直线与平面平行的判定与性质11

合集下载

直线、平面平行的判定及其性质

直线、平面平行的判定及其性质

直线、平面平行的判定及其性质新课讲解:1、直线与平面平行的判定及其性质(1)线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

线线平行⇒线面平行(2)线面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

线面平行⇒线线平行2、平面与平面平行的判定及其性质(两条相交直线即可代表一个平面)(1)两个平面平行的判定定理①如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。

线面平行→面面平行②如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。

线线平行→面面平行③垂直于同一条直线的两个平面平行.(2)两个平面平行的性质①如果两个平面平行,那么某一个平面内的直线与另一个平面平行。

面面平行→线面平行②如果两个平行平面都和第三个平面相交,那么它们的交线平行。

面面平行→线线平行题型一:直线与平面平行的判定要点:利用判定定理时关键是找平面内与已知直线平行的直线.可先直观判断平面内是否已有,若没有,则需作出该直线,常考虑三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线。

例1.(2011·天津改编)如图,在四棱锥PABCD 中,底面ABCD 为平行四边形,O 为AC 的中点,M 为PD 的中点。

求证:PB ∥平面ACM 。

变式练习1:如图,正方体ABCD-A 1B 1C 1D 1中,E 为DD 1中点。

求证:BD 1∥平面AEC 。

变式练习2:如图,若PA ⊥平面ABCD ,四边形ABCD 是矩形,E 、F 分别是AB 、PD 的中点,求证:AF ∥平面PCE 。

A B CD A 1B 1C 1D 1E例2.正方体ABCD-A1B1C1D1中,侧面对角线AB1、BC1分别有E、F,且B1E=C1F,求证:EF∥平面ABCD.变式练习1:如图,正方体ABCD-A1B1C1D1中,E在AB1上,F在BD上,且B1E=BF.求证:EF∥平面BB1C1C.题型二:平面与平面平行的判定例3.如图,在正方体ABCDA1B1C1D1中,M、N、P分别为所在边的中点.求证:平面MNP∥平面A1C1B。

直线、平面平行的判定和性质

直线、平面平行的判定和性质
又∵平面 ABEF∩平面 BCE=BE,
∴PM∥BE,∴APEP=MAMB,
又 AE=BD,AP=DQ,∴PE=BQ, ∴APEP=DBQQ,∴MAMB=DQQB,
∴MQ∥AD,又 AD∥BC,
∴MQ∥BC,∴MQ∥平面 BCE,又 PM∩MQ=M, ∴平面 PMQ∥平面 BCE,又 PQ⊂平面 的直线 a,b 和平面 α, ①若 a∥α,b⊂α,则 a∥b; ②若 a∥α,b∥α,则 a∥b; ③若 a∥b,b⊂α,则 a∥α; ④若 a∥b,a⊂α,则 b∥α 或 b⊂α, 上面命题中正确的是________(填序号). 答案 ④
解析 ①若 a∥α,b⊂α,则 a,b 平行或异面;②若 a∥α,b∥α,则 a,b 平行、相交、异面都有可能;③若 a∥b,b⊂α,a∥α 或 a⊂α.
作 PM∥AB 交 BE 于 M, 作 QN∥AB 交 BC 于 N,
连接 MN. ∵正方形 ABCD 和正方形 ABEF 有公共边 AB,∴AE =BD. 又 AP=DQ,∴PE=QB,
又 PM∥AB∥QN,∴PAMB =PAEE=QBDB,QDNC=BBQD,
∴PAMB =QDNC, ∴PM // QN,即四边形 PMNQ 为平行四边形, ∴PQ∥MN.又 MN⊂平面 BCE,PQ⊄平面 BCE, ∴PQ∥平面 BCE.
直线、平面平行的判定及性质
2012·考纲
1.以立体几何的定义、公理、定理为出发点,认识 和理解空间中线面平行的有关性质和判定定理.
2.能运用公理、定理和已获得的结论证明一些空间位 置关系的简单命题.
课本导读
1.直线和平面平行的判定: (1)定义:直线与平面没有公共点,则称直线平行平面; (2)判定定理: a⊄α,b⊂α,a∥b⇒a∥α ; (3)其他判定方法:α∥β,a⊂α⇒a∥β. 2.直线和平面平行的性质: a∥α,a⊂β,α∩β=l⇒a∥l.

直线、平面平行的判定与性质

直线、平面平行的判定与性质

[解析]
选项A,平行直线的平行投影可以依然是两条平行
直线;选项 B ,两个相交平面的交线与某一条直线平行,则这
条直线平行于这两个平面;选项 C,两个相交平面可以同时垂
直于同一个平面;选项D,正确. [答案] D
2.(2009·福建,10)设m,n是平面α内的两条不同直线;l1,
l2是平面β内的两条相交直线.则α∥β的一个充分而不必要条件
∵AF⊄平面PCD,CD⊂平面PCD,∴AF∥平面PDC.
∵AF∩EF=F,∴平面AEF∥平面PCD.
∵AE⊂平面AEF,AE∥平面PCD.
∴线段PB的中点E是符合题意要求的点.
1.证明直线和平面平行的方法有:
(1)依定义采用反证法
(2) 判定定理( 线∥线 ⇒线∥面) ,即想方设法在平面内找出 一条与已知直线平行的直线. (3)面面平行性质定理(面∥面⇒线∥面) 2.证明平面与平面平行的方法有:
(1)[证明] ∵PA⊥平面ABCD,AB⊂平面ABCD,
∴PA⊥AB.
∵AB⊥AD,PA∩AD=A,∴AB⊥平面PAD,
∵PD⊂平面PAD,∴AB⊥PD.
(2)[解]
解法一:取线段 PB 的中点 E,PC 的中点 F,连
接 AE,EF,DF,则 EF 是△PBC 的中位线. 1 1 ∴EF∥BC,EF= BC,∵AD∥BC,AD= BC, 2 2 ∴AD∥EF,AD=EF. ∴四边形 EFDA 是平行四边形,∴AE∥DF. ∵AE⊄平面 PCD,DF⊂平面 PCD, ∴AE∥平面 PCD. ∴线段 PB 的中点 E 是符合题意要求的点.
(1)依定义采用反证法
(2) 判定定理( 线∥面 ⇒面∥面) .即证一平面内两条相交直
线与另一平面垂直.

直线平面平行的判定及其性质

直线平面平行的判定及其性质

解析几何中的应用
在解析几何中,直线与平面的平行关系 也是非常重要的。例如,在求解一些涉 及平面解析几何的问题时,需要使用直 线与平面平行的判定定理和性质来解决

ቤተ መጻሕፍቲ ባይዱ
直线与平面平行的判定定理的应用:在 解析几何中,利用直线与平面平行的判 定定理,可以用来判断一个点是否在一 条直线上,或者判断两个平面是否平行
直线与平面平行的判定定理
如果一条直线与一个平面平行,那么这条直线与平面内的任意一条直线都没有交 点。
直线与平面平行的判定定理的应用
在几何学中,这个定理经常被用来判断两条直线是否平行,或者一个平面是否平 行于另一个平面。
02
直线与平面平行的性质
直线平行于平面的性质
直线平行于平面,则 直线与平面内的任意 一条直线都平行。
直线平行于平面,则 直线与平面内的任意 一条直线都平行或异 面。
直线平行于平面,则 直线与平面内的任意 一条直线都没有公共 点。
平面平行于直线的性质
平面平行于直线,则平面与直 线的任意一条平行线都平行。
平面平行于直线,则平面与直 线的任意一条垂线都垂直。
平面平行于直线,则平面与直 线的任意一条垂线都垂直或平 行。
直线与平面平行的判定定理的应用:在空间几何中,利用直线与平面平 行的判定定理,即“如果直线与平面内的一条直线平行,则直线与该平
面平行”,可以用来判断建筑物的结构是否符合设计要求。
直线与平面平行的性质的应用:直线与平面平行的性质定理的应用,即 “如果直线与平面平行,则直线与平面的垂线互相垂直”,可以用来判 断建筑物的高度和角度是否符合设计要求。
直线平行于平面的判定定理
如果一条直线与一个平面平行,那么这条直线与平面内的任意一条直线都平行 。

直线、平面平行的判定与性质

直线、平面平行的判定与性质

直线、平面平行的判定与性质重点难点重点:掌握线线平行、线面平行的判定与性质定理,能用判定定理证明线面平行、面面平行,会用性质定理解决线面平行、面面平行的问题.难点:线面平行与面面平行在判定中的相互转化使用.方法突破线面平行的判定定理的实质是:对于平面外的一条直线,只需在平面内找出一条直线与这条直线平行,就可断定这条直线必与这个平面平行. 线面平行的性质定理的实质是:已知线面平行,过已知直线作一平面与已知平面相交,其交线必与已知直线平行. 两个平面平行问题的判定与证明,是将其转化为一个平面内的直线与另一个平面平行的问题,即“线面平行,则面面平行”,必须注意这里的“线面”是指一个平面内的两条相交直线和另一个平面.1. 判定线线平行的三种方法(1)公理4:证明两直线同时平行于第三条直线.(2)线面平行的性质定理:如果一条直线和一个平面平行,且经过这条直线的平面和这个平面相交,那么这条直线与交线平行.推理模式:l∥α,l∥β,α∩β=m?圯l∥m.(3)平行平面的性质定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行.推理模式:α∥β,γ∩α=a,γ∩β=b?圯a∥b.2. 判定线面平行的三种方法(1)根据线面平行的判定定理:如果不在某个平面内的一条直线与该平面内的一条直线平行,那么这条直线与这个平面平行.推理模式:l?埭α,m?奂α,l∥m?圯l∥α.使用定理时,一定要说明“平面外的一条直线与平面内的一条直线平行”,若不注明该条件,则证明过程就不完备.(2)面面平行的另一性质:如果两个平面平行,那么其中一个平面内的直线平行于另一个平面.推理模式:α∥β,a?奂α?圯a∥β.3. 判定面面平行的三种方法(1)根据面面平行的判定定理:如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面互相平行.推理模式:a?奂β,b?奂β,a∩b=P,a∥α,b∥α?圯β∥α.(2)平行平面的判定定理推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面互相平行.推理模式:a∩b=P,a?奂α,b?奂α,a′∩b′=P′,a′?奂β,b′?奂β,a∥a′,b∥b′?圯α∥β.(3)向量法:如果两个不同平面的法向量相互平行,那么就可以判定两个平面平行.典例精讲一、线线平行的判定■已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点,求证:四边形EFGH是平行四边形.思索若证四边形是平行四边形,只需证一组对边相等且平行或两组对边分别平行,选其一证出即可. 利用平行公理证明两条直线平行的思路就是要找准一条直线与这两条直线都平行的直线来传递.破解如图1,连结BD,因为EH是△ABD的中位线,所以EH∥BD,EH=■BD. 又因为FG是△CBD的中位线,所以FG∥BD,FG=■BD. 根据公理4,FG∥EH且FG=EH,所以四边形EFGH是平行四边形.■图1二、线面平行的判定■如图2,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=■,AF=1,M是线段EF的中点. 求证:AM ∥平面BDE.■图2思索设AC与BD相交于G,连结EG,证明四边形AGEM 是平行四边形,可得EG∥AM,利用线面平行的判定定理可证.破解设AC与BD相交于G,连结EG,则G是AC的中点. 因为M是线段EF的中点,ACEF是矩形,所以EM∥AG,EM=AG,所以四边形AGEM是平行四边形,所以EG∥AM. 因为AM不在平面BDE内,EG在平面BDE内,所以AM∥平面BDE.三、面面平行的判定■如图3,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB. 过A作AF⊥SB,垂足为F,点E,G分别是侧棱SA,SC的中点. 求证:平面EFG∥平面ABC.■图3思索证明平面EFG∥平面ABC,需要在平面EFG内找到两条相交直线与平面ABC平行,而线面平行的判定定理告诉我们,要证明线面平行,需要转化为证明线线平行. 因此,证明该题的关键是在平面内最为恰当的位置找出一条直线与该直线平行.破解(1)因为E,G分别是侧棱SA,SC的中点,所以EG∥AC.因为AC?奂平面ABC,EG?埭平面ABC,所以EG∥平面ABC. ?摇因为AS=AB,AF⊥SB,所以F为SB的中点,所以EF∥AB.因为AB?奂平面ABC,EF?埭平面ABC,所以EF∥平面ABC.因为EF∩EG=E,EF,EG?奂平面EFG,所以平面EFG∥平面ABC.四、线线平行、线面平行、面面平行的转化■如图4,已知点S是正三角形ABC所在平面外的一点,且SA=SB=SC,SG为三角形SAB上的高,D,E,F分别是AC,BC,SC的中点,试判断SG与平面DEF的位置关系,并给予证明.■图4思索一可判断SG∥平面DEF,要证明结论成立,只需证明SG与平面DEF内的一条直线平行,观察图形可以看出,转化成线线平行的证明.破解一连结CG交DE于点H,因为DE是△ABC的中位线,所以DE∥AB. 在△ACG中,D是AC的中点,且DH∥AG,所以H为CG的中点,所以FH是△SCG的中位线,所以FH ∥SG. 又SG?埭面DEF,FH?奂面DEF,所以SG∥平面DEF. 思索二要证明SG∥平面DEF,只需证明平面SAB∥平面DEF,从而得到线面平行.破解二因为EF是△SBC的中位线,所以EF∥SB,又EF?埭面SAB,SB?奂面SAB,所以EF∥平面SAB. 同理,DF∥平面SAB.因为EF∩DF=F,所以可得面SAB∥面DEF. 又SG?奂面SAB,所以SG∥平面DEF.证法一直接应用线面平行的判定定理来证明;证法二是通过线线平行证面面平行,再由面面平行证线面平行. 在本题的证明过程中实现了线线平行、线面平行、面面平行的转化.变式练习1. 如图5,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点. 求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.■图52. 如图6,在三棱锥S-ABC中,M,N,P分别为棱SA,SB,SC的中点,求证:平面MNP∥平面ABC.■图63. 如图7,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D为AB的中点,求证:AC1∥平面CDB1.参考答案1. (1)因为ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC. 因为AD?奂平面ABC,所以CC1⊥AD. 因为AD⊥DE,且CC1,DE?奂平面BCC1B1,CC1∩DE=E,所以AD⊥平面BCC1B1. 又因为AD?奂平面ADE,所以平面ADE⊥平面BCC1B1.(2)因为A1B1=A1C1,F为B1C1的中点,所以A1F⊥B1C1. 因为CC1⊥平面A1B1C1,且A1F?奂平面A1B1C1,所以CC1⊥A1F. 因为CC1,?摇B1C1?奂平面BCC1B1,CC1∩B1C1=C1,所以A1F⊥平面BCC1B1. 由(1)知,AD⊥平面BCC1B1,所以A1F∥AD. 又因为AD?奂平面ADE,?摇A1F?埭平面ADE,所以直线A1F∥平面ADE2. 因为M,N,P分别为棱SA,SB,SC的中点,所以MN∥AB,PN∥BC. 因为MN?埭平面ABC,AB?奂平面ABC,PN?埭平面ABC,BC?奂平面ABC,所以MN∥平面ABC,PN∥平面ABC. 因为MN∩PN=N,MN,PN?奂平面MPN. 所以平面MNP∥平面ABC.3. 证法一(利用线面平行的判定定理):设C1B与CB1的交点为E,由已知得E为C1B的中点. 连结AC1,DE,则OE■■AC1. 又DE?奂平面CDB1,AC1?埭平面CDB1,所以AC1∥平面CDB1.证法二(利用共线向量定理证明线面平行):因为直三棱柱ABC-A1B1C1底面三边长AC=3,BC=4,AB=5,所以AC,BC,CC1两两垂直,以AC,BC,CC1为x,y,z轴建立空间直角坐标系,由已知可得C(0,0,0),A(3,0,0),C1(0,0,4),B(0,4,0),B1(0,4,4),D■,2,0. 设CB1与C1B的交点为E,则E(0,2,2),因为■=-■,0,2,■=(-3,0,4),所以■=■■,所以■∥■. 因为DE?奂平面CDB1,AC1?埭平面CDB1,所以AC1∥平面CDB1.证法三(利用法向量证明线面平行):因为直三棱柱ABC-A1B1C1底面三边长AC=3,BC=4,AB=5,所以AC,BC,CC1两两垂直,以■,■,■为正交基底,建立空间直角坐标系,则C(0,0,0),A(3,0,0),C1(0,0,4),B■(0,4,4),D■,2,0,故■=(-3,0,4),■=(0,4,4),■=■,2,0. 设平面CDB1的法向量为n=(x,y,z),则4y+4z=0,■x+2y=0,故有n=(4,-3,3),所以■?n=0. 因此■⊥n. 又AC1不在平面CDB1内,从而有AC1∥平面CDB1. ■。

直线、平面平行垂直的判定及其性质

直线、平面平行垂直的判定及其性质

定理: 如果两个平行平面 // , a, 同时和第三个平面相交, b a // b 那么它们的交线平行。
推论 1: 如果两平面平行, 则 一平面内任何一条直线与另 一个平面平行。 推论 2: 两条直线被三个平面 所截,截得的对应线段成比 例。
, a, b 且b a b
// , a , a //
直线、平面间的平行、垂直的判定及其性质

定理内容 定理: 如果不在一个平面 内的一条直线和平面内 的一条直线平行, 那么这 条直线和这个平面平行。 定理: 如果一个平面内有 两条相交直线平行于另 外一个平面, 那么这两个 平面平行。 推论: 如果一个平面内有 两条相交直线分别平行 于另一个平面内的两条 直线,则这两个平面平 行。 定理: 如果一条直线和一 个平面平行, 经过这条直 线的平面和这个平面相 交, 那么这条直线就和两 平面的交线平行。
推论:已知平面外的两条平 行直线中的一条平行与这个 平面,则另一条也平行于这 个平面

符号表示
a ,b , 且a // b a //

图形表示 定理内容 定理:如果一条直 线与平面内的两 条相交直线垂直, 则这条直线与这 个平面垂直。 推论 1:如果在两 条平行直线中,有 一条垂直于平面, 那么另一条也垂 直于这个平面。 定理:如果一个平 面过另一个平面 的垂线,则这两个 平面互相垂直。 定理:如果一条直 线垂直于一个平 面,那么它就和平 面内的任意一条 直线垂直。 推论 2:如果两条 直线垂直于同一 个平面内,那么这 两条直线平行。 定理:如果两个平 面互相垂直,那么 在一个平面内垂 直于它们交线的 直线垂直与另一 个平面。

符号表示

直线、平面平行的判定与性质讲义

直线、平面平行的判定与性质讲义

直线、平面平行的判定与性质讲义一、知识梳理1.线面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简记为“线线平行⇒线面平行”)⎭⎪⎬⎪⎫l∥aa⊂αl⊄α⇒l∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)⎭⎪⎬⎪⎫l∥αl⊂βα∩β=b⇒l∥b2.面面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)⎭⎪⎬⎪⎫a∥βb∥βa∩b=Pa⊂αb⊂α⇒α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行⎭⎪⎬⎪⎫α∥βα∩γ=aβ∩γ=b⇒a∥b(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.()(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.()(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.()(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.()(5)若直线a与平面α内无数条直线平行,则a∥α.()(6)若α∥β,直线a∥α,则a∥β.()题组二:教材改编2.下列命题中正确的是( )A .若a ,b 是两条直线,且a ∥b ,那么a 平行于经过b 的任何平面B .若直线a 和平面α满足a ∥α,那么a 与α内的任何直线平行C .平行于同一条直线的两个平面平行D .若直线a ,b 和平面α满足a ∥b ,a ∥α,b ⊄α,则b ∥α3.如图,在正方体ABCD -A 1B 1C 1D 1中,E 为DD 1的中点,则BD 1与平面AEC 的位置关系为________.题组三:易错自纠4.若平面α∥平面β,直线a ∥平面α,点B ∈β,则在平面β内且过B 点的所有直线中( ) A .不一定存在与a 平行的直线 B .只有两条与a 平行的直线 C .存在无数条与a 平行的直线 D .存在唯一与a 平行的直线 5.设α,β,γ为三个不同的平面,a ,b 为直线,给出下列条件: ①a ⊂α,b ⊂β,a ∥β,b ∥α;②α∥γ,β∥γ; ③α⊥γ,β⊥γ;④a ⊥α,b ⊥β,a ∥b .其中能推出α∥β的条件是______.(填上所有正确的序号)6.如图是长方体被一平面所截得的几何体,四边形EFGH 为截面,则四边形EFGH 的形状为________.三、典型例题题型一:直线与平面平行的判定与性质 命题点1:直线与平面平行的判定典例 如图,在四棱锥P -ABCD 中,AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD 的中点,AC 与BE 交于O 点,G 是线段OF 上一点.(1)求证:AP∥平面BEF;(2)求证:GH∥平面P AD.命题点2:直线与平面平行的性质典例如图,四棱锥P-ABCD的底面是边长为8的正方形,四条侧棱长均为217.点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.(1)证明:GH∥EF;(2)若EB=2,求四边形GEFH的面积.思维升华:判断或证明线面平行的常用方法(1)利用线面平行的定义(无公共点).(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).(3)利用面面平行的性质(α∥β,a⊂α⇒a∥β).(4)利用面面平行的性质(α∥β,a⊄α,a⊄β,a∥α⇒a∥β).跟踪训练如图,四棱锥P-ABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面P AB;(2)求四面体N-BCM的体积.题型二:平面与平面平行的判定与性质典例如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.引申探究:本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.思维升华:证明面面平行的方法(1)面面平行的定义.(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(3)利用垂直于同一条直线的两个平面平行.(4)两个平面同时平行于第三个平面,那么这两个平面平行.(5)利用“线线平行”“线面平行”“面面平行”的相互转化.跟踪训练:如图所示,四边形ABCD与四边形ADEF都为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.题型三:平行关系的综合应用典例如图所示,平面α∥平面β,点A∈α,点C∈α,点B∈β,点D∈β,点E,F分别在线段AB,CD 上,且AE∶EB=CF∶FD.(1)求证:EF∥平面β;(2)若E,F分别是AB,CD的中点,AC=4,BD=6,且AC,BD所成的角为60°,求EF的长.思维升华:利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.跟踪训练如图所示,四边形EFGH为空间四边形ABCD的一个截面,若截面为平行四边形.(1)求证:AB∥平面EFGH,CD∥平面EFGH;(2)若AB=4,CD=6,求四边形EFGH周长的取值范围.四、反馈练习1.若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α与直线l至少有两个公共点D.α内的直线与l都相交2.已知直线a和平面α,那么a∥α的一个充分条件是()A.存在一条直线b,a∥b且b⊂αB.存在一条直线b,a⊥b且b⊥αC.存在一个平面β,a⊂β且α∥βD.存在一个平面β,a∥β且α∥β3.平面α∥平面β,点A,C∈α,点B,D∈β,则直线AC∥直线BD的充要条件是()A.AB∥CD B.AD∥CBC.AB与CD相交D.A,B,C,D四点共面4.一条直线l上有相异的三个点A,B,C到平面α的距离相等,那么直线l与平面α的位置关系是() A.l∥αB.l⊥αC.l与α相交但不垂直D.l∥α或l⊂α5.对于空间中的两条直线m,n和一个平面α,下列命题中的真命题是()A.若m∥α,n∥α,则m∥nB.若m∥α,n⊂α,则m∥nC.若m∥α,n⊥α,则m∥nD.若m⊥α,n⊥α,则m∥n6.如图,L,M,N分别为正方体对应棱的中点,则平面LMN与平面PQR的位置关系是()A.垂直B.相交不垂直C.平行D.重合7.在四面体A-BCD中,M,N分别是△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.8.设α,β,γ是三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n⊂γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.可以填入的条件有________.9.如图所示,在正四棱柱ABCD—A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件______时,就有MN∥平面B1BDD1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)10.将一个真命题中的“平面”换成“直线”、“直线”换成“平面”后仍是真命题,则该命题称为“可换命题”.给出下列四个命题:①垂直于同一平面的两直线平行;②垂直于同一平面的两平面平行;③平行于同一直线的两直线平行;④平行于同一平面的两直线平行.其中是“可换命题”的是______.(填序号)11.如图,在四棱锥P—ABCD中,平面P AD⊥平面ABCD,底面ABCD为梯形,AB∥CD,AB=2DC=23,且△P AD与△ABD均为正三角形,E为AD的中点,G为△P AD的重心.(1)求证:GF∥平面PDC;(2)求三棱锥G—PCD的体积.12.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD为正方形,BC=PD=2,E为PC的中点,CB=3CG.(1)求证:PC⊥BC;(2)AD边上是否存在一点M,使得P A∥平面MEG?若存在,求出AM的长;若不存在,请说明理由.13.在四面体ABCD中,截面PQMN是正方形,则在下列结论中,错误的是()A.AC⊥BDB.AC∥截面PQMNC.AC=BDD.异面直线PM与BD所成的角为45°14.过三棱柱ABC—A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条.15.如图所示,侧棱与底面垂直,且底面为正方形的四棱柱ABCD—A1B1C1D1中,AA1=2,AB=1,M,N 分别在AD1,BC上移动,始终保持MN∥平面DCC1D1,设BN=x,MN=y,则函数y=f(x)的图象大致是()16.在三棱锥S-ABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于点D,E,F,H.D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH 的面积为________.。

直线、平面平行垂直的判定与性质11

直线、平面平行垂直的判定与性质11

平面 ABCD, EC // PD,且 PD 2EC ,
(1)求证:BE//平面 PDA;
(2)若 N 为线段 PB 的中点,求证: EN 平面 PDB;
(3)若
PD AD
2 ,求平面 PBE 与平面 ABCD 所成的二
面角的大
3.如图,已知几何体的下部是一个底面是边长为 2 的正 六边形、侧面全为正方形的棱柱,上部是一个侧面全为 等腰三角形的棱锥,其侧棱长都为 13 .
5.已知一个几何体的三视图如图所示,其中正 视图和左视图均是腰长为2的等腰直角三角 形.
(1)请画出几何体的直观图,并求出它的体积; (2)求证:平面PBD⊥平面PAC; (3)求点C到平面PBD的距离.
评作业:P243. 11.如图(1)在直角梯形 ABCP 中,BC∥AP, AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G、H 分别 是 PC、PD、BC、AD 的中点,现将△PDC 沿 CD 折起,使 平面 PDC⊥平面 ABCD(如图(2)) (1)证明点 H 与平面 GEF 共面; (2)求二面角 G-EF-D 的大小.
(1)证明: DF1 平面 PA1F1 ; (2)求异面直线 DF1 与 B1C1 所成角
的余弦值.
4.如图,在四棱锥 S-ABCD 中,AB⊥AD,AB∥CD,CD=3AB, 平面 SAD⊥平面 ABCD,M 是线段 AD 上一点,AM=AB,DM =DC,SM⊥AD.
(1)证明:BM⊥平面 SMC; (2)设三棱锥 C-SBM 与四棱锥 S-ABCD 的体积分别为 V1 与 V,求VV1的值.
题组二:
1、如图,在直三棱柱 ABC A1B1C1 中, AC BC ,
AC BC 1,CC1 2 ,点 D、E 分别是 AA1 、 CC1 的中点.

专题11 立体几何 11.3平行与垂直证明 题型归纳讲义-2022届高三数学一轮复习(解析版)

专题11 立体几何 11.3平行与垂直证明 题型归纳讲义-2022届高三数学一轮复习(解析版)
因为点 E 是 AC 中点,点 F 为 AB 的中点,
所以 EF∥BC.
又因为 EF⊄平面 PBC,BC⊂平面 PBC,
△PAD 是正三角形,平面 PAD⊥平面 PBD.
(Ⅰ)求证:PA⊥BD;
(Ⅱ)设二面角 P﹣BD﹣A 的大小为α,直线 PA 与平面 PBC 所成角的大小为β,求 cos
(α+β)的值.
【解答】(Ⅰ)证明:∵∠BAD=45°,AD=1,�� = 2,
∴由余弦定理,得:
BD=
1 + 2 − 2 × 1 × 2 × ���45° =1,…(2 分)
性质定理
行,则过这条直线的任一
∵l∥α,
平面与此平面的交线与
l⊂β,α∩β
该直线平行(简记为“线面
=b,∴l∥b
平行⇒线线平行”)
2.平面与平面平行的判定定理和性质定理
文字语言
判定定理
图形语言
符号语言
一个平面内的两条相交
∵a∥β,b
直线与另一个平面平行,
∥β,a∩b
则这两个平面平行(简记
=P,a⊂α,
⊥AC,
所以 PA⊥面 ABC,
因为 BC⊂平面 ABC,
所以 PA⊥BC.
又因为 AB⊥BC,且 PA∩AB=A,
所以 BC⊥面 PAB.
….(9 分)
(Ⅲ)解:当点 F 是线段 AB 中点时,过点 D,E,F 的平面内的任一条直线都与平面 PBC
平行.
取 AB 中点 F,连 EF,连 DF.
由(Ⅰ)可知 DE∥平面 PBC.
��
理由.
【解答】(Ⅰ)证明:取 AB 中点 O,连接 EO,DO.
因为 EA=EB,所以 EO⊥AB. …(2 分)

高中数学直线、平面平行的判定与性质

高中数学直线、平面平行的判定与性质

例2 如图所示,正方体ABCD-A1B1C1D1中,M,N分别为A1B1,A1D1 的中点,E,F分别为B1C1,C1D1的中点.
(1)求证:四边形BDFE为梯形; (2)求证:平面AMN∥平面EFDB.
解题导引
1 (1)在△B1D1C1中得EF∥B1D1且EF= 2 B1D1 在正方体中得 1 BD������ B1D1 EF∥BD且EF= BD 四边形BDFE为梯形 2
证明 证法一:如图所示,作PM∥AB交BE于M,作QN∥AB交BC于N,连接 MN. ∵正方形ABCD和正方形ABEF有公共边AB,∴AE=BD. 又AP=DQ,∴PE=QB, 又PM∥AB∥QN, ∴ = = = ,∴ = , 又AB=DC, ∴PM������ QN,∴四边形PMNQ为平行四边形, ∴PQ∥MN. 又MN⊂平面BCE,PQ⊄平面BCE, ∴PQ∥平面BCE.§8Leabharlann 4直线、平面平行的判定与性质
知识清单
考点 直线、平面平行的判定与性质
1.判定直线与直线平行的方法
(1)平行公理:a∥b,b∥c⇒① a∥c ; (2)线面平行的性质定理:a∥β,a⊂α,α∩β=b⇒② a∥b ;
(3)面面平行的性质定理:α∥β,γ∩α=a,γ∩β=b⇒③ a∥b ;
(4)垂直于同一个平面的两条直线④ 平行 ; (5)如果一条直线与两个相交平面都平行,那么这条直线必与它们的交 线平行.
∴ = ,
∴MQ∥AD,又AD∥BC, ∴MQ∥BC,∴MQ∥平面BCE,又PM∩MQ=M,
∴平面PMQ∥平面BCE,
又PQ⊂平面PMQ,∴PQ∥平面BCE.
方法 2 判定或证明面面平行的方法
1.利用面面平行的定义(此法一般伴随反证法证明). 2.利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于 另一个平面,那么这两个平面平行. 3.证明两个平面都垂直于同一条直线. 4.证明两个平面同时平行于第三个平面.

直线平面平行垂直的判定及其性质知识点

直线平面平行垂直的判定及其性质知识点

直线平面平行垂直的判定及其性质知识点直线和平面的平行与垂直是几何学中的重要概念,它们在解决几何问题中往往起着关键性的作用。

判定直线与平面的平行与垂直关系的方法有很多,下面将逐一介绍。

1.直线与平面平行的判定及性质:直线与平面平行的判定方法有以下三种:(1)法向量判定法:如果直线的方向向量与平面的法向量的点积为零,即直线的方向向量与平面的法向量垂直,则直线与平面平行。

(2)截距判定法:如果直线与平面的两个不同点的坐标满足平面方程,则直线与平面平行。

(3)斜率判定法:如果直线的斜率与平面的法向量的斜率相同或不存在,则直线与平面平行。

直线与平面平行的性质有:(1)两个平行直线与同一个平面的交点之连线垂直于这两个直线。

(2)两个平行直线的斜率相同。

(3)两个平行直线的方向向量相同。

(4)两个平行直线的距离在平行直线之间是相等的。

2.直线与平面垂直的判定及性质:直线与平面垂直的判定方法有以下两种:(1)法向量判定法:如果直线的方向向量与平面的法向量的点积为零,即直线的方向向量与平面的法向量垂直,则直线与平面垂直。

(2)斜率判定法:如果直线的斜率乘以平面的法向量的斜率为-1或直线的斜率不存在且平面的法向量的斜率存在,则直线与平面垂直。

直线与平面垂直的性质有:(1)直线与平面垂直,则直线上的每个点到平面上的任意一点的连线垂直于平面。

(2)直线与平面垂直,则与直线垂直的平面必过直线上的一点。

(3)两个平行的直线与同一个平面的交线垂直于这两个直线。

(4)两个平行直线的方向向量的点积为零。

(5)两个垂直直线的斜率乘积为-1(6)两个平行直线的斜率乘积为1总结起来,判定直线与平面平行与垂直的方法有法向量判定法和斜率判定法。

关于性质,平行直线之间的距离相等,垂直直线的斜率乘积为-1,直线上的每个点到平面上的任意一点的连线垂直于平面等等。

这些性质在解决几何问题时都有非常重要的应用价值。

完整版直线平面平行垂直的判定及其性质知识点

完整版直线平面平行垂直的判定及其性质知识点

、直线、平面平行的判定及其性质知识点一、直线与平面平行的判定ii .思考:如图,设直线b 在平面a 内,直线a 在平面a 外,猜想在什么条件下直线a 与平面a 平行.(a||b )直线与平面平行的判断直线和平面在空间平面永无交点,则 直线和平面平行(定义)'a ------ '平面外的一条直线一次平面内的一条直线 平行,则该直线与此平面平行结论线线平行,则线面平行(线与面的平行问题一定要排除现在直线内的情况)※判定定理的证明图形条件a 与a 无交点文字描述a //a知识点二、直线与平面平行的性质线面平行,则线线平行 特别提示证明直线和平面的平行通常采用如下两种方法:①利用直线和平面平行的判定定理,通过“线线” 平行,证得“线面”平行;②利用两平面平行的性质定理,通过“面面”平行,证得“线面”平行知识点三、平面与平面平行的判定判定如果两个平面无公共 点,责成这两个平面平 行一个平面内有两条相交直线与另一个平面 平行,那么这两个平面 平行.如果两个平面同时垂直于 一条直线,那么这两个平 面垂直。

图形 曲//CL/A /条件 a , b?3 aP b= P alla bla结论a I (3al 3//1丄a1丄3a I 3性质文字描述一条直线与一个平面平行, 则这条直线与该平面无交点一条直线和一个平面平行,则 过这条直线的任一平面与此平 面相交,这条直线和交线平行.图形条件a I a ? 3 a P 3= b结论a na= ?a II b文字描述知识点四、平面与平面平行的性质性质文字描述图形条件结论如果两个平行平面同时和第三平面相交,那么他们的交线平行虫打/ —al p PG Y= b aGY= a allb如果两个平面平行,那么其中一个平面内的直线平行于另一个平面allpa? pa//a二、直线、平面垂直的判定及其性质知识点一、直线和平面垂直的定义与判定要点诠释:定义中“平面岀内的任意一条直线”就是指“平面①内的所有直线”,这与“无 数条直线”不同(线线垂直=线面垂直)知识点三、二面角I .二面角::从一条直线出发的两个半平面所组成的图形叫二面角(面角的棱,这两个半平面叫做二面角的面.记作二面角 一AB —.(简记P — AB — Q )面角的平面角的三个特征:i. ii . iii.n .二面角的平面角:在二面角 一丨一 的棱I 上任取一点0,以点0为垂足,在半平面 作垂直于棱I 的射线0A和0B ,则射线0A 和0B 构成的 AOB 叫做二面角的平面角. 作用:衡量二面角的大小;范围: 0°180°.dihedral angle ).这条直线叫做二点在棱上线在面内 与棱垂直内分别例题1.如图,若 是长方体ABCD-AB i C i D 被平面EFGH 截去几何体 体,其中E为线段A i B 上异于B i 的点,F 为线段BB 上异于 则下列结论中不正确的是A. EH // FGEFGHBC 后得到的几何 B i 的点,且 EH// A i D i , B. 四边形EFGH 是矩形 C.是棱柱D.是棱台2能保证直线 A.a a C. b D. ba 与平面a 平行的条件是(,b a ,a // b a ,c / a ,a / b,a / ca ,A € a,B € a,C €A B .a ,a ) //€ b 且 AC = BD 3下列命题正确的是( D F平行于同一平面的两条直线平行若直线a //a ,则平面a 内有且仅有一条直线与 A. B. C. D. E. F. a 平行 若直线a //a ,则平面a 内任一条直线都与 a 平行 若直线a //a ,则平面a 内有无数条直线与 a 平行如果a 、b 是两条直线,且a /b ,那么a 平行于经过b 的任何平面如果直线a 、b 和平面a 满足 a / b ,a / a ,b a ,那么b//a 4在空间,下列命题正确的是(A) 平行直线的平行投影重合 (B) 平行于同一直线的两个平面平行 (C) 垂直于同一平面的两个平面平行知识点四、平面和平面垂直的定义和判定定义两个平面相交,如果它们所成的二面角是 直二面角,就说这两个平面垂直 .判定一个平面过另一个平面的垂线,则这两个 平面垂直aPlB=1 a -l- B =90口* a 丄 B (垂直问题中要注意题目中的文字表述,特别是“任何”“随意”“无数”等字眼)知识点五、平面和平面垂直的性质面面垂直线面垂直(如果两个平面垂直,那么一个平面内垂直于它们交线的直线与 一个面平垂直)图形§0 ;71 ~■f/文字描述结果 71CAftI 叙題圈)(D )垂直于同一平面的两条直线平行(C) a C a,b 1 B'M0(D)8.求证:空间四边形相邻两边中点的连线,平行于经过另外两边的平面 已知:空间四边形ABCD 中,E 、F 分别是AB 、AD 的中点 求证:EFlI 平面BCD9.如图,在椎体P-ABCD 中,ABCD 是边长为1的棱形, 且/ DAB=60 , ,PB=2,E,F 分别是BC,PC 的中点. ⑴证明:AD 丄平面DEF;(2)求二面角P-AD-B 的余弦值.A . m, n ,m //B ,n //B a/B B . a //B ,m ,nm // nC . m 丄a,m 丄nn // aD . n / m,n 丄 a m 丄a6.下列命题中错误的是(A )如果平面 丄平面,那么平面内 定直线平行于平面(B )如果平面 垂直于平面 ,那么平面 内一定不存在直线垂直于平面(C ) 如果平面丄平面 , 平面 丄平面,l ,那么1丄平面(D ) 如果平面丄平面 ,那么平面 内所有直线都垂直于平面5已知m 、n 为两条不同的直线,a 、B 为两个不同的平面,则下列命题中正确的是1.(A)£[丄 fl 上〃丄 0□丄◎,方丄题图*、\ 、、 \,设口上赴関条ft 线,么0是W 个Fl 弟则口丄b 的一个允分条件址课堂练习A 组己知是两条不HS 线,口』(是三个不同平而,下列命题中£确的是<孑)a H pM H ng 丄 /Z n H 丄 p4.如图,在直四棱柱 ABCD-A 1 B 1C 1 D 1 中,底面 ABCD 为等腰梯形,AB//CD ,AB=4, BC=CD=2,AA 1=2,5.在长方体 ABCD — A1B1C1D1(1) 作出过直线AC 且与直线BD1平行的截面,并说明理由. (2) 设E 、F 分别是A1B 和B1C 的中点,求证直线 EF//平面ABCD.6.在图中所示的一块木料中,棱 BC 平行于平面A'C '.(1)要经过平面AC 内的一点P 和棱BC 将木料据开,应怎样画线?人.若打小wH uj 舫d 刃B.若《 —儿0丄“则《 ” B C*若加*卅卩用川0D*若耐丄《 E 丄G,则肝卩4.已為阳荼直线”两个平和力,7?,给出下面四个命题:0 fp MT" fh m 丄反 n H 丄 fZ(刃a#R 、mdiu 0 n m//u其屮正确命題萌序号是3.m 、n 是空间两条不同的直线,① m 丄a, ② m 丄n , n // 3, all 价IX ②④TxTi6②③a 3是两个不同的平面, 下面四个命题中,真命题的序号是m 丄n ; a // 3, m 丄 a?n // ③m 丄n , a // 3, m // a? ④m 丄a,m // n, al 3?的中点。

直线和平面平行、垂直的判定和性质

直线和平面平行、垂直的判定和性质

直线和平面平行、垂直的判定和性质1.在直线和平面的位置关系中,平行关系不仅应用较多,而且是学习平面和平面位置关系的基础,所以直线和平面平行的判定和性质是本单元的重点之一.判定定理说明要证一条直线和一个平面平行,只要在这个平面内找出一条直线和已知直线平行即可.对于直线和平面平行的性质定理、要注意避免“一条直线平行于一个平面,就平行于这个平面内的一切直线”的错误,线面平行和线线平行,是指过这条直线的任意一个平面和已知平面的交线与这条直线平行,尽管直线可以和平面内无数条直线平行,但不能说直线和平面内的任何直线平行.反证法是常用的一种证明方法.要会用反证法证明线面平行的判定定理.2.斜线和平面所成的角,定量地反映了斜线和平面的位置关系,它是通过转化为平面内的两条相交直线所成的角来度量的,它是这条斜线和平面内经过斜足的直线所成的一切角中的最小角.直线和平面所成的角,应分三种情形:(1)直线和平面斜交时,直线和平面所成的角是指直线和它在平面内的射影所成的锐角;(2)直线和平面垂直时,直线和平面所成的角就是直角;(3)直线和平面平行或直线在平面内时,直线和平面所成的角的度数是0°.综上所述,直线和平面所成角的范围是[0,].3.在应用三垂线定理及其逆定理时,重点在于先寻找平面的垂线,在引辅助线时,也应先作平面的垂线,这是因为垂线是确定斜线在平面内射影的关键.三垂线定理及其逆定理揭示了平面的斜线和它在这个平面上的射影必定同时垂直于平面内的直线的实质.在学习三垂线定理时,要注意处于各种位置的射影关系图形的识别和掌握,进而达到灵活应用的目的.典型题目分析例1.下列命题中①两条异面直线所成角α 的范围是0°<α<180°.②两条互相垂直的直线不一定相交.③分别和两条异面直线都垂直的直线叫做这两条异面直线的公垂线.④两条异面直线所成角的大小是惟一的,角的位置可以平移变化.⑤两条异面直线的公垂线有且只有一条.⑥若两条直线和第三条直线所成的角相等,则这两条直线平行.其中正确命题的个数是().A.1B.2 C 3D.4分析:对照有关概念,找出结论与条件不相符合的命题.解:由异面直线所成角的定义,公垂线定义知①③⑥错误,②④⑤正确,故选C.例2.如图所示,在长方体ABCD-A1B1C1D1中,BB1=3,BC=4,则异面直线A1B1与BC1的距离是________.分析:证A1B1⊥面BC1.解:在面BC1内作B1E⊥BC1于点E.长方体AC1中,A1B1⊥BB1,A1B1⊥B1C1,所以A1B1⊥面BC1,从而A1B⊥B1E,于是B1E的长就是异面直线A1B1和BC1间的距离.矩形BCC1B1中,BC1=,所以B1E=.即所求距离为.点评:本题将异面直线的距离问题转化为同一三角形内的点线距离问题.例3.E、F分别是棱长为a的正方体ABCD-A1B1C1D1的棱AB、BC的中点,求EF到平面AA1C1C的距离.分析:转化为EF与AC间的距离.解:如图所示,连结BD分别交AC、EF于O、G,则BD⊥AC,BD⊥EF.正方体A1C中,AA1⊥平面ABCD,BD 平面ABCD.∴BD⊥AA1,而AA1、AC是平面AA1C1C内两条相交直线.∴BD⊥平面AA1C1C,又BD⊥EF,于是线段OG的长就是EF到平面AA1C1C的距离. 在正方形ABCD中,OG=.所以EF到平面AA1C1C的距离是.点评:将线面距离化为线线距离是一种常用转化方法,应注意正确使用这种方法.例4.点P在ΔABC所在平面上射影为O,如果PA⊥BC,PB⊥AC,则O为ΔABC的().A、垂心B、重心C、内心D、外心分析:作出PA在平面ABC上的射影,证明BC与之垂直.解:如图,连结OA,OB,则OA是PA在平面ABC上的射影.∵BC⊥PA,∴BC⊥OA.同理,AC⊥OB,∴O是ΔABC的垂心,故选A.点评:三角形的内心、外心、垂心、重心分别是三角形的三条角平分线、三条边的垂直平分线、三条高、三条中线的交点.课外练习:1.RtΔABC所在平面外一点P到直角顶点C的距离等于24,P到平面ABC的距离为12,若点P到AC和BC 的距离相等,求:点P到AC的距离.2.在空间四边形ABCD中,若AB⊥BC,BC⊥CD,CD⊥AB,且AB=BC=CD=a.则直线AD和BC所成角的正弦值为().A、B、C、D、3.在棱长为4的正方体,ABCD-A1B1C1D1中,A1到BD的距离等于_________.4.正方体ABCD-A1B1C1D1中,M、N、K分别是AD、DD1、DC的中点,求证:B1K⊥平面CMN.参考解答:1.如图,过P作PD⊥平面ABC,D为垂足,过D作DE⊥AC,DF⊥BC.分别连结PE和PF,则DE和DF分别是PE和PF在平面ABC内的射影.∵AC⊥DE,∴AC⊥PE,∵DF⊥BC,∴BC⊥DF,∵PE⊥AC,PF⊥BC,∴PE和PF是P到AC和BC的距离,∴PE=PF,∴DE=DF,∵CEDF是内角均为90°的四边形,∴CEPF是正方形,∴CD=´DE,在RtΔPCD中,PC=24,PD=12,∠PDC=90°,∴CD=,∴DE=,在RtΔPDE中,PD=12,DE=,∠PDE=90°,∴PE=,即P到AC、BC的距离均为.2.D3.4. 如图,分别连结BK和C1K,证明RtΔCDM≌RtΔBCK,证明RtΔCC1K≌RtΔCDN.设CM∩BK=P,∵∠KBC=∠PCK,∴∠PBC+∠BCP=90°,∴∠CPB=90°,∴CM⊥BK,∵BK是B1K在平面ABCD上的射影,∴B1K⊥CM.同理可证:B1K⊥CN,CN∩CM=C,∴B1K⊥平面MNC.在线测试选择题1.下列命题正确的是()A、两个平面互相垂直,经过一个平面内一点垂直于交线的直线必垂直于另一个平面B、两条直线在两个相交平面内的射影都是平行直线,那么这两条直线互相平行C、一个二面角的两个面分别与另一个二面角的两个面垂直,那么这两个二面角相等或互补D、五边形中有两组不相邻的边平行,那么这个五边形是平面图形2.设P是正ΔABC所在平面外一点,PA=PB=PC=.若ΔABC的边长为1,则直线PC和平面ABC所成的角是().A、90°B、60°C、45°D、30°3.平面α内的∠MON=60°,PO是平面α的斜线段,PO=3,且PO与∠MON的两边均成45°角,那么点P到平面α的距离为().A、B、C、D、4.已知三个平面α、β、γ,一条直线l,要得到α//β,必须满足下列条件中的().A、l//α, l//β且l//γB、lγ, 且l//α,l//βC、α//γ且β//γD、l与α、β所成角相等5.已知a,b是两条直线,以下四个条件中:①α⊥γβ⊥γ②α内有不共线的三点到β的距离相等③aα, bα, a//β, b//β④a,b是异面直线且aα, a//β, b//β, b//α能推出α//β的是().A、④B、②,③C、②D、①,③答案与解析答案:1、D 2、D 3、A 4、C 5、A解析:1.答案:D.如A中α⊥β,α∩β=l, l'⊥β, l'⊥l, 但l'//α,矛盾.故排除A;B、C很容易否定.故本题应选D.2.答案:D.过P作PO⊥平面ABC,则垂足O为正ΔABC的中心.连结OC,则∠PCO为直线PC和平面ABC所成的角.在RtΔPOC中,OC=,PC=,则cos∠PCO=.从而∠PCO=30°,故选D.3.答案:A.如图,过P作PH⊥平面α,则垂足H在∠MON的平分线上,且PH的长为点P到平面α的距离.作HQ⊥OM,垂足为Q,在RtΔPQO中,PQ=OQ=.在RtΔOQH中,HQ=OQ·tan30°=.在RtΔPHQ中,PH=.选A.4.答案:C.平面与平面平行满足传递性.5.答案:A.当平面α、β是两个相交平面时,①不一定成立.当这三点在平面β两侧时,②不成立.当平面α、β是两个相交平面时,③不一定成立.因此选A.怎样学习立体几何我们学习每一门课,都应有不同的学法,学习《立体几何》时,应注意下面四点。

直线、平面平行的判定及其性质

直线、平面平行的判定及其性质

直线、平面平行的判定及其性质考点梳理1.直线与平面平行(1)判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(线线平行⇒线面平行).即:a⊄α,b⊂α,且a∥b⇒a∥α.其他判定方法;α∥β,a⊂α⇒a∥β.(2)性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(线面平行⇒线线平行).即:a∥α,a⊂β,α∩β=l⇒a∥l.2.平面与平面平行(1)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(线面平行⇒面面平行).即:a⊂α,b⊂α,a∩b=M,a∥β,b∥β⇒α∥β.(2)性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行.即:α∥β,γ∩α=a,γ∩β=b⇒a∥b.一个转化关系平行问题的转化关系两点提醒(1)在推证线面平行时,必须满足三个条件:一是直线a在已知平面外;二是直线b在已知平面内;三是两直线平行.(2)把线面平行转化为线线平行时,必须说清经过已知直线的平面与已知平面相交,则该直线与交线平行.考点自测1.若两条直线都与一个平面平行,则这两条直线的位置关系是().A.平行B.相交C.异面D.以上均有可能解析借助长方体模型易得.答案 D2.在空间中,下列命题正确的是().A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行解析选项A,平行直线的平行投影可以依然是两条平行直线;选项B,两个相交平面的交线与某一条直线平行,则这条直线平行于这两个平面;选项C,两个相交平面可以同时垂直于同一个平面;选项D,正确.答案 D3.(2013·长沙模拟)若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是( ).A .b ⊂αB .b ∥αC .b ⊂α或b ∥αD .b 与α相交或b ⊂α或b ∥α解析 可以构造一草图来表示位置关系,经验证,当b 与α相交或b ⊂α或b ∥α时,均满足直线a ⊥b ,且直线a ∥平面α的情况,故选D.答案 D4.在空间中,下列命题正确的是( ).A .若a ∥α,b ∥a ,则b ∥αB .若a ∥α,b ∥α,a ⊂β,b ⊂β,则β∥αC .若α∥β,b ∥α,则b ∥βD .若α∥β,a ⊂α,则a ∥β解析 若a ∥α,b ∥a ,则b ∥α或b ⊂α,故A 错误;由面面平行的判定定理知,B 错误;若α∥β,b ∥α,则b ∥β或b ⊂β,故C 错误.答案 D5.在正方体ABCDA 1B 1C 1D 1中,E 是DD 1的中点,则BD 1与平面ACE 的位置关系为________.解析 如图.连接AC 、BD 交于O 点,连接OE ,因为OE ∥BD 1,而OE ⊂平面ACE ,BD 1⊄平面ACE ,所以BD 1∥平面ACE .答案 平行考向一 线面平行的判定及性质【例1】►(2012·辽宁)如图,直三棱柱ABCA ′B ′C ′,∠BAC=90°,AB =AC =2,AA ′=1,点M ,N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面A ′ACC ′; (2)求三棱锥A ′MNC 的体积.(锥体体积公式V =13Sh ,其中S 为底面面积,h 为高)[审题视点] (1)连接AB ′,AC ′,在△AC ′B ′中由中位线定理可证MN ∥AC ′,则线面平行可证;此问也可以应用面面平行证明.(2)证A ′N ⊥平面NBC ,故V A ′MNC =V A ′NBC -V MNBC =12V A ′NBC ,体积可求.(1)证明 法一 连接AB ′,AC ′,如图由已知∠BAC =90°,AB =AC ,三棱柱ABCA ′B ′C ′为直三棱柱,所以M 为AB ′中点.又因为N 为B ′C ′的中点,所以MN ∥AC ′. 又MN ⊄平面A ′ACC ′,AC ′⊂平面A ′ACC ′, 因此MN ∥平面A ′ACC ′.法二 取A ′B ′的中点P ,连接MP ,NP ,AB ′,如图,而M ,N 分别为AB ′与B ′C ′的中点,所以MP ∥AA ′,PN ∥A ′C ′,所以MP ∥平面A ′ACC ′,PN ∥平面A ′ACC ′. 又MP ∩NP =P ,因此平面MPN ∥平面A ′ACC ′. 而MN ⊂平面MPN ,因此MN ∥平面A ′ACC ′.(2)解 法一 连接BN ,如图由题意A ′N ⊥B ′C ′,平面A ′B ′C ′∩平面B ′BCC ′=B ′C ′,所以A ′N ⊥平面NBC .又A ′N =12B ′C ′=1,故V A ′MNC =V NA ′MC =12V NA ′BC =12V A ′NBC =16.法二 V A ′MNC =V A ′NBC -V MNBC =12V A ′NBC =16.(1)证明直线与平面平行的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质,或者构造平行四边形、寻找比例式证明两直线平行.注意说明已知的直线不在平面内.(2)证明直线与平面平行的方法:①利用定义结合反证;②利用线面平行的判定定理;③利用面面平行的性质.【训练1】 如图,在四棱锥P ABCD 中,底面ABCD 是矩形,P A ⊥平面ABCD ,AP =AB ,BP =BC =2,E ,F 分别是PB ,PC 的中点.(1)证明:EF ∥平面P AD ; (2)求三棱锥EABC 的体积.(1)证明 在△PBC 中,E ,F 分别是PB ,PC 的中点, ∴EF ∥BC .又BC ∥AD ,∴EF ∥AD . 又∵AD ⊂平面P AD ,EF ⊄平面P AD , ∴EF ∥平面P AD .(2)解 连接AE ,AC ,EC ,过E 作EG ∥P A 交AB 于点G ,则EG ⊥平面ABCD ,且EG =12P A .在△P AB 中,AP =AB ,∠P AB =90°,BP =2, ∴AP =AB =2,EG =22. ∴S △ABC =12AB ·BC =12×2×2= 2.∴V EABC =13S △ABC ·EG =13×2×22=13.考向二 面面平行的判定和性质【例2】►(2013·济南调研) 如图,在正方体ABCDA 1B 1C 1D 1中,M 、N 、P 分别为所在边的中点.求证:平面MNP ∥平面A 1C 1B .[审题视点] 利用面面平行判定定理的证明即可. 证明如图,连接D 1C ,则MN 为△DD 1C 的中位线,∴MN ∥D 1C . ∵D 1C ∥A 1B ,∴MN ∥A 1B . 同理可证,MP ∥C 1B .而MN 与MP 相交,MN ,MP 在平面MNP 内,A 1B ,C 1B 在平面A 1C 1B 内, ∴平面MNP ∥平面A 1C 1B .要证面面平行需证线面平行,要证线面平行需证线线平行,因此“面面平行”问题最终转化为“线线平行”问题来解决.【训练2】 如图,在三棱柱ABCA 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点,求证:(1)B ,C ,H ,G 四点共面; (2)平面EF A 1∥平面BCHG .证明 (1)∵GH 是△A 1B 1C 1的中位线,∴GH ∥B 1C 1. 又∵B 1C 1∥BC ,∴GH ∥BC , ∴B ,C ,H ,G 四点共面.(2)∵E 、F 分别为AB 、AC 的中点,∴EF ∥BC ,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綉EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG.∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.考向三线面平行中的探索性问题【例3】►如图所示,在三棱柱ABCA1B1C1中,A1A⊥平面ABC,若D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,请确定点E的位置;若不存在,请说明理由.[审题视点] 取AB、BB1的中点分别为E、F,证明平面DEF∥平面AB1C1即可.解存在点E,且E为AB的中点.下面给出证明:如图,取BB1的中点F,连接DF,则DF∥B1C1.∵AB的中点为E,连接EF,则EF∥AB1.B1C1与AB1是相交直线,∴平面DEF∥平面AB1C1.而DE⊂平面DEF,∴DE∥平面AB1C1.解决探究性问题一般要采用执果索因的方法,假设求解的结果存在,从这个结果出发,寻找使这个结论成立的充分条件,如果找到了符合题目结果要求的条件,则存在;如果找不到符合题目结果要求的条件(出现矛盾),则不存在.【训练3】如图,在四棱锥P ABCD中,底面是平行四边形,P A⊥平面ABCD,点M、N分别为BC、P A的中点.在线段PD上是否存在一点E,使NM∥平面ACE?若存在,请确定点E的位置;若不存在,请说明理由.解在PD上存在一点E,使得NM∥平面ACE.证明如下:如图,取PD 的中点E ,连接NE ,EC ,AE , 因为N ,E 分别为P A ,PD 的中点, 所以NE 綉12AD .又在平行四边形ABCD 中,CM 綉12AD .所以NE 綉MC ,即四边形MCEN 是平行四边形.所以NM 綉EC .又EC ⊂平面ACE ,NM ⊄平面ACE ,所以MN ∥平面ACE , 即在PD 上存在一点E ,使得NM ∥平面ACE .规范解答13——如何作答平行关系证明题【命题研究】 通过近三年的高考试题分析,对线面平行、面面平行的证明一直受到命题人的青睐,多以多面体为载体,证明线面平行和面面平行,题型为解答题,题目难度不大.【真题探究】► (本小题满分12分)(2012·山东)如图,几何体EABCD 是四棱锥,△ABD 为正三角形,CB =CD ,EC ⊥BD . (1)求证:BE =DE ;(2)若∠BCD =120°,M 为线段AE 的中点,求证:DM ∥平面BEC . [教你审题] 一审 取BD 的中点O ,证明BD ⊥EO ;二审 取AB 中点N ,证明平面DMN ∥平面BEC ;找到平面BCE 和平面ADE 的交线EF ,证明DM ∥EF .[规范解答] 证明 (1)图(a)如图(a),取BD的中点O,连接CO,EO.由于CB=CD,所以CO⊥BD,(2分)又EC⊥BD,EC∩CO=C,CO,EC⊂平面EOC,所以BD⊥平面EOC,(4分)因此BD⊥EO,又O为BD的中点,所以BE=DE.(6分)(2)法一如图(b),取AB的中点N,连接DM,DN,MN,图(b)因为M是AE的中点,所以MN∥BE.又MN⊄平面BEC,BE⊂平面BEC,∴MN∥平面BEC.(8分)又因为△ABD为正三角形,所以∠BDN=30°,又CB=CD,∠BCD=120°,因此∠CBD=30°,所以DN∥BC.(10分)又DN⊄平面BEC,BC⊂平面BEC,所以DN∥平面BEC. 又MN∩DN=N,故平面DMN∥平面BEC,又DM⊂平面DMN,所以DM∥平面BEC.(12分)法二如图(c),延长AD,BC交于点F,连接EF.图(c)因为CB=CD,∠BCD=120°,所以∠CBD =30°. 因为△ABD 为正三角形, 所以∠BAD =60°,∠ABC =90°, 因此∠AFB =30°, 所以AB =12AF .(8分)又AB =AD ,所以D 为线段AF 的中点.连接DM ,由点M 是线段AE 的中点,因此DM ∥EF .(10分)又DM ⊄平面BEC ,EF ⊂平面BEC , 所以DM ∥平面BEC .(12分)[阅卷老师手记] (1)对题目已知条件分析不深入,不能将已知条件与所证问题联系起来; (2)识图能力差,不能观察出线、面之间的隐含关系,不能作出恰当的辅助线或辅助面; (3)答题不规范,跳步、漏步等.证明线面平行问题的答题模板(一)第一步:作(找)出所证线面平行中的平面内的一条直线; 第二步:证明线线平行;第三步:根据线面平行的判定定理证明线面平行; 第四步:反思回顾.检查关键点及答题规范. 证明线面平行问题的答题模板(二)第一步:在多面体中作出要证线面平行中的线所在的平面;第二步:利用线面平行的判定定理证明所作平面内的两条相交直线分别与所证平面平行;第三步:证明所作平面与所证平面平行; 第四步:转化为线面平行; 第五步:反思回顾.检查答题规范. 【试一试】如图,在几何体ABCDEFG 中,下底面ABCD 为正方形,上底面EFG 为等腰直角三角形,其中EF ⊥FG ,且EF ∥AD ,FG ∥AB ,AF ⊥面ABCD ,AB =2FG =2,BE =BD ,M 是DE 的中点.(1)求证:FM ∥平面CEG ; (2)求几何体GEFC 的体积. (1)证明取CE 的中点N ,连接MN ,GN ,则MN 綉FG 綉12AB .故四边形MNGF 为平行四边形. ∴MF ∥GN .又MF ⊄平面CEG ,GN ⊂平面CEG , ∴FM ∥平面CEG .(2)解 在Rt △ABD 中,AB =AD =2,BD =22, ∴BE =2 2.∵AF ⊥平面ABCD ,AB ⊂平面ABCD , ∴AF ⊥AB .在正方形ABCD 中,AB ⊥AD . 又AD ∩AF =A ,∴AB ⊥平面ADEF .又AE ⊂平面ADEF ,∴AB ⊥AE . ∴在Rt △ABE 中,AE =8-4=2.又在Rt △AEF 中,EF =1,∴AF =4-1= 3. 又EF ∥AD ,EF ⊄平面ABCD ,AD ⊂平面ABCD , ∴EF ∥平面ABCD .同理由FG ∥AB ,可得FG ∥平面ABCD .又EF ∩FG =F ,EF ⊂平面EFG ,FG ⊂平面EFG . ∴平面EFG ∥平面ABCD . 又AF ⊥平面ABCD ,AF =3, ∴点C 到平面EFG 的距离等于3, ∴V GEFC =V CEFG =13×S △EFG ·d=13×⎝⎛⎭⎫12×1×1×3=36A级基础演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1.一条直线l上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是().A.l∥αB.l⊥αC.l与α相交但不垂直 D.l∥α或l⊂α解析l∥α时,直线l上任意点到α的距离都相等;l⊂α时,直线l上所有的点到α的距离都是0;l⊥α时,直线l上有两个点到α距离相等;l与α斜交时,也只能有两个点到α距离相等.答案 D2.平面α∥平面β,点A,C∈α,B,D∈β,则直线AC∥直线BD的充要条件是().A.AB∥CD B.AD∥CB C.AB与CD相交D.A,B,C,D四点共面解析充分性:A,B,C,D四点共面,由平面与平面平行的性质知AC∥BD.必要性显然成立.答案 D3.(2012·北京模拟)以下命题中真命题的个数是().①若直线l平行于平面α内的无数条直线,则直线l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,b⊂α,则a∥α;④若直线a∥b,b⊂α,则a平行于平面α内的无数条直线.A.1 B.2 C.3 D.4解析命题①l可以在平面α内,不正确;命题②直线a与平面α可以是相交关系,不正确;命题③直线a可以在平面α内,不正确;命题④正确.答案 A4.(2013·汕头质检)若m、n为两条不重合的直线,α、β为两个不重合的平面,则下列命题中正确的是().A.若m、n都平行于平面α,则m、n一定不是相交直线B.若m、n都垂直于平面α,则m、n一定是平行直线C.已知α、β互相平行,m、n互相平行,若m∥α,则n∥βD.若m、n在平面α内的射影互相平行,则m、n互相平行解析A中,m、n可为相交直线;B正确;C中,n可以平行β,也可以在β内;D中,m、n也可能异面.故正确的命题是B.答案 B二、填空题(每小题5分,共10分)5.过三棱柱ABCA1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条.解析过三棱柱ABCA1B1C1的任意两条棱的中点作直线,记AC,BC,A1C1,B1C1的中点分别为E,F,E1,F1,则直线EF,E1F1,EE1,FF1,E1F,EF1均与平面ABB1A1平行,故符合题意的直线共6条.答案 66.α、β、γ是三个平面,a 、b 是两条直线,有下列三个条件:①a ∥γ,b ⊂β;②a ∥γ,b ∥β;③b ∥β,a ⊂γ.如果命题“α∩β=a ,b ⊂γ,且________,则a ∥b ”为真命题,则可以在横线处填入的条件是________(把所有正确的题号填上).解析 ①中,a ∥γ,a ⊂β,b ⊂β,β∩γ=b ⇒a ∥b (线面平行的性质).③中,b ∥β,b ⊂γ,a ⊂γ,β∩γ=a ⇒a ∥b (线面平行的性质).答案 ①③三、解答题(共25分)7.(12分)如图,在四面体ABCD 中,F 、E 、H 分别是棱AB 、BD 、AC 的中点,G 为DE 的中点.证明:直线HG ∥平面CEF .证明 法一 如图,连接BH ,BH 与CF 交于K ,连接EK .∵F 、H 分别是AB 、AC 的中点,∴K 是△ABC 的重心,∴BK BH =23.又据题设条件知,BE BG =23,∴BK BH =BE BG ,∴EK ∥GH .∵EK ⊂平面CEF ,GH ⊄平面CEF ,∴直线HG ∥平面CEF .法二如图,取CD 的中点N ,连接GN 、HN .∵G 为DE 的中点,∴GN ∥CE .∵CE ⊂平面CEF ,GN ⊄平面CEF ,∴GN ∥平面CEF .连接FH ,EN∵F 、E 、H 分别是棱AB 、BD 、AC 的中点, ∴FH 綉12BC ,EN 綉12BC ,∴FH 綉EN ,∴四边形FHNE 为平行四边形,∴HN ∥EF . ∵EF ⊂平面CEF ,HN ⊄平面CEF ,∴HN ∥平面CEF .HN ∩GN =N ,∴平面GHN ∥平面CEF .∵GH ⊂平面GHN ,∴直线HG ∥平面CEF .8.(13分)如图,已知ABCDA 1B 1C 1D 1是棱长为3的正方体,点E 在AA 1上,点F 在CC 1上,G 在BB 1上,且AE =FC 1=B 1G =1,H 是B 1C 1的中点.(1)求证:E ,B ,F ,D 1四点共面;(2)求证:平面A 1GH ∥平面BED 1F .证明 (1)∵AE =B 1G =1,∴BG =A 1E =2,∴BG =A 1E ,∴A 1G =BE .又同理,C 1F 綉B 1G ,∴四边形C 1FGB 1是平行四边形, ∴FG 綉C 1B 1綉D 1A 1,∴四边形A 1GFD 1是平行四边形. ∴A 1G 綉D 1F ,∴D 1F 綉EB ,故E 、B 、F 、D 1四点共面.(2)∵H 是B 1C 1的中点,∴B 1H =32.又B 1G =1,∴B 1G B 1H =23.又FC BC =23,且∠FCB =∠GB 1H =90°,∴△B 1HG ∽△CBF ,∴∠B 1GH =∠CFB =∠FBG , ∴HG ∥FB .又由(1)知A 1G ∥BE ,且HG ∩A 1G =G , FB ∩BE =B ,∴平面A 1GH ∥平面BED 1F .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与平面平行的判定与性质
一、选择题
1.已知直线a∥平面α,直线b α,则a与b的关系为()
A.相交B.平行C.异面D.平行或异面
2.平面α∩平面β=a,平面β∩平面γ=b,平面γ∩平面a=c,若a∥b,则c与a,b的位置关系是()
A.c与a,b都异面B.c与a,b都相交
C.c至少与a,b中的一条相交D.c与a,b都平行
3.给出下列四个命题:
①如果a,b是两条直线,且a∥b,那么a平行于经过b的任何平面;
②如果直线a和平面α满足a∥α,那么a与平面α内的直线不是平行就是异面,
③如果直线a∥α,b∥α,则a∥b
④如果平面α∩平面β=a,若b∥α,b∥β,则a∥b
其中为真命题有()
A.1个B.2个C.3个D.4个
4.A、B是不在直线l上的两点,则过点A、B且与直线l平行的平面的个数是()
A.0个B.1个C.无数个D.以上三种情况均有可能
B l C1D1中,下面四条直线中与平面AB1C平行的直
5.在正方体ABCD—A
线是()
A.DD1B.A l D1C.C1D1D.A l D
6.A为两异面直线a,b外的一点,过点A且与a、b都平行的平面()
A.至多有1个B.至少有1个C.有1个D.有0个
7.已知平面α∥平面β,直线a∥α,直线b∥β那么,a与b的关系必定是()A.平行或相交B.相交或异面C.平行或异面D.平行、相交或异面
8.已知直线a、b、c,平面α、β、γ,并给出以下命题:
①若α∥β,β∥γ,则α∥γ,
②若a∥b∥c,且α⊥a,β⊥b,γ⊥c,则α∥β∥γ,
③若a∥b∥c,且a∥α,b∥β,c∥γ,则α∥β∥γ;
④若a⊥α,b⊥β,c⊥γ,且α∥β∥γ,则a∥b∥c.
其中正确的命题有()
A.3个B.2个C.1个D.0个
二、填空题
9.在△ABC中,AB=5,AC=7,∠A=60°,G是重心,过G的平面α与BC平行,AB∩α=M,AC ∩α=N,则MN___________
10.P 是边长为8的正方形ABCD 所在平面外的一点,且P A =PB =PC =PD =8,M 、N 分别在P A 、BD 上,且53
==ND BN
MA PM
,则MN =_________.
11.三个平面两两相交,有三条交线,则这三条交线的位置关系为__________.
三、解答题
12.求证:如果两个相交平面分别经过两条平行线中的一条,那么它们的交线和这两条平行线互相平行.
13.已知E ,F ,G ,M 分别是四面体的棱AD ,CD ,BD ,BC 的中点,求证:AM ∥平面EFG .
14.空间四边形ABCD 的对棱AD ,BC 成60°的角,且AD =BC =a ,平行于AD 与BC 的截面分别交AB ,AC ,CD ,BD 于E 、F 、G 、H .
(1)求证:四边形EFGH 为平行四边形;
(2)E 在AB 的何处时截面EFGH 的面积最大?最大面积是多少?。

相关文档
最新文档