盘锦市初中数学方程与不等式之无理方程知识点总复习附答案解析
初中数学方程与不等式之无理方程知识点总复习附答案解析

初中数学方程与不等式之无理方程知识点总复习附答案解析一、选择题1.=0的解是___.【答案】x =5.【解析】【分析】把两边都平方,化为整式方程求解,注意结果要检验.【详解】方程两边平方得:(x ﹣3)(x ﹣5)=0,解得:x 1=3,x 2=5,经检验,x 2=5是方程的解,所以方程的解为:x =5.【点睛】本题考查了无理方程的解法,解含未知数的二次根式只有一个的无理方程时,一般步骤是:①移项,使方程左边只保留含有根号的二次根式,其余各项均移到方程的右边;②两边同时平方,得到一个整式方程;③解整式方程;④验根.2.1=的解为【答案】x=1【解析】试题分析:方程两边平方即可去掉绝对值符号,解方程求得x 的值,然后把x 的值代入进行检验即可.试题解析:方程两边平方,得:2-x=1,解得:x=1.经检验:x=1是方程的解.考点:无理方程.3.若关于x 的方程103=恰有两个不同的实数解,则实数a 的取值范围是________.【答案】0a =或316a ≥-【解析】【分析】,∴y ≥0,则原方程可化为:211023ay y +-=, 根据方程只有一个正根,即可解决问题.【详解】设24x =y ,∴y ≥0,则原方程可化为:211023ay y +-=, ∵方程恰有两个不同的实数解, ∴△=0或a =0或a >0(此时方程两根异号,y 只有一个正根,x 有两个不同的实数解) 当△=0时,14043a +=, 解得:316a =-, 故实数a 的取值范围是:0a =或316a ≥-, 故答案为:0a =或316a ≥-【点睛】 考查无理方程,难度一般,关键是掌握用换元法求解无理方程.4.方程23x x -=2的解是_________【答案】14x =-或【解析】【分析】方程两边平方可得到整式方程,再解之可得.【详解】方程两边平方可得x 2-3x=4,即x 2-3x-4=0,解得x 1=-1,x 2=4故答案为:14x =-或【点睛】本题考核知识点:二次根式,无理方程. 解题关键点:化无理方程为整式方程.5.方程-x =1的根是______【答案】x=3【解析】【分析】先将-x 移到方程右边,再把方程两边平方,使原方程化为整式方程x 2=9,求出x 的值,把不合题意的解舍去,即可得出原方程的解.【详解】解:整理得:=x+1,方程两边平方,得:2x+10=x 2+2x+1,移项合并同类项,得:x 2=9,解得:x 1=3,x 2=-3,经检验,x 2=-3不是原方程的解,则原方程的根为:x=3.故答案为:x=3.【点睛】本题考查了解无理方程,无理方程在有些地方初中教材中不再出现,比如湘教版.6.14+⋅⋅⋅=的解是______. 【答案】9【解析】【分析】设()11111y y y y =-++可将原方程进行化简,解化简后的方程即可求得答案. 【详解】设()()()()()1111112894y y y y y y ++=+++++L , ∴1111111112894y y y y y y -+-++-=+++++L , 即11194y y -=+, ∴4y+36-4y=y(y+9),即y 2+9y-36=0,∴y=-12或y=3,,,∴x=9,故答案为:9.【点睛】本题考查了解无理方程,解题的关键是利用换元法,还要注意()11111y y y y =-++的应用.7.0的根是____.【答案】x=1【解析】【分析】将无理方程化为一元二次方程,然后求解即可.【详解】原方程变形为x (x-1)=0,∴x=0或x-1=0,∴x=0或x=1,∴x=0时,被开方数x-1=-1<0,∴x=0不符合题意,舍去,∴方程的根为x=1,故答案为x=1.【点睛】本题考查了无理方程,将无理方程化为一元二次方程是解题的关键.8.方程211x -=的解是 .【答案】x =1【解析】【分析】根据算术平方根的意义,方程两边分别平方,化为整式方程,然后求解即可.【详解】两边平方得2x ﹣1=1,解得x=1.经检验x=1是原方程的根.故本题答案为:x=1.9.方程6x x +=的根为 .【答案】x=3【解析】 两边平方得x+6=x 2,解一元二次方程得x 1=3,x 2=-2(舍去),所以方程的根为10.3x x +=3的解是_____.【答案】1【解析】【分析】 x 移项到右边,再两边同时平方3x +x =1,再两边进行平方,得x =1,从而得解.【详解】3x +3x ,两边平方得,x +3=9+x ﹣x ,移项合并得,x =6,1,两边平方得,x=1,经检验:x=1是原方程的解,故答案为1.【点睛】本题考查了学生对开方与平方互为逆运算的理解,利用转化的思想把二次根式方程化为一元一次方程是解题的关键.11.3=的解是______.x=【答案】4【解析】【分析】把两边平方,化为整式方程求解,然后检验即可.【详解】=,3∴2x+1=9,∴2x=8,∴x=4,经检验x=4是原方程的解.故答案为:x=4.【点睛】本题考查了无理方程的解法,解含未知数的二次根式只有一个的无理方程时,一般步骤是:①移项,使方程左边只保留含有根号的二次根式,其余各项均移到方程的右边;②两边同时平方,得到一个整式方程;③解整式方程;④验根.12.1=的根是x=______.【答案】2.【解析】【分析】方程两边乘方,得整式方程,求解,检验即可.【详解】=1∴x-1=1∴x=2,经检验,x=2是原方程的根,所以,原方程的根是x=2.故答案为:2.【点睛】本题考查了解无理方程,注意别忘记检验哟!13.若关于x的方程存在整数解,则正整数m的所有取值的和为___________.【答案】18【解析】【分析】将原方程变形为,由m为正整数、被开方数非负,可得出2010≤x≤2018,依此代入各值求出m的值,再将是正整数的m的值相加即可得出结论.【详解】原题可得:,∵m为正整数,∴,∴2x-4020≥0,∴x≥2010.∵2018-x≥0,∴x≤2018,∴2010≤x≤2018.当x=2010时,m=0,m=0,不符合题意;当x=2011,,不符合题意;,不符合题意;当x=2012m=4,m=3当x=2013,,不符合题意;当x=2014时,2m=8,m=4;,不符合题意;当x=2015,m=3当x=2016m=12,,不符合题意;当x=2017时,m=14;当x=2018时,0=16,不成立.∴正整数m的所有取值的和为4+14=18.故答案为18.【点睛】本题考查了无理方程,由被开方数非负及m为正整数,找出x的取值范围是解题的关键.14.x=的根是__________.【答案】2【解析】【分析】本题可先对方程两边平方,得到x+2=x2,再对方程进行因式分解即可解出本题.【详解】原方程变形为:x+2=x2即x2−x−2=0∴(x−2)(x+1)=0∴x=2或x=−1∵x=−1时不满足题意.∴x=2.故答案为:2.【点睛】此题考查解无理方程,解题关键在于掌握方程解法.15.方程x=________.【答案】x=3【解析】分析:解此方程首先要把它化为我们熟悉的方程(一元二次方程),解新方程,检验是否符合题意,即可求得原方程的解.详解:据题意得:3+2x=x2,∴x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,∴x1=3,x2=﹣1.≥0,∴x=3.故答案为:3.点睛:本题考查了学生综合应用能力,解方程时要注意解题方法的选择,在求值时要注意解的检验.16.x=-的解是__________.x=-【答案】3【解析】【分析】根据解无理方程的方法可以解答此方程,注意无理方程要检验.【详解】x=-,∴3-2x=x2,∴x2+2x-3=0,∴(x+3)(x-1)=0,解得,x 1=-3,x 2=1,经检验,当x=1时,原方程无意义,当x=-3时,原方程有意义,故原方程的根是x=-3,故答案为:x=-3.【点睛】本题考查无理方程,解答本题的关键是明确解无理方程的方法.17.如图,ABC ∆中,AB AC =, 点D 在线段BC 的延长线上, 连接AD ,CD=1,BC=12,∠DAB=30°, 则 AC =__________.【答案】439【解析】【分析】过点B 作BE ⊥AD 于点E ,AH ⊥BC 于H .设AB=AC=x .根据AE+DE=AD ,分别利用勾股定理求出AE ,DE ,AD ,构建方程即可解决问题.【详解】解:过点B 作BE ⊥AD 于点E ,AH ⊥BC 于H .设AB=AC=x .在Rt △ABE 中,∵∠BAE=30°,AB=x ,∴BE=12AB=12x ,33,∵AB=AC,AH⊥BC,∴CH=BH=6,在Rt△AHB中,AH2=x2-62,在Rt△DBE中,=,在Rt△ADH中,∵AE+DE=AD,x+=∴2整理得:x4-13×51x-(12×13)2=0,解得x2=13×48或13×3(舍去),∵x>0,∴,经检验:是无理方程的解,∴故答案为.【点睛】本题考查勾股定理,解直角三角形,无理方程等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考填空题中的压轴题.18.0=的根是__________________.【答案】x=2【解析】【分析】先根据二次根式有意义的条件求出x的取值范围,再根据乘法法则转化为一元一次方程求解即可.【详解】∵x+1≥0,x-2≥0,∴x≥2.=,∴x+1=0或x-2=0,∴x1=-1(舍去),x2=2.故答案为:x=2.【点睛】本题考查了无理方程的解法,根据代数式有意义的条件求出未知数的取值范围是本题的易错点.19.方程(的实数根是______.【答案】4【解析】【分析】由方程得20x +=或40x -=,结合40x -≥,求出符合题意的x 即可.【详解】解:∵(20x +=,∴20x +=或40x -=,解得:2x =-或4x =,又∵40x -≥即4x ≥,∴4x =,故答案为:4.【点睛】此题考查了解无理方程,注意二次根式的被开方数必须大于等于0.20.的根是____.【答案】x =.【解析】【分析】二次根式的值为非负数,被开方数也为非负数.【详解】1=Q211x ∴-=22x ∴=x ∴=经检验 x =是原方程的根,∴x =.故答案为x =.【点睛】此题考查了二次根式有意义的条件,要明确,当函数表达式是二次根式时,被开方数非负.。
初中数学方程与不等式之无理方程知识点总复习含答案解析

初中数学方程与不等式之无理方程知识点总复习含答案解析一、选择题1.关于x 25x =-是无理方程,则m 的取值范围是_______.【答案】0m ≠【解析】【分析】根据无理方程的概念可得结果.【详解】解:由题意可得:∵无理方程的根号下含有未知数,∴m ≠0.故答案为:m≠0.【点睛】本题考查了无理方程,掌握无理方程的概念是解题的关键.2.2的根是 .【答案】x=53. 【解析】2=,∴3x ﹣1=4,∴x=53,经检验x=53是原方程组的解,故答案为x=53. 考点:无理方程.3.方程(x 30-=的解是______.【答案】x=2【解析】【分析】求出x 0=,求出即可.【详解】解:(x 30-=Q ,2x 0∴-≥,x 2∴≤,x 30∴-≠,0=Q ,x 2=,=.故答案为:x2【点睛】=是解此题的关键.4.如果关于x x=有实数根2,那么k=________.-【答案】1【解析】【分析】把x=2代入方程中进行求解即可得.【详解】,2-2k=4,解得:k=-1,经检验k=-1符合题意,所以k=-1,故答案为-1.【点睛】本题考查了方程的解,熟练掌握方程解的定义是解题的关键.5.2=的解是__________.【答案】x=7【解析】【分析】将方程两边平方后求解,注意检验.【详解】将方程两边平方得x-3=4,移项得:x=7,=2,原方程成立,=2的解是x=7.故本题答案为:x=7.【点睛】在解无理方程是最常用的方法是两边平方法及换元法,解得答案时一定要注意代入原方程检验.6.0的根是____.【答案】x=1【解析】【分析】将无理方程化为一元二次方程,然后求解即可.【详解】原方程变形为x (x-1)=0,∴x=0或x-1=0,∴x=0或x=1,∴x=0时,被开方数x-1=-1<0,∴x=0不符合题意,舍去,∴方程的根为x=1,故答案为x=1.【点睛】本题考查了无理方程,将无理方程化为一元二次方程是解题的关键.7.若等式=成立,则x 的值为__________.【答案】16【解析】【分析】将方程变形后两边同时平方即可求出x 的值.【详解】∵=∴=∴==两边同时平方得,2x-5=27,解得,x=16.经检验,x=16是原方程的根.故答案为:16.【点睛】此题主要考查了解无理方程,注意:解无理方程一定要验根.8.4=y = 换元后,整理得关于y 的整式方程是____________________.【答案】y²-4y+4=0【解析】【分析】y =,则原方程可化为关于y 的一元二次方程即可.解:y =, 则原方程可化为,44y y+=即y²-4y+4=0,故答案为:y²-4y+4=0. 【点睛】本题考查了无理方程,解无理方程最常用的方法是换元法,.9.2=的解是_______________.【答案】2x =【解析】试题分析:方程两边平方,得324x -=,解得2x =.代入验根可得方程的根为2x =. 考点:解无理方程.10.无理方程(0x -=的根是____.【答案】x=2.【解析】【分析】根据0乘任何数都得零,可得方程的解,根据被开方数是非负数,可得答案.【详解】解:由(0x -=,∴x-5=0或2-x=0,解得:x=5,x=2,∵20x -≥,∴2x ≤,当x=5时,被开方数无意义;故方程的解为:x=2,故答案为:x=2.【点睛】本题考查了无理方程,利用0乘任何数都得零是解题关键,注意被开方数是非负数.11.3=的解是______.【答案】4x =【分析】把两边平方,化为整式方程求解,然后检验即可.【详解】3=,∴2x+1=9,∴2x=8,∴x=4,经检验x=4是原方程的解.故答案为:x=4.【点睛】本题考查了无理方程的解法,解含未知数的二次根式只有一个的无理方程时,一般步骤是:①移项,使方程左边只保留含有根号的二次根式,其余各项均移到方程的右边;②两边同时平方,得到一个整式方程;③解整式方程;④验根.12.3=的根是_______________.【答案】x=7【解析】【分析】根据无理方程的解法求解即可.【详解】3=,两边平方可得:x+2=9,移项合并得:x=7.故答案为:x=7.【点睛】本题考查了无理方程的解法,解题的关键是根据等式的性质将方程两边平方,从而化成整式方程.13.-x 的值相等,那么x=__________.【答案】-5【解析】【分析】两边平方得到230()x x +=-,求出方程的解,把此方程的解代入原方程检验即可得出答案.【详解】x =-,两边平方得:230()x x +=-,即2300x x --=, (6)(5)0x x -+=,(6)0x -=或(5)0x +=,解得125,6x x =-= ,检验:当5x =-5x ==-,当6x =6x =≠-,所以x =-5,故答案为:-5.【点睛】本题考查无理方程,解一元二次方程.能将无理方程转化成一元二次方程是解决此题的关键.需注意:因为一个数的算术平方根是非负的,所以一元二次方程的解中可能有不符合无理方程的解,结果一定要检验.14.已知1sin 23y x π⎛⎫=-⎪⎝⎭,则x 等于_____. 【答案】2【解析】【分析】先化简方程,再求方程的解即可得出答案.【详解】解:根据题意可得x >0∵10102x =2.故答案为:2.【点睛】本题考查无理方程,化简二次根式是解题的关键.15.能使(x -50成立的x 是____________.【答案】7【解析】【分析】由无理方程中两个因式的积为0,则至少一个为0,并检验求得的未知数的值,从而得到答案,【详解】解:因为:(0x -=所以:50x -==解得;5,7x x ==经检验:5x =不合题意舍去,所以方程的解是:7x =.故答案为:7.【点睛】本题考查无理方程的解法,熟知解法是解题关键,注意检验.16.关于x 1k =+无实数根,则k 的取值范围是___________.【答案】k <-1【解析】【分析】根据二次根式的非负性即可知,当10+<k 时,方程无实数根.【详解】解:若关于x 1k =+无实数根,则10+<k ,∴k <-1,故答案为:k <-1【点睛】本题考查了无理方程,解题的关键是熟知二次根式的非负性得到当10+<k 时,方程无实数根.17.方程(x 0-=的解是_____________________【答案】4x =【解析】【分析】因为(x 0-=可以得出x−2=0,x−4=0且x−4≥0,由此求得原方程的解即可.【详解】解:(x 0-=Q20,40x x ∴-=-=,且40x -≥解得2,4x x ==且4x ≥4x ∴=故答案为4x =【点睛】此题考查解无理方程,注意被开方数必须大于或等于0,求此类方程的解必须满足这一条件.18.0=的根是__________________. 【答案】x=2【解析】【分析】 先根据二次根式有意义的条件求出x 的取值范围,再根据乘法法则转化为一元一次方程求解即可.【详解】∵x+1≥0,x-2≥0,∴x ≥2.0=,∴x+1=0或x-2=0,∴x 1=-1(舍去),x 2=2.故答案为:x=2.【点睛】本题考查了无理方程的解法,根据代数式有意义的条件求出未知数的取值范围是本题的易错点.19.方程(的实数根是______.【答案】4【解析】【分析】由方程得20x +=或40x -=,结合40x -≥,求出符合题意的x 即可.【详解】解:∵(20x +=,∴20x +=或40x -=,解得:2x =-或4x =,又∵40x -≥即4x ≥,∴4x =,故答案为:4.【点睛】此题考查了解无理方程,注意二次根式的被开方数必须大于等于0.20.解方程286x x -=时,设y =换元后,整理得关于y 的整式方程是___________________.【答案】y²+y-6=0【解析】【分析】设y=则原方程可化为关于y的一元二次方程即可.【详解】解:设y=则原方程可化为y²+y-6=0,故答案为:y²+y-6=0.【点睛】本题考查了无理方程,解无理方程最常用的方法是换元法,一般是通过观察确定用来换元的式子是解题的关键.。
新初中数学方程与不等式之无理方程知识点总复习含答案解析(1)

新初中数学方程与不等式之无理方程知识点总复习含答案解析(1)一、选择题1.0=的解是________;【答案】4x =【解析】【分析】0=得30x -=或40x -=,解出x 的值并检验即可.【详解】0=∴30x -=或40x -=123,4x x ==经检验,3x =为原方程的增根,应舍去所以,原方程的根是4x =.故答案为:4x =.【点睛】本题考查了无理方程,解题的关键是掌握解法,并注意检验.2.5=的根为_____.【答案】﹣2或﹣7【解析】【分析】把无理方程转化为整式方程即可解决问题.【详解】两边平方得到:,,∴(x+11)(2-x )=36,解得x=-2或-7,经检验x=-2或-7都是原方程的解.故答案为-2或-7【点睛】本题考查无理方程,解题的关键是学会把无理方程转化为整式方程.3.如果关于x x =有实数根2,那么k =________.【答案】1-【解析】【分析】把x=2代入方程中进行求解即可得.【详解】,2-2k=4,解得:k=-1,经检验k=-1符合题意,所以k=-1,故答案为-1.【点睛】本题考查了方程的解,熟练掌握方程解的定义是解题的关键.4.14+⋅⋅⋅=的解是______. 【答案】9【解析】【分析】设()11111y y y y =-++可将原方程进行化简,解化简后的方程即可求得答案. 【详解】设 ()()()()()1111112894y y y y y y ++=+++++L , ∴1111111112894y y y y y y -+-++-=+++++L , 即11194y y -=+, ∴4y+36-4y=y(y+9),即y 2+9y-36=0,∴y=-12或y=3,,,∴x=9,故答案为:9.【点睛】本题考查了解无理方程,解题的关键是利用换元法,还要注意()11111y y y y =-++的应用.5.3的解是_____.【答案】1【解析】【分析】移项到右边,再两边同时平方=1,再两边进行平方,得x=1,从而得解.【详解】3,两边平方得,x+3=9+x﹣,移项合并得,=6,1,两边平方得,x=1,经检验:x=1是原方程的解,故答案为1.【点睛】本题考查了学生对开方与平方互为逆运算的理解,利用转化的思想把二次根式方程化为一元一次方程是解题的关键.6.=0的解是___.【答案】x=5.【解析】【分析】把两边都平方,化为整式方程求解,注意结果要检验.【详解】方程两边平方得:(x﹣3)(x﹣5)=0,解得:x1=3,x2=5,经检验,x2=5是方程的解,所以方程的解为:x=5.【点睛】本题考查了无理方程的解法,解含未知数的二次根式只有一个的无理方程时,一般步骤是:①移项,使方程左边只保留含有根号的二次根式,其余各项均移到方程的右边;②两边同时平方,得到一个整式方程;③解整式方程;④验根.7.方程0x=的解是___________。
最新初中数学方程与不等式之无理方程知识点总复习附答案(1)

最新初中数学方程与不等式之无理方程知识点总复习附答案(1)一、选择题1.2k =无实数根,那么k 的取值范围是______________.【答案】k <2【解析】【分析】=b ,b≥0,得关于k 的不等式,解得即可.【详解】2k =,-2k =,∴k-2<0,解得:k <2.故答案是:k <2.【点睛】本题考查了无理方程根的情况,解题的关键是了解二次根式成立的条件.2.2的根是 .【答案】x=53. 【解析】2=,∴3x ﹣1=4,∴x=53,经检验x=53是原方程组的解,故答案为x=53. 考点:无理方程.3.若关于x 的方程103=恰有两个不同的实数解,则实数a 的取值范围是________.【答案】0a =或316a ≥-【解析】【分析】,∴y ≥0,则原方程可化为:211023ay y +-=, 根据方程只有一个正根,即可解决问题.【详解】设24x =y ,∴y ≥0,则原方程可化为:211023ay y +-=, ∵方程恰有两个不同的实数解, ∴△=0或a =0或a >0(此时方程两根异号,y 只有一个正根,x 有两个不同的实数解) 当△=0时,14043a +=, 解得:316a =-, 故实数a 的取值范围是:0a =或316a ≥-, 故答案为:0a =或316a ≥-【点睛】 考查无理方程,难度一般,关键是掌握用换元法求解无理方程.4.方程x+1=25x +的解是_____.【答案】x=2【解析】【分析】无理方程两边平方转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到无理方程的解.【详解】两边平方得:(x+1)2=2x+5,即x 2=4,开方得:x=2或x=-2,经检验x=-2是增根,无理方程的解为x=2.故答案为x=25.方程23x x -=2的解是_________【答案】14x =-或【解析】【分析】方程两边平方可得到整式方程,再解之可得.【详解】方程两边平方可得x 2-3x=4,即x 2-3x-4=0,解得x 1=-1,x 2=4故答案为:14x =-或【点睛】本题考核知识点:二次根式,无理方程. 解题关键点:化无理方程为整式方程.6.方程-x =1的根是______【答案】x=3【分析】先将-x 移到方程右边,再把方程两边平方,使原方程化为整式方程x 2=9,求出x 的值,把不合题意的解舍去,即可得出原方程的解.【详解】 解:整理得:=x+1,方程两边平方,得:2x+10=x 2+2x+1,移项合并同类项,得:x 2=9,解得:x 1=3,x 2=-3,经检验,x 2=-3不是原方程的解,则原方程的根为:x=3.故答案为:x=3.【点睛】本题考查了解无理方程,无理方程在有些地方初中教材中不再出现,比如湘教版.7.对正实数a ,b 定义运算法则2a b ab a b *=+,若310x *=,则x 的值是______. 【答案】11572±. 【解析】【分析】根据新定义,将方程3*x=10转化,再解无理方程.【详解】根据新定义,方程3*x=103x +6+x=10,移项,整理得3x两边平方,得(x-4)2=3x ,即x 2-11x+16=0,解得1157± 经检验1157± 故答案为11572±. 【点睛】本题是一道新定义的题目,考查了无理方程,以及一元二次方程的解法,难度不大.8.21=1x -的根是____.【答案】x =2.【分析】二次根式的值为非负数,被开方数也为非负数.【详解】1=Q211x ∴-=22x ∴=x ∴=经检验 x =是原方程的根,∴x =.故答案为x =.【点睛】此题考查了二次根式有意义的条件,要明确,当函数表达式是二次根式时,被开方数非负.9.2=的解是_______________.【答案】2x =【解析】试题分析:方程两边平方,得324x -=,解得2x =.代入验根可得方程的根为2x =. 考点:解无理方程.10.3x =的解是___________。
(易错题精选)初中数学方程与不等式之无理方程知识点总复习有答案解析

(易错题精选)初中数学方程与不等式之无理方程知识点总复习有答案解析一、选择题1.0x=的解是____.【答案】3x=-【解析】【分析】根据解无理方程的方法可以解答此方程,注意无理方程要检验.【详解】x=,x-,∴3-2x=x2,∴x2+2x-3=0,∴(x+3)(x-1)=0,解得,x1=-3,x2=1,经检验,当x=1时,原方程无意义,当x=3时,原方程有意义,故原方程的根是x=-3,故答案为:x=-3.【点睛】本题考查无理方程,解答本题的关键是明确解无理方程的方法.2.1=的解为 .【答案】x=1【解析】【分析】方程两边平方即可去掉绝对值符号,解方程求得x的值,然后把x的值代入进行检验即可.【详解】方程两边平方,得:2-x=1,解得:x=1.经检验:x=1是方程的解.故答案是:x=1.3.2的根是.【答案】x=53.【解析】2=,∴3x﹣1=4,∴x=53,经检验x=53是原方程组的解,故答案为x=53.考点:无理方程.4.x=的解为_____.【答案】x=1【解析】分析:方程两边平方,将无理方程转化为整式方程,求出x的值,经检验即可得到无理方程的解.详解:两边平方得:-x+2=x2,即(x-1)(x+2)=0,解得:x=1或x=-2,经检验x=-2是增根,无理方程的解为x=1,故答案为x=1点睛:此题考查了无理方程,利用了转化的思想,解无理方程注意要验根.5.如果关于x x=有实数根2,那么k=________.【答案】1-【解析】【分析】把x=2代入方程中进行求解即可得.【详解】,2-2k=4,解得:k=-1,经检验k=-1符合题意,所以k=-1,故答案为-1.【点睛】本题考查了方程的解,熟练掌握方程解的定义是解题的关键.6.2=的解是__________.【答案】x=7【解析】【分析】将方程两边平方后求解,注意检验.【详解】将方程两边平方得x-3=4,移项得:x=7,=2,原方程成立,=2的解是x=7.故本题答案为:x=7.【点睛】在解无理方程是最常用的方法是两边平方法及换元法,解得答案时一定要注意代入原方程检验.7.的解是_________【答案】14x =-或【解析】【分析】方程两边平方可得到整式方程,再解之可得.【详解】方程两边平方可得x 2-3x=4,即x 2-3x-4=0,解得x 1=-1,x 2=4故答案为:14x =-或【点睛】本题考核知识点:二次根式,无理方程. 解题关键点:化无理方程为整式方程.8.14+⋅⋅⋅=的解是______. 【答案】9【解析】【分析】设()11111y y y y =-++可将原方程进行化简,解化简后的方程即可求得答案. 【详解】设()()()()()1111112894y y y y y y ++=+++++L , ∴1111111112894y y y y y y -+-++-=+++++L , 即11194y y -=+, ∴4y+36-4y=y(y+9),即y 2+9y-36=0,∴y=-12或y=3,,,∴x=9,故答案为:9.【点睛】本题考查了解无理方程,解题的关键是利用换元法,还要注意()11111y y y y =-++的应用.9.的根是 .【答案】x=3【解析】【分析】方程两边同时平方,即可转化成一元一次方程,解得x 的值,然后代入原方程进行检验即可.【详解】方程两边同时平方得:x+1=4,解得:x=3.检验:x=3时,左边,则左边=右边.故x=3是方程的解.故答案是:x=3.10.的根是____.【答案】x =.【解析】【分析】二次根式的值为非负数,被开方数也为非负数.【详解】1=Q211x ∴-=22x ∴=x ∴=经检验 x =是原方程的根,∴x =.故答案为x =.【点睛】此题考查了二次根式有意义的条件,要明确,当函数表达式是二次根式时,被开方数非负.11.0=的解是_____________.【答案】x=2【解析】【分析】根据题意可得x=2或x=1,然后根据二次根式的性质舍去x=1.【详解】=,∴x﹣2=0或x﹣1=0,解得x=2或x=1,当x=1时,x﹣2=1﹣2=﹣1<0,舍去,则原方程的解为x=2.故答案为:x=2.【点睛】本题主要考查解方程,二次根式的性质,解此题的关键在于求出的方程的解要使二次根式有意义.12.关于x的方程2k+=无实数根,k的取值范围是____________________.【答案】k<2【解析】【分析】原式整理后,根据二次根式的意义即可求解.【详解】=-,2k若方程无实数根,则k-2<0,即k<2,故答案为:k<2【点睛】此题考查无理方程的解,掌握由此根式有意义的条件时解答此题的关键.13.方程x=_____.【答案】x=1【解析】【分析】先把方程两边同时平方转化为有理方程,然后解得有理方程的解,最后要进行检验,本题得以解决.【详解】x=x2=4﹣3x,解得,x =1或x =﹣4,检验:当x =﹣4不是原方程的根,故原无理方程的解是x =1,故答案为:x =1【点睛】本题考查无理方程,解题的关键是明确无理方程的解法,注意解方程最后要检验.14.方程(3)(4)0x x -⋅-=的解是________;【答案】4x =【解析】【分析】根据(3)(4)0x x -⋅-=得30x -=或40x -=,解出x 的值并检验即可.【详解】解:∵(3)(4)0x x -⋅-=∴30x -=或40x -=123,4x x ==经检验,3x =为原方程的增根,应舍去所以,原方程的根是4x =.故答案为:4x =.【点睛】本题考查了无理方程,解题的关键是掌握解法,并注意检验.15.如图,ABC ∆中,AB AC =, 点D 在线段BC 的延长线上, 连接AD ,CD=1,BC=12,∠DAB=30°, 则 AC =__________.【答案】39【解析】【分析】过点B 作BE ⊥AD 于点E ,AH ⊥BC 于H .设AB=AC=x .根据AE+DE=AD ,分别利用勾股定理求出AE ,DE ,AD ,构建方程即可解决问题.【详解】解:过点B 作BE ⊥AD 于点E ,AH ⊥BC 于H .设AB=AC=x .在Rt △ABE 中,∵∠BAE=30°,AB=x ,∴BE=12AB=12x ,33, ∵AB=AC ,AH ⊥BC ,∴CH=BH=6,在Rt △AHB 中,AH 2=x 2-62,在Rt △DBE 中,22221134BD BE x -=-, 在Rt △ADH 中,2222267AH DH x +-+ ∵AE+DE=AD , ∴2222231136724x x x +-=-+ 整理得:x 4-13×51x-(12×13)2=0,解得x 2=13×48或13×3(舍去),∵x >0,∴39,经检验:39是无理方程的解,∴39故答案为39.【点睛】本题考查勾股定理,解直角三角形,无理方程等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考填空题中的压轴题.16.已知1sin 23y x π⎛⎫=-⎪⎝⎭,则x 等于_____. 【答案】2【解析】【分析】 先化简方程,再求方程的解即可得出答案.【详解】解:根据题意可得x >0∵10102x =2.故答案为:2.【点睛】本题考查无理方程,化简二次根式是解题的关键.17.如果关于x x =的一个根为3,那么a =_______【答案】3【解析】【分析】把3x =代入原方程即可得到答案.【详解】解:把3x =3=,两边平方得:69a +=,所以:3a =,经检验:3a =符合题意,故答案为:3.【点睛】本题考查方程的解的含义以及解无理方程,掌握方程的解及解无理方程的方法是关键.18.如果方程1k -=有实数解,那么k 的取值范围是________________________. 【答案】:k≤1【解析】【分析】根据二次根式有意义的条件列出关于k 的不等式求解即可.【详解】∵1k -=,1k =-,0≥,∴10k -≥,∴k ≤1.故答案为:k≤1.【点睛】本题考查了无理方程,根据二次根式有意义的条件列出关于k 的不等式是解答本题的关键.19.2x =的解是__________.【答案】1x =【解析】【分析】先左右两边同时平方,然后解整式方程即可,注意检验求出的整式方程的根是否为原方程的增根.【详解】2x =,∴22(2)x =,即2234x x += ,解得1x =或1x =-.当1x =-2,22,22x ==-≠- ,∴1x =-是原方程的增根,∴原方程的解为1x =.故答案为:1x =.【点睛】本题主要考查无理方程的解法,掌握无理方程的解法是解题的关键.20.3的解是_____.【答案】5x =【解析】分析:把方程两边平方,去根号后求解.详解:两边同时平方,得:219,x -=解得:5,x =经检验,5x =是原方程的解.故答案为 5.x =点睛:考查无理方程的解法,解无理方程通常用的方法是两边平方法或者换元法.。
人教版初中数学方程与不等式之无理方程知识点总复习附答案解析

人教版初中数学方程与不等式之无理方程知识点总复习附答案解析一、选择题1.x=的根是__________.【答案】2【解析】【分析】本题可先对方程两边平方,得到x+2=x2,再对方程进行因式分解即可解出本题.【详解】原方程变形为:x+2=x2即x2−x−2=0∴(x−2)(x+1)=0∴x=2或x=−1∵x=−1时不满足题意.∴x=2.故答案为:2.【点睛】此题考查解无理方程,解题关键在于掌握方程解法.2.的根是.【答案】x=3【解析】【分析】方程两边同时平方,即可转化成一元一次方程,解得x的值,然后代入原方程进行检验即可.【详解】方程两边同时平方得:x+1=4,解得:x=3.检验:x=3时,左边,则左边=右边.故x=3是方程的解.故答案是:x=3.3.1=的解为 .【答案】x=1【解析】【分析】方程两边平方即可去掉绝对值符号,解方程求得x的值,然后把x的值代入进行检验即可.【详解】方程两边平方,得:2-x=1,解得:x=1.经检验:x=1是方程的解.故答案是:x=1.4.方程的解为.【答案】3.【解析】首先把方程两边分别平方,然后解一元二次方程即可求出x的值.解:两边平方得:2x+3=x2∴x2﹣2x﹣3=0,解方程得:x1=3,x2=﹣1,检验:当x1=3时,方程的左边=右边,所以x1=3为原方程的解,当x2=﹣1时,原方程的左边≠右边,所以x2=﹣1不是原方程的解.故答案为3.5.10x x-g的根是____.【答案】x=1【解析】【分析】将无理方程化为一元二次方程,然后求解即可.【详解】原方程变形为x(x-1)=0,∴x=0或x-1=0,∴x=0或x=1,∴x=0时,被开方数x-1=-1<0,∴x=0不符合题意,舍去,∴方程的根为x=1,故答案为x=1.【点睛】本题考查了无理方程,将无理方程化为一元二次方程是解题的关键.6.方程1x-______.x=【答案】1【解析】【分析】两边平方解答即可.【详解】原方程可化为:(x-1)2=1-x,解得:x1=0,x2=1,经检验,x=0不是原方程的解,x=1是原方程的解x=.故答案为1【点睛】此题考查无理方程的解法,关键是把两边平方解答,要注意解答后一定要检验.7.如果关于x1k0+=没有实数根,那么k的取值范围是___________________.k>【答案】1【解析】【分析】根据关于x没有实数根,可知1-k<0,从而可以求得k的取值范围.【详解】∵关于x=1-k没有实数根,∴1-k<0,解得,k>1,故答案为:k>1.【点睛】本题考查无理方程,解题的关键是明确无理方程的解答方法,无实数根应满足什么条件.8.0x=的解是____.x=-【答案】3【解析】【分析】根据解无理方程的方法可以解答此方程,注意无理方程要检验.【详解】x=,-,x∴3-2x=x2,∴x2+2x-3=0,∴(x+3)(x-1)=0,解得,x1=-3,x2=1,经检验,当x=1时,原方程无意义,当x=3时,原方程有意义,故原方程的根是x=-3,故答案为:x=-3.【点睛】本题考查无理方程,解答本题的关键是明确解无理方程的方法.9.如果关于x的方程的一个根为3,那么a= .【答案】3【解析】【分析】根据方程的解的意义,把x=3代入原方程,然后解关于a的方程,解答后,一定要验根.【详解】+=的一个根为3,∵关于x2x a x+=,∴x=3一定满足关于x2x a x+=,a63方程的两边同时平方,得6+a=9,解得a=3;检验:将a=3代入原方程得,?=,左边2333右边=3,∴左边=右边,∴a=3符合题意,故填:3.10.若等式3253103x-=x的值为__________.【答案】16【解析】【分析】将方程变形后两边同时平方即可求出x的值.【详解】x-=∵3253103x-=∴3251033x-=∴32593x-=2533两边同时平方得,2x-5=27,解得,x=16.经检验,x=16是原方程的根.故答案为:16.【点睛】此题主要考查了解无理方程,注意:解无理方程一定要验根.11.下列方程中:a 、421x x +=;b 、32x x -+=;c 、31x =;d 、412x =属于高次方程的是_____.【答案】a ,d【解析】【分析】根据高次方程的定义判断即可.【详解】解:421x x +=是高次方程;32x x -+=是分式方程;31x =是无理方程;412x =是高次方程,故答案为:a ,d .【点睛】本题考查了高次方程的定义:整式方程未知数次数高于2次的方程叫高次方程.12.方程x =________.【答案】x=3【解析】分析:解此方程首先要把它化为我们熟悉的方程(一元二次方程),解新方程,检验是否符合题意,即可求得原方程的解.详解:据题意得:3+2x =x 2,∴x 2﹣2x ﹣3=0,∴(x ﹣3)(x +1)=0,∴x 1=3,x 2=﹣1.≥0,∴x =3.故答案为:3.点睛:本题考查了学生综合应用能力,解方程时要注意解题方法的选择,在求值时要注意解的检验.13.0=的解是________;【答案】4x =【解析】【分析】0=得30x -=或40x -=,解出x 的值并检验即可.【详解】0=∴30x -=或40x -=123,4x x ==经检验,3x =为原方程的增根,应舍去所以,原方程的根是4x =.故答案为:4x =.【点睛】本题考查了无理方程,解题的关键是掌握解法,并注意检验.14.根号内含有______________的方程叫做无理方程;_______________和_______________统称为有理方程.【答案】未知数的代数式 整式方程 分式方程【解析】【分析】根据有理方程和无理方程的概念解答.【详解】解:根号内含有未知数的代数式的方程叫做无理方程,整式方程和分式方程统称为有理方程.故答案为:未知数的代数式;整式方程;分式方程.【点睛】本题考查了方程的分类,掌握有理方程和无理方程的概念是解题的关键.15.若关于x 0k =在实数范围内有解,则k 的取值范围是__________.【答案】k ≥【解析】【分析】先将方程变形为22460x x k ++-=,再根据一元二次方程根的判别式列出不等式即可解答.【详解】0k =可变形为:22460x x k ++-=则2164(6)0k ∆=--≥,解得:k ≥k ≤0k =≥∴k ≤∴k ≥故答案为:k ≥【点睛】本题考查了无理方程的解,解题的关键是对原方程进行变形,转化为一元二次方程.16.方程(0x +=的解是___________________.【答案】x=2【解析】试题解析:(10,x +=10x ∴+=0.=解得:1x =-或 2.x =当1x =-.故答案为 2.x =17.能使(x -50成立的x 是____________.【答案】7【解析】【分析】由无理方程中两个因式的积为0,则至少一个为0,并检验求得的未知数的值,从而得到答案,【详解】解:因为:(0x -=所以:50x -==解得;5,7x x ==经检验:5x =不合题意舍去,所以方程的解是:7x =.故答案为:7.【点睛】本题考查无理方程的解法,熟知解法是解题关键,注意检验.18.关于x 1k =+无实数根,则k 的取值范围是___________.【答案】k <-1【解析】【分析】根据二次根式的非负性即可知,当10+<k 时,方程无实数根.【详解】解:若关于x 1k =+无实数根,则10+<k ,∴k <-1,故答案为:k <-1【点睛】本题考查了无理方程,解题的关键是熟知二次根式的非负性得到当10+<k 时,方程无实数根.19.方程(x 0-=的解是_____________________【答案】4x =【解析】【分析】因为(x 0-=可以得出x−2=0,x−4=0且x−4≥0,由此求得原方程的解即可.【详解】解:(x 0-=Q20,40x x ∴-=-=,且40x -≥解得2,4x x ==且4x ≥4x ∴=故答案为4x =【点睛】此题考查解无理方程,注意被开方数必须大于或等于0,求此类方程的解必须满足这一条件.20.=0的解是___.【答案】x =5.【解析】【分析】把两边都平方,化为整式方程求解,注意结果要检验.【详解】方程两边平方得:(x ﹣3)(x ﹣5)=0,解得:x 1=3,x 2=5,经检验,x 2=5是方程的解,所以方程的解为:x =5.【点睛】本题考查了无理方程的解法,解含未知数的二次根式只有一个的无理方程时,一般步骤是:①移项,使方程左边只保留含有根号的二次根式,其余各项均移到方程的右边;②两边同时平方,得到一个整式方程;③解整式方程;④验根.。
(易错题精选)初中数学方程与不等式之无理方程知识点总复习含答案解析(1)

(易错题精选)初中数学方程与不等式之无理方程知识点总复习含答案解析(1)一、选择题1.方程11x-=的根是x=______.【答案】2.【解析】【分析】方程两边乘方,得整式方程,求解,检验即可.【详解】x-=∵11∴x-1=1∴x=2,经检验,x=2是原方程的根,所以,原方程的根是x=2.故答案为:2.【点睛】本题考查了解无理方程,注意别忘记检验哟!2.方程的解为.【答案】3.【解析】首先把方程两边分别平方,然后解一元二次方程即可求出x的值.解:两边平方得:2x+3=x2∴x2﹣2x﹣3=0,解方程得:x1=3,x2=﹣1,检验:当x1=3时,方程的左边=右边,所以x1=3为原方程的解,当x2=﹣1时,原方程的左边≠右边,所以x2=﹣1不是原方程的解.故答案为3.3.如果关于x2-=有实数根2,那么k=________.x k x-【答案】1【解析】【分析】把x=2代入方程中进行求解即可得.【详解】-,22k2-2k=4,解得:k=-1,经检验k=-1符合题意,所以k=-1,【点睛】本题考查了方程的解,熟练掌握方程解的定义是解题的关键.4.2=的解是__________.【答案】x=7【解析】【分析】将方程两边平方后求解,注意检验.【详解】将方程两边平方得x-3=4,移项得:x=7,=2,原方程成立,=2的解是x=7.故本题答案为:x=7.【点睛】在解无理方程是最常用的方法是两边平方法及换元法,解得答案时一定要注意代入原方程检验.5.方程______.x=【答案】1【解析】【分析】两边平方解答即可.【详解】原方程可化为:(x-1)2=1-x,解得:x1=0,x2=1,经检验,x=0不是原方程的解,x=1是原方程的解x=.故答案为1【点睛】此题考查无理方程的解法,关键是把两边平方解答,要注意解答后一定要检验.6.=x的解是______.【答案】x=1【解析】【分析】将无理方程化为一元二次方程,然后求解即可.原方程变形为 4-3x=x2,整理得 x2+3x-4=0,∴(x+4)(x-1)=0,∴x+4=0或x-1=0,∴x1=-4(舍去),x2=1.故答案为x=1.【点睛】本题考查了无理方程,将无理方程化为一元二次方程是解题的关键.7.方程=0的解为__________.【答案】【解析】【分析】将原方程两边平方得出关于x的整式方程,解之求得x的值,再由二次根式有意义的条件可确定x的最终结果.【详解】解:将原方程两边平方得(x−5)(x−4)=0,则x−5=0或x−4=0,解得:x=5或x=4,∵x−5≥0,x−4≥0,解得:x≥5,∴x=5,故答案为:x=5.【点睛】本题主要考查解无理方程,解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.常用的方法有:乘方法,配方法,因式分解法,设辅助元素法,利用比例性质法等.8.2x x-=-的解________x=-【答案】2【解析】【分析】两边平方后解此无理方程可得.【详解】解:两边同时平方可得:2-x=x2,解得:x1=-2,x2=1,检验得x2=1不是方程的根,a=-故答案为1【点睛】本题主要考查解无理方程的知识点,去掉根号把无理方程化成有理方程是解题的关键,注意无理方程需验根.需要同学们仔细掌握.9.的根是.【答案】x=3【解析】【分析】方程两边同时平方,即可转化成一元一次方程,解得x的值,然后代入原方程进行检验即可.【详解】方程两边同时平方得:x+1=4,解得:x=3.检验:x=3时,左边,则左边=右边.故x=3是方程的解.故答案是:x=3.10.=3的解是_____.【答案】1【解析】【分析】移项到右边,再两边同时平方=1,再两边进行平方,得x=1,从而得解.【详解】3,两边平方得,x+3=9+x﹣,移项合并得,=6,1,两边平方得,x=1,经检验:x=1是原方程的解,故答案为1.【点睛】本题考查了学生对开方与平方互为逆运算的理解,利用转化的思想把二次根式方程化为一元一次方程是解题的关键.11.如图,ABC ∆中,AB AC =, 点D 在线段BC 的延长线上, 连接AD ,CD=1,BC=12,∠DAB=30°, 则 AC =__________.【答案】439【解析】【分析】过点B 作BE ⊥AD 于点E ,AH ⊥BC 于H .设AB=AC=x .根据AE+DE=AD ,分别利用勾股定理求出AE ,DE ,AD ,构建方程即可解决问题.【详解】解:过点B 作BE ⊥AD 于点E ,AH ⊥BC 于H .设AB=AC=x .在Rt △ABE 中,∵∠BAE=30°,AB=x ,∴BE=12AB=12x ,332x , ∵AB=AC ,AH ⊥BC ,∴CH=BH=6,在Rt △AHB 中,AH 2=x 2-62,在Rt △DBE 中,22221134BD BE x -=-, 在Rt △ADH 中,2222267AH DH x +-+∵AE+DE=AD ,x += 整理得:x 4-13×51x-(12×13)2=0,解得x 2=13×48或13×3(舍去),∵x >0,∴,经检验:是无理方程的解,∴故答案为.【点睛】本题考查勾股定理,解直角三角形,无理方程等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考填空题中的压轴题.12.方程21x +=___________。
新初中数学方程与不等式之无理方程知识点总复习附答案解析(1)

新初中数学方程与不等式之无理方程知识点总复习附答案解析(1)一、选择题1.方程+2的根是__________.x x【答案】2【解析】【分析】本题可先对方程两边平方,得到x+2=x2,再对方程进行因式分解即可解出本题.【详解】原方程变形为:x+2=x2即x2−x−2=0∴(x−2)(x+1)=0∴x=2或x=−1∵x=−1时不满足题意.∴x=2.故答案为:2.【点睛】此题考查解无理方程,解题关键在于掌握方程解法.2.方程x+1=2的根是.【答案】x=3【解析】【分析】方程两边同时平方,即可转化成一元一次方程,解得x的值,然后代入原方程进行检验即可.【详解】方程两边同时平方得:x+1=4,解得:x=3.检验:x=3时,左边=3+1=2,则左边=右边.故x=3是方程的解.故答案是:x=3.3.方程2=x﹣6的根是______.【答案】x=12.【解析】两边平方,求得一元二次方程的解,进一步利用x﹣3≥0验证得出答案即可.解:2=x﹣64(x﹣3)=x2﹣12x+36整理得x2﹣16x+48=0解得:x 1=4,x 2=12代入x ﹣3>0,当x=4时,等式右边为负数,所以原方程的解为x=12.故答案为:x=12.4.x =的解为_____.【答案】x=1【解析】分析:方程两边平方,将无理方程转化为整式方程,求出x 的值,经检验即可得到无理方程的解.详解:两边平方得:-x+2=x 2,即(x-1)(x+2)=0,解得:x=1或x=-2,经检验x=-2是增根,无理方程的解为x=1,故答案为x=1点睛:此题考查了无理方程,利用了转化的思想,解无理方程注意要验根.5.对正实数a ,b 定义运算法则2a b a b *=+,若310x *=,则x 的值是______.. 【解析】【分析】根据新定义,将方程3*x=10转化,再解无理方程.【详解】根据新定义,方程3*x=10+6+x=10,移项,整理得两边平方,得(x-4)2=3x ,即x 2-11x+16=0,解得经检验【点睛】本题是一道新定义的题目,考查了无理方程,以及一元二次方程的解法,难度不大.6.=x 的解是______.【答案】x=1【解析】【分析】将无理方程化为一元二次方程,然后求解即可.【详解】原方程变形为 4-3x=x2,整理得 x2+3x-4=0,∴(x+4)(x-1)=0,∴x+4=0或x-1=0,∴x1=-4(舍去),x2=1.故答案为x=1.【点睛】本题考查了无理方程,将无理方程化为一元二次方程是解题的关键.7.3的解是_____.x=【答案】5【解析】分析:把方程两边平方,去根号后求解.x-=详解:两边同时平方,得:219,x=解得:5,x=是原方程的解.经检验,5x=故答案为 5.点睛:考查无理方程的解法,解无理方程通常用的方法是两边平方法或者换元法.8.的根是____.【答案】x=.【解析】【分析】二次根式的值为非负数,被开方数也为非负数.【详解】Q=1211∴-=x22∴=x∴=经检验x=是原方程的根,x∴x=.故答案为x=.【点睛】此题考查了二次根式有意义的条件,要明确,当函数表达式是二次根式时,被开方数非负.9.方程6x x +=的根为 .【答案】x=3【解析】 两边平方得x+6=x 2,解一元二次方程得x 1=3,x 2=-2(舍去),所以方程的根为10.252x k -=无实数根,那么k 的取值范围是______________.【答案】k <2【解析】【分析】x =b ,b≥0,得关于k 的不等式,解得即可.【详解】252x k -=,25-2x k -=,∴k-2<0,解得:k <2.故答案是:k <2.【点睛】本题考查了无理方程根的情况,解题的关键是了解二次根式成立的条件.11.方程(4x -的实数根是______.【答案】4【解析】【分析】由方程得20x +=或40x -=,结合40x -≥,求出符合题意的x 即可.【详解】解:∵(240x x +-=,∴20x +=或40x -=,解得:2x =-或4x =,又∵40x -≥即4x ≥,∴4x =,故答案为:4.【点睛】此题考查了解无理方程,注意二次根式的被开方数必须大于等于0.12.1=+的根是__________x【答案】x=2【解析】【分析】先把方程两边平方,使原方程化为整式方程x2=4,求出x的值,把不合题意的解舍去,即可得出原方程的解.【详解】解:方程两边平方得,2x+5=x2+2x+1,移项合并同类项得:x2=4,解得:x1=2,x2=−2,经检验x2=−2不是原方程的解,则原方程的根为x=2;故答案为x=2.【点睛】本题考查了解无理方程:根号内含有未知数的方程叫无理方程;解无理方程的基本思想是把无理方程转化为有理方程来解,常常采用平方法去根号.13.关于x的方程2k+=无实数根,k的取值范围是____________________.【答案】k<2【解析】【分析】原式整理后,根据二次根式的意义即可求解.【详解】k=-,2若方程无实数根,则k-2<0,即k<2,故答案为:k<2【点睛】此题考查无理方程的解,掌握由此根式有意义的条件时解答此题的关键.14.1=的解为_____.【答案】x=2【解析】【分析】1=两边同时乘方,即可解答.【详解】方程两边平方得:x ﹣1=1,解得:x =2,经检验x =2是原方程的解,故答案为:x =2【点睛】本题考点为无理方程求解,熟练掌握相关知识点是解题关键.15.3=的解的是x =__________________.【答案】8x =【解析】【分析】把方程两边平方去根号后即可转化成整式方程,解方程即可求出x 的值,然后进行检验.【详解】两边平方得:x+1=9,解得:x=8.检验:x=8是方程的解.故答案为x=8.【点睛】本题考查的知识点是平方根的定义,解题的关键是熟练的掌握平方根.16.-x 的值相等,那么x=__________.【答案】-5【解析】【分析】两边平方得到230()x x +=-,求出方程的解,把此方程的解代入原方程检验即可得出答案.【详解】x =-,两边平方得:230()x x +=-,即2300x x --=, (6)(5)0x x -+=,(6)0x -=或(5)0x +=,解得125,6x x =-= ,检验:当5x =-5x ==-,当6x =6x =≠-,所以x =-5,故答案为:-5.【点睛】本题考查无理方程,解一元二次方程.能将无理方程转化成一元二次方程是解决此题的关键.需注意:因为一个数的算术平方根是非负的,所以一元二次方程的解中可能有不符合无理方程的解,结果一定要检验.17.已知1sin 23y x π⎛⎫=-⎪⎝⎭,则x 等于_____. 【答案】2【解析】【分析】先化简方程,再求方程的解即可得出答案.【详解】解:根据题意可得x >0∵10102x =2.故答案为:2.【点睛】本题考查无理方程,化简二次根式是解题的关键.18.关于x 1k =+无实数根,则k 的取值范围是___________.【答案】k <-1【解析】【分析】根据二次根式的非负性即可知,当10+<k 时,方程无实数根.【详解】解:若关于x 1k =+无实数根,则10+<k ,∴k <-1,故答案为:k <-1【点睛】本题考查了无理方程,解题的关键是熟知二次根式的非负性得到当10+<k 时,方程无实数根.19.方程(x 0-=的解是_____________________【答案】4x =【解析】【分析】因为(x 0-=可以得出x−2=0,x−4=0且x−4≥0,由此求得原方程的解即可.【详解】解:(x 0-=Q20,40x x ∴-=-=,且40x -≥解得2,4x x ==且4x ≥4x ∴=故答案为4x =【点睛】此题考查解无理方程,注意被开方数必须大于或等于0,求此类方程的解必须满足这一条件.20.1=的根是x =______.【答案】2.【解析】【分析】方程两边乘方,得整式方程,求解,检验即可.【详解】1=∴x-1=1∴x=2,经检验,x=2是原方程的根,所以,原方程的根是x=2.故答案为:2.【点睛】本题考查了解无理方程,注意别忘记检验哟!。
最新初中数学方程与不等式之无理方程知识点总复习附答案解析(1)

最新初中数学方程与不等式之无理方程知识点总复习附答案解析(1) 一、选择题 1.方程2693x x x -+=-的解是___________。
【答案】x≤3【解析】【分析】由根式的性质可知方程左边必大于零,再根据无理方程左边等于右边,所以可得30x -≥求解即可.【详解】因为左边=3x -,右边=3-x,所以30x -≥,所以3x ≤.【点睛】本题考查了根式的性质及无理方程的化简求解.2.方程2=x ﹣6的根是______.【答案】x=12.【解析】 两边平方,求得一元二次方程的解,进一步利用x ﹣3≥0验证得出答案即可.解:2=x ﹣64(x ﹣3)=x 2﹣12x+36整理得x 2﹣16x+48=0解得:x 1=4,x 2=12代入x ﹣3>0,当x=4时,等式右边为负数,所以原方程的解为x=12. 故答案为:x=12.3.若关于x 的方程22411023x x =恰有两个不同的实数解,则实数a 的取值范围是________.【答案】0a =或316a ≥-【解析】【分析】24x ,∴y ≥0,则原方程可化为:211023ay y +-=, 根据方程只有一个正根,即可解决问题.【详解】24x y ,∴y ≥0,则原方程可化为:211023ay y +-=,∵方程恰有两个不同的实数解,∴△=0或a =0或a >0(此时方程两根异号,y 只有一个正根,x 有两个不同的实数解) 当△=0时,14043a +=, 解得:316a =-, 故实数a 的取值范围是:0a =或316a ≥-, 故答案为:0a =或316a ≥-【点睛】 考查无理方程,难度一般,关键是掌握用换元法求解无理方程.4.方程-x =1的根是______ 【答案】x=3【解析】【分析】先将-x 移到方程右边,再把方程两边平方,使原方程化为整式方程x 2=9,求出x 的值,把不合题意的解舍去,即可得出原方程的解. 【详解】解:整理得:=x+1,方程两边平方,得:2x+10=x 2+2x+1,移项合并同类项,得:x 2=9,解得:x 1=3,x 2=-3,经检验,x 2=-3不是原方程的解,则原方程的根为:x=3.故答案为:x=3.【点睛】本题考查了解无理方程,无理方程在有些地方初中教材中不再出现,比如湘教版.5.14(1)(1)(2)(8)(9)x x x x x x +⋅⋅⋅=+++++的解是______. 【答案】9【解析】【分析】设x ()11111y y y y =-++可将原方程进行化简,解化简后的方程即可求得答案. 【详解】设x()()()()()1111112894y y y y y y ++=+++++L , ∴1111111112894y y y y y y -+-++-=+++++L , 即11194y y -=+, ∴4y+36-4y=y(y+9),即y 2+9y-36=0,∴y=-12或y=3,,,∴x=9,故答案为:9.【点睛】本题考查了解无理方程,解题的关键是利用换元法,还要注意()11111y y y y =-++的应用.6.对正实数a ,b 定义运算法则2a b a b *=+,若310x *=,则x 的值是______.【答案】112±. 【解析】【分析】根据新定义,将方程3*x=10转化,再解无理方程.【详解】根据新定义,方程3*x=10+6+x=10,移项,整理得两边平方,得(x-4)2=3x ,即x 2-11x+16=0,解得经检验故答案为112±. 【点睛】本题是一道新定义的题目,考查了无理方程,以及一元二次方程的解法,难度不大.7.方程x-1=1x -的解为:______. 【答案】1x =【解析】 【分析】两边平方解答即可.【详解】原方程可化为:(x-1)2=1-x ,解得:x 1=0,x 2=1,经检验,x=0不是原方程的解,x=1是原方程的解故答案为 1x =.【点睛】此题考查无理方程的解法,关键是把两边平方解答,要注意解答后一定要检验.8.方程320x x -⋅-=的解是_______________【答案】x=2【解析】【分析】由题意可知3-x=0或2-x=0,再结合二次根式有意义的条件即可求得答案.【详解】∵3x 2x 0-⋅-=,∴3x -=0或2x 0-=,∴x=3或x=2,检验:当x=3时,2-x<0,2x -无意义,故x=3舍去,∴x=2,故答案为x=2.【点睛】本题考查了解无理方程,熟练掌握解方程的一般步骤以及注意事项是解题的关键.9.如果关于x 的方程的一个根为3,那么a= .【答案】3【解析】【分析】根据方程的解的意义,把x=3代入原方程,然后解关于a 的方程,解答后,一定要验根.【详解】∵关于x 2x a x +=的一个根为3,∴x=3一定满足关于x 2x a x +=,3=,方程的两边同时平方,得6+a=9,解得a=3;检验:将a=3代入原方程得,左边3=,右边=3,∴左边=右边,∴a=3符合题意,故填:3.10.若等式=x的值为__________.【答案】16【解析】【分析】将方程变形后两边同时平方即可求出x的值.【详解】∵=∴=∴==两边同时平方得,2x-5=27,解得,x=16.经检验,x=16是原方程的根.故答案为:16.【点睛】此题主要考查了解无理方程,注意:解无理方程一定要验根.11.下列方程中:a、421x x+=;b、32x x-+=;c、31x=;d、41 2x=属于高次方程的是_____.【答案】a,d【解析】【分析】根据高次方程的定义判断即可.【详解】解:421x x +=是高次方程;32x x -+=是分式方程;31x =是无理方程;412x =是高次方程,故答案为:a ,d .【点睛】 本题考查了高次方程的定义:整式方程未知数次数高于2次的方程叫高次方程.12.若关于x 的方程存在整数解,则正整数m 的所有取值的和为___________.【答案】18【解析】【分析】将原方程变形为,由m 为正整数、被开方数非负,可得出2010≤x≤2018,依此代入各值求出m 的值,再将是正整数的m 的值相加即可得出结论.【详解】原题可得:,∵m 为正整数,∴,∴2x-4020≥0,∴x ≥2010.∵2018-x ≥0,∴x ≤2018,∴2010≤x ≤2018.当x=2010时,m=0,m=0,不符合题意;当x=2011,,不符合题意;当x=2012m=4,m=3,不符合题意;当x=2013,m=5,不符合题意; 当x=2014时,2m=8,m=4;当x=2015,,不符合题意;当x=2016m=12,,不符合题意;当x=2017时,m=14;当x=2018时,0=16,不成立.∴正整数m 的所有取值的和为4+14=18.故答案为18.【点睛】本题考查了无理方程,由被开方数非负及m为正整数,找出x的取值范围是解题的关键.13.请将方程的解写在后面的横线上:______【答案】x=7【解析】【分析】先根据已知方程得出x-3=0或x-7=0,求出x的值,再进行检验即可.【详解】解:,x-3=0或x-7=0,x=3或x=7,检验:当x=3x=3不是原方程的解;x=7是原方程的解,故答案为:x=7.【点睛】本题考查了解无理方程,能把无理方程变成有理方程是解此题的关键,注意解无理方程一定要进行检验.14.x=的解为_____.【答案】3【解析】【分析】根据无理方程的解法,首先,两边平方解出x的值,然后验根,解答即可.【详解】解:两边平方得:2x+3=x2∴x2﹣2x﹣3=0,解方程得:x1=3,x2=﹣1,检验:当x1=3时,方程的左边=右边,所以x1=3为原方程的解,当x2=﹣1时,原方程的左边≠右边,所以x2=﹣1不是原方程的解.故答案为3.【点睛】此题考查无理方程的解,解题关键在于掌握运算法则15.3=的解的是x=__________________.x=【答案】8【解析】把方程两边平方去根号后即可转化成整式方程,解方程即可求出x 的值,然后进行检验.【详解】两边平方得:x+1=9,解得:x=8.检验:x=8是方程的解.故答案为x=8.【点睛】本题考查的知识点是平方根的定义,解题的关键是熟练的掌握平方根.16.2x =+的增根是_________________.【答案】4x =-【解析】【分析】两边平方,把无理方程化为2227(2)x x x +=+,解得14x =-,21x =,然后进行检验确定原方程的解,从而得到原方程的增根.【详解】解:Q 2x =+,2227(2)x x x ∴+=+,整理得2340x x +-=,解得14x =-,21x =,检验:当4x =-时,左边2==,右边422=-+=-,左边≠右边,则4x =-为原方程的增根;当1x =时,左边3,右边123=+=,左边=右边,则1x =为原方程的根,所以原方程的解为1x =.故答案为:4x =-.【点睛】本题考查了无理方程:解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法. 常用的方法有:乘方法,配方法,因式分解法,设辅助元素法.解无理方程,往往会产生增根,应注意验根.17.已知1sin 23y x π⎛⎫=- ⎪⎝⎭,则x 等于_____. 【答案】2【解析】【分析】先化简方程,再求方程的解即可得出答案.解:根据题意可得x >0∵10102x =2.故答案为:2.【点睛】本题考查无理方程,化简二次根式是解题的关键.18.能使(x -50成立的x 是____________.【答案】7【解析】【分析】由无理方程中两个因式的积为0,则至少一个为0,并检验求得的未知数的值,从而得到答案,【详解】解:因为:(0x -=所以:50x -==解得;5,7x x ==经检验:5x =不合题意舍去,所以方程的解是:7x =.故答案为:7.【点睛】本题考查无理方程的解法,熟知解法是解题关键,注意检验.19.方程(x 0-=的解是_____________________【答案】4x =【解析】【分析】因为(x 0-=可以得出x−2=0,x−4=0且x−4≥0,由此求得原方程的解即可.【详解】解:(x 0-=Q20,40x x ∴-=-=,且40x -≥解得2,4x x ==且4x ≥4x ∴=故答案为4x =此题考查解无理方程,注意被开方数必须大于或等于0,求此类方程的解必须满足这一条件.20.0=的根是________________.【答案】x=2【解析】【分析】=的左边进行计算,然后两边同时平方可得x2-4=0;接下来,移项后利用直接开方法解这个一元二次方程得到方程的根,然后代入原方程中检验即可确定方程的根【详解】=,=,0,240x-=x2=4,x=±2当x=-2时=的根是x=2【点睛】此题考查无理方程,掌握无理方程的求解方法是关键;。
方程与不等式之无理方程知识点总复习有答案

方程与不等式之无理方程知识点总复习有答案一、选择题1.请将方程(x-3)x7-=0的解写在后面的横线上:______【答案】x=7【解析】【分析】先根据已知方程得出x-3=0或x-7=0,求出x的值,再进行检验即可.【详解】解:(x-3)7x-=0,x-3=0或x-7=0,x=3或x=7,检验:当x=3时,7x-无意义,所以x=3不是原方程的解;x=7是原方程的解,故答案为:x=7.【点睛】本题考查了解无理方程,能把无理方程变成有理方程是解此题的关键,注意解无理方程一定要进行检验.2.如果关于x的方程的一个根为3,那么a= .【答案】3【解析】【分析】根据方程的解的意义,把x=3代入原方程,然后解关于a的方程,解答后,一定要验根.【详解】+=的一个根为3,∵关于x2x a x+=,∴x=3一定满足关于x2x a xa+=,63方程的两边同时平方,得6+a=9,解得a=3;检验:将a=3代入原方程得,?=,左边2333右边=3,∴左边=右边,∴a=3符合题意,故填:3.3.若关于x 的方程103=恰有两个不同的实数解,则实数a 的取值范围是________.【答案】0a =或316a ≥-【解析】【分析】,∴y ≥0,则原方程可化为:211023ay y +-=, 根据方程只有一个正根,即可解决问题.【详解】y ,∴y ≥0,则原方程可化为:211023ay y +-=, ∵方程恰有两个不同的实数解, ∴△=0或a =0或a >0(此时方程两根异号,y 只有一个正根,x 有两个不同的实数解) 当△=0时,14043a +=, 解得:316a =-, 故实数a 的取值范围是:0a =或316a ≥-, 故答案为:0a =或316a ≥-【点睛】 考查无理方程,难度一般,关键是掌握用换元法求解无理方程.4.方程_____.【答案】x=2【解析】【分析】无理方程两边平方转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到无理方程的解.【详解】两边平方得:(x+1)2=2x+5,即x 2=4,开方得:x=2或x=-2,经检验x=-2是增根,无理方程的解为x=2.故答案为x=25.2=的解是__________.【答案】x=7【解析】【分析】将方程两边平方后求解,注意检验.【详解】将方程两边平方得x-3=4,移项得:x=7,-=2,原方程成立,代入原方程得73x-=2的解是x=7.故方程3故本题答案为:x=7.【点睛】在解无理方程是最常用的方法是两边平方法及换元法,解得答案时一定要注意代入原方程检验.6.如果关于x的无理方程x21k0+-+=没有实数根,那么k的取值范围是___________________.k>【答案】1【解析】【分析】x+=1+k没有实数根,可知1-k<0,从而可以求得k的取值范根据关于x的无理方程2围.【详解】x+=1-k没有实数根,∵关于x的无理方程2∴1-k<0,解得,k>1,故答案为:k>1.【点睛】本题考查无理方程,解题的关键是明确无理方程的解答方法,无实数根应满足什么条件.7.方程=0的解为__________.【答案】【解析】【分析】将原方程两边平方得出关于x的整式方程,解之求得x的值,再由二次根式有意义的条件可确定x的最终结果.【详解】解:将原方程两边平方得(x−5)(x−4)=0,则x−5=0或x−4=0,解得:x=5或x=4,∵x−5≥0,x−4≥0,解得:x≥5,∴x=5,故答案为:x=5.【点睛】本题主要考查解无理方程,解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.常用的方法有:乘方法,配方法,因式分解法,设辅助元素法,利用比例性质法等.8.方程21=1x-的根是____.【答案】x=±2.【解析】【分析】二次根式的值为非负数,被开方数也为非负数.【详解】211Qx-=211∴-=x22∴=x∴=±经检验x=±2是原方程的根,x2∴x=±2.故答案为x=±2.【点睛】此题考查了二次根式有意义的条件,要明确,当函数表达式是二次根式时,被开方数非负.9.方程6+=的根为.x x【答案】x=3【解析】两边平方得x+6=x2,解一元二次方程得x1=3,x2=-2(舍去),所以方程的根为10.2693-+-的解是___________。
新初中数学方程与不等式之无理方程知识点总复习附答案

新初中数学方程与不等式之无理方程知识点总复习附答案一、选择题1.请将方程(x-3)x7-=0的解写在后面的横线上:______【答案】x=7【解析】【分析】先根据已知方程得出x-3=0或x-7=0,求出x的值,再进行检验即可.【详解】解:(x-3)7x-=0,x-3=0或x-7=0,x=3或x=7,检验:当x=3时,7x-无意义,所以x=3不是原方程的解;x=7是原方程的解,故答案为:x=7.【点睛】本题考查了解无理方程,能把无理方程变成有理方程是解此题的关键,注意解无理方程一定要进行检验.2.方程21x-=的解为【答案】x=1【解析】试题分析:方程两边平方即可去掉绝对值符号,解方程求得x的值,然后把x的值代入进行检验即可.试题解析:方程两边平方,得:2-x=1,解得:x=1.经检验:x=1是方程的解.考点:无理方程.3.方程的解为.【答案】3.【解析】首先把方程两边分别平方,然后解一元二次方程即可求出x的值.解:两边平方得:2x+3=x2∴x2﹣2x﹣3=0,解方程得:x1=3,x2=﹣1,检验:当x1=3时,方程的左边=右边,所以x1=3为原方程的解,当x2=﹣1时,原方程的左边≠右边,所以x2=﹣1不是原方程的解.故答案为3.4.x =的解为_____.【答案】x=1【解析】分析:方程两边平方,将无理方程转化为整式方程,求出x 的值,经检验即可得到无理方程的解.详解:两边平方得:-x+2=x 2,即(x-1)(x+2)=0,解得:x=1或x=-2,经检验x=-2是增根,无理方程的解为x=1,故答案为x=1点睛:此题考查了无理方程,利用了转化的思想,解无理方程注意要验根.5.方程(x 30-=的解是______.【答案】x=2【解析】【分析】求出x 0=,求出即可.【详解】解:(x 30-=Q ,2x 0∴-≥,x 2∴≤,x 30∴-≠,0=Q ,x 2=,故答案为:x 2=.【点睛】0=是解此题的关键.6.方程_____.【答案】x=2【解析】【分析】无理方程两边平方转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到无理方程的解.【详解】两边平方得:(x+1)2=2x+5,即x 2=4,开方得:x=2或x=-2,经检验x=-2是增根,无理方程的解为x=2.故答案为x=27.方程23x x -=2的解是_________ 【答案】14x =-或【解析】【分析】方程两边平方可得到整式方程,再解之可得.【详解】方程两边平方可得x 2-3x=4,即x 2-3x-4=0,解得x 1=-1,x 2=4故答案为:14x =-或【点睛】本题考核知识点:二次根式,无理方程. 解题关键点:化无理方程为整式方程.8.方程320x x -⋅-=的解是_______________【答案】x=2【解析】【分析】由题意可知3-x=0或2-x=0,再结合二次根式有意义的条件即可求得答案.【详解】∵3x 2x 0-⋅-=,∴3x -=0或2x 0-=,∴x=3或x=2,检验:当x=3时,2-x<0,2x -无意义,故x=3舍去,∴x=2,故答案为x=2.【点睛】本题考查了解无理方程,熟练掌握解方程的一般步骤以及注意事项是解题的关键.9.方程6x x +=的根为 .【答案】x=3【解析】两边平方得x+6=x 2,解一元二次方程得x 1=3,x 2=-2(舍去),所以方程的根为10.k =有实数根,则k 的取值范围为___________【答案】【解析】【分析】方程两边同时平方,再移项,根据x 2≥0求解即可.【详解】k =,∴222x k +=,即222x k =-,∵x 2≥0,∴220k -≥,∴k 或k≤k =有实数根,∴k >0,∴k .故答案为:.【点睛】本题主要考查无理方程,解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法. 常用的方法有:乘方法,配方法,因式分解法,设辅助元素法,利用比例性质法等.11.2x =的解是__________.【答案】1x =【解析】【分析】先左右两边同时平方,然后解整式方程即可,注意检验求出的整式方程的根是否为原方程的增根.【详解】2x =,∴22(2)x =,即2234x x += ,解得1x =或1x =-.当1x =-2,22,22x ==-≠- ,∴1x =-是原方程的增根,∴原方程的解为1x =.故答案为:1x =.【点睛】本题主要考查无理方程的解法,掌握无理方程的解法是解题的关键.12.x =-的根是 .【答案】1x =-【解析】【分析】将方程左右两边平方,将方程化为关于x 的一元二次方程,求出方程的解得到x 的值,将x 的值代入原方程检验,即可得到原方程的解.【详解】左右两边平方得:2x+3=x 2,即x 2-2x-3=0,因式分解得:(x-3)(x+1)=0,解得:x=3或x=-1,将x=3代入方程检验,不合题意,则原方程的解为x=-1.故答案为x=-113.0=的解是________;【答案】4x =【解析】【分析】0=得30x -=或40x -=,解出x 的值并检验即可.【详解】0=∴30x -=或40x -=123,4x x ==经检验,3x =为原方程的增根,应舍去所以,原方程的根是4x =.故答案为:4x =.【点睛】本题考查了无理方程,解题的关键是掌握解法,并注意检验.14.x =-的解是__________.【答案】3x =-【解析】【分析】根据解无理方程的方法可以解答此方程,注意无理方程要检验.【详解】x =-,∴3-2x=x 2,∴x 2+2x-3=0,∴(x+3)(x-1)=0,解得,x 1=-3,x 2=1,经检验,当x=1时,原方程无意义,当x=-3时,原方程有意义,故原方程的根是x=-3,故答案为:x=-3.【点睛】本题考查无理方程,解答本题的关键是明确解无理方程的方法.15.若方程4m +=无实数根,则m 的取值范围是_________. 【答案】m>4【解析】【分析】4m =-,由非负数的算术平方根不是负数求得答案.【详解】解:因为:4m =4m =-,因为原方程无实根,所以:4m -<0解得:m >4.故答案为:m >4.【点睛】本题考查无理方程的实数根的情况,掌握算数平方根不是非负数的性质是解题的关键.16.方程(x 0-=的解是_____________________【答案】4x =【解析】【分析】因为(x 0-=可以得出x−2=0,x−4=0且x−4≥0,由此求得原方程的解即可.【详解】解:(x 0-=Q20,40x x ∴-=-=,且40x -≥解得2,4x x ==且4x ≥4x ∴=故答案为4x =【点睛】此题考查解无理方程,注意被开方数必须大于或等于0,求此类方程的解必须满足这一条件.17.0=的根是__________________. 【答案】x=2 【解析】【分析】先根据二次根式有意义的条件求出x 的取值范围,再根据乘法法则转化为一元一次方程求解即可.【详解】∵x+1≥0,x-2≥0,∴x ≥2.0=,∴x+1=0或x-2=0,∴x 1=-1(舍去),x 2=2.故答案为:x=2.【点睛】本题考查了无理方程的解法,根据代数式有意义的条件求出未知数的取值范围是本题的易错点.18.下列方程中:a 、421x x +=;b 、32x x -+=;c 、31x =;d 、412x =属于高次方程的是_____.【答案】a ,d【解析】【分析】根据高次方程的定义判断即可.【详解】解:421x x +=是高次方程;32x x -+=是分式方程;31x =是无理方程;412x =是高次方程,故答案为:a ,d .【点睛】本题考查了高次方程的定义:整式方程未知数次数高于2次的方程叫高次方程.19.方程(的实数根是______.【答案】4【解析】【分析】由方程得20x +=或40x -=,结合40x -≥,求出符合题意的x 即可.【详解】解:∵(20x +=,∴20x +=或40x -=,解得:2x =-或4x =,又∵40x -≥即4x ≥,∴4x =,故答案为:4.【点睛】此题考查了解无理方程,注意二次根式的被开方数必须大于等于0.20.2k =无实数根,那么k 的取值范围是______________.【答案】k <2【解析】【分析】=b ,b≥0,得关于k 的不等式,解得即可.【详解】2k =,-2k =,∴k-2<0,解得:k <2.故答案是:k <2.【点睛】本题考查了无理方程根的情况,解题的关键是了解二次根式成立的条件.。
初中数学方程与不等式之无理方程知识点总复习附答案解析(1)

初中数学方程与不等式之无理方程知识点总复习附答案解析(1)一、选择题1.k =有实数根,则k 的取值范围为___________【答案】【解析】【分析】方程两边同时平方,再移项,根据x 2≥0求解即可.【详解】k =,∴222x k +=,即222x k =-,∵x 2≥0,∴220k -≥,∴k 或k≤k =有实数根,∴k >0,∴k .故答案为:.【点睛】本题主要考查无理方程,解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法. 常用的方法有:乘方法,配方法,因式分解法,设辅助元素法,利用比例性质法等.2.的解是__________ ;【答案】x=0【解析】两边平方,得2x x =,分解因式,得()10x x -=,解得120,1x x ==,经检验,21x =不符合题意,舍去,所以原方程的解为x =0.故答案为x =0.3.1=的解为 .【答案】x=1【解析】【分析】方程两边平方即可去掉绝对值符号,解方程求得x 的值,然后把x 的值代入进行检验即可.【详解】方程两边平方,得:2-x=1,解得:x=1.经检验:x=1是方程的解.故答案是:x=1.4.x=-的根是______.【答案】x=﹣2【解析】先把方程两边平方去根号后求解,再根据x<0,即可得出答案.解:由题意得:x<0,两边平方得:x+6=x2,解得x=3(不合题意舍去)或x=﹣2;故答案为:x=﹣2.5.方程_____.【答案】x=2【解析】【分析】无理方程两边平方转化为整式方程,求出整式方程的解得到x的值,经检验即可得到无理方程的解.【详解】两边平方得:(x+1)2=2x+5,即x2=4,开方得:x=2或x=-2,经检验x=-2是增根,无理方程的解为x=2.故答案为x=26.2=的解是__________.【答案】x=7【解析】【分析】将方程两边平方后求解,注意检验.【详解】将方程两边平方得x-3=4,移项得:x=7,=2,原方程成立,=2的解是x=7.故本题答案为:x=7.【点睛】在解无理方程是最常用的方法是两边平方法及换元法,解得答案时一定要注意代入原方程检验.7.方程______.x=【答案】1【解析】【分析】两边平方解答即可.【详解】原方程可化为:(x-1)2=1-x,解得:x1=0,x2=1,经检验,x=0不是原方程的解,x=1是原方程的解x=.故答案为1【点睛】此题考查无理方程的解法,关键是把两边平方解答,要注意解答后一定要检验.8.0=的根是________________.【答案】x=2【解析】【分析】=的左边进行计算,然后两边同时平方可得x2-4=0;接下来,移项后利用直接开方法解这个一元二次方程得到方程的根,然后代入原方程中检验即可确定方程的根【详解】=,=,0,240x-=x2=4,x=±2当x=-2时=的根是x=2【点睛】此题考查无理方程,掌握无理方程的求解方法是关键;9.如果关于x的方程的一个根为3,那么a= .【答案】3【解析】【分析】根据方程的解的意义,把x=3代入原方程,然后解关于a的方程,解答后,一定要验根.【详解】+=的一个根为3,∵关于x2x a x+=,∴x=3一定满足关于x2x a x+=,63a方程的两边同时平方,得6+a=9,解得a=3;检验:将a=3代入原方程得,?=,左边2333右边=3,∴左边=右边,∴a=3符合题意,故填:3.10.若关于x的方程2018x-存在整数解,则正整数m的所有取值的和为___________.【答案】18【解析】【分析】-,由m为正整数、被开方数非负,可得出将原方程变形为2018x2010≤x≤2018,依此代入各值求出m的值,再将是正整数的m的值相加即可得出结论.【详解】-,原题可得:2018x∵m为正整数,-,∴2018x∴2x-4020≥0,∴x≥2010.∵2018-x≥0,∴x≤2018,∴2010≤x≤2018.当x=2010时,2m=0,m=0,不符合题意;当x=2011,m=7,不符合题意;当x=2012m=4,m=3,不符合题意;当x=2013,m=5,不符合题意;当x=2014时,2m=8,m=4;当x=2015,,不符合题意;当x=2016m=12,,不符合题意;当x=2017时,m=14;当x=2018时,0=16,不成立.∴正整数m的所有取值的和为4+14=18.故答案为18.【点睛】本题考查了无理方程,由被开方数非负及m为正整数,找出x的取值范围是解题的关键.11.已知1sin23y xπ⎛⎫=-⎪⎝⎭,则x等于_____.【答案】2【解析】【分析】先化简方程,再求方程的解即可得出答案.【详解】解:根据题意可得x>0∵10102x=2.故答案为:2.【点睛】本题考查无理方程,化简二次根式是解题的关键.12.x=的根是__________.【答案】2【解析】本题可先对方程两边平方,得到x+2=x 2,再对方程进行因式分解即可解出本题.【详解】原方程变形为:x+2=x 2即x 2−x−2=0∴(x −2)(x+1)=0∴x=2或x=−1∵x=−1时不满足题意.∴x=2.故答案为:2.【点睛】此题考查解无理方程,解题关键在于掌握方程解法.13.无理方程(0x -=的根是____.【答案】x=2.【解析】【分析】根据0乘任何数都得零,可得方程的解,根据被开方数是非负数,可得答案.【详解】解:由(0x -=,∴x-5=0或2-x=0,解得:x=5,x=2,∵20x -≥,∴2x ≤,当x=5时,被开方数无意义;故方程的解为:x=2,故答案为:x=2.【点睛】本题考查了无理方程,利用0乘任何数都得零是解题关键,注意被开方数是非负数.14.方程x =_____.【答案】x =1【解析】【分析】先把方程两边同时平方转化为有理方程,然后解得有理方程的解,最后要进行检验,本题得以解决.【详解】x =解得,x =1或x =﹣4,检验:当x =﹣4不是原方程的根,故原无理方程的解是x =1,故答案为:x =1【点睛】本题考查无理方程,解题的关键是明确无理方程的解法,注意解方程最后要检验.15.2x =+的增根是_________________.【答案】4x =-【解析】【分析】两边平方,把无理方程化为2227(2)x x x +=+,解得14x =-,21x =,然后进行检验确定原方程的解,从而得到原方程的增根.【详解】解:Q 2x =+,2227(2)x x x ∴+=+,整理得2340x x +-=,解得14x =-,21x =,检验:当4x =-时,左边2==,右边422=-+=-,左边≠右边,则4x =-为原方程的增根;当1x =时,左边3,右边123=+=,左边=右边,则1x =为原方程的根,所以原方程的解为1x =.故答案为:4x =-.【点睛】本题考查了无理方程:解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法. 常用的方法有:乘方法,配方法,因式分解法,设辅助元素法.解无理方程,往往会产生增根,应注意验根.16.0=的解是________;【答案】4x =【解析】【分析】0=得30x -=或40x -=,解出x 的值并检验即可.【详解】0=∴30x -=或40x -=123,4x x ==经检验,3x =为原方程的增根,应舍去所以,原方程的根是4x =.故答案为:4x =.【点睛】本题考查了无理方程,解题的关键是掌握解法,并注意检验.17.关于x 25x =-是无理方程,则m 的取值范围是_______.【答案】0m ≠【解析】【分析】根据无理方程的概念可得结果.【详解】解:由题意可得:∵无理方程的根号下含有未知数,∴m ≠0.故答案为:m≠0.【点睛】本题考查了无理方程,掌握无理方程的概念是解题的关键.18.若关于x 0k =在实数范围内有解,则k 的取值范围是__________.【答案】k ≥【解析】【分析】先将方程变形为22460x x k ++-=,再根据一元二次方程根的判别式列出不等式即可解答.【详解】0k =可变形为:22460x x k ++-=则2164(6)0k ∆=--≥,解得:k ≥k ≤0k =≥∴k ≤∴k ≥故答案为:k ≥【点睛】本题考查了无理方程的解,解题的关键是对原方程进行变形,转化为一元二次方程.19.如图,ABC ∆中,AB AC =, 点D 在线段BC 的延长线上, 连接AD ,CD=1,BC=12,∠DAB=30°, 则 AC =__________.【答案】439【解析】【分析】过点B 作BE ⊥AD 于点E ,AH ⊥BC 于H .设AB=AC=x .根据AE+DE=AD ,分别利用勾股定理求出AE ,DE ,AD ,构建方程即可解决问题.【详解】解:过点B 作BE ⊥AD 于点E ,AH ⊥BC 于H .设AB=AC=x .在Rt △ABE 中,∵∠BAE=30°,AB=x ,∴BE=12AB=12x ,33, ∵AB=AC ,AH ⊥BC ,∴CH=BH=6,在Rt △AHB 中,AH 2=x 2-62,在Rt △DBE 中,22221134BD BE x -=-, 在Rt △ADH 中,2222267AH DH x +-+∵AE+DE=AD,x+=∴2整理得:x4-13×51x-(12×13)2=0,解得x2=13×48或13×3(舍去),∵x>0,∴,经检验:是无理方程的解,∴故答案为.【点睛】本题考查勾股定理,解直角三角形,无理方程等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考填空题中的压轴题.20.1=的根是x=______.【答案】2.【解析】【分析】方程两边乘方,得整式方程,求解,检验即可.【详解】=1∴x-1=1∴x=2,经检验,x=2是原方程的根,所以,原方程的根是x=2.故答案为:2.【点睛】本题考查了解无理方程,注意别忘记检验哟!。
新初中数学方程与不等式之无理方程知识点总复习附解析(1)

新初中数学方程与不等式之无理方程知识点总复习附解析(1)一、选择题 1.方程2272x x x +=+的增根是_________________.【答案】4x =-【解析】【分析】两边平方,把无理方程化为2227(2)x x x +=+,解得14x =-,21x =,然后进行检验确定原方程的解,从而得到原方程的增根.【详解】解:Q 2272x x x +=+,2227(2)x x x ∴+=+,整理得2340x x +-=,解得14x =-,21x =,检验:当4x =-时,左边216742=⨯-⨯=,右边422=-+=-,左边≠右边,则4x =-为原方程的增根;当1x =时,左边21713=⨯+⨯=,右边123=+=,左边=右边,则1x =为原方程的根,所以原方程的解为1x =.故答案为:4x =-.【点睛】本题考查了无理方程:解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法. 常用的方法有:乘方法,配方法,因式分解法,设辅助元素法.解无理方程,往往会产生增根,应注意验根.2.方程2=x ﹣6的根是______.【答案】x=12.【解析】两边平方,求得一元二次方程的解,进一步利用x ﹣3≥0验证得出答案即可.解:2=x ﹣64(x ﹣3)=x 2﹣12x+36整理得x 2﹣16x+48=0解得:x 1=4,x 2=12代入x ﹣3>0,当x=4时,等式右边为负数,所以原方程的解为x=12.故答案为:x=12.3.方程(x 32x 0--=的解是______.【答案】x=2【解析】【分析】求出x 0=,求出即可.【详解】解:(x 30-=Q ,2x 0∴-≥,x 2∴≤,x 30∴-≠,0=Q ,x 2=,故答案为:x 2=.【点睛】0=是解此题的关键.4.5=的根为_____.【答案】﹣2或﹣7【解析】【分析】把无理方程转化为整式方程即可解决问题.【详解】两边平方得到:,,∴(x+11)(2-x )=36,解得x=-2或-7,经检验x=-2或-7都是原方程的解.故答案为-2或-7【点睛】本题考查无理方程,解题的关键是学会把无理方程转化为整式方程.5.方程_____.【答案】x=2【解析】【分析】无理方程两边平方转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到无理【详解】两边平方得:(x+1)2=2x+5,即x2=4,开方得:x=2或x=-2,经检验x=-2是增根,无理方程的解为x=2.故答案为x=26.的解是_________x=-或【答案】14【解析】【分析】方程两边平方可得到整式方程,再解之可得.【详解】方程两边平方可得x2-3x=4,即x2-3x-4=0,解得x1=-1,x2=4x=-或故答案为:14【点睛】本题考核知识点:二次根式,无理方程. 解题关键点:化无理方程为整式方程.7.若等式=成立,则x的值为__________.【答案】16【解析】【分析】将方程变形后两边同时平方即可求出x的值.【详解】∵=∴=∴==两边同时平方得,2x-5=27,解得,x=16.经检验,x=16是原方程的根.故答案为:16.【点睛】此题主要考查了解无理方程,注意:解无理方程一定要验根.8.0=实数根的个数有___________个。
最新初中数学方程与不等式之无理方程知识点总复习附解析(1)

最新初中数学方程与不等式之无理方程知识点总复习附解析(1)一、选择题1.3x =的解是___________。
【答案】-3或-2【解析】【分析】将原式移项后,两边平方再进行合并同类项运用因式分解求解即可。
【详解】+3x∴3x +=(3x +)2∴x 2+5x+6=0∴(x+3)(x+2)=0∴x 1=-3,x 2=-2检验知x=-3或x=-2是方程的解.【点睛】本题考查了无理方程,利用平方将方程转化一元二次方程,选择合适、简便的方法求解二元一次方程是正确解题的关键.2.2=的解是__________.【答案】x=7【解析】【分析】将方程两边平方后求解,注意检验.【详解】将方程两边平方得x-3=4,移项得:x=7,=2,原方程成立,=2的解是x=7.故本题答案为:x=7.【点睛】在解无理方程是最常用的方法是两边平方法及换元法,解得答案时一定要注意代入原方程检验.3.14+⋅⋅⋅=的解是______. 【答案】9【解析】【分析】设()11111y y y y =-++可将原方程进行化简,解化简后的方程即可求得答案. 【详解】设()()()()()1111112894y y y y y y ++=+++++L , ∴1111111112894y y y y y y -+-++-=+++++L , 即11194y y -=+, ∴4y+36-4y=y(y+9),即y 2+9y-36=0,∴y=-12或y=3,,,∴x=9,故答案为:9.【点睛】本题考查了解无理方程,解题的关键是利用换元法,还要注意()11111y y y y =-++的应用.4.如果关于x 1k 0+=没有实数根,那么k 的取值范围是___________________.【答案】1k >【解析】【分析】根据关于x 没有实数根,可知1-k <0,从而可以求得k 的取值范围.【详解】∵关于x =1-k 没有实数根,∴1-k <0,解得,k >1,故答案为:k >1.【点睛】本题考查无理方程,解题的关键是明确无理方程的解答方法,无实数根应满足什么条件.5.=x 的解是______.【答案】x=1【解析】【分析】将无理方程化为一元二次方程,然后求解即可.【详解】原方程变形为 4-3x=x2,整理得 x2+3x-4=0,∴(x+4)(x-1)=0,∴x+4=0或x-1=0,∴x1=-4(舍去),x2=1.故答案为x=1.【点睛】本题考查了无理方程,将无理方程化为一元二次方程是解题的关键.6.0=的解是_______________【答案】x=2【解析】【分析】由题意可知3-x=0或2-x=0,再结合二次根式有意义的条件即可求得答案.【详解】=,=,∴x=3或x=2,检验:当x=3时,2-x<0x=3舍去,∴x=2,故答案为x=2.【点睛】本题考查了解无理方程,熟练掌握解方程的一般步骤以及注意事项是解题的关键.7.0=的根是________________.【答案】x=2【解析】【分析】=的左边进行计算,然后两边同时平方可得x2-4=0;接下来,移项后利用直接开方法解这个一元二次方程得到方程的根,然后代入原方程中检验即可确定方程的根【详解】0=,0=,0,240x -=x 2=4,x=±2当x=-2时0=的根是x=2【点睛】此题考查无理方程,掌握无理方程的求解方法是关键;8.0x =的解是____.【答案】3x =-【解析】【分析】根据解无理方程的方法可以解答此方程,注意无理方程要检验.【详解】0x =,x -,∴3-2x=x 2,∴x 2+2x-3=0,∴(x+3)(x-1)=0,解得,x 1=-3,x 2=1,经检验,当x=1时,原方程无意义,当x=3时,原方程有意义,故原方程的根是x=-3,故答案为:x=-3.【点睛】本题考查无理方程,解答本题的关键是明确解无理方程的方法.9.的解是__________ ;【答案】x=0【解析】两边平方,得2x x =,分解因式,得()10x x -=,解得120,1x x ==,经检验,21x =不符合题意,舍去,所以原方程的解为x =0.故答案为x =0.10.3x -的解是___________。
方程与不等式之无理方程知识点总复习含答案

方程与不等式之无理方程知识点总复习含答案一、选择题1.x=-的解________x=-【答案】2【解析】【分析】两边平方后解此无理方程可得.【详解】解:两边同时平方可得:2-x=x2,解得:x1=-2,x2=1,检验得x2=1不是方程的根,a=-,故1a=-故答案为1【点睛】本题主要考查解无理方程的知识点,去掉根号把无理方程化成有理方程是解题的关键,注意无理方程需验根.需要同学们仔细掌握.2.1=的解是x=_____.【答案】4【解析】分析:这是一道无理方程,解此方程量先将无理方程两边平方,转化为一元一次方程来解.详解:两边平方得:x-3=1,移项得:x=4.经检验x=4是原方程的根.故本题答案为:x=4.点睛:本题由于两边平方,可能产生增根,所以解答以后要验根.3.x=的解为_____.【答案】x=1【解析】分析:方程两边平方,将无理方程转化为整式方程,求出x的值,经检验即可得到无理方程的解.详解:两边平方得:-x+2=x2,即(x-1)(x+2)=0,解得:x=1或x=-2,经检验x=-2是增根,无理方程的解为x=1,故答案为x=1点睛:此题考查了无理方程,利用了转化的思想,解无理方程注意要验根.4.方程(x 30-=的解是______.【答案】x=2【解析】【分析】求出x 0=,求出即可.【详解】解:(x 30-=Q ,2x 0∴-≥,x 2∴≤,x 30∴-≠,0=Q ,x 2=,故答案为:x 2=.【点睛】0=是解此题的关键.5.若关于x 的方程103=恰有两个不同的实数解,则实数a 的取值范围是________.【答案】0a =或316a ≥-【解析】【分析】,∴y ≥0,则原方程可化为:211023ay y +-=, 根据方程只有一个正根,即可解决问题.【详解】y ,∴y ≥0,则原方程可化为:211023ay y +-=, ∵方程恰有两个不同的实数解,∴△=0或a =0或a >0(此时方程两根异号,y 只有一个正根,x 有两个不同的实数解) 当△=0时,14043a +=, 解得:316a =-, 故实数a 的取值范围是:0a =或316a ≥-,故答案为:0a =或316a ≥-【点睛】 考查无理方程,难度一般,关键是掌握用换元法求解无理方程.6.如果关于x x =有实数根2,那么k =________.【答案】1-【解析】【分析】把x=2代入方程中进行求解即可得.【详解】,2-2k=4,解得:k=-1,经检验k=-1符合题意,所以k=-1,故答案为-1.【点睛】本题考查了方程的解,熟练掌握方程解的定义是解题的关键.7.2=的解是__________.【答案】x=7【解析】【分析】将方程两边平方后求解,注意检验.【详解】将方程两边平方得x-3=4,移项得:x=7,=2,原方程成立,=2的解是x=7.故本题答案为:x=7.【点睛】在解无理方程是最常用的方法是两边平方法及换元法,解得答案时一定要注意代入原方程检验.8.对正实数a ,b 定义运算法则2a b a b *=+,若310x *=,则x 的值是______.【答案】112±. 【解析】根据新定义,将方程3*x=10转化,再解无理方程.【详解】根据新定义,方程3*x=10转化为3x +6+x=10, 移项,整理得x-4=-3x ,两边平方,得(x-4)2=3x ,即x 2-11x+16=0,解得x=11572±, 经检验x=11572±符合题意. 故答案为11572±. 【点睛】本题是一道新定义的题目,考查了无理方程,以及一元二次方程的解法,难度不大.9.如果关于x 的方程的一个根为3,那么a= .【答案】3【解析】【分析】根据方程的解的意义,把x=3代入原方程,然后解关于a 的方程,解答后,一定要验根.【详解】∵关于x 的方程2x a x +=的一个根为3,∴x=3一定满足关于x 的方程2x a x +=,∴63a +=,方程的两边同时平方,得6+a=9,解得a=3;检验:将a=3代入原方程得,左边=2333?=,右边=3,∴左边=右边,∴a=3符合题意,故填:3.10.方程=0的解为__________. 【答案】【分析】将原方程两边平方得出关于x的整式方程,解之求得x的值,再由二次根式有意义的条件可确定x的最终结果.【详解】解:将原方程两边平方得(x−5)(x−4)=0,则x−5=0或x−4=0,解得:x=5或x=4,∵x−5≥0,x−4≥0,解得:x≥5,∴x=5,故答案为:x=5.【点睛】本题主要考查解无理方程,解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.常用的方法有:乘方法,配方法,因式分解法,设辅助元素法,利用比例性质法等.11.若方程4m+=无实数根,则m的取值范围是_________.【答案】m>4【解析】【分析】4m=-,由非负数的算术平方根不是负数求得答案.【详解】m=解:因为:4=-,4m-<0因为原方程无实根,所以:4m解得:m>4.故答案为:m>4.【点睛】本题考查无理方程的实数根的情况,掌握算数平方根不是非负数的性质是解题的关键.12.1=的根是x=______.【答案】2.【解析】【分析】方程两边乘方,得整式方程,求解,检验即可.【详解】1=∴x-1=1∴x=2,经检验,x=2是原方程的根,所以,原方程的根是x=2.故答案为:2.【点睛】本题考查了解无理方程,注意别忘记检验哟!13.3x =的解是___________。
初中数学方程与不等式之无理方程知识点总复习有答案(1)

初中数学方程与不等式之无理方程知识点总复习有答案(1)一、选择题1.1=的解为_____.【答案】x=2【解析】【分析】1=两边同时乘方,即可解答.【详解】方程两边平方得:x ﹣1=1,解得:x =2,经检验x =2是原方程的解,故答案为:x =2【点睛】本题考点为无理方程求解,熟练掌握相关知识点是解题关键.2.的解是__________ ;【答案】x=0【解析】两边平方,得2x x =,分解因式,得()10x x -=,解得120,1x x ==,经检验,21x =不符合题意,舍去,所以原方程的解为x =0.故答案为x =0.3.1=的解为 .【答案】x=1【解析】【分析】方程两边平方即可去掉绝对值符号,解方程求得x 的值,然后把x 的值代入进行检验即可.【详解】方程两边平方,得:2-x=1,解得:x=1.经检验:x=1是方程的解.故答案是:x=1.4.1=的解是x=_____.【答案】4【解析】分析:这是一道无理方程,解此方程量先将无理方程两边平方,转化为一元一次方程来解.详解:两边平方得:x-3=1,移项得:x=4.经检验x=4是原方程的根.故本题答案为:x=4.点睛:本题由于两边平方,可能产生增根,所以解答以后要验根.5.0的根是____.【答案】x=1【解析】【分析】将无理方程化为一元二次方程,然后求解即可.【详解】原方程变形为x(x-1)=0,∴x=0或x-1=0,∴x=0或x=1,∴x=0时,被开方数x-1=-1<0,∴x=0不符合题意,舍去,∴方程的根为x=1,故答案为x=1.【点睛】本题考查了无理方程,将无理方程化为一元二次方程是解题的关键.6.=x的解是______.【答案】x=1【解析】【分析】将无理方程化为一元二次方程,然后求解即可.【详解】原方程变形为 4-3x=x2,整理得 x2+3x-4=0,∴(x+4)(x-1)=0,∴x+4=0或x-1=0,∴x1=-4(舍去),x2=1.故答案为x=1.【点睛】本题考查了无理方程,将无理方程化为一元二次方程是解题的关键.7.x=-的解________x=-【答案】2【解析】【分析】两边平方后解此无理方程可得.【详解】解:两边同时平方可得:2-x=x2,解得:x1=-2,x2=1,检验得x2=1不是方程的根,a=-,故1a=-故答案为1【点睛】本题主要考查解无理方程的知识点,去掉根号把无理方程化成有理方程是解题的关键,注意无理方程需验根.需要同学们仔细掌握.8.1=的根是x=______.【答案】2.【解析】【分析】方程两边乘方,得整式方程,求解,检验即可.【详解】=1∴x-1=1∴x=2,经检验,x=2是原方程的根,所以,原方程的根是x=2.故答案为:2.【点睛】本题考查了解无理方程,注意别忘记检验哟!9.的根是.【答案】x=3【解析】【分析】方程两边同时平方,即可转化成一元一次方程,解得x的值,然后代入原方程进行检验即可.【详解】方程两边同时平方得:x+1=4,解得:x=3.检验:x=3时,左边,则左边=右边.故x=3是方程的解.故答案是:x=3.10.解方程286-=时,设y=换元后,整理得关于y的整式方x x程是___________________.【答案】y²+y-6=0【解析】【分析】设y=则原方程可化为关于y的一元二次方程即可.【详解】解:设y=则原方程可化为y²+y-6=0,故答案为:y²+y-6=0.【点睛】本题考查了无理方程,解无理方程最常用的方法是换元法,一般是通过观察确定用来换元的式子是解题的关键.=的解是_____________.11.0【答案】x=2【解析】【分析】根据题意可得x=2或x=1,然后根据二次根式的性质舍去x=1.【详解】=,∴x﹣2=0或x﹣1=0,解得x=2或x=1,当x=1时,x﹣2=1﹣2=﹣1<0,舍去,则原方程的解为x=2.故答案为:x=2.【点睛】本题主要考查解方程,二次根式的性质,解此题的关键在于求出的方程的解要使二次根式有意义.12.3的解是:x=_____.【答案】±2【解析】【分析】对方程左右两边同时平方,可得x 2+5=9,进而可解x 的值,答案注意根式有意义的条件【详解】3=,左右两边同时平方可得x 2+5=9;解之,可得:x =±2. 故答案为:±2.【点睛】本题的关键是将方程化为二次方程,答案注意根式有意义的条件13.2x =+的增根是_________________.【答案】4x =-【解析】【分析】两边平方,把无理方程化为2227(2)x x x +=+,解得14x =-,21x =,然后进行检验确定原方程的解,从而得到原方程的增根.【详解】解:Q 2x =+,2227(2)x x x ∴+=+,整理得2340x x +-=,解得14x =-,21x =,检验:当4x =-时,左边2==,右边422=-+=-,左边≠右边,则4x =-为原方程的增根;当1x =时,左边3,右边123=+=,左边=右边,则1x =为原方程的根,所以原方程的解为1x =.故答案为:4x =-.【点睛】本题考查了无理方程:解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法. 常用的方法有:乘方法,配方法,因式分解法,设辅助元素法.解无理方程,往往会产生增根,应注意验根.14.x =-的根是 .【答案】1x =-【解析】【分析】将方程左右两边平方,将方程化为关于x 的一元二次方程,求出方程的解得到x 的值,将x 的值代入原方程检验,即可得到原方程的解.【详解】左右两边平方得:2x+3=x 2,即x 2-2x-3=0,因式分解得:(x-3)(x+1)=0,解得:x=3或x=-1,将x=3代入方程检验,不合题意,则原方程的解为x=-1.故答案为x=-115.若关于x 0k =在实数范围内有解,则k 的取值范围是__________.【答案】k ≥【解析】【分析】先将方程变形为22460x x k ++-=,再根据一元二次方程根的判别式列出不等式即可解答.【详解】0k =可变形为:22460x x k ++-=则2164(6)0k ∆=--≥,解得:k ≥k ≤0k =≥∴k ≤∴k ≥故答案为:k ≥【点睛】本题考查了无理方程的解,解题的关键是对原方程进行变形,转化为一元二次方程.16.能使(x -50成立的x 是____________.【答案】7【解析】【分析】由无理方程中两个因式的积为0,则至少一个为0,并检验求得的未知数的值,从而得到答案,【详解】解:因为:(0x -=所以:50x -==解得;5,7x x ==经检验:5x =不合题意舍去,所以方程的解是:7x =.故答案为:7.【点睛】本题考查无理方程的解法,熟知解法是解题关键,注意检验.17.如果关于x x =的一个根为3,那么a =_______【答案】3【解析】【分析】把3x =代入原方程即可得到答案.【详解】解:把3x =3=,两边平方得:69a +=,所以:3a =,经检验:3a =符合题意,故答案为:3.【点睛】本题考查方程的解的含义以及解无理方程,掌握方程的解及解无理方程的方法是关键.18.方程(x 0-=的解是_____________________【答案】4x =【解析】【分析】因为(x 0-=可以得出x−2=0,x−4=0且x−4≥0,由此求得原方程的解即可.【详解】解:(x 0-=Q20,40x x ∴-=-=,且40x -≥解得2,4x x ==且4x ≥4x ∴=故答案为4x =【点睛】此题考查解无理方程,注意被开方数必须大于或等于0,求此类方程的解必须满足这一条件.19.3x m =+有一个根是x=3,那么m=__________________. 【答案】2【解析】【分析】3x m =+有一个根是x=3,代入后即可求解关于m 的无理方程. 【详解】3x m =+有一个根是x=3,1m =+, 两边平方得:15-3m=1+2m+m²,解得:m=-7或2,当m=-7时,1+m=-6<0,不合题意,舍去,故答案为:2.【点睛】本题考查了无理方程,解题的关键是熟练掌握用平方法解无理方程.20.方程21x +=___________。
新初中数学方程与不等式之无理方程知识点总复习含解析(1)

新初中数学方程与不等式之无理方程知识点总复习含解析(1)一、选择题 1.将方程2120x x --=化为有理方程_______【答案】3x²+1=0 【解析】【分析】先移项,然后方程两边平方即可去根号,转化为有理方程.【详解】解:移项:212x x -=两边平方得:x²-1=4x²,即3x²+1=0.故答案是:3x²+1=0.【点睛】本题考查了无理方程的解法,利用平方法是转化为整式方程的基本方法.2.方程x =-x 的解是__________ ;【答案】x=0【解析】两边平方,得2x x =,分解因式,得()10x x -=,解得120,1x x ==,经检验,21x =不符合题意,舍去,所以原方程的解为x =0.故答案为x =0.3.方程6x x +=-的根是______.【答案】x=﹣2【解析】先把方程两边平方去根号后求解,再根据x <0,即可得出答案.解:由题意得:x <0,两边平方得:x+6=x 2,解得x=3(不合题意舍去)或x=﹣2;故答案为:x=﹣2.4.方程2=x ﹣6的根是______.【答案】x=12.【解析】两边平方,求得一元二次方程的解,进一步利用x ﹣3≥0验证得出答案即可. 解:2=x ﹣64(x ﹣3)=x 2﹣12x+36整理得x 2﹣16x+48=0解得:x 1=4,x 2=12代入x ﹣3>0,当x=4时,等式右边为负数,所以原方程的解为x=12.故答案为:x=12.5.方程1125x x ++-=的根为_____.【答案】﹣2或﹣7【解析】【分析】把无理方程转化为整式方程即可解决问题.【详解】两边平方得到:13+2()()112x x +-=25, ∴()()112x x +-=6,∴(x+11)(2-x )=36,解得x=-2或-7,经检验x=-2或-7都是原方程的解.故答案为-2或-7【点睛】本题考查无理方程,解题的关键是学会把无理方程转化为整式方程.6.方程=0的解为__________. 【答案】【解析】【分析】将原方程两边平方得出关于x 的整式方程,解之求得x 的值,再由二次根式有意义的条件可确定x 的最终结果.【详解】解:将原方程两边平方得(x−5)(x−4)=0,则x−5=0或x−4=0,解得:x =5或x =4,∵x −5≥0,x−4≥0,解得:x≥5,∴x =5,故答案为:x =5.【点睛】本题主要考查解无理方程,解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.常用的方法有:乘方法,配方法,因式分解法,设辅助元素法,利用比例性质法等.7.0=的根是________________.【答案】x=2【解析】【分析】=的左边进行计算,然后两边同时平方可得x2-4=0;接下来,移项后利用直接开方法解这个一元二次方程得到方程的根,然后代入原方程中检验即可确定方程的根【详解】=,=,0,240x-=x2=4,x=±2当x=-2时=的根是x=2【点睛】此题考查无理方程,掌握无理方程的求解方法是关键;8.3的解是_____.【答案】1【解析】【分析】移项到右边,再两边同时平方=1,再两边进行平方,得x=1,从而得解.【详解】3,两边平方得,x+3=9+x﹣,移项合并得,=6,1,两边平方得,x=1,经检验:x=1是原方程的解,故答案为1.【点睛】本题考查了学生对开方与平方互为逆运算的理解,利用转化的思想把二次根式方程化为一元一次方程是解题的关键.9.方程6x x +=的根为 .【答案】x=3【解析】两边平方得x+6=x 2,解一元二次方程得x 1=3,x 2=-2(舍去),所以方程的根为10.91449x x x +=+91y x += 换元后,整理得关于y 的整式方程是____________________.【答案】y²-4y+4=0【解析】【分析】 91y x+=,则原方程可化为关于y 的一元二次方程即可. 【详解】 解:91y x +=, 则原方程可化为,44y y+=即y²-4y+4=0,故答案为:y²-4y+4=0. 【点睛】 本题考查了无理方程,解无理方程最常用的方法是换元法,9x x +91x+.11.210x x --=的解是_____________.【答案】x=2【解析】【分析】根据题意可得x=2或x=1,然后根据二次根式的性质舍去x=1.【详解】0=,∴x ﹣2=0或x ﹣1=0,解得x=2或x=1,当x=1时,x ﹣2=1﹣2=﹣1<0,舍去,则原方程的解为x=2.故答案为:x=2.【点睛】本题主要考查解方程,二次根式的性质,解此题的关键在于求出的方程的解要使二次根式有意义.12.k =有实数根,则k 的取值范围为___________【答案】【解析】【分析】方程两边同时平方,再移项,根据x 2≥0求解即可.【详解】k =,∴222x k +=,即222x k =-,∵x 2≥0,∴220k -≥,∴k 或k≤k =有实数根,∴k >0,∴k .故答案为:.【点睛】本题主要考查无理方程,解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法. 常用的方法有:乘方法,配方法,因式分解法,设辅助元素法,利用比例性质法等.13.方程x =_____.【答案】x =1【解析】【分析】先把方程两边同时平方转化为有理方程,然后解得有理方程的解,最后要进行检验,本题得以解决.【详解】x =x 2=4﹣3x ,解得,x =1或x =﹣4,检验:当x =﹣4不是原方程的根,故原无理方程的解是x =1,故答案为:x =1【点睛】本题考查无理方程,解题的关键是明确无理方程的解法,注意解方程最后要检验.14.3=的解的是x =__________________.【答案】8x =【解析】【分析】把方程两边平方去根号后即可转化成整式方程,解方程即可求出x 的值,然后进行检验.【详解】两边平方得:x+1=9,解得:x=8.检验:x=8是方程的解.故答案为x=8.【点睛】本题考查的知识点是平方根的定义,解题的关键是熟练的掌握平方根.15.0=的解是________;【答案】4x =【解析】【分析】0=得30x -=或40x -=,解出x 的值并检验即可.【详解】0=∴30x -=或40x -=123,4x x ==经检验,3x =为原方程的增根,应舍去所以,原方程的根是4x =.故答案为:4x =.【点睛】本题考查了无理方程,解题的关键是掌握解法,并注意检验.16.3=的根是_______________.【答案】x=7【解析】【分析】根据无理方程的解法求解即可.【详解】3=,两边平方可得:x+2=9,移项合并得:x=7.故答案为:x=7.【点睛】本题考查了无理方程的解法,解题的关键是根据等式的性质将方程两边平方,从而化成整式方程.17.若关于x 0k =在实数范围内有解,则k 的取值范围是__________.【答案】k ≥【解析】【分析】先将方程变形为22460x x k ++-=,再根据一元二次方程根的判别式列出不等式即可解答.【详解】0k =可变形为:22460x x k ++-=则2164(6)0k ∆=--≥,解得:k ≥k ≤0k =≥∴k ≤∴k ≥故答案为:k ≥【点睛】本题考查了无理方程的解,解题的关键是对原方程进行变形,转化为一元二次方程.18.-x 的值相等,那么x=__________.【答案】-5【解析】【分析】两边平方得到230()x x +=-,求出方程的解,把此方程的解代入原方程检验即可得出答案.【详解】x =-,两边平方得:230()x x +=-,即2300x x --=, (6)(5)0x x -+=,(6)0x -=或(5)0x +=,解得125,6x x =-= ,检验:当5x =-5x ==-,当6x =6x =≠-,所以x =-5,故答案为:-5.【点睛】本题考查无理方程,解一元二次方程.能将无理方程转化成一元二次方程是解决此题的关键.需注意:因为一个数的算术平方根是非负的,所以一元二次方程的解中可能有不符合无理方程的解,结果一定要检验.19.如果关于x x =的一个根为3,那么a =_______【答案】3【解析】【分析】把3x =代入原方程即可得到答案.【详解】解:把3x =3=,两边平方得:69a +=,所以:3a =,经检验:3a =符合题意,故答案为:3.【点睛】本题考查方程的解的含义以及解无理方程,掌握方程的解及解无理方程的方法是关键.20.=0的解是___.【答案】x =5.【解析】【分析】把两边都平方,化为整式方程求解,注意结果要检验.【详解】方程两边平方得:(x﹣3)(x﹣5)=0,解得:x1=3,x2=5,经检验,x2=5是方程的解,所以方程的解为:x=5.【点睛】本题考查了无理方程的解法,解含未知数的二次根式只有一个的无理方程时,一般步骤是:①移项,使方程左边只保留含有根号的二次根式,其余各项均移到方程的右边;②两边同时平方,得到一个整式方程;③解整式方程;④验根.。
人教版初中数学方程与不等式之无理方程知识点总复习附解析

人教版初中数学方程与不等式之无理方程知识点总复习附解析一、选择题1.1=的根是x=______.【答案】2.【解析】【分析】方程两边乘方,得整式方程,求解,检验即可.【详解】1=∴x-1=1∴x=2,经检验,x=2是原方程的根,所以,原方程的根是x=2.故答案为:2.【点睛】本题考查了解无理方程,注意别忘记检验哟!2.的根是.【答案】x=3【解析】【分析】方程两边同时平方,即可转化成一元一次方程,解得x的值,然后代入原方程进行检验即可.【详解】方程两边同时平方得:x+1=4,解得:x=3.检验:x=3时,左边,则左边=右边.故x=3是方程的解.故答案是:x=3.3.x=-的根是______.【答案】x=﹣2【解析】先把方程两边平方去根号后求解,再根据x<0,即可得出答案.解:由题意得:x<0,两边平方得:x+6=x2,解得x=3(不合题意舍去)或x=﹣2;故答案为:x=﹣2.4.如果关于x x=有实数根2,那么k=________.-【答案】1【解析】【分析】把x=2代入方程中进行求解即可得.【详解】,2-2k=4,解得:k=-1,经检验k=-1符合题意,所以k=-1,故答案为-1.【点睛】本题考查了方程的解,熟练掌握方程解的定义是解题的关键.5.1=的解是.【答案】x =1【解析】【分析】根据算术平方根的意义,方程两边分别平方,化为整式方程,然后求解即可.【详解】两边平方得2x﹣1=1,解得x=1.经检验x=1是原方程的根.故本题答案为:x=1.6.x=-的解________x=-【答案】2【解析】【分析】两边平方后解此无理方程可得.【详解】解:两边同时平方可得:2-x=x2,解得:x1=-2,x2=1,检验得x2=1不是方程的根,a=-,故1a=-故答案为1【点睛】本题主要考查解无理方程的知识点,去掉根号把无理方程化成有理方程是解题的关键,注意无理方程需验根.需要同学们仔细掌握.7.的根是____.【答案】x=.【解析】【分析】二次根式的值为非负数,被开方数也为非负数.【详解】=Q1211∴-=x22∴=x∴=经检验x=是原方程的根,x∴x=.故答案为x=.【点睛】此题考查了二次根式有意义的条件,要明确,当函数表达式是二次根式时,被开方数非负.8.0x=的解是____.x=-【答案】3【解析】【分析】根据解无理方程的方法可以解答此方程,注意无理方程要检验.【详解】x=,-,x∴3-2x=x2,∴x2+2x-3=0,∴(x+3)(x-1)=0,解得,x1=-3,x2=1,经检验,当x=1时,原方程无意义,当x=3时,原方程有意义,故原方程的根是x=-3,故答案为:x=-3.【点睛】本题考查无理方程,解答本题的关键是明确解无理方程的方法.9.方程6x x +=的根为 .【答案】x=3【解析】 两边平方得x+6=x 2,解一元二次方程得x 1=3,x 2=-2(舍去),所以方程的根为10.若等式3253103x -=x 的值为__________. 【答案】16【解析】【分析】将方程变形后两边同时平方即可求出x 的值.【详解】 ∵3253103x -= ∴3251033x -=∴32593x -=2533x -=两边同时平方得,2x-5=27,解得,x=16.经检验,x=16是原方程的根.故答案为:16.【点睛】此题主要考查了解无理方程,注意:解无理方程一定要验根.11.下列方程中:a 、421x x +=;b 、32x x -+=;c 、31x x =;d 、412x =属于高次方程的是_____.【答案】a ,d 【解析】【分析】根据高次方程的定义判断即可.【详解】 解:421x x +=是高次方程;32x x -+=是分式方程;31x x =是无理方程;412x =是高次方程,故答案为:a ,d .【点睛】本题考查了高次方程的定义:整式方程未知数次数高于2次的方程叫高次方程.12.4=y = 换元后,整理得关于y 的整式方程是____________________.【答案】y²-4y+4=0【解析】【分析】y =,则原方程可化为关于y 的一元二次方程即可. 【详解】解:y =, 则原方程可化为,44y y+=即y²-4y+4=0,故答案为:y²-4y+4=0. 【点睛】本题考查了无理方程,解无理方程最常用的方法是换元法,.13.请将方程的解写在后面的横线上:______【答案】x=7【解析】【分析】先根据已知方程得出x-3=0或x-7=0,求出x 的值,再进行检验即可.【详解】解:,x-3=0或x-7=0,x=3或x=7,检验:当x=3x=3不是原方程的解;x=7是原方程的解,故答案为:x=7.【点睛】本题考查了解无理方程,能把无理方程变成有理方程是解此题的关键,注意解无理方程一定要进行检验.14.无理方程(0x -=的根是____.【答案】x=2.【解析】【分析】根据0乘任何数都得零,可得方程的解,根据被开方数是非负数,可得答案.【详解】解:由(0x -=,∴x-5=0或2-x=0,解得:x=5,x=2,∵20x -≥,∴2x ≤,当x=5时,被开方数无意义;故方程的解为:x=2,故答案为:x=2.【点睛】本题考查了无理方程,利用0乘任何数都得零是解题关键,注意被开方数是非负数.15.2=的根是__________.【答案】4.【解析】【分析】把无理方程转化为整式方程即可解决问题.【详解】两边平方得到:2x ﹣4=4,解得:x =4,经检验:x =4是原方程的解.故答案为:4.【点睛】本题考查了无理方程,解题的关键是学会用转化的思想思考问题,注意必须检验.16.x =的解为_____.【答案】3【解析】【分析】根据无理方程的解法,首先,两边平方解出x 的值,然后验根,解答即可.【详解】解:两边平方得:2x +3=x 2∴x2﹣2x﹣3=0,解方程得:x1=3,x2=﹣1,检验:当x1=3时,方程的左边=右边,所以x1=3为原方程的解,当x2=﹣1时,原方程的左边≠右边,所以x2=﹣1不是原方程的解.故答案为3.【点睛】此题考查无理方程的解,解题关键在于掌握运算法则17.3=的根是_______________.【答案】x=7【解析】【分析】根据无理方程的解法求解即可.【详解】=,3两边平方可得:x+2=9,移项合并得:x=7.故答案为:x=7.【点睛】本题考查了无理方程的解法,解题的关键是根据等式的性质将方程两边平方,从而化成整式方程.18.根号内含有______________的方程叫做无理方程;_______________和_______________统称为有理方程.【答案】未知数的代数式整式方程分式方程【解析】【分析】根据有理方程和无理方程的概念解答.【详解】解:根号内含有未知数的代数式的方程叫做无理方程,整式方程和分式方程统称为有理方程.故答案为:未知数的代数式;整式方程;分式方程.【点睛】本题考查了方程的分类,掌握有理方程和无理方程的概念是解题的关键.19.若方程4m+=无实数根,则m的取值范围是_________.【答案】m>4【解析】【分析】=-,由非负数的算术平方根不是负数求得答案.4m【详解】m=解:因为:4=-,4m-<0因为原方程无实根,所以:4m解得:m>4.故答案为:m>4.【点睛】本题考查无理方程的实数根的情况,掌握算数平方根不是非负数的性质是解题的关键.20.=3的解是_____.【答案】1【解析】【分析】移项到右边,再两边同时平方=1,再两边进行平方,得x=1,从而得解.【详解】3,两边平方得,x+3=9+x﹣,移项合并得,=6,1,两边平方得,x=1,经检验:x=1是原方程的解,故答案为1.【点睛】本题考查了学生对开方与平方互为逆运算的理解,利用转化的思想把二次根式方程化为一元一次方程是解题的关键.。
最新初中数学方程与不等式之无理方程知识点总复习附解析(2)

最新初中数学方程与不等式之无理方程知识点总复习附解析(2)一、选择题1.x =的解为_____.【答案】3【解析】【分析】根据无理方程的解法,首先,两边平方解出x 的值,然后验根,解答即可.【详解】解:两边平方得:2x +3=x 2∴x 2﹣2x ﹣3=0,解方程得:x 1=3,x 2=﹣1,检验:当x 1=3时,方程的左边=右边,所以x 1=3为原方程的解,当x 2=﹣1时,原方程的左边≠右边,所以x 2=﹣1不是原方程的解.故答案为3.【点睛】此题考查无理方程的解,解题关键在于掌握运算法则2.的解是__________ ;【答案】x=0【解析】两边平方,得2x x =,分解因式,得()10x x -=,解得120,1x x ==,经检验,21x =不符合题意,舍去,所以原方程的解为x =0.故答案为x =0.3.2=的解是_______________.【答案】2x =【解析】试题分析:方程两边平方,得324x -=,解得2x =.代入验根可得方程的根为2x =. 考点:解无理方程.4.方程_____.【答案】x=2【解析】【分析】无理方程两边平方转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到无理方程的解.【详解】两边平方得:(x+1)2=2x+5,即x2=4,开方得:x=2或x=-2,经检验x=-2是增根,无理方程的解为x=2.故答案为x=25.3的解是_____.x=【答案】5【解析】分析:把方程两边平方,去根号后求解.x-=详解:两边同时平方,得:219,x=解得:5,x=是原方程的解.经检验,5x=故答案为 5.点睛:考查无理方程的解法,解无理方程通常用的方法是两边平方法或者换元法.6.1=的根是x=______.【答案】2.【解析】【分析】方程两边乘方,得整式方程,求解,检验即可.【详解】=1∴x-1=1∴x=2,经检验,x=2是原方程的根,所以,原方程的根是x=2.故答案为:2.【点睛】本题考查了解无理方程,注意别忘记检验哟!7.3x=的解是___________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
盘锦市初中数学方程与不等式之无理方程知识点总复习附答案解析一、选择题1.方程21x +=___________。
【答案】x=1【解析】【分析】将原式移项合并同类型后得210x -=,再对一元二次方程求解即可.【详解】因为该方程变形为210x -=,所以121,1x x ==-,检验知x=1为该方程的实数根.【点睛】本题考查了无理方程,利用移项、合并同类项的方法把无理方程转化成一元二次方程,在解题过程中要注意检验.2.1=的解为【答案】x=1【解析】试题分析:方程两边平方即可去掉绝对值符号,解方程求得x 的值,然后把x 的值代入进行检验即可.试题解析:方程两边平方,得:2-x=1,解得:x=1.经检验:x=1是方程的解.考点:无理方程.3.2的根是 .【答案】x=53. 【解析】2=,∴3x ﹣1=4,∴x=53,经检验x=53是原方程组的解,故答案为x=53. 考点:无理方程.4.x =的解为_____.【答案】x=1【解析】分析:方程两边平方,将无理方程转化为整式方程,求出x 的值,经检验即可得到无理方程的解.详解:两边平方得:-x+2=x 2,即(x-1)(x+2)=0,解得:x=1或x=-2,经检验x=-2是增根,无理方程的解为x=1,故答案为x=1点睛:此题考查了无理方程,利用了转化的思想,解无理方程注意要验根.5.方程(x 30-=的解是______.【答案】x=2【解析】【分析】求出x 0=,求出即可.【详解】解:(x 30-=Q ,2x 0∴-≥,x 2∴≤,x 30∴-≠,0=Q ,x 2=,故答案为:x 2=.【点睛】0=是解此题的关键.6.若关于x 的方程103=恰有两个不同的实数解,则实数a 的取值范围是________.【答案】0a =或316a ≥-【解析】【分析】,∴y ≥0,则原方程可化为:211023ay y +-=, 根据方程只有一个正根,即可解决问题.【详解】y ,∴y ≥0,则原方程可化为:211023ay y +-=, ∵方程恰有两个不同的实数解,∴△=0或a =0或a >0(此时方程两根异号,y 只有一个正根,x 有两个不同的实数解) 当△=0时,14043a +=, 解得:316a =-, 故实数a 的取值范围是:0a =或316a ≥-, 故答案为:0a =或316a ≥-【点睛】 考查无理方程,难度一般,关键是掌握用换元法求解无理方程.7.0的根是____.【答案】x=1【解析】【分析】将无理方程化为一元二次方程,然后求解即可.【详解】原方程变形为x (x-1)=0,∴x=0或x-1=0,∴x=0或x=1,∴x=0时,被开方数x-1=-1<0,∴x=0不符合题意,舍去,∴方程的根为x=1,故答案为x=1.【点睛】本题考查了无理方程,将无理方程化为一元二次方程是解题的关键.8.=x 的解是______.【答案】x=1【解析】【分析】将无理方程化为一元二次方程,然后求解即可.【详解】原方程变形为 4-3x=x 2,整理得 x 2+3x-4=0,∴(x+4)(x-1)=0,∴x+4=0或x-1=0,∴x 1=-4(舍去),x 2=1.故答案为x=1.【点睛】本题考查了无理方程,将无理方程化为一元二次方程是解题的关键.9.方程6x x +=的根为 .【答案】x=3【解析】 两边平方得x+6=x 2,解一元二次方程得x 1=3,x 2=-2(舍去),所以方程的根为10.21=1x -的根是____.【答案】x =2.【解析】【分析】二次根式的值为非负数,被开方数也为非负数.【详解】211x -=Q211x ∴-=22x ∴=2x ∴=±经检验 x =2是原方程的根,∴x =2.故答案为x =2.【点睛】此题考查了二次根式有意义的条件,要明确,当函数表达式是二次根式时,被开方数非负.11.210x x --=的解是_____________.【答案】x=2【解析】【分析】根据题意可得x=2或x=1,然后根据二次根式的性质舍去x=1.【详解】210x x --=,∴x ﹣2=0或x ﹣1=0,解得x=2或x=1,当x=1时,x ﹣2=1﹣2=﹣1<0,舍去,则原方程的解为x=2.故答案为:x=2.【点睛】本题主要考查解方程,二次根式的性质,解此题的关键在于求出的方程的解要使二次根式有意义.12.3x -的解是___________。
【答案】x≤3【解析】【分析】由根式的性质可知方程左边必大于零,再根据无理方程左边等于右边,所以可得30x -≥求解即可.【详解】因为左边=3x -,右边=3-x,所以30x -≥,所以3x ≤.【点睛】本题考查了根式的性质及无理方程的化简求解.13.方程x =_____.【答案】x =1【解析】【分析】先把方程两边同时平方转化为有理方程,然后解得有理方程的解,最后要进行检验,本题得以解决.【详解】x =x 2=4﹣3x ,解得,x =1或x =﹣4,检验:当x =﹣4不是原方程的根,故原无理方程的解是x =1,故答案为:x =1【点睛】本题考查无理方程,解题的关键是明确无理方程的解法,注意解方程最后要检验.14.x =的解为_____.【答案】3【解析】【分析】根据无理方程的解法,首先,两边平方解出x 的值,然后验根,解答即可.【详解】解:两边平方得:2x +3=x 2∴x 2﹣2x ﹣3=0,解方程得:x 1=3,x 2=﹣1,检验:当x 1=3时,方程的左边=右边,所以x 1=3为原方程的解,当x 2=﹣1时,原方程的左边≠右边,所以x 2=﹣1不是原方程的解.故答案为3.【点睛】此题考查无理方程的解,解题关键在于掌握运算法则15.2x =+的增根是_________________.【答案】4x =-【解析】【分析】两边平方,把无理方程化为2227(2)x x x +=+,解得14x =-,21x =,然后进行检验确定原方程的解,从而得到原方程的增根.【详解】解:Q 2x =+,2227(2)x x x ∴+=+,整理得2340x x +-=,解得14x =-,21x =,检验:当4x =-时,左边2==,右边422=-+=-,左边≠右边,则4x =-为原方程的增根;当1x =时,左边3,右边123=+=,左边=右边,则1x =为原方程的根,所以原方程的解为1x =.故答案为:4x =-.【点睛】本题考查了无理方程:解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法. 常用的方法有:乘方法,配方法,因式分解法,设辅助元素法.解无理方程,往往会产生增根,应注意验根.16.如图,ABC ∆中,AB AC =, 点D 在线段BC 的延长线上, 连接AD ,CD=1,BC=12,∠DAB=30°, 则 AC =__________.【答案】439【解析】【分析】过点B 作BE ⊥AD 于点E ,AH ⊥BC 于H .设AB=AC=x .根据AE+DE=AD ,分别利用勾股定理求出AE ,DE ,AD ,构建方程即可解决问题.【详解】解:过点B 作BE ⊥AD 于点E ,AH ⊥BC 于H .设AB=AC=x .在Rt △ABE 中,∵∠BAE=30°,AB=x ,∴BE=12AB=12x ,33, ∵AB=AC ,AH ⊥BC ,∴CH=BH=6,在Rt △AHB 中,AH 2=x 2-62,在Rt △DBE 中,22221134BD BE x -=-, 在Rt △ADH 中,2222267AH DH x +-+ ∵AE+DE=AD ,222223113674x x x +-=-+ 整理得:x 4-13×51x-(12×13)2=0,解得x 2=13×48或13×3(舍去),∵x >0,∴,经检验:是无理方程的解,∴故答案为.【点睛】本题考查勾股定理,解直角三角形,无理方程等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考填空题中的压轴题.17.若方程4m =无实数根,则m 的取值范围是_________. 【答案】m>4【解析】【分析】4m =-,由非负数的算术平方根不是负数求得答案.【详解】解:因为:4m =4m =-,因为原方程无实根,所以:4m -<0解得:m >4.故答案为:m >4.【点睛】本题考查无理方程的实数根的情况,掌握算数平方根不是非负数的性质是解题的关键.18.如果方程1k -=有实数解,那么k 的取值范围是________________________. 【答案】:k≤1【解析】【分析】根据二次根式有意义的条件列出关于k 的不等式求解即可.【详解】∵1k -=,1k =-,0≥,∴10k -≥,∴k ≤1.故答案为:k≤1.【点睛】本题考查了无理方程,根据二次根式有意义的条件列出关于k 的不等式是解答本题的关键.19.2x =的解是__________.【答案】1x =【解析】【分析】先左右两边同时平方,然后解整式方程即可,注意检验求出的整式方程的根是否为原方程的增根.【详解】2x =,∴22(2)x =,即2234x x += ,解得1x =或1x =-.当1x =-2,22,22x ==-≠- ,∴1x =-是原方程的增根,∴原方程的解为1x =.故答案为:1x =.【点睛】本题主要考查无理方程的解法,掌握无理方程的解法是解题的关键.20.0=的解是_______________【答案】x=2【解析】【分析】由题意可知3-x=0或2-x=0,再结合二次根式有意义的条件即可求得答案.【详解】0=,0=,∴x=3或x=2,检验:当x=3时,2-x<0x=3舍去,∴x=2,故答案为x=2.【点睛】本题考查了解无理方程,熟练掌握解方程的一般步骤以及注意事项是解题的关键.。