人教a版必修一:第一章《集合与函数概念》章末总结(含答案)

合集下载

高中数学必修1(人教A版)第一章集合与函数概念1-3

高中数学必修1(人教A版)第一章集合与函数概念1-3

⎩⎨
0, x3
+
x

1,
x > 0, x = 0, x < 0.
如果奇函数 f (x) 在区间 [3, 7] 上是增函数且最小值为 5 ,那么 f (x) 在区间
[−7, −3] 上是
A.增函数且最小值是 −5 B.增函数且最大值是 −5
C.减函数且最大值是 −5 D.减函数且最小值是 −5
例题:
求函数
y
= √−x−−−−−1 −
1 x
的最小值.
解:因为 x − 1 ⩾ 0 且 x ≠ 0,所以 x ⩾ 1 ,则函数 f(x) 的定义域为 [1, +∞).

y = √−x−−−−−1 在
[1, +∞)
上单调递增,而
y=
1 x

[1, +∞)
上单调递减,所以
y
=

1 x

[1, +∞)
上单调递增.所以
解:B
因为奇函数 f(x) 在区间 [3, 7] 上是增函数,所以 f(x) 在[−7, −3] 上也是增函数,且奇函数
f f
(x) 在区间 (−3)max =
[3, 7] −f (3)
上 =
f(3)min = −5,故选
5,则 B.
f (x)
在区间
[−7, −3]
上有
定义 [−2, 2] 在上的偶函数 g(x),当 x ⩾ 0 时,g(x) 单调递减,若 g(1 − m) < g(m) 成立, 求 m 的取值范围. 解:因为 g(x) 是偶函数,所以
y
=
√−x−−−−−1 −
1 x

人教A版高中数学必修1《第一章 集合与函数概念 小结》_14

人教A版高中数学必修1《第一章 集合与函数概念 小结》_14

课题:§1.1 集合教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。

另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

课型:新授课教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;教学重点:集合的基本概念与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

阅读课本P2-P3内容二、新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

3.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。

4.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)集合相等:构成两个集合的元素完全一样5.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a∉A(或a A)(举例)∈6.常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R(二)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

人教版高中数学必修1课后习题答案(第一章集合与函数概念)人教A版

人教版高中数学必修1课后习题答案(第一章集合与函数概念)人教A版

高中数学必修1课后习题答案 第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.用符号“∈”或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则:中国_______A ,美国_______A ,印度_______A ,英国_______A ;(2)若2{|}A x x x ==,则1-_______A ; (3)若2{|60}B x x x =+-=,则3_______B ;(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C . 1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===.(3)3∉B 2{|60}{3,2}B x x x =+-==-. (4)8∈C ,9.1∉C 9.1N ∉.2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合; (2)由小于8的所有素数组成的集合;(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (4)不等式453x -<的解集.2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-; (2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7};(3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.写出集合{,,}a b c 的所有子集.1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ; 取两个元素,得{,},{,},{,}a b a c b c ; 取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =; (3)∅______2{|10}x R x ∈+=; (4){0,1}______N ;(5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=. 2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集;(5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈;(3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以AB ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,BA ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.设{3,5,6,8},{4,5,7,8}A B ==,求,A B A B .1.解:{3,5,6,8}{4,5,7,8}{5,8}A B ==, {3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}AB ==.2.设22{|450},{|1}A x x x B x x =--===,求,AB A B .2.解:方程2450x x --=的两根为121,5x x =-=, 方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-, 即{1},{1,1,5}AB A B =-=-.3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,A B A B .3.解:{|}A B x x =是等腰直角三角形,{|}AB x x =是等腰三角形或直角三角形.4.已知全集{1,2,3,4,5,6,7}U =,{2,4,5},{1,3,5,7}A B ==, 求(),()()U U U AB A B 痧?.4.解:显然{2,4,6}U B =ð,{1,3,6,7}U A =ð, 则(){2,4}U AB =ð,()(){6}U U A B =痧. 1.1集合习题1.1 (第11页) A 组1.用符号“∈”或“∉”填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ;(4_______R ; (5Z ; (6)2_______N .1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数;(3)Q π∉ π是个无理数,不是有理数; (4R 是实数;(5Z3=是个整数; (6)2N ∈ 2)5=是个自然数.2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉” 符号填空: (1)5_______A ; (2)7_______A ; (3)10-_______A .2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-; 3.用列举法表示下列给定的集合: (1)大于1且小于6的整数;(2){|(1)(2)0}A x x x =-+=; (3){|3213}B x Z x =∈-<-≤.3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求; (3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求. 4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合;(2)反比例函数2y x=的自变量的值组成的集合; (3)不等式342x x ≥-的解集.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-;(2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥.5.选用适当的符号填空:(1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ;(2)已知集合2{|10}A x x =-=,则有:1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ; (3){|}x x 是菱形_______{|}x x 是平行四边形; {|}x x 是等腰三角形_______{|}x x 是等边三角形.5.(1)4B -∉; 3A -∉; {2}B ; BA ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,AB A B .6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥, 则{|2}AB x x =≥,{|34}A B x x =≤<.7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求A B ,AC ,()A B C ,()A B C .7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数, 则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}B C =,{3}B C =, 则(){1,2,3,4,5,6}AB C =,(){1,2,3,4,5,6,7,8}A B C =.8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定, 并解释以下集合运算的含义:(1)A B ;(2)A C . 8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项, 即为()A B C =∅.(1){|}A B x x =是参加一百米跑或参加二百米跑的同学; (2){|}AC x x =是既参加一百米跑又参加四百米跑的同学.9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形,{|}B x x =是菱形,{|}C x x =是矩形,求BC ,A B ð,S A ð.9.解:同时满足菱形和矩形特征的是正方形,即{|}BC x x =是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即{|}A B x x =是邻边不相等的平行四边形ð, {|}S A x x =是梯形ð.10.已知集合{|37},{|210}A x x B x x =≤<=<<,求()R AB ð,()R A B ð,()R A B ð,()R A B ð.10.解:{|210}AB x x =<<,{|37}A B x x =≤<,{|3,7}R A x x x =<≥或ð,{|2,10}R B x x x =≤≥或ð, 得(){|2,10}R A B x x x =≤≥或ð, (){|3,7}R A B x x x =<≥或ð, (){|23,710}R A B x x x =<<≤<或ð,(){|2,3710}R AB x x x x =≤≤<≥或或ð.B 组1.已知集合{1,2}A =,集合B 满足{1,2}A B =,则集合B 有 个.1.4 集合B 满足AB A =,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.在平面直角坐标系中,集合{(,)|}C x y y x ==表示直线y x =,从这个角度看, 集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示什么?集合,C D 之间有什么关系?2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合,即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得D C .3.设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求,A B A B .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==, 当3a =时,集合{3}A =,则{1,3,4},A B A B ==∅; 当1a =时,集合{1,3}A =,则{1,3,4},{1}A B A B ==; 当4a =时,集合{3,4}A =,则{1,3,4},{4}AB A B ==;当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},AB a A B ==∅.4.已知全集{|010}U AB x N x ==∈≤≤,(){1,3,5,7}U A B =ð,试求集合B .4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U AB =,得U B A ⊆ð,即()U UAB B =痧,而(){1,3,5,7}U A B =ð, 得{1,3,5,7}U B =ð,而()U UB B =痧,即{0,2,4,6,8.9,10}B =.第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.求下列函数的定义域:(1)1()47f x x =+; (2)()1f x =+.1.解:(1)要使原式有意义,则470x +≠,即74x ≠-,得该函数的定义域为7{|}4x x ≠-;(2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤. 2.已知函数2()32f x x x =+,(1)求(2),(2),(2)(2)f f f f -+-的值; (2)求(),(),()()f a f a f a f a -+-的值.2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=,同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+,同理得22()3()2()32f a a a a a -=⨯-+⨯-=-, 则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.判断下列各组中的函数是否相等,并说明理由:(1)表示炮弹飞行高度h 与时间t 关系的函数21305h t t =-和二次函数21305y x x =-; (2)()1f x =和0()g x x =.3.解:(1)不相等,因为定义域不同,时间0t >; (2)不相等,因为定义域不同,0()(0)g x x x =≠. 1.2.2函数的表示法练习(第23页)1.如图,把截面半径为25cm 的圆形木头锯成矩形木料,如果矩形的一边长为xcm , 面积为2ycm ,把y 表示为x 的函数.1,y ==,且050x <<,即(050)y x =<<.2.下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事. (1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进. 3.画出函数|2|y x =-的图象. 3.解:2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示.{|},{0,1}A x x B ==是锐角,从A 到B 的映射是“求正弦”,4.设中元素60相对应与AB 中的元素是什么?与B相对应的A 中元素是什的么?4.解:因为3sin 602=,所以与A 中元素60相对应的B中的元素是2; 因为2sin 452=,所以与B 中的元素2相对应的A 中元素是45.(A )(B )(C )(D )。

人教版高中数学必修1课件:第一章__集合与函数概念_章末归纳总结课件

人教版高中数学必修1课件:第一章__集合与函数概念_章末归纳总结课件
(1)y=f(-x)的图象与y=f(x)的图象关于y轴对称; (2)y=-f(x)的图象与y=f(x)的图象关于x轴对称; (3)y=-f(-x)的图象与y=f(x)的图象关于原点对称; (4)奇函数的图象关于原点对称,偶函数的图象关于 y轴对称; (5)如果函数y=f(x)对定义域内的一切x值,都满足 f(a+x)=f(a-x),其中a是常数,那么函数y=f(x)的图象关
①方程(※)有两不等实根⇔Δ>0,方程(※)有两相等
实根⇔Δ=0,方程(※)无实根⇔Δ<0,方程(※)有实数解
⇔Δ≥0.
②方程(※)有零根⇔c=0.
Δ≥0 ③ 方 程 (※) 有 两 正 根 ⇔ x1+x2>0
x1x2>0
⇔较小的根 x=
-b- 2a
Δ >0 (a>0)
⇔-f(02)b>a>00
.
(2)集合 A 是直线 y=x 上的点的集合,集合 B 是抛物线 y=x2 的图象上点的集合,∴A∩B 是方程组yy= =xx2 的解为坐 标的点的集合,∴A∩B={(0,0),(1,1)}.
2.熟练地用数轴与Venn图来表达集合之间的关系 与运算能起到事半功倍的效果.
[例2] 集合A={x|x<-1或x>2},B={x|4x+p<0}, 若B A,则实数p的取值范围是________.
当 a≠0 时,应有 a=1a,∴a=±1.故选 D.
二、函数的定义域、值域、单调性、奇偶性、最值 及应用
1.解决函数问题必须第一弄清函数的定义域
[ 例 1] 函 数 f(x) = x2+4x 的 单 调 增 区 间 为 ________.
[解析] 由x2+4x≥0得,x≤-4或x≥0,又二次函数u =x2+4x的对称轴为x=-2,开口向上,故f(x)的增区间为 [0,+∞).

人教A版高中数学必修课后习题及答案(第一章集合与函数概念) 副本

人教A版高中数学必修课后习题及答案(第一章集合与函数概念)  副本

高中数学必修1课后习题答案第一章集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.用符号“∈”或“∉”填空:(1)设A为所有亚洲国家组成的集合,则:中国_______A,美国_______A,印度_______A,英国_______A;(2)若2A x x x==,则1-_______A;{|}(3)若2=+-=,则3_______B;{|60}B x x x(4)若{|110}C x N x=∈≤≤,则8_______C,9.1_______C.2.试选择适当的方法表示下列集合:(1)由方程290x-=的所有实数根组成的集合;(2)由小于8的所有素数组成的集合;(3)一次函数3y x=-+的图象的交点组成的集合;=+与26y x(4)不等式453x-<的解集.1.1.2集合间的基本关系练习(第7页)1.写出集合{,,}a b c的所有子集.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =;(3)∅______2{|10}x R x ∈+=; (4){0,1}______N ;(5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=.3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈;(3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈.1.1.3集合的基本运算练习(第11页)1.设{3,5,6,8},{4,5,7,8}A B ==,求,A B A B .2.设22{|450},{|1}A x x x B x x =--===,求,A B A B .3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,A B A B .1.1集合习题1.1 (第11页) A 组1.用符号“∈”或“∉”填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ;(4_______R ; (5Z ; (6)2_______N .2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉”符号填空:(1)5_______A ; (2)7_______A ; (3)10-_______A .3.用列举法表示下列给定的集合:(1)大于1且小于6的整数;(2){|(1)(2)0}A x x x =-+=;(3){|3213}B x Z x =∈-<-≤.4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合;(2)反比例函数2y x=的自变量的值组成的集合;(3)不等式342x x ≥-的解集.5.选用适当的符号填空:(1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ; (2)已知集合2{|10}A x x =-=,则有:1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ;(3){|}x x 是菱形_______{|}x x 是平行四边形;{|}x x 是等腰三角形_______{|}x x 是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,A B A B .7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求A B , A C ,()A B C ,()A B C .8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定,并解释以下集合运算的含义:(1)A B ;(2)A C . .9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形,{|}B x x =是菱形, {|}C x x =是矩形,求B C ,A B ð,S A ð.10.已知集合{|37},{|210}A x x B x x =≤<=<<,求()R A B ð,()R A B ð,()R A B ð,()R A B ð.B 组1.已知集合{1,2}A =,集合B 满足{1,2}A B =,则集合B 有个.2.在平面直角坐标系中,集合{(,)|}C x y y x ==表示直线y x =,从这个角度看, 集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示什么?集合,C D 之间有什么关系? 3.设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求,A B A B .4.已知全集{|010}U A B x N x ==∈≤≤,(){1,3,5,7}U A B =ð,试求集合B .。

人教版高中(必修一)数学第1章_集合与函数的概念章末归纳总结ppt课件

人教版高中(必修一)数学第1章_集合与函数的概念章末归纳总结ppt课件

[例5] 已知f(x)=x2+2(a-1)x-a+2,分别求下列条件下a的 取值范围. (1)函数f(x)的减区间为(-∞,-1]; (2)函数f(x)在(-∞,-1]上递减;
(3)函数f(x)在[-1,2]上单调.
[分析] 此题关键在于对单调、减区间的理解,主要由对称轴 与区间的位置决定.
[解析] 函数f(x)=x2+2(a-1)x-a+2的对称轴为x=1-a. (1)由于减区间为(-∞,-1],因此,1-a=-1, ∴a=2. (2)由于函数在(-∞,-1]上递减,应满足1-a≥-1,∴a≤2.
规律总结:学习集合知识,要加强对集合中元素的 认识与识别,注意区分数集与点集,知道集合的元素是什么是 进行集合运算的前提.另外,集合语言的表达和转化是必须掌 握的.
2.注意元素的互异性
[例2] 已知1∈{a+2,(a+1)2,a2+3a+3},求实数a的值. [解析] 由题意a+2=1,或(a+1)2=1,或a2+3a+3=1,解 得a=-1,或a=-2,或a=0. 当a=-2时,(a+1)2=a2+3a+3=1,不符合元素的互异性 这一特点,故a≠-2. 同理a≠-1. 故a=0.
专题二 求式:函数的定义域是使解析式有意义的自变 量的取值集合.
(2)实际问题:求函数的定义域既要考虑解析式有意义,还应考 虑使实际问题有意义.
(3)复合函数问题: ①若f(x)的定义域为[a,b],f(g(x))的定义域应由a≤g(x)≤b解出; ②若f(g(x))的定义域为[a,b],则f(x)的定义域为g(x)在[a,b]上 的值域.
1.注意正确理解、运用集合语言
[例1] (1)设集合A={x|y=x2},B={(x,y)|y=x2},则A∩B= ________; (2)设集合M={y|y=x2+1,x∈R},N={y|y=x+1,x∈R}, 则M∩N=( ) A.(0,1),(0,2) B.{(0,1),(0,2)}

新课标人教版数学A必修I--高一(上) 1.1集合(附答案)(打印版)

新课标人教版数学A必修I--高一(上) 1.1集合(附答案)(打印版)

第一章 集合与函数概念1.集合的含义与表示一、选择题1.下面四个命题正确的是( )A .10以内的质数集合是{0,3,5,7}B .“个子较高的人”不能构成集合C .方程0122=+-x x 的解集是{1,1} D .偶数集为{}N x k x x ∈=,2| 2.下面的结论正确的是( )A .Q ax ∈,则N a ∈B .N a ∈,则∈a {自然数}C .012=-x 的解集是{-1,1}D .正偶数集是有限集3.已知集合S ={c b a ,,}中的三个元素可构成∆ABC 的三条边长,那么∆ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形二、填空题4.设P ={}15|≤x x ,23=m ,则m __________P 。

5.0_______φ6.1_________{}*2,1|N a a x x ∈+-=。

7.设直线32+=x y 上的点集为P ,则P =____________。

点(2,7)与P 的关系为(2,7)___________P 。

8.集合{}N x x x ∈<<,128|,用列举法可表示为_____________。

三、解答题9.已知{}12|),(-==x y y x A ,}3|),{(+==x y y x B ,A a ∈,B a ∈,求a 。

10.已知},2|{N x k x x P ∈<<=,若集合P 中恰有3个元素,求k 。

11.已知集合M ={}4,433,222-+-+-x x x x ,若M ∈2,求满足条件的实数x 组成的集合。

12.用适当的方法表示下图中的阴影部分的点(含边界上的点)组成的集合M 。

2.集合的基本关系一、选择题1.下列四个命题:① ={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中正确的有()A.0个B.1个C.2个D.3个2.集合{1,2,3}的子集共有()A.7个B.8个C.6个D.5个3.若集合A={x|ax2+2x+a=0},a∈R中有且只有一个元素,则a的取值集合是() A.{1}B.{-1}C.{0,1}D.{-1,0,1}4.集合A={x|x=3k-2,k∈Z},B={y|y=3l+1,l∈Z},S={y|y=6M+1,M∈Z}之间的关系是()A.S=B∩A B.S=B∪A C.S B=A D.S∩B=A二、填空题5.已知集合A={x|-3≤x≤2},B={x|2M-1≤x≤2M+1},且A B,则实数M的取值范围是________.6.已知A={x|x<-1或x>5=,B={x|a<x<a+4=.若A B,则实数a的取值范围是________.7.已知集合A={x|x2+x-6=0},B={x|ax+1=0},满足A B,则a能取的一切值是________.8.若A B,A C,B={0,1,2,3},C={0,2,4,8},则满足上述条件的集合A为________.三、解答题9.已知集合M={a,a+d,a+2d},P={a,aq,aq2},其中a≠0,a、d、q∈R,且M=P,求q 的值.10.已知集合A={x|ax2+2x+1=0,a∈R,x∈R}.(1)若A中只有一个元素,求a的值,并求出这个元素;(2)若A中至多只有一个元素,求a的取值范围.3.集合的并集与交集一、选择题1.已知集合M、P、S,满足M∪P=M∪S,则()A.P=S B.M∩P=M∩SC.M∩(P∪S)=M∩(P∩S) D.(S∪M)∩P=(P∪M)∩S2.已知M={x2,2x-1,-x-1},N={x2+1,-3,x+1},且M∩N={0,-3},则x的值为() A.-1 B.1C.-2 D.23.设集合A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},则满足C⊆A∩B的集合C的个数是()A.0 B.1 C.2 D.34.已知集合M={x|-1≤x<2},N={x|x—a≤0},若M∩N≠Φ,则a的取值范围是() A.(-∞,2) B.(-1,+∞)C.[-1,+∞]D.[-1,1]二、填空题5.已知集合A={x|y=x2-2x-2,x∈R},B={y|y=x2-2x+2,x∈R},则A∩B=____.6.满足{x,y}∪B={x,y,z}的集合B的个数是____.7.已知集合A={1,2,3,x},B={3,x2},且A∪B={1,2,3,x},则x的值为____.三、解答题8.设A={x|x2-2x-3=0},B={x|ax-1=0}.若A∪B=A,求实数a的值.9. 50名学生参加体能和智能测验,已知体能优秀的有40人,智能优秀的有31人,两项都不优秀的有4人.问这种测验都优秀的有几人?4.补集1.1 集合 答案1.集合的含义与表示1.B2.C3.D4. ∉5. ∉6. ∉7. (){}32|,+=x y y x ∈8. {9,10,11} 9. a 为点(4,7)。

新课标人教A版高中数学(必修一)课后习题解答全册答案完整版

新课标人教A版高中数学(必修一)课后习题解答全册答案完整版

人教A版高中数学必修1课后习题答案目录第一章集合与函数概念 (1)1.1集合 (1)【P5】1.1.1集合的含义与表示【练习】 (1)【P7】1.1.2集合间的基本关系【练习】 (2)【P11】1.1.3集合的基本运算【练习】 (4)【P11】1.1集合【习题1.1 A组】 (5)【P12】1.1集合【习题1.1 B组】 (9)1.2函数及其表示 (10)【P19】1.2.1函数的概念【练习】 (10)【P23】1.2.2函数的表示法【练习】 (12)【P24】1.2函数及其表示【习题1.2 A组】 (13)【P25】1.2函数及其表示【习题1.2 B组】 (20)1.3函数的基本性质 (23)【P32】1.3.1单调性与最大(小)值【练习】 (23)I【P36】1.3.2单调性与最大(小)值【练习】 (26)【P44】复习参考题A组 (33)【P44】复习参考题B组 (37)第二章基本初等函数(I) (42)2.1 指数函数 (42)【P54】2.1.1指数与指数幂的运算练习 (42)【P58】2.1.2指数函数及其性质练习 (42)【P59】习题2.1 A组 (43)【P60】习题2.1 B组 (45)2.2 对数函数 (47)【P64】2.2.1对数与对数运算练习 (47)【P68】2.2.1对数的运算练习 (47)【P73】2.2.2对数函数及其性质练习 (48)【P74】习题2.2 A组 (48)【P74】习题2.2 B组 (50)2.3幂函数 (51)【P79】习题2.3 (51)II【P82】第二章复习参考题A组 (51)【P83】第二章复习参考题B组 (53)第三章函数的应用 (56)3.1函数与方程 (56)【P88】3.1.1方程的根与函数的零点练习 (56)【P91】3.1.2用二分法求方程的近似解练习 (58)【P92】习题3.1 A组 (59)【P93】习题3.1 B组 (61)3.2 函数模型及其应用 (63)【P98】3.2.1几类不同增长的函数模型练习 (63)【P101】3.2.1几类不同增长的函数模型练习 (64)【P104】3.2.2函数模型的应用实例练习 (64)【P106】3.2.2函数模型的应用实例练习 (65)【P107】习题3.2 A组 (65)【P107】习题3.2 B组 (66)【P112】第三章复习参考题A组 (66)【P113】第三章复习参考题B组 (68)IIIIV1第一章 集合与函数概念1.1集合【P5】1.1.1集合的含义与表示【练习】1.用符号“∈”或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则中国_____A ,美国_____A ,印度____A ,英国____A ;(2)若2{|}A x x x ==,则1-_______A ;(3)若2{|60}B x x x =+-=,则3_______B ;(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C . 解答:1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===. (3)3∉B 2{|60}{3,2}B x x x =+-==-. (4)8∈C ,9.1∉C 9.1N ∉.2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合;(2)由小于8的所有素数组成的集合;2(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合;(4)不等式453x -<的解集.解答:2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-;(2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7};(3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩, 即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.【P7】1.1.2集合间的基本关系【练习】1.写出集合{,,}a b c 的所有子集.1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ;3取两个元素,得{,},{,},{,}a b a c b c ;取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =; (3)∅______2{|10}x R x ∈+=; (4){0,1}______N ;(5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=.2.(1){,,}a a b c ∈a 是集合{,,}abc 中的一个元素; (2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集; (5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈;4(3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,B A ;(3)因为4与10的最小公倍数是20,所以A B =.【P11】1.1.3集合的基本运算【练习】1.设{3,5,6,8},{4,5,7,8}A B ==,求,AB A B . 1.解:{3,5,6,8}{4,5,7,8}{5,8}AB ==, {3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B ==.2.设22{|450},{|1}A x x x B x x =--===,求,A B A B . 2.解:方程2450x x --=的两根为121,5x x =-=,方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-,即{1},{1,1,5}A B A B =-=-.3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,AB A B . 3.解:{|}AB x x =是等腰直角三角形, {|}AB x x =是等腰三角形或直角三角形.54.已知全集U={1,2,3,4,5,6,7}, A={2,4,5}, B={1,3,5,7},求)(B C A U ,)()(B C A C U U . 4.解:显然,{1,3,6,7}=A C U ,}6,4,2{=B C U 则,}4,2{)(=B C A U ,}6{)()(=B C A C UU 【P11】1.1集合【习题1.1 A 组】1.用符号“∈”或“∉”填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ; (4R ; (5Z ; (6)2_______N .1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数; (3)Q π∉ π是个无理数,不是有理数; (4R(5Z3=是个整数; (6)2N ∈25=是个自然数. 2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉” 符号填空:(1)5_______A ; (2)7_______A ; (3)10-_______A .2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-;3.用列举法表示下列给定的集合:(1)大于1且小于6的整数;(2){|(1)(2)0}A x x x =-+=;(3){|3213}B x Z x =∈-<-≤.6 3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求;(3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求.4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合;(2)反比例函数2y x=的自变量的值组成的集合; (3)不等式342x x ≥-的解集.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-;(2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥. 5.选用适当的符号填空:(1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ;(2)已知集合2{|10}A x x =-=,则有:1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ;7(3){|}x x 是菱形_______{|}x x 是平行四边形;{|}x x 是等腰三角形_______{|}x x 是等边三角形.5.(1)4B -∉; 3A -∉; {2}B ; B A ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,A B A B .6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥,则{|2}A B x x =≥,{|34}A B x x =≤<.7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求A B , A C ,()A B C ,()A B C .7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数,8则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}BC =,{3}B C =, 则(){1,2,3,4,5,6}A B C =,(){1,2,3,4,5,6,7,8}A B C =.8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定,并解释以下集合运算的含义:(1)A B ;(2)A C .8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,即为()AB C =∅. (1){|}A B x x =是参加一百米跑或参加二百米跑的同学;(2){|}A C x x =是既参加一百米跑又参加四百米跑的同学.9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形{|}B x x =是菱形 {|}C x x =是矩形,求B C ,B C A 、A C s9.解:同时满足菱形和矩形特征的是正方形,即{|}B C x x =是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形,即B C A ={x |x 是领边不相等的平行四边形},A C s ={x |x 是梯形}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章集合与函数概念章末复习课知识概览对点讲练分类讨论思想在集合中的应用分类讨论思想是高中的重要数学思想之一,分类讨论思想在与集合概念的结合问题上,主要是以集合作为一个载体,与集合中元素结合加以考查,解决此类问题关键是要深刻理解集合概念,结合集合中元素的特征解决问题.1.由集合的互异性决定分类【例1】设A={-4,2a-1,a2},B={9,a-5,1-a},已知A∩B={9},则实数a=________.分析由A∩B={9}知集合A与B中均含有9这个元素,从而分类讨论得到不同的a 的值,注意集合中元素互异性的检验.答案-3解析由A∩B={9},得2a-1=9,或a2=9,解得a=5,3,-3.当a=5时,A={-4,9,25},B={9,0,-4},A ∩B ={9,-4},与A ∩B ={9}矛盾;当a =3时,a -5=-2,1-a =-2,B 中元素重复,舍去; 当a =-3时,A ={-4,-7,9},B ={9,-8,4},满足题设. ∴a =-3.规律方法 (1)本题主要考查了分类讨论的思想在集合中的具体运用,同时应该注意集合中元素的互异性在集合元素的确定中起重要作用.(2)本题在解题过程中易出现的错误:①分类讨论过于复杂;②不进行检验,导致出现增根;③分类讨论之后没有进行总结.变式迁移1 全集S ={2,3,a 2+2a -3},A ={|2a +11|,2},∁S A ={5},求实数a 的值. 解 因为∁S A ={5},由补集的定义知,5∈S ,但5∉A. 从而a 2+2a -3=5,解得a =2或a =-4. 当a =2时,|2a +11|=15∉S ,不符合题意; 当a =-4时,|2a +11|=3∈S.故a =-4. 2.由空集引起的讨论【例2】 已知集合A ={x|-2≤x ≤5},集合B ={x|p +1≤x ≤2p -1},若A ∩B =B ,求实数p 的取值范围.解 ∵A ∩B =B ,∴B ⊆A , (1)当B =∅时,即p +1>2p -1, 故p<2,此时满足B ⊆A ;(2)当B ≠∅时,又B ⊆A ,借助数轴表示知 ⎩⎪⎨⎪⎧p +1≤2p -1-2≤p +12p -1≤5,故2≤p ≤3.由(1)(2)得p ≤3.规律方法 解决这类问题常用到分类讨论的方法.如A ⊆B 即可分两类:(1)A =∅;(2)A ≠∅.而对于A ≠∅又可分两类:①A B ;②A =B.从而使问题得到解决.需注意A =∅这种情况易被遗漏.解决含待定系数的集合问题时,常常会引起讨论,因而要注意检验是否符合全部条件,合理取舍,谨防增解.变式迁移2 已知集合A ={x|x 2-3x +2=0},集合B ={x|mx -2=0},若B ⊆A ,求由实数m 构成的集合.解 A ={x|x 2-3x +2=0}={1,2} 当m =0时,B =∅,符合B ⊆A ;当m ≠0时,B ={x|x =2m },由B ⊆A 知,2m =1或2m=2.即m =2或m =1.故m 所构成的集合为{0,1,2}.数形结合思想在函数中的应用数形结合是本章最重要的数学思想方法,通过画出函数的图象,使我们所要研究的问题更加清晰,有助于提高解题的速度和正确率. 【例3】 设函数f(x)=x 2-2|x|-1 (-3≤x ≤3), (1)证明f(x)是偶函数; (2)画出这个函数的图象;(3)指出函数f(x)的单调区间,并说明在各个单调区间上f(x)是增函数还是减函数; (4)求函数的值域.(1)证明 f(-x)=(-x)2-2|-x|-1=x 2-2|x|-1=f(x), 即f(-x)=f(x),∴f(x)是偶函数. (2)解 当x ≥0时,f(x)=x 2-2x -1=(x -1)2-2,当x<0时,f(x)=x 2+2x -1=(x +1)2-2,即f(x)=⎩⎪⎨⎪⎧(x -1)2-2(0≤x ≤3)(x +1)2-2 (-3≤x<0). 根据二次函数的作图方法,可得函数图象如图. (3)解 函数f(x)的单调区间为[-3,-1),[-1,0),[0,1),[1,3].f(x)在区间[-3,-1)和[0,1)上为减函数, 在[-1,0),[1,3]上为增函数.(4)解 当x ≥0时,函数f(x)=(x -1)2-2的最小值为-2,最大值为f(3)=2; 当x<0时,函数f(x)=(x +1)2-2的最小值为-2,最大值为f(-3)=2. 故函数f(x)的值域为[-2,2].规律方法 函数的图象是函数的重要表示方法,它具有明显的直观性,通过函数的图象能够掌握函数重要的性质,如单调性、奇偶性等.反之,掌握好函数的性质,有助于图象正确的画出.变式迁移3 当m 为何值时,方程x 2-4|x|+5=m 有4个互不相等的实数根?解 令f(x)=x 2-4|x|+5,则f(x)=⎩⎪⎨⎪⎧x 2-4x +5, x ≥0,x 2+4x +5, x<0,那么原问题转化为探求m 为何值时,函数f(x)的图象与直线y =m 有4个交点.作出f(x)的图象,如图所示.由图象可知,当1<m<5时,f(x)的图象与y =m 有4个交点,即方程x 2-4|x|+5=m 有4个互不相等的实根.等价转化思想的应用数学问题中,已知条件是结论成立的保证.但有的问题已知条件和结论之间距离比较大,难以解出.因此,如何将已知条件经过转化,逐步向所求结论靠拢,是解题过程中经常要做的工作.变更条件就是利用与原条件等价的条件去代替,使得原条件中隐含的因素显露出来,使各种关系明朗化,从而缩短已知条件和结论之间的距离,找出它们之间的内在联系,以便应用数学规律、方法将问题解决.【例4】 对任意x ∈[1,+∞),不等式x 2+2x -a>0恒成立.求实数a 的取值范围. 解 方法一 由已知x ∈[1,+∞),x 2+2x -a>0恒成立, 即a<x 2+2x ,x ∈[1,+∞)恒成立. 令g(x)=x 2+2x ,x ∈[1,+∞),则原问题可转化为a 小于g(x)在[1,+∞)上的最小值. ∵g(x)=(x +1)2-1,图象的对称轴为x =-1, ∴函数g(x)在[1,+∞)上是增函数, ∴x =1时,g(x)取最小值g(1)=3.∴a<3. 即所求a 的取值范围是(-∞,3).方法二 当x ∈[1,+∞)时,x 2+2x -a>0恒成立,令f(x)=x 2+2x -a ,x ∈[1,+∞), 则有x ∈[1,+∞)时,f(x)>0恒成立, f(x)=(x +1)2-a -1,x ∈[1,+∞),∴f(x)min =f(1)=3-a ,问题转化为3-a>0, 即a<3.∴所求a 的取值范围为(-∞,3).规律方法 本题关键是将不等式恒成立问题转化为求函数最值问题,即f(x)>a 恒成立⇔f(x)min >a ,f(x)<a 恒成立⇔f(x)max <a.变式迁移4 已知函数f(x)=mx 2+mx +1的定义域为R ,求m 的取值范围.解 f (x )=mx 2+mx +1的定义域为R ,即等价于x ∈R 时,mx 2+mx +1≥0恒成立. 当m =0时,1≥0满足要求,当m ≠0时,则⎩⎪⎨⎪⎧m >0Δ=m 2-4m <0,解得:0<m <4. 综上,m 的取值范围为[0,4).数学思想方法是从数学内容中提炼出来的数学知识的精髓,是将知识转化为能力的桥梁.在日常学习中,同学们要注意数学思想方法在解题中的运用,要增强运用数学思想方法解决问题的意识,从而迅速找到解题思想或简化解题过程.课时作业一、选择题1.设集合S ={x ||x -2|>3},T ={x |a <x <a +8},S ∪T =R ,则a 的取值范围是( ) A .-3<a <-1 B .-3≤a ≤-1 C .a ≤-3或a ≥-1 D .a <-3或a >-1 答案 A解析 ∵|x -2|>3,∴x >5或x <-1. ∴S ={x |x >5或x <-1}.又T ={x |a <x <a +8},S ∪T =R , ∴⎩⎪⎨⎪⎧a +8>5,a <-1. ∴-3<a <-1. 2.若偶函数f (x )在区间(-∞,-1]上是增函数,则( )A .f ⎝⎛⎭⎫-32<f (-1)<f (2)B .f (-1)<f ⎝⎛⎭⎫-32<f (2) C .f (2)<f (-1)<f ⎝⎛⎭⎫-32 D .f (2)< f 3-2⎛⎫ ⎪⎝⎭<f (-1) 答案 D解析 由f (x )是偶函数, 得f (2)=f (-2),又f (x )在区间(-∞,-1]上是增函数,且-2<-32<-1,则f (-2)=f (2)<f ⎝⎛⎭⎫-32<f (-1). 3.如果奇函数f (x )在区间[1,5]上是减函数,且最小值为3,那么f (x )在区间[-5,-1]上是( )A .增函数且最小值为3B .增函数且最大值为3C .减函数且最小值为-3D .减函数且最大值为-3 答案 D解析 当-5≤x ≤-1时1≤-x ≤5,∴f (-x )≥3,即-f (x )≥3. 从而f (x )≤-3,又奇函数在原点两侧的对称区间上单调性相同, 故f (x )在[-5,-1]是减函数.故选D.4.定义在区间(-∞,+∞)的奇函数f (x )为增函数,偶函数g (x )在区间[0,+∞)的图象与f (x )的图象重合,设a <b <0,给出下列不等式:①f (b )-f (-a )>g (a )-g (-b );②f (b )-f (-a )<g (a )-g (-b ); ③f (a )-f (-b )>g (b )-g (-a );④f (a )-f (-b )<g (b )-g (-a ). 其中成立的是( )A .①④B .②③C .①③D .②④ 答案 D解析 本题采用特值法求解.不妨取符合题意的函数f (x )=x 及g (x )=|x |,进行比较或由g (x )=⎩⎪⎨⎪⎧f (x ), x ≥0,f (-x ), x <0,f (0)=0,f (a )<f (b )<0,f (-a )>f (-b )>0得出.5.已知y =f (x )与y =g (x )的图象如图所示,则函数F (x )=f (x )·g (x )的图象可以是( )答案 A解析 由图象可知函数y =f (x )与y =g (x )均为奇函数. f (-x )=-f (x ),g (-x )=-g (x ),F (x )=f (x )·g (x )=[-f (-x )]·[-g (-x )]=F (-x ).所以函数F (x )=f (x )·g (x )为偶函数.注意到函数y =f (x )的图象在y 轴右侧部分先小于0后大于0,而函数y =g (x )在右侧部分恒大于0,满足以上条件的只有A. 二、填空题 6.设全集U ={2,3,a 2+2a -3},A ={|2a -1|,2},∁U A ={5},则实数a 的值为________. 答案 2解析 ∵∁U A ={5},∴5∈U 且5∉A . ∴a 2+2a -3=5,解得a =2或a =-4. 当a =2时,|2a -1|=3≠5且3∈U , 当a =-4时,|2a -1|=9≠5,但是9∉U . 故a 的值为2.7.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=______. 答案 -2解析 f (x +4)=f (x ),∴f (7)=f (3+4)=f (3)=f (-1+4)=f (-1)=-f (1)=-2×12=-2. 8.有下列四个命题:①函数f (x )=|x ||x -2|为偶函数;②函数y =x -1的值域为{y |y ≥0};③已知集合A ={-1,3},B ={x |ax -1=0,a ∈R },若A ∪B =A ,则a 的取值集合为⎩⎨⎧⎭⎬⎫-1,13;④集合A ={非负实数},B ={实数},对应法则f :“求平方根”,则f 是A 到B 的映射. 写出所有正确命题的序号________. 答案 ②④解析 函数f (x )=|x ||x -2|的定义域为(-∞,2)∪(2,+∞),它关于坐标原点不对称,所以函数f (x )=|x ||x -2|既不是奇函数也不是偶函数,即命题①不正确;函数y =x -1的定义域为{x |x ≥1},当x ≥1时,y ≥0,即命题②正确; 因为A ∪B =A ,所以B ⊆A ,若B =∅,满足B ⊆A ,这时a =0;若B ≠∅,由B ⊆A ,得a =-1或a =13.因此,满足题设的实数a 的取值集合为⎩⎨⎧⎭⎬⎫-1,0,13,即命题③不正确.依据映射的定义知,命题④正确. 三、解答题9.设奇函数f (x )是定义在(-∞,+∞)上的增函数,若不等式f (ax +6)+f (2-x 2)<0对于任意x ∈[2,4]都成立,求实数a 的取值范围. 解 由f (ax +6)+f (2-x 2)<0 得f (ax +6)<-f (2-x 2).∵f (x )为奇函数,∴f (ax +6)<f (x 2-2). 又f (x )在R 上为增函数,∴原问题等价于ax +6<x 2-2对x ∈[2,4]都成立, 即x 2-ax -8>0对x ∈[2,4]都成立.令g (x )=x 2-ax -8,问题又转化为:在x ∈[2,4]上,g (x )min >0⇔⎩⎪⎨⎪⎧a 2<2,g (2)>0或⎩⎨⎧2≤a2≤4,g (a 2)>0或⎩⎪⎨⎪⎧a 2>4,g (4)>0,解得a <-2.综上,a ∈(-∞,-2).10.设函数f (x )=ax 2+1bx +c(a ,b ,c ∈N )是奇函数,且f (1)=2,f (2)<3.(1)求a ,b ,c 的值;(2)试研究x <0时,f (x )的单调性,证明你的结论.解 (1)由f (1)=2,得a +1b +c =2,由f (2)<3,得4a +12b +c<3,因为f (x )为奇函数,故f (x )的定义域关于原点对称.又f (x )的定义域为⎩⎨⎧⎭⎬⎫x |x ∈R 且x ≠-c b (显然b ≠0,否则f (x )为偶函数),所以-cb =0,则c=0,于是得f (x )=a b x +1bx ,且a +1b =2,4a +12b<3,∴8b -32b <3,∴b <32,又b ∈N ,∴b =1,∴a =1,故a =b =1,c =0.(2)由(1)知f (x )=x +1x,则f (x )在[1,+∞)上单调递增由于f (x )是奇函数,根据奇函数的对称性,可知f (x )在(-∞,-1]上是增函数,所以只需讨论f (x )在区间(-1,0)上的增减性即可, 当-1<x 1<x 2<0时,f (x 1)-f (x 2)=x 1+1x 1-x 2-1x 2=(x 1-x 2)⎝⎛⎭⎫1-1x 1x 2=x 1-x 2x 1x 2(x 1x 2-1). 显然x 1-x 2<0,0<x 1x 2<1,x 1x 2-1<0,∴f (x 1)-f (x 2)>0,∴f (x )在(-1,0)上为减函数.综上所述,f(x)在(-∞,-1]上是增函数,在[-1,0)上是减函数.。

相关文档
最新文档