专题01 经典母题30题-2019年高考数学(理)走出题海之黄金30题系列(解析版)

合集下载

2019高考物理必做黄金30题:专题01+经典母题30题(Word版含解析)

2019高考物理必做黄金30题:专题01+经典母题30题(Word版含解析)

【试题1】甲、乙两车某时刻由同一地点沿同一方向开始做直线运动,若从该时刻开始计时,得到两车的位移图象如图所示,则下列说法正确的是( )A .t 1时刻甲车从后面追上乙车B .t 1时刻两车相距最远C .t 1时刻两车的速度刚好相等D .从0时刻到t 1时刻的时间内,两车的平均速度相等【试题2】某质点在0~3 s 内运动的v -t 图象如图所示。

关于质点的运动,下列说法正确的是( )A .质点在第1 s 内的平均速度等于第2 s 内的平均速度B .t =3 s 时,质点的位移最大C .质点在第2 s 内的加速度与第3 s 内的加速度大小相等,方向相反D .质点在第2 s 内的位移与第3 s 内的位移大小相等,方向相反【试题3】如图所示,两根等高光滑的41圆弧轨道,半径为r 、间距为L,轨道电阻不计.在轨道顶端连有一阻值为R 的电阻,整个装置处在一竖直向上的匀强磁场中,磁感应强度为B .现有一根长度稍大于L、电阻不计的金属棒从轨道最低位置cd 开始,在拉力作用下以初速度v 0向右沿轨道做匀速圆周运动至ab 处,则该过程中A .通过R 的电流方向为由外向内B .通过R 的电流方向为由内向外C .R 上产生的热量为R v L rB 4022π D .流过R 的电量为R BLr 2π【试题4】如图所示,一个圆形线圈的匝数n =100,线圈面积S =200cm 2,线圈的电阻1r =Ω,线圈外接一个阻值4R =Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图已所示.下列说法中正确的是A .电阻R 两端的电压保持不变B .初始时刻穿过线圈的磁通量为0.4WbC .线圈电阻r 消耗的功率为4×104-WD .前4s 内通过R 的电荷量为4×104- C【试题5】图甲是小型交流发电机的示意图,在匀强磁场中,一矩形金属线圈绕与磁场方向垂直的 轴匀速转动,产生的电动势随时间变化的正弦规律图像如图乙所示.发电机线圈内阻为10Ω,外接一只电阻为90Ω的灯泡,不计电路的其他电阻,则( )A .t =0时刻线圈平面与中性面垂直B .每秒钟内电流方向改变100次C .灯泡两端的电压为22VD .0~0.01s 时间内通过灯泡的电量为【试题6】某同学利用伏安法测量某未知电阻R x的精确电阻(阻值恒定),进行了如下实验:⑴他先用万用电表欧姆挡测该未知电阻的阻值。

高考数学专题01经典母题30题(理)-高考数学走出题海之黄金30题系列(解析板)

高考数学专题01经典母题30题(理)-高考数学走出题海之黄金30题系列(解析板)

一、选择题1.已知命题p:∀x∈R,sinx≤1,则( ).A.¬p:∃x0∈R,sinx0≥1B.¬p:∀x∈R,sinx≥1C.¬p:∃x0∈R,sinx0>1D.¬p:∀x∈R,sinx>1【答案】C【解析】命题p是全称命题,全称命题的否定是特称命题.【考点定位】全称命题与全称命题.2.已知集合A={y|y=lg(x-3)},B={a|a2-a+3>0},则“x>4”是“A B”的() A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.已知复数21i z i=+(i 是虚数单位),则复数z 在复平面内对应的点位于()(A)第一象限(B)第二象限(C)第三象限(D)第四象限4.已知3log 4.12a =,3log 2.72b =,3log 0.112c ⎛⎫= ⎪⎝⎭则()A .a>b>cB .b>a>cC .a>c>bD .c>a>b 【答案】D【考点定位】指对数比较大小5.函数()323922y x x x x =---<<有( )A .极大值5,极小值27-B .极大值5,极小值11-C .极大值5,无极小值D .极小值27-,无极大值 【答案】C6.函数sin ln sin x x y x x -⎛⎫=⎪+⎝⎭的图象大致是()【答案】A【解析】因为()()sin()sin sin ln ln ln sin()sin sin x x x x x x f x f x x x x x x x ⎛⎫----+-⎛⎫⎛⎫-====⎪ ⎪ ⎪-+---+⎝⎭⎝⎭⎝⎭,7.函数()|2|ln f x x x =--在定义域内零点的个数为() A .0B .1C .2D .3 【答案】C【解析】由题意,知函数()f x 的定义域为0+∞(,).由函数零点的定义,()f x 在0+∞(,)内的零点即是方程2ln 0x x --=的根.令12y x =-,2ln 0y x x =>(),在一个坐标系中画出两个函数的图象,如图所示.由图知两个函数图象有两个学科网交点,故方程有两个根,即对应函数有两个零点,故选C . 【考点定位】1、函数的零点;2、函数的图象.zxxk 学科网8.函数)sin(ϕω+=x A y 在一个周期内的图象如右,此函数的解析式为()A .)32sin(2π+=x y B .)322sin(2π+=x yC)32sin(2π-=x y D .)32sin(2π-=x y 【答案】B9.在ABC ∆中,3,1,cos cos c a a B b A ===,则AC CB ⋅=()A .21B .23C .21-D .23- 【答案】A【考点定位】正余弦定理,向量的数量积运算.10.已知等差数列{a n },且3(a 3+a 5)+2(a 7+a 10+a 13)=48,则数列{a n }的前13项之和为() A.24B.39C.104D.52 【答案】D【考点】等差数列的性质和前n 项和.11.若,,a b c 为实数,则下列命题正确的是()A .若a b >,则22ac bc >B .若0a b <<,则22a ab b >> C .若0a b <<,则11a b <D .若0a b <<,则b aa b> 【答案】B【考点定位】不等式的基本性质.12.已知直线⊥l 平面α,直线m ⊆平面β,给出下列命题,其中正确的是() ①m l ⊥⇒βα//②m l //⇒⊥βα ③βα⊥⇒m l //④βα//⇒⊥m l A .②④B.②③④C.①③D.①②③ 【答案】C【考点定位】直线与平面的位置关系.zxxk 学科网13.一个正三棱柱的三视图如图所示,这个三棱柱的侧(左)视图的面积为36则这个三棱柱的体积为( )A .12B .16C .83D .12 3 【答案】D【考点定位】1三视图;2柱体的体积。

中考语文 黄金30题系列 专题01 经典母题30题(含解析)-人教版初中九年级全册语文试题

中考语文 黄金30题系列 专题01 经典母题30题(含解析)-人教版初中九年级全册语文试题

专题01 经典母题30题【试题1】下列词语中读音和书写都正确的一项是(3分)()A.苍穹.(qióng)寒噤.(jìn)泠泠淙淙..(zōng)驰.名中外(chí)B.嗤.笑(chī)恣雎.(suī)销声匿.迹(nì)万壑.藏云(hè)C.嶙.峋(lín)贮.藏(zhù)浮想联翩.(piān)五行.缺土(xíng)D.怅惘.(wǎng)褒.贬(bāo)拾.级而上(shí)玲珑剔.透(tī)【答案】C【解析】考点:识记并正确书写现代汉语普通话常用字的字音。

能力层级为识记A。

识记并正确书写现代常用规X汉字。

能力层级为识记A。

【试题2】阅读下面这段话,根据拼音写出相应的汉字。

(4分)单纯是人类思想中最纯美无私的品格。

与真诚比起来,单纯显得更高尚,更纯洁。

许多人真zhì()诚恳,但却不单纯。

他们从不与人推心zhì()腹,别人对他们也小心jǖ()谨。

他们的弱点在于不坦率、不随意、不自然。

而我们则更宁愿同那些并非正直无私,但却没有虚情jiǎo()饰的人结交相处。

这几乎已成为世人的一条准则。

【答案】(4分)挚置拘矫【解析】试题分析:根据拼音写汉字,首先要读准拼音,注意易错的声韵母,比如b与p,j、q、x的区别,n、l的区别,平舌音和翘舌音的区别,再结合语境判断。

写汉字时注意不要写错别字,区别同音字形似字的偏旁部首的易错点。

本题要注意区别矫/ 骄。

考点:识记并正确书写现代汉语普通话常用字的字音。

能力层级为识记A。

识记并正确书写现代常用规X汉字。

能力层级为识记A。

【试题3】下列句子标点符号使用正确的一项是()(2分)A.何园是中国晚清建筑艺术成就最高的一座大型私家园林,有“晚清第一园”的美誉。

B.有一种爱,亘古绵长,无私无求。

不因季节更替;不因名利浮沉。

这就是父母的爱!C.元芳体是最近网络流行语言风格,其句式为前面陈述一件事情,在最后会加上一句“元芳,你怎么看”?D.雾或霾是一种造成空气质量下降,影响生态环境的灾害性天气。

专题01 经典母题30题-2020年高考数学(理)走出题海之黄金30题系列(解析版)

专题01 经典母题30题-2020年高考数学(理)走出题海之黄金30题系列(解析版)

2020年高考数学走出题海之黄金30题系列母题1【集合运算】【2018年理北京卷】已知集合A={x||x|<2},B={–2,0,1,2},则A B= A. {0,1} B. {–1,0,1} C. {–2,0,1,2} D. {–1,0,1,2} 【答案】A 【解析】因此A B =,选A.母题2【充分条件和必要条件】(2017天津卷5)设R θ∈,则“ππ1212θ-<”是“1sin 2θ<”的( ). A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 【答案】A 【解析】πππ012126θθ-<⇔<< 1sin 2θ⇒< ,但10,sin 2θθ=<,不满足 ππ1212θ-<,所以是充分不必要条件,选A.母题3【函数的性质】【2018年理新课标I 卷】已知函数.若g(x )存在2个零点,则a 的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞) 【答案】C 【解析】 画出函数的图像,在y 轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A 时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.母题4【函数的图象】【2018年浙江卷】函数y=sin2x的图象可能是A. B.C. D.【答案】D【解析】令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.母题5【三角形函数的图象和性质】【2018年理天津卷】将函数的图象向右平移个单位长度,所得图象对应的函数A. 在区间上单调递增B. 在区间上单调递减C. 在区间上单调递增D. 在区间上单调递减【答案】A【解析】由函数图象平移变换的性质可知:将的图象向右平移个单位长度之后的解析式为:.则函数的单调递增区间满足:,即,令可得一个单调递增区间为:.函数的单调递减区间满足:,即,令可得一个单调递减区间为:.本题选择A选项.母题6【平面向量数量积】【2018年理数天津卷】如图,在平面四边形ABCD中,,,,. 若点E为边CD上的动点,则的最小值为A. B. C. D.【答案】A【解析】建立如图所示的平面直角坐标系,则,,,,点在上,则,设,则:,即,据此可得:,且:,,由数量积的坐标运算法则可得:,整理可得:,结合二次函数的性质可知,当时,取得最小值.本题选择A选项.母题7【球切接】【2018年全国卷Ⅲ理】设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A. B. C. D.【答案】B【解析】如图所示,点M为三角形ABC的重心,E为AC中点,当平面时,三棱锥体积最大,此时,,,,点M为三角形ABC的重心,,中,有,,,故选B.母题8【空间点线面位置关系】【2018年浙江卷】已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E 是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C 的平面角为θ3,则A. θ1≤θ2≤θ3B. θ3≤θ2≤θ1C. θ1≤θ3≤θ2D. θ2≤θ3≤θ1【答案】D【解析】设O为正方形ABCD的中心,M为AB中点,过E作BC的平行线EF,交CD于F,过O作ON垂直EF于N,连接SO,SN,OM,则SO垂直于底面ABCD,OM垂直于AB,因此从而因为,所以即,选D.母题9【直线和双曲线位置关系】【2018年理数天津卷】已知双曲线的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点. 设A,B到双曲线同一条渐近线的距离分别为和,且,则双曲线的方程为A. B. C. D.【答案】C【解析】设双曲线的右焦点坐标为(c>0),则,由可得:,不妨设:,双曲线的一条渐近线方程为:,据此可得:,,则,则,双曲线的离心率:,据此可得:,则双曲线的方程为.本题选择C选项.母题10【直线和抛物线位置关系】【2018年理新课标I卷】设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=A. 5B. 6C. 7D. 8【答案】D【解析】根据题意,过点(–2,0)且斜率为的直线方程为,与抛物线方程联立,消元整理得:,解得,又,所以,从而可以求得,故选D.母题11【程序框图】【2018年理数全国卷II 】为计算,设计了下面的程序框图,则在空白框中应填入A.B.C.D.【答案】B【解析】由得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入,选B.母题12【几何概型】(2017全国卷1理8)如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A. 14B.π8C.12D.π4【答案】B【解析】不妨设正方形边长为a.由图形的对称性可知,太极图中黑白部分面积相等,即所各占圆面积的一半.由几何概型概率的计算公式得,所求概率为221()228aaππ⨯⨯=,选B.母题13【复数的运算及概念】【2018年理新课标I 卷】设,则A. B. C. D.【答案】C【解析】因为,所以,故选C.母题14【直线和圆】【2018年全国卷Ⅲ理】直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A. B. C. D.【答案】A【解析】直线分别与轴,轴交于,两点,,则,点P在圆上,圆心为(2,0),则圆心到直线距离,故点P到直线的距离的范围为,则,故答案选A.母题15【导数的几何意义】【2018年全国卷Ⅲ理】曲线在点处的切线的斜率为,则________.【答案】【解析】,则,所以,故答案为-3.母题16【二项式定理】【2018年全国卷Ⅲ理】的展开式中的系数为A. 10B. 20C. 40D. 80【答案】C【解析】由题可得,令,则,所以故选C.母题17【排列和组合】【2018年浙江卷】从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答)【答案】1260【解析】若不取零,则排列数为若取零,则排列数为因此一共有个没有重复数字的四位数.母题18【线性规划】【2018年理北京卷】若,y满足,则2y−的最小值是_________.【答案】3【解析】不等式可转化为,即,满足条件的在平面直角坐标系中的可行域如下图令,由图象可知,当过点时,取最小值,此时,的最小值为.母题19【平面向量坐标运算】【2018年全国卷Ⅲ理】已知向量,,.若,则________.【答案】【解析】由题可得,,,即,故答案为母题20【直线与抛物线、直线与圆】【2018年理数全国卷II】设抛物线的焦点为,过且斜率为的直线与交于,两点,.(1)求的方程;(2)求过点,且与的准线相切的圆的方程.【答案】(1) y=x–1,(2)或.【解析】(1)由题意得F(1,0),l的方程为y=k(x–1)(k>0).设A(x1,y1),B(x2,y2).由得.,故.所以.由题设知,解得k=–1(舍去),k=1.因此l的方程为y=x–1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为,即.设所求圆的圆心坐标为(x0,y0),则解得或因此所求圆的方程为或.母题21【立体几何与空间向量】【2018年理北京卷】如图,在三棱柱ABC-中,平面ABC,D,E,F,G分别为,AC,,的中点,AB=BC=,AC==2.(Ⅰ)求证:AC⊥平面BEF;(Ⅱ)求二面角B-CD-C1的余弦值;(Ⅲ)证明:直线FG与平面BCD相交.【答案】(1)证明见解析(2) B-CD-C1的余弦值为(3)证明过程见解析【解析】(Ⅰ)在三棱柱ABC-A1B1C1中,∵CC1⊥平面ABC,∴四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,∴AC⊥EF.∵AB=BC.∴AC⊥BE,∴AC⊥平面BEF.(Ⅱ)由(I)知AC⊥EF,AC⊥BE,EF∥CC1.又CC1⊥平面ABC,∴EF⊥平面ABC.∵BE平面ABC,∴EF⊥BE.如图建立空间直角坐称系E-xyz.由题意得B(0,2,0),C(-1,0,0),D (1,0,1),F(0,0,2),G(0,2,1).∴,设平面BCD的法向量为,∴,∴,令a=2,则b=-1,c=-4,∴平面BCD的法向量,又∵平面CDC1的法向量为,∴.由图可得二面角B-CD-C1为钝角,所以二面角B-CD-C1的余弦值为.(Ⅲ)平面BCD的法向量为,∵G(0,2,1),F(0,0,2),∴,∴,∴与不垂直,∴GF与平面BCD不平行且不在平面BCD内,∴GF与平面BCD相交.母题22【解三角形】【2018年理新课标I卷】在平面四边形中,,,,.(1)求;(2)若,求.【答案】(1) .(2).【解析】分析:(1)根据正弦定理可以得到,根据题设条件,求得,结合角的范围,利用同角三角函数关系式,求得;(2)根据题设条件以及第一问的结论可以求得,之后在中,用余弦定理得到所满足的关系,从而求得结果.详解:(1)在中,由正弦定理得.由题设知,,所以.由题设知,,所以.(2)由题设及(1)知,.在中,由余弦定理得.所以.母题23【等差数列通项公式和等比数列求和】【2018年浙江卷】已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1−b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)由是的等差中项得,所以,解得.由得,因为,所以.(Ⅱ)设,数列前n项和为.由解得.由(Ⅰ)可知,所以,故,.设,所以,因此,又,所以.母题24【数列递推公式和数列求和】【2018年理数天津卷】设是等比数列,公比大于0,其前n项和为,是等差数列.已知,,,.(I)求和的通项公式;(II)设数列的前n项和为,(i)求;(ii)证明.【答案】(Ⅰ),;(Ⅱ)(i).(ii)证明见解析.【解析】(I)设等比数列的公比为q.由可得.因为,可得,故.设等差数列的公差为d,由,可得由,可得从而故所以数列的通项公式为,数列的通项公式为(II)(i)由(I),有,故.(ii)因为,所以.母题25【空间向量与立体几何】【2018年理新课标I卷】如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求与平面所成角的正弦值.【答案】(1)证明见解析.(2) .【解析】(1)由已知可得,BF⊥PF,BF⊥EF,又,所以BF⊥平面PEF.又平面ABFD,所以平面PEF⊥平面ABFD.(2)作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD.以H为坐标原点,的方向为y轴正方向,为单位长,建立如图所示的空间直角坐标系H−xyz.由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE=.又PF=1,EF=2,故PE⊥PF.可得.则为平面ABFD的法向量.设DP与平面ABFD所成角为,则.所以DP与平面ABFD所成角的正弦值为.母题26【离散型随机变量的分布列和期望】【2018年理新课标I卷】某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为,求的最大值点.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的作为的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【答案】(1).(2) (i)490.(ii)应该对余下的产品作检验.【解析】(1)20件产品中恰有2件不合格品的概率为.因此.令,得.当时,;当时,.所以的最大值点为.(2)由(1)知,.(i)令表示余下的180件产品中的不合格品件数,依题意知,,即.所以.(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于,故应该对余下的产品作检验.母题27【直线和椭圆位置关系】【2018年全国卷Ⅲ理】已知斜率为的直线与椭圆交于,两点,线段的中点为.(1)证明:;(2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差.【答案】(1)(2)或【解析】(1)设,则.两式相减,并由得.由题设知,于是.①;由题设得,故.(2)由题意得,设,则.由(1)及题设得.又点P在C上,所以,从而,.于是.同理.所以.故,即成等差数列.设该数列的公差为d,则.②将代入①得.所以l的方程为,代入C的方程,并整理得.故,代入②解得.所以该数列的公差为或.母题28【导数的综合运用】【2018年全国卷Ⅲ理】已知函数.(1)若,证明:当时,;当时,;(2)若是的极大值点,求.【答案】(1)见解析(2)【解析】(1)当时,,.设函数,则.当时,;当时,.故当时,,且仅当时,,从而,且仅当时,.所以在单调递增.又,故当时,;当时,.(2)(i)若,由(1)知,当时,,这与是的极大值点矛盾.(ii)若,设函数.由于当时,,故与符号相同.又,故是的极大值点当且仅当是的极大值点..如果,则当,且时,,故不是的极大值点.如果,则存在根,故当,且时,,所以不是的极大值点.如果,则.则当时,;当时,.所以是的极大值点,从而是的极大值点,综上,.母题29【坐标系与参数方程】【2018年理新课标I卷】在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的直角坐标方程;(2)若与有且仅有三个公共点,求的方程.【答案】 (1).(2)综上,所求的方程为.【解析】(1)由,得的直角坐标方程为.(2)由(1)知是圆心为,半径为的圆.由题设知,是过点且关于轴对称的两条射线.记轴右边的射线为,轴左边的射线为.由于在圆的外面,故与有且仅有三个公共点等价于与只有一个公共点且与有两个公共点,或与只有一个公共点且与有两个公共点.当与只有一个公共点时,到所在直线的距离为,所以,故或.经检验,当时,与没有公共点;当时,与只有一个公共点,与有两个公共点.当与只有一个公共点时,到所在直线的距离为,所以,故或.经检验,当时,与没有公共点;当时,与没有公共点.综上,所求的方程为.母题30【不等式选讲】【2018年理新课标I卷】已知.(1)当时,求不等式的解集;(2)若时不等式成立,求的取值范围.【答案】(1).(2).【解析】(1)当时,,即故不等式的解集为.(2)当时成立等价于当时成立.若,则当时;若,的解集为,所以,故.综上,的取值范围为.。

专题01 经典母题30题-2019年高考数学(理)走出题海之黄金30题系列(解析版)

专题01 经典母题30题-2019年高考数学(理)走出题海之黄金30题系列(解析版)

2019年高考数学走出题海之黄金30题系列母题1【集合运算】【2018年理北京卷】已知集合A={x||x|<2},B={–2,0,1,2},则A B= A. {0,1} B. {–1,0,1} C. {–2,0,1,2} D. {–1,0,1,2} 【答案】A 【解析】因此A B =,选A.母题2【充分条件和必要条件】(2017天津卷5)设R θ∈,则“ππ1212θ-<”是“1sin 2θ<”的( ). A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 【答案】A 【解析】πππ012126θθ-<⇔<< 1sin 2θ⇒< ,但10,sin 2θθ=<,不满足 ππ1212θ-<,所以是充分不必要条件,选A.母题3【函数的性质】【2018年理新课标I 卷】已知函数.若g(x )存在2个零点,则a 的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞) 【答案】C 【解析】 画出函数的图像,在y 轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A 时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.母题4【函数的图象】【2018年浙江卷】函数y=sin2x的图象可能是A. B.C. D.【答案】D【解析】令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.母题5【三角形函数的图象和性质】【2018年理天津卷】将函数的图象向右平移个单位长度,所得图象对应的函数A. 在区间上单调递增B. 在区间上单调递减C. 在区间上单调递增D. 在区间上单调递减【答案】A【解析】由函数图象平移变换的性质可知:将的图象向右平移个单位长度之后的解析式为:.则函数的单调递增区间满足:,即,令可得一个单调递增区间为:.函数的单调递减区间满足:,即,令可得一个单调递减区间为:.本题选择A选项.母题6【平面向量数量积】【2018年理数天津卷】如图,在平面四边形ABCD中,,,,. 若点E为边CD上的动点,则的最小值为A. B. C. D.【答案】A【解析】建立如图所示的平面直角坐标系,则,,,,点在上,则,设,则:,即,据此可得:,且:,,由数量积的坐标运算法则可得:,整理可得:,结合二次函数的性质可知,当时,取得最小值.本题选择A选项.母题7【球切接】【2018年全国卷Ⅲ理】设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A. B. C. D.【答案】B【解析】如图所示,点M为三角形ABC的重心,E为AC中点,当平面时,三棱锥体积最大,此时,,,,点M为三角形ABC的重心,,中,有,,,故选B.母题8【空间点线面位置关系】【2018年浙江卷】已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E 是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C 的平面角为θ3,则A. θ1≤θ2≤θ3B. θ3≤θ2≤θ1C. θ1≤θ3≤θ2D. θ2≤θ3≤θ1【答案】D【解析】设O为正方形ABCD的中心,M为AB中点,过E作BC的平行线EF,交CD于F,过O作ON垂直EF于N,连接SO,SN,OM,则SO垂直于底面ABCD,OM垂直于AB,因此从而因为,所以即,选D.母题9【直线和双曲线位置关系】【2018年理数天津卷】已知双曲线的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点. 设A,B到双曲线同一条渐近线的距离分别为和,且,则双曲线的方程为A. B. C. D.【答案】C【解析】设双曲线的右焦点坐标为(c>0),则,由可得:,不妨设:,双曲线的一条渐近线方程为:,据此可得:,,则,则,双曲线的离心率:,据此可得:,则双曲线的方程为.本题选择C选项.母题10【直线和抛物线位置关系】【2018年理新课标I卷】设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=A. 5B. 6C. 7D. 8【答案】D【解析】根据题意,过点(–2,0)且斜率为的直线方程为,与抛物线方程联立,消元整理得:,解得,又,所以,从而可以求得,故选D.母题11【程序框图】【2018年理数全国卷II 】为计算,设计了下面的程序框图,则在空白框中应填入A. B. C. D.【答案】B【解析】由得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入,选B.母题12【几何概型】(2017全国卷1理8)如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A.14B.π8C.12D.π4【答案】B【解析】不妨设正方形边长为a.由图形的对称性可知,太极图中黑白部分面积相等,即所各占圆面积的一半.由几何概型概率的计算公式得,所求概率为221()228aaππ⨯⨯=,选B.母题13【复数的运算及概念】【2018年理新课标I卷】设,则A. B. C. D.【答案】C【解析】因为,所以,故选C.母题14【直线和圆】【2018年全国卷Ⅲ理】直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A. B. C. D.【答案】A【解析】直线分别与轴,轴交于,两点,,则,点P在圆上,圆心为(2,0),则圆心到直线距离,故点P到直线的距离的范围为,则,故答案选A.母题15【导数的几何意义】【2018年全国卷Ⅲ理】曲线在点处的切线的斜率为,则________.【答案】【解析】,则,所以,故答案为-3.母题16【二项式定理】【2018年全国卷Ⅲ理】的展开式中的系数为A. 10B. 20C. 40D. 80【答案】C【解析】由题可得,令,则,所以故选C.母题17【排列和组合】【2018年浙江卷】从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答)【答案】1260【解析】若不取零,则排列数为若取零,则排列数为因此一共有个没有重复数字的四位数.母题18【线性规划】【2018年理北京卷】若x,y满足,则2y−x的最小值是_________.【答案】3【解析】不等式可转化为,即,满足条件的在平面直角坐标系中的可行域如下图令,由图象可知,当过点时,取最小值,此时,的最小值为.母题19【平面向量坐标运算】【2018年全国卷Ⅲ理】已知向量,,.若,则________.【答案】【解析】由题可得,,,即,故答案为母题20【直线与抛物线、直线与圆】【2018年理数全国卷II】设抛物线的焦点为,过且斜率为的直线与交于,两点,.(1)求的方程;(2)求过点,且与的准线相切的圆的方程.【答案】(1) y=x–1,(2)或.【解析】(1)由题意得F(1,0),l的方程为y=k(x–1)(k>0).设A(x1,y1),B(x2,y2).由得.,故.所以.由题设知,解得k=–1(舍去),k=1.因此l的方程为y=x–1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为,即.设所求圆的圆心坐标为(x0,y0),则解得或因此所求圆的方程为或.母题21【立体几何与空间向量】【2018年理北京卷】如图,在三棱柱ABC-中,平面ABC,D,E,F,G分别为,AC,,的中点,AB=BC=,AC==2.(Ⅰ)求证:AC⊥平面BEF;(Ⅱ)求二面角B-CD-C1的余弦值;(Ⅲ)证明:直线FG与平面BCD相交.【答案】(1)证明见解析(2) B-CD-C1的余弦值为(3)证明过程见解析【解析】(Ⅰ)在三棱柱ABC-A1B1C1中,∵CC1⊥平面ABC,∴四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,∴AC⊥EF.∵AB=BC.∴AC⊥BE,∴AC⊥平面BEF.(Ⅱ)由(I)知AC⊥EF,AC⊥BE,EF∥CC1.又CC1⊥平面ABC,∴EF⊥平面ABC.∵BE平面ABC,∴EF⊥BE.如图建立空间直角坐称系E-xyz.由题意得B(0,2,0),C(-1,0,0),D (1,0,1),F(0,0,2),G(0,2,1).∴,设平面BCD的法向量为,∴,∴,令a=2,则b=-1,c=-4,∴平面BCD的法向量,又∵平面CDC1的法向量为,∴.由图可得二面角B-CD-C1为钝角,所以二面角B-CD-C1的余弦值为.(Ⅲ)平面BCD的法向量为,∵G(0,2,1),F(0,0,2),∴,∴,∴与不垂直,∴GF与平面BCD不平行且不在平面BCD内,∴GF与平面BCD相交.母题22【解三角形】【2018年理新课标I卷】在平面四边形中,,,,.(1)求;(2)若,求.【答案】(1) .(2).【解析】分析:(1)根据正弦定理可以得到,根据题设条件,求得,结合角的范围,利用同角三角函数关系式,求得;(2)根据题设条件以及第一问的结论可以求得,之后在中,用余弦定理得到所满足的关系,从而求得结果.详解:(1)在中,由正弦定理得.由题设知,,所以.由题设知,,所以.(2)由题设及(1)知,.在中,由余弦定理得.所以.母题23【等差数列通项公式和等比数列求和】【2018年浙江卷】已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1−b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)由是的等差中项得,所以,解得.由得,因为,所以.(Ⅱ)设,数列前n项和为.由解得.由(Ⅰ)可知,所以,故,.设,所以,因此,又,所以.母题24【数列递推公式和数列求和】【2018年理数天津卷】设是等比数列,公比大于0,其前n项和为,是等差数列.已知,,,.(I)求和的通项公式;(II)设数列的前n项和为,(i)求;(ii)证明.【答案】(Ⅰ),;(Ⅱ)(i).(ii)证明见解析.【解析】(I)设等比数列的公比为q.由可得.因为,可得,故.设等差数列的公差为d,由,可得由,可得从而故所以数列的通项公式为,数列的通项公式为(II)(i)由(I),有,故.(ii)因为,所以.母题25【空间向量与立体几何】【2018年理新课标I卷】如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求与平面所成角的正弦值.【答案】(1)证明见解析.(2) .【解析】(1)由已知可得,BF⊥PF,BF⊥EF,又,所以BF⊥平面PEF.又平面ABFD,所以平面PEF⊥平面ABFD.(2)作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD.以H为坐标原点,的方向为y轴正方向,为单位长,建立如图所示的空间直角坐标系H−xyz.由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE=.又PF=1,EF=2,故PE⊥PF.可得.则为平面ABFD的法向量.设DP与平面ABFD所成角为,则.所以DP与平面ABFD所成角的正弦值为.母题26【离散型随机变量的分布列和期望】【2018年理新课标I卷】某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为,求的最大值点.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的作为的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【答案】(1).(2) (i)490.(ii)应该对余下的产品作检验.【解析】(1)20件产品中恰有2件不合格品的概率为.因此.令,得.当时,;当时,.所以的最大值点为.(2)由(1)知,.(i)令表示余下的180件产品中的不合格品件数,依题意知,,即.所以.(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于,故应该对余下的产品作检验.母题27【直线和椭圆位置关系】【2018年全国卷Ⅲ理】已知斜率为的直线与椭圆交于,两点,线段的中点为.(1)证明:;(2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差.【答案】(1)(2)或【解析】(1)设,则.两式相减,并由得.由题设知,于是.①;由题设得,故.(2)由题意得,设,则.由(1)及题设得.又点P在C上,所以,从而,.于是.同理.所以.故,即成等差数列.设该数列的公差为d,则.②将代入①得.所以l的方程为,代入C的方程,并整理得.故,代入②解得.所以该数列的公差为或.母题28【导数的综合运用】【2018年全国卷Ⅲ理】已知函数.(1)若,证明:当时,;当时,;(2)若是的极大值点,求.【答案】(1)见解析(2)【解析】(1)当时,,.设函数,则.当时,;当时,.故当时,,且仅当时,,从而,且仅当时,.所以在单调递增.又,故当时,;当时,.(2)(i)若,由(1)知,当时,,这与是的极大值点矛盾.(ii)若,设函数.由于当时,,故与符号相同.又,故是的极大值点当且仅当是的极大值点..如果,则当,且时,,故不是的极大值点.如果,则存在根,故当,且时,,所以不是的极大值点.如果,则.则当时,;当时,.所以是的极大值点,从而是的极大值点,综上,.母题29【坐标系与参数方程】【2018年理新课标I卷】在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的直角坐标方程;(2)若与有且仅有三个公共点,求的方程.【答案】 (1).(2)综上,所求的方程为.【解析】(1)由,得的直角坐标方程为.(2)由(1)知是圆心为,半径为的圆.由题设知,是过点且关于轴对称的两条射线.记轴右边的射线为,轴左边的射线为.由于在圆的外面,故与有且仅有三个公共点等价于与只有一个公共点且与有两个公共点,或与只有一个公共点且与有两个公共点.当与只有一个公共点时,到所在直线的距离为,所以,故或.经检验,当时,与没有公共点;当时,与只有一个公共点,与有两个公共点.当与只有一个公共点时,到所在直线的距离为,所以,故或.经检验,当时,与没有公共点;当时,与没有公共点.综上,所求的方程为.母题30【不等式选讲】【2018年理新课标I卷】已知.(1)当时,求不等式的解集;(2)若时不等式成立,求的取值范围.【答案】(1).(2).【解析】(1)当时,,即故不等式的解集为.(2)当时成立等价于当时成立.若,则当时;若,的解集为,所以,故.综上,的取值范围为.。

专题02 新题精选30题-2019年高考数学(理)走出题海之黄金30题系列(解析版)

专题02 新题精选30题-2019年高考数学(理)走出题海之黄金30题系列(解析版)
i
知, e 3 表示的复数的模为( )
A.
B. 1
C.
D.
【答案】B
9.(导数与不等式相结合的创新题)已知定义在 R 上的偶函数 f x (函数 f(x)的导函数为 f x )满足
f
x
1 2
f
x 1
0 ,e3f(2018)=1, 若
f
x
f
x ,则关于
x
的不等式
f
x 2
1 ex
的解集为
B. 3 5
C. 4 5
D. 7 10
16.(传统文化与等比数列相结合的创新题)中国古代数学著作《算法统宗》中有这样一个问题:“三百七 十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关……”其大意为:“某人从距离关口三百 七十八里处出发,第一天走得轻快有力,从第二天起,由于脚痛,每天走的路程为前一天的一半,共走了 六天到达关口……” 那么该人第一天走的路程为______________ 【答案】192 【解析】
2019 年高考数学走出题海之黄金 30 题系列
1.(三角函数与抛物线相结合的创新题)已知抛物线 C : y2 2 px( p 0) 的焦点为 F ,准线为 l ,过抛
物线 C 上的点 A4, y0 作 AA1
l 于点
A ,若 A1AF
2 3
,则
p


A. 6 B. 12 C. 24 D. 48




此时不满足循环条件,输出

则判断框中应填入的是

故选: .
3.(新定义函数与平面向量、基本不等式相结合的创新题)定义域为
的函数
为 、 ,向量

高考数学专题01经典母题30题(文)-高考数学走出题海之黄金30题系列(解析版).docx

高考数学专题01经典母题30题(文)-高考数学走出题海之黄金30题系列(解析版).docx

2014年高考数学走出题海之黄金30题系列1.已知集合{}|03A x x =<<,{}|20B x x =-> ,则集合A B =I ( ) A.(0,2) B .(0,3) C.(2,3) D.(2,)+∞2.已知集合A={y|y=lg(x-3)},B={a|a 2-a+3>0},则“x>4”是“A B ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.已知复数21i z i=+(i 是虚数单位),则复数z 在复平面内对应的点位于( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限4.已知3log 4.12a =,3log 2.72b =,3log 0.112c ⎛⎫= ⎪⎝⎭则( )A .a>b>cB .b>a>cC .a>c>bD .c>a>b 【答案】D 【解析】因为333log 10log 4.1log 2.7>>,所以33333log 10log 4.1log 2.7log 10log 0.11222,2(),2>>=因此c>a>b.比较指对数大小,首先将底数化为一样. 【考点定位】指对数比较大小5.函数()323922y x x x x =---<<有( )A .极大值5,极小值27-B .极大值5,极小值11-C .极大值5,无极小值D .极小值27-,无极大值6.若21()ln(2)2f x x b x =-++在(1,)-+∞上是减函数,则b 的取值范围是( ) A. [1,)-+∞ B. (1,)-+∞ C. (,1]-∞- D. (,1)-∞- 【答案】C 【解析】7.函数()|2|ln f x x x =--在定义域内零点的个数为( ) A .0 B .1 C .2 D .3 【答案】C【解析】由题意,知函数()f x 的定义域为0+∞(,).由函数零点的定义, ()f x 在0+∞(,)内的零点即是方程2ln 0x x --=的根.令12y x =-,2ln 0y x x =>(),在一个坐标系中画出两个函数的图象,如图所示.由图知两个函数图象有两个交点,故方程有两个根,即对应函数有两个零点,故选C . 【考点定位】1、函数的零点;2、函数的图象.zxxk 学 科 网8.函数)sin(ϕω+=x A y 在一个周期内的图象如右,此函数的解析式为( )A .)32sin(2π+=x y B .)322sin(2π+=x yC)32sin(2π-=x y D .)32sin(2π-=x y 9.在ABC ∆中,3,1,cos cos c a a B b A ===,则AC CB ⋅=u u u r u u u r( )A .21 B .23 C .21- D .23- 【答案】A【考点】等差数列的性质和前n 项和.11.若,,a b c 为实数,则下列命题正确的是( )A .若a b >,则22ac bc > B .若0a b <<,则22a ab b >> C .若0a b <<,则11a b < D .若0a b <<,则b a a b> 【答案】B【考点定位】直线与平面的位置关系.. zxxk 学 科 网13.一个几何体的三视图如图所示,则该几何体的体积为( )A.12πB.6πC.4πD.2π 【答案】B 【解析】试题分析:由三视图知,该几何体是半圆柱,且其底面是以2为半径的半圆,高为3,底面积为2122S π=⨯ 2π=,故该几何体的体积为236V Sh ππ==⨯=,故选B.【考点定位】1.三视图;2.简单几何体的体积14.已知圆222:r y x O =+,点)0(),,(≠ab b a P 是圆O 内的一点,过点P 的圆O 的最短弦在直线1l 上,直线2l 的方程为2r ay bx =-,那么( )A .21//l l 且2l 与圆O 相交 B.21l l ⊥且2l 与圆O 相切 C .21//l l 且2l 与圆O 相离 D.21l l ⊥且2l 与圆O 相离 【答案】D 【解析】15.执行如图所示的程序框图,若输入n=10,则输出的S= ( )A. B. C. D.【答案】A16.若下框图所给的程序运行结果为35S =,那么判断框中应填入的关于k 的条件是( )(A)7k = (B)6k ≤ (C)6k < (D)6k > 【答案】D 【解析】试题分析:第一次循环,11,9S k ==;第二次循环,20,8S k ==;第三次循环,28,7S k ==;第四次循环,35,6S k ==,结束循环,输出35S =,因此6k > 【考点定位】循环结构流程图. zxxk 学 科 网 二、填空题17.已知0,0x y >>,1221x y +=+,则2x y +的最小值为 . 【答案】318.点(,)M x y 是不等式组0333x y x y⎧≤≤⎪≤⎨⎪≤⎩表示的平面区域Ω内的一动点,且不等式20x y m -+≥总成立,则m 的取值范围是________________. 【答案】3m ≥【解析】将不等式化为2m y x ≥-,只需求出2y x -的最大值即可,令2z y x =-,就是满足不等式0333x y x ⎧≤≤⎪≤⎨⎪≤⎩的最大值,由简单的线性规划问题解法,可知在()0,3处z 取最大值3,则m 取值范围是3m ≥.【考点定位】简单的线性规划和转化思想.19.已知函数⎩⎨⎧---=x x e x f x 21)(20<≥x x ,若关于x 的方程a x x f -=)(有三个不同的实根,则实数a 的取值范围是. 【答案】)0,49(- 【解析】三、解答题20.在△ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c , 且1cos22A C +=. (1)若3a =,7b =,求c 的值;(2)若()()sin 3cos sin f A AA A =-,求()f A 的取值范围.2()3cos sin f A A A A =-,首先用二倍角公式,降幂公式把二次式化为一次式3()2f A A =1cos 22A --311sin 2cos 222A A =+-,再利用两角和的正弦公式把两个三角函数化为一个三角函数,1()sin(2)62f A A π=+-,接下来我学科网们只要把26A π+作为一个整体,求出它的范围,就可借助于正【考点定位】(1)余弦定理;(2)二倍角公式与降幂公式,三角函数的取值范围21.已知向量1(cos ,1),(3,)2m x n x =-=-u r r ,设函数()()f x m n m =+⋅u r r u r .(1).求函数f(x)的最小正周期;(2).已知a,b,c 分别为三角形ABC 的内角对应的三边长,A 为锐角,a=1,3c =()f A 恰是函数f(x)在[0,]2π上的最大值,求A,b 和三角形ABC 的面积.【答案】(1)π;(2)6A π=,1=b 或2=b ,3S =或3S =. 【解析】试题分析:本题主要考查平面向量的数量积、二倍角公式、两角和的正弦公式、三角函数、余弦定理、三角形面积等基础知识,意在考查考生的运算求解能力、转化化归想象能力和数形结合能力.第一问,先利所以6,262πππ==+A A . 8分由余弦定理A bc c b a cos 2222-+=得6cos32312π⨯⨯⨯-+=b b ,所以1=b 或2=b经检验均符合题意. 10分 从而当1=b 时,△ABC 的面积436sin 1321=⨯⨯⨯=πS ; 11分 当2=b 时,236sin 2321=⨯⨯⨯=πS . 12分 【考点定位】平面向量的数量积、二倍角公式、两角和的正弦公式、三角函数、余弦定理、三角形面积. 22.某校研究性学习小组从汽车市场上随机抽取20辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于50公里和300公里之间,将统计结果分 成5组:[50,100),[100,150),[150,200),[200,250),[250,300],绘制成如图所示的频率分布直方图.(1)求直方图中x 的值;(2)求续驶里程在[200,300]的车辆数;(3)若从续驶里程在[200,300]的车辆中随机抽取2辆车,求其中恰有一辆车的续驶里程为[200,250) 的概率.【答案】(1)0.003x =;(2)5;(3)63()105P A ==. 【解析】(,),(,),(,),(,),(,),(,),(,),(,),(,),(,)A B A C A a A b B C B a B b C a C b a b 共10种情况, 3分事件A 包含的可能有(,),(,),(,),(,),(,),(,)A a A b B a B b C a C b 共6种情况, 5分 则63()105P A ==. 6分(未列举事件,只写对概率结果给2分)【考点定位】1.直方图的应用;2.古典概型的求解.23.空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,解代表空气污染越严重:PM2.5日均浓度0~35 35~75 75~115 115~150 150~250 >250空气质量级别一级二级三级四级五级六级空气质量类别优良轻度污染中度污染重度污染严重污染某市2013年3月8日—4月7日(30天)对空气质量指数PM2.5进行检测,获得数据后整理得到如下条形图:(1)估计该城市一个月内空气质量类别为良的概率;(2)从空气质量级别为三级和四级的数据中任取2个,求至少有一天空气质量类别为中度污染的概率.【答案】(1)该城市一个月内空气质量类别为良的概率为8 15;(2)至少有一天空气质量类别为中度污染的概率为35.【解析】()()()()(),,,,,,,,,c e c fde df e f共15个,其中至少有一天空气质量类别为中度污染的情况有:()()()()()()()()() ,,,,,,,,,,,,,,,,,a eb ec ede af b f c f d f e f共9个,所以至少有一天空气质量类别为中度污染的概率为93 155=.【考点定位】统计与概率.24.已知数列{}n a是首项和公比均为14的等比数列,设()*1423log,n nb a n N+=∈.{}n n n nc c a b=⋅数列满足(1)求证数列{}n b是等差数列;(2)求数列{}n c的前n项和n S.【答案】(1)见解析(2)2321()334nnnS+=-⨯【解析】试题分析:1(32)(),(*)4nnc n n∴=-⨯∈Ν, 6分,)41()23()41)53()41(7)41(4411132nnnnnS⨯-+(⨯-++⨯+⨯+⨯=∴-Λ于是1432)41()23()41)53()41(7)41(4)41(141+⨯-+(⨯-++⨯+⨯+⨯=nnnnnSΛ,两式相减得132)41()23(])41()41()41[(34143+⨯--++++=n n n n S Λ .)41()23(211+⨯+-=n n 2分 2321()(*)334nn n S n +∴=-⨯∈Ν. 12分 【考点定位】错位相减法等差数列等比数列25.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,90ACB ∠=o .以AB ,BC 为邻边作平行 四边形ABCD ,连接1DA 和1DC . (1)求证:1A D //平面11BCC B ; (2)求证:AC ⊥平面1ADA .【答案】(1)1A D //平面11BCC B ;(2)AC ⊥平面1ADA . 【解析】Q 三棱柱111ABC A B C -中11//A B AB 且11A B AB =,26.如图所示的长方体1111ABCD ABC D -中,底面ABCD 是边长为2的正方形,O 为AC 与BD 的交点,12BB =M 是线段11B D 的中点.(1)求证://BM 平面1D AC ; (2)求三棱锥11D ABC -的体积.【答案】(1)证明过程详见试题解析;(2)三棱锥11D ABC -的体积为423. 【解析】试题分析:(1)连接1D O ,要证//BM 平面1D AC ,需证1D O ∥BM ,而1D O ∥BM 易证;(2)用割补法,用长方体的体积减去四个三棱锥的体积即可,求得结果为423.解法2: 三棱锥11D AB C -是长方体1111ABCD A B C D -割去三棱锥1D DAC -、三棱锥1B BAC -、三棱锥111A A B D -、三棱锥111C C B D -后所得,而三棱锥1D DAC -、1B BAC -、111A A B D -、111C C BD -是等底等高,故其体积相等. 11111114D AB CABCD A B C D B BAC V V V ---∴=-1142222242222323=⨯⨯-⨯⨯⨯⨯⨯=.【考点定位】线面平行的判定定理、空间几何体的表面积和体积.27.已知椭圆2222:1x y C a b+=()0a b >>的右焦点F (1,0),长轴的左、右端点分别为12,A A ,且121FA FA ⋅=-u u u r u u u u r.(1)求椭圆C 的方程;(2)过焦点F 斜率为k (0>k )的直线l 交椭圆C 于,A B 两点,弦AB 的垂直平分线与x 轴相交于D 点. 试问椭圆C 上是否存在点E 使得四边形ADBE 为菱形?若存在,求k 的值;若不存在,请说明理由.【答案】(1)2212x y +=;(2)22k = 【解析】试题分析:(1)由椭圆2222:1x y C a b+=()0a b >>的右焦点F (1,0),即1c =.又长轴的左、右端点分别为直线MD 的方程为22212()2121kk y x k k k +=--++,令0y =,得2221D k x k =+,则22(,0)21k D k +. 若四边形ADBE 为菱形,则02E D x x x +=,02E D y y y +=.所以22232(,)2121k kE k k -++. 若点E 在椭圆C 上,则2222232()2()22121k kk k -+=++. zxxk 学 科 网 整理得42k =,解得22k =.所以椭圆C 上存在点E 使得四边形ADBE 为菱形.【考点定位】1.向量的数量积.2.椭圆的性质.3.等价转化的数学思想.4.运算能力.28.已知椭圆22221x y a b+=(a>b>0)经过点M(6,1),离心率为22.(1)求椭圆的标准方程;(2)已知点P(6,0),若A ,B 为已知椭圆上两动点,且满足2PA PB ⋅=-u u u r u u u r,试问直线AB 是否恒过定点,若恒过定点,请给出证明,并求出该定点的坐标;若不过,请说明理由.【答案】(1)22184x y += (2) 直线AB 经过定点26,0⎛⎫ ⎪ ⎪⎝⎭【解析】解:(1)由题意得22c a =①因为椭圆经过点()6,1M ,所以22611a b+=② 又222a b c =+③由①②③解得2228, 4.a b c ===所以椭圆方程为22184x y +=. 4分所以直线AB 的方程为26y k x ⎛= ⎝⎭10分 故直线AB 经过定点263⎛⎫⎪ ⎪⎝⎭2分 ②当直线AB 与x 轴垂直时,若直线为26x =,此时点A 、B 的坐标分别为zxxk 学 科 网 2626⎝⎭ 、2626⎝⎭,亦有2PA PB ⋅=-u u u r u u u r 12分 综上,直线AB 经过定点263⎛⎫⎪ ⎪⎝⎭. 13分 【考点定位】1、椭圆的标准方程;2、向量的数量积;3、直线与椭圆的位置关系.29.已知函数R a xa x f x∈+-=ln 1)((1)求)(x f 的极值(2)若()ln 0xkx -<∞在0,+上恒成立,求k 的取值范围(3)已知e x x R x x <+∈+2121,是,求证:2121ln ln ln )(xx x x +>+【答案】(1)()f x 有极大值ae-(2)1k e>(3)略 【解析】(1)2ln (),()0x aa f x f x x e x-''===Q 令得 x),0(a ea e),(+∞a e()f x ' + 0 - )(x f↗极大值↘有极大值)(x f ∴e30.已知函数2()(21)ln f x x a x a x =-++. (1)求函数()f x 在区间[1,]e 上的最小值;(2)设()(1)g x a x =-,其中01a <<,判断方程()()f x g x =在区间[1,]e 上的解的个数(其中e 为无理数,约等于2.7182L 且有221e e e ->-).【答案】(1)1a ≤时,min [()](1)2f x f a ==-,1a e <<时,2min [()]()ln f x f a a a a a ==--+,a e ≥时,2min [()]()2f x f e e ae e a ==--+;(2)方程()()f x g x =在区间[1]e ,上存在唯一解.【解析】(2)令()()()h x f x g x =-()22ln x a x a x =-++()0x >由()h x '()22a x a x =-++()222x a x a x -++=()()210x a x x --==,解得;1x =或2x a= 由01a <<, 知12a< 故当()1,x e ∈时,()0h x '>,则()h x 在[1,]e 上是增函数zxxk 学 科 网又()110h a =--<;()()22+h e e a e a =-+2=2(1e e e a ---)()2211e e e a e ⎛⎫-=-- ⎪-⎝⎭由已知2210e e e ->->得:2211e e e ->-,所以2201e ea e -->-,所以()0h e > 故函数()h x 在[1]e ,上有唯一的零点,即方程()()f x g x =在区间[1]e ,上存在唯一解.& 鑫达捷致力于精品文档精心制作仅供参考&【考点定位】1.函数的最值与导数;2.方程的解与函数的零点. zxxk 学科网鑫达捷。

中考英语 走出题海之黄金30题系列 专题01 经典母题30题(含解析)-人教版初中九年级全册英语试题

中考英语 走出题海之黄金30题系列 专题01 经典母题30题(含解析)-人教版初中九年级全册英语试题

专题01 经典母题30题【经典1】— Why did you laugh just now?— Ted wanted to tell us ______ very funny story, but he forgot ______ ending himself.A. a; anB. the; theC. the; aD. a; the【答案】D考点:考查冠词【经典2】—— She has cut the cake intopieces. Which piece do you want?——Theone. It’s the biggest.A. five; fourB. five; fourthC. fifth; fourthD. fifth; four【答案】B【解析】试题分析:句意:她把蛋糕切成了五块。

你想要哪一块?——第四块。

这是最大的。

结合语境可知前一空表示数量,故用基数词。

后一空表示顺序,故用序数词,选B。

考点:考查数词【经典3】— Help to some fish, kids.— Thanks.A. youB. yourC. yourselvesD. yours【答案】C【解析】试题分析:you你,你们;your你的,你们的;yourselves你们自己。

句意:孩子们,请随便吃些鱼吧!——多谢。

短语help oneself to something,随便吃些……,故选C。

考点:考查人称代词辨析【经典4】—— The apple tastes good.—— Yes. Would you likeone?A. anotherB. eachC. anyD. some【答案】A【解析】试题分析:another多个中的另一个;each每一个;any 任何一些;Some一些。

句意:苹果尝起来不错。

——是的,你想再来一个吗?结合语境可知选A。

考点:考查不定代词【经典5】Damin sat on the side of the river cooking a meal, ______ a bird on his head .A. fromB. intoC. aboutD. with【答案】D【解析】试题分析:from从,来自;into 进入;about关于;With带有,伴随。

专题01 经典母题30题-2018年高考数学理走出题海之黄金30题系列 含解析 精品

专题01 经典母题30题-2018年高考数学理走出题海之黄金30题系列 含解析 精品

2018年高考数学走出题海之黄金30题系列母题1【集合运算】(2017北京卷理1)若集合A ={x |–2<x <1},B={x |x <–1或x >3},则A ⋂B = A. {x |–2<x <–1} B. {x |–2<x <3} C. {x |–1<x <1} D. {x |1<x <3} 【答案】A【解析】试题分析:利用数轴可知{}|2 1 A B x x ⋂=-<<-,故选A. 母题2【充分条件和必要条件】(2017天津卷5)设R θ∈,则“ππ1212θ-<”是“1sin 2θ<”的( ). A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 【答案】A 【解析】πππ012126θθ-<⇔<< 1sin 2θ⇒< ,但10,sin 2θθ=<,不满足 ππ1212θ-<,所以是充分不必要条件,选A.母题3【函数的性质】(2016山东卷理12)已知当[]0,1x ∈ 时,函数()21y mx =- 的图象与y m = 的图象有且只有一个交点,则正实数m 的取值范围是A. ][()0,1⋃+∞ B. ][()0,13,⋃+∞C. [()⋃+∞ D. [()3,⋃+∞ 【答案】B母题4【函数的图象】(2016乙卷理7)函数22e xy x =-在[]2,2-的图像大致为( ).A. B. C. D.【答案】D 分析 对于函数图像识别题一般是利用函数性质排除不符合条件的选项.母题5【三角形函数的图象和性质】(2016全国乙理12)已知函数π()sin()0,2f x x ωϕωϕ⎛⎫=+> ⎪⎝⎭…,π4x =-为()f x 的零点,π4x =为()y f x =图像的对称轴,且()f x 在π5π1836⎛⎫⎪⎝⎭,上单调,则ω的最大值为( ).A.11B.9C.7D.5 【答案】B【解析】 依题意,可得()π2124T k =⋅+,k ∈N ,且5ππ36182T -…,即π6T …. 故2112k +…,k ∈N ,即112k …,k ∈N .当5k =时,2π11T =.又ππ2π3π5π184114436<-=<,因此()f x 在π5π,1836⎛⎫⎪⎝⎭上不单调.当4k =时,2π9T =,且π2πππ5π,49361836⎛⎫-=∉ ⎪⎝⎭. 又ππ5ππ5π,49361836⎛⎫-=∉ ⎪⎝⎭,因此()f x 在π5π,1836⎛⎫⎪⎝⎭上单调,则ω的最大值为9.故选B. 母题6【平面向量数量积】(2016天津理7)已知ABC △是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得2DE EF =,则AF BC ⋅的值为( ).A. 58-B.18C.14D.118【答案】B【解析】 由题意作图,如图所示.则()AF BC AE EF BC ⋅=+⋅= 111cos60448AC BC ⋅== .故选B.FEDCBA母题7【内切球】(2016全国丙理10)在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( ).A.4πB.9π2C.6πD.32π3【答案】B【解析】 如图所示,假设在直三棱柱111ABC ABC -中,有一个球与平面11ABB A ,平面11BCC B,平11AAC C 面相切,其俯视图如图所示.设其球的半径为1r ,则16822,11(6810)22ABC ABC S r C ⨯⨯===⨯++△△且123r AA =…,得32r ….因此,直三棱柱内球的半径最大值为32,则33max4439πππ3322V r ⎛⎫===⎪⎝⎭.故选B.母题8【平面与平面平行的判定】(2016全国乙理11)平面α过正方体1111ABCD A BC D -的顶点A ,α∥平面11CB D ,α 平面=ABCD m ,α 平面11=ABB A n ,则m ,n 所成角的正弦值为( ).B ACC 1B 1A 1CBAA.3 2B.22C.33D.13【答案】AABCDA1B1C1D1EFD1C1B1A1DC BA母题9【直线和双曲线位置关系】(2017天津卷理6)已知双曲线22221(0,0)x ya ba b-=>>的左焦点为F,2若经过F和()0,4P两点的直线平行于双曲线的一条渐近线,则双曲线的方程为A.22144x y-= B.22188x y-= C.22148x y-= D.22184x y-=【答案】B【解析】由题意得224,14,22188x ya b c a bc==-⇒===-=-,选B.母题10【直线和抛物线位置关系】(2016四川理8)设O 为坐标原点,P 是以F 为焦点的抛物线22(0)y px p =>上任意一点,M 是线段PF 上的点,且2PM MF =,则直线OM 的斜率的最大值为( ).23 C.2 D.1母题11【程序框图】(2016山东卷理7)执行两次下图所示的程序框图,若第一次输入的x 的值为7,第二次输入的x 的值为9,则第一次、第二次输出的a 的值分别为( )A. 0,0B. 1,1C. 0,1D. 1,0 【答案】D【解析】第一次227,27,3,37,1x b a === ;第二次229,29,3,39,0x b a =<===,选D.母题12【排列和组合】(2016全国甲理5)如图所示,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( ). A.24 B.18 C.12 D.9【答案】B【解析】 从→E F 的最短路径有6种走法,从→F →G 的最短路径有3种走法,由乘法原理知,共6318⨯=种走法.故选B .母题13【几何概型】(2017全国卷1理8)如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A.14 B. π8 C. 12 D. π4【答案】B【解析】不妨设正方形边长为a.由图形的对称性可知,太极图中黑白部分面积相等,即所各占圆面积的一半.由几何概型概率的计算公式得,所求概率为221()228aa ππ⨯⨯=,选B. 母题14【复数的运算及概念】(2017全国理2)已知R a ∈, i是虚数单位,若z a =, 4z z ⋅=,则a =( )A. 1或1-【答案】A【解析】由,4z a z z =⋅=得234a +=,所以1a =±,故选A.母题15【导数的几何意义】(2016甲卷理16)若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线()ln 1y x =+的切线,则b = .【答案】1ln 2-母题16【二项式定理】(2017浙江卷理)已知多项式()31x + ()2x +2=5432112345x a x a x a x a x a +++++,则4a =________________, 5a =________. 【答案】 16 4【解析】由二项式展开式可得通项公式为: 22323222r r m m m r m m r m C x C x C C x --+⋅=⋅⋅⋅,分别取0,1r m ==和1,0r m ==可得441216a =+=,取r m =,可得25124a =⨯=.母题17【直线和圆】(2016全国丙理16)已知直线:30l mx y m ++=与圆2212x y +=交于A ,B 两点,过A ,B 分别做l 的垂线与x 轴交于C ,D两点,若AB =,则CD =__________________.【解析】解法一:根据直线与圆相交弦长公式有AB ==223r d -=,又212r =,得3d =.因此圆心()0,0O 到直线l:30mx y m ++=的距离3d ==,解得m = 因此直线l的方程为y x =+所以直线l 的倾斜角为30 .如图所示,过点C 作CE BD ⊥于点E ,则4cos30cos30CE AB CD ====. 母题18【线性规划】(2017全国卷1理)设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y =-的最小值为 . 【答案】-5【解析】如图所示,不等式组表示的可行域为ABC ∆易求得1111(1,1),(,),(,)3333A B C ---直线32z x y =-在x 轴上的截距越小,z 就越小,所以,当直线直线32z x y =-过点A 时,z 取得最小值,所以z 取得最小值为3(1)215⨯--⨯=- 母题19【平面向量坐标运算】(2017新课标3理13)已知向量()()2,3,3,a b m =-=,且a ⊥b ,则m =_______. 【答案】2【解析】由题意可得2330,m -⨯+=解得2m =.母题20【等比数列通项公式和性质】(2016全国乙理15)设等比数列{}n a 满足1310a a +=,245a a +=,则12n a a a ⋅⋅⋅的最大值为 . 【答案】64解法一:由1n a …,得4112n -⎛⎫ ⎪⎝⎭…,得4n …,且41a =.故当3n =或4时,12n a a a 取得最大值,即()321121231234max11164222n a a a a a a a a a a ---⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.解法二:()()211720121221211822n n n n n n nn a a a a q--+++++-⎛⎫==⋅= ⎪⎝⎭.故当3n =或4时,12n a a a 取得最大值6264=.母题21【立体几何与空间向量】【2014高考北京理第17题】如图,正方体MADE 的边长为2,B ,C 分别为AM ,MD 的中点,在五棱锥ABCDE P -中,F 为棱PE 的中点,平面ABF 与棱FD ,PC 分别交于G ,H .(1)求证:FG AB //;(2)若PA ⊥底面ABCDE ,且PA AE =,求直线BC 与平面ABF 所成角的大小,并求线段PH 的长.母题22【解三角形】(2017全国卷3理17)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sinA+cosA=0,a=2,b=2.(1)求c ;(2)设D 为BC 边上一点,且ADAC,求△ABD 的面积.【解析】(1)由已知得tanA=π2A=3在 △ABC 中,由余弦定理得2222844cos+2-24=03c 6c c c c c π=+-=-,即解得(舍去),=4 (2)有题设可得ππ∠∠=∠-∠==,所以26CAD BAD BAC CAD故△ABD 面积与△ACD 面积的比值为π= 1sin 26112AB AD AC AD 又△ABC的面积为⨯⨯∠=∆142sin 2BAC ABD 母题23【等差数列通项公式和数列求和】(2016全国甲理17)n S 为等差数列{}n a的前n 项和,且11a =,728S =.记[]lg n n b a =,其中[]x 表示不超过的最大整数,如[]0.90=,[]lg991=.(1)求1b ,11b ,101b ;(2)求数列{}n b 的前1000项和.【解析】 (1)设{}n a 的公差为d ,74728S a ==,所以44a =,所以4113a a d -==,所以1(1)n a a n d n =+-=. 所以[][]11lg lg10b a ===,[][]1111lg lg111b a ===,[][]101101lg lg1012b a ===. (2)当0lg 1n a <≤时,129n =⋅⋅⋅,,,;当1lg 2n a <≤时,101199n =⋅⋅⋅,,,; 当2lg 3n a <≤时,100101999n =⋅⋅⋅,,,;当lg 3n a =时,1000n =. 所以1000121000=T b b b =++⋅⋅⋅+[][][]121000lg lg lg =a a a ++⋅⋅⋅+091902900311893⨯+⨯+⨯+⨯=.母题24【数列递推公式和数列求和】(2016山东理18)已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1.n n n a b b +=+ (1)求数列{}n b 的通项公式;(2)令1(1).(2)n n n nn a c b ++=+求数列n C 的前n 项和n T . 【解析】 (1)由题意知当2n …时,165n n n a S S n -=-=+,当1n =时,1111a S ==,所以()*65n a n n =+∈N .设数列{}n b 的公差为d,由112223a b b a b b ⎧⎨⎩=+=+,即111121723b db d=+⎧⎨=+⎩,解得14b =,3d =,所以()*31n b n n =+∈N .(2)由(1)知11(66)3(1)2(33)n n n nn c n n +++==+⋅+,又123n n T c c c c =+++⋅⋅⋅+, 得23413[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,345223[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,两式作差,得:234123[22222(1)2]n n n T n ++-=⨯⨯+++⋅⋅⋅+-+⨯=224(21)3[4(1)2]3221n n n n n ++-⨯+-+⨯=-⋅-,所以232n n T n +=⋅.母题25【空间向量与立体几何】(2016全国乙理18)如图所示,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,2AF FD =,90AFD ∠= ,且二面角D AF E --与二面角C BE F --都是60 .FEDC B(1)求证:平面ABEF ⊥平面EFDC ; (2)求二面角E BC A --的余弦值.由(1)知D F E ∠为二面角D AF E --的平面角,故60DFE ∠=︒,则2DF =,DG =可得(140)A ,,,(340)B -,,,(300)E -,,,(00D .由已知,AB EF ,所以AB 平面EFDC .又平面ABCD 平面EFDC CD =,故AB CD ,CD EF .由BE AF ,可得BE ⊥平面EFDC ,所以CEF ∠为二面角C BE F --的平面角,母题26【离散型随机变量的分布列和期望】(2016全国卷3理19)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率。

专题01 经典母题30题-2019年高考数学走出题海之黄金30题系列(江苏版)(解析版)

专题01 经典母题30题-2019年高考数学走出题海之黄金30题系列(江苏版)(解析版)

2019年高考数学走出题海之黄金30题系列专题一 经典母题一、填空题母题1【集合运算】【2017年江苏,理1】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =,则实数a 的值为 ▲ . 【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1母题2【复数概念与运算】【2017江苏,理2】已知复数(1i)(12i)z =++,其中i 是虚数单位,则z 的模是 ▲ . 【答案】10【解析】(1i)(12i)1i 12i 2510z =++=++=⨯=,故答案为10. 母题3【函数的性质】【2018年江苏卷】函数满足,且在区间上,则的值为________.【答案】【解析】由得函数的周期为4,所以因此母题4【函数与导数】【2018年江苏卷】若函数在内有且只有一个零点,则在上的最大值与最小值的和为________.【答案】–3 【解析】 由得,因为函数在上有且仅有一个零点且,所以,因此从而函数在上单调递增,在上单调递减,所以,母题5【三角形函数的图象和性质】【2018年江苏卷】已知函数的图象关于直线对称,则的值是________.【答案】【解析】 由题意可得,所以,因为,所以母题6【平面向量的数量积】【2016年高考江苏卷】如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,4BC CA ⋅=,1BF CF ⋅=- ,则BE CE ⋅的值是 ▲ .【答案】78【解析】因为222211436=42244AD BC FD BC BA CA BC AD BC AD --⋅=-⋅--==()(), 2211114123234FD BCBF CF BC AD BC AD -⋅=-⋅--==-()(),因此22513,82FD BC ==,2222114167.22448ED BC FD BC BE CE BC ED BC ED --⋅=-⋅--===()() 母题7【几何体的体积】【2018年江苏卷】如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】【解析】由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于,所以该多面体的体积为母题8 【集合与数列、不等式】【2018年浙江卷】已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________.【答案】27【解析】设,则,由得,所以只需研究是否有满足条件的解,此时,,为等差数列项数,且.由得满足条件的最小值为.母题9【双曲线的性质】2018年江苏卷】在平面直角坐标系中,若双曲线的右焦点到一条渐近线的距离为,则其离心率的值是________.【答案】2【解析】因为双曲线的焦点到渐近线即的距离为所以,因此母题10 【平面向量、直线与圆】【2018年江苏卷】在平面直角坐标系中,A为直线上在第一象限内的点,,以AB为直径的圆C与直线l交于另一点D.若,则点A的横坐标为________.【答案】3【解析】设,则由圆心为中点得易得,与联立解得点D的横坐标所以.所以,由得或,因为,所以母题11【程序框图与伪代码】【2016年高考江苏卷】右图是一个算法的流程图,则输出的a的值是▲ .母题12 【平面向量与三角函数】【2015江苏高考,14】设向量a k (cos ,sin cos )(0,1,2,,12)666k k k k πππ=+=,则110k =∑(a k a k+1)的值为母题13 【古典概型】【2018年江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________. 【答案】【解析】:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为【几何概型】【2017江苏高考,7】记函数2()6f x x x =+-的定义域为D .在区间[4,5]-上随机取一个数x ,则x D ∈的概率是 ▲ . 【答案】59【茎叶图、平均数】【2018年江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90 【解析】由茎叶图可知,5位裁判打出的分数分别为,故平均数为.母题14【三角形与不等式】【2018年江苏卷】在中,角所对的边分别为,,的平分线交于点D ,且,则的最小值为________.【答案】9 【解析】 由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.母题15【导数的几何意义】【2014江苏,理11】在平面直角坐标系xoy 中,若曲线2by ax x=+(,a b 为常数)过点(2,5)P -,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b += . 【答案】3-. 【解析】曲线2b y ax x =+过点(2,5)P -,则452b a +=-①,又2'2b y ax x =-,所以7442b a -=-②,由①②解得1,2,a b =-⎧⎨=-⎩所以3a b +=-.母题16【直线与圆的位置关系】【2015江苏高考,10】在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为母题17【直线和椭圆、双曲线】【【2018年理北京卷】已知椭圆,双曲线.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.【答案】 2【解析】由正六边形性质得椭圆上一点到两焦点距离之和为,再根据椭圆定义得,所以椭圆M 的离心率为双曲线N 的渐近线方程为,由题意得双曲线N 的一条渐近线的倾斜角为,母题18【线性规划】【2018年理北京卷】若 ,y 满足,则2y− 的最小值是_________.【答案】3 【解析】不等式可转化为,即, 满足条件的在平面直角坐标系中的可行域如下图 令,由图象可知,当过点时,取最小值,此时,的最小值为.母题19【平面向量坐标运算】【2017江苏高考,12】如图,在同一个平面内,向量OA ,OB ,OC 的模分别为1,1,2,OA 与OC 的夹角为α,且tan α=7,OB 与OC 的夹角为45°.若OC mOA nOB =+(,)m n ∈R ,则m n += ▲ .【答案】3【解析】由tan 7α=可得72sin 10α=,2cos 10α=,根据向量的分解, 易得cos 45cos 2sin 45sin 0n m n m αα⎧︒+=⎪⎨︒-=⎪⎩,即2222102720210n m n m ⎧+=⎪⎪⎨⎪-=⎪⎩,即510570n m n m +=⎧⎨-=⎩,即得57,44m n ==,所以3m n +=.母题20【数列通项公式与求和、数列基本量运算】【2017江苏高考,9】等比数列{}n a 的各项均为实数,其前n 项和为n S ,已知3676344S S ==,,则8a = ▲ . 【答案】32二、解答题母题21【立体几何点线面位置关系】【2018年江苏卷】在平行六面体中,.求证:(1);(2).【答案】答案见解析【解析】证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB平面A1B1C,A1B1平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B平面A1BC,BC平面A1BC,所以AB1⊥平面A1BC.因为AB1平面ABB1A1,所以平面ABB1A1⊥平面A1BC.母题22【解三角形与三角函数恒等变换】【2018年江苏卷】已知为锐角,,.(1)求的值;(2)求的值.【答案】(1)(2)【解析】(1)因为,,所以.因为,所以,因此,.(2)因为为锐角,所以.又因为,所以,因此.因为,所以,因此,.母题23【等差数列与等比数列的综合应用】【2018年江苏卷】设是首项为,公差为d的等差数列,是首项为,公比为q的等比数列.(1)设,若对均成立,求d的取值范围;(2)若,证明:存在,使得对均成立,并求的取值范围(用表示).【答案】(1)d的取值范围为.(2)d的取值范围为,证明见解析.【解析】(1)由条件知:.因为对n=1,2,3,4均成立,即对n=1,2,3,4均成立,即11,1d3,32d5,73d9,得.因此,d的取值范围为.(2)由条件知:.若存在d,使得(n=2,3,···,m+1)成立,即,即当时,d满足.因为,则,从而,,对均成立.因此,取d=0时,对均成立.下面讨论数列的最大值和数列的最小值().①当时,,当时,有,从而.因此,当时,数列单调递增,故数列的最大值为.②设,当x >0时,,所以单调递减,从而<f (0)=1.当时,,因此,当时,数列单调递减,故数列的最小值为.因此,d 的取值范围为.【新定义数列】【2017江苏高考,理19】对于给定的正整数k ,若数列{}n a 满足:1111n k n k n n n k n k a a a a a a --+-++-++++++++2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”.(1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列. 【解析】(1)因为{}n a 是等差数列,设其公差为d ,则1(1)n a a n d =+-, 从而,当4n ≥时,n k n k a a a -++=+11(1)(1)n k d a n k d --+++-122(1)2n a n d a =+-=,1,2,3,k =所以n n n n n n n a a a a a a a ---+++++=321123+++6, 因此等差数列{}n a 是“(3)P 数列”.n n n a a a ++++=-23141()n n a a -+,④将③④代入②,得n n n a a a -++=112,其中4n ≥, 所以345,,,a a a 是等差数列,设其公差为d'.在①中,取4n =,则235644a a a a a +++=,所以23a a d'=-, 在①中,取3n =,则124534a a a a a +++=,所以132a a d'=-, 所以数列{}n a 是等差数列.母题24【等比数列通项公式和数列求和】【2016年高考江苏卷】(本小题满分16分) 记{}1,2,100U =,.对数列{}()*n a n ∈N 和U 的子集T ,若T =∅,定义0T S =;若{}12,,k T t t t =,,定义12k T t t t S a a a =+++.例如:{}=1,3,66T 时,1366+T S a a a =+.现设{}()*n a n ∈N 是公比为3的等比数列,且当{}=2,4T 时,=30T S . (1)求数列{}n a 的通项公式;(2)对任意正整数()1100k k ≤≤,若{}1,2,,T k ⊆,求证:1T k S a +<;(3)设,,C D C U D U S S ⊆⊆≥,求证:2C CDD S S S +≥.由(2)得22()2A B C CDD CDC CDD S S S S S S S S S ≥⇒-≥-⇒+≥.试题解析:(1)由已知得1*13,n n a a n -=⋅∈N .于是当{2,4}T =时,2411132730r S a a a a a =+=+=. 又30r S =,故13030a =,即11a =.所以数列{}n a 的通项公式为1*3,n n a n -=∈N .(2)因为{1,2,,}T k ⊆,1*30,n n a n -=>∈N ,所以1121133(31)32k k k r k S a a a -≤+++=+++=-<.因此,1r k S a +<.故21E F S S ≥+,所以2()1C C DD CDS S S S -≥-+,即21C CDD S S S +≥+.综合①②③得,2C C DD S S S +≥.母题25【立体几何与空间向量】【2018年江苏卷】如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值. 【答案】(1)(2)【解析】如图,在正三棱柱ABC −A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以为基底,建立空间直角坐标系O −xyz .因为AB =AA 1=2,所以.(1)因为P 为A 1B 1的中点,所以,从而,故.因此,异面直线BP 与AC 1所成角的余弦值为.(2)因为Q 为BC 的中点,所以,因此,.设n =(x ,y ,z )为平面AQC 1的一个法向量,则即不妨取,设直线CC 1与平面AQC 1所成角为,则,所以直线CC 1与平面AQC 1所成角的正弦值为.母题26【应用题之函数】【2016江苏】现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A B C D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1OO 是正四棱锥的高1PO 的4倍.(1)若16m,2m,AB PO ==则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m ,则当1PO 为多少时,仓库的容积最大?【答案】(1)312(2)123PO = 【解析】试题分析:(1)明确柱体与锥体积公式的区别,分别代入对应公式求解;(2)先根据体积关系建立函数解析式,()()32636063V V V h h h =+=-<<锥柱,然后利用导数求其最值. 试题解析:解:(1)由PO 1=2知OO 1=4PO 1=8. 因为A 1B 1=AB =6,所以正四棱锥P -A 1B 1C 1D 1的体积()22311111=6224m ;33V A B PO ⋅⋅=⨯⨯=锥 正四棱柱ABCD -A 1B 1C 1D 1的体积()2231=68288m .V AB OO ⋅=⨯=柱 所以仓库的容积V =V 锥+V 柱=24+288=312(m 3).(2)设A 1B 1=a (m),PO 1=h (m),则0<h <6,OO 1=4h .连结O 1B 1.因为在Rt △11PO B 中,2221111O B PO PB +=,所以222362a h +=(),即()22236.a h =- 于是仓库的容积()()22231132643606333V V V a h a h a h h h h =+=⋅+⋅==-<<柱锥, 从而()()2226'36326123V h h =-=-. 令'0V =,得23h = 或23h =-(舍). 当023h <<时,0V'> ,V 是单调增函数; 当236h <<时,0V'<,V 是单调减函数.故23h=时,V取得极大值,也是最大值.因此,当123PO=m时,仓库的容积最大.母题27【直线和椭圆位置关系】【2018年江苏卷】如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于两点.若的面积为,求直线l的方程.【答案】(1)椭圆C的方程为;圆O的方程为(2)①点P的坐标为;②直线l的方程为【解析】(1)因为椭圆C的焦点为,可设椭圆C的方程为.又点在椭圆C上,所以,解得因此,椭圆C的方程为.因为圆O的直径为,所以其方程为.(2)①设直线l与圆O相切于,则,所以直线l的方程为,即.由,消去y,得.(*)因为直线l与椭圆C有且只有一个公共点,所以.因为,所以.因此,点P的坐标为.②因为三角形OAB的面积为,所以,从而.设,由(*)得,所以.因为,所以,即,解得舍去),则,因此P的坐标为.综上,直线l的方程为.母题28【导数的综合运用】【2018年江苏卷】记分别为函数的导函数.若存在,满足且,则称为函数与的一个“S点”.(1)证明:函数与不存在“S点”;(2)若函数与存在“S点”,求实数a的值;(3)已知函数,.对任意,判断是否存在,使函数与在区间内存在“S点”,并说明理由.【答案】(1)证明见解析(2)a的值为(3)对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.【解析】(1)函数f(x)=x,g(x)=x2+2x-2,则f′(x)=1,g′(x)=2x+2.由f(x)=g(x)且f′(x)= g′(x),得,此方程组无解,因此,f(x)与g(x)不存在“S”点.(2)函数,,则.设x0为f(x)与g(x)的“S”点,由f(x0)与g(x0)且f′(x0)与g′(x0),得,即,(*)得,即,则.当时,满足方程组(*),即为f(x)与g(x)的“S”点.因此,a的值为.(3)对任意a>0,设.因为,且h(x)的图象是不间断的,所以存在∈(0,1),使得,令,则b>0.函数,则.由f(x)与g(x)且f′(x)与g′(x),得,即(**)此时,满足方程组(**),即是函数f(x)与g(x)在区间(0,1)内的一个“S点”.因此,对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.母题29【应用问题、三角函数与导数】【2018年江苏卷】某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为,要求均在线段上,均在圆弧上.设OC与MN所成的角为.(1)用分别表示矩形和的面积,并确定的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)当θ=时,能使甲、乙两种蔬菜的年总产值最大【解析】解:(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ0=,θ0∈(0,).当θ∈[θ0,)时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是[,1).答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ)=8000k(sinθcosθ+cosθ),θ∈[θ0,).设f(θ)= sinθcosθ+cosθ,θ∈[θ0,),则.令,得θ=,当θ∈(θ0,)时,,所以f(θ)为增函数;当θ∈(,)时,,所以f(θ)为减函数,因此,当θ=时,f(θ)取到最大值.答:当θ=时,能使甲、乙两种蔬菜的年总产值最大.母题30【圆锥曲线中的定值】【2012江苏,理19】如图,在平面直角坐标系xOy中,椭圆22221 x ya b+=(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0).已知点(1,e)和(e,32)都在椭圆上,其中e为椭圆的离心率.(1)求椭圆的方程;(2)设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P.①若AF1-BF2=62,求直线AF1的斜率;②求证:PF1+PF2是定值.=22221122(1)1 ()2m m mmy ym++++=+.同理,22222(1)12m m mBFm+-+=+.①由以上两式可得AF1-BF2=22212m mm++,解2221622m mm+=+得m2=2,注意到m>0,故2m=.所以直线AF1的斜率为122m=.所以PF 1+PF 2=23222=22 .因此,PF 1+PF 2是定值.学科&网。

考前必做难题30题-2019年高考数学走出题海之黄金30题系列(江苏版)(原卷版)

考前必做难题30题-2019年高考数学走出题海之黄金30题系列(江苏版)(原卷版)

2019年高考数学走出题海之黄金30题系列专题六 考前必做难题30题一、填空题 1.若函数,有三个不同的零点,则实数的取值范围是_________.2.若函数()2ln 2f x x ax =+-在区间122⎛⎫ ⎪⎝⎭,内存在单调递增区间,则实数α的取值范围是 . 3.双曲线C :22221(0,0)x y a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,M ,N 两点在双曲线C 上,且MN ∥F 1F 2,12||4||F F MN =,线段F 1N 交双曲线C 于点Q ,且1||||F Q QN =,则双曲线C 的离心率为 . 4.已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为1F ,2F .这两条曲线在第一象限的交点为P ,12PF F △是以1PF 为底边的等腰三角形.若1||10PF =,记椭圆与双曲线的离心率分别为1e 、2e ,则12e e 的取值范围是 .5.如图所示,三棱锥的顶点,,,都在同一球面上,过球心且,是边长为2等边三角形,点、分别为线段,上的动点(不含端点),且,则三棱锥体积的最大值为__________.6.在正三棱锥中,,,分别为的中点,平面过点,平面,平面,则异面直线和所成角的余弦值为__________. 7.已知在中,线段的垂直平分线与线段的垂直平分线交于点,若,则的值为__________.8.如图,在三棱锥P-ABC 中,侧面PAB 垂直于底面ABC ,△ABC 与△PAB 都是边长为的正三角形,则该三棱锥的外接球的表面积为___________.9.在中,所对的角为,满足条件: 且,则边长的值为__________.10.已知a , b 均为正数,且20ab a b --=,则22214a b a b-+-的最小值为__________. 11.已知是椭圈上的动点,过作椭圆的切线与轴、轴分别交于点、,当(为坐标原点)的面积最小时,(、是椭圆的两个焦点),则该椭圆的离心率为__________.12.正方形ABCD 的边长为2,对角线AC 、BD 相交于点O ,动点P 满足,若,其中m 、n ∈R ,则的最大值是________13.已知为抛物线的焦点,过点的直线与抛物线相交于不同的两点,抛物线在两点处的切线分别是,且相交于点,则的小值是___.14.已知函数()f x =若关于x 的方程()()210fx mf x m -+-=恰好有3个不相等的实根,则m 的取值范围是__________. 15.已知实数,,,满足,,且,则的取值范围是_______. 三、解答题16.已知圆O ;x 2+y 2=4,F 1(-1,0),F 2(1,0),点D 圆O 上一动点,2=,点C 在直线EF 1上,且=0,记点C 的轨迹为曲线W . (1)求曲线W 的方程;(2)已知N (4,0),过点N 作直线l 与曲线W 交于A ,B 不同两点,线段AB 的中垂线为l',线段AB 的中点为Q 点,记P 与y 轴的交点为M ,求|MQ|的取值范围.17.已知椭圆的离心率为,椭圆截直线所得的线段的长度为.(Ⅰ)求椭圆的方程;(Ⅱ)设直线与椭圆交于两点,点是椭圆上的点,是坐标原点,若,判定四边形的面积是否为定值?若为定值,求出定值;如果不是,请说明理由.18.设函数,,已知有三个互不相等的零点,且.(Ⅰ)若.(ⅰ)讨论的单调区间;(ⅱ)对任意的,都有成立,求的取值范围;(Ⅱ)若且,设函数在,处的切线分别为直线,,是直线,的交点,求的取值范围.19.设,函数.(1)若,求曲线在点处的切线方程;(2)若无零点,求a的取值范围;(3)若有两个相异零点、,求证:.20.已知函数,(1)若函数在处取得极值,求实数的值;(2)若,且函数的图像恒在图像下方,求实数的取值范围;(3)证明:.21.已知函数.(1)讨论函数的单调性;(2)若对于任意的,当时,不等式恒成立,求实数的取值范围.22.“工资条里显红利,个税新政人民心”.随着2019年新年钟声的敲响,我国自1980年以来,力度最大的(1)一次个人所得税(简称个税)改革迎来了全面实施的阶段.2019年1月1日实施的个税新政主要内容包括:个税起征点为5000元;(2)每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除;(3)专项附加扣除包括住房、子女教育和赡养老人等.新旧个税政策下每月应纳税所得额(含税)计算方法及其对应的税率表如下:随机抽取某市1000名同一收入层级的从业者的相关资料,经统计分析,预估他们2019年的人均月收入24000元.统计资料还表明,他们均符合住房专项扣除;同时,他们每人至多只有一个符合子女教育扣除的孩子,并且他们之中既不符合子女教育扣除又不符合赡养老人扣除、只符合子女教育扣除但不符合赡养老人扣除、只符合赡养老人扣除但不符合子女教育扣除、即符合子女教育扣除又符合赡养老人扣除的人数之比是2:1:1:1;此外,他们均不符合其他专项附加扣除.新个税政策下该市的专项附加扣除标准为:住房1000元/月,子女教育每孩1000元/月,赡养老人2000元/月等.假设该市该收入层级的从业者都独自享受专项附加扣除,将预估的该市该收入层级的从业者的人均月收入视为其个人月收入.根据样本估计总体的思想,解决如下问题:(1)设该市该收入层级的从业者2019年月缴个税为元,求的分布列和期望;(2)根据新旧个税方案,估计从2019年1月开始,经过多少个月,该市该收入层级的从业者各月少缴交的个税之和就超过2019年的月收入?23.随着经济的发展,个人收入的提高,自2019年1月1日起,个人所得税起征点和税率的调整,调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额,依照个人所得税税率表,调整前后的计算方法如下表:(1)假如小红某月的工资、薪金等所得税前收入总和不高于8000元,记表示总收入,表示应纳的税,试写出调整前后关于的函数表达式;(2)某税务部门在小红所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:①先从收入在及的人群中按分层抽样抽取7人,再从中选4人作为新纳税法知识宣讲员,用表示抽到作为宣讲员的收入在元的人数,表示抽到作为宣讲员的收入在元的人数,随机变量,求的分布列与数学期望;②小红该月的工资、薪金等税前收入为7500元时,请你帮小红算一下调整后小红的实际收入比调整前增加了多少?24.对于无穷数列{}n a ,记{|,}j i T x x a a i j ==-<,若数列{}n a 满足:“存在t T ∈,使得只要m k a a t-=(*,N m k ∈且m k >),必有11m k a a t ++-=”,则称数列{}n a 具有性质()P t .(Ⅰ)若数列{}n a 满足2,2,{25,3,n n n a n n ≤=-≥判断数列{}n a 是否具有性质()2P ?是否具有性质()4P ?(Ⅱ)求证:“T 是有限集”是“数列{}n a 具有性质()0P ”的必要不充分条件;(Ⅲ)已知{}n a 是各项为正整数的数列,且{}n a 既具有性质()2P ,又具有性质()5P ,求证:存在整数N ,使得12,,,,,N N N N k a a a a +++是等差数列.25.已知数列{}n a 满足11a =, 2142n n n n a a a a λμ+++=+,其中*N n ∈, λ, μ为非零常数.(1)若3λ=, 8μ=,求证: {}1n a +为等比数列,并求数列{}n a 的通项公式; (2)若数列{}n a 是公差不等于零的等差数列. ①求实数λ,μ的值;②数列{}n a 的前n 项和n S 构成数列{}n S ,从{}n S 中取不同的四项按从小到大排列组成四项子数列.试问:是否存在首项为1S 的四项子数列,使得该子数列中的所有项之和恰好为2017?若存在,求出所有满足条件的四项子数列;若不存在,请说明理由. 26.已知函数()21ln 2f x x ax bx =-+且函数()y f x =图象上点()()1,1f 处的切线斜率为0. (1)试用含有a 的式子表示b ,并讨论()f x 的单调性;(2)对于函数图象上的不同两点()()1122,,,A x y B x y 如果在函数图象上存在点()()()00012,,,M x y x x x ∈使得点M 处的切线lAB ,则称AB 存在“跟随切线”.特别地,当1202x x x +=时,又称AB 存在“中值跟随切线”.试问:函数()f x 上是否存在两点,A B 使得它存在“中值跟随切线”,若存在,求出,A B 的坐标,若不存在,说明理由. 27.已知数列,其前项和为,满足,,其中,,,.⑴若,,(),求证:数列是等比数列;⑵若数列是等比数列,求,的值;⑶若,且,求证:数列是等差数列.28.已知等差数列{}n a 的首项为1,公差为d ,数列{}n b 的前n 项和为n S ,且对任意的*n N ∈,692n n n S b a =--恒成立.(1)如果数列{}n S 是等差数列,证明:数列{}n b 也是等差数列;(2)如果数列12n b ⎧⎫+⎨⎬⎩⎭是等差数列,求d 的值; (3)如果3d =,数列{}n c 的首项为1,1(2)n n n c b b n -=-≥,证明:数列{}n a 的中存在无穷多项可表示为数列{}n c 中的两项之和.29.已知数列{}n a 为等差数列,12a =,{}n a 的前n 和为n S ,数列{}n b 为等比数列,且2112233(1)24n n n a b a b a b a b n ++++⋅⋅⋅+=-⋅+对任意的n *∈N 恒成立.(Ⅰ)求数列{}n a 、{}n b 的通项公式; (Ⅱ)是否存在非零整数λ,使不等式112111(1)(1)(1)cos 2n n a a a a πλ+--⋅⋅⋅⋅⋅⋅-<对一切n *∈N 都成立?若存在,求出λ的值;若不存在,说明理由.(Ⅲ)各项均为正整数的无穷等差数列{}n c ,满足391007c a =,且存在正整数k ,使139,,k c c c 成等比数列,若数列{}n c 的公差为d ,求d 的所有可能取值之和. 30.已知函数()3f x ax x a =+-, a R ∈.(Ⅰ)若1a =-,求函数()y f x =在[)0,+∞的单调区间; (Ⅱ)方程()4f x x =有3个不同的实根,求实数a 的取值范围;(Ⅲ)当0a >时,若对于任意的[]1,1x a a ∈+,都存在[)21,x a ∈++∞,使得()()121024f x f x =,求满足条件的正整数a 的取值的集合.。

经典母题30题-高考数学(文)走出题海之黄金30题系列(通用版) Word版含解析【KS5U 高考】

经典母题30题-高考数学(文)走出题海之黄金30题系列(通用版) Word版含解析【KS5U 高考】

母题1【集合运算】(2017全国1卷文1)已知集合A=,B=,则( ) A. AB = B. A B C. A B D. A B=R【答案】A 【解析】由得,所以,选A .母题2【逻辑联结词与四种命题】(2017山东文5)已知命题2:,10p x R x x ∃∈-+≥,命题:q 若22a b <,则a b <下列命题为真命题的是( )A. p q ∧B. p q ∧⌝C. p q ⌝∨D. p q ⌝∧⌝ 【答案】B【解析】因为:,p x R ∃∈ 1x e x ≥+是真命题,命题:q 若22a b <,则a b <是假命题,所以q ⌝是真命题,从而p q ∧⌝是真命题,故选B.母题3【复数的概念】(2017全国1卷文3)下列各式的运算结果为纯虚数的是( ) A. i(1+i)2B. i 2(1-i) C. (1+i)2D. i(1+i) 【答案】C【解析】2i 1+i)i 2i=-2,=⋅( ()2i 1i 1i -=-+ , 2(1i)2i += , ()i 1i 1i +=-+ ,所以选C.母题4【函数的性质】(2016甲卷文12)已知函数()()f x x ∈R 满足()(2)f x f x =-,若函数223y x x =--与()y f x =图像的交点为()()()1122,,,m m x y x y x y ⋯,,,,则1mii x==∑( ).A.0B.mC.2mD.4m 【答案】B【解析】 ()()222314f x x x x =--=--,其图像关于1x =对称,()f x y =的根图像关于1x =对称,故112m x x +=,2112m x x -+=,L ,12212m mx x ++=,相加得1222m x x x m+++=L ,故1mm i x m ==∑.故选B.母题5【函数的图象】(2016乙卷文9)函数22e xy x =-在[]2,2-的图像大致为( ).A. B. C. D. 【答案】D 分析 对于函数图像识别题一般是利用函数性质排除不符合条件的选项.评注 排除B 选项的完整论述,设()g x =()f x ',则()4e x g x '=-.由()10g '>,()20g '<,可知存在()01,2x ∈使得()00g x '=且()0,2x x ∈时()0g x '<,所以()f x '在()0,2x 是减函数,即()0,2x x ∈时()f x 切线斜率随x 的增大而减小,排除B.母体6【导数的应用】已知函数()ln xf x x=,则( ) A. ()f x 在x e =处取得最小值1eB. ()f x 有两个零点C. ()y f x =的图象关于点1,0()对称D. ()()()43f f f π<<【答案】D【解析】分析:求出函数的导数,解关于导函数的不等式,求出函数的单调区间,即可求得函数的最值,再根据当0x +→时, ()f x →-∞,当x →+∞时, ()0f x +→,即可判断零点个数,然后结合单调性即可判断函数值的大小. 详解:∵函数()ln xf x x=∴函数()f x 的定义域为()0,+∞,且()21ln xf x x -'=令()0f x '>,得0x e <<,即函数()f x 在()0,e 上为增函数; 令()0f x '<,得x e >,即函数()f x 在(),e +∞上为减函数. ∴当x e =时,函数()max 1f x e=,故排除A ;当0x +→时, ()f x →-∞,当x →+∞时, ()0f x +→,故排除B ;∵2313lnln1312313222ln ln ln 013222324222f f ⎛⎫⎛⎫⎛⎫+=+=+=⨯≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴()y f x =的图象不关于点()1,0对称,故排除C ; ∵34e π<<< ∴()()()43f f f π<<故选D.母题7【三角形函数的图象和性质】下列关函数的命题正确的个数为( )①的图象关于对称;②的周期为;③若,则;④在区间上单调递减.A. 1B. 2C. 3D. 4 【答案】A母题8【解三角形】(2017全国1卷文11)△ABC 的内角A 、B 、C 的对边分别为.已知,,,则A.B. C. D.【答案】B母题9【平面向量数量积】(2017全国2卷4)设非零向量,满足,则A. ⊥B.C. ∥D.【答案】A 【解析】由平方得,即,则,故选A.母题10【等差数列通项公式和前n 项和公式】(2015·新课标全国Ⅰ,7)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和.若S 8=4S 4,则a 10=( )A.172 B.192C.10D.12 【答案】 B【解析】由S 8=4S 4知,a 5+a 6+a 7+a 8=3(a 1+a 2+a 3+a 4), 又d =1,∴a 1=12,a 10=12+9×1=192.母题11【线性规划】(2017全国3卷5)设x ,y 满足约束条件3260{0 0x y x y +-≤≥≥,则z =x -y 的取值范围是A. [–3,0]B. [–3,2]C. [0,2]D. [0,3] 【答案】B【解析】作出约束条件表示的可行域,如图中阴影部分所示.目标函数即y x z =-,易知直线y x z =-在y 轴上的截距最大时,目标函数z x y =-取得最小值;在y 轴上的截距最小时,目标函数z x y =-取得最大值,即在点()0,3A 处取得最小值,为min 033z =-=-;在点()2,0B 处取得最大值,为max 202z =-=.故z x y =-的取值范围是[–3,2]. 所以选B.母题12(2016全国丙文11)在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球.若AB BC ⊥,6AB =,8BC =,13AA = 则V 的最大值是( ).A.4πB.9π2C.6πD.32π3【答案】B则33max 4439πππ3322V r ⎛⎫===⎪⎝⎭.故选B.B ACC 1B 1A 1CBA母题13(2016全国乙文11)平面α过正方体1111ABCD A BC D -的顶点A ,α∥平面11CB D ,α平面ABCD m =,α平面11ABB A n =,则,m n 所成角的正弦值为( ).AB.2C.13【答案】A【解析】 解法一:将图形延伸出去,构造一个正方体,如图所示.通过寻找线线平行构造出平面α,即平面AEF ,即研究AE 与AF 所成角的正弦值,易知3EAF π∠=A . ABCDA 1B 1C 1D 1EF母题14【三视图】(2017全国2卷文6)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.B.C.D.【答案】B【解析】由题意,该几何体是由高为6的圆柱截取一半后的图形加上高为4的圆柱,故其体积为,故选B.母题15【直线和双曲线位置关系】(2017全国1卷文5)已知F 是双曲线C :x 2-23y =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF 的面积为 A.13 B. 12 C. 23 D. 32【答案】D【解析】由2224c a b =+=得2c =,所以()2,0F ,将2x =代入2213y x -=,得3y =±,所以3PF =,又点A 的坐标是(1,3),故△APF 的面积为()1332122⨯⨯-=,选D . 母题16【直线和抛物线位置关系】 (2014·新课标全国Ⅱ,10)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB |=( ) A.303B.6C.12D.7 3母题17【程序框图】(2017全国1卷文10)如图是为了求出满足321000n n->的最小偶数n ,那么在和两个空白框中,可以分别填入( )A. 1000A >和1n n =+B. 1000A >和2n n =+C. 1000A ≤和1n n =+D. 1000A ≤和2n n =+ 【答案】D【解析】由题意,因为321000n n ->,且框图中在“否”时输出,所以判定框内不能输入1000A >,故填1000A ≤,又要求n 为偶数且初始值为0,所以矩形框内填2n n =+,故选D.母题18【几何概型】(2016全国甲文8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯维持时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ). A.710 B.58C.38D.310【答案】B 【解析】 概率40155408P -==.故选B. 母题19【直线和圆】(2016全国丙文17)已知直线:30l mx y m ++=与圆2212x y +=交于A ,B 两点,过A ,B 分别做l 的垂线与x 轴交于C ,D两点,若AB =,则CD =__________________.【解析】解法一:根据直线与圆相交弦长公式有AB ==223r d -=,又212r =,得3d =.因此圆心()0,0O 到直线l:30mx y m ++=的距离3d ==,解得m = 因此直线l的方程为y x =+所以直线l 的倾斜角为30.如图所示,过点C 作CE BD ⊥于点E ,则4cos30cos303CE AB CD ====. 母题20【线性规划】(2016全国1卷文16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料。

中考英语经典母题30题(含答案)

中考英语经典母题30题(含答案)

专题01 中考英语经典母题30题【经典1】— Why did you laugh just now?—Ted wanted to tell us ______ very funny story, but he forgot ______ ending himself.A. a; anB. the; theC. the; aD. a; the【经典2】—— She has cut the cake into pieces. Which piece do you want? —— The one. It’s the biggest.A. five; fourB. five; fourthC. fifth; fourthD. fifth; four 【经典3】— Help to some fish, kids.— Thanks.A. youB. yourC. yourselvesD.yours【经典4】—— The apple tastes good.—— Yes. Would you like one?A. anotherB. eachC. anyD. some【经典5】Damin sat on the side of the river cooking a meal, ______ a bird on his head.A. fromB. intoC. aboutD. with【经典6】You can be a good teacher unless you become more patient.A. oftenB. everC. alwaysD. never【经典7】If the company fails to make enough money, it will have to .A. take awayB. close downC. break upD. set off【经典8】You ____ touch an electric fire. It's dangerous.A. needB. mustC. needn'tD. mustn't【经典9】Harry has decided __________ an online shop after graduating from school.A. openB. to openC. openedD. opening【经典10】Think of a number, _______don't tell me what it is.A. norB. soC. orD. but【经典11】The Great Wall of China is _______ wall in the world.A. longB. longerC. longestD. the longest【经典12】Aunt Lucy will tell us something about her trip to Australia when she______back.A. cameB. comesC. would comeD. will come【经典13】Shenzhou X, China’s fifth manned spacecraft, ________into space on June11. 2013.A. has sentB. was sentC. will sendD. is sent【经典14】—I am just going to the _____. Do you want anything? —Yes, a bag of rice.A. marketB. classroomC. libraryD. park【经典15】The online shop sells _______clothing at a very good price.A. child and man’sB. children and men’sC. children’s and menD. children’s and men’s【经典16】I hear they are going to London, but I don’t know ________ they will stay there.A. how soonB. how oftenC. how longD. how fast【经典17】— Could you tell me ?— Next week.A. when they will come back to schoolB. when will they come back to schoolC. how they will come back to school【经典18】Do you still remember the teacher gave you the paper?A. whatB. whoC. whoseD. which【经典19】—_______. Where is the bank?—It's over there by the post office.A. Excuse meB. SorryC. Come onD. Hello【经典20】—We are going to have a basketball game against Class Two this afternoon. — exciting! I hope our team will win.A. HowB. WhetherC. WhatD. How a【经典21】一Last night I didn’t watch the TV show,A Bite of China 2.一______ did I.I was preparing for today’s test then.A.So B.Either C.Neither D.No【经典22】─That’s to say,sandstorms seldom hit that area, they?─No,but things are different now.A.doB.don’tC.didD.didn’t【经典23】— Do you need more time to complete the task?—Yes. Another ten days _______ enough.A. isB. wasC. areD. were【经典24】词语填空通读下面的短文,掌握其大意,然后从各题所给的A、B、C 三个选项中选出最佳答案。

专题01 经典母题30题-数学(理)走出题海之黄金30题系列

专题01 经典母题30题-数学(理)走出题海之黄金30题系列

母题1【集合运算】(2016甲卷理2)已知集合{123}A =,,,{|(1)(2)0}B x x x x =+-<∈Z ,,则AB =( ).A.{}1B.{12},C.{}0123,,,D.{10123}-,,,, 【答案】C【解析】 因为()(){}120Z B x x x x =+-<∈,{}12Z x x x =-<<∈,,所以{}01B =,,所以{}0123A B =,,,.故选C.母题2【充分条件和必要条件】(2016四川理7)设p :实数,y 满足22(1)+(1)2x y --;:实数,y 满足111yx yx y -⎧⎪-⎨⎪⎩,则p 是的( ). A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件 【答案】A母题3【函数的性质】(2016甲卷理12)已知函数()()f x x ∈R 满足()()2f x f x -=-,若函数1x y x+=与()y f x =图像的交点为()11x y ,,()22x y ,,⋯,()m m x y ,,则()1miii x y =+=∑( ).A. B.m C. 2m D. 4m 【答案】B【解析】 由()()2f x f x -=-得,()f x 关于()01,对称,而111x y x x+==+也关于()01,对称,所以对于每一组对称点有0i i x x '+=,=2i i y y '+,所以()111m m mi i i ii i i x y x y ===+=+=∑∑∑022mm +⋅=.故选B. 母题4【函数的图象】(2016乙卷理7)函数22e xy x =-在[]2,2-的图像大致为( ).-221Oxy-221Oxy -221Oxy -221OxyA. B. C.D.【答案】D 分析 对于函数图像识别题一般是利用函数性质排除不符合条件的选项.母题5【三角形函数的图象和性质】(2016全国乙理12)已知函数π()sin()0,2f x x ωϕωϕ⎛⎫=+> ⎪⎝⎭,π4x =-为()f x 的零点,π4x =为()y f x =图像的对称轴,且()f x 在π5π1836⎛⎫⎪⎝⎭,上单调,则ω的最大值为( ). A.11 B. C. D. 【答案】B【解析】 依题意,可得()π2124T k =⋅+,k ∈N ,且5ππ36182T-,即π6T . 故2112k +,k ∈N ,即112k,k ∈N .当5k =时,2π11T =.又ππ2π3π5π184114436<-=<,因此()f x 在π5π,1836⎛⎫⎪⎝⎭上不单调.当4k =时,2π9T =,且π2πππ5π,49361836⎛⎫-=∉ ⎪⎝⎭.又ππ5ππ5π,49361836⎛⎫-=∉ ⎪⎝⎭,因此()f x 在π5π,1836⎛⎫⎪⎝⎭上单调,则ω的最大值为9.故选B. 母题6【平面向量数量积】(2016天津理7)已知ABC △是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得2DE EF =,则AF BC ⋅的值为( ).A. 58-B.18C.14D.118【答案】B【解析】 由题意作图,如图所示.则()AF BC AE EF BC ⋅=+⋅=111cos60448AC BC ⋅==.故选B.FEDCBA母题7【内切球】(2016全国丙理10)在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( ). A.4π B.9π2C.6πD.32π3【答案】B【解析】 如图所示,假设在直三棱柱111ABC A B C -中,有一个球与平面11ABB A ,平面11BCC B ,平11AAC C 面相切,其俯视图如图所示.设其球的半径为,则16822,11(6810)22ABC ABCS r C ⨯⨯===⨯++△△且123r AA =,得32r.因此,直三棱柱内球的半径最大值为32,则33max 4439πππ3322V r ⎛⎫=== ⎪⎝⎭.故选B.母题8【平面与平面平行的判定】(2016全国乙理11)平面α过正方体1111ABCD A B C D -的顶点A ,α∥平面11CB D ,α平面=ABCD m ,α平面11=ABB A n ,则m ,所成角的正弦值为( ). A.32 B.22 C. 33 D.13【答案】AABCDA 1B 1C 1D 1EFD 1C 1B 1A 1DCBAB ACC 1B 1A 1CBA母题9【直线和双曲线位置关系】2016天津理6)已知双曲线()2224=10y b bx ->,以原点为圆心,双曲线的实半轴长为半径的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( ).A.22443=1y x - B.22344=1y x - C.2244=1y x - D.2224=11x y - 【答案】D【解析】 根据对称性,不妨设A 在第一象限,(),A A A x y ,联立2242x y b y x⎧+=⎪⎨=⎪⎩,得2244,244b A b b ⎛⎫⋅ ⎪++⎝⎭.所以216422A A b b x y b =⋅=+,得212b =. 故双曲线的方程为2224=11x y -.故选D. 母题10【直线和抛物线位置关系】(2016四川理8)设O 为坐标原点,P 是以F 为焦点的抛物线22(0)y px p =>上任意一点,M 是线段PF 上的点,且2PM MF =,则直线OM 的斜率的最大值为( ). A.33 B.23C.22D. 母题11【程序框图】(2016全国丙理7)执行右图的程序框图,如果输入的4,6a b ==,那么输出的n =( ).A. B. C. D.停止s=s +a ,n =n +1b =b-an =0,s =0否a =b-a输入a ,b开始s >16输出n是a =b+a【答案】B母题12【排列和组合】(2016全国甲理5)如图所示,小明从街道的E 处出发,先到处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( ).A.24B.18C.12D.9【答案】B【解析】 从→E F 的最短路径有种走法,从→F →G 的最短路径有种走法,由乘法原理知,共6318⨯=种走法.故选B .母题13【几何概型】(2016全国乙理4)某公司的班车在7:00,8:00,8:30发车,学.小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ). A. B.12 C.23 D. 34【答案】B母题14【复数的运算及概念】(2016全国乙理2)设(1i)1i x y +=+,其中x ,y 是实数,则i =x y +( ).23【答案】B【解析】 由()1i 1i x y +=+,得1x y ==,所以i 1i 2x y +=+=故选B.母题15【导数的几何意义】(2016甲卷理16)若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线()ln 1y x =+的切线,则b = . 【答案】1ln2-【解析】 ln 2y x =+的切点为()11ln +2x x ,,则它的切线为111ln 1y x x x =⋅++.()ln 1y x =+的切点为()22ln +2x x ,,则它的切线为:()22221ln 111xy x x x x =++-++, 所以()122122111ln 1ln 11x x x x x x ⎧=⎪+⎪⎨⎪+=+-⎪+⎩,解得112x =,212x =-,所以1ln 11ln 2b x =+=-.母题16【二项式定理】(2016全国乙理14)()52x x+的展开式中,3x 的系数是 (用数字填写答案). 【解析】()52x x+的展开式的通项公式为()()55555221555C 2C 2C 20,1,,5k k k kkkk kk kk T x x xxk -+----+====.令532k -=,得4k =.故3x 的系数是4545C 210-=. 母题17【直线和圆】(2016全国丙理16)已知直线:330l mx y m ++-=与圆2212x y +=交于A ,B 两点,过A ,B 分别做的垂线与轴交于C ,D 两点,若23AB =,则CD =__________________.【解析】 解法一:根据直线与圆相交弦长公式有22223AB r d =-=,得223r d -=,又212r =,得3d =.因此圆心()0,0O 到直线:330mx y m ++-=的距离23331m d m -==+,解得3.3m =-因此直线的方程为3233y x =+.所以直线的倾斜角为30.如图所示,过点C 作CE BD ⊥于点E ,A DCxOy E B则234cos30cos3032CE AB CD ====.母题18【线性规划】(2016全国乙卷理16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用个工时;生产一件产品需要甲材料0.5kg ,乙材料0.3kg ,用个工时.生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元,该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A ,产品B 的利润之和的最大值为 元.【答案】216000母题19【平面向量坐标运算】(2016全国乙理13)设向量(,1)m =a ,(1,2)=b ,且222+=+a b a b ,则m = .【答案】2-【解析】 因为()2222222222==++=++=+a +b a +b a b ab a b ab a b ,故20=ab ,即0=ab .所以()(),11,220m m =⋅=+=ab ,得2m =-.母题20【等比数列通项公式和性质】(2016全国乙理15)设等比数列{}n a 满足1310a a +=,245a a +=,则12n a a a ⋅⋅⋅的最大值为 .【答案】64解法一:由1n a ,得4112n -⎛⎫⎪⎝⎭,得4n,且41a =.故当3n =或时,12n a a a 取得最大值, 即()321121231234max11164222n a a a a a a a a a a ---⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.解法二:()()211720121221211822n n n n n n nn a a a a q--+++++-⎛⎫==⋅= ⎪⎝⎭.故当3n =或时,12n a a a 取得最大值6264=.母题21【立体几何与空间向量】【2014高考北京理第17题】如图,正方体MADE 的边长为2,B ,C 分别为AM ,MD 的中点,在五棱锥ABCDE P -中,F 为棱PE 的中点,平面ABF与棱FD ,PC 分别交于G ,H . (1)求证:FG AB //;(2)若PA ⊥底面ABCDE ,且PA AE =,求直线BC 与平面ABF 所成角的大小,并求线段PH 的长.△的内角A,B,C的对边分别为a,,,已母题22【解三角形】(2016全国乙理17)ABC知2cos (cos cos ).C a B+b A c = (1)求C ; (2)若7c =,ABC △的面积为332,求ABC △的周长. 【解析】(1)由已知及正弦定理得,2cos (sin cos sin cos )sin C A B B A C +=,即2cos sin()sin C A B C +=,故2sin cos sin C C C =,可得1cos 2C =,所以3C π=.母题23【等差数列通项公式和数列求和】(2016全国甲理17)n S 为等差数列{}n a 的前项和,且11a =,728S =.记[]lg n n b a =,其中[]x 表示不超过的最大整数,如[]0.90=,[]lg 991=.(1)求1b ,11b ,101b ;(2)求数列{}n b 的前1000项和.【解析】 (1)设{}n a 的公差为,74728S a ==,所以44a =,所以4113a a d -==,所以1(1)n a a n d n =+-=.所以[][]11lg lg10b a ===,[][]1111lg lg111b a ===,[][]101101lg lg1012b a ===.(2)当0lg 1n a <≤时,129n =⋅⋅⋅,,,;当1lg 2n a <≤时,101199n =⋅⋅⋅,,,; 当2lg 3n a <≤时,100101999n =⋅⋅⋅,,,;当lg 3n a =时,1000n =. 所以1000121000=T b b b =++⋅⋅⋅+[][][]121000lg lg lg =a a a ++⋅⋅⋅+091902900311893⨯+⨯+⨯+⨯=.母题24【数列递推公式和数列求和】(2016山东理18)已知数列{}n a 的前项和238n S n n =+,{}n b 是等差数列,且1.n n n a b b +=+(1)求数列{}n b 的通项公式;(2)令1(1).(2)n n n nn a c b ++=+求数列n C 的前项和n T .【解析】 (1)由题意知当2n 时,165n n n a S S n -=-=+,当1n =时,1111a S ==,所以()*65n a n n =+∈N .设数列{}n b 的公差为d,由112223a b b a b b ⎧⎨⎩=+=+,即111121723b db d=+⎧⎨=+⎩,解得14b =,3d =,所以()*31n b n n =+∈N .(2)由(1)知11(66)3(1)2(33)n n n nn c n n +++==+⋅+,又123n n T c c c c =+++⋅⋅⋅+, 得23413[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,345223[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,两式作差,得:234123[22222(1)2]n n n T n ++-=⨯⨯+++⋅⋅⋅+-+⨯=224(21)3[4(1)2]3221n n n n n ++-⨯+-+⨯=-⋅-,所以232n n T n +=⋅.母题25【空间向量与立体几何】(2016全国乙理18)如图所示,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,2AF FD =,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60.FEDC BA(1)求证:平面ABEF ⊥平面EFDC ; (2)求二面角E BC A --的余弦值.由(1)知DFE ∠为二面角D AF E --的平面角,故60DFE ∠=︒,则2DF =,3DG =,可得(140)A ,,,(340)B -,,,(300)E -,,,(003)D ,,.由已知,AB EF ,所以AB 平面EFDC . 又平面ABCD 平面EFDC CD =,故ABCD ,CD EF .由BEAF ,可得BE ⊥平面EFDC ,所以CEF ∠为二面角C BE F --的平面角,母题26【离散型随机变量的分布列和期望】(2016全国乙理19)某公司计划购买台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替台机器更换的易损零件数发生的概率,记X 表示台机器三年内共需更换的易损零件数,n 表示购买台机器的同时购买的易损零件数. (1)求X 的分布列; (2)若要求()0.5P Xn ,确定n 的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?【解析】(1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为,,10,11的概率分别为0.2,0.4,0.2,0.2. 从而:(16)0.20.20.04P X ==⨯=;(17)20.20.40.16P X ==⨯⨯=;(18)20.20.20.40.40.24P X ==⨯⨯+⨯=;(19)20.20.220.40.20.24P X ==⨯⨯+⨯⨯=; (20)20.20.40.20.20.2P X ==⨯⨯+⨯=;(21)20.20.20.08P X ==⨯⨯=;(22)0.20.20.04P X ==⨯=.所以X 的分布列为:X 16 17 18 19 20 21 22P0.040.160.240.240.20.08 0.04(2)由(1)知,(18)0.44P X =≤,(19)0.68P X =≤,故的最小值为19. (3)记Y 表示台机器在购买易损零件上所需的费用(单位:元). 当19n =时,192000.68(19200500)0.2EY =⨯⨯+⨯+⨯+(192002500)0.08(192003500)0.04⨯+⨯⨯+⨯+⨯⨯4040=.当20n =时,202000.88(20200500)0.08EY =⨯⨯+⨯+⨯+(202002500)0.044080⨯+⨯⨯=. 可知当19n =时所需费用的期望值小于20n =时所需费用的期望值,故应选19n =.母题27【直线和椭圆位置关系】(2016全国甲理20)已知椭圆E:2213x y t +=的焦点在轴上,A是E 的左顶点,斜率为(0)k k >的直线交E 于A ,M 两点,点N 在E 上,MA NA ⊥. (1)当4t =,AM AN =时,求AMN △的面积; (2)当2AM AN =时,求k 的取值范围.解法二:设点()00M x y ,,且MN 交轴于点D . 因为AM AN =,且AM AN ⊥,所以MD AD ⊥,MD AD = .由2200+143x y =,得2001232x y -=.又0022AD x x =--=+,所以20012322x x -=+,解之得02x =-或27-. 所以127AD = ,所以211214422749AMN S ⎛⎫=⨯⨯= ⎪⎝⎭△.因为2AM AN =,所以()222322222332616112113332122m m ma ma m a m m a m a m m --+=+⇒=>⇒<<++-所以)312k m=∈,.解法二:设直线AM 的方程为()y k x t=+,联立()2213x y t y k x t ⎧+=⎪⎨⎪=+⎩并整理得,()222223230tk xt tk x t k t +++-=,解得x t=-或2233t tk t x tk -=-+,所以22222361133t tk t t AM k t k tk tk -=+-+=+⋅++,所以2613t AN k t k k=+⋅+.因为2AM AN =,所以2226621133t tk k t tk k k⋅+⋅=+⋅++,整理得,23632k k t k -=-. 因为椭圆E 的焦点在x 轴,所以3t >,即236332k k k ->-,整理得()()231202k k k +-<-,解得322k <<. 母题28【导数的综合运用】(2016乙卷理21)21.已知函数2()(2)e (1)x f x x a x =-+-有两个零点.(1)求a 的取值范围;(2)设1x ,2x 是()f x 的两个零点,求证:122x x +<.(ⅱ)当()ln 21a -=,即e2a =-时, 当1x 时,10x -,1e 2e e 0x a +-=,所以()0f x '.同理1x >时,()0f x '>. 故()f x 的单调增区间为(),-∞+∞; (ⅲ)当()ln 21a -<,即e02a -<<时.令()0f x '>,则()ln 2x a <-或1x >, 所以()f x 的单调增区间为()(),ln 2a -∞-和()1,+∞,同理()f x 的单调减区间为()()ln 2,1a -.综上所述,当e2a <-时,()f x 的单调增区间为(),1-∞和()()ln 2,a -+∞,单调减区间为()()1,ln 2a -;当e2a =-时,()f x 的单调增区间为(),-∞+∞; 当e02a -<<时,()f x 的单调增区间为()(),ln 2a -∞-和()1,+∞,单调减区间为()()ln 2,1a -;当0a 时,()f x 的单调增区间为()1,+∞,单调减区间为(),1-∞.(2)若()f x 有两个零点,则0a >,且()f x 在(),1-∞上单调递减,在()1,+∞上单调递增. 要证明122x x +<,不妨设12x x <,且121x x <<.只需证明:122x x <-,因为()f x 在(),1-∞上单调递减, 所以()()122f x f x >-,又()()12f x f x =,则()()222f x f x >-,即令()()()()21g x f x f x x =-->,()()()()()()22222e 122e 212e e x x x x g x x a x x a x x x --=-+-------=-+,因为()10g =,()()()()()()22221e e e 1e 1e 1e e x x x x x x x g x x x x x x ----'=-+-=-+-=--, 当1x >时,10x ->且2e e x x ->,所以()0g x '>,所以函数()g x 在()1,+∞上单调递增,因此()()10g x g >=,故()()()21f x f x x >->,即有()()222f x f x >-,则()()122f x f x >-, 又()y f x =在(),1-∞上单调递减,则122x x <-.故122x x +<.证毕.母题29【坐标系与参数方程】(2016全国乙理23)在直角坐标系xOy 中,曲线1C 的参数方程为cos 1sin x a ty a t=⎧⎨=+⎩(为参数,0a >).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线2:4cos C ρθ=.(1)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(2)直线3C 的极坐标方程为0θα=,其中0α满足0tan 2α=,若曲线1C 与2C 的公共点都在3C 上,求a .又12,C C 公共点都在3C 上,故3C 的方程即为公共弦24210x y a -+-=. 又3C 为0θα=,0tan 2α=,即为2y x =,从而可知1a =. 母题30【不等式选讲】(2016全国甲理24)已知函数11()22f x x x =-++,M 为不等式()2f x <的解集.(1)求M ;(2)证明:当a b M ∈,时,1a b ab +<+.【解析】 (1)当12x <-时,()112222f x x x x =---=-<,所以112x -<<-;。

新题精选30题-2019年高考数学走出题海之黄金30题系列(江苏版)(解析版)

新题精选30题-2019年高考数学走出题海之黄金30题系列(江苏版)(解析版)

2019年高考数学走出题海之黄金30题系列专题二新题精选一、填空题1.【数学文化与几何概型】谢尔宾斯基三角形(Sierpinskitriangle)是由波兰数学家谢尔宾斯基在1915年提出的,如图先作一个三角形,挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形),然后在剩下的小三角形中又挖去一个“中心三角形”,我们用白色三角形代表挖去的面积,那么灰色三角形为剩下的面积(我们称灰色部分为谢尔宾斯基三角形).若通过该种方法把一个三角形挖3次,然后在原三角形内部随机取一点,则该点取自谢尔宾斯基三角形的概率为______.【答案】【解析】由图可知每次挖去的三角形的面积为上一次剩下的面积的,∴每次剩下的面积为上一次剩下的面积的,设最初的面积为1,则挖3次后剩下的面积为,故该点取自谢尔宾斯基三角形的概率为,故答案为:2.【传统文化与古典概型】《易经》是中国传统文化中的精髓,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每卦有三根线组成(“”表示一根阳线,“”表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有三根阳线和三根阴线的概率__________.【答案】【解析】从八卦中任取两卦,共有种取法若两卦的六根线中恰有三根阳线和三根阴线,可按取得卦的阳、阴线的根数分类计算;当有一卦阳、阴线的根数为3、0时,另一卦阳、阴线的根数为0、3,共有种取法.当有一卦阳、阴线的根数为2、1时,另一卦阳、阴线的根数为1、2,共有种取法.所以两卦的六根线中恰有三根阳线和三根阴线的取法有种.则从八卦中任取两卦,这两卦的六根线中恰有三根阳线和三根阴线的概率为3.【新定义向量问题】定义平面向量的一种运算:(是向量和的夹角),则下列命题:①;②;③若且,则;其中真命题的序号是___________________.【答案】①③【解析】①由新定义可得,故恒成立;②由新定义可得=λ||||sin<,>,而(λ)⊗=|λ|||sin<,>,当λ<0时,不成立;③若=λ,且λ>0,则+=(1+λ),若,且λ>0,则=(1+λ),由新定义可得()⊗=|(1+λ)|| || |sin<,>,而(⊗)+(⊗)=|λ|| |sin<,>+| || |sin<,>=|1+λ|||| |sin<,>.成立.综上可知:只有①③恒成立.故答案为:①③4.【新定义函数、对数函数的性质】设a,b∈(0,1)∪(1,+∞),定义运算:,则以下四个结论:①(2τ4)τ8=8τ(4τ2);②8τ(4τ2)>(8τ4)τ2>(2τ8)τ4;③(4τ2)=(2τ4)τ4<(2τ8)τ4;④.其中所有正确结论的序号为__.【答案】①②【解析】对于①,2τ4=log24=2,4τ2=log24=2,∴(2τ4)τ8=2τ8=log28=3,8τ(4τ2)=8τ2=log28=3,∴(2τ4)τ8=8τ(4τ2),①正确;对于②,8τ(4τ2)=3,8τ4=log48=,∴(8τ4)τ2=τ2=2,2τ8=log28=3,∴(2τ8)τ4=3τ4=log34=2,3>2>2,∴8τ(4τ2)>(8τ4)τ2>(2τ8)τ4,②正确;对于③,4τ2=2,(2τ4)τ4=2,(2τ8)τ4=log34,∴(4τ2)=(2τ4)τ4>(2τ8)τ4,③错误;对于④,τ=,2τ=2,∴(τ)(2τ)=•2=2<0,(τ)+(2τ)=+2>0,∴④错误.综上,所有正确结论的序号为①②.故答案为:①②.5.【平面向量的应用】已知等边的边长为2,若,,则的面积为_______.【答案】【解析】以的中点为原点,所在直线为x轴建立如图所示的平面直角坐标系,则因为,所以,故,,设的夹角为,,所以,,点到直线的长度为,的面积为.6.【直线与抛物线的位置关系】抛物线的焦点为,其准线与轴的交点为,如果在直线上存在点,使得,则实数的取值范围是________.【答案】【解析】由题得在直线上,设点,,;又,,即;△,即,解得,或,又,的取值范围是,.故答案为:,.7.【直线与不等式】已知点在直线上,点在直线上,的中点为,且,则的取值范围是______.【答案】【解析】因为点所在直线与点所在直线平行,因此可设的中点所在直线的方程为,所以有,解得,所以的中点所在直线的方程为,联立,解得,所以其交点为,所以,联立,解得,所以其交点为,所以,令,因为满足条件的点M的轨迹为线段RS,所以,故答案是:.8.【集合与数列】已知数列的通项公式是,数列的通项公式是,集合,将集合中的元素按从小到大的顺序排列构成的数列记为,则数列的前45项和_______.【答案】2627【解析】因为数列的通项公式是,所以集合,随着增大时,数列中前后连续两项之间的差值越来越大,故考虑在中的前后连续两项之间插入数列中相应大小的项,因为是选取新数列的前45项,故:,数列中无项可插入,,数列中无项可插入,,数列中可插入,增加1项,共5项,,数列中可插入,增加2项,共8项,,数列中可插入,增加5项,共14项,,数列中可插入,增加10项,共25项,接下来只需再增加中的20项即可,也就是中从(含)开始的连续的20项,因为,故终止于.则.9.【平面向量的模与三角函数】在直角三角形中,,,,若,动点满足,则的最小值是______.【答案】【解析】建立如图所示的直角坐标系,由题意可得:,据此可得:,,,则:,,其中,当时,取到最小值.10.【几何体的体积与导数的应用】圆锥的底面半径为,其侧面展开图是圆心角大小为的扇形.正四棱柱的上底面的顶点均在圆锥的侧面上,棱柱下底面在圆锥的底面上,则此正四棱柱体积的最大值为_____.【答案】【解析】设圆锥的母线长为l,圆锥底面周长为=圆锥高为设正四棱柱的底面边长为2a,高为h,则得正四棱柱体积V=,设=令得当,故的最大值为故答案为11.【几何体的体积与导数的应用】如图,在直角梯形ABCD中,AB⊥BC,AD∥BC,,点E 是线段CD上异于点C,D的动点,EF⊥AD于点F,将△DEF沿EF折起到△PEF的位置,并使PF⊥AF,则五棱锥P-ABCEF的体积的取值范围为______.【答案】(0,)【解析】因为PF⊥AF,PF⊥EF,且AF交EF与点F,所以PF⊥平面ABCEF设,则所以五棱锥的体积为或(舍)当递增,故所以的取值范围是(0,)故答案为(0,)12.【直线与圆、直线与椭圆的位置关系】已知椭圆的方程为,,为椭圆的左右顶点,为椭圆上不同于.的动点,直线与直线,分别交于,两点,若,则过,,三点的圆必过轴上不同于点的定点,其坐标为__________.【答案】【解析】首先证明椭圆的一个性质:椭圆,点是椭圆上关于原点对称的两点,是椭圆上异于上的一个点,则.证明如下:设,,,由于点是椭圆上的两点,故,两式作差可得:,此时.故结论成立.回到本题,由题意可知:,设直线PA的方程为:,则,设直线PB的方程为:,则,故,故为外接圆的直径,设所求的点为,则:,即,解得:,(舍去).综上可得:所求点的坐标为:.13.【数列与导数的应用】已知实数,,,满足,,且,则的取值范围是_______.【答案】【解析】解:实数,,,满足,且,所以,若则,若则,所以,,因为关于的方程为,所以解得:,设,由得,,则,因为要成立,故,设函数,因为在上恒成立,故函数单调递减,所以,,所以此时在的值域为,即当时,;设函数,因为在上恒成立,故函数单调递增,所以,,所以此时在的值域为,即当时,,综上:.14.【函数与平面向量】已知,是函数(其中常数)图象上的两个动点,点,若的最小值为0,则函数的最大值为__________.【答案】【解析】解:A,B是函数f(x)(其中a>0)图象上的两个动点,当x<a时,f(x)=f(2a﹣x)=﹣e(2a﹣x)﹣2a=﹣e﹣x,∴函数f(x)的图象关于直线x=a对称.当点A,B分别位于分段函数的两支上,且直线PA,PB分别与函数图象相切时,•的最小值为0,设PA与f(x)=﹣e﹣x相切于点A(x0,y0),∴f′(x)=e﹣x,∴k AP=f′(x0)=e,解得x0=a﹣1,∵•的最小值为0,∴⊥,∴k PA=tan45°=1,∴e1,∴x0=0,∴a=1,∴f(x)max.故答案为:15.【集合、等比数列与组合数性质】设整数,集合2,,,A,B是P的两个非空子集则所有满足A中的最大数小于B中的最小数的集合对的个数为:______.【答案】【解析】设中的最大数为,其中,整数,则中必含元素,另元素可在中,故的个数为:,中必不含元素另元素可在中,但不能都不在中,故的个数为:,从而集合对的个数为,.故答案为:.二、解答题16.【数列与充要条件】给定数列,对,该数列前项的最大值记为,后项的最小值记为,.(1)设数列为3,4,7,5,2,写出,,,的值;(2)设是,公比的等比数列,证明:成等比数列;(3)设,证明:的充分必要条件为是公差为的等差数列.【答案】(1)见解析;(2)见解析;(3)见解析【解析】(1)由题意,可知:①当i=1时,A1=3,B1=2,d1=A1﹣B1=3﹣2=1;②当i=2时,A2=4,B2=2,d2=A2﹣B2=4﹣2=2;③当i=3时,A3=7,B3=2,d3=A3﹣B3=7﹣2=5;④当i=4时,A4=7,B4=2,d4=A4﹣B4=7﹣2=5.(2)由题意,可知:∵a1>0,公比q>1,∴数列{a n}是一个单调递增的等比数列.∴①当i=1时,A1=a1,B1=a2,d1=A1﹣B1=a1﹣a2=a1(1﹣q);②当i=2时,A2=a2,B2=a3,d2=A2﹣B2=a2﹣a3=a1(1﹣q)q;③当i=3时,A3=a3,B3=a4,d3=A3﹣B3=a3﹣a4=a1(1﹣q)q2;…∴对,.因此且,∴为首项为a1(1﹣q),公比为q的等比数列.(3)充分性:若是公差为的等差数列,则,因为,,,,.必要性:若,.假设是第一个使的项,则,这与相矛盾,故∴,即,故是公差为的等差数列.17.【时政与三角函数、导数的应用】为美化城市环境,相关部门需对一半圆形中心广场进行改造出新,为保障市民安全,施工队对广场进行围挡施工.如图,围挡经过直径的两端点A,B及圆周上两点C,D围成一个多边形ABPQR,其中AR,RQ,QP,PB分别与半圆相切于点A,D,C,B.已知该半圆半径OA长30米,∠COD为60°,设∠BOC为.(1)求围挡内部四边形OCQD的面积;(2)为减少对市民出行的影响,围挡部分面积要尽可能小.求该围挡内部多边形ABPQR面积的最小值?并写出此时的值.【答案】(1)(2)围挡内部多边形ABPQR面积的最小值为900平方米,此时【解析】(1)连接OQ,因为QD,QC为圆O的切线,所以QD=QC,OD=OC=30,OQ=OQ,所以△ODQ≌△OCQ,所以∠DOQ=∠COQ=30°,又因为OD⊥DQ,所以=tan30°=,所以DQ=10,所以S△ODQ=OD·DQ=150,所以S OCQD=2S△ODQ =300;即围挡内部四边形OCQD的面积为300平方米;(2)BP=OB tan,S OBPC=2S△OBP=900 tan,同理S OARD=2S△OAR=900 tan(-),S ABPQR=900[tan+ tan(-)]+300,即求 tan+ tan(-)的最小值,tan+ tan(-)= tan+=(*)令,由得x(1,4)则(*)=≥,当且仅当x=2时取等号,此时,故S min=900×+300=900,答:围挡内部多边形ABPQR面积的最小值为900平方米,此时18.【直线与椭圆的位置关系、平面向量】已知椭圆:,点在的长轴上运动,过点且斜率大于0的直线与交于两点,与轴交于点.当为的右焦点且的倾斜角为时,重合,.(1)求椭圆的方程;(2)当均不重合时,记,,若,求证:直线的斜率为定值.【答案】(1)(2)见证明【解析】解:(1)因为当为的右焦点且的倾斜角为时,,重合,,所以故,因为,因此,,所以椭圆的方程为.(2)设,所以,,所以.因为斜率大于0,所以,设,,则,,由得,,①同理可得,②①②两式相乘得,,又,所以,所以,即,即由题意,知,所以.联立方程组,得,依题意,所以,又,所以,因为,故得,所以,即直线的斜率为.19.【新定义与数列】如果数列对于任意,都有,其中为常数,则称数列是“间等差数列”,为“间公差”.若数列满足,,.(1)求证:数列是“间等差数列”,并求间公差;(2)设为数列的前n项和,若的最小值为-153,求实数的取值范围;(3)类似地:非零..数列对于任意,都有,其中为常数,则称数列是“间等比数列”,为“间公比”.已知数列中,满足,,,试问数列是否为“间等比数列”,若是,求最大的整数.....使得对于任意,都有;若不是,说明理由. 【答案】(1)见解析;(2);(3)63.【解析】(1)若数列{a n}满足a n+a n+1=2n﹣35,n∈N*,则:a n+1+a n+2=2(n+1)﹣35,两式相减得:a n+2﹣a n=2.故数列{a n}是“间等差数列”,公差d=2.(2)(i)当n=2k时,(a1+a2)+(a3+a4)+…+(a n﹣1+a n)=﹣33﹣29+…+(2n﹣37)=易知:当n=18时,最小值S18=﹣153.(ii)当n=2k+1时,S n=a1+(a2+a3)+(a4+a5)+…+(a n﹣1+a n)=a1+(﹣31)+(﹣29)+…+(2n﹣37)=,当n=17时最小,其最小值为S17=a﹣136,要使其最小值为﹣153,则:a﹣136≥﹣153,解得:a≥﹣17.(3)易知:c n c n+1=2018•()n﹣1,则:c n+1c n+2=2018•()n,两式相除得:,故数列{c n}为“间等比数列”,其间等比为.,易求出数列的通项公式为:,由于n>n+1,则数列{n}单调递减.那么,奇数项和偶数项都为单调递减,所以:k>0.要使数列为单调递减数列.只需2m﹣1>2m>2m+1,即:,解得,即最大的整数.20.【时政与概率统计】为迎接2022年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核.记X表示学生的考核成绩,并规定X≥85为考核优秀.为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如下茎叶图.(1)从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核优秀的概率;(2)从图中考核成绩满足X[70,79]的学生中任取3人,设Y表示这3人重成绩满足≤10的人数,求Y的分布列和数学期望.【答案】(1)(2),分布列见解析【解析】(1)设该名学生考核成绩优秀为事件,由茎叶图中的数据可以知在30名同学的成绩中,优秀的为:85,89,90,90,91,92,93,共有7名同学,所以,所以可估计这名学生考核优秀的概率为.(2)由题意可得的所有可能取值为,因为成绩的学生共有8人,其中满足的学生有人,所以,,,.所以随机变量的分布列为所以,即数学期望为.21.【集合与数列】已知等差数列满足,前8项和.(1)求数列的通项公式;(2)若数列满足.① 证明:为等比数列;② 求集合.【答案】(1)(2)①见解析,②【解析】(1)设等差数列的公差为d.因为等差数列满足,前8项和,所以,解得所以数列的通项公式为.(2)①设数列前项的和为.由(1)及得由③-④得3-=-.所以,又,所以,满足上式.所以当时,由⑤-⑥得,.,所以,,所以数列是首项为1,公比为2的等比数列.②由,得,即.记,由①得,,所以,所以(当且仅当时等号成立).由,得,所以.设,由,得.当时,,不合题意;当时,,此时符合题意;当时,,不合题意;当时,,不合题意.下面证明当时,.不妨设,,所以在上单调增函数,所以,所以当时,,不合题意.综上,所求集合.22.【新定义、数列集合问题】设集合是集合…,的子集.记中所有元素的和为(规定:为空集时,=0).若为3的整数倍,则称为的“和谐子集”.求:(1)集合的“和谐子集”的个数;(2)集合的“和谐子集”的个数.【答案】(1)的“和谐子集”的个数等于4.(2)【解析】(1)集合的子集有:,,,,,,,.其中所有元素和为3的整数倍的集合有:,,,.所以的“和谐子集”的个数等于4.(2)记的“和谐子集”的个数等于,即有个所有元素和为3的整数倍的子集;另记有个所有元素和为3的整数倍余1的子集,有个所有元素和为3的整数倍余2的子集.由(1)知,.集合的“和谐子集”有以下四类(考查新增元素):第一类集合…,的“和谐子集”,共个;第二类仅含一个元素的“和谐子集”,共个;同时含两个元素的“和谐子集”,共个;同时含三个元素的“和谐子集”,共个;第三类仅含一个元素的“和谐子集”,共个;同时含两个元素的“和谐子集”,共个;第四类仅含一个元素的“和谐子集”,共个;同时含有两个元素的“和谐子集”,共个,所以集合的“和谐子集”共有个.同理得,.所以,,所以数列是以2为首项,公比为2 的等比数列.所以.同理得.又,所以.23.【新定义与导数的应用】已知函数,当时,取得极小值.(1)求的值;(2)记,设是方程的实数根,若对于定义域中任意的,.当且时,问是否存在一个最小的正整数,使得恒成立,若存在请求出的值;若不存在请说明理由.(3)设直线,曲线.若直线与曲线同时满足下列条件:①直线与曲线相切且至少有两个切点;②对任意都有.则称直线与曲线的“上夹线”.试证明:直线是曲线的“上夹线”.【答案】(1),;(2)答案见解析;(3)证明见解析.【解析】(1)由已知,于是得:,代入可得:,.此时,.所以.当时,;当时,.所以当时,取得极小值,即,符合题意.(2),则.所以单调递增,又.为的根,即,也即.,.,所以存在这样最小正整数使得恒成立.(3)由,得,当时,.此时,所以是直线与曲线的一个切点,当,此时,.所以也是直线与曲线的一个切点,即直线与曲线相切且至少有两个切点,对任意,.即,因此直线是曲线的“上夹线”.24.【数列与充要条件】正数数列、满足:≥,且对一切k≥2,k,是与的等差中项,是与的等比中项.(1)若,,求,的值;(2)求证:是等差数列的充要条件是为常数数列;(3)记,当n≥2(n)时,指出与的大小关系并说明理由.【答案】(1),.(2)见解析(3)【解析】(1)由条件得,即,解得或,又≥,所以.(2)(充分性):当为常数数列时,是公差为零的等差数列,即充分性成立.(必要性):因为,又当为等差数列时,对任意恒成立.所以,因为,所以,即,从而对恒成立,所以为常数列.综上可得是等差数列的充要条件是为常数数列.(3)因为任意,,又,所以.从而,即,则,所以.25.已知,是离心率为的椭圆两焦点,若存在直线,使得,关于的对称点的连线恰好是圆的一条直径.(1)求椭圆的方程;(2)过椭圆的上顶点作斜率为,的两条直线,,两直线分别与椭圆交于,两点,当时,直线是否过定点?若是求出该定点,若不是请说明理由.【答案】(1);(2)定点【解析】(1)将圆的方程配方得所以其圆心为半径为1.由题意知,椭圆焦距为等于圆直径,所以又,所以,椭圆的方程为;(2)因为,所以直线斜率存在,设直线,,消理得,(*)又理得即所以(*)代入得整理的得,所以直线定点26.【集合与组合数的性质】已知集合,其中,.如果集合满足:对于任意的,都有,那么称集合具有性质.(Ⅰ)写出一个具有性质的集合;(Ⅱ)证明:对任意具有性质的集合,;(Ⅲ)求具有性质的集合的个数.【答案】(Ⅰ);(Ⅱ)详见解析;(Ⅲ).【解析】(Ⅰ)(Ⅱ)证明:假设存在,使得,显然,取,则,由题意,而为集合中元素的最大值,所以,,矛盾,假设不成立,所以,不存在,使得.(Ⅲ)设为使得的最大正整数,则.若,则存在正整数,使得,所以.同(Ⅱ)不可能属于集合.于是,由题意知,所以,,集合中大于2000的元素至多有19个,所以.下面证明不可能成立.假设,则存在正整数,使得,显然,所以存在正整数使得.而与为使得的最大正整数矛盾,所以不可能成立.即成立.当时,对于任意的满足显然有成立.若,则,即,所以,,其中均为符合题意的集合.而可能取的值为981,982,…,1000,故符合条件的集合个数为.因此,满足条件的集合的个数为.27.【导数的几何意义与导数的应用】已知函数为常数).曲线在点处的切线与轴平行.(Ⅰ) 求的值;(Ⅱ) 求函数的单调区间;(Ⅲ) 设,其中为的导函数.证明:对任意,.【答案】(Ⅰ) ;(Ⅱ) 的单调递增区间为,单调递减区间为;(Ⅲ)见解析.【解析】(Ⅰ) 解:由可得.而,即,解得.(Ⅱ) 解:由(Ⅰ)知,设,则.即在上是减函数.由知,当时,,从而;当时,,从而.综上可知,的单调递增区间为,单调递减区间为.(Ⅲ) 证明:因为,所以,.对任意,等价于.设,,则,.当时,,故有单调递增.当时,,故有单调递减.所以,的最大值为.则.设因为,所以当时,,单调递增.则.即,从而有.则.因此,对任意,.28.【集合与排列组合、二项式定理】设且,集合的所有个元素的子集记为.(1)当时,求集合中所有元素之和;(2)记为中最小元素与最大元素之和,求的值.【答案】(1)30;(2)2019.【解析】(1)因为含元素的子集有个,同理含的子集也各有个,于是所求元素之和为;(2)集合的所有个元素的子集中:以为最小元素的子集有个,以为最大元素的子集有个;以为最小元素的子集有个,以为最大元素的子集有个;以为最小元素的子集有个,以为最大元素的子集有个.∴,..29.【等差数列、等比数列与不等式】数列满足对任意的恒成立,为其前项的和,且.(1)求数列的通项;(2)数列满足,其中.①证明:数列为等比数列;②求集合.【答案】(1) (2) ①见证明;②【解析】(1)设等差数列的公差为,因为等差数列满足,前8项和,解得所以数列的通项公式为(2)①设数列的前项和为,由(1)及得上两式相减,得到=所以又,所以,满足上式,所以当时,两式相减,得,,所以所以此数列为首项为1,公比为2的等比数列.②由,得,即,∴.令,显然,此时变为,即,当时,,不符合题意;当时,,符合题意,此时;当时,,不符合题意;当时,,不符合题意;当时,,不符合题意;下证当,时,方程:∵∴∴,显然,从而当,时,方程没有正整数解.综上所述:.30.【数列与二项式定理】设整数数列{a n}共有2n()项,满足,,且().(1)当时,写出满足条件的数列的个数;(2)当时,求满足条件的数列的个数.【答案】(1)8;(2).【解析】(1)时,,且则确定时,有唯一确定解又,可知有种取法若,则,则有种取法此时,也有种取法又,当确定时,随之确定故所有满足条件的数列共有:个满足条件的所有的数列的个数为(2)设,则由得①由得,则:即②用表示中值为的项数由②可知也是中值为的项数,其中所以的取法数为确定后,任意指定的值,有种由①式可知,应取,使得为偶数这样的的取法是唯一的,且确定了的值从而数列唯一地对应着一个满足条件的所以满足条件的数列共有个下面化简设两展开式右边乘积中的常数项恰好为因为,又中的系数为所以所以满足条件的数列共有个。

最可能考的30题-2019年高考数学走出题海之黄金30题系列(江苏版)(解析版)

最可能考的30题-2019年高考数学走出题海之黄金30题系列(江苏版)(解析版)

2019年高考数学走出题海之黄金30题系列专题三最可能考的题30题一、填空题1.【集合的运算与简单不等式解法】已知集合,则__________.【答案】【解析】∵A={1,2,3,4},B={x|2<x<5,x∈R};∴A∩B={3,4}.故答案为:{3,4}.2.【复数的概念与四则运算】如果(表示虚数单位),那么 ________.【答案】1【解析】由于,结合题意可得:,由复数相等的充分必要条件可得:.故答案为:.3.【茎叶图与平均数】年月日晚,某校高一年级举行“校园歌手卡拉大奖赛”,邀请了七位评委为所有选手评分.某位选手演出结束后,评委们给他评分的茎叶图如图所示,按照比赛规则,需去掉一个最高分和一个最低分,则该选手最终所得分数的平均分为________.【答案】85【解析】该选手所得分数的平均分为,填.4.【传统文化与分层抽样】我国古代数学算经十书之一的《九章算术》有一衰分问题:今有北乡八千一百人,西乡九千人,南乡五千四百人,凡三乡,发役五百,意思是用分层抽样的方法从这三个乡中抽出500人服役,则北乡比南乡多抽__________人.【解析】由题意可得,三乡共有人,从中抽取500人,因此抽样比为,所以北乡共抽取人;南乡共抽取人,所以北乡比南乡多抽人.故答案为5.【伪代码】执行如图所示的伪代码,若输出的y的值为13,则输入的x的值是_______.【答案】8【解析】输入,若,则,不合题意若,则,满足题意本题正确结果:6.【传统文化与程序框图】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为_____.(参考数据:,)【解析】模拟执行程序,可得,,不满足条件,,,不满足条件,,,满足条件,退出循环,输出的值为24.故答案为:24.7.【函数的定义域、对数函数的性质】函数的定义域是______.【答案】【解析】要使有意义,则,,的定义域是.故答案为:.8.【三角恒等变换】已知,,则__________.【答案】7【解析】解:∵∈(,),∴∈(,π),∵sin(),∴cos(),∴tan()=,则tan A=tan[()].故答案为:9.【几何概型】关于圆周率的近似值,数学发展史上出现过很多有创意的求法,其中可以通过随机数实验来估计的近似值.为此,李老师组织名同学进行数学实验教学,要求每位同学随机写下一个实数对,其中,,经统计数字、与可以构成钝角三角形三边的实数对为个,由此估计的近似值是_______(用分数表示).【答案】【解析】实数对落在区域的频率为,又设表示“实数对满足且能与构成钝角三角形”,则中对应的基本事件如图阴影部分所示:其面积为,故,所以,填.10.【古典概型】将一颗质地均匀的骰子它是一种各面上分别标有1,2,3,4,5,6点数的正方体玩具先后抛掷2次,记第一次出现的点数为m,记第二次出现的点数为n,则的概率为______.【答案】【解析】解:将一颗质地均匀的骰子它是一种各面上分别标有1,2,3,4,5,6点数的正方体玩具先后抛掷2次,记第一次出现的点数为m,记第二次出现的点数为n,基本事件总数,包含的基本事件有:,,,,,,,,,,,,,,共14个,的概率为.故答案为:.11.【双曲线的几何性质】若是双曲线的右焦点,过作该双曲线一条渐近线的垂线与两条渐近线相交于两点,为坐标原点,的面积为,则该双曲线的离心率为_______________________.【答案】【解析】如图所示:由题意可知:焦点的坐标为,双曲线的渐近线的方程为,它的斜率为,所以有,点到渐近线的距离=,而,,而,在中,,由于双曲线两条渐近线关于轴对称,所以有,在中,的面积为,所以有,,.12.【等差数列与三角函数的性质】已知,数列满足:对任意,,且,,则使得成立的最小正整数为 ________.【答案】298【解析】,由知:,又,.是以3为首项,1为公差的等差数列,,又,,从而,,令得,又,故的最小值为298.13.【几何体的体积与导数应用】已知正方体的棱长为分别为底面和的中心,记四棱锥和的公共部分的体积为,则体积的值为__________.【答案】【解析】画出图形:可知四棱锥和的公共部分为两个如图放置的正四棱锥,底面为正方形EFGH,在三角形中,F、G分别为的中点,所以FG=,所以体积为,故答案为.14.【函数与导数】已知函数且函数在内有且仅有两个不同的零点,则实数的取值范围是_____________________.【答案】【解析】函数在内有且仅有两个不同的零点,即函数与函数在内有且仅有两个不同的交点,表示过点,斜率为的直线,绘制函数的图像如图所示,考查临界情况:首先考查经过点且与相切的直线方程的斜率:由可得,故切点坐标为,切线的斜率,切线方程为:,切线过点,故,解得:,故切线的斜率,由可得,由可得,结合图形可得实数取值范围是.15.【集合新定义】已知集合,集合满足① 每个集合都恰有7个元素; ②.集合中元素的最大值与最小值之和称为集合的特征数,记为(),则的最大值与最小值的和为_______.【答案】132【解析】由题意得,集合中各包含7个元素,且互不相等,当取得最小值时,集合中的最小值分别为1,2,3,最大值分别为21,15,9,例如,,,此时最小,且为51. 当集合中最小值为1,7,13,最大值为19,20,21时,最大.例如,,,此时最大,且为81.故最大值与最小值之和为132.二、解答题16.【空间平行与垂直】如图,在三棱锥中,,分别为棱,上的三等份点,,.(1)求证:平面;(2)若,平面,求证:平面平面.【答案】(1)见证明;(2)见证明【解析】证明:(1)因为,,所以,所以,因为平面,平面,所以平面.(2)因为平面,平面,所以.因为,,所以,又,所以平面.又平面,所以平面平面.17.【空间平行与垂直、几何体的体积】如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD为正方形,侧棱AA1⊥底面ABCD,E为棱AA1的中点,AB=2,AA1=3.(Ⅰ)求证:A1C∥平面BDE;(Ⅱ)求证:BD⊥A1C;(Ⅲ)求三棱锥A-BDE的体积.【答案】(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)1【解析】(Ⅰ)证明:设AC∩BD=O,连接OE,在△ACA1中,∵O,E分别为AC,AA1的中点,∴OE∥A1C,∵A1C⊄平面BDE,OE⊂平面BDE,∴A1C∥平面BDE;(Ⅱ)证明:∵侧棱AA1⊥底面ABCD,BD⊂底面ABCD,∴AA1⊥BD,∵底面ABCD为正方形,∴AC⊥BD,∵AA1∩AC=A,∴BD⊥平面ACC1A1,∵A 1C⊂平面ACC1A1,∴BD⊥A1C;(Ⅲ)解:∵侧棱AA1⊥底面ABCD于A,E为棱DD1的中点,且AA1=3,∴AE=,即三棱锥E-ABD的高为.由底面正方形的边长为2,得.∴.18.【平面向量与三角恒等变换】设,已知向量,且. (1)求的值;(2)求的值.【答案】(1)(2)【解析】(1)因为,且.所以,所以,因为,所以,所以,所以.(2)由(1)得,因为,所以,所以,所以.19.【三角恒等变换与三角函数的图象和性质】已知函数.(Ⅰ)求函数的单调递减区间;(Ⅱ)求方程在区间内的所有实根之和.【答案】(Ⅰ),.(Ⅱ).【解析】(Ⅰ),由单调递减可知,递增,故,,即.∴函数的单调递增区间是,.(Ⅱ)由,得.由在上递增,在上递减,且,得,方程在上有两不等实根,,且满足.∴.20.【解三角形与基本不等式】已知三角形中,角的对边分别是,且=.(Ⅰ)求角的大小及的值;(Ⅱ)若的面积为,求的最小值.【答案】(1),= ;(2).【解析】(1)由正弦可知:,代入中,得而,=(2)因为的面积为,所以由基本不等式可知(当且仅当时,等号成立),因此的最小值是.21.【三角函数应用问题】某公园内有一块以为圆心半径为米的圆形区域.为丰富市民的业余文化生活,现提出如下设计方案:如图,在圆形区域内搭建露天舞台,舞台为扇形区域,其中两个端点,分别在圆周上;观众席为梯形内切在圆外的区域,其中,,且,在点的同侧.为保证视听效果,要求观众席内每一个观众到舞台处的距离都不超过米.设,.问:对于任意,上述设计方案是否均能符合要求?【答案】能符合要求【解析】解:过作垂直于,垂足为.在直角三角形中,,,所以,因此.由图可知,点处观众离点处最远.在三角形中,由余弦定理可知.因为,所以当时,即时,,即.因为,所以观众席内每一个观众到舞台处的距离都不超过米.答:对于任意,上述设计方案均能符合要求.22.【直线与椭圆的位置关系】已知椭圆,点是长轴上的一个动点,过点的直线与交于两点,与轴交于点,弦的中点为.当为的右焦点且的倾斜角为时,重合,. (1)求椭圆的方程;(2)当均与原点不重合时,过点且垂直于的直线与轴交于点.求证:为定值.【答案】(1) (2)见证明【解析】(1)因为当为的右焦点,且的倾斜角为时,重合,.所以,因此,,所以椭圆的方程为.(2)设直线,,,将代入得:,所以,,所以,所以直线的方程为,所以点的坐标为,又因为点,所以为定值.23.【直线与椭圆的位置关系】已知椭圆的离心率为,,分别是它的左、右焦点,.(1)求椭圆的方程;(2)过椭圆的上顶点作斜率为,的两条直线,,两直线分别与椭圆交于,两点,当时,直线是否过定点?若是求出该定点,若不是请说明理由.【答案】(1);(2)【解析】(1)因为,所以,又,所以,椭圆的方程为;(2)因为,所以直线斜率存在设直线,,消理得,(*)又理得即所以(*)代入得整理的得,所以直线定点24.【导数的应用】函数.(1)若,在上递增,求的最大值;(2)若,存在,使得对任意,都有恒成立,求的取值范围. 【答案】(1)-2;(2)【解析】(1)当时,因为在上递增所以任意恒成立因为当时,;当时,,所以在单调递减,在单调递增所以当时最小所以,即所以最大值为-2(2)当时,依题意在有最大值点因为,且,①当,在递减,所以在,,上递增,不合题意②当,在上递增,且所以在上递减,在上递增,(i)当,,即在(上递减,所以,即在上递增,不合题意(ⅱ)当,在上递减,上递增且,,所以存在,使得且在上,递增;在上,递减;符合题意,所求(ⅲ)当时,在上递减,上递增且,,所以在上,递减,不合题意(ⅳ)当时,,所以在上递减,又因为(所以在上,递减,不合题意综上所述,当且仅当时,存在满足题意的25.【等比数列及数列的综合问题】已知数列的各项均不为零.设数列的前n项和为S n,数列的前n项和为T n,且.(1)求的值;(2)证明:数列是等比数列;(3)若对任意的恒成立,求实数的所有值.【答案】(1),;(2)数列是以1为首项,为公比的等比数列;(3)0【解析】(1)因为,.令,得,因为,所以.令,得,即,因为,所以.(2)因为,①所以,②②①得,,因为,所以,③所以,④当时,③④得,,即,因为,所以.又由(1)知,,,所以,所以数列是以1为首项,为公比的等比数列.(3)由(2)知,.因为对任意的,恒成立,所以的值介于和之间.因为对任意的恒成立,所以适合.若,当为奇数时,恒成立,从而有恒成立.记,因为,所以,即,所以(*),从而当时,有,所以不符.若,当为奇数时,恒成立,从而有恒成立.由(*)式知,当时,有,所以不符.综上,实数的所有值为0.26.【等比数列及其综合问题】已知数列满足对任意的,都有,且,其中,.记.(1)若,求的值;(2)设数列满足.① 求数列的通项公式;② 若数列满足,且当时,,是否存在正整数,使,,成等比数列?若存在,求出所有的值;若不存在,说明理由.【答案】(1)1011(2)①;②,满足题意【解析】(1)当时,由,得,又,所以,又,所以.(2)由,得,又,所以,又因为,所以,所以,,所以.②由题意,得,,因为,,成等比数列,所以,即,所以,即.由于,所以,即.当时,,得.当时,由(*),得为奇数,所以,即,代入(*)得,即,此时无正整数解.综上,,.27.【等差数列、等比数列及其综合问题】设等比数列{}的公比为 q(q > 0,q =1),前 n 项和为 Sn,且 2a1a3 = a4,数列{}的前 n 项和 Tn 满足2Tn = n(bn - 1),n ∈N*,b2 = 1.(1) 求数列{},{}的通项公式;(2) 是否存在常数 t,使得 {Sn+ } 为等比数列?说明理由;(3) 设 c n =,对于任意给定的正整数k(k ≥2), 是否存在正整数 l,m(k < l < m), 使得 c k,c1,c m成等差数列?若存在,求出 l,m(用 k 表示),若不存在,说明理由.【答案】(1);(2)存在,使得是公比为的等比数列;(3)存在符合题意.【解析】(1)等比数列{a n}的公比为q(q>0,q=1),∵2a1a3=a4,∴,可得a1.∴a n q n﹣1.数列{b n}的前n项和Tn满足2T n=n(b n﹣1),n∈N*,b2=1.∴n≥2时,2b n=2(T n﹣T n﹣1)=n(b n﹣1)﹣(n﹣1)(b n﹣1﹣1),化为:(n﹣2)b n=(n﹣1)b n﹣1+1,当n≥3时,两边同除以(n﹣2)(n﹣1),可得:,利用累加求和可得:b2+1,化为:b n=2n﹣3(n≥3),当n=1时,2b1=b1﹣1,解得b1=﹣1,经过验证n=1,2时也满足.∴b n=2n﹣3.(2)由(1)可知:a n,q>0,q≠1.∴S n.①若t时,则S n,∴q.即数列{S n}是公比为q的等比数列.②若t时,则S n.设A,B.(其中A,B≠0).则q不为常数.综上:存在t时,使得数列{S n}是公比为q的等比数列.(3)由(1)可知:b n=2n﹣3.,假设对于任意给定的正整数k(k≥2),存在正整数l,m(k<l<m),使得c k,c1,c m成等差数列.则,整理得:2m+1,取l=2k,则2m+1=(4k+1)(2k+1),解得m=4k2+3k.即存在l=2k,m=4k2+3k.符合题意.28.【导数的应用】已知函数.(1)若曲线在点处的切线方程是,求函数在上的值域;(2)当时,记函数,若函数有三个零点,求实数的取值范围.【答案】(1);(2).【解析】(1)因为,所以,所以,所以,即.,,,所以在上的值域为.(2)(i)当时,,由,得,此时函数有三个零点,符合题意.(ii)当时,.由,得.当时,;当时,.若函数有三个零点,则需满足且,解得.(iii)当时,.由,得,.①当,即时,因为,此时函数至多有一个零点,不符合题意;②当,即时,因为,此时函数至多有两个零点,不符合题意;③当,即时,若,函数至多有两个零点,不符题意;若,得,因为,所以,此时函数有三个零点,符合题意;若,得,由,记,则,所以,此时函数有四个零点,不符合题意.综上所述:满足条件的实数.29.【空间的角与空间点线面关系】已知多面体中,,,,,为的中点.(Ⅰ)求证:平面;(Ⅱ)求异面直线和所成角的余弦值;(Ⅲ)求直线与平面所成角的正弦值.【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ). 【解析】(Ⅰ)取CE中点F,连接BF,OF,∵O为CD的中点,∴OF∥DE,且OF=DE,∵AB//DE,AC=AD=CD=DE=2,AB=1,∴OF∥AB,OF=AB,则四边形ABFO为平行四边形,∴AO//BF,BF⊆平面BCE,AO⊊平面BCE,∴AO//平面BCE;(Ⅱ)取DE中点M,连接AF,∵AB∥DE,AB=1,DE=2,∴AB∥ME,AB=ME,∴ABEM为平行四边形.∴AM//BE.∴∠CAM或其补角为AC与BE所成的角.∵DE⊥平面ACD,AD,CD⊆平面ACD,∴DE⊥CD,DE⊥AD,在中,CD=2,DM=1,,在中,AD=2,DM=1,,.所以异面直线AC和BE所成角的余弦值为. (Ⅲ)由题意可得BF//AO,∵AO⊥平面CDE,∴BF⊥平面CDE,∴BF⊥DF. ∵CD=DE,∴DF⊥CE,∵BF∩CE=F,∴DF⊥平面CBE;∴∠DBF就是直线BD与平面BEC所成角.在△BDF中,,.30.【空间的角与空间向量】如图所示,在多面体中,四边形为平行四边形,平面平面,,,,,,,点是棱上的动点.(Ⅰ)当时,求证平面;(Ⅱ)求直线与平面所成角的正弦值;(Ⅲ)若二面角所成角的余弦值为,求线段的长.【答案】(Ⅰ)见解析;(Ⅱ);(Ⅲ)【解析】(Ⅰ)由已知得且,则四边形为平行四边形四边形为平行四边形又平面,平面平面(Ⅱ)过点作交于点,过点作交于点平面平面,平面平面,平面平面以为原点建立如图的空间直角坐标系则,,,,,设平面的法向量为,,,即令,又直线与平面所成角的正弦值为(Ⅲ),设平面的法向量为,,,即,令,又可取平面的法向量解得。

名校模拟精华30题-2019年高考数学走出题海之黄金30题系列(江苏版)(解析版)

名校模拟精华30题-2019年高考数学走出题海之黄金30题系列(江苏版)(解析版)

2018年高考数学走出题海之黄金30题系列专题四名校模拟精华一、填空题1.【复数的运算、复数的几何意义】【江苏省2019届高三第二学期联合调研测试】在复平面内,复数对应的点位于第_______象限.【答案】四【解析】因为所以复数对应的点为,位于第四象限故答案为:四.2.【集合的运算】【江苏省2019届高三第二学期联合调研测试】已知集合,,则集合中元素的个数为____.【答案】4【解析】因为集合A={l,2,3},B={2,3,4}所以A B={l,2,3,4},有4个元素故答案为:4.3.【三角恒等变换与三角函数的性质】【山东省枣庄市2019届高三二调】设当x=θ时,函数f(x)=2sinx+cosx 取得最小值,则cos()=______.【答案】【解析】函对于数f(x)=2sinx+cosx=sin(x+α),其中,cosα=,sinα=,α为锐角.当x=θ时,函数取得最小值,∴sin(θ+α)=-,即sin(θ+α)=-1,∴cos(θ+α)=0.故可令θ+α=-,即θ=--α,故故答案为:.4.【数学文化与几何概型】【山东省青岛市2019届高三3月一模】部分与整体以某种相似的方式呈现称为分形,谢尔宾斯基三角形是一种分形,由波兰数学家谢尔宾斯基1915年提出.具体操作是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程得到如图所示的图案,若向该图案随机投一点,则该点落在黑色部分的概率是__________.【答案】【解析】由图可知:黑色部分由9个小三角形组成,该图案由16个小三角形组成,这些小三角形都是全等的,设“向该图案随机投一点,则该点落在黑色部分”为事件A,由几何概型中的面积型可得:P(A)=,故选:B.5.【双曲线标准方程及其几何性质】【江苏省海安高级中学2019届高三四月模拟】在平面直角坐标系中,若双曲线的离心率为,则双曲线的渐近线方程为_______.【答案】【解析】解:因为双曲线的离心率为,所以,故,又因为,所以,即,即,所以双曲线的渐近线.6.【函数的应用与不等式】【江西省南昌市2019届高三二模】已知平行四边形中,,,则此平行四边形面积的最大值为_____.【答案】12【解析】如图所示,设AB=x,则,OB=3,所以,所以,由题得.由题得平行四边形的面积S=设,所以当t=时,故答案为:127.【平面向量基本定理】【江苏省2019届高三第二学期联合调研】已知点P是△ABC内一点,满足,且,延长AP交边BC于点D,BD=2DC,则=_______.【答案】【解析】因为BD=2DC所以所以,又因为所以所以故答案为:.8.【直线与圆】【江苏省海安高级中学2019届高三四月模拟】在平面直角坐标中,已知点,若直线上存在点使得,则实数的取值范围是_______.【答案】【解析】设则,因为,所以有,同时平方,化简得,故点的轨迹为圆心在(0,0),半径2为的圆,又点在直线上,故圆与直线必须有公共点,所以,解得.9.【平面向量、直线与圆】【江苏省南通市2019届高三4月测试】已知点,若圆上存在点M满足,则实数的取值范围是_____.【答案】【解析】设,则,即点轨迹为:又为圆上的点存在点,只需两圆有交点即可本题正确结果:10.【平面向量的应用】【江苏省海安高级中学2019届高三四月模拟】已知等边的边长为2,若,,则的面积为_______.【答案】【解析】解:以的中点为原点,所在直线为x轴建立如图所示的平面直角坐标系,则因为,所以,故,,设的夹角为,,所以,,点到直线的长度为,的面积为.11.【分段函数、对数函数的性质】【江西省南昌市2019届高三二模】已知函数对于任意实数都有,且当时,,若实数满足,则的取值范围是________.【答案】【解析】由题得,当x≥0时,,因为x≥0,所以,所以函数在[0,+∞ 上单调递增,因为,所以函数是偶函数,所以函数在上单调递减,因为,所以||<1,所以-1<<1,所以.故答案为:12.【几何体的体积与二次函数性质】【河北省石家庄市2019届高三高考模拟】在棱长为的透明密闭的正方形容器中,装有容器总体积一般的水(不计容器壁的厚度),将该正方体容器绕旋转,并始终保持所在直线与水平平面平行,则在旋转过程中容器中水的水面面积的最大值为__________.【解析】如图所示,在棱长为的正方体中,点在上,点在上,满足,则原问题等价于求解四边形的最大值.作于点,当最大时,四边形有最大值.建立如图所示的空间直角坐标系,设,设,由于,由可得:,则:,故,故:,由可得:.故:,结合二次函数的性质可知:当或时,取得最大值,此时取得最大值,最大值为:.13.【北省石家庄市2019届高三高考模拟】已知数列的前项和为,且,若,则取最小值时__________.【解析】由,,两式作差可得:,即,由,,两式作差可得:,则,,故,进一步可得:,又,则,且,则取最小值时.14.【新定义函数、导数的应用】【四川省成都市成都外国语学校2019届高三3月月考】如果函数在上存在满足,,则称函数是上的“双中值函数”,已知函数是上“双中值函数”,则实数的取值范围是______.【答案】【解析】,在区间存在,满足方程在区间有两个不相等的解令,则,解得:实数的取值范围是本题正确结果:15.【平面向量的数量积与二次函数的性质】【江苏省扬州中学2019届高三3月月考】在边长为8的正方形ABCD中,M是BC的中点,N是AD边上的一点,且DN=3NA,若对于常数m,在正方形ABCD的边上恰有6个不同的点P,使,则实数m的取值范围是_______.【答案】【解析】以AB所在直线为x轴,以AD所在直线为y轴建立平面直角坐标系,如图所示,则.(1)当点P在AB上时,设,∴,∴,∵,∴.∴当时有一解,当时有两解.(2)当点P在AD上时,设.∴,∴,∵,∴.∴当或时有一解,当时有两解.(3)若P在DC上,设,∴,∴,∵,∴.∴当时有一解,当时有两解.(4)当点P在BC上时,设.∴,∴,∵,∴.∴当或时有一解,当时有两解.综上,在正方形的四条边上有且只有6个不同的点P,使得成立,那么m的取值范围是.故答案为:.二、解答题16.【解三角形】【河北省沧州市2019届高考模拟】如图,的内角的对边分别为为线段上一点,的面积为.求:(1)的长;(2)的值.【答案】(1) (2)【解析】解:(1)由,可知从而由(2)17.【空间点线面位置关系】【江苏省扬州中学2019届高三3月月考】如图,三角形PCD所在的平面与等腰梯形ABCD所在的平面垂直,AB=AD=CD,AB∥CD,CP⊥CD,M为PD的中点.(1)求证:AM∥平面PBC;(2)求证:BD⊥平面PBC.【答案】(1)见解析(2)见解析【解析】证明:(1)如图,取的中点,连,,∵为的中点,为的中点,∴,.又,,∴,,∴四边形为平行四边形,∴.又平面,平面,∴平面(2)如图,在等腰中梯形中,取的中点,连,.∵,,∴,,∴四边形为平行四边形.又,∴四边形为菱形,∴.同理,四边形为菱形,∴.∵,∴.∵平面平面,平面平面,,平面,∴平面,又平面,∴.∵,,∴平面.18.【平面向量、三角恒等变换与三角函数图象和性质】【陕西省宝鸡市2019届高考模拟检测(三)】已知,,函数.(1)求的最小正周期及对称轴方程;(2)当时,求单调递增区间.【答案】(1) ;(). (2) ,和【解析】(1)所以的周期,令(),即()所以的对称轴方程为().(2)令()解得(),由于所以当或1时,得函数的单调递增区间为,和.19.【三角函数应用问题】【江苏省扬州中学2019届高三3月月考】如图,某人工景观湖外围有两条相互垂直的直线型公路l l,l2,且l l和l2交于点O.为了方便游客游览,计划修建一条连接公路与景观湖的直线型公路AB.景观湖的轮廓可以近似看成一个圆心为O',半径为2百米的圆,且公路AB与圆O'相切,圆心O'到l l,l2的距离均为5百米,设∠OAB=,AB长为L百米.(1)求L关于的函数解析式;(2)当为何值时,公路AB的长度最短?【答案】(1),.(2)当时,公路的长度最短【解析】(1)以点为坐标原点建立如图所示的平面直角坐标系,则.在直角中,,,所以直线方程为,即,因为直线与圆相切,所以,因为点在直线的上方,所以,解得.因此L关于的函数解析式为,.(2)令,则,且,所以,因为,所以在上单调递减,所以当,即时,取得最小值,且.故当时,公路的长度最短.20.【直线与椭圆的位置关系、直线与圆的位置关系】【江苏省南通市2019届高三4月阶段测试】已知依次满足(1)求点的轨迹;(2)过点作直线交以为焦点的椭圆于两点,线段的中点到轴的距离为,且直线与点的轨迹相切,求该椭圆的方程;(3)在(2)的条件下,设点的坐标为,是否存在椭圆上的点及以为圆心的一个圆,使得该圆与直线都相切,如存在,求出点坐标及圆的方程,如不存在,请说明理由.【答案】(1)以原点为圆心,为半径的圆;(2);(3)存在点,其坐标为或,使得直线与以为圆心的圆相切【解析】(1)设,则则:代入得:点的轨迹是以原点为圆心,为半径的圆(2)由题意可知直线斜率存在,设直线的方程为……①椭圆的方程……②由与圆相切得:将①代入②得:又,可得设,椭圆方程为:(3)假设存在椭圆上的一点,使得直线与以为圆心的圆相切则到直线的距离相等,又则,则化简整理得:点在椭圆上解得:或(舍)时,椭圆上存在点,其坐标为或使得直线与以为圆心的圆相切21.【等比数列及数列的单调性】【天津市和平区2019届高三下学期第二次质量调查】已知数列是正项等比数列,,数列满足条件.(Ⅰ) 求数列、的通项公式;(Ⅱ) 设,记数列的前项和.①求;②求正整数,使得对任意,均有.【答案】(1),(2)①②.【解析】(1)设数列是正项等比数列的公比为,因为,所以有,所以(2)①因为,所以,,,②令,由于比变化的快,所以,得,即,递增而递减,是最大,即当时,对任意,均有.22.【直线与椭圆的位置关系】【江西省南昌市2019届高三二模】已知椭圆:,点在的长轴上运动,过点且斜率大于0的直线与交于两点,与轴交于点.当为的右焦点且的倾斜角为时,重合,.(1)求椭圆的方程;(2)当均不重合时,记,,若,求证:直线的斜率为定值.【答案】(1)(2)见证明【解析】(1)因为当为的右焦点且的倾斜角为时,,重合,,所以故,因为,因此,,所以椭圆的方程为.(2)设,所以,,所以. 因为斜率大于0,所以,设,,则,,由得,,①同理可得,②①②两式相乘得,,又,所以,所以,即,即由题意,知,所以.联立方程组,得,依题意,所以,又,所以,因为,故得,所以,即直线的斜率为.23.【空间点线面位置关系、空间的角】【天津市部分区2019年高三质量调查试题(二)】如图,DC⊥平面ABC,,,,P、Q分别为AE,AB的中点.(1)证明:平面.(2)求异面直线与所成角的余弦值;(3)求平面与平面所成锐二面角的大小.【答案】(1)见证明;(2) (3)【解析】解:(1)证明:因为分别是的中点,所以,,又,所以,,平面,平面,所以,平面.(2)因为平面以点为坐标原点,分别以的方向为轴的正方向建立空间直角坐标系.则得,所以,所以,所以异面直线与所成角的余弦值.(3)由(Ⅱ)可知,,设平面的法向量为,.由已知可得平面的法向量为以,所以.故所求平面与平面所成锐二面角的大小为.24.【导数的几何意义、导数的应用】【河北省示范性高中2019届高三4月联考】已知函数.(1)若曲线在点处的切线方程是,求函数在上的值域;(2)当时,记函数,若函数有三个零点,求实数的取值范围.【答案】(1);(2).【解析】(1)因为,所以,所以,所以,即.,,,所以在上的值域为.(2)(i)当时,,由,得,此时函数有三个零点,符合题意.(ii)当时,.由,得.当时,;当时,.若函数有三个零点,则需满足且,解得.(iii)当时,.由,得,.①当,即时,因为,此时函数至多有一个零点,不符合题意;②当,即时,因为,此时函数至多有两个零点,不符合题意;③当,即时,若,函数至多有两个零点,不符题意;若,得,因为,所以,此时函数有三个零点,符合题意;若,得,由,记,则,所以,此时函数有四个零点,不符合题意.综上所述:满足条件的实数.25.【导数的几何意义、导数的应用】【江苏省南通市2019届高三4月阶段测试】已知函数,设直线分别是曲线的两条不同的切线;(1)若函数为奇函数,且当时,有极小值为-4;(i)求的值;(ii)若直线亦与曲线相切,且三条不同的直线交于点,求实数m的取值范围;(2)若直线,直线与曲线切于点B且交曲线于点D,直线与曲线切于点C且交曲线于点A,记点的横坐标分别为,求的值.【答案】(1);;(2).【解析】(1)是奇函数,且且,即而当时有极小值经检验满足题意,则设是曲线上的一点由知:,过点的切线方程为:消去即得:由此切线方程形式可知:过某一点的切线最多有三条;又由奇函数性质可知:点是极大值点从而是一条切线且过点再设另两条切线的切点为、,其中则可令切线,将代入的方程中化简可得:且从而有:且是方程的两根构造函数:由得:或而,,结合图象:可得:实数的取值范围是:(2)令,;由及可得:而,化简可得:,即将切线的方程代入中并化简得:,即;同理:则,,26.【等差数列及数列的综合问题】【江苏省2019届高三第二学期联合调研】已知数列的前项和为.数列满足,.(1)若,且,求正整数的值;(2)若数列,均是等差数列,求的取值范围;(3)若数列是等比数列,公比为,且,是否存在正整数,使,,成等差数列,若存在,求出一个的值,若不存在,请说明理由.【答案】(1)2;(2);(3)存在,k=1.【解析】解:(1)因为,且所以解得(2)记数列,首项为,公差为;数列,首项为,公差为则,化简得:所以所以的取值范围(3)当时,,,为,,成等差数列.下面论证当时,,,不成等差数列因为,所以所以,所以所以若,,成等差数列,则所以,所以,解得当时,,,为,,因为所以所以当时,,,不成等差数列综上所述:存在且仅存在正整数时,,,成等差数列27.【直线与椭圆的位置关系】【河北省示范性高中2019届高三4月联考】已知椭圆:的离心率为,椭圆:经过点.(1)求椭圆的标准方程;(2)设点是椭圆上的任意一点,射线与椭圆交于点,过点的直线与椭圆有且只有一个公共点,直线与椭圆交于,两个相异点,证明:面积为定值.【答案】(1);(2)见解析.【解析】(1)解:因为的离心率为,所以,解得.①将点代入,整理得.②联立①②,得,,故椭圆的标准方程为.(2)证明:①当直线的斜率不存在时,点为或,由对称性不妨取,由(1)知椭圆的方程为,所以有.将代入椭圆的方程得,所以.②当直线的斜率存在时,设其方程为,将代入椭圆的方程得,由题意得,整理得.将代入椭圆的方程,得.设,,则,,所以.设,,,则可得,.因为,所以,解得(舍去),所以,从而.又因为点到直线的距离为,所以点到直线的距离为,所以,综上,的面积为定值.28.【导数的应用】【天津市和平区2019届高三下学期第二次质量调查】已知函数为常数).曲线在点处的切线与轴平行.(Ⅰ) 求的值;(Ⅱ) 求函数的单调区间;(Ⅲ) 设,其中为的导函数.证明:对任意,.【答案】(Ⅰ) ;(Ⅱ) 的单调递增区间为,单调递减区间为;(Ⅲ)见解析.【解析】(Ⅰ) 解:由可得.而,即,解得.(Ⅱ) 解:由(Ⅰ)知,设,则.即在上是减函数.由知,当时,,从而;当时,,从而.综上可知,的单调递增区间为,单调递减区间为.(Ⅲ) 证明:因为,所以,.对任意,等价于.设,,则,.当时,,故有单调递增.当时,,故有单调递减.所以,的最大值为.则.设因为,所以当时,,单调递增.则.即,从而有.则.因此,对任意,.29.【直线与椭圆的位置关系】【江西省景德镇市2019届高三第二次质检】已知,是离心率为的椭圆两焦点,若存在直线,使得,关于的对称点的连线恰好是圆的一条直径.(1)求椭圆的方程;(2)过椭圆的上顶点作斜率为,的两条直线,,两直线分别与椭圆交于,两点,当时,直线是否过定点?若是求出该定点,若不是请说明理由.【答案】(1);(2)定点【解析】(1)将圆的方程配方得所以其圆心为半径为1.由题意知,椭圆焦距为等于圆直径,所以又,所以,椭圆的方程为;(2)因为,所以直线斜率存在,设直线,,消理得,(*)又理得即所以(*)代入得整理的得,所以直线定点30.【导数的应用】【江西省景德镇市2019届高三第二次质检】函数.(1)若,在上递增,求的最大值;(2)若,存在,使得对任意,都有恒成立,求的取值范围. 【答案】(1)-2;(2)【解析】(1)当时,因为在上递增所以任意恒成立因为当时,;当时,,所以在单调递减,在单调递增所以当时最小所以,即所以最大值为-2(2)当时,依题意在有最大值点因为,且,①当,在递减,所以在,,上递增,不合题意②当,在上递增,且所以在上递减,在上递增,(i)当,,即在(上递减,所以,即在上递增,不合题意(ⅱ)当,在上递减,上递增且,,所以存在,使得且在上,递增;在上,递减;符合题意,所求(ⅲ)当时,在上递减,上递增且,,所以在上,递减,不合题意(ⅳ)当时,,所以在上递减,又因为(所以在上,递减,不合题意综上所述,当且仅当时,存在满足题意的1。

专题01 经典母题-2017年中考数学走出题海之黄金30题系列(解析版)

专题01 经典母题-2017年中考数学走出题海之黄金30题系列(解析版)

2020年中考数学走出题海之黄金30题系列(解析版)母题1【有理数的乘法】(﹣2)×3的结果是()A.﹣5 B.1C.﹣6D.6【答案】C【解析】根据两数相乘同号得正,异号得负,再把绝对值相乘,可得答案.原式=﹣2×3=﹣6.故选:C.母题2【数轴的特征】实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是()A.aB.bC.cD.d【答案】A母题3【同底数幂的除法】下列运算正确的是()A.a3+a3=a6B.2(a+1)=2a+1C.(ab)2=a2b2D.a6÷a3=a2【答案】C【解析】根据二次根式的运算法则,乘法分配律,幂的乘方及同底数幂的除法法则判断.解:A、a3+a3=2a3,故选项错误;B、2(a+1)=2a+2≠2a+1,故选项错误;C、(ab)2=a2b2,故选项正确;D、a6÷a3=a3≠a2,故选项错误.故选:C.母题4【由实际问题抽象出二元一次方程组】20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.B.C.D.【答案】D【解析】设男生有x人,女生有y人,根据男女生人数为20,共种了52棵树苗,列出方程组成方程组即可.解:设男生有x人,女生有y人,根据题意得,.故选:D.母题5 【分式有意义、无意义、值为0的条件】要使分式有意义,则x的取值应满足()A.x=﹣2 B.x≠2 C.x>﹣2D.x≠﹣2【答案】D.【解析】根据分式有意义的条件是分母不等于零,可得x+2≠0,据此求出x的取值范围即可.解:∵分式有意义,∵x+2≠0,∵x≠﹣2,即x的取值应满足:x≠﹣2.故选:D.母题5【角平分线】(2015•青岛)如图,在∵ABC中,∵C=90°,∵B=30°,AD是∵ABC的角平分线,DE∵AB,垂足为E,DE=1,则BC=()A.B.2C.3D.+2【答案】C.母题6【三角形的外角和、内角和定理】如图,在∵ABC中,∵B、∵C的平分线BE,CD 相交于点F,∵ABC=42°,∵A=60°,则∵BFC=()A.118°B.119°C.120°D.121°【答案】C.【解析】由三角形内角和定理得∵ABC+∵ACB=120°,由角平分线的性质得∵CBE+∵BCD=60°,再利用三角形的内角和定理得结果.解:∵∵A=60°,∵∵ABC+∵ACB=120°,∵BE,CD是∵B、∵C的平分线,∵∵CBE=∵ABC,∵BCD=,∵∵CBE+∵BCD=(∵ABC+∵BCA)=60°,∵∵BFC=180°﹣60°=120°,故选:C.母题7 【全等三角形的判定和性质】如图,下列条件中,不能证明∵ABC∵∵DCB的是()A.AB=DC,AC=DB B.AB=DC,∵ABC=∵DCB C.BO=CO,∵A=∵DD.AB=DC,∵A=∵D【答案】D.母题8【翻折变换(折叠问题】如图,Rt∵ABC中,AB=9,BC=6,∵B=90°,将∵ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4D.5【答案】C【解析】设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt∵ABC中,根据勾股解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∵BD=3,在Rt∵ABC中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.母题9【三线八角】如图,能判定EB∵AC的条件是()A.∵C=∵ABE B.∵A=∵EBD C.∵C=∵ABC D.∵A=∵ABE【答案】D母题10【命题与定理】以下四个命题正确的是()A.任意三点可以确定一个圆B.菱形对角线相等C.直角三角形斜边上的中线等于斜边的一半D.平行四边形的四条边相等【答案】C【解析】利用确定圆的条件、菱形的性质、直角三角形的性质及平行四边形的性质分别对每个选项判断后即可确定答案.解:A、不在同一直线上的三点确定一个圆,故错误;B、菱形的对角线垂直但不一定相等,故错误;C、正确;D、平行四边形的四条边不一定相等.故选C.母题11【多边形内角与外角】一个多边形的内角和是900°,这个多边形的边数是()A.4B.5C.6D.7【答案】D【解析】根据多边形的外角和公式(n﹣2)•180°,列式求解即可.解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=7.故选D.母题12【一次函数图形】关于一次函数y=2x﹣l的图象,下列说法正确的是()A.图象经过第一、二、三象限B.图象经过第一、三、四象限C.图象经过第一、二、四象限D.图象经过第二、三、四象限【答案】B.母题13【二次函数图形与系数的关系】已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:∵b2﹣4ac>0;∵abc<0;∵m>2.其中,正确结论的个数是()A.0B.1C.2D.3【答案】D【解析】由图象可知二次函数y=ax2+bx+c与x轴有两个交点,进而判断∵;先根据抛物线的开口向下可知a<0,由抛物线与y轴的交点判断c与0的关系,根据对称轴在y轴右侧得出b与0的关系,然后根据有理数乘法法则判断∵;一元二次方程ax2+bx+c﹣m=0没有实数根,则可转化为ax2+bx+c=m,即可以理解为y=ax2+bx+c和y=m没有交点,即可求出m的取值范围,判断∵即可.解:∵∵二次函数y=ax2+bx+c与x轴有两个交点,∵b2﹣4ac>0,故∵正确;母题14【加权平均数】某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙丙丁测试成绩(百分制)面试86929083笔试90838392如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取()A.甲B.乙C.丙D.丁【答案】B【解析】根据题意先算出甲、乙、丙、丁四位候选人的加权平均数,再进行比较,即可得出答案.解:甲的平均成绩为:(86×6+90×4)÷10=87.6(分),乙的平均成绩为:(92×6+83×4)÷10=88.4(分),丙的平均成绩为:(90×6+83×4)÷10=87.2(分),丁的平均成绩为:(83×6+92×4)÷10=86.6(分),因为乙的平均分数最高,所以乙将被录取.故选B.母题15【一次函数解析式】已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式.【答案】y=x﹣2.母题16【正方形】如图,菱形ABCD中,对角线AC、BD相交于点O,不添加任何辅助线,请添加一个条件,使四边形ABCD是正方形(填一个即可).【答案】∵BAD=90°.【解析】根据有一个直角的菱形为正方形添加条件.解:∵四边形ABCD为菱形,∵当∵BAD=90°时,四边形ABCD为正方形.故答案为∵BAD=90°.母题17【二次根式有意义的条件】在函数中,自变量x的取值范围是.【答案】x≤1且x≠﹣2.【解析】根据二次根式有意义,分式有意义得:1﹣x≥0且x+2≠0,解得:x≤1且x≠﹣2.母题18(2014•邵阳)如图,在▱ABCD中,F是BC上的一点,直线DF与AB的延长线相交于点E,BP∥DF,且与AD相交于点P,请从图中找出一组相似的三角形:.【答案】△ABP∽△AED.【解析】可利用平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似判断△ABP∽△AED.解:∵BP∥DF,∴△ABP∽△AED.故答案为△ABP∽△AED.学科*网母题19【锐角三角函数的定义】如图,在∵ABC中,∵C=90°,AC=2,BC=1,则tanA的值是.1【答案】2母题20【旋转的性质】(2014•广东)如图,∵ABC绕点A顺时针旋转45°得到∵A′B′C′,若∵BAC=90°,AB=AC=,则图中阴影部分的面积等于.【答案】﹣1【解析】根据题意结合旋转的性质以及等腰直角三角形的性质得出AD=BC=1,AF=FC′= AC′=1,进而求出阴影部分的面积.解:∵∵ABC绕点A顺时针旋转45°得到∵A′B′C′,∵BAC=90°,AB=AC=,∵BC=2,∵C=∵B=∵CAC′=∵C′=45°,∵AD∵BC,B′C′∵AB,∵AD=BC=1,AF=FC′=AC′=1,∵图中阴影部分的面积等于:S∵AFC′﹣S∵DEC′=×1×1﹣×(﹣1)2=﹣1.故答案为:﹣1.母题21【菱形】在Rt∵ABC中,∵BAC=90°,D是BC的中点,E是AD的中点,过点A 作AF∵BC交BE的延长线于点F.(1)求证:∵AEF∵∵DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.【解析】(2)证明:由(1)知,∵AFE∵∵DBE,则AF=DB.∵DB=DC,∵AF=CD.∵AF∵BC,∵四边形ADCF是平行四边形,∵∵BAC=90°,D是BC的中点,E是AD的中点,∵AD=DC= BC,∵四边形ADCF是菱形;(3)解:设菱形DC边上的高为h,∵RT∵ABC斜边BC边上的高也为h,∵BC==,∵DC=BC=,∵h==,菱形ADCF的面积为:DC•h=×=10.母题22如图,点D在∵ABC的AB边上,且∵ACD=∵A.(1)作∵BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).【答案】见解析【解析】母题23【二次函数的应用】某商场有A,B两种商品,若买2件A商品和1件B商品,共需80元;若买3件A商品和2件B商品,共需135元.(1)设A,B两种商品每件售价分别为a元、b元,求a、b的值;(2)B商品每件的成本是20元,根据市场调查:若按(1)中求出的单价销售,该商场每天销售B商品100件;若销售单价每上涨1元,B商品每天的销售量就减少5件.∵求每天B商品的销售利润y(元)与销售单价(x)元之间的函数关系?∵求销售单价为多少元时,B商品每天的销售利润最大,最大利润是多少?【答案】见解析【解析】母题24【分式方程】某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?分析:(1)设乙工程队每天能完成绿化的面积是xm2,根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列出方程,求解即可;(2)设至少应安排甲队工作x天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可.【答案】见解析【解析】试题分析:关键是分析题意,找到合适的数量关系列出方程和不等式,解分式方程时要注意检验.试题解析:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:﹣=4,解得:x=50经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设至少应安排甲队工作x天,根据题意得:0.4x+×0.25≤8,解得:x≥10,答:至少应安排甲队工作10天.学科*网母题25【分式的化简求值】先化简,再求值:(﹣)÷,其中a 2+a ﹣2=0. 【答案】43- 【解析】母题26【切线的性质】如图,AB 是∵O 的直径,点F ,C 是∵O 上两点,且==,连接AC ,AF ,过点C 作CD∵AF 交AF 延长线于点D ,垂足为D . (1)求证:CD 是∵O 的切线; (2)若CD=2,求∵O 的半径.【答案】见解析 【解析】试题分析:(1)连结OC ,由=,根据圆周角定理得∵FAC=∵BAC ,而∵OAC=∵OCA ,则∵FAC=∵OCA ,可判断OC∵AF ,由于CD∵AF ,所以OC∵CD ,然后根据切线的判定定理得到CD 是∵O 的切线;(2)连结BC ,由AB 为直径得∵ACB=90°,由==得∵BOC=60°,则∵BAC=30°,所以∵DAC=30°,在Rt∵ADC 中,利用含30度的直角三角形三边的关系得AC=2CD=4,在Rt∵ACB 中,利用含30度的直角三角形三边的关系得BC=AC=4,AB=2BC=4,所以∵O 的半径为4.试题解析:(1)证明:连结OC ,如图, ∵=,∵∵FAC=∵BAC ,∵OA=OC ,∵∵OAC=∵OCA ,∵∵FAC=∵OCA ,∵OC∵AF ,∵CD∵AF ,∵OC∵CD , ∵CD 是∵O 的切线;母题27【频数(率)分布直方图;扇形统计图;列表法与树状图法】我市某校在推进新课改的过程中,开设的体育选修课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修易门,学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)请你求出该班的总人数,并补全频数分布直方图;(2)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.【答案】见解析【解析】(2)画树状图如下:,或列表如下:共有12种等可能的情况,恰好1人选修篮球,1人选修足球的有4种,则概率是:=.母题28【一次函数与不等式的联系】某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式;(3)小黄家3月份用水26吨,他家应交水费多少元?【答案】见解析母题29【圆的性质、两圆的位置关系、解直角三角形】如图,在Rt∵ABC中,∵ACB=90°,AC=4cm,BC=3cm,∵O为∵ABC的内切圆.(1)求∵O的半径;(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB长为半径作圆,设点P运动的时间为t s,若∵P与∵O相切,求t的值.【答案】见解析【解析】试题解析:(1)如图1,设∵O与AB、BC、CA的切点分别为D、E、F,连接OD、OE、OF,则AD=AF,BD=BE,CE=CF.∵∵O为∵ABC的内切圆,∵OF∵AC,OE∵BC,即∵OFC=∵OEC=90°.∵∵C=90°,∵四边形CEOF是矩形,∵OE=OF,∵四边形CEOF是正方形.设∵O的半径为rcm,则FC=EC=OE=rcm,在Rt∵ABC中,∵ACB=90°,AC=4cm,BC=3cm,∵AB==5cm.∵AD=AF=AC﹣FC=4﹣r,BD=BE=BC﹣EC=3﹣r,∵4﹣r+3﹣r=5,解得r=1,即∵O的半径为1cm.在Rt∵OPH中,由勾股定理,解得t=.母题30 【综合题】如图,在直角坐标系中,Rt∵OAB的直角顶点A在x轴上,OA=4,AB=3.动点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O移动;同时点N从点O出发,以每秒1.25个单位长度的速度,沿OB向终点B移动.当两个动点运动了x秒(0<x<4)时,解答下列问题:(1)求点N的坐标(用含x的代数式表示);(2)设∵OMN的面积是S,求S与x之间的函数表达式;当x为何值时,S有最大值?最大值是多少?(3)在两个动点运动过程中,是否存在某一时刻,使∵OMN是直角三角形?若存在,求出x的值;若不存在,请说明理由.【答案】见解析【解析】∵若∵ONM=90°,则∵ONM=∵OAB,证出∵OMN∵∵OBA,得出比例式,求出x的值即可.试题解析:(1)根据题意得:MA=x,ON=1.25x,在Rt∵OAB中,由勾股定理得:OB= ==5,作NP∵OA于P,如图1所示:则NP∵AB,∵∵OPN∵∵OAB,∵,即,解得:OP=x,PN=,∵点N的坐标是(x,);(2)在∵OMN中,OM=4﹣x,OM边上的高PN=,∵S=OM•PN=(4﹣x)•=﹣x2+x,∵S与x之间的函数表达式为S=﹣x2+x(0<x<4),配方得:S=﹣(x﹣2)2+,∵﹣<0,∵S有最大值,当x=2时,S有最大值,最大值是;(3)存在某一时刻,使∵OMN是直角三角形,理由如下:分两种情况:∵若∵OMN=90°,如图2所示:则MN∵AB,此时OM=4﹣x,ON=1.25x,∵MN∵AB,∵∵OMN∵∵OAB,∵,即,解得:x=2;∵若∵ONM=90°,如图3所示:则∵ONM=∵OAB,此时OM=4﹣x,ON=1.25x,∵∵ONM=∵OAB,∵MON=∵BOA,∵∵OMN∵∵OBA,∵,即,解得:x=;综上所述:x的值是2秒或秒.。

专题01 经典母题30题-2019年高考物理走出题海之黄金30题系列 Word版含解析

专题01 经典母题30题-2019年高考物理走出题海之黄金30题系列 Word版含解析

【经典母题】经典母题,她们不是新题,但是每年都能见到她们,或者直接考查原题,或者提现在原创新题中,她们是获得广大师生认可的“题源或题根”,在每年的高考第一部分 选择题【试题1】在地质、地震、勘探、气象和地球物理等领域的研究中,需要精确的重力加速度g 值,g 值可由实验精确测定.近年来测g 值的一种方法叫“对称自由下落法”,它是将测g 值归于测长度和时间,以稳定的氦氖激光的波长为长度标准,用光学干涉的方法测距离,以铷原子钟或其他手段测时间,此方法能将g 值测得很准.具体做法是:将真空长直管沿竖直方向放置,自其中的O 点向上抛小球,从抛出小球至小球又落回抛出点的时间为T 2;小球在运动过程中经过比O 点高H 的P 点,小球离开P 点至又回到P 点所用的时间为T 1.由T 1、T 2和H 的值可求得g 等于( ) A .22218H T T - B . 22214HT T - C .D .【答案】A考点:竖直上抛运动的规律【名师点睛】分析物体运动的形式,根据运动特点,然后选择相应的规律求解是解决运动问题的基本思路,要在学习中不断培养解题思路。

【试题2】从地面上以初速度v 0竖直上抛一质量为m 的小球,若运动过程中受到的空气阻力与其速率成正比,球运动的速率随时间变化的规律如图所示,t 1时刻到达最高点,再落回地面,落地速率为v 1,且落地前小球已经做匀速运动,则在整个过程中,下列说法中不正确...的是( )A .小球下降过程中的平均速度大于v 1/2B .小球的加速度在上升过程中逐渐减小,在下降过程中也逐渐减小C .小球抛出瞬间的加速度大小为(1+v 0/v 1)gD .小球被抛出时的加速度值最大,到达最高点的加速度值最小 【答案】D考点:牛顿第二定律;v-t 图线【试题3】一物块用轻绳AB 悬挂于天花板上,用力F 拉住套在轻绳上的光滑小圆环O (圆环质量忽略不计),系统在图示位置处于静止状态,此时轻绳OA 与竖直方向的夹角为α,力F 与竖直方向的夹角为β。

高考数学专题03最有可能考的30题(理)-高考数学走出题海之黄金30题系列(解析版).docx

高考数学专题03最有可能考的30题(理)-高考数学走出题海之黄金30题系列(解析版).docx

2014年高考数学走出题海之黄金30题系列一、选择题1.已知集合}3,2,1,1{-=A ,}11{<--∈=x x R x B ,则右边韦恩图中阴影部分所表示的集合为( )A.}1,1{-B.}3{C.}3,2{D. }3,2,1{ 【答案】D【解析】zxxk 学 科 网试题分析:}1{<∈=x R x B ,则A B =I }1{-,阴影部分表学科网示的集合为}3,2,1{,选D. 【考点定位】1.绝对值不等式的解法;2.集合的运算. 2.“a b >”是“11a b<”的( ) A.充分必要条件 B.必要不充分条件 C.充分不必要条件 D.既不充分也不必要条件 【答案】D 【解析】3..已知i 是虚数单位,11iz =+,则z =A. 0B. 12 D. 2 【答案】C 【解析】试题分析: 1i 2z z =-⇒=【考点定位】复数的运算和复数的模.4.设i 为虚数单位,若复数()()2231i z m m m =+-+-是纯虚数,则实数m =( )A .3-B .3-或1C .3或1-D .15.已知0,0a b >>,且1ab =,则函数()xf x a =与函数()log b g x x =-的图像可能是( )【答案】B6.在锐角ABC ∆中,AB=3,AC=4,其面积33ABC S ∆=,则BC=( )A .5B .13或37C .37D .13 【答案】D 【解析】【考点定位】余弦定理 三角形面积 正余弦关系zxxk 学 科 网 7.函数()sin()f x A x ωϕ=+(其中A >0,2||πϕ<)的图象如图所示,为了得到()f x 的图象,则只需将g(x)=sin2x 的图象( )A. 向右平移6π个长度单位 B. 向左平移6π个长度单位 C. 向右平移3π个长度单位 D.向左平移3π个长度单位 【答案】B zxxk 学 科 网 【解析】8.已知点A(-1,1)、B(1,2)、C(-2,-1)、D(3,4),则向量AB u u u r 在CD uuur 方向上的投影为( )(A)322 (B)3152 (C)-322 (D)-3152【答案】A【解析】AB u u u r =(2,1), CD u u u r=(5,5),设AB u u u r ,CD uuu r 的夹角为θ,则AB u u u r 在CD uuu r 方向上的投影为|AB u u u r |cos θ=AB CD CD⋅u u u r u u u ru u u r =52=32.故选A. 【考点定位】向量的坐标运算及向量的投影.9.设各项为正的等比数列{a n }的公比q ≠1,且a 3,a 5,a 6成等差数列,则3546a a a a ++的值为( )(A)51+ (B)51- (C) 12(D)210.从集合{2,3,4,5}中随机抽取一个数a ,从集合{1,3,5}中随机抽取一个数b ,则向量(,)m a b =u r与向量(1,1)n =-r垂直的概率为(A )16 (B )13 (C )14 (D )12【考点定位】古典概型11.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )A .108 cm 3B .100 cm 3C .92 cm 3D .84 cm 3【答案】B【考点定位】三视图及几何体的体积.12.设α,β是两个不同的平面,l 是一条直线,以下命题正确的是( ) A .若l ⊥α,α⊥β,则l ⊂β B .若l ∥α,α∥β,则l ⊂β C .若l ⊥α,α∥β,则l ⊥β D .若l ∥α,α⊥β,则l ⊥β【答案】C【解析】选项A中也可以l∥β,选项B中也可以l∥β,选项D中也可以l⊂β,l∥β或l与β斜交.【考点定位】空间直线与平面的位置关系. zxxk 学科网13.已知F1、F2为双曲线C:x2-y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则P到x轴的距离为( )(A)32(B)62(C)3 (D)6【答案】B【考点定位】双曲线.14.实验测得四组(x,y)的值分别为(1,2),(2,3),(3,4),(4,4),则y与x间的线性回归方程是()A.y=-1+x B.y=1+x C.y=1.5+0.7x D.y=1+2x【答案】C【解析】15.执行如图所示的程序框图,若输入的x的值为2,则输出的x的值为()A .3B .126C .127D .128 【答案】C【解析】zxxk 学 科 网试题分析:根据框图的循环结构,依次2213x =-=;3217x =-=;721127x =-=;跳出循环速输出127x =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高考数学走出题海之黄金30题系列母题1【集合运算】【2018年理北京卷】已知集合A={x||x|<2},B={–2,0,1,2},则A B= A. {0,1} B. {–1,0,1} C. {–2,0,1,2} D. {–1,0,1,2} 【答案】A 【解析】因此A B =,选A.母题2【充分条件和必要条件】(2017天津卷5)设R θ∈,则“ππ1212θ-<”是“1sin 2θ<”的( ). A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 【答案】A 【解析】πππ012126θθ-<⇔<< 1sin 2θ⇒< ,但10,sin 2θθ=<,不满足 ππ1212θ-<,所以是充分不必要条件,选A.母题3【函数的性质】【2018年理新课标I 卷】已知函数.若g(x )存在2个零点,则a 的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞) 【答案】C 【解析】画出函数的图像,在y 轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A 时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.母题4【函数的图象】【2018年浙江卷】函数y =sin2x 的图象可能是A. B. C. D.【答案】D【解析】令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.5【三角形函数的图象和性质】【2018年理天津卷】将函数的图象向右平移个单位长度,所得图象对应的函数A. 在区间上单调递增B. 在区间上单调递减C. 在区间上单调递增D. 在区间上单调递减【答案】A【解析】由函数图象平移变换的性质可知:将的图象向右平移个单位长度之后的解析式为:.则函数的单调递增区间满足:,即,令可得一个单调递增区间为:.函数的单调递减区间满足:,即,令可得一个单调递减区间为:.本题选择A选项.6【平面向量数量积】【2018年理数天津卷】如图,在平面四边形ABCD中,,,,. 若点E为边CD上的动点,则的最小值为A. B. C. D.【答案】A【解析】建立如图所示的平面直角坐标系,则,,,,点在上,则,设,则:,即,据此可得:,且:,,由数量积的坐标运算法则可得:,整理可得:,结合二次函数的性质可知,当时,取得最小值.本题选择A选项.7【球切接】【2018年全国卷Ⅲ理】设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A. B. C. D.【答案】B【解析】如图所示,点M为三角形ABC的重心,E为AC中点,当平面时,三棱锥体积最大,此时,,,,点M为三角形ABC的重心,,中,有,,,故选B.8【空间点线面位置关系】【2018年浙江卷】已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C 的平面角为θ3,则A. θ1≤θ2≤θ3B. θ3≤θ2≤θ1C. θ1≤θ3≤θ2D. θ2≤θ3≤θ1【答案】D【解析】设O为正方形ABCD的中心,M为AB中点,过E作BC的平行线EF,交CD于F,过O作ON垂直EF于N,连接SO,SN,OM,则SO垂直于底面ABCD,OM垂直于AB,因此从而因为,所以即,选D.9【直线和双曲线位置关系】【2018年理数天津卷】已知双曲线的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点. 设A,B到双曲线同一条渐近线的距离分别为和,且,则双曲线的方程为A. B. C. D.【答案】C【解析】设双曲线的右焦点坐标为(c>0),则,由可得:,不妨设:,双曲线的一条渐近线方程为:,据此可得:,,则,则,双曲线的离心率:,据此可得:,则双曲线的方程为.本题选择C选项.10【直线和抛物线位置关系】【2018年理新课标I卷】设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=A. 5B. 6C. 7D. 8【答案】D【解析】根据题意,过点(–2,0)且斜率为的直线方程为,与抛物线方程联立,消元整理得:,解得,又,所以,从而可以求得,故选D.11【程序框图】【2018年理数全国卷II】为计算,设计了下面的程序框图,则在空白框中应填入A. B. C. D.【答案】B【解析】由得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入,选B.12【几何概型】(2017全国卷1理8)如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A.14B.π8C.12D.π4【答案】B【解析】不妨设正方形边长为a.由图形的对称性可知,太极图中黑白部分面积相等,即所各占圆面积的一半.由几何概型概率的计算公式得,所求概率为221()228aaππ⨯⨯=,选B.13【复数的运算及概念】【2018年理新课标I 卷】设,则A. B. C. D.【答案】C【解析】因为,所以,故选C.14【直线和圆】【2018年全国卷Ⅲ理】直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A. B. C. D.【答案】A【解析】直线分别与轴,轴交于,两点,,则,点P在圆上,圆心为(2,0),则圆心到直线距离,故点P到直线的距离的范围为,则,故答案选A.15【导数的几何意义】【2018年全国卷Ⅲ理】曲线在点处的切线的斜率为,则________.【答案】【解析】,则,所以,故答案为-3.16【二项式定理】【2018年全国卷Ⅲ理】的展开式中的系数为A. 10B. 20C. 40D. 80【答案】C【解析】由题可得,令,则,所以故选C.17【排列和组合】【2018年浙江卷】从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答)【答案】1260【解析】若不取零,则排列数为若取零,则排列数为因此一共有个没有重复数字的四位数.18【线性规划】【2018年理北京卷】若x,y满足,则2y−x的最小值是_________.【答案】3【解析】不等式可转化为,即,满足条件的在平面直角坐标系中的可行域如下图令,由图象可知,当过点时,取最小值,此时,的最小值为.19【平面向量坐标运算】【2018年全国卷Ⅲ理】已知向量,,.若,则________.【答案】【解析】由题可得,,,即,故答案为20【直线与抛物线、直线与圆】【2018年理数全国卷II】设抛物线的焦点为,过且斜率为的直线与交于,两点,.(1)求的方程;(2)求过点,且与的准线相切的圆的方程.【答案】(1) y=x–1,(2)或.【解析】(1)由题意得F(1,0),l的方程为y=k(x–1)(k>0).设A(x1,y1),B(x2,y2).由得.,故.所以.由题设知,解得k=–1(舍去),k=1.因此l的方程为y=x–1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为,即.设所求圆的圆心坐标为(x0,y0),则解得或因此所求圆的方程为或.21【立体几何与空间向量】【2018年理北京卷】如图,在三棱柱ABC-中,平面ABC,D,E,F,G分别为,AC,,的中点,AB=BC=,AC==2.(Ⅰ)求证:AC⊥平面BEF;(Ⅱ)求二面角B-CD-C1的余弦值;(Ⅲ)证明:直线FG与平面BCD相交.【答案】(1)证明见解析(2) B-CD-C1的余弦值为(3)证明过程见解析【解析】(Ⅰ)在三棱柱ABC-A1B1C1中,∵CC1⊥平面ABC,∴四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,∴AC⊥EF.∵AB=BC.∴AC⊥BE,∴AC⊥平面BEF.(Ⅱ)由(I)知AC⊥EF,AC⊥BE,EF∥CC1.又CC1⊥平面ABC,∴EF⊥平面ABC.∵BE平面ABC,∴EF⊥BE.如图建立空间直角坐称系E-xyz.由题意得B(0,2,0),C(-1,0,0),D (1,0,1),F(0,0,2),G(0,2,1).∴,设平面BCD的法向量为,∴,∴,令a=2,则b=-1,c=-4,∴平面BCD的法向量,又∵平面CDC1的法向量为,∴.由图可得二面角B-CD-C1为钝角,所以二面角B-CD-C1的余弦值为.(Ⅲ)平面BCD的法向量为,∵G(0,2,1),F(0,0,2),∴,∴,∴与不垂直,∴GF与平面BCD不平行且不在平面BCD内,∴GF与平面BCD相交.22【解三角形】【2018年理新课标I卷】在平面四边形中,,,,.(1)求;(2)若,求.【答案】(1) .(2).【解析】分析:(1)根据正弦定理可以得到,根据题设条件,求得,结合角的范围,利用同角三角函数关系式,求得;(2)根据题设条件以及第一问的结论可以求得,之后在中,用余弦定理得到所满足的关系,从而求得结果.详解:(1)在中,由正弦定理得.由题设知,,所以.由题设知,,所以.(2)由题设及(1)知,.在中,由余弦定理得.所以.23【等差数列通项公式和等比数列求和】【2018年浙江卷】已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1−b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)由是的等差中项得,所以,解得.由得,因为,所以.(Ⅱ)设,数列前n项和为.由解得.由(Ⅰ)可知,所以,故,.设,所以,因此,又,所以.24【数列递推公式和数列求和】【2018年理数天津卷】设是等比数列,公比大于0,其前n项和为,是等差数列.已知,,,.(I)求和的通项公式;(II)设数列的前n项和为,(i)求;(ii)证明.【答案】(Ⅰ),;(Ⅱ)(i).(ii)证明见解析.【解析】(I)设等比数列的公比为q.由可得.因为,可得,故.设等差数列的公差为d,由,可得由,可得从而故所以数列的通项公式为,数列的通项公式为(II)(i)由(I),有,故.(ii)因为,所以.25【空间向量与立体几何】【2018年理新课标I卷】如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求与平面所成角的正弦值.【答案】(1)证明见解析.(2) .【解析】(1)由已知可得,BF⊥PF,BF⊥EF,又,所以BF⊥平面PEF.又平面ABFD,所以平面PEF⊥平面ABFD.(2)作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD.以H为坐标原点,的方向为y轴正方向,为单位长,建立如图所示的空间直角坐标系H−xyz.由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE=.又PF=1,EF=2,故PE⊥PF.可得.则为平面ABFD的法向量.设DP与平面ABFD所成角为,则.所以DP与平面ABFD所成角的正弦值为.26【离散型随机变量的分布列和期望】【2018年理新课标I卷】某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为,求的最大值点.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的作为的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【答案】(1).(2) (i)490.(ii)应该对余下的产品作检验.【解析】(1)20件产品中恰有2件不合格品的概率为.因此.令,得.当时,;当时,.所以的最大值点为.(2)由(1)知,.(i)令表示余下的180件产品中的不合格品件数,依题意知,,即.所以.(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于,故应该对余下的产品作检验.27【直线和椭圆位置关系】【2018年全国卷Ⅲ理】已知斜率为的直线与椭圆交于,两点,线段的中点为.(1)证明:;(2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差.【答案】(1)(2)或【解析】(1)设,则.两式相减,并由得.由题设知,于是.①;由题设得,故.(2)由题意得,设,则.由(1)及题设得.又点P在C上,所以,从而,.于是.同理.所以.故,即成等差数列.设该数列的公差为d,则.②将代入①得.所以l的方程为,代入C的方程,并整理得.故,代入②解得.所以该数列的公差为或.28【导数的综合运用】【2018年全国卷Ⅲ理】已知函数.(1)若,证明:当时,;当时,;(2)若是的极大值点,求.【答案】(1)见解析(2)【解析】(1)当时,,.设函数,则.当时,;当时,.故当时,,且仅当时,,从而,且仅当时,.所以在单调递增.又,故当时,;当时,.(2)(i)若,由(1)知,当时,,这与是的极大值点矛盾.(ii)若,设函数.由于当时,,故与符号相同.又,故是的极大值点当且仅当是的极大值点..如果,则当,且时,,故不是的极大值点.如果,则存在根,故当,且时,,所以不是的极大值点.如果,则.则当时,;当时,.所以是的极大值点,从而是的极大值点,综上,.29【坐标系与参数方程】【2018年理新课标I卷】在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的直角坐标方程;(2)若与有且仅有三个公共点,求的方程.【答案】 (1).(2)综上,所求的方程为.【解析】(1)由,得的直角坐标方程为.(2)由(1)知是圆心为,半径为的圆.由题设知,是过点且关于轴对称的两条射线.记轴右边的射线为,轴左边的射线为.由于在圆的外面,故与有且仅有三个公共点等价于与只有一个公共点且与有两个公共点,或与只有一个公共点且与有两个公共点.当与只有一个公共点时,到所在直线的距离为,所以,故或.经检验,当时,与没有公共点;当时,与只有一个公共点,与有两个公共点.当与只有一个公共点时,到所在直线的距离为,所以,故或.经检验,当时,与没有公共点;当时,与没有公共点.综上,所求的方程为.30【不等式选讲】【2018年理新课标I卷】已知.(1)当时,求不等式的解集;(2)若时不等式成立,求的取值范围.【答案】(1).(2).【解析】(1)当时,,即故不等式的解集为.(2)当时成立等价于当时成立.若,则当时;若,的解集为,所以,故.综上,的取值范围为.。

相关文档
最新文档