4固体物理-金属电子论1

合集下载

固体物理-第三章 金属自由电子论讲解

固体物理-第三章 金属自由电子论讲解
N=I0G(EF)+ I1G’(EF)+ I2G’’(EF)+….. 其中, I0=- (-f/E) dE, I1=-(E-EF)(-f/E)dE,
3.1.量子自由电子理论
I2=(1/2!)-(E-EF)2(-f/E) dE 不难算出, I0=1(d-函数积分), I1=0 (根据d-函数的性质) 为了计算I2, 而令h=(E-EF)/kBT,于是, I2=[(kBT)2/2]-{h2/[(eh+1)(e-h+1)] }dh=(pkBT)2/6
波长),可见k为电子的波矢, 是3 维空间矢量. r:电 子的位置矢量。
由波函数的归一化性质:vy*(r) y(r)d(r)=1, v:金属体积, 假设为立方体,边长为L,把3.1.1.3式 代入归一化式子, 得: A=L-3/2=V-1/2, 所以
y(r)= V-1/2eik•r 3.1.1.4, 此即自由电子的本征态。 由周期性边界条件, y(x,y,z)= y(x+L,y,z) = y(x,y+L,z) = y(x,y,z+L)
一状态的电子具有确定的动量ħk和能量ħ2k2/(2m),因而 具有确定的速度,v=ħk/m,故一个k全面反映了自由电子 的一个状态,简称态。
2. k-空间
以kx, ky , kz 为坐标轴建立的 波矢空间叫k-空间。电子的 本征态可以用该空间的一点
来代表。点的坐标由3.1.1.5 式确定。
3.1.量子自由电子理论
T>0K的费米能EF 把3.1.2.2和3.1.3.1代入3.1.3.2, 分步积分, 得:
N= (-2C/3) 0 E3/2(f/E) dE 3.1.3.3 令G(E)= 2C E3/2/3, 3.1.3.3.式化简为 N= 0G(E) (-f/E) dE 3.1.3.4 (-f/E)函数具有类似d函数的特性,仅仅在EF附近kBT范 围内才有显著的值,且为E-EF偶函数. 由于(-f/E)函数 具有这些性质,把G(E)在EF附近展开为泰勒级数, 且积分 下限写成 -,不会影响积分值. 3.1.3.4化为:

固体物理(黄昆)第一章总结

固体物理(黄昆)第一章总结

固体物理(黄昆)第一章总结.doc固体物理(黄昆)第一章总结固体物理学是一门研究固体物质微观结构和宏观性质的学科。

黄昆教授的《固体物理》一书为我们提供了深入理解固体物理的基础。

本总结旨在概述第一章的核心内容,包括固体的分类、晶体结构、晶格振动和固体的电子理论。

一、固体的分类固体可以根据其结构特征分为晶体和非晶体两大类。

晶体具有规则的几何外形和有序的内部结构,而非晶体则没有长程有序性。

晶体又可以根据其内部原子排列的周期性分为单晶体和多晶体。

二、晶体结构晶体结构是固体物理学的基础。

黄昆教授详细讨论了晶格、晶胞、晶向和晶面等概念。

晶格是描述晶体内部原子排列的数学模型,而晶胞是晶格的最小重复单元。

晶向和晶面则分别描述了晶体中原子排列的方向和平面。

三、晶格振动晶格振动是固体物理中的一个重要概念,它涉及到晶体中原子的振动行为。

黄昆教授介绍了晶格振动的量子化描述,包括声子的概念。

声子是晶格振动的量子,它们与晶体的热传导和电导等性质密切相关。

四、固体的电子理论固体的电子理论是固体物理学的核心内容之一。

黄昆教授从自由电子气模型出发,介绍了固体中电子的行为和性质。

自由电子气模型假设电子在固体中自由移动,不受原子核的束缚。

这一模型可以解释金属的导电性和热传导性。

五、能带理论能带理论是固体电子理论的一个重要组成部分。

黄昆教授详细讨论了能带的形成、能隙的概念以及电子在能带中的分布。

能带理论可以解释不同固体材料的导电性差异,是现代半导体技术和电子器件设计的基础。

六、固体的磁性固体的磁性是固体物理中的另一个重要主题。

黄昆教授讨论了磁性的来源,包括原子磁矩和电子自旋。

磁性固体可以分为顺磁性、抗磁性和铁磁性等类型,它们的磁性行为与电子结构密切相关。

七、固体的光学性质固体的光学性质涉及到固体对光的吸收、反射和透射等行为。

黄昆教授介绍了固体的光学性质与电子结构之间的关系,包括光的吸收和发射过程。

八、固体的热性质固体的热性质包括热容、热传导和热膨胀等。

《固体物理学》房晓勇主编教材课件-第五章 金属电子论基础

《固体物理学》房晓勇主编教材课件-第五章 金属电子论基础
索末菲(A.Sommerfld)的量子自由电子理论
价电子由于受原子实的束缚较弱,而成为能在晶体内部

海 自由运动的自由电子。索末菲进一步假定,在自由电子的运 大

纳 动过程中,晶格周期场的影响可以忽略,电子间彼此无相互 道

百 作用。因此可将一个复杂的强关联的多体问题,转化为在平 致
川 均势场中运动的单电子问题,在首先求得单电子的能级的基

dN
=
2
⎛ ⎜⎝
L 2π
⎞3 ⎟⎠
dk
=
V 4π
3
dk
(5 − 13)
? 根据泡刺不和容原理,每一个波矢状态只 可以容纳两个自旋方向相反的电子。 海南大学

2. 能级密度分布
(1)电子能级密度定义:
lim G (E ) =
ΔZ = dZ

ΔE →0 ΔE dE
E + dE ky ds
(5 − 16)

第五章 金属电子论基础
在固体材料中,三分之二以上的固态纯元素物质属于金
属材料。由于金属具有极好的导电、导热性能及优良的机械 海 性能.是一种非常重要的实用材料,所以,通过对金属材料 大
纳 功能的研究,可以了解金属材料的性质,同时椎动现代固体 道
百 川
理诧的发展。另一方面.对金属材料的了解,也是认识非金 属材料的基础。


每个电子都可以建立一个独立的薛定谔方程:


2
− ∇ 2ψ (r ) = Eψ (r ) (5 − 4 )

2m
E---电子的能量
ψ----电子的波函数(是电子位矢 r的函数)
海南大学

固体物理学:第4章 金属自由电子论

固体物理学:第4章 金属自由电子论

1、费米分布的性质
FFD
1
FFD
1 e / kT
1
1T 0 f FFD 1
f
FFD 0
εf ε
T 0 时所有粒子排满费米能级以下的能级,
费米能级以上能级全空。
UESTC
FFD
1
(2)T 0
f
1 FFD 2
1/2
随着温度升高,有部分粒子
获得能量从 f以下能态跃迁到 f
0
1 p 1
p 1 f
n1
2
kT
2n
1
1 22n1
2n
d 2n
d
2n f
p 1 f
2 2
6
4
4
9
UESTC
应用积分公式
E
3 5
NE
f
0
1
5
12
2
kT Ef0
2
电子平均能量
E
E N
3 5
EF 0
2
4
kT
kT EF 0
UESTC
4、费米面
k空间中,能量为EF,即半径为 KF
以上能态。但无论温度多高,
T=0 T >0
εf ε

能态被粒子占据的几率始终为 1
f
2

UESTC
2、电子能量
dE FFD g d
T = 0 电子总能量
EF0
1
5
E0
c
2 d
22 5 cEF0
0
UESTC
T ≠0
积分公式
E
0
e
1 EF / kT 1
c 1 / 2d

第五章:金属的电子理论

第五章:金属的电子理论

dN ( E ) 3 2me 2 dE 2
3/ 2
3/ 2
E1/ 2
V 3 2
V 2me 2 2 2 3N ( E ) 2E
E1/ 2
DOS: number of electrons/unit energy in a range E ~ E + dE
自由电子模型总结
• 即使在金属中,传导电子的电荷分布( charge distribution)收到 离子芯强烈静电势的影响。因此,自由电子模型描述传导电子的运 动特性(kinetic properties)最为合适。传导电子与离子之间的相 互作用将在能带理论中讨论。 • 最简单的金属是碱金属:Li, Na, K, Rb, Cs。在这些单价金属中,N 原子构成的晶体有N 个电子和N 个正离子。 • 自由电子模型产生于在量子理论建立之前。经典Drude模型成功导 出欧姆定律(Ohm’s law),以及电导和热导的关系。但是,由于 使用了Maxwell经典统计分布,它不能解释比热容(heat capacity) 和磁化率(magnetic susceptibility )。后来Sommerfeld在量子理 论基础上重建了该模型。
~ 10eV
1/ 3 2 pF kF 3 N ~ 108 cm / sec vF V me me me
2/3 2 2 2 EF 2 3 N ~ 105 K TF kF kB 2me kB 2me kB V
态密度(Density of states, DOS)
L N (E) 2 2
dN ( E ) L 2me 1 N ( E ) 2me E , D( E ) dE E 2

固体物理金属电子论作业答案

固体物理金属电子论作业答案
K+离子位移: 位移: l
E48 1040 F m 2 105V m 1 9.25 1017 m 1.6 1019 C
Cl+离子位移:
l
Eeff
q
3.29 1040 F m 2 105V m 1 2.06 1016 m 1.6 1019 C
2m 2 9.1110 kg
8.711019 J 5.44eV
EF 0 8.7110 19 J TF 63116 K 23 k B 1.38 10 J / K
2)费米波矢
k F 3 n
2


1/ 3
(3 3.142 5.86 1022 cm3 )1/ 3 1.20 108 cm1
•传统硅基集成电路的栅介电材料和互连介质材料均为SiO2,但随集成度的提高, 需要提高栅介电的介电常数,而互连介质的介电常数最好能降低。根据克劳修斯莫索提关系,请试给出你认为可行的技术措施。 答:根据克劳修斯-莫索提关系,介电常数与原子密度和原子极化率有关。 提高介电常数:掺N(致密度或极化率提高)或采用其它氧化物(ZrO2、HfO2等) 降低介电常数:掺F(利用F离子强束缚电子特性降低极化率)或制备多空SiO2或 采用有机材料。
3) 费米速度
0 2 EF k F 1.05 10 34 J s vF 1.20 1010 m 1 m m 9.1110 31 kg
1.38 106 m / s 1.38 108 cm / s
3.用a3代表每个原子占据的体积,若金属中的自由电子气体在温 度为0K时能级被填充到kF0=(62)1/3/a,试计算每个原子的价电子 数目?并导出电子气在温度0K时的费米能的表达式? 解:假设价电子数位Z,则电子浓度为: n

固体物理期末复习题目及答案

固体物理期末复习题目及答案

.第一章晶体结构1、把等体积的硬球堆成下列结构,求球可能占据的最大体积和总体积之比。

(1)简立方 (2)体心立方 (3)面心立方(4)金刚石 解:(1)、简立方,晶胞内含有一个原子n=1,原子球半径为R ,立方晶格的顶点原子球相切,立方边长a=2R,体积为()32R ,所以 ()33344330.5262n R R K V R πππ⋅==== (2)、体心立方晶胞内含有2个原子n=2,原子球半径为R ,晶胞边长为a ,立方晶格的体对角线原子球相切,体对角线长为4个原子半径,所以3a R =3334423330.6843n R R K V R πππ⋅⨯====⎛⎫⎪⎝⎭(3)、面心立方晶胞内含有4个原子n=4,晶胞的面对角线原子球相切,面对角线长度为4个原子半径,立方体边长为a,所以2a R =3334442330.7442n R R K V R πππ⋅⨯====⎛⎫⎪⎝⎭(4)、金刚石在单位晶格中含有8个原子,碳原子最近邻长度2R 为体对角线14长,体对角线为83R a = 3334483330.3483n R R K V R πππ⋅⨯====⎛⎫⎪⎝⎭2、证明面心立方和体心立方互为倒格子。

09级微电子学专业《固体物理》期末考复习题目至诚 学院 信息工程 系 微电子学 专业 姓名: 陈长彬 学号: 2109918033、证明:倒格子原胞体积为()3*2cvvπ=,其中v c为正格子原胞的体积。

4、证明正格子晶面 与倒格矢 正交。

5能写出任一晶列的密勒指数,也能反过来根据密勒指数画出晶列;能写出任一晶面的晶面指数,也能反过来根据晶面指数画出晶面。

见课件例题 以下作参考: 15.如图1.36所示,试求:(1) 晶列ED ,FD 和OF 的晶列指数;(2) 晶面AGK ,FGIH 和MNLK 的密勒指数; (3) 画出晶面(120),(131)。

密勒指数:以晶胞基矢定义的互质整数( )。

[截a,b,c.]晶面指数:以原胞基矢定义的互质整数( )。

固体物理学_金属电子论之各向同性弹性散射和弛豫时间

固体物理学_金属电子论之各向同性弹性散射和弛豫时间
外,碰撞项又可化为:
E k , k k k
dk 3 2 x
由弹性散射的性质 k k ,故积分实际上在关于 k 的等能面上进行。 我们可以在极坐标下完成这一积分,取k 的方向为极轴,k 和 k 的夹角为 ,如 下图:
2
3
2
3
将 f 按 E 的级数展开,有:
f f 0 f1
f1 代入方程 将 f 0 代入玻耳兹曼方程,则碰撞项为0,故将 f 0 代入方程左方, 右方,得到一级方程:
q dk E k f0 k k , k f k f k 3 1 1 2
f1 k f1 k k , k dk
2
3
E kx k , k E k x
dk
2
3
k 变化,否则 k , k 0。故 E 可提出积分号 由弹性散射的性质E E且不随
第5节 各向同性弹性散射和弛豫时间
上节引入的弛豫时间 (k ) 物理意义不够明确,因此考虑一个具体的实例导出 弛豫时间是很有意义的,晶体的各向同性弹性散射正是这样一个特例。
各向同性弹性散射的含义: 1、它的能带情况是各向同性的,也就是说 E (k )与 k 的方向无关,只是 k 的函数
k 只跃迁到能量相同的 k 态,用公式表示如下: 2、散射是弹性的,
qE k x dE f 0 dk k , k f k f k 1 3 1 k dk E 2
取试探解:
f1 (得:
k k

黄昆 固体物理 讲义 第六章

黄昆 固体物理 讲义 第六章

在 k 空间, E = E F 的等能面称为费米面。 1.
E F 的确定
-2CREATED BY XCH
REVISED TIME: 05-5-12
固体物理学_黄昆_第六章 金属电子论_20050406
V 电子按能量的统计分布 : dZ = N ( E )dE —— N ( E ) 状态密度 在 E − E + dE 之间状态数(量子态数) 在 E − E + dE 之间的电子数: dN = f ( E ) N ( E )dE
1 e
E − EF k BT
+1
0 0
当温度 T = T K , E > E F 的状态中, 电子填充的几率增大,E < E F 如果 E F = E F 不随时间变化,
0
的状态中,电子填充的几率减小。费密分布函数在 E F = E F 左右的增加和减小是对称的。如图
0
XCH006_005 所示。 —— 对于近自由电子, N ( E ) ∝ E
3 0 dE = E F 5
结果:在绝对零度下,电子仍具有相当大的平均能量。这是因为电子必须满足泡利不相容原理,每
REVISED TIME: 05-5-12 -3CREATED BY XCH
固体物理学_黄昆_第六章 金属电子论_20050406
个能量状态上只能容许两个自旋相反的电子。这样所有的电子不可能都填充在最低能量状态。 绝对温度 T ≠ 0 时金属中电子费密能量
—— EF是费米能量或化学势:体积不变的情况下,系统增加一个电子所需的自由能。
电子的总数: N =
∑ f (E )
i i
—— 对所有的本征态求和
在温度 T ≠ 0 的情况时:在 E = E F , f ( E F ) =

固体物理第4章 固体电子论 2011 参考答案

固体物理第4章 固体电子论 2011 参考答案

第四章 固体电子论 参考答案1. 导出二维自由电子气的能态密度。

解:二维情形,自由电子的能量是:22222()()22x y k E k k mm==+k2πLx xk n =,2πLy yk n =在/k =到d k k +区间:22222d 2d 2π(2π)2ππS Lm L Z kdk dE=⋅=⋅=k那么:2d ()d Z Sg E E=其中:22()πm g E =2. 若二维电子气的面密度为n s ,证明它的化学势为:2π()ln exp 1s B B n T k T m k T μ⎡⎤⎛⎫=-⎢⎥⎪⎝⎭⎣⎦解:由前一题已经求得能态密度:22()πm g E =电子气体的化学势μ由下式决定:()()222E-/E-/01d ()d πe1e1B B k Tk TL mE N g E LE μμ∞∞==++⎰⎰令()/B E k Txμ-≡,并注意到:2s Nn L =()12/1d πB xB s k Tk T mn exμ-∞-=+⎰()2/d π1B x B xxk Tk Tm e ee μ∞-=+⎰2/lnπ1BxB xk Tk T m ee μ∞-=+()/2ln 1πB k TB k T m eμ=+那么可以求出μ:2π()ln exp 1s B B n T k T m k T μ⎡⎤⎛⎫=-⎢⎥⎪⎝⎭⎣⎦证毕。

3. He 3是费米子,液体He 3在绝对零度附近的密度为0.081 g /cm 3。

计算它的费米能E F 和费米温度T F 。

解:He 3的数密度:N N M N n V M VMmρρ==⋅=⋅=其中m 是单个He 3粒子的质量。

()1123233π3πF k n m ρ⎛⎫== ⎪⎝⎭可得:2222322/33π(3)22F E n mm m ρπ⎛⎫== ⎪⎝⎭代入数据,可以算得: E F =6.8x 10-16erg = 4.3x 10-4eV .则:FF E T k ==4.97 K.4.已知银的密度为310.5/g cm ,当温度从绝对零度升到室温(300K )时,银金属中电子的费米能变化多少?解:银的原子量为108,密度为310.5/g cm ,如果1个银原子贡献一个自由电子,1摩尔物质包含有6.022x 1023个原子,则单位体积内银的自由电子数为2232310.55.910()108/6.02210n cmmρ-===⨯⨯在T=0K 时,费米能量为202/3328FhnEm π=()代如相关数据得2/3272227302812(6.6310)()3 5.910()29.110()8 3.148.8710() 5.54()Ferg s cmEg erg eV -----⎛⎫⨯⋅⨯⨯=⎪⨯⨯⨯⎝⎭≈⨯≈在≠T0K时,费米能量2020]12B F FFK TE E E π=[1-()所以,当温度从绝对零度升到室温(300K )时, 费米能变化为202012B F FFk TE E E π-=-()代如相关数据得4F FE E -⨯⨯-⨯≈⨯≈2-162-12-163.14(1.3810300)=-128.8710-1.610(erg)-10(eV )可见,温度改变时,费米能量的改变是微不足道的。

固体物理(2011) - 第4章 能带论 1 布洛赫定理与布洛赫波

固体物理(2011) - 第4章 能带论 1 布洛赫定理与布洛赫波

2 波动方程 [ V ( r )] E 2m 晶格周期性势场 V (r ) V (r Rn )
2
两个具体近似方案
• QED!
1. 近自由电子近似:晶体势场的周期起伏比较弱,周期势能可 以看成是对自由电子平面波情况的微扰。
周期方形波怎么构成? —— F. T.
布洛赫定理的证明 —— 引入平移算符,证明平移算符与哈密顿算符对易 两者具有相同的本征函数
—— 利用周期性边界条件确定平移算符的本征值,最后给出 电子波函数的形式
—— 势场的周期性反映了晶格的平移对称性
晶格平移任意格矢 势场不变
—— 在晶体中引入描述这些平移对称操作的算符
T1 , T 2 , T 3
ik a 1
, 2 e
ik a 2
, 3 e
ik a 3
作用于电子波函数
e
ik ( m1a1 m2a2 m3a3 )
(r )
ik R m (r Rm ) e (r )
—— 布洛赫定理
ik r 电子的波函数 ( r ) e u k ( r )
固体物理
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章
So lid S ta te Phy si cs
1 布洛赫定理与布洛赫波 2 近自由电子近似方法 3 紧束缚近似方法 4 其他方法 5 能带电子的态密度 6 布洛赫电子的准经典运动 7 布洛赫电子在恒定电场中的 准经典运动 8 布洛赫电子在恒定磁场中的 准经典运动 9 能带论的局限性
把一个多粒子(电子、离子实)体系问题简化为一 个多电子体系问题。
单光子问题
第二步简化——单电子近似:认为每一个电子都是处于相

固体物理简答题

固体物理简答题

第一章1.何为布拉伐格子,简单晶格、复式格子?并举例说明哪种晶体是简单格子,哪种晶体是复式格子?了解常见的几种晶体结构。

布拉伐格子:由332211a l a l a l ++确定的空间格子。

简单晶格:每一个原胞有一个原子。

复式格子:每一个原胞含有两个或更多的原子。

举例:(1)简单晶格:具有体心立方晶格结构的碱金属和具有面心立方晶格结构的Au,Ag,Cu 晶体都是简单晶格。

(2)复式格子:NaCl 晶格,CsCl 晶格,金刚石,ZnS,Si,Ge 等晶体结构:面心立方单胞原子数4,配位数12体心立方单胞原子数2,配位数8CsCl 单胞原子数2,配位数8金刚石单胞原子数8,配位数4NaCl 单胞原子数na4cl4共8个,配位数62简述晶体、非晶体和准晶体的特点。

晶体:原子排列是十分有规律的,主要体现是原子排列具有周期性,或称为是长程有序的。

非晶体:不具有长程有序的特点,短程有序。

准晶体:有长程取向性,而没有长程的平移对称性。

3晶格点阵与实际晶体结构有何区别和联系?晶体点阵是一种数学抽象,其中的格点代表基元中某个原子的位置或基元质心的位置,也可以是基元中任意一个等价的点。

当晶格点阵中的格点被具体的基元代替后才形成实际的晶体结构。

晶格点阵与实际晶体结构的关系可总结为:晶格点阵+基元=实际晶体结构4结晶学原胞和固体学原胞有何不同?(何为单胞和原胞?二者有何不同?)结晶学原胞(单胞):为了同时反映晶格的对称性,常取最小重复单元(原胞)的一倍或几倍作为重复单元。

固体学原胞(原胞):一个晶格中最小重复单元,反映晶格的周期性。

不同:结晶学原胞除了要考虑晶体结构的周期性外,还要反映晶体的对称性。

它的结点既可以在顶角上也可以在体心或者面心处。

固体物理学原胞只要求反映晶格周期性的特征,结点只在顶点上,内部和面上皆不含其他结点。

而且,固体物理学原胞只含一种原子。

5根据晶体的对称性进行分类,有多少种点群、空间群、布拉伐格子?32种点群,230个空间群,14种布拉伐格子,7大晶系321,,b b b 6倒格子定义,倒格子与正格子的关系有哪些?倒格子定义:以关系:是正格基矢123()a a a Ω=⋅⨯ 7布里渊区的定义及特点,举例说明常见的布拉伐格子的布里渊区形状?定义:在倒易点阵中,以某一格点为坐标原点,做所有倒格矢的垂直平分面,倒易空间被这些平面分成许多包围原点的多面体区域,这些区域称作布里渊区。

固体物理学 自由电子论

固体物理学 自由电子论
自由电子费米气体 (金属自由电子论)
§1. 金属自由电子论的物理模型 1.Drude的金属自由电子论
Drude的经典理论将自由电子看 作是经典离子气体,服从波尔兹曼分 布(速度分布),与中性稀薄气体一样 去处理,认为电子之间无相互作用, 同时也不考虑原子实势场的作用,这 样一个简单的物理模型处理金属的许 多动力学问题是很成功的。
f ( T )D( )d N
0
当T《 TF时:
u
F
[1
2
12
(
kBT
F
)2
]
0(kB
T
F
)4
与处理点阵振动的热能相仿,由
电子气的轨道密度D(ε)可求出电子气
的内能,轨道密度定义为:
在能量ε附近,单位能量间隔中
的轨道数定义为轨道密度度,在dε能
量间隔中的轨道数为D(ε)dε,色散
关系为:
2 k 2
k2
2 2m
(k2x
k
2 y
kz2 )
这就是色散关系,能量随波矢的变化是抛物
线函数。
对于一个三维晶体,需要的量子数为:
(1)波矢k(三个分量kx、ky、kz)
(2)自旋量子数
ms
1 2
给定了 k 就确定了能级,k 代表同能级上
自旋相反的一对电子轨道。
在波矢空间自由电子的等能面是一个球面
εk
2 2m
此时 k(r) eikr (省去了归一化常数), 波矢 Kx.K y.KZ 取一系列分立值:
kx
2π L
nx
ky
2π L
ny
0. 1. 2......
kz
2π L
nz
将 (r) eikr ei(k xxk y yk zz) k 代回薛定锷方程可求出能级:

第四章固态电子论基础

第四章固态电子论基础
固体物理
第四章固态电子论基础
第四章 固态电子论基础
§4-4 金属的热容、电导与热导
利用索末菲的自由电子气模型,特别是根据金属的 费米属性,我们便可以很容易地解释金属的热容、
第四章固态电子论基础
• 金属的热容
金属是由金属离子构成的晶格与价电子(自由电子) 组成的。金属的热容应该包括晶格振动的贡献(即 声子气的贡献)和自由电子气的贡献两部分。在常 温下电子气的热容远远小于声子气的热容,故可以 忽略电子气对热容的贡献,金属的热容主要以声子 气热容的形式表现出来,在常温下为一与温度无关 的常数,满足杜隆—帕替定律。
另外,人们还发现一些金属化合物具有很大的电子热 容系数γ,其数值比一般金属的电子热容系数高出近 2~3个数量级。包括UBe13、CeAl3、CeCu2Si2和 CeCu6等,被称为重费米子金属。一般认为,由于近 邻离子中f电子波函数的弱重叠效应,使得这些化合物 中的f电子所具有的惯性质量可以达到1000 m左右。有 关重费米子金属的研究是固体物理中的研究热点之一。
根据分析,当外加电场恒定时,金属波矢空间电子 占据态的球形分布就会将越来越偏心,即净电流将 随时间不断地增加。实际上,由于金属中的杂质、 缺陷形成的势场以及声子等都会对电子的运动产生 散射,这些散射导致Δk并不会随时间t无限制地增加。 当外场的漂移作用与散射作用达到动态平衡时,电 子占据的球形分布将保持稳定的偏心。
第四章固态电子论基础
如果金属处于均匀恒定的外电场E中,则金属中的
每个电子都会受到电场力F=-eE的作用,电子的
动量按照下面规律变化:
dp dk eE dt dt
(4-55)
即:
dk
eE
dt
(4-56)
经过t时间后,电子波矢的增量为:

固体物理金属中自由电子论

固体物理金属中自由电子论
严格理论计算结果支持了后一种说法。这主要是 由于Pauli不相容原理的结果。能量比EF低得多的电 子,其附近的状态仍被其他电子所占据,没有空状态 来接纳它。因此,这些电子不能吸收电场的能量而跃 迁到较高的能态,对电导作出贡献,能被电场激发而 对电导有贡献的只是在费米面附近的一小部分电子。
§5.2 Sommerfeld展开式及其应用
电子由于碰撞而失去其定向运动。
费米球心移动的距离为
Δk
=
dk dt
⋅τ
=


h
ετ:平均自由时间源自电子的定向漂移速度为Vd
=
1 m

hΔk
=
− eτ
m
ε
电流密度:
j
=
−neVd
=
ne2τ
m
⋅ε
=
σ
⋅ε
∴σ = ne2τ
m
第二种解释:只有在费米面
ky
附近未被抵消部分的电子才
对传导电流有贡献。
这部分电子所占的分数为
0.5
0
E F
E
0
E F
E
对于金属而言,由于T << TF总是成立的,因此, 只有费米面附近的一小部分电子可以被激发到高能 态,而离费米面较远的电子则仍保持原来(T=0)的 状态,我们称这部分电子被“冷冻”下来。因此,虽然 金属中有大量的自由电子,但是,决定金属许多性质 的并不是其全部的自由电子,而只是在费米面附近的 那一小部分。
Z
(E)
=
2⋅
ρ
(k)⋅
4πk3
3
=
2⋅
V

3


3
(
2m

固体物理 第四章(1)Bloch定理

固体物理 第四章(1)Bloch定理



i

ˆ H i i r i Ei i r i


(4-9)
所有电子都满足薛定谔方程,可略去下标。只要解得 i r i , Ei ,便可得
到晶体电子体系的电子状态和能量,使一个多电子体系的问题简化成一 个单电子问题,所以上述近似也称为单电子近似。

周期势场假设
而并不考虑其它电子的具体运动情况
单电子近似并非所研究的系统只有一个电子。系统可以有多个 电子,但是波函数十单电子的波函数,多个单电子方程。但所 有单电子都满足同样的方程,因此这个单电子方程的解对所有 电子都适用,是所有电子的解。 如果该近似用到不满足这个近似的体系——强关联体系,会出 现反常现象。
4.2 能带理论的基本假设
假设在体积V=L3中有N个带正电荷Ze的离子实,相应地有NZ个价电 子,那么该系统的哈密顿量为:
2 2 1 / e2 ˆ H i 2 i , j 4 0 r i r j i 1 2m
NZ NZ N 2 2 1 ( Ne) 2 Ze 2 / n 2 i , j 4 0 R n R m i 1 n 1 4 0 r i R n i 1 2 M ˆ ˆ Te U ee r i r j Tn U nm R n R m U en r i R n N

(4-12)
的本征函数是按布拉菲格子周期性调幅的平面波,即
k



ik r r e uk r

(4-13)
在周期势场中运动的单电子的波函数不再 是平面波,而是调幅平面波,其振幅不再
uk r R n uk r

《固体物理·黄昆》第七章(1)(1)

《固体物理·黄昆》第七章(1)(1)
F0 正) 比。
(2) 从电子的热容量可获得费米面附近能态密度的信 息。
一般温度下,晶格振动的热容量比电子的热容量大得多。 在温度较高下,晶格振动的热容量是主要的,热容量基 本是一个常数。
低温范围下不能忽略电子的 热容量。
C Metal V
CVPhonon bT 3
CVElectron T
EF0 kB
物理意义:设想将EF0转换成热振动能,相当于多高
温度下的振动能。
金属:TF: 104 ~ 105 K
对于金属而言,由于T << TF总是成立的,因此,只有 费米面附近的一小部分电子可以被激发到高能态,而 离费米面较远的电子则仍保持原来(T=0)的状态, 我们称这部分电子被“冷冻”下来。因此,虽然金属 中有大量的自由电子,但是,决定金属许多性质的并 不是其全部的自由电子,而只是在费米面附近的那一 小部分。
EF
E
0 F
[1
2
12
(
kBT EF0
)2
]
温度升高,费米能 级下降
EF
EF0
[1
2
12
(
kBT
E
0 F
)
2
]
T 300 K
kBT 2.6 102 eV
kBT
E
0 F
1
EF0 ~ several eV
EF EF0
三、 电子热容量
根据电子的能量分布得电 U f (E)EN (E)dE
子总能量:
由于(-f/E)具有类似函数特征,改变积分下限并
不会改变积分值
N
Q(EF ) (
f )dE E
Q '(EF ) (E
EF )(
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
F
0
2 Q F k BT



取 H g 可得到总能量 2 d g 2 u g d F F g F k BT 0 6 d F 其中 g d u0 ,为零温时总能量; 0 2 1 利用化学势和费米能关系 F k BT 2 6 2 F 2 2 可得到 1 2 k BT F g F g F F g F k BT 2 u u0 6 2 F 6 再考虑自由电子态密度 g 1 g , 2 2 可得到 u u k T 2 g 0 B F 6
0


I Q f 0 Q f d Q f 0
0



0
f Q d

上式右边第一项为零; 上式右边第二项可以利用费米分布函数接近阶跃函数的特 点; (阶跃函数的导数为dirac delta function)
费米分布函数的导函数
μ
μ
费米分布函数相关积分

将Q(ε)在μ附近作泰勒展开 1 2 Q Q Q Q 可得到
2
f f f I Q d Q d Q d 0 1 f f 2 Q d Q d 2
费米分布函数

非零温时,电子在本征态上的分布由费米分布函数决定
fi
e
i k BT
1
1
E-μ
费米分布函数

费米分布函数
fi
e
i k BT
1
1
fi
E-μ
费米分布函数

fi


在T→0K时,费米分布函数的极限 1, if i lim f i T 0 K 0, if i 因此在T→0K时, lim F T 0 K T >0K时, 若ε-μ=3kBT,exp[(ε-μ)/kBT] ≈20,f ≈0.05; 若ε-μ=-3kBT,exp[(ε-μ)/kBT] ≈0.05,f ≈1; 因此, T >0K时的费米分布函数与T=0K时的差别只在μ附 近几个kBT范围内发生; 室温下的费米分布函数非常接近T=0K时分布函数。
固体物理学
金属电子论1
固体的近似

固体是由很多原子组成的复杂体系 原子核 固体中 的原子 芯电子 (core electron) 价电子 (valence electron) 离子实 (ion core)
电子

在结合成固体时,离子实的变化可以忽略,只考虑价电子 的变化;
金属自由电子气体模型

2 12 F
3 12
2m
3 12
12
电子平均能量

费米球内电子的基态总能量
2k 2 E 2 k 2 k kF k k F 2m
F F
Vg d V
0

0
2m
3 12
2 3

12
2m d V
2 52
则单位体积的电子态密度为
V dN 2 3 4k 2 dk 8

1 dN 2m 12 g V d 2 3
则单位体积的电子态密度即单位体积样品中,单位能量间隔内,包含自旋的电子态数

3 12

费米面处的态密度

单位体积的态密度为
1 dN 2m 12 12 g V d 2 3

平面波解
1 ikr k r e V 2k 2 k 2m

V
波恩-卡曼(Born-Karman) 周期性边界条件

边界条件
x L, y, z x, y, z x, y L, z x, y, z x, y, z L x, y, z

电子占据空间
N n V
1 V 4 3 3 rs , rs n N 3 4n
13

对于大多数金属,rs/a0在2和3之间,碱金属在3和6之间 (a0为玻尔半径)
单电子本征态

温度T=0K,体积V=L3,N个电子; 单电子Schrodinger方程
2 2 2 2 V r r r r r 2m 2m



由于 f 具有dirac delta 的特点,因此上式右边各项 中积分只在|ε-μ|附近有意义; f 第一项 d 1 ;





第二项
f
d 0
费米分布函数相关积分

二级近似



2 2kF 费米面上的单电子态能量称为费米能量; F 2m 相应的有费米动量,费米速度,费米温度; pF kF , vF kF m , TF F k B
费米球

普通金属εF≈2-10eV;TF ≈104~ 105K; 费米球内的总电子数;
V 4 3 N 2 3 k F 8 3
1
总能量和总电子数

T >0K时,单位体积的自由电子气体总能量和总电子数目 分别为 u g f d , n g f d ,

0

0

考查积分形式 I H f d , 0 令Q H d ,分部积分
e i k BT 1
1
费米分布函数
化学势



根据费米分布函数的定义 f i i k BT e 1 当ε=μ时,fi=1/2; 因此,化学势等于费米分布函数曲线纵轴为1/2时对应的 横轴能量值; 在绝对零度时,化学势μ等于费米能εF, 温度T >0K时,化学势μ是温度的函数;但与零温时相比偏 差不多;



令 k BT ,则有 f 1 2 2 2 d k T d B e 1e 1 因此 2 2 I Q Q k BT 6 由于化学势μ非常接近费米能εF,可以近似将Q(μ)表示 为 Q Q F F Q F ,因此


3 12

费米面处的态密度
2m g
m kF 2 2 kF F 2 3 2 3 2m 3 m m kF m 3 2 n 3 n g F 2 2 k F 2 2 2 2 2 2 kF kF 2 F
I H f d Q F F Q F
0
0
2
6
2 Q F k BT

总能量 u g f d , 应用


电子总能量
2
6
Q H d
0

I H f d Q F F Q F

边界条件对波矢的限制 ik x L

波矢的取值是离散的(量子化)
e
e
ik y L
e
ik z L
1
2 2 2 kx nx , k y ny , k z nz , L L L
波矢k空间



将波矢k 看作空间矢量,相 应的空间称为 k 空间,在 k 空间中许可的 k 值用分立的 点表示; 每个点代表一个电子本征 态(不考虑自旋),在 k 空 间 占 据 的 体 积 为 (2pi/L)3=8pi3/V; k 空间中单位体积允许的 k 点数(k空间态密度) V/8pi3;
1 f 2 I Q Q d 2
I Q F F Q F
2
6
2 Q F k BT
1 2 e 1e 1 d 3
3 1 2 F
2 3
32 d 0
2 2m 2 2m 52 V F V 2 3 2 3 5 5


3 12

3 12


k 3 n
3 F 2
5 2 5 k V k 2 F 2m F 10 m
代入上式 可得到
2 3 E 3 2 2 E V k 3 n N F F 2 F 10m 5 N 5

费米波矢和电子密度的关系
k 3 n
3 F 2
电子态密度(density of states)

K空间电子态密度V/8pi3; k空间中波矢k----k+dk球壳内允许的k态数(考虑自旋)

2k 2 由于 ,上式可变为 2m 12 3 12 V 2m 1 2m V 2m 1 2 dN 2 3 4 2 d 2 2 d 3 8 2
2
总电子数和化学势

总电子数 n g f d , 应用


Q H d
0




(TF ≈104~ 105K)
取 H g 可得到总电子数 F 2 2 n g d F g F g F k BT 0 F 6 其中 0 g d n0 ,为零温时电子数,由于电子数不随温 度变化,可得到 2 g F k BT 2 F 6 g F 考虑到自由电子气体 3 12 3 12 1 2m 1 2 1 g 2m 1 2 g g 2 3 2 3 2 2 2 2 2 2 2 1 k BT T 2 k BT F 1 F F 1 6 2 F 12 F 12 TF
相关文档
最新文档