【新】高一数学入学摸底考试试题
新】高一数学入学摸底考试试题
新】高一数学入学摸底考试试题XXX2018级高一数学入学考试考试时间:120分钟满分:150分注意事项:1.答题前填写好自己的姓名、班级、考号等信息。
2.请将答案正确填写在答题卡上。
一、选择题(本题共12小题,每题3分,共36分)1.函数 y= 的自变量 x 的取值范围为()A。
x≤0 B。
x≤1 C。
x≥0 D。
x≥12.如图,图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A。
三棱柱 B。
三棱锥 C。
圆柱 D。
圆锥3.按一定规律排列的单项式:a,-a,a,-a,a,-a,……,第 n 个单项式是()A。
a B。
-a C。
(-1)^(n+1) * a D。
(-1)^n * a4.计算 x·x 的结果是()A。
2x B。
x^2 C。
x^5 D。
x^65.下列长度的三条线段能组成直角三角形的是()A。
2,3,4 B。
3,4,5 C。
4,6,7 D。
5,11,126.如图,数轴上的点 A,B,O,C,D 分别表示数 -2,-1,0,1,2,则表示数 2 落在()A。
线段 AB 上 B。
线段 BO 上 C。
线段 OC 上 D。
线段CD 上7.在下列各题中,结论正确的是()A。
若 a。
b,则 a-b。
0 B。
若 a。
b,则 a-b < 0C。
若 a。
b,a < 0,则 ab < 08.如图所示,AB 是⊙O 的直径,PA 切⊙O 于点 A,线段 PO 交⊙O 于点 C,制作不易推荐下载- 1 -小中高精品教案试卷连结 BC,若∠P=36°,则∠B 等于()A。
27° B。
32° C。
36° D。
54°9.已知实数 x、y 满足 |x+2|+|y+3|=0,则 x+y 的值为()A。
-5 B。
-2 C。
4 D。
-410.下列运算正确的是()A。
54÷(13/22)=6 B。
(a^3)^2=a^6 C。
2023-2024 学年高一数学下学期开学摸底考试卷 02 及答案解析
2023-2024学年高一数学下学期开学摸底考试卷02及答案解析测试范围:人教A 版2019必修第一册全册。
第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1.已知集合{}{}0,1,2,11,A B x x x ==-≤<∈Z ,则A B ⋃=()A .{0}B .{1,0,1,2}-C .[1,2]-D .[1,2)-【答案】B【分析】运用列举法求得集合B ,再由集合的并集运算得选项.【详解】解:因为{}{}{}0,1,2,11,10A B x x x ==-≤<∈=-Z ,,所以A B ⋃={1,0,1,2}-,故选:B .2.已知命题p :{}1,1,0x ∀∈-,210x +>,则p 的否定是()A .{}1,1,0x ∃∈-,210x +≤B .{}1,1,0x ∃∈-,210x +>C .{}1,1,0x ∀∈-,210x +≤D .{}1,1,0x ∃∈-,210x +<【答案】A【分析】利用全称命题的否定方法,改变量词,否定结论可得答案.【详解】{}1,1,0x ∀∈-,210x +>的否定为:{}1,1,0x ∃∈-,210x +≤.故选:A.3.函数()1ln 1f x x x =+-的定义域为()A .[]0,2B .()()0,11,+∞C .[)()0,11,+∞ D .[]1,2【分析】根据给定的函数有意义,列出不等式组并求解作答.【详解】函数()1ln 1f x x x =+-有意义,有010x x >⎧⎨-≠⎩,解得0x >且1x ≠,所以函数()1ln 1f x x x =+-的定义域是()()0,11,+∞ .故选:B4.已知252a =,2lg 5b =,0.425c ⎛⎫= ⎪⎝⎭,则()A .a b c <<B .c b a<<C .b<c<aD .c<a<b【答案】C【分析】根据对数函数lg y x =与指数函数225xx y y ⎛⎫== ⎪⎝⎭,单调性即可得到,,a b c 大小关系.【详解】lg y x =为(0,)+∞上单调递增函数,则2lg lg105b =<=,25xy ⎛⎫= ⎪⎝⎭为R 上单调递减函数,则0.422155c ⎛⎫⎛⎫=<= ⎪⎝⎭⎝⎭,且0c >,由2x y =为R 上单调递增函数,可得205221a =>=,则b<c<a ,故选:C.5.函数()()()2sin 0,0f x x ωϕωϕπ=+><<的部分图象如图所示,则()f π=()A .1B .12C .2D .2【分析】由函数图象可求函数周期,利用周期公式可求ω,将点,26π⎛⎫⎪⎝⎭的坐标代入函数解析式,结合ϕ的取值范围可求得ϕ的值,然后代值计算可得出()f π的值.【详解】由题意可知,函数()y f x =的周期为4113126T πππ⎛⎫=-= ⎪⎝⎭,22Tπω∴==,26f π⎛⎫= ⎪⎝⎭ ,()2262k k Z ππϕπ⋅+=+∈,()26k k Z πϕπ=+∈,0ϕπ<< ,6πϕ∴=,则()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,()2sin 16f ππ∴==,故选:A.【点睛】本题主要考查了由图象求正弦型函数的解析式,考查了三角函数的图象和性质,考查了数形结合思想,属于基础题.6.函数()2e e 1xx f x =-的大致图象为()A .B .C .D .【答案】D【分析】求出函数()f x 的定义域,探讨其奇偶性,再结合0x >时函数值为正即可判断作答.【详解】由2e 10x -≠,得0x ≠,即函数()f x 的定义域为(,0)(0,)-∞+∞ ,显然1()e e x x f x -=-,1()()e e x xf x f x --==--,即函数()f x 是奇函数,其图象关于原点对称,AB 不满足;当0x >时,2e 1,e 1x x >>,于是()0f x >,其图象在第一象限,C 不满足,D 满足.7.已知3cos 5αα+=,则πcos 23α⎛⎫+= ⎪⎝⎭()A .4750B .4750-C .4150-D .4150【答案】D【分析】利用辅助角公式求得3sin 610πα⎛⎫+= ⎪⎝⎭,然后利用二倍角公式计算即可.【详解】3cos 2sin π65ααα⎛⎫=+= ⎪⎝⎭,则3sin 610πα⎛⎫+= ⎪⎝⎭,则241cos 2cos 212sin 36650πππααα⎡⎤⎛⎫⎛⎫⎛⎫+=+=-+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故选:D.8.已知函数()y f x =是定义在R 上的偶函数,且在区间[0,)∞+上单调递减,若实数m 满足3(log )f m f ≥(1),则m 的取值范围为()A .(0,1]3B .[3,)∞+C .1[3,3]D .(0,1][33,)∞+【答案】C【分析】由奇偶性和单调性可得3|log |1m ≤,从而得解.【详解】 函数()y f x =是定义在R 上的偶函数,且在区间[0,)∞+上单调递减,3(log )f m f ∴≥(1),等价为3(|log |)f m f ≥(1),即3|log |1m ≤.即31log 1m -≤≤,得133m ≤≤,即实数m 的取值范围是1[3,3],故选:C .【点睛】本题主要考查了函数的奇偶性和单调性,属于基础题.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列等式正确的是()A .1sin15cos154︒︒=B .22sin 22.512︒-=C .3sin26cos34cos26sin342︒︒+︒︒=D .tan 71tan 2611tan 71tan 26︒-=+︒︒︒【答案】ACD【分析】利用二倍角公式和两角和差公式求解即可.【详解】11sin15cos15sin 3024︒︒=︒=,A 正确;22sin 22.51cos 452︒-=-︒=-,B 错误;()sin 26cos34cos 26sin 34sin 2634sin 60︒︒+︒︒=︒+︒=︒=C 正确;()tan 71tan 26tan 7126tan 4511tan 71tan 26︒-︒=︒-︒=︒=+︒︒,D 正确;故选:ACD10.若正实数,a b 满足2a b +=,则下列结论中正确的有()A .ab 的最大值为1B .11a b+的最大值为2C 2D .22a b +的最小值为2【答案】AD【分析】根据22a b ab +⎛⎫≤ ⎪⎝⎭进行计算然后可判断A 项;利用“1”的妙用及均值不等式计算可判断B 项;根据22()a b ≤+可判断C 项,将22a b +变形为()2242b a a a b b -=-+,然后结合ab 的范围可判断D 项.【详解】对于A 项,因为212a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当1a b ==时取等号,则ab 的最大值为1,故A 项正确;对于B 项,因为()1111111222222b a a b a b a b a b ⎛⎛⎫⎛⎫+=++=++≥+= ⎪⎪ ⎝⎭⎝⎭⎝,当且仅当1a b ==时取等号,所以11a b+的最小值为2,故B 项错误;对于C 项,2()22()42a ba b a b a b +=++≤++⨯=+=,当且仅当1a b ==时取等号,2≤,当且仅当1a b ==时取等号,2,故C 项错误;对于D 项,因为()2222424212a b a b ab ab +=+-=-≥-⨯=,当且仅当1a b ==时取等号,所以22a b +的最小值为2,故D 项正确.故选:AD.11.将函数()sin 26f x x π⎛⎫=- ⎪⎝⎭的图象向左平移6π个单位得到函数()g x ,则下列说法正确的是()A .()g x 的周期为πB .()g x 的一条对称轴为3x π=C .()g x 是奇函数D .()g x 在区间,36ππ⎡⎤-⎢⎥⎣⎦上单调递增【答案】AD【分析】求出()sin(26g x x π=+,A.()g x 的最小正周期为π,所以该选项正确;B.函数图象的对称轴是,26k x k Z ππ=+∈,所以该选项错误;C.函数不是奇函数,所以该选项错误;D.求出()g x 在区间,36ππ⎡⎤-⎢⎥⎣⎦上单调递增,所以该选项正确.【详解】解:将函数()sin 26f x x π⎛⎫=- ⎪⎝⎭的图象向左平移6π个单位得到函数()sin[2(sin(2)666g x x x πππ=+-=+.A.()g x 的最小正周期为2=2ππ,所以该选项正确;B.令2,,6226k x k x k Z πππππ+=+∴=+∈,函数图象的对称轴不可能是3x π=,所以该选项错误;C.由于()()g x g x -≠-,所以函数不是奇函数,所以该选项错误;D.令222,,26236k x k k Z k x k πππππππππ-≤+≤+∈∴-≤≤+,当0k =时,36x ππ-≤≤,所以()g x 在区间,36ππ⎡⎤-⎢⎥⎣⎦上单调递增,所以该选项正确.故选:AD12.已知函数()22,0log ,0x x f x x x +≤⎧=⎨>⎩,若()f x a =有三个不等实根1x ,2x ,3x ,且123x x x <<,则()A .()f x 的单调递增区间为(][),01,-∞+∞B .a 的取值范围是()0,2C .123x x x 的取值范围是(]2,0-D .函数()()()g x f f x =有4个零点【答案】CD【分析】作出()y f x =的图象,结合图象逐一判断即可.【详解】作出函数()22,0log ,0x x f x x x +≤⎧=⎨>⎩的图象,如图所示:对于A ,由图象可得()y f x =的单调递增区间为(][),0,1,∞∞-+,故A 不正确;对于B ,因为()f x a =有三个不等实根,即()y f x =与y a =有三个不同交点,所以(0a ∈,2],故B 不正确;对于C ,则题意可知:120x -<≤,2223log log x x -=,所以231x x =,所以1231(2x x x x =∈-,0],故C 正确;对于D ,令()f x t =,则有()y f t =,令0y =,则有2t =-或1t =,当2t =-时,即()2f x =-,即22x +=-,解得4x =-;当1t =时,即()1f x =,所以21x +=或2|log |1x =,解得=1x -,或12x =或2x =,所以()y f t =共有4个零点,即()(())g x f f x =有4个零点,故D 正确.故选:CD .第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13.已知扇形的圆心角为23π,扇形的面积为3π,则该扇形的弧长为.【答案】2π【解析】利用扇形的面积求出扇形的半径r ,再带入弧长计算公式即可得出结果.【详解】解:由于扇形的圆心角为23απ=,扇形的面积为3π,则扇形的面积221123223S r r παπ==⨯⨯=,解得:3r =,此扇形所含的弧长2323l r παπ==⨯=.故答案为:2π.14.函数()()311log 4,23,2x x x f x x -⎧+-<=⎨≥⎩,则()1f f =⎡⎤⎣⎦.【答案】3【解析】首先求出()311log 3f =+=,再将2代入对应的解析式即可求解.【详解】由()()311log 4,23,2x x x f x x -⎧+-<=⎨≥⎩,所以()311log 32f =+=,所以()()211233f f f -===⎡⎤⎣⎦,故答案为:3【点睛】本题考查了求分段函数的函数值,属于基础题.15.已知()4sin 5αβ+=-,()1sin 3αβ-=,则tan tan αβ=.【答案】717【分析】直接利用两角和与差的正弦函数,展开已知表达式,求出sin cos αβ,cos sin αβ;然后得到结果.【详解】∵4sin()5αβ+=-,∴sin cos cos sin 54αβαβ+=-.①∵1sin()3αβ-=,∴1sin cos cos sin 3αβαβ-=.②①+②,得572sin cos 1αβ=-.③①-②,得172cos sin 15αβ=-.④③÷④,得tan 7tan 17αβ=.故答案为:717.16.设奇函数()f x 的定义域为R ,且()1f x +是偶函数,若()17f =,则()()20232024f f +=.【答案】7-【分析】根据所给函数性质求出函数周期,利用周期化简即可得解.【详解】因为()f x 是奇函数,且()1f x +是偶函数,所以()()()111f x f x f x +=-+=--,所以()()2f x f x +=-,即()()()42f x f x f x +=-+=,故()f x 是4为周期的周期函数,且有(0)0f =,则()()()()()202320241017f f f f f +=-+=-=-.故答案为:7-四.解答题:本题共6小题,17题10分,剩下每题12分.共70分,解答应写出文字说明、证明过程或演算步骤.17.化简求值:(1)2302427216log log 839π-⎛⎫++- ⎪⎝⎭;(2)已知tan 2α=-,求2sin()sin 2cos()sin(3)ππααααπ⎛⎫-++ ⎪⎝⎭-+-的值.【答案】(1)49;(2)1-.【分析】(1)根据指数与对数的运算公式求解即可;(2)根据诱导公式,转化为其次问题进行求解即可.【详解】(1)原式2222241log log 333⎛⎫=++- ⎪⎝⎭2411log 92=++49=.(2)原式2sin cos cos sin αααα+=-2tan 11tan αα+=-1=-.18.已知函数()()()2571xf x a a a =-+⋅-是指数函数.(1)求实数a 的值;(2)已知()()()223g f x x x f =-+,[]1,2x ∈-,求()g x 的值域.【答案】(1)3a =(2)[]2,11【分析】(1)根据指数函数的定义可得出关于实数a 的等式与不等式,即可解得实数a 的值;(2)令()t f x =,1,42t ⎡⎤∈⎢⎥⎣⎦,求出函数()223h t t t =-+在1,42⎡⎤⎢⎥⎣⎦上的最大值和最小值,即可得出函数()g x 的值域.【详解】(1)解:由题意可得25711011a a a a ⎧-+=⎪->⎨⎪-≠⎩,解得3a =.(2)解:由(1)可得()2xf x =,因为[]1,2x ∈-,令()t f x =,1,42t ⎡⎤∈⎢⎥⎣⎦,令()()222312h t t t t =-+=-+,则()()min 12g x h ==,()()max 411g x h ==,因此,函数()g x 的值域为[]2,11.19.若不等式2(1)460a x x --+>的解集是{}31x x -<<.(1)解不等式22(2)0x a x a +-->;(2)若关于x 的一元二次不等式20kx ax k -+≤的解集为R ,求实数k 的取值范围.【答案】(1){|1x x <-或3}2x >(2)32k ≤-【分析】(1)由题干条件可得方程2(1)460a x x --+=的两个根为3,1-,结合韦达定理可得3a =,代入不等式,结合二次函数的性质,求解即可;(2)分0k =,0k ≠两种情况讨论,当0k ≠,利用开口和判别式控制,即得解【详解】(1)由题意,方程2(1)460a x x --+=的两个根为3,1-43116311a a ⎧-+=⎪⎪-∴⎨⎪-⨯=⎪-⎩,解得3a =此时方程为22460x x --+=,2(4)860D =-+´>成立不等式22(2)0x a x a +-->即为2230(1)(23)0x x x x -->Û+->解得:1x <-或32x >故不等式的解集为:{|1x x <-或3}2x >(2)由题意,关于x 的一元二次不等式20kx ax k -+≤的解集为R当0k =时,30x -≤,不恒成立;当0k ≠时20940k k <⎧⎨∆=-≤⎩,解得32k ≤-故实数k 的取值范围是32k ≤-20.某公司决定对旗下的某商品进行一次评估,该商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定立即对该商品进行全面技术革新和销售策略调整,并提高定价到x 元.公司拟投入()16²600x -万元作为技改费用,投入50万元作为固定宣传费用,投入x 万元作为浮动宣传费用.试问:当该商品改革后的销售量a 至少达到多少万件时,才可能使改革后的销售收入不低于原收入与总投入之和?并求出此时每件商品的定价.【答案】(1)最多为40元;(2)销售量a 至少达到11万件,此时定价30元满足题意.【分析】(1)设每件定价,根据条件列不等式求解即可;(2)将问题转化为不等式定区间内有解,分离参数再结合基本不等式计算即可.【详解】(1)设定价每件t 元,由题意可知2520008258110000t t -⎛⎫-⨯≥⨯ ⎪⎝⎭,整理得26510000t t -+≤,解之得[]25,40t ∈,故该商品每件定价最多为40元;(2)由上可知:当25x ≥时,不等式()21258506006ax x x ≥⨯++-+有解,整理得()1501256x a x x ≥++≥有解,易知15011116x y x =++≥=,当且仅当30x =时取得等号,此时min 11a y ≥=,所以改革后销售量至少达到11万件时,才可能使改革后的销售收入不低于原收入与总投入之和,此时每件商品定价为30元.21.已知函数()()2sin 1f x x ωϕ=++,π02,ωϕ⎛⎫>< ⎪⎝⎭,函数()f x 的图象上两相邻对称轴之间的距离为π2,_________.请从以下三个条件中任选一个补充至横线上.①函数()f x 的图象的一条对称轴为直线π6x =;②函数()f x 的图象的一个对称中心为点π,112⎛⎫- ⎪⎝⎭;③函数()f x 的图象经过点π,06⎛⎫- ⎪⎝⎭.(1)求函数()y f x =的解析式;(2)将()y f x =图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,再向右平移π3个单位得到()y g x =的图象,若对任意的π5π,66x ⎡⎤∈⎢⎥⎣⎦,不等式()()210g x mg x -+≤恒成立,求m 的取值范围.【答案】(1)()π2sin 216f x x ⎛⎫=++ ⎪⎝⎭(2)103m ≥【分析】(1)由正弦函数的对称轴,对称中心,特殊点的性质解出即可;(2)先做伸缩变换,再做平移变换,得到()y g x =,再利用二次函数的性质解出参数的取值范围即可.【详解】(1)因为函数()f x 的图象上两相邻对称轴之间的距离为π2,所以π2ππ222πT T ω=⇒=⇒==,所以()()2sin 21f x x ϕ=++,若选①函数()f x 的图象的一条对称轴为直线π6x =;所以πππ2π,Z 2242k x k x k ϕϕ+=+⇒=+-∈,因为π2ϕ<,所以ππππ24266k ϕϕ+-=⇒=,所以()π2sin 216f x x ⎛⎫=++ ⎪⎝⎭;若选②函数()f x 的图象的一个对称中心为点π,112⎛⎫- ⎪⎝⎭,则π2π,Z 22k x k x k ϕϕ+=⇒=-∈,因为π2ϕ<,所以πππ22126k ϕϕ-=-⇒=;所以()π2sin 216f x x ⎛⎫=++ ⎪⎝⎭;若选③函数()f x 的图象经过点π,06⎛⎫- ⎪⎝⎭,则ππ2sin 21066f ϕ⎡⎤⎛⎫⎛⎫-=⨯-++= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,因为π2ϕ<,所以ππ266ϕ⎛⎫⨯-+=- ⎪⎝⎭,所以π6ϕ=,所以()π2sin 216f x x ⎛⎫=++ ⎪⎝⎭.(2)将()y f x =图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,再向右平移π3个单位得到()y g x =的图象,则()πππ2sin 12sin 1366g x x x ⎛⎫⎛⎫=-++=-+ ⎪ ⎪⎝⎭⎝⎭,因为π5π,66x ⎡⎤∈⎢⎥⎣⎦,所以π3π20,6x ⎡⎤-∈⎢⎥⎣⎦,所以[]π2sin 0,26x ⎛⎫-∈ ⎪⎝⎭,所以()13g x ≤≤,因为不等式()()210g x mg x -+≤恒成立,所以设()t x g =,则二次函数()[]21,1,3P mt t t t -∈=+,开口向上,所以()()10110103093103P m m P m ⎧≤-+≤⎧⎪⇒⇒≥⎨⎨≤-+≤⎪⎩⎩,m 的取值范围为103m ≥.22.已知函数()1ln1kx f x x -=+为奇函数.(1)求实数k 的值;(2)证明函数()f x 在()1,+∞上的单调递增;(3)若存在(),1,αβ∈+∞使得函数()f x 在区间[],αβ上的值域为ln ,ln 22m m m m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,求实数m 的取值范围.【答案】(1)1k =(2)证明见解析(3)2|09m m ⎧⎫<<⎨⎬⎩⎭【分析】(1)根据函数()1ln 1kx f x x -=+为奇函数,由()()0f x f x -+=求解;(2)利用函数单调性的定义求解;(3)根据(2)知()f x 在()1,+∞上的单调递增,结合()f x 在区间[],αβ上的值域为ln ,ln 22m m m m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,转化为21111022mx m x m ⎛⎫--+-= ⎪⎝⎭在()1,+∞上有两个不同实根求解.【详解】(1)解: 函数()1ln 1kx f x x -=+为奇函数,()()()()()()22211111ln ln ln ln 011111kx kx kx kx k x f x f x x x x x x -+----∴-+=+===+-++--,21k =∴即1k =±,当1k =-时显然不成立,故1k =,()1ln 1x f x x -=+.(2)证明:()1ln1x f x x -=+定义域()(),11,-∞-⋃+∞,任取121x x <<,则()()()()()()12121212211111ln ln ln 1111x x x x f x f x x x x x -+---=-=++-+,121x x << ,()()()()()121212111120x x x x x x ∴-+-+-=-<,()()12110x x +->,()()()()1221110111x x x x -+∴<<-+,()()()()()()12122111ln011x x f x f x x x -+∴-=<-+,()()12f x f x ∴<,()f x \在()1,+∞上的单调递增.(3)由(2)知()f x 在()1,+∞上的单调递增,()f x 在区间[],αβ上的值域为ln ,ln 22m m m m αβ⎡⎤⎛⎫⎛⎫-- ⎪⎢⎥⎝⎭⎝⎭⎣⎦,0m ∴>,且112m m ααα-=-+且1112m m βββ-=-+,即α,β是方程1112x mx m x -=-+的实根,问题等价于21111022mx m x m ⎛⎫--+-= ⎪⎝⎭在()1,+∞上有两个不同实根,令()()21111,1,22h x mx m x m x ⎛⎫=--+-∈+∞ ⎪⎝⎭,显然0m ≠,则()20111241011Δ141022m m h m m m m >⎧⎪⎪->⎪⎨=>⎪⎪⎛⎫⎛⎫=--->⎪ ⎪ ⎪⎝⎭⎝⎭⎩,即0205229m m m m ⎧⎪>⎪⎪<<⎨⎪⎪><⎪⎩或,解得209m <<,故m 的范围2|09m m ⎧⎫<<⎨⎬⎩⎭.。
【数学】周南中学2022-2023学年高一上学期入学摸底测试(解析版)
2022年周南中学高一新生入学摸底考试数学试题时间90分钟,分值120分姓名__________考生号__________一、选择题(本大题共12小题,共36.0分.在每小题列出的选项中,选出符合题目的一项)1.根据纸张的质量不同,厚度也不尽相同,500张A4打印纸()280g /m 约厚0.052m ,因此,一张纸的厚度大约是0.000104m ,数据“0.000104”用科学记数法可表示为()A.30.10410-⨯B.510.410-⨯ C.31.0410-⨯ D.41.0410-⨯【答案】D 【解析】【分析】利用科学记数法求解即可.【详解】数据“0.000104”用科学记数法可表示为41.0410-⨯.故选:D.2.在3317,π,2022这五个数中无理数的个数为()A.2B.3C.4D.5【答案】A 【解析】【分析】根据无理数的定义可得答案.【详解】在33172=-,π,2022π,共有两个.故选:A .3.如图,这个组合几何体的左视图是()A. B. C. D.【答案】A【解析】【详解】根据组合体直观图可知,几何体下面是长方体,长方体的左上方是圆柱,故左视图下面是矩形,左上方是矩形.故选:A4.下列计算正确的是()A.=B.1-=C.2= D.3=【答案】C 【解析】【分析】利用二次根式运算,逐项判断作答.【详解】对于A 不是同类二次根式,不能进行加减运算,A 错误;对于B ,115-==,B 错误;对于C 2÷==,C 正确;对于D ,-=,D 错误.故选:C5.世界文化遗产“三孔”景区已经完成5G 基站布设,“孔夫子家”自此有了5G 网络.5G 网络峰值速率为4G 网络峰值速率的10倍,在峰值速率下传输500兆数据,5G 网络比4G 网络快45秒,求这两种网络的峰值速率.设4G 网络的峰值速率为每秒传输x 兆数据,依题意,可列方程是()A.5005004510x x -= B.5005004510x x -=C.500050045x x-= D.500500045x x-=【答案】A 【解析】【分析】分别求在4G 网络峰值速率下传输500兆数据的时间和在5G 网络峰值速率下传输500兆数据的时间,从而得解.【详解】设4G 网络的峰值速率为每秒传输x 兆数据,则在4G 网络峰值速率下传输500兆数据需要500x秒,5G 网络峰值速率为4G 网络峰值速率的10倍,在5G 网络峰值速率下传输500兆数据需要50010x秒,而5G 网络比4G 网络快45秒,所以5005004510x x-=.故选:A.6.已知一组数据5,5,6,6,6,7,7,则这组数据的方差为()A.47B.447C.547D.6【答案】A 【解析】【分析】根据平均数、方差公式求解即可.【详解】将数据从小到大排列:5566677,,,,,,,.平均数为5+5+6+6+6+7+767x ==,方差为()()()22221425636627677s ⎡⎤=⨯-+⨯-+⨯-=⎣⎦,故A 正确.故选:A7.下列说法正确的是()A.海底捞月是必然事件B.明天的降雨概率为80%,则明天80%的时间下雨,20%的时间不下雨C.为了调查长沙市所有初中学生的视力情况,适合采用全面调查D.甲、乙两人各进行了10次射击测试,方差分别是21.3s =甲,21.1s =乙,则乙的射击成绩比甲稳定【答案】D 【解析】【分析】利用事件、概率的意义判断AB ;利用抽样、方差的意义判断CD 作答.【详解】对于A ,海底捞月是不可能事件,A 错误;对于B ,概率反映的是事件发生的可能性大小,明天的降雨概率为80%,说明明天降雨的可能性为80%,B 错误;对于C ,长沙市的初中学生很多,采用全面调查比较困难,适合抽样调查,C 错误;对于D ,由于22s s >甲乙,则乙的射击成绩比甲稳定.故选:D8.已知点()11,A y -、()21,B y 、()32,C y 在反比例函数2y x=-的图象上,则1y 、2y 、3y 的大小关系是()A.132y y y >>B.123y y y >>C.123y y y <<D.213y y y <<【答案】A 【解析】【分析】根据给定条件,求出1y 、2y 、3y 的值即可作答.【详解】由点()11,A y -、()21,B y 、()32,C y 在反比例函数2y x=-的图象上,得1232,2,1y y y ==-=-,所以132y y y >>.故选:A9.如下图,一次函数4y x =+的图象与x 轴,y 轴分别交于点A ,B ,点(2,0)C -是x 轴上一点,点E ,F 分别为直线4y x =+和y 轴上的两个动点,当CEF △周长最小时,点E ,F 的坐标分别为()A.53,22E ⎛⎫-⎪⎝⎭,(0,2)F B.(2,2)E -,(0,2)F C.53,22E ⎛⎫- ⎪⎝⎭,20,3F ⎛⎫ ⎪⎝⎭D.(2,2)E -,20,3F ⎛⎫ ⎪⎝⎭【答案】C 【解析】【分析】作C 关于y 轴的对称点G ,作C 关于4y x =+的对称点D ,连接DG 交y 轴于F ,交AB 于E ,有++=++=EC FC EF ED FG EF DG ,即此时CEF △周长最小,求出D 点坐标,可得直线DG 方程,与4y x =+联立求出E 点坐标,令0x =可得F 点坐标.【详解】作(2,0)C -关于y 轴的对称点(2,0)G ,作(2,0)C -关于4y x =+的对称点(,)D a b ,连接DG 交y 轴于F ,交AB 于E ,所以,==FG FC EC ED ,此时CEF △周长最小,即++=++=EC FC EF ED FG EF DG ,由(2,0)C -,直线AB 方程为4y x =+,所以122422ba b a ⎧=-⎪⎪+⎨-⎪=+⎪⎩,解得42a b =-⎧⎨=⎩,所以(4,2)D -,可得直线DG 方程为022042--=---y x ,即1233y x =-+,由41233y x y x =+⎧⎪⎨=-+⎪⎩,解得5232x y ⎧=-⎪⎪⎨⎪=⎪⎩,所以53,22E ⎛⎫- ⎪⎝⎭,令0x =可23y =,所以20,3F ⎛⎫⎪⎝⎭.故选:C.10.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,AE 平分BAD ∠,分别交BC ,BD 于点E ,P ,连接OE ,若60ADC ∠=︒,122AB BC ==,则下列结论:①30CAD ∠=︒,②14OE AD =,③ABCD S AB AC =⋅,④BD =.其中结论正确的有()A.1个B.2个C.3个D.4个【答案】D 【解析】【分析】根据平行四边形的性质根据角平分线的定义可得=60BAE DAE ABE ∠=∠︒=∠,从而可得ABE 为等边三角形,再根据等腰三角形的性质、三角形的外角性质可得30CAE ACE ∠=∠=︒,然后根据角的和差即可判断①;根据三角形中位线定理即可判断②;根据90BAC ∠=︒,利用平行四边形的面积公式即可判断③;先在Rt ABC △中,利用勾股定理可得AC 的长,从而可得OA 的长,再在Rt AOB △中,利用勾股定理可得OB 的长,然后根据2BD OB =即可判断④.【详解】解:∵四边形ABCD 是平行四边形,60ADC ∠=︒,122AB BC ==,60,120,//,,,4ABC BAD AD BC OA OC OB OD AD BC ∴∠=︒∠=︒====,AE 平分BAD ∠,60BAE DAE ABE ∴∠=∠=︒=∠,ABE ∴ 为等边三角形,2AE BE AB ∴===,60AEB ∠=︒,422CE BC BE ∴=-=-=,CE AE BE ∴==,1302CAE ACE AEB ∴∠=∠=∠=︒,又AD //BC ,30CAD ACE ∠∴∠==︒,结论①正确;,B OA OC E CE == ,111244OE AB BC AD ∴===,结论②正确;90BAC BAE CAE ∠=∠+∠=︒ ,AB AC ∴⊥,ABCD S AB AC ∴=⋅ ,结论③正确;在Rt ABC △中,AC ===12OA AC ∴==在Rt AOB △中,OB ===2BD OB ∴==综上,结论正确的有4个,故选:D .11.如图,抛物线2(0)y ax bx c a =++≠的对称轴是直线2x =-,并与x 轴交于A ,B 两点,若5OA OB =,则下列结论中:①0abc >;②22()0a c b +-=;③940a c +<;④若m 为任意实数,则224am bm b a ++≥,正确的个数是()A.1B.2C.3D.4【答案】C 【解析】【分析】根据抛物线的开口可得0a >,与y 轴的交点在下方可得0c <,抛物线的对称轴可得0b >可判断①;设()1,0A x ,()2,0B x ,由5OA OB =可得1251x x =-=,,从而5c a =-,可判断②③④.【详解】因为抛物线的开口向上,所以0a >,与y 轴的交点在下方,所以0c <,抛物线的对称轴是202bx a=-=-<,可得0b >,所以<0abc ,故①错误;设()1,0A x ,()2,0B x ,抛物线对称轴是22bx a=-=-,即4b a =,可得124x x +=-,因为5OA OB =,所以125x x =-,可得1251x x =-=,,所以125cx x a==-,即5c a =-,所以2222()(5)160=-=+--a c b a a a ,故②正确;可得()94945110+=+⨯-=-<a c a a a ,故③正确;因为0a >,若m 为任意实数,则()222248244am bm b am am a a m a ⎡⎤++=++=++≥⎣⎦,故④正确.故选:C.12.如下图是清朝李演撰写的《九章算术细草图说》中的“勾股圆方图”,四边形ABCD ,四边形EBGF ,四边形HNQD 均为正方形,BG ,NQ ,BC 是某个直角三角形的三边,其中BC 是斜边,若:8:9HM EM =,2HD =,则AB 的长为()A.114B.2910C.3D.【答案】B 【解析】【分析】设,9HM t EM t ==,根据给定图形,用t 表示出BG ,NQ ,BC ,再利用勾股定理列式计算作答.【详解】由:8:9HM EM =,设8,9HM t EM t ==,0t >,因为四边形ABCD ,四边形EBGF ,四边形HNQD 均为正方形,则92BC AD AH HD EM HD t ==+=+=+,2BG BE AB AE AD HM t ==-=-=+,2NQ HD ==,又BG ,NQ ,BC 是某个直角三角形的三边,即222BC BG NQ =+,因此222(92)(2)2t t +=++,即220810t t +-=,而0t >,解得110t =,所以2910AB BC ==.故选:B二、填空题(本大题共6小题,共24.0分)13.因式分解:22ab ab a -+=__________.【答案】2(1)a b -【解析】【分析】根据给定条件,利用提公因式法、公式法分解因式作答.【详解】2222(21)(1)ab ab a a b b a b -+=-+=-.故答案为:2(1)a b -14.圆锥的侧面展开图是一个圆心角为120︒l =__________.【答案】【解析】【分析】由圆锥的底面半径求出底面周长,再利用锥体的侧面展开图的弧长,可求得圆锥的母线.【详解】设圆锥的底面半径为r 2π3,可得圆锥底面周长为2π2πr =圆锥的母线为l ,该圆锥的侧面展开图弧长为2π3l ⨯=解得l =故答案为:.15.已知()2484m n m n ka b a b -+=,则k m n ++=__________.【答案】6或2【解析】【分析】利用指数幂的运算和多项式相等可得答案.【详解】因为()222222484-+-+==m n m nm n m n ka b k a b a b ,所以24224228k m n m n ⎧=⎪-=⎨⎪+=⎩,解得231k m n =⎧⎪=⎨⎪=⎩,或231k m n =-⎧⎪=⎨⎪=⎩,则6k m n ++=,或2k m n ++=.故答案为:6或2.16.若关于x 的分式方程121-=+k x 的解为负数,则k 的取值范围为__________.【答案】3k <且1k ≠【解析】【分析】分析可知1x ≠-,解方程121-=+k x 得出x ,根据题意可得出关于实数k 的不等式组,解之即可.【详解】对于方程121-=+k x ,有10x +≠,可得1x ≠-,由121-=+k x 可得32k x -=,因为关于x 的分式方程121-=+k x 的解为负数,则302312k k -⎧<⎪⎪⎨-⎪≠-⎪⎩,解得3k <且1k ≠.故答案为:3k <且1k ≠.17.代数式||1|1|x x x x -+-的一切可能值为__________.【答案】2-,0,2【解析】【分析】分0x <、01x <<、1x >讨论去绝对值可得答案.【详解】由已知0x ≠,1x ≠,当0x <时,111211--+=--=---x x x xx x ;当01x <<时,111011--+=-=--x x x xx x ;当1x >时,111211--+=+=--x x x xx x .故答案为:2,0,2-.18.如图①,在边长为4的正方形ABCD 中,以点B 为圆心,BA 长为半径作 AC ,F 为 AC 上一动点,过点F 作 AC 所在圆的切线,交AD 于点P ,交DC 于点Q .(1)图①中DPQ V 的周长等于__________.(2)如图②,分别延长PQ 、BC ,延长线相交于点M ,设AP 的长为x ,BM 的长为y ,则y 与x 之间的函数表达式_________________________.【答案】①.8②.8(04)2xy x x =+<<【解析】【分析】根据过圆外一点的切线长相等可得DPQ V 的周长;连接BF 、BP ,过点P 作PN BM ⊥于点N ,判断出 BAP BFP ≌△可得==PM BM y ,再由222PM MN PN =+可得y 与x 之间的函数表达式.【详解】 四边形ABCD 是正方形,4AB BC CD DA ∴====,90∠=∠=∠=∠= BAD B BCD D ,AD ∴切 AC 所在圆于点A ,CD 切 AC 所在圆于点C ,又PQ ∵切 AC 所在圆于点F ,AP PF =,CQ QF =,DPQ ∴△的周长8AD CD =+=;如图,连接BF 、BP ,过点P 作PN BM ⊥于点N ,则易得四边形ABNP 为矩形,4PN AB ∴==,BN AP x ==,MN BM BN y x ∴=-=-,在BAP △和BFP △中,AB FB AP FP BP BP =⎧⎪=⎨⎪=⎩,BAP BFP ∴≌△△,APB FPB ∴∠=∠,四边形ABCD 是正方形,//AD BC ∴,APB PBC ∴∠=∠,FPB PBC ∴∠=∠,PM BM y ∴==.在Rt PMN △中,222PM MN PN =+,222()4y y x ∴=-+,即8(04)2x y x x =+<<.故答案为:①8;②8(04)2x y x x =+<<.三、解答题(本大题共5小题,共60.0分.解答应写出文字说明,证明过程或演算步骤)19.一方有难,八方支援.“新冠肺炎”疫情来袭,除了医务人员主动请缨逆行走向战场外,众多企业也伸出援助之手.某公司用甲,乙两种货车向某市运送爱心物资,两次满载的运输情况如下表:甲种货车辆数乙种货车辆数合计运物资吨数第一次3429第二次2631(1)求甲、乙两种货车每次满载分别能运输多少吨物资;(2)目前有46.4吨物资要运输到该市,该公司拟安排甲乙货车共10辆,全部物资一次运完,其中每辆甲车一次运送花费500元,每辆乙车一次运送花费300元,请问该公司应如何安排车辆最节省费用.【答案】(1)甲乙分别能运输5吨和3.5吨(2)甲货车8辆,乙货车2辆【解析】【分析】(1)设甲乙每次满载分别能运输x 吨和y 吨物资,根据已知数据列方程组求x 、y 即可;(2)设甲货车z 辆,乙货车(10)z -辆,结合(1)及已知有5 3.5(10)46.4z z +-≥,求z ,进而确定最节省费用的车辆安排.【小问1详解】设甲、乙两种货车每次满载分别能运输x 吨和y 吨物资,根据题意得34292631x y x y +=⎧⎨+=⎩,解得53.5x y =⎧⎨=⎩,答:甲、乙两种货车每次满载分别能运输5吨和3.5吨物资.【小问2详解】设安排甲货车z 辆,乙货车(10)z -辆,根据题意得5 3.5(10)46.4z z +-≥,解得7.6z ≥,z 为整数,则8z =或9或10,因为甲种货车的费用大于乙种货车的费用,所以甲种货车数量最小时最节省费用,∴当8z =时1082-=,最小费用850023004600=⨯+⨯=(元),答:该公司应安排甲货车8辆,乙货车2辆最节省费用.20.我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB 的长.(1)如图(1)所示,将一个测角仪放置在距离灯杆AB 底部a 米的点D 处,测角仪高为b 米,从C 点测得A 点的仰角为α,求灯杆AB 的高度.(用含a ,b ,α的代数式表示)(2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义.如图(2)所示,现将一高度为2米的木杆CG 放在灯杆AB 前,测得其影长CH 为1米,再将木杆沿着BC 方向移动1.8米至DE 的位置,此时测得其影长DF 为3米,求灯杆AB 的高度.【答案】(1)(tan )a b α+米(2)3.8米.【解析】【分析】(1)利用在Rt AEC △中tan tan AE CE a αα=⋅=,可得AB AE BE =+;(2)由ABH GCH ∽△△得211AB BC =+,由ABF EDF ∽ 得233 1.8AB BC=++,从而求出BC ,可得答案.【小问1详解】如图:由题意得:BE CD b ==米,EC BD a ==米,90AEC ∠= ,ACE α∠=,在Rt AEC △中,tan tan AE CE a αα=⋅=(米),()tan AB AE BE b a α∴=+=+米,∴灯杆AB 的高度为()tan a b α+米;【小问2详解】由题意得:2GC DE ==米, 1.8CD =米,90ABC GCD EDF ∠=∠=∠=︒,AHB GHC ∠=∠ ,ABH GCH ∴∽△△,CG CH AB BH ∴=,211AB BC∴=+,F F ∠=∠ ,ABF EDF ∴∽△△,DE DF AB BF ∴=,233 1.8AB BC ∴=++,1313 1.8BC BC ∴=+++,0.9BC ∴=米,2110.9AB ∴=+, 3.8AB ∴=米,∴灯杆AB 的高度为3.8米.21.如图,O 的直径10AB =,弦6AC =,ACB ∠的平分线交O 于D ,过点D 作//DE AB 交CA 的延长线于点E ,连接AD ,BD .(1)由AB ,BD , AD 围成的曲边三角形的面积是多少?(2)求证:DE 是O 的切线;(3)求线段DE 的长.【答案】(1)2525π24+;(2)证明见解析;(3)354.【解析】【分析】(1)连接OD ,利用给定条件,证明OD AB ⊥,再计算扇形面积和三角形面积作答.(2)证明OD DE ⊥,再利用切线的判定推理作答.(3)过A 作AF D E ⊥,再借助相似三角形求解作答.【小问1详解】连接OD ,由O 的直径10AB =,得90ACB ∠=︒,又ACB ∠的平分线交O 于D ,则2290AOD ABD ACD ACB ∠︒=∠=∠=∠=,即OD AB ⊥,扇形AOD 面积2125ππ44S OA '=⋅=,所以由AB ,BD , AD 围成的曲边三角形的面积12525π224BOD S S S OD OB S ''=+=⋅+=+ .【小问2详解】由(1)知OD AB ⊥,而//DE AB ,则OD DE ⊥,所以DE 是O 的切线.【小问3详解】由(1)知90ACB ∠=︒,又10AB =,6AC =,则8BC ==,过点A 作AF D E ⊥于点F ,由(1)(2)知,四边形AODF 是正方形,即5FD AF OD ===,又90EAF CAB ABC ∠=︒-∠=∠,则Rt Rt EAF ABC ∽,于是EF AC AF BC =,即561584EF ⨯==,所以1535544=+=+=DE DF EF .22.已知:如图,抛物线22y x x c =--与x 轴交于A 、B 两点,与y 轴交于点(0,3)C -,该抛物线的顶点为M .(1)求点A 、B 的坐标以及c 的值.(2)证明:点C 在以BM 为直径的圆上.(3)在抛物线上是否存在点P ,使直线CP 把BCM 分成面积相等的两部分?若存在,请求出点P 的坐标;若不存在,请说明理由.【答案】(1)点(1,0)A -,点(3,0)B ,3c =;(2)证明见解析;(3)存在,点P 坐标为57,24⎛⎫- ⎪⎝⎭.【解析】【分析】(1)将点C 的坐标代入,再解方程作答.(2)利用两点间的距离公式,结合勾股定理推理作答.(3)设出直线CP 所对函数解析式,再利用等面积法求解作答【小问1详解】将点(0,3)C -代入22y x x c =--得:3c =,则抛物线的解析式为:2=23y x x --,而抛物线2=23y x x --与x 轴交于A 、B 两点,由2230x x --=,解得=1x -或3x =,所以点(1,0)A -,点(3,0)B .【小问2详解】由(1)知2(1)4y x =--,即点(1,4)M -,而点(3,0)B ,点(0,3)C -,则BC ==BM ==CM ==,因此22220BC CM BM +==,即有=90BCM ∠︒,所以点C 在以BM 为直径的圆上.【小问3详解】设直线CP 与BM 的交点为F,如图,由直线CP 把BCM 分成面积相等的两部分,得CMF BCF S S = ,而CMF 和BCF △是等高的两个三角形,即有FM BF =,点F 是BM 的中点,由点(3,0)B ,点(1,4)M -,得点F 坐标为(2,2)-,设直线CP 的解析式为y mx n =+,把点C 、点F 得坐标代入得322n m n =-⎧⎨+=-⎩,解得123m n ⎧=⎪⎨⎪=-⎩,于是直线CP 解析式132y x =-,而点P 是直线CP 与抛物线2=23y x x --的交点,则由213232x x x -=--解得:0x =或52x =,显然点P 与C 不重合,即点P 的横坐标不为0,当52x =时,74y =-,所以点P 坐标为57(,)24-.23.如图,在半径为3的圆O 中,OA 、OB 都是圆O 的半径,且90AOB ∠=︒,点C 是劣弧 AB 上的一个动点(点C 不与点A 、B 重合),延长AC 交射线OB 于点D .(1)如果设AC x =,BD y =,求y 关于x 的函数解析式,并写出定义域;(2)当185AC =时,点E 在线段OD 上,且1OE =,点F 是线段OA 上一点,射线EF 与射线DA 交于点G ,如果以点A 、G 、F 为顶点的三角形与DGE △相似,求AGF DGE S S 的值.【答案】(1)3x y x-=,0x <<;(2)2581.【解析】【分析】(1)连接OC ,AB ,过点O 作OH AC ⊥于点H ,利用相似三角形性质求出解析式,再由点C 的位置求出定义域作答.(2)利用相似三角形性质求出AF ,结合(1)的信息,及相似三角形性质求解作答.【小问1详解】连接OC ,AB ,过点O 作OH AC 于点H ,如图2,由OA OC =,AC x =,得1122AH AC x ==,OH ===又90AOD ∠=︒,则OAH DOH ∠=∠,而90AHO AOD ∠=∠=︒,即AOH ADO ∽ ,于是AH OA OH OD =,又BD y =,因此13213x y =+,即3363x x y x -=,由点C 是劣弧 AB 上的一个动点(点C 不与点A 、B 重合),得0AC AB <<,而AB ===0x <<,所以y 关于x的函数解析式为3x y x-=,定义域为0x <<.【小问2详解】如图,当185AC =时,由(1)知,1185BD ==,由1OE =,3OB =,得2BE =,3DE =,4OD =,由AGF EGD ∽,得GFA D ∠=∠,而GFA OFE ∠=∠,则OFE D ∠=∠,因此OFE ODA ∽,则OF OE OD OA =,即143OF =,解得43OF =,45333AF OA OF =-=-=,所以225253(()381AGF DGE S AF S ED === .。
高一入学摸底考试数学试卷
第1页(共4页)命题教师: 审核:注意事项:1.答题前,考生务必将密封线内的内容填写清楚,将自己的姓名、准考证号、考试科目等涂写在机读卡上. 2.答第Ⅰ卷时,每小题选出答案后,用铅笔把机读卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后再选涂其它答案. 3.考试结束后,将本试卷和机读卡一并收回.第Ⅰ卷(选择题 共36分)一、选择题:(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.2008-的绝对值是( ) A .2008-B .2008C .12008-D .120082.如图,在四边形ABCD 中,点E 在BC 上,AB DE ∥,78B = ∠,60C = ∠,则EDC ∠的度数为( )A .42B .60C.78D .803.下列图形中,既是中心对称图形又是轴对称图形的是() A .等边三角形 B .平行四边形 C.抛物线 D .双曲线 4.下列调查方式中适合的是( )A .要了解一批节能灯的使用寿命,采用普查方式B .调查你所在班级同学的身高,采用抽样调查方式C.环保部门调查沱江某段水域的水质情况,采用抽样调查方式 D .调查全市中学生每天的就寝时间,采用普查方式5.如图,在Rt ABC △中,90C = ∠,三边分别为a b c ,,, 则cos A 等于( )A .a cB .a bC .baD .b c6.函数y =x 的取值范围在数轴上可表示为( )7.某班七个兴趣小组人数分别为:3,3,4,x ,5,5,6,已知这组数据的平均数是4,则这组数据的中位数是( )A .2B .4C .4.5D .5 8.如图,在直角梯形ABCD 中,AD BC ∥,90C = ∠,且AB AD BC >+,AB 是O 的直径,则直线CD 与O 的位置关系为( )A .相离B .相切C .相交D .无法确定9.若()A a b ,,(2)B a c -,两点均在函数1y x=的图象上,且0a <,则b 与c 的大小关系为( ) A .b c > B .b c < C .b c = D .无法判断10.如图所示,同时自由转动两个转盘,指针落在每一个数上的机会均等,转盘停止后,两个指针同时落在奇数上的概率是( )A .425B .5C .6D .92511.在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来.如图所示,则这堆正方体货箱共有( ) A .9箱 B .10箱 C .11箱 D .12箱 12.下列命题中,真命题的个数为( ) ①对角线互相垂直平分且相等的四边形是正方形②如果四边形的两条对角线互相垂直,那么它的面积等于两条对角线长的积的一半 ③在一个圆中,如果弦相等,那么所对的圆周角相等④已知两圆半径分别为5,3,圆心距为2,那么两圆内切 A .1 B .2 C .3 D .4高一入学摸底考试试卷数学考试时间:120分钟 满分:150分A .B .C .D . ADCE B(2题图)AC B ac(5题图)(8题图)(10题图) 左视图 主视图 俯视图(11题图)第2页(共4页)第Ⅱ卷(非选择题 共64分)注意事项:1.第Ⅱ卷共4页,用钢笔或圆珠笔将答案直接答在试卷上. 2.答题前将密封线内的项目填写清楚.二、填空题(本大题共4小题,每小题5分,共20分.请将最后答案直接填在题中横线上.) 13.分解因式:34x x -= .14.在如图所示的四边形中,若去掉一个50 的角得到一个五边形,则12+=∠∠ 度.15.如图,Rt A BC ''△是由Rt ABC △绕B 点顺时针旋转而得,且点A B C ',,在同一条直线上,在Rt ABC △中,若90C = ∠,2BC =,4AB =,则斜边AB 旋转到A B '所扫过的扇形面积为 .16.根据图中数字的规律,在最后一个图形中填空.三、解答题(本大题共5个小题,共44分.解答题必须写出必要的文字说明、证明过程或推演步骤.)17.(8分)计算:0112sin 602-⎛⎫+- ⎪⎝⎭18.(9分)如图,在ABC △中,点E 在AB 上,点D 在BC 上,BD BE =,BAD BCE =∠∠,AD 与CE 相交于点F ,试判断AFC △的形状,并说明理由.19.(9分)某校九年级一班的暑假活动安排中,有一项是小制作评比.作品上交时限为8月1日至30日,班委会把同学们交来的作品按时间顺序每5天组成一组,对每一组的件数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第三组的频数是12.请你回答:(1)本次活动共有 件作品参赛; (2)上交作品最多的组有作品 件; (3)经评比,第四组和第六组分别有10件和2件作品获奖,那么你认为这两组中哪个组获奖率较高?为什么?(4)对参赛的每一件作品进行编号并制作成背面完全一致的卡片,背面朝上的放置,随机抽出一张卡片,抽到第四组作品的概率是多少? 20.(9分)今年以来受各种因素的影响,猪肉的市场价格仍在不断上升.据调查,今年5月份一级猪肉的价格是1月份猪肉价格的1.25倍.小英同学的妈妈同样用20元钱在5月份购得一级猪肉比在1月份购得的一级猪肉少0.4斤,那么今年1月份的一级猪肉每斤是多少元?21.(9分)如图,一次函数y kx b =+的图象经过第一、二、三象限,且与反比例函数图象相交于A B ,两点,与y 轴交于点C ,与x 轴交于点D,OB =B 横坐标是点B 纵坐标的2倍.(1)求反比例函数的解析式;(2)设点A 横坐标为m ,ABO △面积为S ,求S 与m 的函数关系式,并求出自变量的取值范围.C 'A '(15题图)12 50° (14题图)1 233 4 155 6 358(16题图)BCDFAE (18题图)(19题图)第3页(共4页)命题教师: 审核:加试卷(共50分)注意事项:加试卷共4页,请将答案直接填写在试卷上.一、填空题(本大题共4小题,每小题5分,共20分.请将最简答案直接填在题中横线上)1.有甲、乙、丙三种商品,如果购甲3件、乙2件,丙1件共需315元钱,购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需元钱. 2.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米.3.如图,在34⨯的矩形方格图中,不包含阴影部分的矩形个数是 个. 4.如图,当四边形PABN 的周长最小时,a = .二、解答题(本大题共3个小题,每小题10分,共30分.解答题必须写出必要的文字说明、证明过程或推演步骤.) 5.(10分)阅读下列内容后,解答下列各题:几个不等于0的数相乘,积的符号由负因数的个数决定. 例如:考查代数式(1)(2)x x --的值与0的大小 当1x <时,10x -<,20x -<,(1)(2)0x x ∴-->当12x <<时,10x ->,20x -<,(1)(2)0x x ∴--< 当2x >时,10x ->,20x ->,(1)(2)0x x ∴--> 综上:当12x <<时,(1)(2)0x x --< 当1x <或2x >时,(1)(2)0x x -->(1(2)由上表可知,当x 满足 时,(2)(1)(3)(4)0x x x x ++--<;(3)运用你发现的规律,直接写出当x 满足 时,(7)(8)(9)0x x x -+-<.6.(10分)“5 12”汶川大地震后,某药业生产厂家为支援灾区人民,准备捐赠320箱某种急需药品,该厂家备有多辆甲、乙两种型号的货车,如果单独用甲型号车若干辆,则装满每车后还余20箱未装;如果单独用同样辆数的乙型号车装,则装完后还可以再装30箱,已知装满时,每辆甲型号车比乙型号车少装10箱.(1)求甲、乙两型号车每辆车装满时,各能装多少箱药品?(2)已知将这批药品从厂家运到灾区,甲、乙两型号车的运输成本分别为320元/辆和350元/辆.设派出甲型号车u 辆,乙型号车v 辆时,运输的总成本为z 元,请你提出一个派车方案,保证320箱药品装完,且运输总成本z 最低,并求出这个最低运输成本为多少元?(2题图)1米(3题图)x(4题图)第4页(共4页)7.(10分)如图,ABC △内接于O ,60BAC ∠= ,点D 是 的中点.BC AB ,边上的高AE CF ,相交于点H . 试证明:(1)FAH CAO ∠=∠; (2)四边形AHDO 是菱形.。
数学(通用版)01-2023年秋季高一入学考试模拟卷(解析版)
2023年秋季高一入学分班考试模拟卷(通用版)01数学·全解全析一、单选题:本题共8小题,每小题3分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
A....【答案】A【分析】经过一个顶点作对边所在的直线的垂线段,叫做三角形的高,根据概念即可得出.【详解】解:因为AC边上的高满足两个条件:①经过点B.②垂直AC;故选:A.10x+≥⎧..C .D .【答案】A【详解】试题解析:解不等式①得,x≥-1,解不等式②得,x<3,故不等式组的解集为:-1≤x<3在数轴上表示为:故选A.4.若实数x 满足方程22(2)(22)150x x x x ++--=,那么22x x +的值为()A .3-或5B .5C .3-D .3或5-【答案】B 【分析】设22x x y +=,然后将原方程变形,利用因式分解法解方程求出y 的值,即可得到22x x +的可能取值,再分情况利用根的判别式判断是否符合题意即可.【详解】解:设22x x y +=,则原方程变为()2150y y --=,整理得:22150y y --=,因式分解得()()530y y -+=,∴50y -=或30y +=,∴5y =或=3y -,当5y =时,即225x x +=,整理得2250x x +-=,∵()22415420240∆=-⨯⨯-=+=>,∴方程有实数根,符合题意,当=3y -时,即223x x +=-,整理得2230x x ++=,∵2241341280∆=-⨯⨯=-=-<,∴方程没有实数根,不符合题意,...D.二、多选题:本题共4小题,每小题3分,共12分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得3分,部分选对的得2分,有选错的得0分。
9.如图,在Rt ABC △中,90ACB ∠=︒,点D 是AB 边上的中点.下列结论正确的有()A .AB ∠∠=︒+90B .222AC AB BC +=C .2CD AB =D .30B ∠=︒A .四边形PECF 为矩形C .AP EF=【答案】ABC 【分析】由“SAS ”可证△形,可得EF CP AP ==,故选项证EF BD ∥,故选项B 不合题意;由垂线段最短可求解.【详解】解:如图,连接 四边形ABCD 是正方形,AB BC ∴=,ABD CBD ∠=∠在ABP 和CBP 中,AB BC ABD CBD BP BP =⎧⎪∠=∠⎨⎪=⎩,(SAS)ABP CBP ∴△≌△,11.如图,抛物线212y x =顶点为D .下列结论正确的是A .若1a =,则2b =B .当0y <时a x b <<,且C .抛物线上有两点(11,P x y三、填空题:本题共5小题,每小题2分,共10分。
新高一数学摸底考试及分班考试经典试题
新高一数学水平测试题一、选择题(每题10分,共40分)1、已知,如图,在矩形ABCD 中,P 是边AD 上的动点,AC PE ⊥于E ,BD PF ⊥于F ,如果AB=3,AD=4,那么( ) A.512=+PF PE ; B. 512<PF PE +<513;C. 5=+PF PED. 3<PF PE +<42、一个等腰三角形的两边长分别为25和32,则这个三角形的周长是( ) A 、32210+ B 、3425+ C 、32210+或3425+ D 、无法确定3、若的值为那么2013223,012++=-+m m m m ( )A 、1B 、2C 、2013D 、20144、已知3344554,3,2===c b a ,那么c b a 、、的大小关系是( ) A 、c b a >> B 、a c b >> C 、b c a >> D 、c a b >>5、若x 取整数,则使分式6321x x +-的值为整数的x 值有( )A.3个B.4个C.6个D.8个6、如图,已知Rt △ABC ,∠C =90°,∠A =30°,在直线BC 或AC 上取一点P ,使得△PAB 是等腰三角形,则符合条件的P 点有( )A.2个B.4个C.6个D.8个7、若bx ax y +=2,对于任意x ,都有212xy x +≤≤成立,则b a +的值是( )A 0B 1C 2D 38、设G 为ABC ∆的重心,且6,8,10AG BG CG ===,则ABC ∆的面积是( ) A 58 B 66 C 72 D 84 二、填空题(每题10分,共40分)1、化简5210452104++++-的值为________________________________2、设实数a 、b 、c 满足a<b<c (ac<0),且|c|<|b|<|a|,则|x -a|+|x -b|+|x +c|取最小值时,x 的值是________________________________。
湖北省孝感市第一高级中学2024-2025学年高一上学期入学摸底考试数学试卷
湖北省孝感市第一高级中学2024-2025学年高一上学期入学摸底考试数学试卷学校:___________姓名:___________班级:___________考号:___________A .M N MÇ=B .M N MÈ=C .M N Ç=ÆD .M N=7.已知菱形ABCD 的边长为5,两条对角线交于O 点,且OA 、OB 的长分别是关于x 的方程()222130x m x m +-++=的根,则m 等于( )A .-3B .5C .5或-3D .-5或38.若二次函数的解析式为()()()2215y x m x m =--££,且函数图象过点(),p q 和点()4,p q +,则q 的取值范围是( )A .124q -££B .50q -££C .54q -££D .123q -££二、多选题9.已知集合{}2|1A x y x ==+,{}2|1B y y x ==+,下列关系正确的是( )A .A B=B .A B¹C .A B A=I D .A B B=I 10.随着中考的临近,某校初三年级连续四个月开展了体育模拟测试,并将测试成绩进行整理,最终绘制了如图所示的统计图(四次参加体育模拟测试的学生人数不变),下列四个结论中正确的是( )A .10月测试成绩为“优秀”的学生有40人B .9月体育测试中学生的及格率为30%C .从9月到12月,测试成绩为“优秀”的学生人数在总人数中的占比逐渐增长四、解答题15.已知集合2{|210}A x R ax x =Î++=,其中a R Î.(1)1是A 中的一个元素,用列举法表示A ;(2)若A 中有且仅有一个元素,求实数a 的组成的集合B ;(3)若A 中至多有一个元素,试求a 的取值范围.16.已知集合{}|33A x x =-<£,{}|221,R B x m x m m =-££+Î.(1)当1m =时,求集合AB ð;(2)若A B B =I ,求实数m 的取值范围.17.(1)求二次函数2235y x x =-+在22x -££上的最大值和最小值,并求对应的x 的值;(2)已知函数221y ax ax =++在区间32x -££上的最大值为4,求实数a 的值.18.已知关于x 的一元二次方程22(23)320x k x k k -++++=.(1)判断方程根的情况;(2)若方程的两根1x 、2x 满足()()12116x x --=,求k 值;(3)若ABC V 的两边AB 、AC 的长是方程的两根,第三边BC 的长为5,①则k 为何值时,ABC V 是以BC 为斜边的直角三角形?②k 为何值时,ABC V 是等腰三角形,并求出ABC V 的周长.19.定义:在平面直角坐标系中,直线x m =与某函数图象交点记为点P,作该函数图象中点P 及点P 右侧部分关于直线x m =的轴对称图形,与原函数图象上的点P 及点P 右侧部分1.C【分析】联立两函数方程求出交点,用点的集合表示即可.【详解】因为221y x y x =+ìí=-î,解得35x y =ìí=î,所以两函数图象交点组成的集合为(){}3,5.故选:C.2.D【分析】观察发现:一、三、四项一组,符合完全平方公式,然后运用平方差公式继续分解.【详解】2212x xy y -++()2221x xy y =++-2()1x y =+-()()11x y x y =+++-.故选:D .3.A【分析】由图像可知阴影部分对应的集合为()U A B I ð,然后根据集合的基本运算求解即可.【详解】由已知得1,{}1,2B =-,由图像可知阴影部分对应的集合为()U A B I ð,()U {0,3,4}A B \Ç=ð.故选:A.4.C【分析】利用子集的定义即可求解.【详解】{3,3}B =-Q ,∴当0a =时,A =Æ,满足A B Í;2224[(23)]4(32)10b ac k k k D =-=-+-++=>,\方程有两个不相等的实数根.(2)由题知:1223x x k +=+,21232x x k k =++.()()12116x x --=Q 变形为:()121216x x x x -++=()2322316k k k \++-++=.得:3k =-或2k =.(3)()()()222332120x k x k k x k x k -++++=----=Q .110x k \=+>,220x k =+>,则1k >-.①不妨设1AB k =+,2AC k =+,斜边5BC =时,有222AB AC BC +=,即:22(1)(2)25k k +++=,解得:12k =,215(k x =-、2x 为负,舍去).当2k =时,ABC V 是直角三角形;②1AB k =+Q ,2AC k =+,5BC =,由(1)知AB AC ¹故有两种情况:当5AC BC ==时,25k +=,则3k =,314AB =+=, 4Q 、5、5满足任意两边之和大于第三边,此时ABC V 的周长为45514++=;当5AB BC ==时,15k +=,4k =,26AC k =+=,6Q 、5、5满足任意两边之和大于第三边,此时ABC V 的周长为65516++=.综上可知:当3k =时,ABC V 是等腰三角形,此时ABC V 的周长为14;。
2024学年第一学期杭州地区新高一开学摸底考试数学试题(含答案解析)
2024学年第一学期杭州地区新高一开学摸底数学模拟试题(1-3章)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.设全集{0,1,2,3,4,5}U =,集合{2,4}A =,2{|560}B x x x =−+=,则()U A B ∪= A. {0,1,5}B. {0,4,5}C. {2,3,5}D. {2,3,4}2.“22ac bc >”是“a b >”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充分且必要条件D. 既不充分也不必要条件3.已知函数()y f x =的对应关系如下表所示,函数()y g x =的图象是如图所示的曲线ABC ,则()2f g 的值为( )x1 2 3 ()f x23A. 3B. 0C. 1D. 24.下列函数中是奇函数的为( ) A. 1y x =−B. 2y x =C. ||y x =D. y x =5.在同一坐标系内,函数(0)m y x x =>和1y mx m=+的图象可能是( ) A. B.C. D.6.德国著名的数学家高斯是近代数学奠基者,用其名字命名的高斯函数为()[]G x x =,其中[]x 表示不超过x 的最大整数,例如[ 1.2]2−=−,[1.2] 1.=定义符号函数()sgn x =1,0,0,0,1,0,x x x >= −<, 则[()][()]sgn G G sgn ππ+= ( ) A. 2−B. 1−C. 1D. 27.已知0a >,0b >,若44a b ab +=,则a b +的最小值是( ) A. 21+C.94D.528.函数()()()252,2213,2a x x f x x a x a x −−− = +−−< ,若对任意1x ,212()x R x x ∈≠,都有()()12120f x f x x x −<−成立,则实数a 的取值范围为( ) A. []4,1−−B. []4,2−−C. (]5,1−−D. []5,4−−二、多选题:本题共3小题,共15分。
新高一入学测试数学卷
2024年秋季高一入学分班考试模拟卷(01)数学第I 卷一、单选题(本大题共10小题,每小题3分,共30分)1.在1x 、13、312x +、32πxy、33y +、221m +中分式的个数有()A .2个B .3个C .4个D .5个2.下列计算正确的是()A 3=B .+=C .D 3=-3.甲和乙两个几何体都是由大小相同的小立方块搭成,它们的俯视图如图,小正方形中数字表示该位置上的小立方块个数,下列说法正确的是()A .甲和乙左视图相同,主视图相同B .甲和乙左视图相同,主视图不相同C .甲和乙左视图不相同,主视图相同D .甲和乙左视图不相同,主视图不相同4.不论a ,b 为何值,22248a b a b +-++的值()A .总是正数B .总是负数C .可以是零D .可以是正数,也可以是负数5.函数224y x x =--的图象关于()作对称,再向()平移1个单位,得到函数225y x x =+-的图象.()A .x 轴、上B .y 轴、下C .x 轴、左D .y 轴、右6.广汽新能源汽车公司已经在长沙建成投产,随着市场对新能源汽车的需求越来越大,为了满足市场需求,该厂更新了生产线,加快了生产速度,现在平均每月比更新技术前多生产300台新能源汽车,现在生产5000台新能源汽车所需时间与更新生产线前生产4000台新能源汽车所需时间相同.设更新技术前每月生产x 台新能源汽车,依题意得()A .40005000300x x =+B .40005000300x x=-C .40005000300x x =-D .40005000300x x=+7.某中学高一年级甲、乙两班参加了物理科的调研考试,其中甲班40人,乙班35人,甲班的平均成绩为82分,乙班的平均成绩为85分,那么甲、乙两班全部75名学生的平均成绩是多少分()A .82.4B .82.7C .83.4D .83.58.有理数a 、b 、c 在数轴上对应点的位置如图所示,化简|2||||2|a b b a a c -+--+的结果是()A .a c--B .2a b c --C .a c +D .2a b c-++9.如图,抛物线2y ax bx c =++与x 轴交于点A (﹣1,0),顶点坐标(1,n ),与y 轴的交点在(0,3),(0,4)之间(包含端点),则下列结论:①abc >0;②3a +b <0;③﹣43≤a ≤﹣1;④a +b ≥am 2+bm (m 为任意实数);⑤一元二次方程2ax bx c n ++=有两个不相等的实数根,其中正确的有()A .2个B .3个C .4个D .5个10.已知ABC 是边长为1的等腰直角三角形,以Rt ABC △的斜边AC 为直角边,画第一个等腰Rt ACD △,再以Rt ACD △的斜边AD Rt ADE △,…,依此类推,则画出的第2023个等腰直角三角形的面积是()A .20202B .20212C .20222D .20232二、填空题(本大题共8小题,每小题3分,共24分)11.北京时间2020年11月24日嫦娥五号成功发射,首次在380000公里外的月球轨道进行无人交会对接.请把数380000用科学记数法表示为.12.函数2y x =-中,自变量x 的取值范围是.13.计算4sin 60︒的值是.14.一次函数11y k x b =+与反比例函数22k y x=的图象交于点()1,2A --和点()2,1B .当12y y >时,x 的取值范围是.15.若正整数x ,y 满足25x y +=,则11x y+的最小值为.16(3x =-,则x 的取值范围是;②化简=.17.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有50个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球,黑色球的频率稳定在30%和40%,则口袋中白色球的个数可能是个.18.D 是ABC 的边AB 上的一点,使得3AB AD =,P 是ABC 外接圆上一点,PB 使得ADP ACB ∠=∠,则PBPD的值.第II 卷三、解答题(本大题共8小题,共96分。
2023-2024学年辽宁省沈阳市高一上册开学摸底考试数学试题(含解析)
2023-2024学年辽宁省沈阳市高一上册开学摸底考试数学试题一、单选题1.集合{}{}2ln ,1A x y x B y y x ====+∣∣,则R A B = ð()A .[]0,1B .()0,1C .(),1-∞D .[)1,+∞【正确答案】B【分析】由对数函数定义域得{}0A x x=>∣,二次函数值域得{}1B y y =≥∣,即可根据补集、交集运算法则求得结果【详解】由ln y x =,()0,x ∈+∞,则{}0A x x=>∣;又211y x =+≥,则{}1B y y =≥∣,{}1y B y =<R ∣ð,故{}10R x A B x ⋂=<<∣ð.故选:B2.已知函数12(4),0,()log (2),0,f x x f x x x +<⎧⎪=⎨+≥⎪⎩则(2022)f -=()A .2-B .2C .1-D .1【正确答案】A【分析】根据分段函数的特征,可将(2022)f -转化成()2f ,进而代入即可求解.【详解】当0x <时,可知()(4)f x f x =+,故(2022)(50542)(2)=(2)f f f f -=-⨯-=-而12(2)log 42f ==-.故(2022)2f -=-,故选:A3.若224a b +=,223b c +=,223(c a a +=,b ,)c R ∈,则ab bc ca ++的最小值为()A .5-B .2-C.2-D.2--【正确答案】B【分析】根据已知条件求出a ,b ,c 的值,即可求解.【详解】解:因为224a b +=,223b c +=,223(c a a +=,b ,)c R ∈,所以联立方程组,求得22a =,22b =,21c =,从而a =b =,1c =±,所以当a ,b 异号时,ab bc ca ++取最小值为2-.故选:B .4.若命题p :“x ∃∈R ,()()2214130k x k x -+-+≤”是假命题,则k 的取值范围是()A .{}17k k <<B .{}17k k ≤<C .{}71k k -<<D .{}71k k -<≤【正确答案】B【分析】首先根据存在量词命题的否定为全称量词命题写出命题的否定,再根据全称量词命题为真求出参数的取值范围.【详解】解:命题“x ∃∈R ,22(1)4(1)30k x k x -+-+”是假命题,则命题“x ∀∈R ,22(1)4(1)30k x k x -+-+>”是真命题,当1k =时,30>恒成立.当1k =-时,830x +>不恒成立.当1k ≠±时,则2221016(1)12(1)0k k k ⎧->⎨∆=---<⎩,解得17k <<.故k 的取值范围为:17k <,即{}17k k ≤<.故选:B .5.已知00a b >>,,且4a b ab +=,则下列不等式不正确的()A .16ab ≥B .26a b +≥+C .0a b -<D .2211612a b +≥【正确答案】C【分析】因为00a b >>,,4ab a b =+≥16ab ≥,可判断A ;由44222(1)66611a a b a a a a +=+=-++≥+=--,可判断B ;举反例可判断C ;由4a b ab +=得141a b +=,所以2221161421ab a b ⎛⎫⎛⎫+≥+= ⎪ ⎪⎝⎭⎝⎭可得2211612a b +≥,可判断D.【详解】因为00a b >>,,4ab a b =+≥,当且仅当4a b =时等号成立,所以16ab ≥,A 正确;由4a b ab +=得401ab a =>-,1a >,同理4b >,44222(1)66611a a b a a a a +=+=-++≥+=--,当且仅当42(1)1a a -=-,即1a =时等号成立,B 正确;5,5a b ==满足题意,但0a b -=,C 错;由4a b ab +=得141a b +=,所以2221161421ab a b ⎛⎫⎛⎫+≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当22116a b =即4b a =时等号成立,所以2211612a b +≥.D 正确.故选:C6.已知函数()()0bf x ax ab x=+≠,若存在两相异实数,m n 使()()f m f n c ==,且40a b c ++=,则m n -的最小值为()A .2B .2C D 【正确答案】B【分析】由题意,,m n 是方程20ax cx b -+=的两个不等实数根,利用根与系数的关系把m n-化为含有,a b 的代数式,令bt a =,进一步转化为关于t 的二次函数,再由配方法求最值.【详解】由题意,当()bf x ax c x=+=,有20ax cx b -+=()0x ≠,()()f m f n c ==,∴,m n 是方程20ax cx b -+=的两个不等实数根,cm n a∴+=,b mn a =,而m n -=40a b c ++=,即4c b a =--,∴m n -=令b t a =,则m n -==则当18t =-时,m n -故选:B7.若函数()24542322022t x tx x f x x t+++=+在[]2022,2022-上的最大值为M ,最小值为N ,且M +N =2024,则实数t 的值为()A .-506B .506C .2022D .2024【正确答案】B【分析】先对函数变形得()54320222x x f x t x t+=++,令()()54320222x x F x f x t x t +=-=+,可判断出()F x 为奇函数,则()F x 的最大值为2M t -,最小值为2N t -,从而得()()220M t N t -+-=,再由M +N =2024,可求出t 的值.【详解】函数()()4524554442320222322022320222t x t x x t x tx x x x f x t x t x t x t+++++++===++++,令()()54320222x x F x f x t x t +=-=+,因为()()5432022x x F x F x x t---==-+,所以()F x 为奇函数,又()f x 在[]2022,2022-上的最大值为M ,最小值为N ,且M +N =2024,所以()F x 的最大值为2M t -,最小值为2N t -,所以()()220M t N t -+-=,则t =506.故选:B8.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦【正确答案】B【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决.【详解】(0,1]x ∈ 时,()=(1)f x x x -,(+1)= ()f x 2f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令84(2)(3)9x x --=-,整理得:2945560x x -+=,1278(37)(38)0,,33x x x x ∴--=∴==(舍),(,]x m ∴∈-∞时,8()9f x ≥-成立,即73m ≤,7,3m ⎛⎤∴∈-∞ ⎥⎝⎦,故选B .易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力.二、多选题9.设计如图所示的四个电路图,p :“开关S 闭合”,q :“灯泡L 亮”,则p 是q 的充要条件的电路图是()A .B .C .D .【正确答案】BD【分析】利用充分条件,必要条件和充要条件的定义判断.【详解】由题知,A 中电路图,开关S 闭合,灯泡L 亮,而灯泡L 亮,开关S 不一定闭合,故A 中p 是q 的充分而不必要条件;B 中电路图,开关S 闭合,灯泡L 亮,且灯泡L 亮,则开关S 闭合,故B 中p 是q 的充要条件;C 中电路图,开关S 闭合,灯泡L 不一定亮,灯泡L 亮,则开关S 一定闭合,故C 中p 是q 的必要而不充分条件;D 中电路图,开关S 闭合,则灯泡L 亮,灯泡L 亮,则开关S 闭合,故D 中p 是q 的充要条件.故选:BD.10.已知关于x 的不等式组222802(27)70x x x k x k ⎧-->⎨+++<⎩仅有一个整数解,则k 的值可能为()A .5-B .C .πD .5【正确答案】ABD【分析】根据一元二次不等式可求两个不等式的解,根据不等式组的解只有一个整数解,结合两不等式的解的交集,即可确定第二个不等式端点需要满足的关系,即可列不等式求解.【详解】解不等式2280x x -->,得>4x 或<2x -解方程22(27)70x k x k +++=,得127,2x x k=-=-(1)当72k >,即72k -<-时,不等式22(27)70x k x k +++<的解为:72k x -<<-此时不等式组222802(27)70x x x k x k ⎧-->⎨+++<⎩的解集为7,2k ⎛⎫-- ⎪⎝⎭,依题意,则54k -≤-<-,即45k <≤;(2)当72k <,即72k ->-时,不等式22(27)70x k x k +++<的解为:72x k -<<-,要使不等式组222802(27)70x x x k x k ⎧-->⎨+++<⎩的解集中只有一个整数,则需满足:35k -<-≤,即53k -≤<;所以k 的取值范围为[5,3)(4,5]- .故选:ABD.11.定义在R 上的函数()f x 满足()()()f x y f x f y +=+,当0x <时,()0f x >,则下列说法正确的是()A .()00f =B .()f x 为奇函数C .()f x 在区间[],m n 上有最大值()f n D .()()2110f x f x -+->的解集为{}21x x -<<【正确答案】ABD【分析】令0x y ==可判断A 选项;令y x =-,可得()()()00f x f x f +-==,得到()()f x f x -=-可判断B 选项;任取1x ,,且12x x <,则120x x -<,()120f x x ->,根据单调性的定义得到函数()f x 在R 上的单调性,可判断C 选项;由()()2110f x f x -+->可得()()()2111f x f x f x ->--=-,结合函数()f x 在R 上的单调性可判断D 选项.【详解】对于A 选项,在()()()f x y f x f y +=+中,令0x y ==,可得()()020f f =,解得()00f =,A 选项正确;对于B 选项,由于函数()f x 的定义域为R ,在()()()f x y f x f y +=+中,令y x =-,可得()()()00f x f x f +-==,所以()()f x f x -=-,则函数()f x 为奇函数,B 选项正确;对于C 选项,任取1x ,,且12x x <,则120x x -<,()120f x x ->,所以()()()()()1212120f x f x f x f x f x x -=+-=->,所以()()12f x f x >,则函数()f x 在R 上为减函数,所以()f x 在区间[],m n 上有最小值()f n ,C 选项错误;对于D 选项,由()()2110f x f x -+->可得()()()2111f x f x f x ->--=-,又函数()f x 在R 上为减函数,则211x x -<-,整理得220x x +-<,解得2<<1x -,D 选项正确.故选:ABD .12.已知函数()21,0log ,0kx x f x x x +≤⎧=⎨>⎩,下列是关于函数()1y f f x =+⎡⎤⎣⎦的零点个数的判断,其中正确的是()A .当0k >时,有3个零点B .当0k <时,有2个零点C .当0k >时,有4个零点D .当0k <时,有1个零点【正确答案】CD令y =0得()1f f x =-⎡⎤⎣⎦,利用换元法将函数分解为f (x )=t 和f (t )=﹣1,作出函数f (x )的图象,利用数形结合即可得到结论.【详解】令()10y f f x =+=⎡⎤⎣⎦,得()1f f x =-⎡⎤⎣⎦,设f (x )=t ,则方程()1f f x =-⎡⎤⎣⎦等价为f (t )=﹣1,①若k >0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有两个根其中t 2<0,0<t 1<1,由f (x )=t 2<0,此时x 有两解,由f (x )=t 1∈(0,1)知此时x 有两解,此时共有4个解,即函数y =f [f (x )]+1有4个零点.②若k <0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有一个根t 1,其中0<t 1<1,由f (x )=t 1∈(0,1),此时x 只有1个解,即函数y =f [f (x )]+1有1个零点.故选:CD .本题考查分段函数的应用,考查复合函数的零点的判断,利用换元法和数形结合是解决本题的关键,属于难题.三、填空题13.计算21log 5.50310.064()28-+--+__________.【正确答案】322【分析】根据指数幂的运算以及对数的运算,进行化简求值,可得答案.【详解】因为11350.0640.42--==,01()18-=,2log5.52 5.5=,2==+,所以21log5.5310.064()28-+--+51 5.522=+-+=故14.已知2111xfx x+⎛⎫=+⎪⎝⎭,则()f x的值域为______.【正确答案】()1,+∞【分析】先求出()()()2111f x x x=-+≠,再结合二次函数的性质即可得出值域.【详解】解:令1xtx+=,则111tx=+≠,所以11tx=-,所以()()211f t t=-+,故()f x的解析式为()()()2111f x x x=-+≠,其值域为()1,+∞.故答案为.()1,+∞15.若不等式220ax bx++>的解集是1123x x⎧⎫-<<⎨⎬⎩⎭,则0ax b+>的解集为__________.【正确答案】1,6⎛⎫-∞-⎪⎝⎭【分析】由不等式220ax bx++>的解集结合对应方程的韦达定理可求出,a b,即可求出0ax b+>的解集.【详解】解:不等式220ax bx++>的解集是1123x x⎧⎫-<<⎨⎬⎩⎭,则根据对应方程的韦达定理得到:112311223baa⎧⎛⎫-+=-⎪⎪⎪⎝⎭⎨⎛⎫⎪-⋅=⎪⎪⎝⎭⎩,解得122ab=-⎧⎨=-⎩,则1220x-->的解集为1,6⎛⎫-∞-⎪⎝⎭.故答案为.1,6⎛⎫-∞- ⎪⎝⎭16.已知正数a b ,满足1a b +=,R c ∈,则222313a c bc b abc ab++++的最小值为__________.【正确答案】3-##3-+【分析】把给定条件两边平方,代入结论构造基本不等式,再分析计算,并求出最小值作答.【详解】由1a b +=,得2221a ab b ++=,0,0a b >>,则222222222(31132143)3(2)311a a a ab b a b c c c bc b abc ab c b ab c b a ++++=++=+++++++,2263(1)331c c ≥++-≥+,当且仅当2262,3(1)1b ac c ==++时取“=”,所以当212,,133a b c ===时,222313a c bc b abc ab++++的最小值为3.故3-思路点睛:利用基本不等式求最值时,要从整体上把握运用基本不等式,有时可乘以一个数或加上一个数,以及“1”的代换等应用技巧.四、解答题17.已知集合{|211}A x a x a =-<<+,{|01}B x x =≤≤.(1)在①1a =-,②0a =,③1a =这三个条件中选择一个条件,求A B ⋃;(2)若A B A = ,求实数a 的取值范围.【正确答案】(1)见解析(2)1a ≤-或1a ≥【分析】(1)根据并集的定义求解;(2)根据集合间的包含关系即可求解.【详解】(1)选择①1a =-,则{|30}A x x =-<<,所以{|31}A B x x =-<≤U ;选择②0a =,则{|11}A x x =-<<,所以{|11}A B x x ⋃=-<≤;选择③1a =,则{|12}A x x =<<,所以{|02}A B x x =≤< ;(2)由题{|0B x x =<或1}x >,因为A B A = ,所以A B ⊆,(i )若211a a -≥+即2a ≥,则A =∅满足题意;(ii )若211a a -<+即2a <,由A B ⊆得10a +≤或211a -≥,解得1a ≤-或12a ≤<,综上实数a 的取值范围为1a ≤-或1a ≥.18.在①[]2,2x ∀∈-,②[]1,3x ∃∈这两个条件中任选一个,补充到下面问题的横线中,并求解该问题.已知函数()24f x x ax =++.(1)当2a =-时,求函数()f x 在区间[]22-,上的值域;(2)若______,()0f x ≥,求实数a 的取值范围.【正确答案】(1)[]3,12(2)答案见解析【分析】(1)利用二次函数的性质直接求解其值域,(2)若选条件①,求出抛物线的对称轴,分22a -≤-,222a-<-<和22a -≥三种情况求出函数的最小值,使最小值大于等于零,即可求出a 的取值范围,若选条件②,则()max 0f x ≥,由抛物线的性质可得()10f ≥或()30f ≥,从而可求出a 的取值范围.【详解】(1)当2a =-时,()()222413f x x x x =-+=-+,∴()f x 在[]2,1-上单调递减,在[]1,2上单调递增,∴()()min 13f x f ==,()()max 212f x f =-=,∴函数()f x 在区间[]22-,上的值域为[]3,12.(2)方案一:选条件①.由题意,得()22424a a f x x ⎛⎫=++-⎪⎝⎭.若22a-≤-,即4a ≥,则函数()f x 在区间[]22-,上单调递增,∴()()min 2820f x f a =-=-≥,解得4a ≤,又4a ≥,∴a =4.若222a -<-<,即44a -<<,则函数()f x 在区间2,2a ⎡⎤--⎢⎥⎣⎦上单调递减,在区间,22a ⎡⎤-⎢⎥⎣⎦上单调递增,∴()2min4024a a f x f ⎛⎫=-=-≥ ⎪⎝⎭,解得44a -≤≤,∴44a -<<.若22a-≥,即4a ≤-,则函数()f x 在区间[]22-,上单调递减,∴()()min 2820f x f a ==+≥,解得4a ≥-,又4a ≤-,∴a =-4.综上所述,实数a 的取值范围为[]4,4-.方案二:选条件②.∵[]1,3x ∃∈,()0f x ≥,∴()max 0f x ≥,∵函数()f x 的图象是开口向上的抛物线,最大值只可能在区间端点处取得.∴()10f ≥或()30f ≥,解得5a ≥-或133a ≥-,∴5a ≥-.故实数a 的取值范围为[)5,-+∞.19.某光伏企业投资144万元用于太阳能发电项目,()N n n +∈年内的总维修保养费用为()2420nn +万元,该项目每年可给公司带来100万元的收入.假设到第n 年年底,该项目的纯利润为y 万元.(纯利润=累计收入-总维修保养费用-投资成本)(1)写出纯利润y 的表达式,并求该项目从第几年起开始盈利.(2)若干年后,该公司为了投资新项目,决定转让该项目,现有以下两种处理方案:①年平均利润最大时,以72万元转让该项目;②纯利润最大时,以8万元转让该项目.你认为以上哪种方案最有利于该公司的发展?请说明理由.【正确答案】(1)()2480144y n n n +=-+-∈N ,从第3年起开始盈利(2)选择方案①更有利于该公司的发展;理由见解析【分析】(1)根据题意可得表达式,令0y >,解不等式即可;(2)分别计算两个方案的利润及所需时间,进而可确定方案.【详解】(1)由题意可知()()22100420144480144y n n n n n n +=-+-=-+-∈N ,令0y >,得24801440n n -+->,解得218n <<,所以从第3年起开始盈利;(2)若选择方案①,设年平均利润为1y 万元,则136********y y n n n ⎛⎫==-+≤-⨯ ⎪⎝⎭,当且仅当36n n=,即6n =时等号成立,所以当6n =时,1y 取得最大值32,此时该项目共获利32672264⨯+=(万元).若选择方案②,纯利润()22480144410256y n n n =-+-=--+,所以当10n =时,y 取得最大值256,此时该项目共获利2568264+=(万元).以上两种方案获利均为264万元,但方案①只需6年,而方案②需10年,所以仅考虑该项目的获利情况时,选择方案①更有利于该公司的发展.20.已知函数()()2log 41xf x kx =++为偶函数.(1)求实数k 的值;(2)解关于m 的不等式()()211f m f m +>-;(3)设()()()2log 20xg x a a a =⋅+≠,若函数()f x 与()g x 图象有2个公共点,求实数a 的取值范围.【正确答案】(1)1-(2)()(),20,-∞-⋃+∞(3)()2,1【分析】(1)根据偶函数的定义及性质直接化简求值;(2)判断0x ≥时函数的单调性,根据奇偶性可得函数在各区间内的单调性,解不等式即可;(3)由函数()f x 与()g x 图象有2个公共点,可得1222x x xa a ⋅+=+有两个实数根,再利用换元法转化为二次方程有两个根,利用判别式求参数范围.【详解】(1)函数的定义或为R ,函数()()2log 41x f x kx =++为偶函数.()()f x f x ∴-=,即()()22og 41lo l g 41x x kx kx -+-=++,()()22224142log 41log 41log log 4241x x x x x x kx x --+∴=+-+===-+,1k ∴=-;(2)()()222411log 41log log 222x xx x x f x x ⎛⎫+⎛⎫=+-==+ ⎪ ⎪⎝⎭⎝⎭,当0x ≥时,21x ≥,122xxy =+单调递增,()f x \在[)0,∞+上单调递增,又函数()f x 为偶函数,所以函数()f x 在[)0,∞+上单调递增,在(],0-∞上单调递减;()()211f m f m +>- ,211m m ∴+>-,解得2m <-或0m >,所以所求不等式的解集为()(),20,-∞-⋃+∞;(3) 函数()f x 与()g x 图象有2个公共点,()()()()22241log 2log 41log 2x xxx g x a a f x x ⎛⎫+∴=⋅+==+-= ⎪⎝⎭,即4112222x xx xx a a +⋅+==+,20x a a ⋅+>,设20x t =>,则1at a t t+=+,即()2110a t at -+-=,又2x t =在R 上单调递增,所以方程()2110a t at -+-=有两个不等的正根;()()210Δ411001101a a a a a a -≠⎧⎪=--⨯->⎪⎪∴⎨->-⎪⎪->⎪-⎩,解得21a <<,即a的取值范围为()2,1-.21.定义在()1,1-上的函数()f x 满足对任意的x ,()1,1y ∈-,都有()()1x y f x f y f xy ⎛⎫++= ⎪+⎝⎭,且当()0,1x ∈时,()0f x <.(1)求证:函数()f x 是奇函数;(2)求证:()f x 在()1,1-上是减函数;(3)若112f ⎛⎫=- ⎪⎝⎭,()221f x t at ≤--对任意11,22x ⎡⎤∈-⎢⎥⎣⎦,[]1,1a ∈-恒成立,求实数t 的取值范围.【正确答案】(1)证明见解析(2)证明见解析(3)(),11⎡-∞-⋃+∞⎣.【分析】(1)利用赋值法以及奇函数的定义进行证明.(2)根据已知条件,利用单调性的定义、作差法进行证明.(3)把恒成立问题转化为函数的最值问题进行处理,利用单调性、一次函数进行处理.【详解】(1)令0x =,0y =,得()()()000f f f +=,所以()00f =.令y x =-,得()()()00f x f x f +-==,即()()f x f x =--,所以函数()f x 是奇函数.(2)设1211x x -<<<,则()11,1x -∈-,所以()()()()212121121x x f x f x f x f x f x x ⎛⎫--=+-= ⎪-⎝⎭.因为210x x ->,11x <,21x <,所以121x x <,即1211x x -<<,所以211201x x x x ->-.又()()12211212111011x x x x x x x x +---=<--,所以2112011x x x x -<<-,所以211201x x f x x ⎛⎫-< ⎪-⎝⎭,所以()()210f x f x -<,即()()12f x f x >.所以()f x 在()1,1-上是减函数.(3)由(2)知函数()f x 在()1,1-上是减函数,所以当11,22x ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 的最大值为11122f f⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,所以()221f x t at ≤--对任意11,22x ⎡⎤∈-⎢⎥⎣⎦,[]1,1a ∈-恒成立等价于2121t at ≤--对任意[]1,1a ∈-恒成立,即2220t at --≥对任意[]1,1a ∈-恒成立.设()222222g a t at ta t =--=-+-,是关于a 的一次函数,[]1,1a ∈-,要使()2220g a ta t =-+-≥对任意[]1,1a ∈-恒成立,所以(1)0(1)0g g ≥⎧⎨-≥⎩,即22220220t t t t ⎧--≥⎨+-≥⎩,解得1t ≤-或1t ,所以实数t的取值范围是(),11⎡-∞-⋃+∞⎣.22.已知函数()x a f x x-=(0a >),且满足112f ⎛⎫= ⎪⎝⎭.(1)求a 的值;(2)设函数()()g x xf x =,()2xh x t t =-(1t >),若存在1x ,21,22x ⎡⎤∈⎢⎥⎣⎦,使得()()12h x g x =成立,求实数t 的取值范围;(3)若存在实数m ,使得关于x 的方程()22220x a x x a mx ---+=恰有4个不同的正根,求实数m 的取值范围.【正确答案】(1)1;(2)2t ≥;(3)10,16⎛⎫⎪⎝⎭【分析】(1)根据题意,代入函数值,即可求解;(2)根据题意,求解函数()g x 和()f x 值域,若存在1x ,21,22x ⎡⎤∈⎢⎥⎣⎦,使得()()12h x g x =成立,转化为值域有交集,即可求解参数取值范围;(3)由(1)分析函数()f x 的值域,可知()()0,1f x ∈时,x 有两根;再观察方程,同除2x 后方程可化简为()()2220fx f x m -+=,只需使方程在()()0,1f x ∈上有两根,即可求解.【详解】(1)由1121122af -⎛⎫== ⎪⎝⎭,得1a =或0.因为0a >,所以1a =,所以()1x f x x-=.(2)()()1,1211,12x x g x xf x x x -≤≤⎧⎪==⎨-≤<⎪⎩,所以()01g x ≤≤;故()g x 的值域为[]0,1A =因为1t >时,()2x h x t t =-在1,22⎡⎤⎢⎥⎣⎦()222t h x t t -≤≤-,所以()h x的值域为22,2B t t t ⎤=-⎦,由题意A B φ⋂≠,20t <,所以220t t -≥,解得2t ≥;综上:实数t 的取值范围是2t ≥(3)当1x >时,()111x f x x x-==-,()f x 在()1,+∞上为增函数;当()1,x ∈+∞时,()()110,1f x x=-∈.可得()f x 在()0,1上为减函数,当()0,1x ∈时,()()110,f x x=-∈+∞.方程()2221120x x x mx ---+=可化为2211220x x m x x---+=,即()()2220fx f x m -+=.设()s f x =,方程可化为2220s s m -+=.要使原方程有4个不同的正根,则关于s 方程2220s s m -+=在()0,1有两个不等的根1s ,2s ,则有211602021120m m m ->⎧⎪>⎨⎪⨯-+>⎩,解得1016m <<,所以实数m 的取值范围为10,16⎛⎫⎪⎝⎭.(1)考查计算能力,基础题;(2)转化与化归思想解题,考查求函数值域,交集不空的参数范围,属于中等题;(3)转化方程与已知函数关联,考查函数与方程思想,转化与化归思想,一元二次方程根的限定条件,综合性较强,属于难题.。
湖北省孝感市2024-2025学年高一上学期入学摸底考试数学试卷含答案
孝感2024级高一年级入学摸底考试数学试卷(答案在最后)一、选择题(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.一次函数2y x =+与21y x =-的图象交点组成的集合是()A.{}3,5 B.{}3,5x y == C.(){}3,5 D.(){}5,3【答案】C 【解析】【分析】联立两函数方程求出交点,用点的集合表示即可.【详解】因为221y x y x =+⎧⎨=-⎩,解得35x y =⎧⎨=⎩,所以两函数图象交点组成的集合为(){}3,5.故选:C.2.把2212x xy y -++分解因式的结果是()A.()()()112x x y x y +-++B.()()11x y x y ++--C.()()11x y x y -+-- D.()()11x y x y +++-【答案】D 【解析】【分析】观察发现:一、三、四项一组,符合完全平方公式,然后运用平方差公式继续分解.【详解】2212x xy y -++()2221x xy y =++-2()1x y =+-()()11x y x y =+++-.故选:D .3.已知全集U =R ,集合{}0,1,2,3,4A =,{}(1)(1)(2)0B xx x x =+--=∣,则图中阴影部分所表示的集合为()A.{0,3,4}B.{0,1,3,4}C.{0,2,3,4}D.{3,4}【分析】由图像可知阴影部分对应的集合为()U A B ð,然后根据集合的基本运算求解即可.【详解】由已知得1,{}1,2B =-,由图像可知阴影部分对应的集合为()U A B ð,()U {0,3,4}A B ∴⋂=ð.故选:A.4.已集合{}2{30},9A xax B x x =+===∣∣,若A B ⊆,则实数a 的取值集合是()A.{1}B.{1,1}-C.{1,0,1}-D.{0,1}【答案】C 【解析】【分析】利用子集的定义即可求解.【详解】{3,3}B =- ,∴当0a =时,A =∅,满足A B ⊆;当0a ≠时,若A B ⊆,则{3}=A 时,1;{3}a A =-=-时,1a =.a ∴的取值集合是{1,0,1}-.故选:C .5.设三角形的三边a 、b 、c 满足4442220a b c b c ---=,则这个三角形的形状是()A.直角三角形B.等腰三角形C.等边三角形D.无法确定【答案】A 【解析】【分析】根据完全平方公式可得222a b c =+,即可求解.【详解】由4442220a b c b c ---=可得()244422222a b c b c b c =++=+,进而可得222a b c =+,故三角形为直角三角形,故选:A6.已知集合2,3k M x x k +⎧⎫==∈⎨⎬⎩⎭Z ,2,3N x x k k ⎧⎫==+∈⎨⎬⎩⎭Z ,则()A.M N M⋂= B.M N M⋃= C.M N ⋂=∅D.M N=【分析】将集合N 中的式子通分成分母为3的式子,然后可判断出答案.【详解】由题意得,32,3k N x x k +⎧⎫==∈⎨⎬⎩⎭Z ,而2k +表示整数,32k +表示被3除余2的整数,故NM ,则M N M ⋃=,故选:B .7.已知菱形ABCD 的边长为5,两条对角线交于O 点,且OA 、OB 的长分别是关于x 的方程()222130x m x m +-++=的根,则m 等于()A.-3 B.5C.5或-3D.-5或3【答案】A 【解析】【分析】由题意可知:菱形ABCD 的边长是5,则AO 2+BO 2=25,则再根据根与系数的关系可得:AO +BO =﹣2m +1,AO •BO =m 2+3;代入AO 2+BO 2中,得到关于m 的方程后,求得m 的值.【详解】由直角三角形的三边关系可得:AO 2+BO 2=25,又有根与系数的关系可得:AO +BO =﹣2m +1,AO •BO =m 2+3,∴AO 2+BO 2=(AO +BO )2﹣2AO •BO =(﹣2m +1)2﹣2(m 2+3)=25,整理得:m 2﹣2m ﹣15=0,解得:m =﹣3或5.又∵△>0,∴(2m ﹣1)2﹣4(m 2+3)>0,解得m 114-<,∴m =﹣3,故选:A .【点睛】将菱形的性质与一元二次方程根与系数的关系,以及代数式变形相结合解题是一种经常使用的解题方法.8.若二次函数的解析式为()()()2215y x m x m =--≤≤,且函数图象过点(),p q 和点()4,p q +,则q 的取值范围是()A.124q -≤≤B.50q -≤≤ C.54q -≤≤ D.123q -≤≤【答案】A 【解析】【分析】由二次函数解析式可求得对称轴为1x m =+,进而可得412p p m ++=+,由函数图象过点(),p q ,可得2(1)4q m =--+,可求q 的取值范围.【详解】因为二次函数的解析式为()()()2215y x m x m =--≤≤,所以二次函数的对称轴为1x m =+,函数图象过点(),p q 和点()4,p q +,故点(),p q 和点()4,p q +关于直线1x m =+对称,所以412p p m ++=+,所以1[0,4]p m =-∈,又()()()()2222121223(1)4q p m p m m m m m m =--=----=-++=--+,当1m =,max 4q =,当5m =,min 12q =-,所以124q -≤≤.故选:A.二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分)9.已知集合{}2|1A x y x ==+,{}2|1B y y x ==+,下列关系正确的是()A.A B = B.A B ≠ C.A B A= D.A B B= 【答案】BD 【解析】【分析】化简集合A ,B ,再逐项判断即可得解.【详解】化简得R A =,[)1,B =+∞,所以B A ⊆,所以A B ≠,A B B = ,故选:BD .10.随着中考的临近,某校初三年级连续四个月开展了体育模拟测试,并将测试成绩进行整理,最终绘制了如图所示的统计图(四次参加体育模拟测试的学生人数不变),下列四个结论中正确的是()A.10月测试成绩为“优秀”的学生有40人B.9月体育测试中学生的及格率为30%C.从9月到12月,测试成绩为“优秀”的学生人数在总人数中的占比逐渐增长D.12月增长的“优秀”人数比11月增长的“优秀”人数多【答案】CD 【解析】【分析】通过统计图一一分析选项即可.【详解】由图易知全体学生有1025015090500+++=人,而10月测试成绩为“优秀”的学生占10%,即有50人,故A 错误;9月体育测试中学生的及格及以上人数为410人,占比为4100.82500=,即及格率为82%,故B 错误;由第二个图可知优秀率递增,且12月比11月增长4%,11月比10月增长3%,显然C 、D 正确.故选:CD11.下列选项正确的有()A.已知2210x x -+=,则代数式()()()()214220x x x x x -+-+-+=.B.已知2310x x -+=,则331315x x +-=.C.若12020a x =+,11920b x =+,12120c x =+,则2223a b c ab bc ac ++---=.D.已知一个直角三角形的两条直角边的长恰是方程22870-+=x x 的两个根,则这个直角三角形的斜边长是9.【答案】BC 【解析】【分析】求出x 值并代入计算判断A ;求出1x x+,变形计算判断B ;求出,,a b b c c a ---,变形代入计算判断C ;利用韦达定理计算判断作答.【详解】对于A ,由2210x x -+=,得1x =,则()()()()214226x x x x x -+-+-+=-,A 错误;对于B ,由2310x x -+=,得13x x +=,则33331113()3()3333315x x x x x x+-=+-+-=-⨯-=,B 正确;对于C ,依题意,1,2,1a b b c c a -=-=--=,则222a b c ab bc ac++---222211[(32)()()](121)2a b b c c a =-+-+-++==,C 正确;对于D ,令直角三角形的二直角边长分别为,m n ,依题意,472m n mn +=⎧⎪⎨=⎪⎩,所以该直角三角形斜边长为3==,D 错误.故选:BC三、填空题(本题共3小题,每小题5分,共15分.)12.若关于x 的分式方程22411x a x ax x --+-=-+的解为整数,则整数a =______.【答案】1±【解析】【分析】由分式方程有意义可知1x ≠且1x ≠-,再化简方程求解2x a=,由,a x 均为整数可求.【详解】则方程22411x a x a x x --+-=-+可知,1x ≠且1x ≠-.方程可化为222211x a x a x x --+-=+-+,即2211a ax x -+=-+,解得2x a=,由1x ≠且1x ≠-,所以2a ≠且2a ≠-.由a 为整数,且x 为整数,则当1a =-,2x =-,或当1a =,2x =时满足题意.所以1a =±.故答案为:1±.13.定义运算{},,A A x x a b a A b A *==-∈∈,若集合{}1,2,3A =,则A A *=______.【答案】{2,1,0,1,2}--【解析】【分析】根据给定运算,利用列举法计算即得.【详解】依题意,由{}1,2,3A =,当1a =时,{1,2,3}b ∈,则{0,1,2}a b -∈--,当2a =时,{1,2,3}b ∈,则{1,0,1}a b -∈-,当3a =时,{1,2,3}b ∈,则{2,1,0}a b -∈,所以{2,1,0,1,2}A A *=--.故答案为:{2,1,0,1,2}--14.抛物线2y ax bx c =++(a ,b ,c 为常数,0a <)经过()2,0A ,()4,0B -两点,下列四个结论:①一元二次方程20ax bx c ++=的根为122,4x x ==-;②若点()15,C y -,()2π,D y 在该抛物线上,则12y y <;③对于任意实数t ,总有2at bt a b +≤-;④对于a 的每一个确定值,若一元二次方程2ax bx c p ++=(p 为常数,0p >)的根为整数,则p 的值只有两个.其中正确的结论是______(填写序号).【答案】①③【解析】【分析】根据题目已知条件分别对各个结论进行运算验证即可得出答案.【详解】因为抛物线20y ax bx c =++=经过(2,0),(4,0)A B -两点,∴一元二次方程20ax bx c ++=的根为122,4x x ==-,则结论①正确; 抛物线的对称轴为421,2x -+==-∴3x =时的函数值与5x =-时的函数值相等, 0a <,∴当1x ≥-时,y 随x 的增大而减小,又 13π-<<,∴12y y >,则结论②错误;当1x =-时,y a b c =-+,则抛物线的顶点的纵坐标为a b c -+,且0a b c -+>,将抛物线2y ax bx c =++向下平移a b c -+个单位长度得到的二次函数解析式为22()y ax bx c a b c ax bx a b =++--+=+-+,由二次函数图象特征可知,2y ax bx a b =+-+,()0a <的图象位于x 轴的下方,顶点恰好在x 轴上,即0y ≤恒成立,则对于任意实数t ,总有20at bt a b +-+≤,即2at bt a b +≤-,结论③正确;将抛物线2y ax bx c =++向下平移p 个单位长度得到的二次函数解析式为2y ax bx c p =++-,函数2y ax bx c p =++-对应的一元二次方程为20ax bx c p ++-=,即2ax bc c p ++=,因此,若一元二次方程2ax bx c p ++=的根为整数,则其根只能是121,3x x ==-或10x =,22x =-或121x x ==-,对应的p 值只有三个,则结论④错误;故答案为:①③.【点睛】本题考查了二次函数的图像与性质(对称性、增减性)、二次函数图像的平移问题、二次函数与一元二次方程的联系等知识点,熟练掌握并灵活运用二次函数的图像与性质是解题关键.四、解答题(本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15.已知集合2{|210}A x R ax x =∈++=,其中a R ∈.(1)1是A 中的一个元素,用列举法表示A ;(2)若A 中有且仅有一个元素,求实数a 的组成的集合B ;(3)若A 中至多有一个元素,试求a 的取值范围.【答案】(1)1,13A ⎧⎫=-⎨⎬⎩⎭;(2){}0,1B =;(3){|1a a ≥或0}a =.【解析】【分析】(1)若1∈A ,则a =﹣3,解方程可用列举法表示A ;(2)若A 中有且仅有一个元素,分a =0,和a ≠0且△=0两种情况,分别求出满足条件a 的值,可得集合B .(3)集合A 中至多有一个元素包括有两种情况,①A 中有且仅有一个元素,②A 中一个元素也没有,分别求出即可得到a 的取值范围.【详解】解:(1)∵1是A 的元素,∴1是方程ax 2+2x +1=0的一个根,∴a +2+1=0,即a =﹣3,此时A ={x |﹣3x 2+2x +1=0}.∴x 1=1,213x =-,∴此时集合113A ⎧⎫=-⎨⎬⎩⎭,;(2)若a =0,方程化为x +1=0,此时方程有且仅有一个根12x =-,若a ≠0,则当且仅当方程的判别式△=4﹣4a =0,即a =1时,方程有两个相等的实根x 1=x 2=﹣1,此时集合A 中有且仅有一个元素,∴所求集合B ={0,1};(3)集合A 中至多有一个元素包括有两种情况,①A 中有且仅有一个元素,由(2)可知此时a =0或a =1,②A 中一个元素也没有,即A =∅,此时a ≠0,且△=4﹣4a <0,解得a >1,综合①②知a 的取值范围为{a |a ≥1或a =0}【点睛】本题考查的知识点是集合中元素与集合的关系,一元二次方程根的个数与系数的关系,难度不大,属于基础题.考点:1、元素与集合的关系;2、集合的表示.16.已知集合{}|33A x x =-<≤,{}|221,R B x m x m m =-≤≤+∈.(1)当1m =时,求集合A B ð;(2)若A B B = ,求实数m 的取值范围.【答案】(1){}|31A B x x =-<<-ð(2){|3m m <-或11}m -<≤.【解析】【分析】(1)由补集的定义即可得出答案;(2)由A B B = ,得B A ⊆,讨论B =∅和B ≠∅,列出不等式求得结果.【小问1详解】集合{}|33A x x =-<≤,当1m =时,{}|13B x x =-≤≤,所以{}|31A B x x =-<<-ð.【小问2详解】由A B B = ,得B A ⊆.①当B =∅时,则有221m m ->+,解得:3m <-,符合题意;②当B ≠∅时,则有22123213m m m m -≤+⎧⎪->-⎨⎪+≤⎩,解得:11m -<≤.综合①②可得:实数m 的取值范围为{|3m m <-或11}m -<≤.17.(1)求二次函数2235y x x =-+在22x -≤≤上的最大值和最小值,并求对应的x 的值;(2)已知函数221y ax ax =++在区间32x -≤≤上的最大值为4,求实数a 的值.【答案】(1)max min 3312,19;,;48x y x y =-===(2)3a =-或38a =.【解析】【分析】(1)化成顶点式,得到对称轴,根据二次函数性质即可得到最值;(2)先求出对称轴=−1,再分=0,>0和0a <讨论即可.【详解】(1)把二次函数解析式配成顶点式,得:22331235248y x x x ⎛⎫=-+=-+ ⎪⎝⎭,因为20a =>,所以抛物线开口方向向上,对称轴是34x =,所以顶点的纵坐标即为最小值是318,而当2x =-时,函数值最大,所以最大值是()()22232519⨯--⨯-==.综上当34x =,min 318y =;当2x =-,max 19y =.(2)221y ax ax =++当0a =时,1y =不符合最大值为4,不合题意;其对称轴为212ax a=-=-,①当>0时,其图象开口向上,此时=2离对称轴更远,当=2时有最大值,最大值为44181a a a ++=+,814a +=,解得38a =;②当0a <,其图象开口向下,则当=−1时函数有最大值,最大值为211a a a -+=-+,14a ∴-=,解得3a =-.综上所述a 的值为38或3-.18.已知关于x 的一元二次方程22(23)320x k x k k -++++=.(1)判断方程根的情况;(2)若方程的两根1x 、2x 满足()()12116x x --=,求k 值;(3)若ABC V 的两边AB 、AC 的长是方程的两根,第三边BC 的长为5,①则k 为何值时,ABC V 是以BC 为斜边的直角三角形?②k 为何值时,ABC V 是等腰三角形,并求出ABC V 的周长.【答案】(1)方程有两个不相等的实数根(2)3k =-或2k =(3)①2k =;②答案见解析【解析】【分析】(1)根据判别式即可求解,(2)根据韦达定理即可代入求解,(3)根据因式分解可得110x k =+>,220x k =+>,即可结合勾股定理以及等腰关系求解.【小问1详解】在方程22(23)320x k x k k -++++=中,2224[(23)]4(32)10b ac k k k ∆=-=-+-++=>,∴方程有两个不相等的实数根.【小问2详解】由题知:1223x x k +=+,21232x x k k =++.()()12116x x --= 变形为:()121216x x x x -++=()2322316k k k ∴++-++=.得:3k =-或2k =.【小问3详解】()()()222332120x k x k k x k x k -++++=----= .110x k ∴=+>,220x k =+>,则1k >-.①不妨设1AB k =+,2AC k =+,斜边5BC =时,有222AB AC BC +=,即:22(1)(2)25k k +++=,解得:12k =,215(k x =-、2x 为负,舍去).当2k =时,ABC V 是直角三角形;②1AB k =+ ,2AC k =+,5BC =,由(1)知AB AC≠故有两种情况:当5AC BC ==时,25k +=,则3k =,314AB =+=,4 、5、5满足任意两边之和大于第三边,此时ABC V 的周长为45514++=;当5AB BC ==时,15k +=,4k =,26AC k =+=,6 、5、5满足任意两边之和大于第三边,此时ABC V 的周长为65516++=.综上可知:当3k =时,ABC V 是等腰三角形,此时ABC V 的周长为14;当4k =时,ABC V 是等腰三角形,此时ABC V 的周长为16.19.定义:在平面直角坐标系中,直线x m =与某函数图象交点记为点P ,作该函数图象中点P 及点P 右侧部分关于直线x m =的轴对称图形,与原函数图象上的点P 及点P 右侧部分共同构成一个新函数的图象,称这个新函数为原函数关于直线x m =的“迭代函数”.例如:图1是函数1y x =+的图象,则它关于直线0x =的“迭代函数”的图象如图2所示,可以得出它的“迭代函数”的解析式为()()10,10.x x y x x ⎧+≥⎪=⎨-+<⎪⎩(1)函数1y x =+关于直线1x =的“迭代函数”的解析式为______.(2)若函数243y x x =-++关于直线x m =的“迭代函数”图象经过()1,0-,则m =______.(3)已知正方形ABCD 的顶点分别为:(),A a a ,(),B a a -,(),C a a --,(),D a a -,其中0a >.①若函数6y x =关于直线2x =-的“迭代函数”的图象与正方形ABCD 的边有3个公共点,求a 的值;②若6a =,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,求n 的取值范围.【答案】(1)1,13,1x x y x x +≥⎧=⎨-+<⎩(2)172m -=或172m +=,(3)①3;②()5,1,12⎛⎫-∞-⋃- ⎪⎝⎭.【解析】【分析】(1)取点()2,3M ,()3,4N ,求两点关于1x =的对称点,利用待定系数法求左侧图象的解析式,由此可得结论;(2)判断点()1,0-与函数243y x x =-++的图象的关系,再求()1,0-关于直线x m =的对称点,由条件列方程求m 即可;(3)①求函数6y x =关于直线2x =-的“迭代函数”的解析式,作函数图象,观察图象确定a 的值;②分别在0n >,0n =,0n <时求函数6y x=关于直线x n =的“迭代函数”解析式,讨论n ,由条件确定n 的范围.【小问1详解】在函数1y x =+的图象上位于1x =右侧的部分上取点()2,3M ,()3,4N ,点()2,3M 关于直线1x =的对称点为0,3,点()3,4N 关于直线1x =的对称点为()1,4-,设函数1y x =+,1x >的图象关于1x =对称的图象的解析式为,1y kx b x =+<,则34b k b =⎧⎨-+=⎩,解得13k b =-⎧⎨=⎩,所以函数1y x =+关于直线1x =的“迭代函数”的解析式为1,13,1x x y x x +≥⎧=⎨-+<⎩;【小问2详解】取1x =-可得,2431432y x x =-++=--+=-,故函数243y x x =-++的图象不过点()1,0-,又点()1,0-关于直线x m =的对称点为()21,0m +,由已知可得()()20214213m m =-++++,1m >-,所以12m -=或12m +=,【小问3详解】①当0x >或20x -≤<时,函数6y x =关于直线2x =-的“迭代函数”的图象的解析式为6y x =,当2x <-时,设点s 在函数6y x =关于直线2x =-的“迭代函数”的图象上,则点()4,x y --在函数6y x =的图象上,所以64y x =--,所以函数6y x =关于直线2x =-的“迭代函数”的解析式为[)()()6,2,00,6,,24x x y x x∞∞⎧∈-⋃+⎪⎪=⎨⎪∈--⎪--⎩,作函数6y x=关于直线2x =-的“迭代函数”的图象如下:观察图象可得3a =时,函数6y x=关于直线2x =-的“迭代函数”的图象与正方形ABCD 的边有3个公共点,②若0n >,当x n ≥时,函数6y x =关于直线x n =的“迭代函数”的图象的解析式为6y x =,当0x <或0x n <<时,设点s 在函数6y x =关于直线x n =的“迭代函数”的图象上,则点()2,n x y -在函数6y x =的图象上,所以62y n x =-,所以函数6y x =关于直线x n =的“迭代函数”的解析式为()()()6,,6,,00,2x n x y x n n x ∞∞⎧∈+⎪⎪=⎨⎪∈-⋃⎪-⎩,当6n >时,作函数6y x=关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有2个公共点,当6n =时,作函数6y x=关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD有2个公共点,当16n <<时,作函数6y x=关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有2个公共点,当1n =时,作函数6y x=关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有3个公共点,当01n <<时,作函数6y x=关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,当0n =时,函数6y x =关于直线=0的“迭代函数”的解析式为6,06,0x x y x x⎧>⎪⎪=⎨⎪-<⎪⎩,作函数6y x=关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,若0n <,当0n x ≤<或0x >时,函数6y x =关于直线x n =的“迭代函数”的图象的解析式为6y x=,当x n <时,设点s 在函数6y x =关于直线x n =的“迭代函数”的图象上,则点()2,n x y -在函数6y x =的图象上,所以62y n x =-,所以函数6y x =关于直线x n =的“迭代函数”的解析式为[)()()6,,00,6,,2x n x y x n n x∞∞⎧∈⋃+⎪⎪=⎨⎪∈-⎪-⎩,当10n -<<时,作函数6y x=关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD有4个公共点,当1n =-时,作函数6y x=关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有5个公共点,当512n -<<-时,作函数6y x =关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有6个公共点,当52n =-时,作函数6y x =关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有5个公共点,当7522n -<<-时,作函数6y x =关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,当72n =-时,作函数6y x =关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,当762n -<<-时,作函数6y x=关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,当6n =-时,作函数6y x=关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,当6n <-时,作函数6y x=关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,综上,n 的取值范围为()51,12∞⎛⎫--⋃- ⎪⎝⎭,.【点睛】方法点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.。
2021-2022年高一数学新生摸底考试试题
实用文档 2021-2022年高一数学新生摸底考试试题一、选择题(每题5分)1下列因式分解正确的是( )A ()()x x x x x 322342++-=+-B ()()x x x x x 322342++-=+-C D ()2321x x xy y x xy y x +-=+-2 已知方程且关于x的不等式组只有4个整数解,那么b的取值范围是()A B C D3已知方程的一个根是1,另一个根为( )A B 3 C D4式子分解因式的结果是( )A BC D5不等式的解为( )A B C D6若不等式的解集为全体实数,则实数a的取值范围( )A B C D7、如图,抛物线的对称轴是直线,且经过点(3,0),则的值为()A. 0B. -1C. 1D. 28、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①;②;③;④;其中正确的结论有()A.1个B.2个C.3个D.4个第7题图第8题图9 已知不等式的解是,则a,b的值分别为()A 12,-2B -12,-2 C-12,2 D 12,210、若函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,那么m的值为()A.0 B.0或2 C.2或﹣2 D.0,2或﹣2二填空题(每题5分)实用文档实用文档11 在实数范围内分解因式:_____________ 12()()[]()()[]=+--+-++xy y x y x xy y x y x 22_________________ 13如果关于x的二次不等式的解为,那么m=________________ 14已知x=3是不等式()003422≠+-k kx x k 的一个解,则的取值范围__________ 三解答题(15题10分,16题10分,17题10分)15把下列各式分解因式(1) (2)()()()()2222021417+-+-+-y y x x16解下列不等式(1) (2)17已知二次函数的图像经过点(3,2),对称轴是(1) 求这个函数的解析式(2) 当x>0时,求使y 2的x 的取值范围(3) 设图像与x 轴交点为()()的值,求AB B A 0,,0,21x x数学答案一选择题1-5 DDACA 6-10 CABBD二填空题11, 12, 13, 3 14三解答题15(1)(2)()27-+yyxx(-107)32-16 (1)(2)17 (1)(2)(3)23228 5ABC 媼25376 6320 挠31543 7B37 笷9~23059 5A13 娓 39495 9A47 驇26354 66F2 曲•29033 7169 煩23952 5D90 嶐38325 95B5 閵33775 83EF 華实用文档。
高一数学上学期入学摸底测试试题
智才艺州攀枝花市创界学校内乡县高中二零二零—二零二壹高一数学上学期入学摸底测试试题本卷须知:2.答复选择题时,选出每一小题答案后,用铅笔把答题卡对应题目之答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答复非选择题时,将答案写在答题卡上。
写在套本套试卷上无效。
3.在在考试完毕之后以后,将本套试卷和答题卡一起交回.4.本套试卷一共22题,考试时间是是120分钟,总分值是150分第一卷(选择题一共60分)一、选择题:本大题一一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的.1.64的算术平方根是().A.8B.4C.±8D.±42.要使分式的值是0,你认为x可取的值是().A.9B.±3C.3D.-33.正六边形ABCDEF,那么以下列图中不是轴对称图形的是()4.以下四个函数图象中,当x 0时,函数值y随自变量x的增大而减小的是().5.如图,在Rt△ABC中,CD是斜边AB上的高,那么以下结论正确的选项是().A.BD=AD 2=AB·CD22=AD·BD6.x+y=+,xy=,那么x2+y2的值是().A.5 B.3C.2D.17.方程x2+x-12=0的解是x1=3,x2=-4,那么方程(y2+2y)2+(y2+2y)-12=0的解是().1=1,y21=1,y2=-31=-1,y21=-1,y2=-3x,y满足2x3y=15,6x13y=41,那么x2y的值是().(A)5(B)7(C)(D)9。
9.假设抛物线y=x2+bx+c先向右平移3个单位长度,再向下平移4个单位长度,所得图象对应的函数解析式为y=x2-2x+2,那么b,c的值是().A.b=4,c=9B.b=-4,c=-9C.b=-4,c=9D.b=4,c=-910..如图,点P(m,m)是反比例函数y=在第一象限内的图象上的一个点,以P为顶点作等边三角形PAB,使A,B落在x轴上,那么△POA的面积是().A.3B.4C.D.11.如图,在矩形ABCD中,AB=3,AD=4,动点E满足S△BEC=S矩形ABCD,那么点E到C、B两点间隔之和BE+CE的最小值为().12.如图,在矩形ABCD中,AB=6,BC=8,动点P从点A出发沿对角线向点C运动,每秒1个单位长度,作PE⊥AD,垂足为E,连接BP.假设△ABP的面积记为S1,△APE的面积记为S2,S=S1-S2,那么S关于运动时间是t(秒)的函数的图象是().第二卷(非选择题一共90分)二、填空题:本大题一一共4小题〔每一小题5分,一共20分〕.13.分解因式:a3-a=.15.设,e=且e>1,2c2-5ac+2a2=0,那么e的值是.16.方程三、解答题本大题一一共6小题,一共70分).17.(此题总分值是10分〕在三角形ABC中,∠B=120°,AB=2,角A的平分线AD=3.求AC的长.18.〔此题总分值是12分〕集合A={x∈R|ax2+2x+1=0,a∈R}中只有一个元素〔A也叫作单元素集合〕,求a的值,并求出这个元素.19.〔此题总分值是12分〕某二次函数的最大值为2,图像的顶点在直线y =x +1上,并且图象经过点〔3,-1〕,求二次函数的解析式.20.〔此题总分值是12分〕某种产品的本钱是120元/件,试销阶段每件产品的售价x 〔元〕与产品的日销售量y 〔件〕之间关系如下表所示:为多少元?此时每天的销售利润是多少?21.〔此题总分值是12分〕x,y 满足2x 2-6x+y 2=0,求x 2+y 2+2x 的最大值. 22.〔此题总分值是12分〕集合A={x|-2≤x ≤5},B={x|m+1≤x ≤2m-1},当x ∈R 时,没有元素x 使x ∈A 与x ∈B 同时成立,务实数m 的取值范围.参考答案:一、1----6ACDCDA;7---12BBADBC.三、17.解:如图,过A 作AE ⊥BC 于E,在Rt ΔAEB 中,∠ABE=60°,AB=2,所以AE=26 ------2分在Rt ΔAED 中,AD=3,所以sin ∠ADE=22,∠ADE=45°------4分又∠BAE=30°,所以∠BAD=15°,∠BAC=30°-------6分所以∠C=30°-------8分,在Rt ΔAEC 中,AC=2AE=6----10分(2)当a ≠0时,Δ=4-4a,a=1,此时x=-1-----8分综上-----------2分19.解:∵二次函数的最大值为2,而最大值一定是其顶点的纵坐标,∴顶点的纵坐标为2.又顶点在直线y =x +1上,所以,2=x +1,∴x =1.----4分∴顶点坐标是〔1,2〕.设该二次函数的解析式为2(2)1(0)y a x a =-+<,------8分∵二次函数的图像经过点〔3,-1〕,∴21(32)1a -=-+,解得a =-2.--------10分∴二次函数的解析式为22(2)1y x =--+,即y =-2x 2+8x -7.-------12分20..解:由于y 是x 的一次函数,于是,设y =kx +b(k ≠0)--------2分将x =130,y =70;x =150,y =50代入方程,有解得k =-1,b =200.∴y =-x +200.-------------4分设每天的利润为z 〔元〕,那么z =(-x +200)(x -120)=-x 2+320x -24000=-(x -160)2+1600,----------------8分∴当x =160时,z 取最大值1600.---------10分答:当售价为160元/件时,每天的利润最大,为1600元.---------12分 21. 解:2x 2-6x+y 2=0,∴y 2=-2x 2+6x ≥0,解之得,0≤x ≤3---------4分x 2+y 2+2x=-x 2+8x=-(x-4)2+16,当x=4时∉[]3,0-----------10分当x=3时,最大值为15.∴最大值为15-------12分22. 解:〔1〕假设B=∅即m+1 2m-1,得m 2时满足条件;-------4分〔2〕假设B ≠∅,那么要满足条件------------10分解之,得m 4综上,有m 2 或者m 4------12分。
高一数学新生入学摸底检测新人教A版
高一新生入学摸底检测数 学 试 卷时间:120分钟 满分:150分一、选择题(本大题共14小题,第小题5分,共70分.在每小题给出的四个选项中,只有一项符是合题目要求的.)1、设集合A ={1,2},则满足A ∪B ={1,2,3}的集合B 的个数是( ) A .1 B .3 C .4 D .82、已知集合A ={1,3,5,7,9},B ={0,3,6,9,12},则A∩(B C N )= ( ) A .{3,5,7} B .{1,2,3} C .{1,3,9} D .{1,5,7}3、下列各组函数中,表示同一个函数的是( )A .211x y x -=-与1y x =+ B . ()3f x x =-与()g t =3(3)3(3)t t t t -≥⎧⎨-<⎩C .1y =与1y x =- D . y=x -1与y=122+-x x4、已知一个直角三角形的两条直角边长恰好是方程07822=+-x x 的两根,则这个直角三角形的斜边长等于 ( )A.3B.3C. 6D. 95、已知集合2{|1}M y y x ==-+,}12|{+==x y x P ,则集合M 与P 的关系是( )A .M =PB .M P ∈C .M PD .P M 6、设}06|{2=-+=x x x A ,}01|{=+=mx x B ,且A B A = ,则m 的取值范围是( )A.}21,31{- B. }21,31,0{-- C. }21,31,0{-D. }21,31{7、电信局为满足不同客户的需要,设有A 、B 两种优惠方案,这两种方案应付话费(元)与通话时间(分钟)之间的关系如图(MN//CD ),若通话时间为500分钟,则应选择哪种方案更优惠( )A .方案A,B .方案BC .两种方案一样优惠D .不能确定 8、设集合{}|12M x x =-≤<,{}|0N x x k =-≤,若M N ⊆,则k 的取值范围是( ) A .2k ≤ B .1k ≥- C .1k >- D .2k ≥ 9、若函数(213)(-+-=x x x f )2≠x 的值域为集合P ,则下列元素中不属于P 的是 ( )A .2B .2-C .3- D. 1-10、如图,函数b ax y +=与c bx ax y ++=2的图象关系可能正确的是( )11、函数2()(31)2f x x a xa =+++在(,4)-∞上为减函数,则实数a 的取值范围是( )A .3a ≤-B .3a ≤C .5a ≤D .3a =-12、若函数242--=x x y 的定义域为[]m ,0,值域为[]2,6--,则m 的取值范围是( )A .(]4,0B .[]4,2C .(]2,0D .()4,213、设f :x A 到集合B 的映射,若{1,2}B =,则A B =( )A .{}1B .{}2C .∅或{}1D .∅或{}214、函数()f x 定义域为R ,且对任意x y 、R ∈,()()()f x y f x f y +=+恒成立.则下列选项中不恒成立....的是( ) A .(0)0f = B .(2)2(1)f f = C .11()(1)22f f =D .()()0f x f x -< 二.填空题(本大题共6小题,每小题5分,共30分.把答案填在题中横线上.) 15、设1:-→ax x f 为从集合A 到B 的映射,若3)2(=f ,则=)3(f _____________. 16、已知函数*1,0()(1),n f n n f n n N=⎧=⎨∙-∈⎩,则(3)f 的值是_____________.17、若集合{1,a ,b a}={0,a 2,a+b},则a 2012+b 2012的值为_____________. 18、函数23222---=x x xy 的定义域为______________________. 19、已知函数y=f(2x-1)的定义域为[-1,1],则函数y=f(x-2)的定义域为___________. 20、二次函数742-+-=x x y ,(]3,0∈x 的值域为______________.汤阴一中南校2012级高一新生入学摸底检测数学答题卷二、填空题:(30分)15、_________________ 16、_________________ 17、________________ 18、_________________ 19、_________________ 20、_________________三、解答题(本大题共4小题,共50分.解答应写出文字说明、证明过程或演算步骤.) 21、(本题满分12分) 已知集合},013|{2R a x ax x A ∈=+-=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
遵义航天高级中学2018级高一数学入学考试考试时间:120分钟满分:150分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一.选择题(本题共12小题,每题3分,共36分。
)1.函数y=的自变量x的取值范围为()A.x≤0 B.x≤1 C.x≥0 D.x≥12.如图图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱 B.三棱锥 C.圆柱 D.圆锥3.按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n 个单项式是()A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n4.计算x2•x3结果是()A.2x5 B.x5 C.x6 D.x85.下列长度的三条线段能组成直角三角形的是()A. 2,3,4B. 3,4,5C. 4,6,7D. 5,11,126.如图,数轴上的点A,B,O,C,D分别表示数﹣2,﹣1,0,1,2,则表示数2﹣的点P应落在()A.线段AB上 B.线段BO上C.线段OC上 D.线段CD上7.在下列各题中,结论正确的是()A.若a>0,b<0,则>0 B.若a>b,则a﹣b>0C.若 a<0,b<0,则ab<0 D.若a>b,a<0,则<08.如图所示,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连结BC,若∠P=36°,则∠B等于()A.27° B.32° C.36°D.54°9.已知实数x、y满足+|y+3|=0,则x+y的值为()A.﹣2 B.2 C.4 D.﹣410.下列运算正确的是()A.1354622⋅= B.()233a a=C.2221111b aa b a b b a+⎛⎫⎛⎫+÷-=⎪ ⎪-⎝⎭⎝⎭D.()()963a a a-÷=-11.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20 B.27 C.35 D.4012.如图,矩形ABCD中,E是AB的中点,将△BCE沿CE翻折,点B落在点F处,tan∠DCE=.设AB=x,△ABF的面积为y,则y与x的函数图象大致为()A. B.C. D.二.填空题(本题共6小题,每题4分,共24分。
)13.已知点P(a,b)在反比例函数y=的图象上,则ab= .14.定义新运算:a※ b=a2+b,例如3※ 2=32+2=11,已知4※ x=20,则x= .15.计算×﹣的结果是.16.关于x的一元二次方程x2﹣2kx+k2﹣k=0的两个实数根分别是x1、x2,且x12+x22=4,则x12﹣x1x2+x22的值是.17.如图,m∥n,∠1=110°,∠2=100°,则∠3= .18.在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为___.三.解答题(共9小题,每题10分,共90分,解答时应写出必要的文字说明,证明过程与演算步骤。
)19.计算:(1)22031(2)64(3)3-⎛⎫--+-- ⎪⎝⎭;(2)229369a aa a a--÷++.20.已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.(1)求b,c的值.(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点?若有,求公共点的坐标;若没有,请说明情况.21.某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地盛产的甲、乙两种原料开发A、B两种商品.为科学决策,他们试生产A、B两种商品共100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如表所示.甲种原料(单位:千克)乙种原料(单位:千克)生产成本(单位:元)A商品 3 2 120B商品 2.5 3.5 200设生产A种商品x千克,生产A、B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)x取何值时,总成本y最小?22.如图,已知AB是⊙O的直径,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.23.一个不透明的口袋中有三个完全相同的小球,把他们分别标号为1,2,3.随机摸取一个小球然后放回,再随机摸出一个小球.用列表或画树状图的方法,求两次取出的小球标号相同的概率.24.如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5m.(计算结果精确到0.1m,参考数据sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)(1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为 ___m.(2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)25.某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以上信息解答以下问题:(1)求样本容量;(2)直接写出样本容量的平均数,众数和中位数;(3)若该校一共有1800名学生,估计该校年龄在15岁及以上的学生人数.26.如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD,且∠ADC的平分线DE,交BC于点E,连接AE .(1)证明:AE⊥DE;(2)若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN最小值.27.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M 到点F的距离总是相等,求定点F的坐标.2018级高一新生数学入学考试参考答案一、选择题:BDCBB BBAAC BD二、填空题:2;4; 2; 4;150 ; 9或1 .三、解答题19.【解答】解:(1)原式=4﹣4+1﹣9=﹣8;(2)原式=•=.20.【解答】解:(1)把A(0,3),B(﹣4,﹣)分别代入y=﹣x2+bx+c,得,解得;(2)由(1)可得,该抛物线解析式为:y=﹣x2+x+3.△=()2﹣4×(﹣)×3=>0,所以二次函数y=﹣x2+bx+c的图象与x轴有公共点.∵﹣x2+x+3=0的解为:x1=﹣2,x2=8∴公共点的坐标是(﹣2, 0)或(8,0).21.【解答】解:(1)由题意可得:y=120x+200(100﹣x)=﹣80x+20000,,解得:24≤x≤86;(2)∵y=﹣80x+20000,∴y随x的增大而减小,∴x=86时,y最小.22.【解答】解:(1)连接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直径,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半径,∴CD是⊙O的切线(2)设⊙O的半径为r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=2易求S△AOC=×2×1=S扇形OAC==∴阴影部分面积为﹣23.【解答】解:画树状图得:则共有9种等可能的结果,两次摸出的小球标号相同时的情况有3种,所以两次取出的小球标号相同的概率为.24.【解答】解:(1)在Rt△ABC中,∵∠BAC=64°,AC=5m,∴AB=(m);故答案为:11.4;(2)过点D作DH⊥地面于H,交水平线于点E,在Rt△ADE中,∵AD=20m,∠DAE=64°,EH=1.5m,∴DE=sin64°×AD≈20×0.9≈18(m),即DH=DE+EH=18+1.5=19.5(m),答:如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是19.5m.25【解答】解:(1)样本容量为6÷12%=50;(2)14岁的人数为50×28%=14、16岁的人数为50﹣(6+10+14+18)=2,则这组数据的平均数为=14(岁),中位数为=14(岁),众数为15岁;(3)700人。
26.【解答】解:(1)延长DE交AB的延长线于F.∵CD∥AF,∴∠CDE=∠F,∵∠CDE=∠ADE,∴∠ADF=∠F,∴AD=AF,∵AD=AB+CD=AB+BF,∴CD=BF,∵∠DEC=∠BEF,∴△DEC≌△FEB,∴DE=EF,∵AD=AF,∴AE⊥DE.(2))作点B关于AE的对称点K,连接EK,作KH⊥AB于H,DG⊥AB于G.连接MK.∵AD=AF,DE=EF,∴AE平分∠DAF,则△AEK≌△AEB,∴AK=AB=4,在Rt△ADG中,DG==4,∵KH∥DG,∴=,∴=,∴KH=,∵MB=MK,∴MB+MN=KM+MN,∴当K、M、N共线,且与KH重合时,KM+MN的值最小,最小值为KH的长,∴BM+MN的最小值为.27【解答】解:(1)∵抛物线的顶点坐标为(2,0),设抛物线的解析式为y=a(x﹣2)2.∵该抛物线经过点(4,1),∴1=4a,解得:a=,∴抛物线的解析式为y=(x﹣2)2=x2﹣x+1.(2)联立直线AB与抛物线解析式成方程组,得:,解得:,,∴点A的坐标为(1,),点B的坐标为(4,1).作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值(如图1所示).∵点B(4,1),直线l为y=﹣1,∴点B′的坐标为(4,﹣3).设直线AB′的解析式为y=kx+b(k≠0),将A(1,)、B′(4,﹣3)代入y=kx+b,得:,解得:,∴直线AB′的解析式为y=﹣x+,当y=﹣1时,有﹣x+=﹣1,解得:x=,∴点P的坐标为(,﹣1).(3)∵点M到直线l的距离与点M到点F的距离总是相等,∴(m﹣x0)2+(n﹣y0)2=(n+1)2,∴m2﹣2x0m+x02﹣2y0n+y02=2n+1.∵M(m,n)为抛物线上一动点,∴n=m2﹣m+1,∴m2﹣2x0m+x02﹣2y0(m2﹣m+1)+y02=2(m2﹣m+1)+1,整理得:(1﹣﹣y0)m2+(2﹣2x0+2y0)m+x02+y02﹣2y0﹣3=0.∵m为任意值,∴,∴,∴定点F的坐标为(2,1).。