第三章 定解条件与定解问题的提法
三类典型的数学物理方程
数学物理方程的建立过程
确定所研究的物理量 用数学中的“微元法”从所研究的系统中分割出
一小部分,再根据相应的物理规律分析邻近部分 与该部分的作用(抓主要作用),这种相互作用 在一个短的时间间隔内如何影响物理量。 把这种关系用微分方程表达出来,经过化简整理, 得到数学物理方程。
杆的纵振动方程 杆上x点在t时刻 F(x,t) 的弹性应力 x 研究对象:杆上各点的纵向位移 u(x,t)
得到
uxx u 2u u
utt a2[u 2u u ]
将上面两式代入原波动方程,得到
u 0
如何处理?
考虑采用积分的方法
先对 积分 u u d 0 f ( )
再对 积分
u f ( )d f1( ) f2 () f1(x at) f2(x at)(2)
即为齐次波动方程初值问题的通解 就某一具体问题,通过定解条件(初始条件)来 确定 f1 , f2
例:长为l 的均质细杆,侧面绝热,一端放在0°的水中,
另一端按已知规律 f (t) 变化。写出边界条件
物体边界面各点在时刻t所流过的热量已知:
u n
s
质温度已知,物体内部通过其边界S与 周围介质进行热量交换:
在S上任取一小块dS,用u1表示与物体接触处的介质温度,dQ 表示dt时间内流过dS的热量,根据牛顿冷却定律,我们有
弦的端点沿垂直于x轴的方向自由滑动,并受到一个 沿位移方向作用的已知外力,则边界条件形式为
ux (0,t) 1(t), ux (a,t) 2(t)
自由端点的情形:
1.2 初始条件与边界条件
第三类边界条件 给出所研究的物理量及其沿边界外法向导数 在边界上应满足的条件。
端点处为弹性支撑端的情形 根据Hooke 定律
第一章 三类典型方程和定解条件
a 其中,ij (x), bi (x), c x , f (x)都只是 x1 , x2, , xm 的已知 函数,与未知函数无关。
若一个函数具有某偏微分方程中所需 要的各阶连续偏导数,并且代入该方程中 能使它变成恒等式,则此函数称为该方程 的解(古典解)。 初始条件和边界条件都称为定解条件。 把某个偏微分方程和相应的定解条件 结合在一起,就构成了一个定解问题。 只有初始条件,没有边界条件的定解问题 称为始值问题(或柯西问题)。反之,只 有边界条件,没有初始条件的定解问题称 为边值问题。既有初始条件又有边界条件 的定解问题,称为混合问题。
数学物理方程
第一章 三类典型方程和定解条件 第二章 分离变量法 第三章 Laplace方程的格林函数法
第四章 贝塞尔函数及勒让德多项式
第一章 三类典型方程和定解条件
数学物理方程的研究对象——定解问题。 一个定解问题是由偏微分方程和相应的定解 条件组成。我们先来介绍三类典型的方程:
三类典型方程
一、波动方程 二、热传导方程
用以说明初始状态的条件称为初始条件。 用以说明边界上的约束情况的条件称为边 界条件。
一、初始条件
比如说波动方程(1.3)其初始条件有两 个,一个是参数u,一个是u的一阶导数。 即: u u t 0 及 都已知。 t
t 0
而热传导方程(1.7)其初始条件只有一 个,就是参数u。即:
Байду номын сангаасu t 0 是已知。
一个定解问题提的是否符合实际情况,从 数学角度来看,有三方面可以加以检验:
1、解的存在性,看定解问题是否有解。
2、解的唯一性,看是否只有一个解。
3、解的稳定性,看当定解条件有微小
变动时,解是否相应地只有微小的变 动,若确实如此,则称此解是稳定的。
数学物理方程 陈才生主编 课后习题答案1-3章
1.3 考虑在正方形区域Ω = {(x, y )|0 < x < 1, 0 < y < 1}上的波动方程的边值
问题
uxx − uyy = 0, u(x, 0) = f1 (x), u(x, 1) = f2 (x), u(0, y ) = g (y ), u(1, y ) = g (y ), 1 2
物体冷却时放出的热量−k∇u 与物体和外界的温度差 u 中u0 为周围介质的温度.
边
− u0 成正比, 其
·2·
第1章
绪
论
(4) 热量(质量)守恒定律.
物体内部温度升高所需要的热量(浓度增加所需要的质量)等于流入物体内部 的净流热量(质量)与物体内部的源所产生的热量(质量) 之和. (5) 费克(Fick)定律(即扩散定律). 一般地说, 由于浓度的不均匀,物质从浓度高的地方向浓度低的地方转移.这种 现象叫扩散. 在气体、 液体、 固体中都有扩散现象. 粒子流强度q (即单位时间内流过单位面积的粒子数)与浓度的下降率成正比.即
sup
x∈R1 ,t>0
un (x, t) − 1 =
sup
x∈R1 ,t>0
1 → 0. 但是, 当n → ∞时 n 1 2 1 n2 1 n2 t e sin nx = sup en t e → ∞, n n t>0 n
所以原定解问题的解是不稳定的.
1.3 补充习题解答
1.5 由流体力学知,理想流体的完整方程组由Euler型运动方程
·7·
E tt = c2 ∆E , H tt = c2 ∆H ,
其中E 和H 分别为真空中的电场强度和磁场强度, c为光速. 解 对方程组(1.3.12)中第四个方程关于t求导, 得
热传导方程的导出及其定解问题的导出
热传导方程的导出及其定解问题的导出1. 热传导方程的导出考察空间某物体G 的热传导问题。
以函数u (x ,y ,z ,t )表示物体G 在位置(x ,y ,z )及时刻t 的温度。
依据传热学中的Fourier 实验定律,物体在无穷小时段dt 内沿法线方向n 流过一个无穷小面积dS 的热量dQ 与物体温度沿曲面dS 法线方向的方向导数学成正比,即o n d udQ =-k (x ,y ,z )dSdt (1-1)o n 其中k (x ,y ,z )称为物体在点(x ,y ,z )处的热传导系数,它应取正值。
(1-1)式中负号的出 o u现是由于热量总是从温度高的一侧流向低的一侧,因此dQ 应和异号。
o n在物体G 内任取一闭曲面r ,它所包围的区域记为0,由(1-1)式,从时刻t 到t 流进12此闭曲面的全部热量为Q =f t 2仙k (x ,y ,z)—dS\dt (1-2)4I r O nJ这里表示u沿r 上单位外法线方向n 的方向导数。
o n流入的热量使物体内部的温度发生变化,在实践间隔(t ,t )中物体温度从u (x ,y ,z ,t )121变化到u (x‘y ,z ,t2),它所应该吸收的热量是JU c (x ,y ,z )P (x ,y ,z )[u (x ,y ,z ,t )一u (x ,y ,z ,t )]dxdydz其中c 为比热,P 为密度。
因此就成立 >dt=JfJ C (x ,y ,z )P (x,y ,z)[u (x,y ,z ,12)一U (x ,y ,z ,t i )]dxdydz(1-3)假设函数u 关于变量x ,y ,z 具有二阶连续偏导数,关于t 具有一阶连续偏导数,利用格林公式,可以把(1-3)化为交换积分次序,就得到J t t 12仰(x ,y ,z )护t10O x{k 譽'O x 丿(一O u 、 +—k 二+—°y°y 丿 O z (O u 、k 一>dxdydzdt =c P JI o 丿J 「E O u dtdxdydztO t 丿dxdydzdt =0(1-4)训c P '0、由于t i,t2,0都是任意的,我们得到(1-5)式称为非均匀的各向同性体得热传导方程。
数学物理方程课后参考答案第三章
解:令
又 故取 则 满足调和方程
即
代入原定解问题,得 满足
用分离变量法零解 ,得
.
所以
再由另一对边值得
所以 .
得
最后得
8.举例与说明在二维调和方程的狄利克莱外问题,如对解 不加在无穷远处为有界的限制,那末定解问题的解以不是唯一的。
是区域 中的调和函数(无穷远点除外).
如果区域 为球面K以外的无界区域,则函数u 在 中除去原点O外是调和的,函数 称为函数 的凯尔文(Kelvin)变换。
证明:只需证明 满足 。
=
=
代入 的表达式,有
=
=
若u在包含原点O的有界区域内处处式调和的即 ,则除无穷远点(O的反演点)外, 即除 点外v是调和的。若u在无界域 上是调和的,则除去O点外,v也是调和的。证毕。
且矩阵( )是正定的,即
由于矩阵( )是非正定的,故 可以写成 的线性齐次式的平方和,即
=
所以
于是
因此在 点
与 在 点满足方程是矛盾的,故 不能在 内部达到正的最大值。
7.证明第6题中讨论的椭圆形方程第一边值问题的唯一性与稳定性。
证:唯一性。只须证明方程在齐次边值条件只的零解。
设 在 内满足方程,在 边界 上 。因 在 上连续,故 是有界的,
第三章调和方程
§1建立方程定解条件
1.设 是n维调和函数(即满足方程
),试证明
其中 为常数。
证: ,
即方程 化为
所以
若 ,积分得
即 ,则
若 ,则 故
即 ,则
2.证明拉普拉斯算子在球面坐标 下,可以写成
数学常微分方程的定解问题求解
数学常微分方程的定解问题求解数学常微分方程是数学中非常重要的一个分支,它涉及到许多实际问题的建模与求解。
在解常微分方程的过程中,我们常常遇到定解问题,即在给定初始条件和边界条件下,求解出满足条件的函数解。
本文将探讨常微分方程的定解问题求解方法及其应用。
一、常微分方程的定义和分类常微分方程是指未知函数的导数与它本身之间的关系式。
一般形式为:其中 x 是自变量, y 是未知函数, f 是已知函数。
常微分方程可以分为一阶常微分方程和高阶常微分方程两类。
一阶常微分方程涉及到未知函数 y 的一阶导数,高阶常微分方程涉及到多阶导数。
二、常微分方程的定解问题常微分方程的定解问题是指在给定初始条件和边界条件下,求解出函数 y 满足方程,并满足给定条件。
常微分方程的初值问题是其中一种常见的定解问题,给定初始条件 y(x0) = y0 和导数条件 y'(x0) = y'0,求解出满足条件的函数 y。
三、常微分方程的求解方法常微分方程的求解方法有很多种,常见的方法有分离变量法、齐次方程法、一阶线性方程法、常数变易法等。
1. 分离变量法对于可分离变量的一阶常微分方程,变量可以通过代数方法分离,然后分别求解。
例如对于方程 dy/dx = f(x)g(y),我们可以将 f(x) 和 g(y) 分别移到方程的两边,然后对两边分别积分得到解。
2. 齐次方程法对于一阶齐次方程 dy/dx = f(y/x),我们可以通过变量替换得到一个新的常微分方程 u' = f(u)-1/u,并且可以通过变量分离法等方法进一步求解。
3. 一阶线性方程法对于一阶线性方程 dy/dx + P(x)y = Q(x),我们可以通过积分因子的方法将其转化为可解的形式。
通过选择适当的积分因子,可以将原方程变换为(e^∫P(x)dx)y' + (e^∫P(x)dx)P(x)y = (e^∫P(x)dx)Q(x),然后可以通过变量分离法等方法求解。
数学物理方程 陈才生主编 课后习题答案 章
1.1 基本内容提要
1.1.1 用数学物理方程研究物理问题的步骤 (1) 导出或者写出定解问题,它包括方程和定解条件两部分; (2) 求解已经导出或者写出的定解问题; (3) 对求得的解讨论其适定性并且作适当的物理解释.
1.1.2 求解数学物理方程的方法 常见方法有行波法(又称D’Alembert解法)、分离变量法、积分变换法、Green函
q = −k∇u,
其中k 为热传导系数,负号表示热量的流向和温度梯度方向相反.写成分量的形式
qx = −kux, qy = −kuy, qz = −kuz.
(3) Newton冷却定律. 物体冷却时放出的热量−k∇u 与物体和外界的温度差 u 边 − u0 成正比, 其 中u0为周围介质的温度.
·2·
1 n
en2
t
sin nx
(n
1), 满足
ut = −uxx,
(x, t) ∈ R1 × (0, ∞),
u(x, 0) = 1 +
1 n
sin
nx,
x ∈ R1.
显然, 当n → +∞时supx∈R
un(x, 0) − 1
=
1 n
→
0.
但是, 当n → ∞时
sup
x∈R1 ,t>0
un(x, t) − 1
∂2u ∂t2
=
E ρx2
∂ ∂x
x2
∂u ∂x
.
(1.3.9)
解 均匀细圆锥杆做微小横振动,可应用Hooke定律,并且假设密度ρ是常数. 以u¯ 表 示 图1.1所 示[x, x + ∆x]小 段 的 质 心 位 移, 小 段 质 量 为ρS∆x, S是 细
第三章-调和方程
第三章 调和方程
第三章 调和方程
§1 建立方程、定解条件 §2 格林公式及其应用
数学物理方程
第三章 调和方程
§1 建立方程、定解条件
§1.1 方程的导出 §1.2 定解条件和定解问题 §1.3 变分原理
数学物理方程
第三章 调和方程
➢ 物理背景:用于描述稳定或平衡的物理现象。
§1 方程的建立及其定解条件
1
1 1 u ( M )
u ( M 0 ) 4 ( u ( M ) n (r M 0 M ) r M 0 M n) d M S 3 .11
0
(u(M ) n(rM 1 0M)rM 1 0Mu (n M ))dM S 4 2 u u((M M 0 0))
M0在Ω外 M0在Г上 M0在Ω内
对于泊松方程Δu=F ,也有类似公式
就可以运用公式(3.7)了。
( u 1 1 u ) d ( u (1 ) 1 u ) ds 3 .9
\K rr
nr r n
在区域Ω\ K ε内Δu=0,Δ(1/r)=0,在球面Гε上由于
( 1 ) ( 1 ) 1 /r 2 1 / 2 u ( 1 ) d 1 Su d 4 u * S
球,u在球心处的值等于u在该球的边界球面上的积分平均值。用公式表示 可以写为
1
u(M0)4a2 a udS
证:把公式(3.11)运用到球心在M0点,半径为a的球面Гa上,得到
u(M 0)4 1 a(u n(1 r)1 r u n)dS
这里,在球面上
1 ra1 a; n(1 r)aa 1 2
和方程的一个著名实例来自牛顿万有引力。根据万有引力定律,位于(x0, y0,z0)处质量为M的质点对位于(x,y,z)处具有单位质量的质点的引力,其 大小等于M/r2,而作用方向沿着这两点的连线,指向(x0,y0,z0)点,其中r
偏微分方程
第二节定解条件与定解问题数学院朱郁森常见的定解条件有初始条件和边界条件。
初始条件:用来说明初始状态的条件边界条件:用来说明边界约束情况的条件湖南大学数学院朱郁森一、弦振动方程的定解条件2,tt xx u a u =0,0.x l t <<>1、初始条件0(),t u x ϕ==0(),t t u x ψ==2、边界条件第一类可控制端点即端点的位移按已知规律变化。
则1(),x ug t ==2().x lug t ==特别地固定端边界条件第二类在边界上给定力设弦两端所受的横向外力分别为1(),G t 2().G t 而弦两端所受张力的横向分量分别为(0,),(,).x x Tu t Tu l t −又因弦的两端在横向方向受力平衡,所以有1(0,)()0,x Tu t G t +=2(,)()0,x Tu l t G t −+=12(0,)(),(,)(),x x u t g t u l t g t ==则相应的边界条件为其中1212()()(),(),G t G t g t g t T T=−=湖南大学数学院朱郁森特别地(0,)0,(,)0,x x u t u l t ==自由端边界条件第三类在边界上作弹性联结张力的横向分量弹性恢复力0x =x l=(0,)x Tu t (,)x Tu l t −11[(0,)()]k u t t θ−−22[(,)()]k u l t t θ−−于是有11(0,)[(0,)()]0,x Tu t k u t t θ−−=22(,)[(,)()]0,x Tu l t k u l t t θ−−−=11(0,)(0,)(),x u t u t g t σ−=22(,)(,)(),x u l t u l t g t σ+=其中1212112212,,()()(),().k k T Tk t k t g t g t T Tσσθθ===−=则相应的边界条件为例1长为l 的弦两端固定,开始时把弦在距O点处拉起来,拉起的高度为h (适当地小),然后轻轻放开让它振动,试写出描述其振动的方程与定解条件。
数理方法资料1
课程介绍数学物理方法是物理类专业的必修课和重要基础课,也是一门公认的难道大的课程。
该课程通常在本科二年级开设,既会涉及到先行课高等数学和普通物理的内容,又与后续课程密切相关。
故这门课学习情况的好坏,将直接关系到后继课四大力学和专业课程的学习问题,也关系到学生分析问题解决问题的能力的提高问题。
如何将这门“难教、难学、难懂”的课变为“易教、易学、易懂”的课,一直是同行教师十分关注的问题。
本课程包括复变函数论、数学物理方程、特殊函数、非线性方程和积分方程共四篇的内容。
其中,第一篇复变函数论又含解析函数、解析函数积分、无穷级数、解析延拓·Г函数和留数理论五章;第二篇数理方程又包括:定解问题、行波法、分离变量法、积分变换法和格林函数法五章;第三篇特殊函数又包括勒让德多项式、贝塞耳函数、斯特姆-刘维本征值问题三章;而第四篇包括非线性方程、积分方程两章。
第一、二、三篇为传统数学物理方法课程所含内容,而第四篇是为了适应学科发展需要所引入的传统同类教材中没有的与前沿科学密切相关的新内容。
《数学物理方法》是物理系本科各专业学生必修的重要基础课,是在"高等数学"课程基础上的又一重要的基础数学课程,它将为进行下一步的专业课程学习提供基础的数学处理工具。
所以,本课程受到物理系学生和老师的重视。
对一个物理问题的处理,通常需要三个步骤:一、利用物理定律将物理问题翻译成数学问题;二、解该数学问题;三、将所得的数学结果翻译成物理,即讨论所得结果的物理意义。
因此,物理是以数学为语言的,而"数学物理方法"正是联系高等数学和物理专业课程的重要桥梁。
本课程的重要任务就是教会学生如何把各种物理问题翻译成数学的定解问题,并掌握求解定解问题的多种方法,如分离变数法、付里叶级数法、幂级数解法、积分变换法、保角变换法、格林函数法、电像法等等。
近十几年来,负责厦门大学物理系"数学物理方法"课程教学的教师共有三位(朱梓忠教授,张志鹏,李明哲副教授),他们都是中青年教师,均获得物理方面的理学博士学位。
微分方程的定解条件与特解求解
微分方程的定解条件与特解求解微分方程是数学中的重要概念,它研究函数与其导数(或者高阶导数)之间的关系。
在解微分方程时,我们需要确定定解条件,并寻找满足特定条件的特解。
一、定解条件的意义定解条件是指在解微分方程时给出的附加条件,它起到确定特解的作用。
通常,微分方程本身并不能唯一确定解,而是存在无穷多个解,因此我们需要定解条件来锁定解的形式。
定解条件的设置可以包括初始条件和边界条件两种情况。
1. 初始条件:当我们需要求解一阶微分方程时,通常需要给出一个初始条件。
初始条件是指在某一点或某一区间内给出函数与导数的初值。
通过这个初值,我们可以确定特解在指定区间内的形式。
举例来说,假设我们要求解一阶线性微分方程dy/dx = 2x,可以通过给出一个初始条件y(0) = 1来确定特解。
在这种情况下,我们可以通过积分得到特解y = x^2 + 1。
2. 边界条件:边界条件常在求解偏微分方程时使用。
它是指在某一边界上给出函数的值或导数的值。
通过边界条件,我们可以确定满足这些条件的特解。
边界条件也可以分为两类:第一类边界条件和第二类边界条件。
举例来说,假设我们要求解二阶波恩-奥伽尔德方程∂^2u/∂x^2 +∂^2u/∂y^2 = 0,在一个矩形区域上给定边界条件u(x,0) = f(x),u(x,b) = g(x),u(0,y) = h(y),u(a,y) = k(y)。
通过这些边界条件,我们可以确定在指定矩形区域内满足边界条件的特解。
二、特解的求解在确定了定解条件后,我们可以根据微分方程的类型和求解方法来寻找特解。
1. 可分离变量法:对于一些可分离变量的微分方程,我们可以通过将变量分离,分别对两边进行积分,最后得到特解。
举例来说,对于可分离变量的一阶微分方程dy/dx = f(x)g(y),我们可以将方程变形为dy/g(y) = f(x)dx,然后对两边积分求解。
2. 线性微分方程:对于一阶线性微分方程和高阶线性常系数微分方程,我们可以使用特殊的求解方法,如常数变易法、Laplace 变换等,来得到特解。
数学物理方程学习指导书第3章经典方程建立及定解条件
第3章经典方程的成立和定解条件在议论数学物理方程的解法从前,我们第一要弄清楚数学物理方程所研究的问题应当如何提,为此,我们从双方面来议论,一方面要将一个详细的物理、力学等自然科学识题化为数学识题,即成立描绘某种物理过程的微分方程——数学物理方程,称此方程为泛定方程;另一方面要把一个特定的物理现象自己所拥有的详细条件用数学形式表达出来,即列出相应的初始条件和界限条件,二者合称为定解条件.定解条件提出详细的物理问题,泛定方程提供解决问题的依照,作为一个整体称之为定解问题.3.1 经典方程的成立在本节,我们将经过几个不一样的物理模型推导出数学物理方程中三种典型的方程,这些方程组成我们的主要研究对象.经典方程的导出步骤:(1)确立出所要研究的是哪一个物理量u;(2)用数学的“微元法”从所研究的系统中切割出一小部分,再依据相应的物理(力学)规律剖析周边部分和这个小部分间的作用(抓住主要作用,略去次要要素,即高等数学中的抓主部,略去高阶无量小),这类互相作用在一个短的时间间隔是如何影响物理量u3)把这类关系用数学算式(方程)表达出来,经化简整理就是所需求的数学物理方程.例1弦的振动弦的振动问题,固然是一个古典问题,但对于初学者仍旧拥有必定的启迪性.设有一根平均柔嫩的细弦,均衡时沿直线拉紧,并且除受不随时间而变的张力作用及弦自己的重力外,不受外力影响,下边研究弦的细小横向振动,即假定所有运动出此刻一个平面上,并且弦上的点沿垂直于x轴的方向运动(图3-1).图3-1设弦上拥有横坐标为x的点,在时辰t时的地点为M,位移NM记作u.明显,在振动过程中位移u是变量x与t的函数u(x,t).此刻来成立位移u知足的方程.我们把弦上点的运动先看作小弧段的运动,而后再考虑小弧段趋于零的极限状况.在弦上任取一弧段MM,其长为ds,设是弦的线密度,弧段MM两头所受的张力记作T,T,此刻考虑孤段MM在t 时辰的受力状况,用牛顿运动定律,作用于弧段上任一方向上的力的总和等于这段孤的质量乘以该方向上的加快度.在x 轴方向弧段受力的总和为TcosTcos ,因为弦只作横向振动,所以TcosTcos0.()假如弦的振动很小,并且在振动过程中弦上的切线倾角也很小,即0,0,则由24cos14!2!可知,当为无量小量时,cos 与1的差量是的高阶无量小量,能够略去不计,所以当0, 0时cos1,cos 1代入(3.1)式,即可近似获得TT .在u 方向弧段受力的总和为Tsin Tsingds ,此中是单位弧段的质量,gds 是弧段MM 的重力.又因当0, 0时 sin1 tg tgu(x,t),tg 2xsin ' tg 'u(xdx,t),x2ds 1u(x,t)dxdx,x2且小弧段在时辰 t 沿u 方向运动的加快度为u(x,t),小弧段的质量为t 2TsinTsin2u(x,t)gdsds2t或gds ,所以()Tu(xdx,t)u(x,t)gds2u(x,t)dx, x xt 2上式左侧方括号内的部分是因为x 产生dx 的变化而惹起的u(x,t)的改变量,可用微x分取代,即u(xdx,t)u(x,t)xu(x,t)dx2u(x,t)dx, xxxx 2于是T2u(x,t) gdx2u(x,t)dxx 2x 2或T2u(x,t) 2u(x,t) g.x2t22一般说来,张力较大时弧振动速度变化很快,即u要比g 大得多,所以又能够把g 略去.t 2经过这样逐渐略去一些次要的量,抓住主要的量,最后得出 u(x,t)应近似地知足方程2ua 22u()t 2x 2这里的a2T.式(3.3)称为一维颠簸方程.假如在振动过程中,弦上此外还遇到一个与弦的振动方向平行的外力,且假定单位长 度所受外力的 F(x,t),明显,在这里(3.1)及(3.2)分别为TcosTcos 0,FdsTsinTsin2u gdsds2.t利用上边的推导方法并略去弦自己的重量,可得弦的逼迫振动方程为2u22uf(x,t),()’t2x2此中f(x,t)1F(x,t).方程(3.3)与(3.3)’的差异在于(3.3)’的右端多了一个与未知函数u 没关的项f(x,t),这个项称为自由项,包括有非零自由项的方程称为非齐次方程,自由项恒等于零的方程称为齐次方程.(3.3)为齐次一维颠簸方程, (3.3)’为非齐次一维颠簸方程 .例2 传输线方程对于直流电或低频的沟通电,电路的基尔霍夫定律指出同一支路中电流相等 .但对于较高频次的电流(指频次还没有高到能明显地幅射电磁波的状况) ,电路中导线的自感和电容的效应不行忽视,因此同一支路中电流未必相等.现考虑一来一往的高频传输线,它被看作拥有散布参数的导体(图3-2).在拥有散布参数的导体中,电流经过的状况,能够用电流强度与电压v来描绘,此处i与v都是x,t的函数,记作i(x,t)与v(x,t),以R,L,C,G分别表示以下参数:R——每一回路单位的趾串连电阻,L——每一回路单位的串连电感,C——每单位长度的分路电容,G——每单位长度的分路电导.依据基尔霍夫第二定律,在长度为x的传输线中,电压降应等于电动势之和,即v(v v)R xii Lx.t而vx, vx故上式可写成v Ri L i.x T此外,由基尔霍夫第必定律,流入节点x的电流应等于流出该节点的电流,即i(i i)C x iGxv, t或i C vGv.x t将方程(3.4)与(3.5)归并,即得i与v应近似地知足以下方程组i C v Gv0,x tv iRi0.Ltx ()(((((((()为了确立函数i与v,将方程(3.5)对x微分,同时在方程(3.4)两头乘以C后再对t微分,并把两个结果相减,即得2i G v LC2i RC i x2x t20,t将(3.4)中的v代入上式,得x2i2i(RC i()x2LG2GL)GRi,t t这就是电流i近似知足的微分方程,采纳近似的方法从()与()中消去i可得电压v近似知足的方程2v LG2v(RC GL)v GRv,()x2t2t方程(3.6)或(3.7)称为传输线方程.依据不一样的详细状况,对参数R,L,C,G作不一样的假定,就能够获得传输线方程的各种特别形式.比如,在高频传输的状况下,电导与电阻所产生的效应能够忽视不计,也就是说可令G R0,此时方程(3.6)与(3.7)可简化为2i12ix2LC t2,2v12vt2LC t2.这两个方程称为高频传输线方程.若令a21这两个方程与(3.3)完整同样.因而可知,同一个方程能够用来描绘不一样的LC物理现象,一维颠簸方程不过颠簸方程中最简单的状况,在流体力学、声学及电磁场理论中,还要研究高维的颠簸方程.例3电磁场方程从物理学我们知道,电磁场的特征能够用电场强度E与磁场强度H以及电感觉强度D 与磁感觉强度B来描绘,联系这些量的麦克斯韦(Maxwell)方程组为rotH J D(),trotE B,(3.9) tdivB 0,()divD.(3.11)此中J为传导电流的体密度,为电荷的体密度.这组方程还一定与下述场的物质方程D eE,()B H,()J E,()相联立,此中是介质的介电常数,是导磁率,为导电率,我们假定介质是平均并且是各向同性的,此时,,均为常数.方程(3.8)与(3.9)都同时包括有E与H,从中消去一个变量,就能够获得对于另一个变量的微分方程,比如先消去H,在(3,8)式两头求旋度并利用(3.12)与()得rotrotH rotE rotE,t将(3.9)与(3.13)代入得rot rotH2H Ht2,t而rotrotH grad div2H,且divH1divB0,所以最后获得H所知足的方程为2H2HH t2t;同理,若消去H即得E所知足的方程2E2E E.t2t假如介质不导电(0),则上边两个方程简化为2H12H,()t22E12E,()2t(3.15)与(3.16)称为三维颠簸方程.若将三维颠簸方程以标量函数的形式表示出来,则可写成2ua 2ua22u2u2u(t2x2y2z2,)此中a21,u是E或H的随意一个重量.从方程(3.11)与(3.12)还能够推导出静电场的电位所知足的微分方程.事实上,以(3.12)代入(3.11)得divD div E divE,而电场强度E与电位u之间存在关系E gradu,所以可得div(gradu)或2u,()这个非齐次方程称为泊松(Poisson)方程.假如静电场是无源的,即0,则(3.18)变为2u 0,()这个方程称为拉普拉斯(Laplace)方程.例4热传导方程一块热的物体,假如体内每一点的温度不全同样,则在温度较高的点处的热量就要向温度较低的点处流动,这类现象就是热传导.在工程技术上有很多传热问题都要归纳为求物体内温度的散布,此刻我们来推导传热过程中温度所知足的微分方程,与上例近似,我们不是先议论一点处的温度,而应当先考虑一个地区的温度.为此,在物体中任取一闭曲面S,它所包围的地区记作V(图3-3).假定在时辰t,地区V内点M(x,y,z)处的温度为u(x,y,z,t),n为曲面元素S的外法向(从V内指向V外).图3-3由传热学可知,在t,t t时间内,从S流入地区V的热量与时间t,面积S,以及沿曲面的法线方向的温度变化率三者的乘积成正比,即Q kuk(gradu)n St Stnk(gradu)S t.此中k称为物体的热传导系数,当物体为平均导热体时,k为常数.于是,从时辰t1到时辰t2,经过曲面S流入地区V的所有热量为Q1t2dSdt.kgradut1S流入的热量使V内温度发生了变化,在△t时间内地区V内各点温度从u(x,y,z,t)变化到u(x,y,z,t+△t),则在△t内V内温度高升所需要的热量为c[u(x,y,z,t t)u(x,y,z,t)]dVVu(x,y,z,t)ct tdV.V进而从时辰t1到时辰t2,因为温度高升所汲取的热量为t2uQ2cdV dt,t1tV此中c为物体的比热,为物体的密度,对平均物体来说,它们都是常数.因为热量守恒,流入的热量应等于物体温度高升所需汲取的热量,即t2t2ukgradudSdt c dVdt.t1t1tS V此式左端的由面积分中S是关闭曲面,能够利用奥-高公式将它化为三重积分,即kgradudS kdiv(gradu)dV k2udV,S V V 所以有t22udVdt t2udVdt.()k ct1t1tV V因为时间间隔t,tt及地区V都是随意取的,并且被积函数是连续的,所以(3.20)式左右恒等的条件是它们的被积函数恒等,即u a22ua22u2u2u ,()tx 2y 2z 2此中a 2k .方程(3.21)称为三维热传导方程.c若物体内有热源,其强度为F(x,y,z),则相应的热传导方程为ua 22u2u2uf(x,y,z,t),tx 2y 2z 2此中fF .c作为特例,假如所考虑的物体是一根细杆 (或一块薄板),或许即便不是细杆(或薄板)而此中的温度u 只与x,t (或x,y,t )相关,则方程(3.21)就变为一维热传导方程2u a 2u2;tx或二维热传导方程u a 22u2utx 22.y假如我们考虑稳恒温度场,即在热传导方程中物体的温度趋于某种均衡状态,这时温度u 已与时间t 没关,所以u 0,此时方程(3.21)就变为拉普拉斯方程(3.19).因而可知稳恒t温度场内的温度 u 也知足拉普拉斯方程 .在研究气体或液体的扩散过程时,若扩散系数是常数,则所得的扩散方程与热传导方程完整同样.3.2 初始条件与界限条件上边所议论的是如何将过程的物理规律用数学式子表达出来.除此之外,我们还需要把 详细条件也用数学形式表达出来, 这是因为任何一个详细的物理现象都是处在特定条件之下 的.比如弦振动问题,上节所推导出来的方程是全部柔嫩平均的弦作细小横向振动的共同规 律,在推导这个方程时没有考虑到弦在初始时辰物状态以及弦所受的拘束状况.假如我们不 是平常地研究弦的振动,必然就要考虑到弦所拥有的特定条件.因为任何一个详细振动现象 老是在某时辰的振动状态和此时辰从前的状态相关,进而就与初始时辰的状态相关.此外, 弦的两头所受的拘束也会影响弦的振动,端点所处的物理条件不一样会产生不一样的影响,因此弦的振动也不一样 .所以对弦振动问题来说,除了成立振动方程之外,还需列出它的详细条件对热传导方程,拉普拉斯方程也是这样.提出的条件应当恰好能够说明某一详细物理现象的初始状态以及界限上的拘束状况,.用以说明系统的初始状态的条件称为初始条件.用以说明界限上的拘束状况的条件称为界限条件.下边详细说明初始条件和界限条件的表达形式,先谈初始条件,对于弦振动问题来说,初始条件就是弦在开始时辰的位移及速度,若以(x),(x)分别表示初位移和初速度,则初始条件能够表达为u t0(x)u()t(x) t0而对热传导方程来说,初始条件是指在开始时辰物体温度的散布状况,若以(M)表示t 0时物体内任一点M处的温度,则热传导方程的初始条件就是u(M,t)t0(M).(3.23)泊松方程与拉普拉斯方程都是描绘稳恒状态的,与初始状态无头,所以不提初始条件.再谈界限条件.假如界限条件直接给出了未知函数u(M,t)在界限S上的值,以s表示界限S上的动点,则这样的界限条件可表为u(M,t)MS(s,t),或简写成u S.()这类界限条件称为第一类界限条件,此中(s,t)表示在界限S上给定的已知函数.比如,在杆的导热问题中,若在端点x a处温度保持为常数u0,这时在端点x a的界限条件为u xa u0.若在端点x a处温度随时间的变化规律f(t)为已知,在这点的界限条件为uxaf(t).又如在弦振动问题中,若弦的某端点x a是固定的,则在该点的位移为零,即uxa0.以上都是第一类界限条件的例子.总之,第一类界限条件直接给出了未知函数u(M,t)在边界S上的值但在很多状况下,界限上的物理条件其实不可以用第一类界限条件来描绘.比如,在杆的导热问题中,若杆的一端xa绝热,那么绝热这个条件就不可以直接给出杆的端点处的温度变化.因为从杆外经过杆端流入杆内的热量为kuSt(此中t为时间间隔,S为杆nxa的截面积,n为杆在端点x a处的外法向,若x a是杆的左端点,n的正向与x轴正向相反,则u u,若x a是杆的右端点,则n的正向与x轴正向同样,则uu), n x n x所以绝热这个条件能够表达为k uSt0, nxa即u0.nxa若在单位时间内经过x a端单位面积流入杆内的热量是t的已知函数f(t),则这个条件可表示为k u f(t).nxa弦在对于弦振动问题来说,假如弦在x a处沿位移方向的张力(参照x a处是自由的,即沿着位移方向不受外力,中例1的推导)为则此时Tu0,nx a即u0.xx a总之,有时界限条件一定表达为u()(s,t).n S的形式,此中u.表示函数沿界限外法向的变化率,这类界限条件称为第二类界限条件n除了上述两类界限条件外,有时还会碰到其余形式的界限条件.比如在杆的导热热问题中,若杆在某个端点x a自由冷却,那么自由冷却这个条件就是K uH(u1u xa), nxa(此中u1为四周介质的温度)即uu1h kuh.n xa H这是因为在单位时间内从四周介质传到杆的x a端单位面积上的热量与介质和杆端的温度差成正比,而在单位时间内经过u xa端单位面积传向杆内的热量与n考取例4).成正比(参xa对于有界杆(0 x l),若两头都是自由冷却,则在x l处,上述条件可表为uu h u1;nx i在x0处,这个条件可表为uu h u1.nx 0一般地,这类界限条件的形式为u(s,t).()uhn s这样的界限条件称为第三类界限条件.无论哪一种界限条件,假如它的数学表达式中的右端自由项恒为零,则这类界限条件称为齐次的.定解问题的提法前方两节我们推导了三种不一样种类的偏微分方程并议论了与它们相应的初始条件与边界条件的表达方式.因为这些方程中出现的未知函数的偏导数的最高阶都是二阶,并且它们对于未知函数及其各阶偏导数来说都是线性的,所以这类方程称为二阶线性偏微分方程*)1 .在工程技术上二介线性偏微分方程碰到最多.假如一个函数拥有所需要的各阶连续编导数,并且代入某偏微方程中能使该方程变为恒等式,则此函数称为该方程的解.因为每一个物理过程都处在特定的条件之下,所以我们的任务是要求出合适初始条件和界限条件的解.初始条件和界限条件都称为定解条件.求一个偏微方程知足定解条件的解的问题称为定解问题.只有初始条件,没有界限条件的定解问题称为始值问题(或柯西问题);而没有初始条件,只有界限条件的定解问题称为边值问题;既有初始条件也有界限条件的定解问题称为混合问题.一个定解问题提得能否切合实质状况,自然一定靠实质来证明,但是从数学角度来看,能够从三方面加以查验. 1)解的存在性,即看所结出来的定解问题能否有解;2)解的独一性,即看能否只有一个解;3)解的稳固性,即看当定解条件有细小改动时,解能否相应地只有细小的改动,假如*)二阶线性编微分方程能够按它们的二阶导数的系数的代数性质进行分类,在§中所推导的颠簸方程属于双曲型,拉普拉斯(或泊松)方程属于椭圆型,热传导方程属于抛物型,对于二阶线性偏微分方程的分类方法,读者可参阅复旦大学数学系编《数学物理方程》(第二版,上海科学技术第一版社第一版)第一章§5.确立这样,此解便称定的,否所得的解就无用价 .因定解条件往常是利用方法得的,因此所获得的果, 有必定的差,假如所以而解的很大, 那么种解然不可以切合客的要求 .假如一个定解存在独一且定的解,此称适定的,在此后中我把着眼点放在定解的解法上, 而极少它的适定性, 是因定解的适定 性常常十分困,而本所的定解都是古典的,它的适定性都是了然的 .习题一1. l 的平均杆,面,一端温度零,另一端有恒定流 q 入(即位内通位截面流入的量q ),杆的初始温度散布是x(ix),写出相的定解.22. l 的弦两头固定,开始在xc 遇到冲量的作用,写出相的定解.有一平均杆,只需杆中任一小段有向位移或速度,必致段的或伸,种仲开去,就有波沿着杆播,推杆的振方程 .4.一平均杆原l ,一端固定,另一端沿杆的方向被拉e 而静止,忽然松手任其振,成立振方程与定解条件.若F(z),G(z)是随意二可微函数,uF(xat)G(xat)足方程2ua2 2ut 2x 26.若函数u 1(x,t),u 2(x,t), ,u n (x,t),⋯均性次方程2up2uq u r ux 2t 2xt的解,此中p,q,r 不过x,t 的函数,并且数uu k (x,t)收,并x,t 能够行两次k 1逐微分,求数uuk(x,t)足原方程(个叫做性次方程的叠加原理).k1。
微分方程定解问题解析
微分方程定解问题解析微分方程是数学中的一种重要工具,用于描述自然界中的很多现象和规律。
在微分方程中,定解问题是一个常见的研究对象,它要求在给定的边界条件下,找到满足微分方程的特解。
本文将对微分方程定解问题进行详细解析,并讨论求解定解问题的一些常见方法和技巧。
1.微分方程的类型微分方程可以分为常微分方程和偏微分方程两大类。
常微分方程中,未知函数只依赖于一个变量,而偏微分方程中,未知函数依赖于多个变量。
2.定解问题的定义定解问题是给定一个微分方程和一组边界条件,要求找到满足这些条件的特解。
边界条件可以是函数在某个点上的给定值,或者是函数的导数在某个点上的给定值。
3.常见的定解问题类型常见的定解问题类型包括:3.1. 初值问题:在微分方程中给定函数在某点上的值,求解满足该条件的特解。
3.2. 边值问题:在微分方程中给定函数在多个点上的值,求解满足这些条件的特解。
3.3. 自由边值问题:在微分方程中给定函数在某些点上的值,以及函数的导数在另外一些点上的值,求解满足这些条件的特解。
4.求解定解问题的方法求解定解问题的方法有很多种,下面介绍几种常用的方法。
4.1. 分离变量法:对包含未知函数及其导数的微分方程两边进行适当的变换,将未知函数和其导数分离到方程的两边,最后通过积分得到解。
4.2. 线性微分方程方法:对于一阶线性微分方程,可以通过乘以适当的积分因子,将其转化为可积的形式,并求解。
4.3. 变量替换法:通过对未知函数和自变量的合适替换,将原微分方程转化为更简单的形式,再进行求解。
4.4. 数值方法:对于复杂的微分方程,常常无法通过解析方法求解,此时可以利用数值计算方法,如欧拉法、龙格-库塔法等,来近似求解微分方程。
5.案例分析为了更好地理解微分方程定解问题的解析过程,考虑一个具体的例子。
假设有一个一阶常微分方程:dy/dx = x,边界条件为y(0) = 1。
首先,我们可以使用分离变量法,将方程变形为 dy = xdx。
有限元分析第3章弹性力学基础知识2
有限元分析Finite Element Analysis李建宇天津科技大学内容Chp.3 弹性力学基础知识2:补充内容1. 边界条件2. 弹性力学中的能量表示3. 弹性力学边值问题要求理解:弹性力学边界条件的提法了解:弹性力学边值问题的内涵掌握:弹性力学中的能量表述课后作业继续检索、阅读弹性力学基本文献有限元分析——弹性力学补充内容弹性力学的“三个基本”1、基本假定2、基本变量3、基本方程弹性力学的基本假定五个基本假定:1、连续性(Continuity)2、线弹性(Linear elastic)3、均匀性(Homogeneity)4、各向同性(Isotropy)5、小变形假定(Small deformation)弹性力学基本变量变形体的描述:在外部力和约束作用下的变形体位移的描述形状改变的描述力的描述材料的描述弹性力学基本变量材料参数位移物体变形后的位置物体的变形程度物体的受力状态物体的材料特性应变应力描述变形体的三类变量:dyxyzuvwdzdx(x,y,z)S uS pΩT位移(displacement)是指位置的移动。
它在x, y 和z轴上的投影用u, v和w。
dyxyzuvwdzdx(x,y,z)S uS pΩT微元体( Representative volume)应力张量(stress tensor )x xy xz yx y yz zx zy z στττστττσ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦应变张量(strain tensor )dyuvwdzdx(x,y,z )xu x d d =εd xxσxσuu +d uτβαγ=α+βx xy xz yx y yz zx zy z εγγγεγγγε⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦弹性力学的基本方程应力应变位移几何方程物理方程平衡方程弹性力学三大方程上节回顾上节回顾弹性力学基本方程x y z xy yz zx u x v y w z u v y x v w z y w u x zεεεγγγ∂=∂∂=∂∂=∂∂∂=+∂∂∂∂=+∂∂∂∂=+∂∂几何方程00000000x y z xy yz zx x y u z v w y x z y zx εεεγγγ∂⎡⎤⎢⎥∂⎢⎥∂⎢⎥⎧⎫⎢⎥∂⎪⎪⎢⎥∂⎪⎪⎢⎥⎧⎫⎪⎪⎢⎥∂⎪⎪⎪⎪=⎢⎥⎨⎬⎨⎬∂∂⎢⎥⎪⎪⎪⎪⎩⎭⎢⎥∂∂⎪⎪⎢⎥⎪⎪∂∂⎢⎥⎪⎪⎩⎭⎢⎥∂∂⎢⎥∂∂⎢⎥⎢⎥∂∂⎣⎦Luε=L :微分算子上节回顾弹性力学基本方程000yx x zx x xy y zyy yz xz z z b x y z b x y zb x y zτσττστττσ∂∂∂+++=∂∂∂∂∂∂+++=∂∂∂∂∂∂+++=∂∂∂平衡方程000000000x y x z y yx zzy xz x y z b b y x z b zyx σσστττ⎧⎫⎡⎤∂∂∂⎪⎪⎢⎥∂∂∂⎪⎪⎢⎥⎧⎫⎪⎪⎢⎥∂∂∂⎪⎪⎪⎪+=⎨⎬⎨⎬⎢⎥∂∂∂⎪⎪⎪⎪⎢⎥⎩⎭⎪⎪⎢⎥∂∂∂⎪⎪⎢⎥∂∂∂⎪⎪⎣⎦⎩⎭A :微分算子A b σ+=TA L=上节回顾弹性力学基本方程物理方程()()()111x x y z y y z x z z x y xyxy yzyz zxzx E EE GGGεσνσσεσνσσεσνσστγτγτγ⎡⎤=-+⎣⎦⎡⎤=-+⎣⎦⎡⎤=-+⎣⎦===()()()()()()1000111000111000111121120000021120000021120021x x y y z z xy xy yz yz zx zx E ννννννσεννσεννννσενντγννντγντγννν⎡⎤⎢⎥--⎢⎥⎢⎥⎧⎫⎧⎫⎢⎥--⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥---⎪⎪⎪⎪⎢⎥=⎨⎬⎨⎬-+-⎢⎥⎪⎪⎪⎪-⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪-⎢⎥⎪⎪⎪⎪⎩⎭⎩⎭-⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦D :弹性矩阵D σε=对称上节回顾弹性力学基本方程dyxyzuvwdzdx(x,y,z )S uS pΩT0Lu A b D σεσε+===弹性力学三大方程in Ω边界上呢?一、弹性力学的边界条件(Boundary condition)dyxyzuvwdzdx(x,y,z)S uS pΩT两类边界条件:S p:力的边界S u:位移边界一、弹性力学的边界条件1、位移边界条件边界上已知位移时,应建立物体边界上点的位移与给定位移相等的条件dyxyzuvwdzdx(x,y,z )S uS pΩTuu u v v on S w w =⎧⎪=⎨⎪=⎩一、弹性力学的边界条件以二维问题为例2、力的边界条件边界上给定面力时,则物体边界上的应力应满足与面力相平衡的力的平衡条件∑X=注意ds为边界斜边的长度,边界外法线n的方向余弦l=dy/ds,m=dx/ds有:一、弹性力学的边界条件以二维问题为例Y =∑同理:M =∑一、弹性力学的边界条件以二维问题为例二维情形的力的边界条件00x x x y y yx y xy p n n n n p σστ⎧⎫⎧⎫⎡⎤⎪⎪⎪⎪=⎨⎬⎨⎬⎢⎥⎪⎪⎣⎦⎩⎭⎪⎪⎩⎭其中:n x =l ;n y =m一、弹性力学的边界条件扩展到三维情形的力的边界条件00000000x y xy z x z y x z y xy zyx z yz zx n n n p n n n p n n n p σσστττ⎧⎫⎪⎪⎪⎪⎡⎤⎧⎫⎪⎪⎢⎥⎪⎪⎪⎪=⎨⎬⎨⎬⎢⎥⎪⎪⎪⎪⎢⎥⎩⎭⎣⎦⎪⎪⎪⎪⎪⎪⎩⎭n ppon S σ=二、弹性力学中的能量表述功能原理的两个基本概念:功(work):外力功;能量(energy):如动能、势能、热能等弹性问题中的功和能量:外力功:施加外力在可能位移上所做的功应变能:变形体由于变形而储存的能量二、弹性力学中的能量表述1. 弹性力学中的外力功(work by force )弹性力学中的外力包括:面力和体力,故外力功包括:Part 1:面力p i 在对应位移上u i 上的功(on S p )Part 2:体力b i 在对应位移上u i 上的功(in Ω)外力总功为:()()d d pxyzxyzS W p u p v p w S b u b v b w Ω=+++++Ω⎰⎰二、弹性力学中的能量表述2. 弹性力学中的应变能(strain energy)设加载缓慢,系统功能可忽略,同时略去其它能量(如热能等)的消耗,则所做的功全部以应变能的形式储存于内部。
级数求和常用方法
级数求和的常用方法摘要级数理论及应用无论对数学学科本身还是在其他科学技术及理论的发展中都有极为重要的影响和作用,而级数求和是级数理论及应用的主要内容之一.由于级数求和的方法比较多,技巧性很强,一般很难掌握其规律,是学习的一个难点,因此掌握一些常用的级数求和方法就显得尤为重要.通过例题,分别针对常用的数项级数和函数项级数求和进行分析和讨论,试图通过对例题的分析和解决,展示级数求和的常用方法和思想,进而探索级数求和的规律,理解级数理论即合理应用,打下良好的基础,为学习者起到抛砖引玉的方法.关键词:数项级数;函数项级数;求和;常用方法Summation of series method in common useAbstractProgression theory and application still are having the most important effect and function on the development of science and technology and theory disregarding logarithmic discipline per se, but summation of series is one of progression theory and applicative main content. Method of summation of series is comparatively many, the dexterity is very strong, in general very difficult to have its law in hand, be a difficult point studying, have some summation of series in common use method in hand therefore appearing especially important right away. Carry out analysis and discuss that by the fact that the example , difference are aimed at several progression and function item summation of series in common use, try to pass the analysis checking an example and solve, show summation of series method and thought in common use , probe and then the summation of series law , understand that progression theory is that reasonableness applies , lays down fine basis, in order the learner gets the method arriving at a modest spur to induce someone to come forward with his valuable contributions.Key words: Count progression; function series; Sue for peace; Method in common use目录引言................................................ 错误!未定义书签。
1.3 定解条件
,即单位长度上的形变
l 则 u ( x,0) x ——x点处的形变 l
t=0,l点处的力平衡方程
l F F1 Y S l
l F l YS
F1
F
F u ( x, 0) x YS
l
∴初条件
F u ( x, 0) x YS ut ( x, 0) 0
方程导出过程小结: 1)建立合适的坐标系
2)确定描述系统状态的物理量—未知函数 3)作出合理的简化假设 4)找出系统所遵从的主要物理规律
5)利用小块分析法导出方程
各类方程均是对一种连续分布的物理场的逐点、
瞬时的精确描述。也就是说,从空间上看,方程 所反映的是系统中除边界点外所有内部点的运动 规律。从时间上看,方程所反映的是系统在t>0 以后各个时刻的运动规律。
作业
1、一根重量不可忽略的均匀弹性杆垂直放置,上端固定在 自由下落的电梯天花板上,设此电梯速度达到时突然静止, 写出定解问题。引力场忽略。
2、两端固定,长为l的均匀弦,在阻力与速度成比例的介 质中作微小横振动,求定解问题。 3、长为l的均匀杆,侧面绝热,一端温度为零,另一端有 恒定热流密度q流入,杆的初始温度分布函数是 x l x , 2 写出相应的定解问题。 4、长为l的水平杆以常速度v顺水平轴方向运动,若杆的中 点处突然被钳住,写出相应的定解问题。
结论:第二类齐次边条件在杆纵振动中的物理 意义就是自由端不受力。
【例2】侧面绝热细杆热传导问题,求x=0端边条件
已知:x=0端 1)有热流密度q流入 2)绝热 解:1)有热流q流入的情况: 如图取小块(含端点x=0) 左端:q 流入(所给边条件) 右端:q1 流出 q
【数理方程】92偏微分方程的定解问题
即
( u n
u)S
u1
S
其中 k1 / k
因此,边界条件可以写成:
(u n
u)S
g( x,
y, z,t)
其中u 表示u沿边界上的单位外法线方向n的方向
n
导数,g( x, y, z, t)表示点(x, y, z) 上的已知函数,
k1 / k为已知正数.
例
杆的热传导问题,x =L 的一端处在一种自由
稳定的解有实用价值,否则所得的解就无使用价值。
注意
1)定解条件通常总是利用实验的方法获得的, 因此所得的结果总是有一定的误差。 2)当所得的解变动很大时,这种解显然是 不符合客观实际要求的。 3)如果一个定解问题存在唯一且稳定的解, 则此问题称为适定的。 4)讨论定解问题的适定性往往十分困难, 而我们所讨论的定解问题,它们的适定性都 是经过证明了的。在以后的讨论中,我们应 把着眼点放在讨论定解问题的解法上。
面流入的热量为q),杆的初始温度分布是 x(l x),
试写出相应的定解问题。
2
答案
热传导温度的微分方程为:
u t
a2
2u x 2
这 里a2 k .
c
x(l x) 初始条件: u t0 2
边界条件: u x0 0
定解问题为:
u
k x
xl
q
u t
a2
2u x 2
x(l x)
u t0
答案
弦振动的微分方程为:
2u t 2
a2
2u x 2
初始条件:
e u t0 l x
u t t0 0
边界条件:
u x0 0
u x
xl
0
定解问题为:
数学物理方程学习指导书第3章经典方程的建立和定解条件
第3章经典方程的建立和定解条件在讨论数学物理方程的解法以前,我们首先要弄清楚数学物理方程所研究的问题应该怎样提,为此,我们从两方面来讨论,一方面要将一个具体的物理、力学等自然科学问题化为数学问题,即建立描述某种物理过程的微分方程一一数学物理方程,称此方程为泛定方程;另一方面要把一个特定的物理现象本身所具有的具体条件用数学形式表达出来,即列出相应的初始条件和边界条件,两者合称为定解条件•定解条件提出具体的物理问题,泛定方程提供解决问题的依据,作为一个整体称之为定解问题3. 1经典方程的建立在本节,我们将通过几个不同的物理模型推导出数学物理方程中三种典型的方程,这些方程构成我们的主要研究对象•经典方程的导出步骤:(1)确定出所要研究的是哪一个物理量u ;(2)用数学的“微元法”从所研究的系统中分割出一小部分,再根据相应的物理(力学)规律分析邻近部分和这个小部分间的作用(抓住主要作用,略去次要因素,即高等数学中的抓主部,略去高阶无穷小),这种相互作用在一个短的时间间隔是如何影响物理量u(3)把这种关系用数学算式(方程)表达出来,经化简整理就是所需求的数学物理方程•例1弦的振动弦的振动问题,虽然是一个古典问题,但对于初学者仍然具有一定的启发性设有一根均匀柔软的细弦,平衡时沿直线拉紧,而且除受不随时间而变的张力作用及弦本身的重力外,不受外力影响,下面研究弦的微小横向振动,即假定全部运动出现在一个平面上,而且弦上的点沿垂直于x轴的方向运动(图3-1).图3-1设弦上具有横坐标为X的点,在时刻t时的位置为M,位移NM记作u .显然,在振动过程中位移u 是变量X与t的函数u(x,t) •现在来建立位移u满足的方程我们把弦上点的运动先看作小弧段的运动,然后再考虑小弧段趋于零的极限情况•在弦上任取一弧段MM •,其长为ds,设是弦的线密度,弧段MM •两端所受的张力记作T , T ,现在考虑孤段MM在t时刻的受力情况,用牛顿运动定律,作用于弧段上任一方向上的力的总和等于这段孤的质量乘以该方向上的加速度•在x轴方向弧段受力的总和为_T cos T cos,由于弦只作横向振动,所以T cos - T cos = 0 .( 3.1)如果弦的振动很小,并且在振动过程中弦上的切线倾角也很小,即:-:-0^ 0,则由2 4“ a a _ _cos -1 -2! 4!可知,当:为无穷小量时,cos与1的差量是:的高阶无穷小量,可以略去不计,因此当在u方向弧段受力的总和为-T sin驀"T Sin:「:gds,其中「是单位弧段的质量,-gds是弧段MM •的重力又因当:一0,厂0时上式左边方括号内的部分是由于x产生dx的变化而引起的u(x,t)的改变量,可用微代入(3.1)式,便可近似得到COS:1,cos: 1T T .tg:sin:J i +tg2«tg,皿),ex=tg:::u(x dx,t):u(x,t)lx dx.且小弧段在时刻t沿u方向运动的加速度为2:u(x,t)-t2小弧段的质量为'gds,所以-T sin 二"T sin : 一:gds」ds::2u(x, t):t2(3.2)T/^-晋」gds -:2u(x,t)吐2dx,:x分代替,即:x£u(x+dx,t) £u(x,t) ◎「初匕,灯[故 $u(x,t )d x—'ex 1 —x,2 2T j u(x,t) j u(x,t)2 ------- --- --------- + 、x 2:xT”g dx 「'5.x 2t 2 g. 般说来,张力较大时弧振动速度变化很快,即u 要比g 大得多,所以又可以把 g 略去•:t经过这样逐步略去一些次要的量,抓住主要的量, 最后得出u( x, t)应近似地满足方程-2:U 2 a 2 一 t x■2u (3.3)T这里的a.式(3.3)称为一维波动方程.如果在振动过程中,弦上另外还受到一个与弦的振动方向平行的外力,且假定单位长 度所受外力的F(x,t),显然,在这里(3.1)及(3.2)分别为T cos ; " -T cos :二 0, o2 u Fds-Tsin 二■ T sin : -,gds …ds —— ct利用上面的推导方法并略去弦本身的重量,可得弦的强迫振动方程为-2 -.2:U 2: U 亨=口 —-1: Xf(x,t),(3.3)'1其中 f(x,t) F(x,t).方程(3.3)与(3.3)'的差别在于(3.3)'的右端多了一个与未知函数 U 无关的项f(x,t),这个项称为自由项,包含有非零自由项的方程称为非齐次方程,自由项恒等于零的方程称为齐次方程.(3.3)为齐次一维波动方程,(3.3)'为非齐次一维波动方程. 例2传输线方程对于直流电或低频的交流电,电路的基尔霍夫定律指出同一支路中电流相等 .但对于较高频率的电流(指频率还没有高到能显著地幅射电磁波的情况),电路中导线的自感和电容的效应不可忽略,因而同一支路中电流未必相等现考虑一来一往的高频传输线,它被当作具有分布参数的导体(图3-2).在具有分布参数的导体中,电流通过的情况,可以用与电压v来描述,此处i与v都是x,t的函数,记作i(x,t)与v(x,t),以R,L,C,G分别表示下列参数:R――每一回路单位的趾串联电阻,L——每一回路单位的串联电感,C――每单位长度的分路电容,G――每单位长度的分路电导•根据基尔霍夫第二定律,在长度为x的传输线中,电压降应等于电动势之和,即v -(v :-v) = R x i L x而v x,ex故上式可写成Ri - L -(3.4)x 汀另外,由基尔霍夫第一定律,流入节点x的电流应等于流出该节点的电流,即=(i :=i) C x G x v,(3.5) 将方程(3.4)与(3.5)合并,即得i与v 应近似地满足如下方程组这两个方程称为高频传输线方程.X 2=2:V;t 2LC ft 2 , 1;:2V1若令a 2这两个方程与(3.3)完全相同.由此可见,同一个方程可以用来描述不同的LC物理现象,一维波动方程只是波动方程中最简单的情况, 在流体力学、声学及电磁场理论中,还要研究高维的波动方程. 例3电磁场方程从物理学我们知道,电磁场的特性可以用电场强度 E 与磁场强度H 以及电感应强度 D与磁感应强度B 来描述,联系这些量的麦克斯韦(Maxwell)方程组为rotH = J, ct(3.8)cB耐百,(3.9)divB 二 0,(3.10)为了确定函数i 与v ,将方程(3.5)对x 微分,同时在方程(3.4)两端乘以C 后再对t 微分, 并把两个结果相减,即得将(3.4)中的兰代入上式,得CX这就是电流i 近似满足的微分方程,采用类似的方法从( 3.4)与(3.5)中消去i 可得电压V近似满足的方程方程(3.6)或(3.7)称为传输线方程.R, L,C,G 作不同的假定,就可以得到传输线方程的各种特殊形式•例如,在高频传输的情况下,电导与电阻所产生的效应可以忽略不计,也就是 说可令G = R = 0,此时方程(3.6)与(3.7)可简化为;:2i 1;:2i2・X 2iG 兰 一 LC ;x【RC 5, ct :t 2:2i2・i —二 LG X ;t 2 (RC GL)厂 GRi, ct(3.6).2轨LGxV(RC GL)二 GRv, .t :t(3.7)根据不同的具体情况,对参数divD 「.(3.11)将(3.9)与(3.13)代入得而 rot rotH 程为rot rotHrot rotHrotE 「rotE, :t21二 grad div - ' H ,且 divH divB = 0,所以最后得到H 所满足的方同理,若消去 H 即得E 所满足的方程2E如果介质不导电(卞-0),则上面两个方程简化为2H 1 k 2Hr H , .t 二(3.15)(3.16)(3.15)与(3.佝称为三维波动方程.若将三维波动方程以标量函数的形式表示出来,则可写成其中J 为传导电流的体密度,「为电荷的体密度.这组方程还必须与下述场的物质方程D =eE,(3.13) (1.14)相联立,其中;是介质的介电常数, 」是导磁率,匚为导电率,我们假定介质是均匀而且是各向同性的,此时;,」,;「均为常数.方程(3.8)与(3.9)都同时包含有 E 与H ,从中消去一个变量,就可以得到关于另一个变 H ,在(3,8)式两端求旋度并利用(3.12)与(3.14)得(3.12) 量的微分方程,例如先消去(3.17)2 2 22- 2『召u d u & u= aJ = a — +一 +一2 , ^c x cy 氐丿 其中a_W ,u 是E 或H 的任意一个分量从方程(3.11)与(3.12)还可以推导出静电场的电位所满足的微分方程 •事实上,以(3.12)代入(3.11)得divD = div ;E = ; div E = ■,而电场强度E 与电位u 之间存在关系E = -gradu,所以可得Pdiv(gradu)= -一z或'、u = - — ,( 3.18)z这个非齐次方程称为泊松(Poisson )方程.如果静电场是无源的,即?=0,则(3.18)变成(3.19)这个方程称为拉普拉斯(Lap lace )方程. 例4热传导方程一块热的物体,如果体内每一点的温度不全一样,则在温度较高的点处的热量就要向 温度较低的点处流动,这种现象就是热传导.在工程技术上有许多传热问题都要归结为求物体内温度的分布,现在我们来推导传热过程中温度所满足的微分方程, 与上例类似,我们不是先讨论一点处的温度,而应该先考虑一个区域的温度.为此,在物体中任取一闭曲面S ,它所包围的区域记作 V (图3-3).假设在时刻t ,区域V 内点M(x,y,z)处的温度为u(x,y,z,t),n 为曲面元素 S 的外法向(从V 内指向V 夕卜).图3-3:t2由传热学可知,在lt,^ t ]时间内,从 S 流入区域V 的热量与时间At ,面积 S ,以及沿曲面的法线方向的温度变化率三者的乘积成正比,即-k(grad u ) S t.其中k 称为物体的热传导系数,当物体为均匀导热体时,k 为常数.于是,从时刻t i 到时刻t 2,通过曲面S 流入区域V 的全部热量为t 2_Q i = tkgrad u1一 S流入的热量使 V 内温度发生了变化,在厶t 时间内区域V 内各点温度从u(x,y,z,t)变化到 u(x,y,z,t+ △ t),则在△ t 内V 内温度升高所需要的热量为I I I c [u(x, y,z,t t)-u(x,y,z,t)]dVV从而从时刻t i 到时刻t 2,由于温度升高所吸收的热量为tJ ■ u二 c dV dt,飞 _ v :t其中C 为物体的比热, '为物体的密度,对均匀物体来说,它们都是常数•由于热量守恒,流入的热量应等于物体温度升高所需吸收的热量,即上2 I.t 2. .:uJ t IJJkgradudS dt= J t | JJJ c°〒dV dt.ti.S _t^V醴—此式左端的由面积分中 S 是封闭曲面,可以利用奥 -高公式将它化为三重积分,即11 kgradudS 二 kdiv(gradu)dVSV因此有由于时间间隔't,r 11及区域V 都是任意取的,并且被积函数是连续的,所以 (3.20)式左 右恒等的条件是它们的被积函数恒等,即= Q= k S = t =cnk(grad udS dt.fu(x, y,z,t)dttdV.Q 2二 k 2udV,V:k 2udVti_ Vt2u IF t 」川 cP^dV dt. V :t(3.20)3(3.21 ).u a :t或二维热传导方程如果我们考虑稳恒温度场,即在热传导方程中物体的温度趋于某种平衡状态,这时温 度u 已与时间t 无关,所以 —=0,此时方程(3.21)就变成拉普拉斯方程(3.19).由此可见稳恒Ct温度场内的温度 U 也满足拉普拉斯方程•在研究气体或液体的扩散过程时,若扩散系数是常数,则所得的扩散方程与热传导方 程完全相同•3. 2初始条件与边界条件上面所讨论的是如何将过程的物理规律用数学式子表达出来•除此以外,我们还需要把具体条件也用数学形式表达出来,这是因为任何一个具体的物理现象都是处在特定条件之下 的.例如弦振动问题,上节所推导出来的方程是一切柔软均匀的弦作微小横向振动的共同规 律,在推导这个方程时没有考虑到弦在初始时刻物状态以及弦所受的约束情况 •如果我们不是泛泛地研究弦的振动,势必就要考虑到弦所具有的特定条件 .因为任何一个具体振动现象总是在某时刻的振动状态和此时刻以前的状态有关,从而就与初始时刻的状态有关•另外,弦的两端所受的约束也会影响弦的振动, 端点所处的物理条件不同会产生不同的影响, 因而弦的振动也不同.所以对弦振动问题来说,除了建立振动方程以外,还需列出它的具体条件 对热传导方程,拉普拉斯方程也是如此.提出的条件应该恰恰能够说明某一具体物理现象的初始状态以及边界上的约束情况,其中a 2 = 2u=a 2;t2 2 2\ d u d u d u r + r + r cy cz厂■方程(3.21)称为三维热传导方程.若物体内有热源,其强度为F (x, y,z),则相应的热传导方程为:u 2 a :t2 2 2u u u +r 2" 2x : yf(x, y,z,t),如果所考虑的物体是一根细杆 作为特例, 而其中的温度u 只与x,t (或x, y,t )有关,(或一块薄板),或者即使不是细杆 (或薄板) 则方程(3.21)就变成一维热传导方程:U 2a:t-2;u-2:y 2用以说明系统的初始状态的条件称为初始条件 •用以说明边界上的约束情况的条件称为边界条件•下面具体说明初始条件和边界条件的表达形式,先谈初始条件,对于弦振动问题来说, 初始条件就是弦在开始时刻的位移及速度,若以 「(x),t (X )分别表示初位移和初速度,则 初始条件可以表达为t」= (x)-(X )t =0而对热传导方程来说,初始条件是指在开始时刻物体温度的分布情况,若以 「(M)表 示t=0时物体内任一点 M 处的温度,则热传导方程的初始条件就是u(M,t )tn 「(M).泊松方程与拉普拉斯方程都是描述稳恒状态的,与初始状态无头,所以不提初始条件 再谈边界条件•如果边界条件直接给出了未知函数 u(M ,t)在边界S 上的值,以s 表示边界S 上的动点,则这样的边界条件可表为u(M,t )M :s 「(St),或简写成(3.24)这种边界条件称为第一类边界条件,其中(s,t)表示在边界S 上给定的已知函数•例如,在杆的导热问题中,若在端点 x = a 处温度保持为常数 u 0,这时在端点x = a 的边界条件为uxn =u 0・若在端点X =a 处温度随时间的变化规律 f (t)为已知,在这点的边界条件为ux 「f (t)・又如在弦振动问题中,若弦的某端点X = a 是固定的,则在该点的位移为零,即Uxn=0・以上都是第一类边界条件的例子 •总之,第一类边界条件直接给出了未知函数u(M ,t)在边界S 上的值但在许多情况下,边界上的物理条件并不能用第一类边界条件来描述 .例如,在杆的导热问题中,若杆的一端x 二a 绝热,那末绝热这个条件就不能直接给出杆的端点处的温度变cu 丄丄化.由于从杆外通过杆端流入杆内的热量为k —— 心S^t (其中A t 为时间间隔,AS 为杆cn(3.22)(3.23)的截面积,n 为杆在端点x=a 处的外法向,若 x=a 是杆的左端点,n 的正向与x 轴正向PuQuQu Qu相反,贝厂■,若x=a 是杆的右端点,则n 的正向与x 轴正向相同,贝厂 '), cnex cn ex所以绝热这个条件可以表达为0( Ik —也S 也 t = 0,cn xy即二 0.x =a若在单位时间内通过 x=a 端单位面积流入杆内的热量是 t 的已知函数f(t),则这个条件可表示为对于弦振动问题来说, 如果弦在x=a 处是自由的,即沿着位移方向不受外力, 则此时弦在x=a 处沿位移方向的张力(参照 3.1中例1的推导) 为的形式,其中—表示函数沿边界外法向的变化率,这种边界条件称为第二类边界条件•cn除了上述两类边界条件外,有时还会遇到其他形式的边界条件 •例如在杆的导热热问题中,若杆在某个端点 x = a 自由冷却,那末自由冷却这个条件就是cuK 石=H (5 -ux =ax=a ),(其中U i 为周围介质的温度)即(加(k )u + h ———:u 1 h -1州」 X HI H 丿=f(t).x^a总之,有时边界条件必须表达为=0,(3.25)对于有界杆(0乞x 乞I ),若两端都是自由冷却,则在X = I 处,上述条件可表为-U 在x = 0处,这个条件可表为这是由于在单位时间内从周围介质传到杆的 X = a 端单位面积上的热量与介质和杆端的温度差成正比,而在单位时间内通过 考3.1中例4).x = a 端单位面积传向杆内的热量与x=acn 丿X -i 成正比般地,这种边界条件的形式为(3.26)这样的边界条件称为第三类边界条件•不论哪一种边界条件,如果它的数学表达式中的右端自由项恒为零,则这种边界条件称为齐次的.3.3定解问题的提法前面两节我们推导了三种不同类型的偏微分方程并讨论了与它们相应的初始条件与边界条件的表达方式•由于这些方程中出现的未知函数的偏导数的最高阶都是二阶,而且它们对于未知函数及其各阶偏导数来说都是线性的,所以这种方程称为二阶线性偏微分方程*)1在工程技术上二介线性偏微分方程遇到最多•如果一个函数具有所需要的各阶连续编导数,并且代入某偏微方程中能使该方程变成恒等式,则此函数称为该方程的解•由于每一个物理过程都处在特定的条件之下,所以我们的任务是要求出适合初始条件和边界条件的解•初始条件和边界条件都称为定解条件•求一个偏微方程满足定解条件的解的问题称为定解问题只有初始条件,没有边界条件的定解问题称为始值问题(或柯西问题);而没有初始条件,只有边界条件的定解问题称为边值问题;既有初始条件也有边界条件的定解问题称为混合问题•一个定解问题提得是否符合实际情况,当然必须靠实际来证实,然而从数学角度来看,可以从三方面加以检验•1)解的存在性,即看所结出来的定解问题是否有解;2)解的唯一性,即看是否只有一个解;3)解的稳定性,即看当定解条件有微小变动时,解是否相应地只有微小的变动,如果*)二阶线性编微分方程可以按它们的二阶导数的系数的代数性质进行分类,在§ 1・1中所推导的波动方程属于双曲型,拉普拉斯(或泊松)方程属于椭圆型,热传导方程属于抛物型,关于二阶线性偏微分方程的分类方法,读者可参阅复旦大学数学系编《数学物理方程》(第二版,上海科学技术岀版社岀版)第一章§5.确定如此,此解便称为稳定的,否则所得的解就无实用价值•因为定解条件通常总是利用实验方法获得的,因而所得到的结果,总有一定的误差,如果因此而解的变动很大,那末这种解显然不能符合客观实际的要求•如果一个定解问题存在唯一且稳定的解,则此问题称为适定的,在以后讨论中我们把着眼点放在讨论定解问题的解法上,而很少讨论它的适定性,这是因为讨论定解问题的适定性往往十分困难,而本书所讨论的定解问题都是古典的,它们的适定性都是经过证明了的.习题一1.长为I的均匀杆,侧面绝缘,一端温度为零,另一端有恒定热流q进入(即单位时间内通过单位截面积流入的热量为q ),杆的初始温度分布是x— x),试写出相应的定解问题22.长为I的弦两端固定,开始时在x = C受到冲量的作用,试写出相应的定解问题3.有一均匀杆,只要杆中任一小段有纵向位移或速度,必导致邻段的压缩或伸长,这种仲缩传开去,就有纵波沿着杆传播,试推导杆的纵振动方程4.一均匀杆原长为I,一端固定,另一端沿杆的轴线方向被拉长e而静止,突然放手任其振动,试建立振动方程与定解条件.5.若F(z),G(z)是任意二阶可微函数,验证u = F (x at) G(x -at)满足方程-2 -2:-U 2: U2—a 2.t x6.若函数U i(x,t), U2(x, t)JM, U n(x, t),…均为线性齐次方程-2 -2:u : u-~2 P 2~x :t的解,其中p,q, r只是x, t的函数,而且级数u k(x,t)收敛,并对x,t可以进行两次kz!逐项微分,求证级数u=:£u k(x,t)满足原方程(这个结论叫做线性齐次方程的叠加原理)k m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弦作自由(无外力)横振动,所以泛定方程为齐次波动方程
utt a2uxx 0
第三章 定解条件与定解问题的提法
② 确定边界条件
对于弦的固定端,显然有 u(0,t) 0 另一端自由,意味着其张力为零,则
u 0 x xl
③ 确定初始条件 根据题意,当 t 0 时,弦处于水平状态,即初始位移为零
第三章 定解条件与定解问题的提法
☆ 扩散方程的定解条件 初始条件
定解条件: 边界条件
① 初始条件——描述系统的初始状态
T (x, y, z, 0) (x, y, z)
式中φ( x, y, z )为已知函数,表示温度在初始时刻的分布。
第三章 定解条件与定解问题的提法
② 边界条件——描述系统在边界上的状况
第一类边界条件:介质表面温度已知
T ( p,t) S 0
式中,p为边界面上的点。
第二类边界条件:通过介质表面单位面积的热流量己知
T
T
qn K n const,
f ( p,t) n S
第三类边界条件:边界面与周围空间的热量交换规律已知
qn (T T0 )
(为热交换系数)
由热量守恒定律可知,这个热量等于单位时间内流过单位面积上的热量
泛定方程
波动方程 热传导方程 稳态方程
定解问题
第一类边界条件 边界条件 第二类边界条件
第三类边界条件
初始条件 初始状态 初始速度
第三章 定解条件与定解问题的提法
要想完全确定一个物理过程除了控 制方程(一般指偏微分方程)外,还需要 给定初始和边界条件。
表征和控制物理现象的方程,称为控制 方程或泛定方程。由前面有关三种典型方程 的推导过程得出,不同的物理现象具有不同 的物理规律,其控制方程也是不同的。
第三章 定解条件与定解问题的提法
第三章 定解条件与定解问题的提法
定解条件与 定解问题的提法
第三章 定解条件与定解问题的提法
3.1 定解条件
☆ 方程 u(x) 0
能不能求解?解是什么? 能不能定解?该怎么办?
☆ 方程 u(x) 0
能不能求解?解是什么? 能不能定解?该怎么办?
☆ 由此可归纳出 n 阶常微分方程的通解含有 n个任意常数, 要完全确定这些常数需要附加 n个条件。
☆ 拉普拉斯和泊松方程的定解条件
对于稳态问题,变量不随时间发生变化。定解条件不 含初始条件,只有边界条件。
第一边值问题,狄利克莱问题(狄氏问题)
f ( p) S
第二边值问题,牛曼问题
f ( p) n S
第三边值问题(混合问题)鲁宾问题
h f ( p)
n
S
第三章 定解条件与定解问题的提法
0 xl
系统各点的初位移 系统各点的初速度
第三章 定解条件与定解问题的提法
② 边界条件——描述系统在边界上的状况 第一类边界条件:对于两端固定的弦的振动,其为:
u(0,t) 0, u(l,t) 0 或: u(0,t) f (t), u(l,t) g(t)
第二类边界条件:一 端既不固定,又不受位移方向力的作用
非稳态问题:定解条件包括初始条件和边界条件。 稳态问题:定解条件为边界条件。 定解问题=控制方程+定解条件
第三章 定解条件与定解问题的提法
根据分析问题的不同出发点,把数学物理问 题分为正向问题和逆向问题。
正向问题,即 为已知源求场
逆向问题,即 为已知场求源.
不同出发点 ?
前者是经典数学物理所讨 论的主要内容。 后者是高等数 学物理(或称为现代数学物理) 所讨论的主要内容
第三章 定解条件与定解问题的提法
从物理规律角度来分析,数学物理定解问题表征的是场 和产生这种场的源之间的关系。
声振动是研究声源与声波 场之间的关系
定解 问题
热传导是研究热源与温度 场之间的关系
泊松方程表示的是电势 (或电场)和电荷分布之 间的关系
第三章 定解条件与定解问题的提法
☆ 波动方程的定解条件
☆ 波动方程的定解问题
混合问题 定解问题=控制偏微分方程(泛定方程)+初始条件 +边界条件
初值问题(柯西问题) 定解问题=控制偏微分方程(泛定方程)+初始条件
特解 定解条件=初始条件+边界条件
第三章 定解条件与定解问题的提法
例: 长为 l 的弦在 x 0 端固定,另一端 x l
自由,且在初始时刻 t 0 时处于水平状态,初始速度为 x(l x) ,且已知弦作微小横振动,试写出此定解问题. 【解】 ① 确定泛定方程:
u u
0
x x0 x xl
或:
u x
x0
f
(t),
u g(t) x xl
第三类边界条件: 在x=l 端受到弹性系数为k 的弹簧的支承
T u k u
或
x xl
xl
u x
u
xl
0
第三章 定解条件与定解问题的提法
例 : 一根长为 l 的弦,两端固定于 x 0 和 x l ,
在距离坐标原点为 b 的位置将弦沿着横向拉开距离 h ,
3.2 定解条件的形式和定解问题
同一类物理现象中,各个具体问题又各有其特殊性。 边界条件和初始条件反映了具体问题的特殊环境和历史, 即个性。 初始条件:能够用来说明某一具体物理现象初始状态的 条件,即描述物理过程初始状态的数学条件。 边界条件:能够用来说明某一具体物理现象边界上的约 束情况的条件,即描述物理过程边界状态的数学条件。
如下图所示,然后放手任其振动,试写出初始条件。
u
h
o
b
【解】 初始时刻就是放手的那一瞬间, 按题意初始速度为零,即有
x l
ut (x, t) |t0 ut (x, 0) 0
初始位移如图所示
u(
x,
0)
h b
x
h l b
(l
x)
(0 x b) (b x l)
第三章 定解条件与定解问题的提法
K
T n
(T
T0 ),
T n
hT
S
f
( p,t)
第三章 定解条件与定解问题的提法
☆ 扩散方程的定解问题
混合问题 定解问题=控制偏微分方程(泛定方程)+初始条件 +边界条件
初值问题(柯西问题) 定解问题=控制偏微分方程(泛定方程)+初始条件
特解 定解条件=初始条件+边界条件
ቤተ መጻሕፍቲ ባይዱ
第三章 定解条件与定解问题的提法
例: 长为l 的杆,上端固定在电梯的顶杆上,杆身竖直, 下端自由 。电梯在下降过程中,当速度为v0 时突然停止。 试写出杆振动的定解问题。
2u t2
a2
2u x2
,
u(x, 0) 0, ut (x, 0) v0,
u(0,t) ux (l,t) 0,
x (0,l),t 0
x (0,l) t0
一维波动方程描述了弦做微小横振动时位移函数所应 满足的一般性规律,但仅仅利用它还不能完全确定所考察 弦的运动状况,这是因为它的运动还与初始状态以及边界 条件所处的状况有关。
① 初始条件——描述系统的初始状态
设弦在初始时刻t 0时的位置和速度为:
u(x, 0) (x)
u( x, t
0)
(x)
u(x, 0) 0
初始速度
u t
|t 0
x(l
x)
第三章 定解条件与定解问题的提法
综上讨论,故定解问题为
utt a2uxx 0 u(0,t) 0, ux
|xl
0
u(x, 0) 0,ut (x, 0) x(l x)
(0 x l,t 0) (t 0)
(0 x l)
第三章 定解条件与定解问题的提法