醇酚羧酸中羟基的活性比较
《醇和酚》醇酚的化学反应机理
《醇和酚》醇酚的化学反应机理在有机化学的世界里,醇和酚是两类非常重要的有机化合物,它们具有独特的结构和性质,而其化学反应机理更是丰富多彩。
首先,让我们来了解一下醇。
醇是烃分子中饱和碳原子上的氢原子被羟基(OH)取代后的产物。
根据醇分子中羟基所连接的碳原子类型,可以将醇分为伯醇、仲醇和叔醇。
醇的化学反应主要包括氧化反应、脱水反应、酯化反应等。
醇的氧化反应是一个常见且重要的反应。
伯醇在适当的氧化剂作用下,可以被氧化为醛,进一步氧化则可以得到羧酸。
例如,乙醇在铜或银作催化剂、加热的条件下,可以被氧化为乙醛;而在强氧化剂如高锰酸钾溶液的作用下,则可以被直接氧化为乙酸。
仲醇一般被氧化为酮,叔醇由于没有α氢原子,通常难以被氧化。
醇的脱水反应也有两种主要类型。
一种是分子内脱水,生成烯烃。
例如,乙醇在浓硫酸作催化剂、加热到 170℃时,发生分子内脱水生成乙烯。
另一种是分子间脱水,生成醚。
这通常在较低的温度下,在浓硫酸的催化作用下进行。
酯化反应是醇的另一个重要反应。
醇和羧酸在一定条件下可以发生酯化反应,生成酯和水。
例如,乙醇和乙酸在浓硫酸的催化下加热,可以生成乙酸乙酯和水。
接下来,我们看看酚。
酚是羟基直接连接在苯环上的化合物。
酚的化学性质较为活泼,主要反应包括酚羟基的反应和苯环上的取代反应。
酚羟基具有弱酸性,能够与氢氧化钠等碱发生中和反应。
但酚的酸性比碳酸弱,所以酚钠与二氧化碳反应时,只能生成酚和碳酸氢钠,而不能生成碳酸钠。
酚的苯环上容易发生亲电取代反应。
例如,苯酚与溴水反应,在常温下就能生成白色的三溴苯酚沉淀,这个反应常用于苯酚的定性和定量检测。
此外,酚还容易被氧化。
空气中的氧气就能使苯酚逐渐氧化为粉红色的物质。
在理解醇和酚的化学反应机理时,我们需要从它们的分子结构入手。
醇中的羟基与饱和碳原子相连,其电子云分布相对较均匀,反应活性相对较低。
而酚中的羟基直接连接在苯环上,由于苯环的共轭效应,使得酚羟基的电子云密度降低,反应活性增强。
【新人教版】高中化学选修五 第三章 第三节 羧酸 酯(重难点研析+典型实例剖析+教材问题简答)
第三节 羧酸 酯+2OOO++2H 2O(5)羟基酸自身的酯化反应此时反应有三种情形,可得到普通酯、环状交酯和高聚酯。
如:4、加热。
在形成环酯时,酯基中,只有一个O 参与成环。
CO 3溶液。
COOC 2H 5+H 2O 。
4.实验方法:在一支试管里先加入3 mL 乙醇,然后一边摇动,一边慢慢地加入2 mL 浓H 2SO 4和2 mL 冰醋酸,按图装好,用酒精灯小心均匀地加热试管3~5 min ,产生的蒸气经导管通到饱和Na 2CO 3溶液的液面上,此时可以观察到有透明的油状液体浮在液面上。
停止加热,取下盛有饱和Na 2CO 3溶液的试管,振荡盛有饱和Na 2CO 3溶液的试管后静置,待溶液分层后,可观察到上层的透明油状液体乙酸乙酯,并可闻到果香气味。
5.注意事项:(1)实验中浓硫酸起催化剂和吸水剂作用。
(2)盛反应混合液的试管要上倾约45°,主要目的是增大反应混合液的受热面积。
(3)导管应较长,除导气外还兼起冷凝作用。
导管末端只能接近饱和Na 2CO 3溶液的液面而不能伸入液面以下,目的是防止受热不匀发生倒吸。
(4)实验中小心均匀加热使液体保持微沸,这样有利于产物的生成和蒸出,以提高乙酸乙酯的产率。
(5)饱和Na 2CO 3溶液的作用是吸收乙酸、溶解乙醇、冷凝酯蒸气且减小其在水中的溶解度,以利于分层析出。
(6)不能用NaOH 溶液代替饱和Na 2CO 3溶液,因乙酸乙酯在NaOH 存在时易水解,而几乎得不到乙酸乙酯。
四、外界条件对物质反应的影响 (1)温度不同,反应类型和产物不同如乙醇的脱水反应:乙醇与浓H 2SO 4共热至170℃,主要发生消去反应(属分子内脱水)生成乙烯(浓硫酸起脱水剂和催化剂双重作用):――→浓H 2SO 4170℃CH 2===CH 2↑+H 2O 若将温度调至140℃,却主要发生分子间脱水(不是消去反应而是取代反应)生成乙醚:如甲酸与新制Cu(OH)2悬浊液混合,常温下主要发生中和反应:2HCOOH +Cu(OH)2―→(HCOO)2Cu +2H 2O 而加热煮沸则主要发生氧化还原反应:HCOOH +2Cu(OH)2――→△Cu 2O ↓+CO 2↑+3H 2O(2)溶剂不同,反应类型和产物不同如溴乙烷与强碱的水溶液共热则发生取代反应(也称为水解反应)生成乙醇,但跟强碱的醇溶液共热却发生消去反应生成乙烯。
有机化学常见活性中间体详解
有机化学常见活性中间体详解
高中化学常见官能团有:羟基(-oh)、羧基(-cooh)、醚键(-c-o-c-)、醛基(-coh)、羰基(c=o)等。
官能团,是决定有机化合物的化学性质的原子或原子团。
1、羟基(oxhydryl)是一种常见的极性基团,化学式为-oh。
羟基与水有某些相似的性质,羟基是典型的极性基团,与水可形成氢键,在无机化合物水溶液中以带负电荷的离子形式存在(oh-),称为氢氧根。
羟基主要分为醇羟基,酚羟基等。
2、羧基(carboxy),就是有机化学中的基本官能团,由一个碳原子、两个氧原子和一个氢原子共同组成,化学式为-cooh。
分子中具备羧基的化合物称作羧酸。
3、醚是醇或酚的羟基中的氢被烃基取代的产物,通式为r-o-r',r和r’可以相同,也可以不同。
相同者称为简单醚或者叫对称醚;不同者称为混合醚。
如果r、r'分别是一个有机基团两端的碳原子则称为环醚,如环氧乙烷等。
多数醚在常温下为无色液体,有香味,沸点低,比水轻,性质稳定。
醚类一般具有麻醉作用,如乙醚是临床常用的吸入麻醉剂。
4、羰基中的一个共价键跟氢原子相连而共同组成的一价原子团,叫作醛基,醛基结构简式就是-cho,醛基就是亲水基团,因此存有醛基的有机物(例如乙醛等)存有一定的水溶性。
5、羰基(carbonyl group)是由碳和氧两种原子通过双键连接而成的有机官能团
(c=o),是醛、酮、羧酸、羧酸衍生物等官能团的组成部分。
在有机反应中,羰基可以发生亲核加成反应,还原反应等,醛或者酮的羰基还可以发生氧化反应。
醇(酚)、醛、羧酸、酯及相互关系
醇(酚)、醛、羧酸、酯及相互关系湖北省团风中学洪彪陈长东本专题是中学有机化学的核心内容,是历年高考的重点内容,重现率100%。
其命题趋势是:(1)结合相关事件,考查主要官能团的性质;(2)将分子式、结构简式与同分异构体的推导、书写糅合在一起;(3)创设情境,引入信息,依据官能团的性质及相互关系组成综合性的试题。
复习时要抓住“一官一代一衍变”,即官能团对各类烃的衍生物的性质起决定作用,各类烃的衍生物的重要代表物的结构和性质,各类烃的衍生物之间的衍变关系。
在理解相关概念的基础上联点成线,联线成网,形成知识的立体架构,通过典型题目的分析解答,归纳得出不同题型的解题思路。
一、一个知识网二、两种活性氢OH1.分子结构中氢原子活性的比较:羟基氢>邻对位上的氢>间位上的氢2.羟基氢活性的比较:羧基氢>酚羟基氢>水分子中的氢>醇羟基氢六、六个有机计算的重要数据1.与H2加成时所消耗H2物质的量:1mol C=C需1mol H2,1mol—C≡C—需2mol H2,1mol —CHO需1mol H2,1mol苯环需3mol H2。
2.1mol —CHO完全反应时需2mol Ag(NH3)2OH或2mol新制的Cu(OH)2,生成2mol Ag、1mol Cu2O。
3.2mol —OH或2mol —COOH与活泼金属反应放出1mol H2。
4.1mol —COOH与NaHCO3溶液反应放出1mol CO2。
5.1mol一元醇与足量乙酸反应生成1mol酯时,其相对分子质量将增加42;1mol二元醇与足量乙酸反应生成酯时,其相对分子质量将增加84。
6.1mol某酯A发生水解反应生成B和乙酸时,若A与B的相对分子质量相差42,则生成1mol乙酸;若A与B的相对分子质量相差84时,则生成2mol乙酸。
八、八个规律1.有机物溶解性规律:烃、卤代烃、酯均不溶于水;低级(即含碳原子数较少的)醇、醛、羧酸等易溶于水,但随着碳原子数的增多,逐渐变得微溶或难溶。
《羧酸 羧酸衍生物 第1课时》示范公开课教学设计【化学人教版高中选择性必修3(新课标)】
第三章烃的衍生物第四节羧酸羧酸衍生物第1课时羧酸◆教学目标1.认识羧酸的官能团与组成,能对简单羧酸进行分类。
能依据羧酸的结构特点预测羧酸的物理性质和化学性质。
2.通过探究羧酸的酸性,熟悉控制变量法的应用,体验科学探究的一般过程。
3.能结合生产、生活实际了解羧酸对环境和健康可能产生的影响,关注羧酸的安全使用。
◆教学重难点重点:乙酸的结构和性质。
难点:羧酸酸性强弱的比较,酯化反应中有机物化合物的断键规律。
◆教学过程【新课导入】幽幽醋香文明华夏醋的来历和“醋”字的由来:传说古代山西省有个酿酒高手叫杜康。
他儿子黑塔跟父亲也学会了酿酒技术。
后来,从山西迁到镇江。
黑塔觉得酿酒后把酒糟扔掉可惜,把酒糟浸泡在水缸里。
到了第二十一日的酉时,一开缸,一股浓郁的香气扑鼻而来。
黑塔忍不住尝了一口,酸酸的,味道很美。
烧菜时放了一些,味道特别鲜美,便贮藏着作为“调味酱”。
因为是“二十一日酉时”得到了醋,由此造了个“醋”字。
食醋含乙酸3~5%,醋精含乙酸15~30%乙酸俗称醋酸,由甲基和羧基相连而成。
像乙酸一样,分子结构是由烃基(或氢原子)与羧基相连而构成的有机化合物,叫作羧酸。
羧酸的代表物乙酸的分子结构和性质我们在必修课程中已经学过,请同学们回忆乙酸的分子结构特点和性质,由此推断其它羧酸类物质的性质。
【新知讲解】一、回顾乙酸分子结构及性质1.乙酸的物理性质乙酸又叫醋酸,熔点16.6℃,无色冰状晶体(冰醋酸),沸点117.9℃。
易挥发,有刺激性气味。
易溶于水和乙醇中。
注:无水乙酸又称为冰醋酸,即冰醋酸相当于纯醋酸,不一定是固体提问:在室温较低时,无水乙酸就会凝结成像冰一样的晶体。
请简单说明在实验中若遇到这种情况时,你将如何从试剂瓶中取出无水乙酸。
2.其它羧酸类化合物的物理性质甲酸、乙酸等分子中碳原子数较少的羧酸能够与水互溶。
随着分子中碳原子数的增加,一元羧酸在水中的溶解度迅速减小,甚至不溶于水,其沸点也逐渐升高。
高级脂肪酸是不溶于水的蜡状固体。
醇酚和醛的结构特点及其化学性质
醇酚和醛的结构特点及其化学性质醇酚和醛是有机化合物中常见的官能团,在化学领域中具有重要的地位。
本文将介绍醇酚和醛的结构特点以及它们的化学性质,帮助读者更好地了解这两类化合物。
一、醇的结构特点及其化学性质醇是碳链上有一个或多个羟基(-OH)官能团的有机化合物。
醇的结构特点如下:1.1 羟基:醇分子中的羟基是醇分子非常重要的官能团,它使得醇具有了一系列特殊的化学性质。
羟基的存在使得醇具有了亲水性,能够与水分子发生氢键作用,形成氢键网络。
1.2 单质醇与聚合物:醇可以存在于单质状态,也可以通过缩聚反应形成聚合物。
例如,简单的醇如乙醇、丙醇等可以形成氢键网络,并在晶体中呈现规则排列;而较长的醇链则可以通过缩聚反应形成聚醚、聚酯等高分子化合物。
1.3 溶解性:醇具有良好的溶解性,特别是低分子量的醇。
醇可以与水、有机溶剂等形成氢键或其他相互作用力,从而溶解于这些溶剂中。
关于醇的化学性质,主要包括以下几个方面:2.1 与酸的反应:醇可以与酸发生酸碱反应,生成相应的酯并释放出水。
例如,乙醇与乙酸反应生成乙酸乙酯。
2.2 氧化反应:醇可以被氧化剂氧化成醛、酮等化合物。
例如,乙醇可以被氧气氧化为乙醛。
2.3 酯化反应:醇可以与酸酐反应生成酯。
醇与酸酐反应中,羟基与酸酐中的羰基发生酯化反应,生成酯。
二、醛的结构特点及其化学性质醛是碳链上含有一个羰基(C=O)官能团的有机化合物。
醛的结构特点如下:1.1 羰基:醛分子中的羰基是醛分子的主要官能团,它赋予了醛一系列特殊的性质。
羰基的极性使得醛具有较强的亲电性。
1.2 极性:醛分子中的羰基使得醛具有较强的极性,使得醛分子能够与水分子等发生亲和作用。
1.3 氧化还原性:醛是容易发生氧化还原反应的化合物。
醛作为氧化剂可以与其他物质发生氧化反应,同时它也可以被还原为醇。
关于醛的化学性质,主要包括以下几个方面:2.1 氧化反应:醛可以被氧化剂氧化为相应的羧酸,例如,乙醛可以被氧气氧化为乙酸。
环氧基与活泼H原子的反应
环氧基与活泼H原子的反应按照化学性质可把含活泼氢化合物分成碱性化合物(如伯胺、仲胺、酰胺等)和酸性化合物(如羧酸、酚、醇等)。
它们的活泼氢原子与环氧基会产生以下加成反应。
碱性化合物按亲核机理与环氧基反应,一般说来碱性大的活性大,如脂肪胺>芳香胺。
酸性化合物按亲电机理与环氧基反应,一般说来酸性大的活性大,如羧酸>酚>醇。
脂肪族伯胺与端环氧基的反应在室温下就能进行,无需促进剂。
但是一系列质子给予体物质(如醇类、酚类、羧酸、磺酸和水等)对此反应有促进作用。
而质子接受体物质(如酯类、醚类、酮夹和腈类等)对它起抑制作用。
促进效果的顺序为:酸≥酚≥水>醇>腈>芳烃(苯、甲苯等)>二氧杂环己烷>二异丙基醚。
芳香胺比脂肪胺的活性小,与环氧基的反应速度慢。
室温下只有30%左右的树脂参加了反应。
这是由于芳香胺氮原子上的不对称电子被苯环部分地分散了(苯核的E效应),造成碱性降低,以及苯环的立体位阻效应所致。
然而芳香胺与脂环环氧基的反应却要比脂肪胺快。
这可能是芳香胺的相对酸度大一些的缘由。
芳香胺与却氧基的反应也可被醇类、酚季、三氟化硼络合物和辛酶亚锡等加建。
辛酸亚锡对脂环族环氧树脂的固化加速作用特别明显。
酰胺基上氢原子的活性就更小了。
室温下与环氧基很难发生反应。
需在KOH、NaOH或苯二甲酸钠等强碱性促进剂存在下;或在150℃以上的高温下才能产生开环加成反应。
此反应,可用于环氧树脂的改性。
醇类化合物是作为亲电试剂与环氧基反应的。
但因其酸性极弱,即亲电性小,所以若无促进剂存在则需要在200℃以上才能反应。
醇类与环氧基的反应活性顺序为:伯醇>仲醇>叔醇。
叔胺等碱性化合物能促进羟基与环氧基在较低温度(100℃左右)下快速反应。
酚比醇的酸性大。
所以酚羟基与环氧基的反应速度比醇羟基快。
在近200℃时就开始反应。
在KOH等碱性促进剂作用下,此反应能在100℃时进行。
羧基与环氧基的反应比胺类慢。
一般在室温下不能生成高交联度结构。
需在100℃以上长时间加热才能固化。
羧酸课件2022-2023学年下学期高二化学人教版(2019)选择性必修3
做鱼时常加醋并加点酒,为何这样鱼味道就变得十分香醇,特别美味儿呢?
【知识回顾】乙酸乙酯的实验室制备
装置顺序:从左到右,从下到上。
添加顺序:乙醇-浓硫酸-冰醋酸。
加碎瓷片。
缓慢加热
冷凝回流。
① 中和乙酸, ② 溶解乙醇。③ 降低酯在水中的溶解度,以便使酯分层析出。
防倒吸。
实验现象:饱和碳酸钠溶液分层,上层有无色透明的油状液体产生 , 并可闻到有香味。
.
22
几种可防倒吸的装置:
【问题3-4】乙酸与乙醇的酯化反应,从形式上看是羧基与羟基之间脱去一个水分子。脱水时有哪些可能的方式,你能设计一个实验方案来证明是哪一种吗?
(2)酯化反应(乙酸与乙醇反应)
同位素原子示踪法:
a.反应机理:酸脱羟基醇脱氢 b.酯化反应可看作是取代反应,也可看作是分子间脱水的反应。
②
分别取0.01 mol·L-1三种酸溶液,测pH
现象
①紫色石蕊溶液变红色②pH大于2
结论
甲酸、苯甲酸和乙二酸具有弱酸性
思考与讨论:利用下图所示仪器和药品,设计一个简单的一次性完成的实验装置,比较乙酸、碳酸和苯酚的酸性强弱。请写出各装置中发生反应的化学方程式。
设计实验如下
CH3COOH
Na2CO3
3.4.1 羧酸
情景引入
自然界中许多动植物中含有各种各样的酸性物质,如蚂蚁体内含有的蚁酸、柠檬中含有的柠檬酸、苹果中含有的苹果酸等成分。
蚁酸(甲酸)HCOOH
柠檬酸
苹果酸
思考交流
1.蚁酸、柠檬酸、苹果酸中含有的相同官能团是什么?依据三种物质的结构判断它们分子中分别含有哪些官能团?
提示:这些酸的结构中都含有羧基(—COOH)官能团。其中蚁酸分子结构中含羧基和醛基,柠檬酸、苹果酸分子结构中含羧基和羟基。
《醇和酚》醇酚的结构与活性关系
《醇和酚》醇酚的结构与活性关系在有机化学的世界里,醇和酚是两类非常重要的有机化合物。
它们在结构上有着相似之处,但也存在明显的差异,而这些结构上的特点直接影响着它们的化学活性。
醇,简单来说,是烃分子中饱和碳原子上的氢原子被羟基(OH)取代后的产物。
根据羟基所连接的碳原子的类型,醇可以分为伯醇、仲醇和叔醇。
伯醇中羟基连接在一级碳原子上,仲醇中羟基连接在二级碳原子上,叔醇中羟基连接在三级碳原子上。
酚则是羟基直接连接在芳香环上的化合物。
常见的酚有苯酚等。
醇和酚的结构差异首先体现在羟基所连接的基团上。
醇中的羟基连接在脂肪链上,而酚中的羟基直接与芳香环相连。
这一差异导致了它们在化学活性上的诸多不同。
从反应活性来看,酚中的羟基由于受到芳香环的影响,其酸性要比醇中的羟基强得多。
这是因为芳香环能够通过共轭效应分散氧原子上的负电荷,使得酚羟基更容易解离出氢离子。
例如,苯酚能与氢氧化钠溶液反应生成苯酚钠和水,而醇通常不能与氢氧化钠发生类似的反应。
在亲核取代反应中,醇的反应活性相对较低。
这是因为醇羟基中的氧原子上的孤对电子与碳氧键存在pπ 共轭,使得碳氧键具有一定的双键性质,键能增大,不易断裂。
相比之下,酚羟基由于与芳香环形成更大的共轭体系,其亲核取代反应活性也不高,但在某些特定条件下,如强亲核试剂存在时,仍能发生反应。
在氧化反应方面,醇的化学活性较为复杂。
伯醇可以被氧化为醛,进一步氧化还能得到羧酸;仲醇氧化后得到酮;而叔醇由于没有α氢原子,一般不易被氧化。
酚则比较容易被氧化,例如苯酚在空气中就能被氧化为粉红色的物质。
醇和酚在酯化反应中的表现也有所不同。
醇与羧酸反应可以生成酯,反应通常需要在酸催化下进行。
而酚与羧酸直接反应生成酯相对较困难,常常需要使用更强的反应条件。
在与金属钠的反应中,醇和酚都能放出氢气,这表明它们的羟基都具有一定的活性。
但由于酚的酸性较强,相同条件下,酚与金属钠反应的速率可能会比醇更快。
此外,醇和酚在与卤化氢的反应中也有差异。
化学高考一轮复习课件第12章第3讲醇酚
(4)在有机合成中,利用醇或卤代烃的消去反应可以在碳 链上引入双键、三键等不饱和键。
4.有机化学中的氧化反应和还原反应 (1)有机化学中,通常将有机物分子中加入氧原子或脱去 氢原子的反应称为氧化反应,而将有机物分子中加入氢原子 或脱去氧原子的反应称为还原反应。 (2)在氧化反应中,常用的氧化剂有O2、酸性KMnO4溶 液、O3、银氨溶液和新制的Cu(OH)2悬浊液等;在还原反应 中,常用的还原剂有H2、LiAlH4和NaBH4等。
例1 有下列几种醇 ①CH3CH2CH2OH
(1)其中能被催化氧化生成醛的是____(填编号,下同),其中能 被催化氧化,但不是生成醛的是________,其中不能被催化氧化的 是__________。
(2)与浓 H2SO4 共热发生消去反应 只生成一种烯烃的是_____,能生成三种烯烃的是________, 不能发生消去反应的是______________________。
(2)各自消耗的H2的最大用量是①______、②______、 ③______、④______。
答案 (1)5 mol 2 mol 6 mol 6 mol (2)5 mol 4 mol 7 mol 10 mol
考点三 有机反应类型 1.取代反应(特点:有上有下) (1)取代反应指的是有机物分子中的某些原子或原子团被 其他原子或原子团所代替的反应。 (2)烃的卤代、芳香烃的硝化或磺化、卤代烃的水解、醇 分子间的脱水反应、醇与氢卤酸的反应、酚的卤代、酯化反 应、酯的水解和醇解以及蛋白质的水解等都属于取代反应。 (3)在有机合成中,利用卤代烷的取代反应,将卤原子转 化为羟基、氨基等官能团,从而制得用途广泛的醇、胺等有机 物。
红热铜丝插入醇中有刺激性
气味(生成醛或酮)
高中化学第3讲 烃的含氧衍生物(教案)
第3课时必备知识——烃的含氧衍生物[基本概念]①醇和酚;②醛和酮;③羧酸和酯;④酯化反应;⑤氧化反应和还原反应;⑥显色反应[基本规律]①醇类的催化氧化反应规律;②醇类的消去反应规律;③酯化反应的类型及规律;④烃的衍生物之间的转化及规律知识点1醇和酚的结构与性质一、醇的结构与性质1.醇的概念醇是羟基(—OH)与烃基或苯环侧链上的碳原子相连构成的化合物,饱和一元醇分子的通式为C n H2n+1OH或R—OH。
2.醇的分类3.醇的物理性质物理性质递变规律密度一元脂肪醇的密度一般小于1 g·cm-3沸点①直链饱和一元醇的沸点随着分子中碳原子数的递增而升高②醇分子间存在氢键,所以相对分子质量相近的醇和烷烃相比,醇的沸点远高于烷烃水溶性低级脂肪醇易溶于水,饱和一元醇的溶解度随着分子中碳原子数的递增而逐渐减小4.醇的化学性质由断键方式理解醇的化学性质(以乙醇为例),乙醇分子中可能发生反应的部位如下,填写表格内容:条件断键位置反应类型化学方程式Na ①置换反应2CH3CH2OH+2Na―→2CH3CH2ONa+H2↑HBr,△②取代反应CH3CH2OH+HBr―→CH3CH2Br+H2OO2(Cu),△①③氧化反应2CH3CH2OH+O2――→Cu△2CH3CHO+2H2O浓硫酸,170 ℃②④消去反应CH3CH2OH――→浓硫酸170 ℃CH2===CH2↑+H2O浓硫酸,140 ℃①或②取代反应2CH3CH2OH――→浓硫酸140 ℃C2H5OC2H5+H2OCH3COOH/ (浓硫酸) ①酯化反应CH3CH2OH+CH3COOH浓H2SO4△CH3COOC2H5+H2O2.苯酚的物理性质3.苯酚的化学性质由于苯环对羟基的影响,使酚羟基比醇羟基活泼;由于羟基对苯环的影响,使苯酚中羟基邻、对位的氢比苯中的氢活泼而易取代。
[通关2] (2020·湖南长郡中学检测)咖啡中的咖啡酸具有抗氧化、抗炎、抗粥样硬化等多种有益作用。
高中化学选修5课件(苏教版)_4-3-2_羧酸的性质和应用
自主探究
精要解读
实验探究
活页规范训练
1.写出乙醛催化氧化的化学方程式。 提示 催化剂 2CH3CHO+O2 ― ― → 2CH3COOH △
2.写出乙酸发生下列反应的化学方程式 (1)乙酸与 CaCO3 反应 2CH3COOH+CaCO3→Ca(CH3COO)2+CO2↑+H2O。 (2)乙酸与乙醇在浓 H2SO4 作用下,加热
活页规范训练
(2)性质 ①酸的通性 乙酸是一种 弱 酸,酸性比碳酸 强 。电离方程式为: CH3COOH CH3COO-+H+。
自主探究
精要解读
实验探究
活页规范训练
②酯化反应
如乙酸与乙醇的反应:
自主探究
精要解读
实验探究
活页规范训练
2.甲酸 (1)组成和结构
分子式 CH2O2
结构简式 HCOOH
自主探究
精要解读
实验探究
活页规范训练
1.了解羧酸的结构特点及通性。 2.能从官能团的角度理解乙酸的性质,并能类比学习羧酸的 化学性质。 3.认识酯化反应的特点,认识酯的结构,会写酯的同分异构 体。 4.了解羧酸与醇之间发生的缩聚反应。
自主探究
精要解读
实验探究
活页规范训练
笃学一
羧酸的概念和分类
1.概念:由烃基(或氢原子)和 羧基 相连的化合物。 2.一元羧酸的通式: R—COOH ,官能团 —COOH 。
自主探究
精要解读
实验探究
活页规范训练
(1)利用羟基的活动性不同,可判断分子结构中羟基的类型。(2) 水分子中也有—OH,可看作—OH 上连有氢原子;醇分子可以 看作—OH 连在链烃基上,链烃基使—OH 中的 H 原子活性变
官能团之间的相互影响
官能团之间的相互影响在有机化学的学习中,掌握官能团的性质和它们之间的关系是学好有机化学的基本要求。
高中阶段必须掌握的官能团有:碳碳双键、碳碳叁键、卤素原子、羟基、醛基、羰基、羧基、氨基、硝基、磺酸基等。
有机物分子的官能团不同,则性质不同。
本文主要就官能团之间的影响,做一简要介绍:一、官能团的定位作用苯环上有连接有不同的基团或官能团,当进一步引入基团时,其引入的位置与原有官能团(基团)有关,而且不同的基团,还会使苯环的反应活性发生较大的变化。
1.邻对位定位基团,苯环的活性增强当苯环上连接烃基(甲基、乙基、苯基等)、氨基(-NH2、-NHR、-NR2,R为烷基)、羟基(—0H)、烷氧基(―0CH3、—OC2H5)等基团,使苯的反应活性增强,新引入的基团进入原基团的邻对位位置。
教材上制备硝基苯需要在浓硫酸、浓硝酸混酸与苯在55C条件下制得,而通常只能得到,很难得到二硝基化合物。
甲苯中新引入的一N02均处于甲基(一CH3)的邻位或对位。
在过量硝酸存在下,很容易得到三硝基化合物(TNT),这也看出甲基提高了苯环的活性。
2.邻对位定位基团——苯的活性减弱当苯环上连接有卤素原子(一F、一Cl、一Br、一I)—CH2CI、一CH= CH —等基团时,苯环的反应活性降低,这类反应比较特殊,往往需要在特殊溶剂、催化剂条件下才可能发生反应。
3.间位定位基当苯环上的取代基为-NO2、-SO3H、-SO2R、-COOH、-COOR、-CHO、-COR、-CN 等时,使苯环钝化,但邻位和对位钝化程度较间位大,在取代反应中,新取代基大多进入间位,形成间位异构体。
这类取代基称为有钝化作用的间位取代基。
如硝基苯在发烟硝酸、发烟硫酸存在下,长时间加热,可以制得少量的间硝基苯(),同时比较硝基苯的制法可以看出,硝基的引入使苯的活性降低,反应的条件明显提高。
二、官能团(基团)之间相互影响1.官能团(基团)之间的相互活化(1)苯环与烷烃基的相互活化当苯环上连接饱和链烃基时,苯环的活动性增强,使苯的取代变的比较容易,如苯硝化一般得到一硝基化合物,而甲苯硝化则可以得到三硝基化合物。
官能团之间的相互影响
官能团之间的相互影响在有机化学的学习中,掌握官能团的性质和它们之间的关系是学好有机化学的基本要求。
高中阶段必须掌握的官能团有:碳碳双键、碳碳叁键、卤素原子、羟基、醛基、羰基、羧基、氨基、硝基、磺酸基等。
有机物分子的官能团不同,则性质不同。
本文主要就官能团之间的影响,做一简要介绍:一、官能团的定位作用苯环上有连接有不同的基团或官能团,当进一步引入基团时,其引入的位置与原有官能团(基团)有关,而且不同的基团,还会使苯环的反应活性发生较大的变化。
1.邻对位定位基团,苯环的活性增强当苯环上连接烃基(甲基、乙基、苯基等)、氨基(-NH2、-NHR、-NR2,R 为烷基)、羟基(-OH)、烷氧基(-OCH3、-OC2H5)等基团,使苯的反应活性增强,新引入的基团进入原基团的邻对位位置。
教材上制备硝基苯需要在浓硫酸、浓硝酸混酸与苯在55℃条件下制得,而通常只能得到,很难得到二硝基化合物。
甲苯中新引入的-NO2均处于甲基(-CH3)的邻位或对位。
在过量硝酸存在下,很容易得到三硝基化合物(TNT),这也看出甲基提高了苯环的活性。
2.邻对位定位基团——苯的活性减弱当苯环上连接有卤素原子(-F、-Cl、-Br、-I)-CH2Cl、-CH=CH-等基团时,苯环的反应活性降低,这类反应比较特殊,往往需要在特殊溶剂、催化剂条件下才可能发生反应。
3.间位定位基当苯环上的取代基为-NO2、-SO3H、-SO2R、-COOH、-COOR、-CH O、-COR、-CN等时,使苯环钝化,但邻位和对位钝化程度较间位大,在取代反应中,新取代基大多进入间位,形成间位异构体。
这类取代基称为有钝化作用的间位取代基。
如硝基苯在发烟硝酸、发烟硫酸存在下,长时间加热,可以制得少量的间硝基苯(),同时比较硝基苯的制法可以看出,硝基的引入使苯的活性降低,反应的条件明显提高。
二、官能团(基团)之间相互影响1.官能团(基团)之间的相互活化(1)苯环与烷烃基的相互活化当苯环上连接饱和链烃基时,苯环的活动性增强,使苯的取代变的比较容易,如苯硝化一般得到一硝基化合物,而甲苯硝化则可以得到三硝基化合物。
鉴别几种不同的羟基
☆能熟练区分醇羟基、酚羟基、酸羟基的性质上的差异:醇中的羟基连在脂肪烃基、环烷烃基或苯环的侧链上,由于这些原子团多是供电子基团,使得与之相连的羟基上氢氧原子间的电子云密度变大,氢氧共价键得到加强,氢原子很难电离出来。
因此,在进行物质的分类时,我们把醇归入非电解质一类。
酚中的羟基直接连在苯环或其它芳香环的碳原子上,由于这些原子团是吸电子基团,
使得与之相连的羟基上氢氧原子间的电子云密度变小,氢氧共价键受到削弱,氢原子比醇羟基上的氢容易电离,因此酚类物质表现出一定的弱酸性。
羧酸中的羟基连在上,受到碳氧双键的影响,羟基氢原子比酚羟基上的氢原子容易电离,因此羧酸(当然是短链)的水溶液呈明显的酸性,比酚溶液的酸性要强得多。
相关对比:
酸性强弱对比:CH
3COOH>H
2
CO
3
>C
6
H
5
OH>HCO
3
-
结合H+能力大小:CH3COO-<HCO3-<C6H5O-<CO32-
故:C6H5OH+Na2CO3→C6H5ONa+NaHCO3。
三种羟基的区别和应用
02 三种羟基的区别
结构上的差异
醇羟基
醇羟基是连接在饱和碳原子上的,其 结构简式为R-OH。
酚羟基
羧基
羧基是由一个碳原子、两个氧原子和 一个氢原子组成的,其结构简式为RCOOH。
酚羟基是连接在芳香环上的,其结构 简式为Ar-OH。
性质上的差异
醇羟基
01
醇羟基具有较低的电负性,因此醇与金属钠反应生成醇钠和氢
气。
酚羟基
02
酚羟基具有较高的电负性,因此酚可以与氢氧化钠、氢氧化钾
等强碱反应生成酚钠或酚钾和水。
羧基
03
羧基具有较强的酸性,因此羧酸可以与碱反应生成羧酸盐和水。
反应性的差异
醇羟基
醇羟基的反应性较弱,可以与卤代烃、酯等发生取代 反应。
酚羟基
酚羟基的反应性较强,可以与卤代烃、羧酸等发生取 代反应。
羧基
羧基中的羟基可以与氨基发生缩合反应,合成 氨基酸。
合成有机酸
羧基中的羟基可以失去,生成有机酸,如乙酸、丙酸等。
04 三种羟基的相互转化
醇羟基转化为酚羟基
1
醇羟基转化为酚羟基通常需要氧化剂如硝酸、硝 酸银等,在加热条件下进行。
2
转化过程中,醇羟基的氢原子被氧化成水,同时 醇羟基转化为酚羟基,增加了苯环上的电子云密 度,增强了苯环的活化。
3
酚羟基具有酸性,可以与碱反应生成盐,也可与 醇发生酯化反应。
酚羟基转化为醇羟基
酚羟基转化为醇羟基通常需要还原剂如钠、氢气等,在加热或催化条件下 进行。
转化过程中,酚羟基的氧原子被还原成羟基,同时酚羟基转化为醇羟基, 增加了碳碳双键的电子云密度,增强了碳碳双键的活化。
醇羟基可以与羧酸发生酯化反应,也可与卤代烃发生取代反应。
羟基的红外特征吸收峰
羟基的红外特征吸收峰在红外光谱学中,羟基的红外特征吸收峰是一种常见的现象。
羟基(OH)是含有氧原子和氢原子的化学基团,广泛存在于许多有机和无机化合物中。
羟基的红外吸收峰提供了分析和鉴定这些化合物的重要信息。
本文将介绍羟基的红外特征吸收峰的起源、位置、强度和解释义务。
通过对羟基红外吸收峰的研究,我们可以更好地理解和应用红外光谱技术。
羟基的红外吸收峰起源于其中的振动模式。
振动是分子中原子相对于彼此的周期性运动。
在红外光谱中,常用波数(wavenumber)来表示振动,单位为cm-1。
羟基的红外吸收与氧原子和氢原子之间的振动有关。
羟基的红外吸收峰通常位于3000-3700 cm-1的波数范围内,称为O-H伸缩振动。
值得注意的是,羟基的红外吸收峰位置和强度可以受到一系列因素的影响。
其中最重要的是羟基的化学环境和氢键形成情况。
对于醇、酚和羧酸等化合物中的羟基,它们通常表现出单峰或宽峰吸收。
而在氨基酸和胺中,羟基的吸收峰会显示为双峰或多峰结构,这是由于不同的化学环境造成的。
对于醇和酚等化合物中的羟基,其红外吸收峰通常出现在3200-3600 cm-1的波数范围内。
这个峰的位置和形状与羟基的构象和双键等有关。
在无取代的醇和酚中,羟基的吸收峰常呈现为单峰,其位置约为3300-3400 cm-1。
而在取代醇和酚中,羟基的吸收峰位置和形状则会受到取代基的影响。
对于氨基酸和胺等含有羟基的化合物,红外光谱中的羟基吸收峰会呈现出特殊的结构。
这是由于氟的羟基会与分子内其他原子形成氢键而导致的。
氢键能够显著影响羟基振动频率和吸收峰的形状。
对于氨基酸,红外吸收峰通常会呈现两个主要峰,分别位于3300-3500 cm-1和3100-3300 cm-1。
通过对羟基红外吸收峰的解释,我们可以推断和确定化合物的结构和功能。
从吸收峰的位置和形状可以判断羟基的取代情况、氢键形成程度以及分子内或分子间的相互作用。
这对于药物研发、有机合成和材料科学等领域具有重要的意义。
羧酸知识点
羧酸一、羧酸的结构与分类1.乙酸的组成与结构乙酸的分子式为C2H4O2,结构式为,结构简式为CH3COOH,官能团是—COOH。
2.写出下列各种酸的结构简式,并填空:①乙酸:CH3COOH;②硬脂酸:C17H35COOH;③苯甲酸:C6H5COOH;④油酸:C17H33COOH;⑤乙二酸:HOOC—COOH。
(1)从上述酸的结构可以看出,羧酸可以看作是由羧基和烃基相连而构成的化合物。
其通式可表示为R—COOH,官能团为—COOH。
(2)按不同的分类标准对羧酸进行分类:若按羧酸分子中烃基的结构分类,上述物质中的①②④属于脂肪酸,③属于芳香酸。
若按羧酸分子中羧基的数目分类,上述物质中的①②③④属于一元酸,⑤属于二元酸。
[归纳总结][活学活用]1.羧酸是一类非常重要的有机物,下列关于羧酸的说法中正确的是()A.羧酸在常温常压下均为液态物质B.羧酸的通式为C n H2n+2O2C.羧酸的官能团为—COOHD.只有链烃基与羧基相连的化合物才叫羧酸答案 C解析羧酸的官能团为羧基,可写为—COOH或写为羧酸除包括链烃基与羧基相连的有机物外,环烃基、芳香烃基等与羧基相连得到的二、羧酸的化学性质1.乙酸的性质(1)乙酸俗名醋酸,是一种无色液体,具有强烈刺激性气味,易溶于水和乙醇。
(2)乙酸是一种弱酸,其酸性比碳酸的强,具有酸的通性。
在水中可以电离出H+,电离方程式为CH3COOH CH3COO-+H+。
①与酸碱指示剂作用,能使石蕊溶液变红。
②与Mg反应的化学方程式为Mg+2CH3COOH===(CH3COO)2Mg+H2↑。
③与CaO反应的化学方程式为CaO+2CH3COOH===(CH3COO)2Ca+H2O。
④与Cu(OH)2反应的化学方程式为Cu(OH)2+2CH3COOH===(CH3COO)2Cu+2H2O。
⑤与Na2CO3反应的化学方程式为Na2CO3+2CH3COOH===2CH3COONa+CO2↑+H2O。
羟基类、羰基类比较
芳香醇
酚
CH 3CH 2OH C6 H 5 CH 2OH C6 H 5 OH -OH -OH -OH
-OH 与链烃基 相连
-OH 与芳烃侧
链相连
-OH 与苯环直 接相连
(1)弱酸性 (2)取代反应 (3)显色反应
( 1 )与钠反应( 2 )取代反应 ( 3 )脱水反应( 4 )氧化反应 (5)酯化反应 红热铜丝插入醇中有刺激性气 味(生成醛或铜)
加 成 消 去 加 水
NaOH
R’ OH
(NaOH △)
R ’ CH2=CH2
卤代烃、醇、醛、羧酸、酯是怎样相互转化的?
叙述工业上或实验室实现相互转化的方法。
1、与银氨溶液反应 水浴加热 CH3CHO+2[Ag(NH3)2]++2OH CH3COO-+NH4++2Ag+3NH3+H2O 2、与新制的氢氧化铜反应
3.设置问题情境,培养学生良好的思维模式 醇 (1) CH3CH2—CH—CH3+NaOH △ Br 思维: 醇 ①CH3Br+NaOH △ 醇 ②CH2=CH—CH—CH3+NaOH △ Br
浓硫酸 ③CH3—CH—CH2CH3 △ OH
+ H ④CH3—CH=CH2+H2O
(2)分子式为 C6H14O的醇A经催化氧化得一分子 式为C6H12O的有机物B,已知B能发生银镜反应, 则写出A可能的结构简式_________________ 伯醇(—CH2OH)
三溴苯酚
苯酚与溴的取代反应比苯、甲苯易进行
酚羟基对苯环的影响使苯环上的氢原子变得活 泼、易被取代
羟基和烃基
羟基和烃基羟基和烃基是有机化学中常见的两个基团,它们在化学性质和反应上有很大的差异,同时也在许多有机化合物中发挥着重要的作用。
羟基(-OH)是由一个氢原子和一个氧原子组成的官能团。
它可以与碳原子直接相连,形成醇或酚等有机化合物。
醇类化合物通常具有亲水性,因为羟基能够与水形成氢键,使其在水中有较好的溶解性。
此外,羟基还可以参与许多化学反应,如酯化反应、氧化反应等。
醇羟基的化学性质相对较活泼,可以进行酯化、脱水、氧化等反应。
酯化反应是醇与羧酸反应生成酯的过程,是一种重要的有机合成反应。
脱水反应可以生成烯烃或醚,例如乙醇在浓硫酸的作用下加热可以脱水生成乙烯。
氧化反应可以使醇氧化为醛或酮。
酚羟基则具有一些特殊的性质。
酚类化合物通常具有一定的酸性,因为酚羟基的氧原子上孤电子对能够接受质子,使其呈现出酸性。
酚还容易发生氧化反应,形成醌类化合物。
烃基是只含有碳和氢两种原子的基团,通常用“-R”表示,其中“R”代表烃基的具体结构。
烃基可以是烷基(如甲基、乙基等)、烯基、炔基等。
烃基的化学性质相对稳定,它们在有机化合物中可以作为取代基出现,对化合物的性质和反应性产生影响。
烷基可以通过取代反应、加成反应等与其他官能团或化合物发生反应。
例如,烷基可以与卤素发生取代反应,生成卤代烷;也可以与双键或三键发生加成反应。
烯基和炔基则具有一些特殊的反应性,如加成、聚合等。
此外,烃基的大小和结构也会对有机化合物的性质产生影响。
长链烷基会增加化合物的溶解性和沸点,而不饱和烃基(如烯基和炔基)会使化合物具有双键或三键的反应性。
总的来说,羟基和烃基在有机化学中具有重要的地位。
它们的存在和性质决定了有机化合物的特点和反应性。
对羟基和烃基的深入研究有助于我们更好地理解和设计有机化合物的合成、性质和应用。
同时,这两个基团在生物化学、药物化学、材料科学等领域也有着广泛的应用。
例如,醇类和酚类化合物在药物研发中具有重要地位,而烃基则常用于合成各种有机材料。