22 14.0 15.[-1,0] 16.0三、解答题(本大题共6小题,共70分)17.解:(1)∵f (x )是奇函数,∴f (3)+f (-1)=f (3)-f (1)=23-1-2+1=6. .................4分(2)设x <0,则-x >0,∴f (-x )=2-x -1,∵f (x )为奇函数,∴f (x )=-f (-x )=-2-x +1,.................8分∴f (x )=⎩⎪⎨⎪⎧ 2x -1,x ≥0,-2-x +1,x <0. ........................10分18. 解 (1)证明:因为D ,E 分别是AB ,PB 的中点,所以DE ∥PA.又因为PA ⊂平面PAC ,DE ⊄平面PAC ,所以DE ∥平面PAC. .................6分(2)证明:因为PC ⊥底面ABC ,AB ⊂底面ABC ,所以PC ⊥AB.又因为AB ⊥BC ,PC ∩BC =C ,所以AB ⊥平面PBC ,又因为PB ⊂平面PBC ,所以AB ⊥PB. .................6分19.解: 若直线l 1,l 2的斜率都不存在,则l 1的方程为x =0,l 2的方程为x =5,此时l 1,l 2之间距离为5,符合题意;.................3分若l 1,l 2的斜率均存在,设直线的斜率为k ,由斜截式方程得直线l 1的方程为y =kx +1,即kx -y +1=0,.................6分由点斜式可得直线l 2的方程为y =k (x -5),即kx -y -5k =0,在直线l 1上取点A (0,1),则点A 到直线l 2的距离d =|1+5k |1+k2=5,∴25k 2+10k +1=25k 2+25,∴k =125. ∴l 1的方程为12x -5y +5=0,l 2的方程为12x -5y -60=0. .................10分 综上知,满足条件的直线方程为l 1:x =0,l 2:x =5或l 1:12x -5y +5=0,l 2:12x -5y -60=0. .......12分20.【解析】试题分析:(1)将点()1,2A 代入直线和圆方程,可解得1m =,114n =-. (2)将点()2,3代入直线方程得1m =.又由已知可判断ACB V 是等边三角形.所以有圆心到直线10x y -+=的距离233322d r n ==-,代入解得29n =,从而2210m n +=. 试题解析::1)将点()1,2A 代入直线10x my -+=:∴1210m -+=,解出1m =:再将()1,2A 代入圆2221240x y x ny ++⨯++=: ∴22122440n ++++=,解得114n =-: ∴1m =:114n =-: :2)将点()2,3代入直线10x my -+=:∴2310m -+=,解出1m =:又∵在ACB V 中,CA CB =且60ACB ∠=︒:∴ACB V 是等边三角形.∵圆()()222221230x x y ny nn ++++++-=: 即()()22213x y n n +++=-:圆心()1,n --,半径23r n =-:其中圆心到直线10x y -+=的距离222113332211n d r n -++===-+: 代入解出29n =:∴2210m n +=:21.(12分)【详解】试题分析:(1)联立360230.x y x y -++=⎧⎨-+=⎩,解得m 与n 的交点为(-21,-9),当直线l 过原点时,直线l 的方程为370x y -=;当直线l 不过原点时,设l 的方程为1x y b b+=-,将(-21,-9)代入得12b =-,解得所求直线方程(2)设原点O 到直线m 的距离为d ,则()()2265123a d a a -+==-++,解得:14a =-或73a =-,分情况根据斜率关系判断两直线的位置关系;试题解析:解:(1)联立360230.x y x y -++=⎧⎨-+=⎩,解得21,9,x y =-⎧⎨=-⎩即m 与n 的交点为(-21,-9). 当直线l 过原点时,直线l 的方程为370x y -=;当直线l 不过原点时,设l 的方程为1x y b b+=-,将(-21,-9)代入得12b =-, 所以直线l 的方程为120x y -+=,故满足条件的直线l 方程为370x y -=或120x y -+=.(2)设原点O 到直线m 的距离为d ,则()()2265123a d a a -+==-++,解得:14a =-或73a =-, 当14a =-时,直线m 的方程为250x y --=,此时//m n ; 当73a =-时,直线m 的方程为250x y +-=,此时m n ⊥.22.解: (1)设圆C 的方程为(x -a )2+(y -b )2=r 2.∵两切线2x +y -5=0与2x +y +15=0平行,∴2r =|15-(-5)|22+12=45,∴r =25, ∴|2a +b +15|22+1=r =25,即|2a +b +15|=10①|2a +b -5|22+1=r =25,即|2a +b -5|=10② 又∵过圆心和切点的直线与过切点的切线垂直,∴b -1a -2=12③ 由①②③解得⎩⎨⎧ a =-2,b =-1.∴所求圆C 的方程为(x +2)2+(y +1)2=20.(2)设圆心坐标为(3m ,m ).∵圆C 和y 轴相切,得圆的半径为3|m |,∴圆心到直线y =x 的距离为|2m |2=2|m |.由半径、弦心距、半弦长的关系得9m 2=7+2m 2,∴m =±1,∴所求圆C 的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9.。

部编版高中数学选修一综合测试题带答案知识点梳理

部编版高中数学选修一综合测试题带答案知识点梳理

(名师选题)部编版高中数学选修一综合测试题带答案知识点梳理单选题1、已知双曲线x 2a 2−y 22=1(a >0)的一条渐近线的倾斜角为π6,则此双曲线的离心率e 为( )A .2√33B .2√63C .√3D .2 2、在棱长为1的正方体ABCD -A 1B 1C 1D 1中,设AB ⃑⃑⃑⃑⃑ =a ,AD ⃑⃑⃑⃑⃑ =b ⃑ ,AA 1⃑⃑⃑⃑⃑⃑⃑ =c ,则a ⋅(b ⃑ +c )的值为( ) A .1B .0C .-1D .-23、双曲线x 2a 2−y 2b 2=1(a >0,b >0)过焦点F 1的弦AB ,A 、B 两点在同一支上且长为m ,另一焦点为F 2,则△ABF 2的周长为( ).A .4aB .4a -mC .4a +2mD .4a -2m 4、设O 为坐标原点,直线x =a 与双曲线C:x 2a2−y 2b 2=1(a >0,b >0)的两条渐近线分别交于D,E 两点,若△ODE 的面积为8,则C 的焦距的最小值为( ) A .4B .8C .16D .325、动点P 在抛物线x 2=4y 上,则点P 到点C (0,4)的距离的最小值为( ) A .√3B .2√3C .12√3D .126、下列直线方程纵截距为2的选项为( )A .y =x −2B .x −y +2=0C .x2+y4=1D .x +y +2=07、如图,在直三棱柱ABC −AB 1C 1中,AC =3,BC =4,CC 1=3,∠ACB =90∘ ,则BC 1与A 1C 所成的角的余弦值为( )A .3√210B . √33C . √24D . √558、已知椭圆x 2a2+y 2b 2=1(a >b >0)上存在点P ,使得|PF 1|=3|PF 2|,其中F 1,F 2分别为椭圆的左、右焦点,则该椭圆的离心率的取值范围是( ) A .(0,14]B .(14,1)C .(12,1)D .[12,1) 多选题9、已知圆C 1:x 2+y 2−10x −10y =0和圆C 2:x 2+y 2−6x +2y −40=0则( ) A .两圆相交B .公共弦长为4√10 C .两圆相离D .公切线长4√10 10、已知双曲线W:x 22+m−y 2m+1=1,( )A .m ∈(−2,−1)B .若W 的顶点坐标为(0,±√2),则m =−3C .W 的焦点坐标为(±1,0)D .若m =0,则W 的渐近线方程为x ±√2y =0 11、设椭圆C:x 24+y 2=1的的焦点为F 1,F 2,P 是C 上的动点,则下列结论正确的是( ).A .离心率e =√32B .|PF 2⃑⃑⃑⃑⃑⃑⃑ |的最大值为3C .△PF 1F 2面积的最大值为2√3D .|PF 1⃑⃑⃑⃑⃑⃑⃑ +PF 2⃑⃑⃑⃑⃑⃑⃑ |的最小值为2 填空题12、在空间直角坐标系中,点P(x,y,z)满足:x2+y2+z2=16,平面α过点M(1,2,3),且平面α的一个法向量n⃑=(1,1,1),则点P在平面α上所围成的封闭图形的面积等于__________.13、在直角坐标系中,若A(2,1)、B(1,2)、C(0,y)(y∈R),则|AC|+|BC|的最小值是______.部编版高中数学选修一综合测试题带答案(三十五)参考答案1、答案:A分析:根据题意渐近线的斜率为tan π6=√33,所以该渐近线的方程为y =√33x ,所以2a 2=(√33)2,求得a=√6,利用c =√a 2+b 2,求得c 即可得解. ∵双曲线x 2a2−y 22=1(a >0)的一条渐近线的倾斜角为π6,tan π6=√33, ∴该渐近线的方程为y =√33x ,∴2a 2=(√33)2,解得a =√6或−√6(舍去),∴c =√a 2+b 2=2√2, ∴双曲线的离心率为e =ca =√2√6=2√33. 故选:A . 2、答案:B分析:由正方体的性质可知AB ⃑⃑⃑⃑⃑ ,AD ⃑⃑⃑⃑⃑ ,AA 1⃑⃑⃑⃑⃑⃑⃑ 两两垂直,从而对a ⋅(b ⃑ +c )化简可得答案 由题意可得AB ⊥AD,AB ⊥AA 1,所以a ⊥b ⃑ ,a ⊥c ,所以a ⋅b ⃑ =0,a ⋅c =0, 所以a ⋅(b ⃑ +c )=a ⋅b ⃑ +a ⋅c =0, 故选:B 3、答案:C分析:由双曲线定义得到|BF 2|−|BF 1|=2a ,|AF 2|−|AF 1|=2a ,两式相加得到|BF 2|+|AF 2|=4a +m ,进而求出周长.由双曲线的定义得:|BF 2|−|BF 1|=2a ①,|AF 2|−|AF 1|=2a ②, 两式相加得:|BF 2|−|BF 1|+|AF 2|−|AF 1|=4a , 即|BF 2|+|AF 2|−|AB |=|BF 2|+|AF 2|−m =4a , 所以|BF 2|+|AF 2|=4a +m ,故△ABF 2的周长为|BF 2|+|AF 2|+|AB |=4a +2m . 故选:C4、答案:B分析:因为C:x2a2−y2b2=1(a>0,b>0),可得双曲线的渐近线方程是y=±bax,与直线x=a联立方程求得D,E两点坐标,即可求得|ED|,根据△ODE的面积为8,可得ab值,根据2c=2√a2+b2,结合均值不等式,即可求得答案.∵C:x2a2−y2b2=1(a>0,b>0)∴双曲线的渐近线方程是y=±bax∵直线x=a与双曲线C:x2a2−y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点不妨设D为在第一象限,E在第四象限联立{x=ay=ba x,解得{x=ay=b故D(a,b)联立{x=ay=−ba x,解得{x=ay=−b故E(a,−b)∴|ED|=2b∴△ODE面积为:S△ODE=12a×2b=ab=8∵双曲线C:x2a2−y2b2=1(a>0,b>0)∴其焦距为2c=2√a2+b2≥2√2ab=2√16=8当且仅当a=b=2√2取等号∴C的焦距的最小值:8故选:B.小提示:本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题. 5、答案:B分析:设出点P坐标,用两点间距离公式表达出点P到点C(0,4)的距离,配方后求出最小值.设P (x,x 24),则|PC |=√x 2+(x 24−4)2=√116(x 2−8)2+12,当x 2=8时,|PC |取得最小值,最小值为2√3故选:B 6、答案:B分析:纵截距就是令x =0是y 的值,令每一个选项中的x 为0,解出y ,最后选出符合题意的.直线x +y +2=0的纵截距为−2,直线x2+y4=1的纵截距为4,直线x −y +2=0的纵截距为2,直线y =x −2的纵截距为−2. 故选:B. 7、答案:A分析:建立空间直角坐标系,写出CA 1⃑⃑⃑⃑⃑⃑⃑ ,BC 1⃑⃑⃑⃑⃑⃑⃑ 的坐标,由夹角公式可得结果. 如图,以C 为坐标原点,CA ,CB ,CC 1分别为x ,y ,z 轴建立空间直角坐标系,则C (0,0,0),A 1(3,0,3),B (0,4,0),C 1(0,0,3), 所以CA 1⃑⃑⃑⃑⃑⃑⃑ =(3,0,3),BC 1⃑⃑⃑⃑⃑⃑⃑ =(0,−4,3),所以cos⟨CA 1⃑⃑⃑⃑⃑⃑⃑ ,BC 1⃑⃑⃑⃑⃑⃑⃑ ⟩=CA 1⃑⃑⃑⃑⃑⃑⃑⃑ ⋅BC 1⃑⃑⃑⃑⃑⃑⃑⃑ |CA1⃑⃑⃑⃑⃑⃑⃑⃑ |⋅|BC 1⃑⃑⃑⃑⃑⃑⃑⃑ |=3√2×5=3√210, 所以直线BC 1与A 1C 所成角的余弦值为3√210. 故选:A. 8、答案:D分析:先由椭圆的定义结合已知求得|PF 1|,|PF 2|,再由|PF 1|−|PF 2|≤|F 1F 2|求得a,c 的不等关系,即可求得离心率的取值范围.由椭圆的定义得|PF 1|+|PF 2|=2a ,又∵|PF 1|=3|PF 2|,∴|PF 1|=32a ,|PF 2|=12a , 而|PF 1|−|PF 2|≤|F 1F 2|=2c ,当且仅当点P 在椭圆右顶点时等号成立, 即32a −12a ≤2c ,即a ≤2c ,则e =ca ≥12,即12≤e <1. 故选:D . 9、答案:AB分析:先将圆的一般方程化为标准,再计算圆心间距离判断两圆的位置关系,最后根据两圆的位置关系求解公共弦长或公切线长得出答案.圆C 1的标准方程为:(x −5)2+(y −5)2=50,圆心为(5,5)半径为 r 1=5√2 圆C 2 的标准方程为:(x −3)2+(y +1)2=50,圆心为(3,-1)半径为 r 2=5√2 所以两圆心的距离:d =√(5−3)2+[5−(−1)]2=2√10, ∴0<d <r 1+r 2,∴两圆相交,选项A 正确,选项C 错误; 设两圆公共弦长为L ,则有:(L2)2+(d2)2=r 2(r =r 1=r 2)∴L =4√10,选项B 正确,选项D 错误. 故选:AB 10、答案:BD分析:本题首先可根据双曲线的解析式得出(2+m )(1+m )>0,通过计算即可判断出A 错误,然后根据双曲线的顶点的相关性质即可判断出B 正确,再然后分为m >−1、m <−2两种情况,依次求出c 2,即可判断出C 错误,最后根据双曲线的渐近线方程的求法即可得出结果. A 项:因为方程x 22+m −y 2m+1=1表示双曲线,所以(2+m )(1+m )>0,解得m >−1或m <−2,A 错误; B 项:因为W 的顶点坐标为(0,±√2), 所以−m −1=(√2)2,解得m =−3,B 正确;C 项:当m >−1时,c 2=(2+m )+(m +1)=2m +3,当m <−2时,c 2=−(2+m )−(m +1)=−2m −3,C 错误; D 项:当m =0时,双曲线W 的标准方程为x 22−y 2=1, 则渐近线方程为x ±√2y =0,D 正确, 故选:BD. 11、答案:AD分析:根据椭圆方程求出a 、b 、c ,即可判断A ,设P(x,y)根据二次函数的性质判断BD ,由S △PF 1F 2=12|y|⋅2c 判断C ; 解:因为椭圆C:x 24+y 2=1,所以a 2=4,b 2=1,所以a =2,b =1,c =√a 2−b 2=√3,所以F 1(−√3,0),F 2(√3,0),e =c a=√32,故A 正确;设P(x,y),所以PF 2⃑⃑⃑⃑⃑⃑⃑ =(√3−x,−y),所以|PF 2⃑⃑⃑⃑⃑⃑⃑ |2=(x −√3)2+y 2=(x −√3)2+1−x 24=3x 24−2√3x +4=34(x −43√3)2,因为−2≤x ≤2,所以当x =−2时(|PF 2⃑⃑⃑⃑⃑⃑⃑ |2)max=7+4√3,即|PF 2⃑⃑⃑⃑⃑⃑⃑ |max =2+√3,故B 错误;因为S △PF 1F 2=12|y|⋅2c =12|y|×2√3=√3|y|,又−1⩽y ⩽1,所以当y =±1时,即P 在短轴的顶点时△PF 1F 2面积的取得最大值,(S △PF 1F 2)max=√3×1=√3,故C 错误;对于D :|PF 1⃑⃑⃑⃑⃑⃑⃑ +PF 2⃑⃑⃑⃑⃑⃑⃑ |=2|PO ⃑⃑⃑⃑⃑ |=2√x 2+y 2=2√3x 24+1,因为−2≤x ≤2,所以1≤3x 24+1≤4,所以2≤|PF 1⃑⃑⃑⃑⃑⃑⃑ +PF 2⃑⃑⃑⃑⃑⃑⃑ |≤4,故D 正确; 故选:AD 12、答案:4π分析:由题意,点P 在球面上,所以点P 在平面α上所围成的封闭图形即为平面α截球面所得的截面圆,根据球的截面性质求出截面圆的半径r 即可求解.解:由题意,点P 在以(0,0,0)为球心,半径为4的球面上,所以点P 在平面α上所围成的封闭图形即为平面α截球面所得的截面圆,因为平面α的方程为1×(x −1)+1×(y −2)+1×(z −3)=0,即x +y +z −6=0,所以球心(0,0,0)到平面α的距离为d==2√3,√12+12+12所以截面圆的半径r=√42−(2√3)2=2,截面圆的面积为S=πr2=4π,所以点P在平面α上所围成的封闭图形的面积等于4π.所以答案是:4π.13、答案:√10分析:作点A关于y轴的对称点M(−2,1),由对称性可得|AC|=|MC|,再利用当点C为线段BM与y轴的交点时,|AC|+|BC|取最小值可得结果.由题意可知,点C在y轴上,点A关于y轴的对称点为M(−2,1),由对称性可得|AC|=|MC|,所以,|AC|+|BC|=|MC|+|BC|≥|MB|=√(1+2)2+(2−1)2=√10,当且仅当点C为线段BM与y轴的交点时,等号成立,故|AC|+|BC|的最小值为√10.所以答案是:√10.。

高一数学综合测试含答案

高一数学综合测试含答案

:L高一数学综合测试题(一)一、选择题1.给出以下四个命题: ①若a b >,则11a b<;②若22ac bc >,则a b >; ③若||a b >,则a b >;④若a b >,则22a b >A.②④B. ②③C. ①②D.①③2.如图所示的直观图的原平面图形是( )A.任意三角形B.直角梯形C.任意四边形D.平行四边形3.三视图如图所示的几何体是( )A. 三棱锥B. 四棱锥C. 四棱台D.三棱台4.已知ABC中,4,30a b A ===︒,则B 等于( )A. 30°B.30°或150°C.60°D.60°或120°5.已知0,0a b ≥≥,且2a b +=,则( )A.12ab ≤ B.12ab ≥C.222a b +≥D.223a b +≤6.等差数列{}n a 的前n 项和为n S ,若242,10S S ==,则6S 等于( )A.12B.18C.24D.427、已知点(),P x y 在不等式组2010220x y x y -≤⎧⎪-≤⎨⎪+-≥⎩表示的平面区域内运动,则z x y =-的取值范围是( )A. []2,1--B.[]2,1-C.[]1,2-D.[]1,28.在ABC 中,260,B b ac =︒=,则这个三角形是( )A.不等边三角形B.等边三角形C.等腰三角形D.直角三角形9.两直线()12:0,:10l ax by l a x y b +=-++=,若直线12l l 、同时平行于直线:230l x y ++=,则,a b 的值为( )A. 3,32a b ==- B.2,33a b ==- C.3,32a b == D.2,33a b ==10、已知S ,A ,B ,C 是球O 表面上的点,SA ⊥平面,,1,2A B C A B B C S A A B B C ⊥==O 的表面积等于( )A. 4πB.3πC. 2πD.π11、直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于( ) A. 30°B.45°C. 60°D.90°12.,四个顶点在同一球面上,则此球的体积为( )A.2π B. π二、填空题13.20y -++=绕点()1,2-旋转30°,所得到的直线方程是 。

高一数学必修综合测试题套附答案

高一数学必修综合测试题套附答案

高一数学必修综合测试题套附答案高一数学综合检测题(1)一、选择题:(每小题5分,共60分,请将所选答案填在括号内)1.已知集合M⊂{4,7,8},且M中至多有一个偶数,则这样的集合共有()。

A) 3个 (B) 4个 (C) 5个 (D) 6个2.已知S={x|x=2n,n∈Z},T={x|x=4k±1,k∈Z},则()。

A) S⊂T (B) T⊂S (C) S≠T (D) S=T3.已知集合P={y|y=−x^2+2,x∈R},Q={y|y=−x+2,x∈R},那么P∩Q等于()。

A) (,2),(1,1) (B) {(,2),(1,1)} (C) {1,2} (D){y|y≤2}4.不等式ax^2+ax−4<0的解集为R,则a的取值范围是()。

A) −16≤a−16 (C) −1605.已知f(x)=x−5(x≥6)f(x+4)(x<6)则f(3)的值为()。

A) 2 (B) 5 (C) 4 (D) 36.函数y=x^2−4x+3,x∈[0,3]的值域为()。

A) [0,3] (B) [−1,0] (C) [−1,3] (D) [0,2]7.函数y=(2k+1)x+b在(-∞,+∞)上是减函数,则()。

A) k>−1/2 (B) k−1 (D) k<−18.若函数f(x)=x^2+2(a−1)x+2在区间(−∞,4]内递减,那么实数a的取值范围为()。

A) a≤−3 (B) a≥−3 (C) a≤5 (D) a≥39.函数y=(2a^2−3a+2)ax是指数函数,则a的取值范围是()。

A) a>0,a≠1 (B) a=1 (C) a=1/2 (D) a=1或a=1/210.已知函数f(x)=4+ax−1的图象恒过定点p,则点p的坐标是()。

A) (1,5) (B) (1,4) (C) (0,4) (D) (4,4)11.函数y=log(3x−2)的定义域是()。

高中数学必修综合测试卷三套+含答案

高中数学必修综合测试卷三套+含答案

高一数学必修一综合测试卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( ) A .1 B .1- C .1或1- D .1或1-或02、函数1()(0)f x x x x =+≠是( )A 、奇函数,且在(0,1)上是增函数B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数3. 已知b ax y x f B y A x R B A +=→∈∈==:,,,是从A 到B 的映射,若1和8的原象分别是3和10,则5在f 下的象是( )A .3B .4C .5D .64. 下列各组函数中表示同一函数的是( )⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(,()g x ; ⑸21)52()(-=x x f ,52)(2-=x x fA 、⑴、⑵B 、 ⑵、⑶C 、 ⑷D 、 ⑶、⑸5.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)252()23(2++-a a f f 与的大小关系是( )A .)23(-f >)252(2++a a f B .)23(-f <)252(2++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)252(2++a a f 6.设⎪⎩⎪⎨⎧-=-)1(log 2)(231x ex f x )2()2(≥<x x 则[])2(f f =( ) A .2 B .3 C .9 D .187.函数1(0,1)x y a a a a=->≠的图象可能是( )8.给出以下结论:①11)(--+=x x x f 是奇函数;②221)(2-+-=x x x g 既不是奇函数也不是偶函数;③)()()(x f x f x F -= )(R x ∈是偶函数 ;④xxx h +-=11lg )(是奇函数.其中正确的有( )个A .1个B .2个C .3个D .4个9. 函数1)3(2)(2+-+=x a ax x f 在区间[)+∞-,2上递减,则实数a 的取值范围是( )A .(]3,-∞-B .[]0,3-C . [)0,3-D .[]0,2-10.函数33()11f x x x =++-,则下列坐标表示的点一定在函数f(x)图象上的是( )A .(,())a f a --B .(,())a f a -C .(,())a f a -D .(,())a f a ---11. 若函数a x x x f +-=24)(有4个零点,则实数a 的取值范围是( )A . []0,4- B. []4,0 C. )4,0( D. )0,4(-12. 设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( ) A .{}|303x x x -<<>或 B .{}|303x x x <-<<或C .{}|3003x x x -<<<<或D .{}|33x x x <->或二、填空题(本大题共4小题,每小题5分)13.若函数2()(1)3f x kx k x =+-+是偶函数,则()f x 的递减区间是 ;14.已知函数11()()142x x y =-+的定义域为[3,2]-,则该函数的值域为 ;15. 函数()()R b a x bax x f ∈+-=,25,若()55=f ,则()=-5f ;16.设函数()f x =x |x |+b x +c ,给出下列四个命题:①若()f x 是奇函数,则c =0②b =0时,方程()f x =0有且只有一个实根 ③()f x 的图象关于(0,c )对称④若b ≠0,方程()f x =0必有三个实根 其中正确的命题是 (填序号)三、解答题(解答应写文字说明,证明过程或演算步骤)17.(10分)已知集合{}0652<--=x x x A ,集合{}01562≥+-=x x x B ,集合⎭⎬⎫⎩⎨⎧<---=09m x m x x C(1)求B A ⋂(2)若C C A =⋃,求实数m 的取值范围;18.(本小题满分12分)已知函数()log (1),()log (1)a a f x x g x x =+=-其中)10(≠>a a 且,设()()()h x f x g x =-.(1)求函数()h x 的定义域,判断()h x 的奇偶性,并说明理由; (2)若(3)2f =,求使()0h x <成立的x 的集合。

人教a版高一数学综合试题及答案

人教a版高一数学综合试题及答案

人教a版高一数学综合试题及答案一、选择题(本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 若函数f(x)=2x+1,则f(-1)的值为()。

A. -1B. 1C. 3D. 52. 已知集合A={1,2,3},集合B={2,3,4},则A∩B的元素个数是()。

A. 1B. 2C. 3D. 43. 在直角坐标系中,点P(3,-4)关于y轴的对称点的坐标是()。

A. (-3,-4)B. (-3,4)C. (3,4)D. (3,-4)4. 函数y=x^2-2x+1的最小值为()。

A. -1B. 0C. 1D. 25. 已知等差数列{an}的首项a1=2,公差d=3,则a5的值为()。

A. 14B. 15C. 17D. 186. 函数y=|x-2|的图像与x轴的交点坐标是()。

A. (2,0)B. (0,2)C. (2,2)D. (-2,0)7. 已知等比数列{bn}的首项b1=4,公比q=2,则b4的值为()。

A. 32B. 16C. 8D. 648. 函数y=√(x-1)的定义域是()。

A. (-∞,1]B. [1,+∞)C. (-∞,1)D. (1,+∞)9. 已知向量a=(3,-4),向量b=(2,1),则向量a与向量b的点积为()。

A. -5B. -2C. 5D. 210. 已知复数z=1+i,则|z|的值为()。

A. 1B. √2C. 2D. √3二、填空题(本题共5小题,每小题4分,共20分。

请将答案填在题中横线上。

)1. 已知函数f(x)=x^3-3x^2+2,f′(x)=______。

2. 集合{1,3,5}∪{2,3,5}=______。

3. 已知等差数列{an}的前三项依次为2,5,8,则该数列的通项公式为an=______。

4. 函数y=x^2-6x+8的顶点坐标为______。

5. 已知向量a=(1,2),向量b=(3,-4),则向量a与向量b的向量积为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学综合测试题一、选择题(每小题5分,共12个小题,共60分)1.设集合{}{}1,0622≤=<-+=x x B x x x A ,则=B A ( )A. ]11[,- B. ]1,3(- C. )2,1(- D. )2,1[- 2.设向量()()()1,2,3,5,4,,a b c x ==-=若()a b c R λλ+=∈,则x λ+的值为( )A. 112-B. 112C. 292-D. 2923.函数xx x f 2ln )(-=的零点所在的大致区间是( )A. (1,2)B. (2,3)C.)1,1(e和(3,4) D. (e ,+∞)4.函数f (x )=1+log 2x 与g (x )=2−x +1在同一直角坐标系下的图象大致是( )A. B. C. D.5.下列函数中,是偶函数且最小正周期为π的函数是( ) A.x x y 2cos 2sin += B.x x y cos sin += C.)22cos(π+=x y D.)22sin(π+=x y6.我国古代名著《九章算术》中有这样一段话:“今有金锤,长五尺,斩本一尺,重四斤.斩末一尺,重二斤.”意思是:“现有一根金锤,头部的1尺,重4斤;尾部的1尺,重2斤;且从头到尾,每一尺的重量构成等差数列.”则下列说法错误的是 ( )A. 该金锤中间一尺重3斤B. 中间三尺的重量和时头尾两尺重量和的3倍C. 该金锤的重量为15斤D. 该金锤相邻两尺的重量之差的绝对值为0.5斤 7.定义在R 上的函数()f x 满足: ()()11f x f x +=(]0,1x ∈时, ()2x f x =则()2log 9f 等于( )A.1625 B. 98 C. 89 D. 25168.如图,在正方体1111ABCD A BC D -中,异面直线1A D 与1D C 所成的角为( ) A. 30B. 45C. 60D. 909.已知ABC ∆的三边长为,,a b c ,满足直线20ax by c ++=与圆224x y +=相离,则ABC ∆是( ) A. 直角三角形 B. 锐角三角形 C. 钝角三角形 D. 以上情况都有可能 10.将函数()sin 4y x φ=+的图象向左平移4π个单位,得到新函数的一条对称轴为π16x = ,则φ 的值不可能是( ) A. 34π-B. 4π C. 34π D. 54π 11.已知222241a a x x x++≤+-对于任意的()1,x ∈+∞恒成立,则( ) A. a 的最小值为3- B. a 的最小值为4- C. a 的最大值为2 D. a 的最大值为412.ABC ∆中,角C B A ,,的对边分别为c b a ,,,且满足3,0,222=>⋅=-+b AB CA ac b c a ,则c a +的取值范围是( )A. )3,2(B.)3,3(C. )3,1(D. ]3,1( 二、填空题(每小题5分,共4个小题,共20分)13.设α为第二象限角, (),4P x 为其终边上的一点,且4sin 5α=,则tan2α=________. 14.不论m 为何实数,直线()()1215m x m y m -+-=-恒过的定点坐标是_______.15.已知等比数列{}n a 中,有71134a a a =,数列{}n b 是等差数列,且77a b =,则=+95b b ________.16.在ABC 中, 57AB AC ==,,若O 为ABC 外接圆的圆心,则AO BC ⋅的值为________.三、解答题(本题共6个大题,共70分)17.(本题10分)已知函数()2sin cos 0)f x x x x ωωωω=+>图像的两条相邻对称轴为π2.(1)求函数()y f x =的对称轴方程; (2)若函数()13y f x =-在()0,π上的零点为12,x x ,求()12cos x x -的值.18.(本题12分)设ABC 的内角A , B , C 的对边分别为a , b , c ,已知222b c a +-=.(1)若tan B =,求b a ;(2)若23B π=, b =BC 边上的中线长.19.(本题12分)如图,三棱柱111ABC A B C -的侧面11ABB A 为正方形,侧面11BB C C 为菱形, 160CBB ∠= , 1AB B C ⊥.(Ⅰ)求证:平面11ABB A ⊥11BB C C ; (Ⅱ)若2AB =,求三棱柱111ABC A B C -的体积.20.(本题12分)已知数列{}n a 的前n 项和n n S n 832+=,{}n b 是等差数列,且1++=n n n b b a . (Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令nn n n n b a c )2()1(1++=+,求数列{}n c 的前n 项和n T .21.(本题12分)已知直线01034:=++y x l ,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的上方.(Ⅰ)求圆C 的标准方程;(Ⅱ)过点)0,1(M 的直线与圆C 交于B A ,两点(A 在x 轴上方),问在x 轴正半轴上是否存在点N ,使得x 轴平分ANB ∠?若存在,请求出点N 的坐标;若不存在,请说明理由.22.(本题12分)已知函数()21ax bf x x +=+是定义在()2a a -,上的奇函数. (1)求()f x 的解析式;(2)证明:函数()f x 在定义域上是增函数; (3)设()()()m h x f x f x =+,是否存在正实数m ,使得函数()h x 在112⎡⎤⎢⎥⎣⎦,内的最小值为2125?若存在,求出m 的值;若存在,请说明理由.参考答案1.A【解析】由A ={x |−3<x <2},又B ={x |x 2≤1}={x |−1≤x ≤1} , 所以A ∩B ={x |−3<x <2}∩{x |−1≤x ≤1}=[−1,1] . 本题选择A 选项. 2.C【解析】由已知可得()()()142291,23,54,{{27214x x x x λλλλλ=-=-+-=⇒⇒⇒+=-==- ,故选C.3.B【解析】画出函数y =ln x 和y =2x 的图象,观察图象交点在区间(2,3)内,下面证明:当x =2时,ln2<ln e =1;当x =3 时,ln3>ln e >23 ,则交点在区间(2,3)内.4.C【解析】∵f x =1+log 2x 的图象是由y =log 2x 的图象上移1而得,∴其图象必过点(1,1). 故排除A 、B ,又∵g x =21−x =2− x−1 的图象是由y =2−x 的图象右移1而得, 故其图象也必过(1,1)点,及(0,2)点,故排除D , 本题选择C 选项. 5.D【解析】对于A,函数y =sin 2x +cos 2x = 2sin (2x +π4) ,是非奇非偶的函数,不满足题意; 对于B,函数y =sinx +cosx = 2sin (x +π4) ,是非奇非偶的函数,不满足题意; 对于C,函数y =cos (2x +π2)=−sin 2x ,是奇函数,不满足题意;对于D,函数y =sin (2x +π2)=cos 2x ,是偶函数,且最小正周期为π,满足题意。

本题选择D 选项. 6.B 【解析】依题意,从头至尾,每尺的重量构成等差数列{a n } ,可得a 1=4,a 2=3.5,a 3=3,a 4=2.5,a 5=2,可知选项A 、C 、D 都正确,而中间三尺的重量和不是头尾两尺重量和的3倍,故选B. 7.C 【解析】由已知可得函数的周期()()22229log 822911182log 9log 92log 9949log 1log 248T f f f f f ⎛⎫=⇒=-=====⎪⎛⎫⎛⎫⎝⎭- ⎪⎪⎝⎭⎝⎭ ,故选C. 考点:函数的周期性、函数的解析式 8.C【解析】试题分析:由题可知,在正方体1111ABCD A BC D -中,,所以异面直线1A D 与1D C 所成的角与异面直线1A D 与1AB 所成的角相等,连接1A B ,BD,为所求角,设正方体的边长为1,在中,三条边长均为,故=60 .考点:异面直线所成角 9.C【解析】圆心到直线的距离2d =>,所以222c a b >+,在ABC ∆中, 222cos 02a b c C ab +-=<,所以C ∠为钝角。

ABC ∆为钝角三角形。

选C10.C【解析】将函数()4y s i n x ϕ=+的图象向左平移4π个单位,得到新函数的解析式为()444y sin x sin x πϕϕ⎡⎤⎛⎫=++=-+ ⎪⎢⎥⎝⎭⎣⎦,再根据所得函数的图象的一条对称轴为16x π=,则4,162k k z ππϕπ⨯+=+∈,即4k πϕπ=+,故34πϕ≠,故选C. 11.A【解析】因为()1,x ∈+∞,所以10,0x x ->>。

不等式222a a x++≤241x x +-可化为224231a a x x x ⎛⎫++≤+ ⎪-⎝⎭即2423111a a x x ++≤+-+-,因为411151x x +-+≥=-,当且仅当1{411x x x >=-- 即3x = 时,上式取“=”号。

所以2235a a ++≤,解得31a -≤≤ 。

故选A 。

【点睛】不等式的恒成立问题可转化为最大、小值问题。

12.B【解析】由a 2+c 2−b 2=ac ,得cos B =12,因为B ∈(0,π),所以B =π3.又CA ⋅AB >0,得A 为钝角.C ∈(0,π6),由正弦定理2R =b sin B=2,a +c =2(sin A +sin C )=2(sin(2π3−C )+sin C )=2 3sin(c +π6),π6<c +π6<π3,所以a +c ∈( 3,3),选B.【点睛】在解三角形中,对于求边的线性和的范围,常转化为角做,这样比化边做更容易控制范围. 13.247【解析】α 是第二象限角, (),4P x 为其终边上的一点,0,cos 5x x α∴<== 43,3tan 3y x x x α∴=-∴=-∴==-, 22tan 24tan2,1tan 7ααα∴==-故答案为247. 14.()94-,【解析】直线方程即: ()()2150m x y x y +--+-= , 求解方程组: 210{50x y x y +-=+-= 可得: 9{4x y ==- ,即直线恒过定点()9,4- . 15.8【解析】 在等比数列{}n a 中, 231177775974,428a a a a a b b b b ==∴==∴+==,故答案为816.12【解析】取BC 的中点H ,连接AH 、OH ,则(),OH BC AO BC AH HO BC ⊥⋅=+⋅()()()2211492512222AC AB AC AB HO BC AC AB -=+⋅-+⋅=-== .17.(1) ()π5π212k x k =+∈Z ;(2) 13. 【解析】试题分析:(1)化简可得()πsin 23f x x ω⎛⎫=-⎪⎝⎭,由题意可得周期πT =,所以ω的值,易得函数的对称轴;(2)由(1)可得5π12x =的一条对称轴,则125π6x x +=, ()1215πcos cos 26x x x ⎛⎫-=- ⎪⎝⎭,结合条件求解即可. 试题解析:(1) ()21sin cos sin2222f x x x x x x ωωωωω=⋅+=-πsin 23x ω⎛⎫=- ⎪⎝⎭由题意可得周期πT =,所以2π1Tω== 所以()πsin 23f x x ⎛⎫=-⎪⎝⎭故函数()y f x =的对称轴方程为()ππ2π32x k k -=+∈Z 即()π5π212k x k =+∈Z (2)由条件知12ππ1sin 2sin 20333x x ⎛⎫⎛⎫-=-=> ⎪ ⎪⎝⎭⎝⎭,且125π2π0123x x <<<< 易知()()11,x f x 与()()22,x f x 关于5π12x =对称,则125π6x x += 所以()121115π5πcos cos cos 266x x x x x ⎡⎤⎛⎫⎛⎫-=--=-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦11πππ1cos 2]sin 23233x x ⎡⎫⎛⎫⎛⎫=--=-= ⎪ ⎪⎪⎢⎝⎭⎝⎭⎣⎭18.(1)25(2【解析】试题分析: (1)由222b c a +-=根据余弦定理得cos 2A =, 6A π∴=.又tan 12B = ,根据同角三角函数的基本关系可得1sin 5B =,最后由正弦定理可得ba的值 (2)由题意可得6C π=,由正弦定理可得 2c =,在在ABD 中根据余弦定理可得BC 边上的中线长试题解析:(1)由222b c a +-=得cos A =, 6A π∴=.tan 12B =, 1sin 5B ∴=.由正弦定理得, sin sin a b A B =,则sin sin b B a A ==125152=. (2)6A π= , 6C A B ππ=--=, AB BC ∴=.由sin sin c bC B=得2c =.取BC 中点D ,在ABD中, 2222AD AB BD =+-cos 7AB BD B ⨯⨯⨯=, AD ∴,即BC 点睛:本题考查余弦定理和正弦定理的运用,考查内角和定理,以及化简和求值的运算能力,属于中档题19.(Ⅰ)见解析;(Ⅱ) 【解析】试题分析:(I )证AB 垂直于平面内的两条相交直线,再由线面垂直⇒面面垂直;(II )先求得三棱锥1B ABC -的体积,再利用棱柱是由三个体积相等的三棱锥组合而成来求解.试题解析:(Ⅰ)由侧面11ABB A 为正方形,知1AB BB ⊥, 又1AB B C ⊥, 111BB B C B ⋂=, 所以AB ⊥平面11BB C C ,又AB ⊂平面11ABB A ,所以平面11ABB A ⊥11BBC C . (Ⅱ)设O 是1BB 的中点,连结CO ,则1CO BB ⊥.由(Ⅰ)知, CO ⊥平面11ABB A ,且CO BC AB ===. 连结1AB ,则1121136C ABB ABB V S CO AB CO -∆=⋅=⋅=,因1111113B ABC C ABB ABC A B C V V V ---===111ABC A B C -的体积111ABC A B C V -= 点睛:本题考查面面垂直的判定及空间几何体的体积,考查学生分析解决问题的能力,正确运用线面垂直的判定是关键;证明面面垂直的关键是证明线线垂直,证明线线垂直常用的方法是直角三角形、等腰三角形的“三线合一”和菱形、正方形的对角线等,利用等体积法求三棱锥的高是最常用的方式. 20.(1),(2)【解析】试题分析:(1)根据公式()12n n n a S S n -=-≥求出数列{}n a 的通项公式,再求数列{}n b 的通项公式;(2)求出数列{}n c 的通项,利用错位相减法求数列{}n c 的前n 项和n T . 试题解析:(Ⅰ)由题知,当时,;当时,,符合上式.所以.设数列的公差,由即为,解得,,所以.(Ⅱ),,则, ,两式作差,得.所以.21.(Ⅰ)224x y +=; (Ⅱ)当点N 的坐标为()4,0时,能使得ANM BNM ∠=∠成立.【解析】试题分析:(Ⅰ)设圆心()5,0()2C a a >-,由圆C 与直线l 相切,求出0a = ,得到圆C 的标准方程;(Ⅱ)当直线AB x ⊥轴,在x 轴正半轴上任一点,都可使x 轴平分ANB ∠; 当直线AB 斜率存在时,设直线AB 方程为()1y k x =-, ()()()1122,0,,,,,N t A x y B x y 联立直线与圆的方程,消去y ,得到一个关于x 的二次方程,由韦达定理,求出1212,x x x x + ,因为AN BN k k =-,求出k 的值. 试题解析:(Ⅰ)设圆心()5,0()2C a a >-,则4102055a a a +=⇒==-或(舍去).所以圆C 的标准方程为224x y +=.(Ⅱ)当直线AB x ⊥轴,在x 轴正半轴上任一点,都可使x 轴平分ANB ∠;当直线AB 斜率存在时,设直线AB 方程为()1y k x =-, ()()()1122,0,,,,,N t A x y B x y 联立圆C 的方程和直线AB 的方程得,()()2222224,{12401x y k x k x k y k x +=⇒+-+-==-,故2212122224,11k k x x x x k k -+==++, 若x 轴平分ANB ∠,则()()121212121100AN BN k x k x y yk k x t x t x t x t--=-⇒+=⇒+=---- ()()()()221212222421212020411k k t x x t x x t t t k k -+⇒-+++=⇒-+=⇒=++.当点N 的坐标为()4,0时,能使得ANM BNM ∠=∠成立.点睛:本题主要考查了求圆的方程、直线与圆位置关系等,属于中档题.考查了学生的计算能力.22.(1) ()()2111x f x x x =∈-+,,;(2)证明见解析;(3)存在4412500m =,使函数()h x 在112⎡⎤⎢⎥⎣⎦,内的最小值为2125. 【解析】试题分析: (1)由题意求得实数a,b 的值,则()()2111x f x x x =∈-+,,; (2)由单调性的定义证明函数的单调性即可; (3)结合函数的解析式分类讨论可得存在4412500m =,使函数()h x 在112⎡⎤⎢⎥⎣⎦,内的最小值为2125. 试题解析:(1)∵2a a -=-,∴1a =,又()00f =,∴0b =,∴()()2111x f x x x =∈-+,,. (2)设12x x ,为区间()11-,内的任意两个自变量,且12x x <,则()()2121222111x x f x f x x x -=-++=()()22212121221211x x x x x x x x +--++=()()()()121221221211x x x x x x x x -+-++ ()()()()21122212111x x x x x x --=++,∵()()12121111x x x x ∈-∈-,,,,,∴1210x x ->,又∵12x x <,∴210x x ->,∴()()()()211222121011x x x x x x -->++,即()()21f x f x >,∴()f x 在()11-,上为增函数.(3)由(2)知()f x 在112⎡⎤⎢⎥⎣⎦,内为增函数,∴()2152f x ⎡⎤∈⎢⎥⎣⎦,, 令()t f x =,则()2152m h t t t t ⎡⎤=+∈⎢⎥⎣⎦,,.12>时()2152h t ⎛⎫ ⎪⎝⎭,在,上单调递减()min 12h t h ⎛⎫= ⎪⎝⎭,, 解得17100m =,矛盾,舍去;②当2152≤≤时()2125m h t t t =+≥=,, 解得441212125002552m t ⎛⎫==∈ ⎪⎝⎭,,时取等号;③当205<<时()h t ,在2152⎡⎤⎢⎥⎣⎦,上单调递增()min 25h t h ⎛⎫= ⎪⎝⎭,, 解得22125m =,矛盾,舍去. 所以存在4412500m =,使函数()h x 在112⎡⎤⎢⎥⎣⎦,内的最小值为2125. 点睛:判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;(2)判断f (x )与f (-x )是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f (x )+f (-x )=0(奇函数)或f (x )-f (-x )=0(偶函数))是否成立.关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题.。

相关文档
最新文档