北师大版-数学-八年级上册- 一次函数的应用 课后拓展训练

合集下载

第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册

第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册

第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册一、利用一次函数模型解决实际问题例1.实验表明,在某地,温度在15℃至25℃的范围内,一种蟋蟀1min的平均鸣叫次数y可近似看成该地当时温度x(℃)的一次函数.已知这种蟋蟀在温度为16℃时,1min平均鸣叫92次;在温度为23℃时,1min平均鸣叫155次.(1)求y与x之间的函数表达式;(2)当这种蟋蟀1min平均鸣叫128次时,该地当时的温度约是多少?变式1.如图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度y(单位:cm)随着碗的数量x(单位:个)的变化规律.下表是小亮经过测量得到的y与x之间的对应数据:x/个1234y/cm68.410.813.2(1)依据小亮测量的数据,写出y与x之间的函数表达式,并说明理由;(2)若整齐叠放成一摞的这种规格的碗的总高度不超过28.8cm,求此时碗的数量最多为多少个?变式2.某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.二、利用一次函数解决行程问题例2.小军到某景区游玩,他从景区入口处步行到达小憩屋,休息片刻后继续前行,此时观光车从景区入口处出发的沿相同路线先后到达观景点,如图,l1,l2分别表示小军与观光车所行的路程y(m)与时间x(min)之间的关系.根据图象解决下列问题:(1)观光车出发分钟追上小军;(2)求l2所在直线对应的函数表达式;(3)观光车比小军早几分钟到达观景点?请说明理由.变式1.在一条笔直的道路上依次有A,B,C三地,男男从A地跑步到C地,同时乐乐从B地跑步到A地,休息1分钟后接到通知,要求乐乐比男男早1分钟到达C地,两人均匀速运动,如图是男男跑步时间t(分钟)与两人距A 地路程s(米)之间的函数图象.(1)a=,乐乐去A地的速度为;(2)结合图象,求出乐乐从A地到C地的函数解析式(写出自变量的取值范围);(3)请直接写出两人距B地的距离相等的时间.变式2.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s (km)与慢车行驶的时间t(h)之间的关系如图:(1)快车的速度为km/h,C点的坐标为.(2)慢车出发多少小时后,两车相距200km.变式3.某物流公司的一辆货车A从乙地出发运送货物至甲地,1小时后,这家公司的一辆货车B从甲地出发送货至乙地.货车A、货车B距甲地的距离y(km)与时间x(h)之间的关系如图所示.(1)求货车B距甲地的距离y与时间x的关系式;(2)求货车B到乙地后,货车A还需多长时间到达甲地.三、利用一次函数解决最低费用和最高利润问题例3.某校开设棋类社团,购买了五子棋和象棋.五子棋比象棋的单价少8元,用1000元购买的五子棋数量和用1200元购买的象棋数量相等.(1)两种棋的单价分别是多少?(2)学校准备再次购买五子棋和象棋共30副,根据学生报名情况,购买五子棋数量不超过象棋数量的3倍.问购买两种棋各多少副时费用最低?最低费用是多少?变式1.眉山是“三苏”故里,文化底蕴深厚.近年来眉山市旅游产业蓬勃发展,促进了文创产品的销售,某商店用960元购进的A款文创产品和用780元购进的B款文创产品数量相同.每件A款文创产品进价比B款文创产品进价多15元.(1)求A,B两款文创产品每件的进价各是多少元?(2)已知A款文创产品每件售价为100元,B款文创产品每件售价为80元,根据市场需求,商店计划再用不超过7400元的总费用购进这两款文创产品共100件进行销售,问:怎样进货才能使销售完后获得的利润最大,最大利润是多少元?变式 2.近年来,中国传统服饰备受大家的青睐,走上国际时装周舞台,大放异彩.某服装店直接从工厂购进长、短两款传统服饰进行销售,进货价和销售价如表:价格/类别短款长款进货价(元/件)8090销售价(元/件)100120(1)该服装店第一次用4300元购进长、短两款服装共50件,求两款服装分别购进的件数;(2)第一次购进的两款服装售完后,该服装店计划再次购进长、短两款服装共200件(进货价和销售价都不变),且第二次进货总价不高于16800元.服装店这次应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?变式3.某小区物管中心计划采购A,B两种花卉用于美化环境.已知购买2株A 种花卉和3株B种花卉共需要21元;购买4株A种花卉和5株B种花卉共需要37元.(1)求A,B两种花卉的单价.(2)该物管中心计划采购A,B两种花卉共计10000株,其中采购A种花卉的株数不超过B种花卉株数的4倍,当A,B两种花卉分别采购多少株时,总费用最少?并求出最少总费用.变式4.A、B两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A、B两种型号的吉祥物,有关信息见如表:成本(单位:元/个)销售价格(单位:元/个)A型号35aB型号42b若顾客在该超市购买8个A种型号吉祥物和7个B种型号吉祥物,则一共需要670元;购买4个A种型号吉祥物和5个B种型号吉祥物,则一共需要410元.(1)求a、b的值;(2)若某公司计划从该超市购买A、B两种型号的吉祥物共90个,且购买A 种型号吉祥物的数量x(单位:个)不少于B种型号吉祥物数量的,又不超过B种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为y元,求y的最大值.变式5.成都某知名小吃店计划购买A,B两种食材制作小吃.已知购买1千克A 种食材和1千克B种食材共需68元,购买5千克A种食材和3千克B种食材共需280元.(1)求A,B两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A种食材千克数不少于B种食材千克数的2倍,当A,B两种食材分别购买多少千克时,总费用最少?并求出最少总费用.变式6.某县著名传统土特产品“豆笋”、“豆干”以“浓郁豆香,绿色健康”享誉全国,深受广大消费者喜爱.已知2件豆笋和3件豆干进货价为240元,3件豆笋和4件豆干进货价为340元.(1)分别求出每件豆笋、豆干的进价;(2)某特产店计划用不超过10440元购进豆笋、豆干共200件,且豆笋的数量不低于豆干数量的,该特产店有哪几种进货方案?(3)若该特产店每件豆笋售价为80元,每件豆干售价为55元,在(2)的条件下,怎样进货可使该特产店获得利润最大,最大利润为多少元?变式7.近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?四、利用一次函数解决含参数的最高利润问题例4.在襄阳市创建“经济品牌特色品牌”政策的影响下.每到傍晚,市内某网红烧烤店就食客如云,这家烧烤店的海鲜串和肉串非常畅销,店主从食品加工厂批发以上两种产品进行加工销售,其中海鲜串的成本为m元/支,肉串的成本为n元/支;两次购进并加工海鲜串和肉串的数量与成本如下表所示(成本包括进价和其他费用):次数数量(支)总成本(元)海鲜串肉串第一次3000400017000第二次4000300018000针对团以消费,店主决定每次消费海鲜串不超过200支时,每支售价5元;超过200支时、不超过200支的部分按原价,超过200支的部分打八折.每支肉串的售价为3.5元.(1)求m、n的值;(2)五一当天,一个旅游团去此店吃烧烤,一次性消费海鲜串和肉串共1000支,且海鲜串不超过400支.在本次消费中,设该旅游团消费海鲜串x支,店主获得海鲜串的总利润为y元,求y与x的函数关系式,并写出自变量x的取值范围;(3)在(2)的条件下,该旅游团消费的海鲜串超过了200支,店主决定给该旅游团更多优惠,对每支肉串降价a(0<a<1)元,但要确保本次消费获得肉串的总利润始终不低于海鲜串的总利润,求a的最大值.变式1.为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:甲乙运动鞋价格进价(元/双)m m﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?变式2.为了振兴乡村经济,我市某镇鼓励广大农户种植山药,并精加工成甲、乙两种产品、某经销商购进甲、乙两种产品,甲种产品进价为8元/kg;乙种产品的进货总金额y(单位:元)与乙种产品进货量x(单位:kg)之间的关系如图所示.已知甲、乙两种产品的售价分别为12元/kg和18元/kg.(1)求出0≤x≤2000和x>2000时,y与x之间的函数关系式;(2)若该经销商购进甲、乙两种产品共6000kg,并能全部售出.其中乙种产品的进货量不低于1600kg,且不高于4000kg,设销售完甲、乙两种产品所获总利润为w元(利润=销售额﹣成本),请求出w(单位:元)与乙种产品进货量x(单位:kg)之间的函数关系式,并为该经销商设计出获得最大利润的进货方案;(3)为回馈广大客户,该经销商决定对两种产品进行让利销售.在(2)中获得最大利润的进货方案下,甲、乙两种产品售价分别降低a元/kg和2a元/kg,全部售出后所获总利润不低于15000元,求a的最大值.变式3.为迎接“五一”小长假购物高潮,某品牌专卖店准备购进甲、乙两种衬衫,其中甲、乙两种衬衫的进价和售价如下表:衬衫价格甲乙m m﹣10进价(元/件)260180售价(元/件)若用3000元购进甲种衬衫的数量与用2700元购进乙种衬衫的数量相同.(1)求甲、乙两种衬衫每件的进价;(2)要使购进的甲、乙两种衬衫共300件的总利润不少于34000元,且不超过34700元,问该专卖店有几种进货方案;(3)在(2)的条件下,专卖店准备对甲种衬衫进行优惠促销活动,决定对甲种衬衫每件优惠a元(60<a<80)出售,乙种衬衫售价不变,那么该专卖店要获得最大利润应如何进货?五、利用一次函数解决方案问题例5.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.变式1.某水果店购进甲、乙两种苹果的进价分别为8元/kg、12元/kg,这两种苹果的销售额y(单位:元)与销售量x(单位:kg)之间的关系如图所示.(1)写出图中点B表示的实际意义;(2)分别求甲、乙两种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式,并写出x的取值范围;(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为a kg时,它们的利润和为1500元,求a的值.。

北师大版八年级(上)数学《一次函数的图象》课后拓展训练(含答案)

北师大版八年级(上)数学《一次函数的图象》课后拓展训练(含答案)

4.3一次函数的图象1.若一次函数y=kx+b的函数值y随x的增大而减小,且图象与y轴的正半轴相交,那么对k,b的符号判断正确的是( )A.k>0,b>0 B.k>0,b<0C.k<0,b>0 D.k<0,b<02.小亮每天从家去学校上学行走的路程为900米,某天他从家去上学时以每分30米的速度行走了450米,为了不迟到他加快了速度,以每分45米的速度行走完剩下的路程,那么小亮行走过的路程s(米)与他行走的时间t(分)之间的函数关系用图象表示正确的是(如图6-14所示) ( )3.如图6-15所示的几个图象中,不可能是关于x的一次函数y=mx-(m-2)的图象的是( )4.已知m是整数,且一次函数y=(m+4)x+m+2的图象不经过第二象限,则m 为( )A.-3 B.-2 C.-1 D.-3或-2 5.若一次函数y=kx+b的图象经过点(x1,y1)和(x2,y2),且k>0,b<0,则当x1<0<x2时,有( )A.y1>b>y2B.y1<b<y2C.y1<y2<0 D.y1>y2>0 6.若正比例函数y=(m-1)2-3m x的图象经过第二、四象限,则m的值是.7.一次函数y=(2m-6)x+5中,y随x的增大而减小,则m的取值范围是.8.若点M(-2,k)在直线y=2x+1上,则M到x轴的距离d=.9.某种型号的摩托车的油箱最多可以储油8 L,加满油后,油箱中的剩余油量y(L)与摩托车行驶路程x(km)之间的关系如图6-16所示.根据图象回答下列问题.(1)一箱汽油可供摩托车行驶多少千米?(2)摩托车每行驶100 km消耗多少升汽油?(3)油箱中的剩余油量小于1L时,摩托车将自动报警,行驶多少千米后,摩托车将自动报警?参考答案1.C2.D3.C4.D5.B[提示:因为k>0,所以y=kx+b的值随x的增大而增大,又因为x1<0<x2,b<0,所以y1<b<y2.]6.-27.m<38.39.解:(1)当y=0时,x=400,所以一箱汽油可供摩托车行驶400 km.(2)x 从0增加到100时,y从8减少到6,减少了2,所以摩托车每行驶100 km消耗2 L汽油.(3)当y=1时,x=350,所以行驶了350 km后,摩托车将自动报警.。

北师大版八年级数学上册一次函数的应用(二)习题课件

北师大版八年级数学上册一次函数的应用(二)习题课件

有( B )
A. 5个
B. 4个
C. 3个
D. 2个
探究新知
知识点 直角坐标系中,单个一次函数的应用
一般地,当一次函数y=kx+b的函数值为__0____时,相应 的自变量的值就是方程kx+b=0的解. 从图象上看,一次 函数y=kx+b的图象与x轴交点的__横____坐标就是方程kx+ b=0的解.
(3)当y=12时,12=-0.18x+300. 解得x=1 600. 答:当货车行驶了1 600 km后,货车将自动报警.
【例3】(教材创新题)某汽车离某城市的距离y(km)与 行驶时间t(h)之间的关系式为y=kt+30,其函数图象如 图4-6-4所示. (1)在1 h至3 h之间,汽车行驶 的路程是多少? (2)你能确定k的值吗?这里k的 具体含义是什么?
(2)干旱持续10天,蓄水量是多少?干旱持续23天呢?( 3)蓄水量小于400万m3时,将发出严重干旱警报,干旱持 续多少天后将发出严重干旱警报? (4)按照这个规律,估计干旱持续多少天水库将干涸?
解:(1)根据题意,可得水库干旱前的蓄水量 是1 200万m3.
(2)设蓄水量V与干旱持续时间t的函数关系式为V=kt+b. 因为图象经过(0,1 200)和(50,200), 所以b=1 200,① 50k+b=200.② 解得k=-20,b=1 200. 所以V=-20t+1 200.当t=10时,V=1 000; t=23时,V=740. 答:干旱持续10天,蓄水量是1 200万m3;干旱持续23天 ,蓄水量是740万m3.
一根蜡烛长20 cm,点燃后每小时燃烧5 cm,燃烧时剩下的 长度为y(cm)与燃烧时间x(h)的函数关系用图象可表示 为( B )
课堂导练
【例1】(课本P91习题)由于持续高和蔼连日无雨,某水 库的蓄水量随着时间的增加而减少,蓄水量V(万m3)与干 旱持续时间t(天)的关系如 图4-6-1所示,根据图象回答下 列问题: (1)水库干旱前的蓄水量是多少?

北师大版八年级数学上册《4.4一次函数的应用》练习题(附带参考答案)

北师大版八年级数学上册《4.4一次函数的应用》练习题(附带参考答案)

北师大版八年级数学上册《4.4一次函数的应用》练习题(附带参考答案)学校:___________班级:___________姓名:___________考号:___________一、选择题x+3沿y轴向下平移6个单位后,得到一条新的直线,该直线与x轴1.在平面直角坐标系中,将直线y=−32的交点坐标是()A.(−2,0)B.(6,0)C.(4,0)D.(0,−3)2.如图,一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象是()A. B. C. D.3.已知M(﹣3,y1),N(2,y2)是直线y=﹣3x+1上的两个点,则y1、y2的大小关系是()A.y1<y2 B.y1>y2 C.y1≥y2 D.y1=y24.函数y=kx+b的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为()A.x=1 B.x=﹣2 C.x=0 D.x=35.已知点M(3,-2)与点M′(x,y)在同一条平行于x轴的直线上,且M′到y轴的距离等于4,那么点M′的坐标是()A.(4,2)或(-4,2)B.(4,-2)或(-4,-2)C.(4,-2)或(-5,-2)D.(4,-2)或(-1,-2)6.某电信公司推出两种不同的收费标准:A种方式是月租20元;B种方式是月租0元.一个月本地网内打出电话费S(元)与打出时间t(分)的函数图象如图所示,当打出150分钟时,这两种方式的电话费相差()A .5元B .10元C .15元D .20元7.如图,在平面直角坐标系中,直线y =ax +b 与两坐标轴的交点分别为(2,0),(0,3)则不等式ax +b >0的解为( )A .x >2B .x <2C .x >3D .x <38.一次函数y =kx +3的图象经过点(−1,5),若自变量x 的取值范围是−2≤x ≤5,则y 的最小值是( )A .−10B .−7C .7D .11二、填空题9.已知直线y=kx+b 与直线y=-3x 平行,且经过点(2,4),则b 的值是 .10.已知直线l 与直线y =−2x +1平行,且经过点(−3,5),则直线l 的函数表达式为 .11.若直线y =−x +a 和直线y =x +b 的交点坐标为(m ,3),则a +b = .12.直线l 1:y =ax +b 与直线l 2:y =kx 在同一平面直角坐标系中的图象如图所示,则关于x 的一元一次方程ax +b =kx 的解是 .13.已知函数y 1=x −2与y 2={(x −1)2−1(x ⩽3)−x +6(x >3),若y 1=y 2,则x 的值是 . 三、解答题14. 已知一次函数的图象经过A(−2,4) B(1,1).(1)求一次函数解析式;(2)若正比例函数y =mx(m ≠0)与线段AB 有公共点,直接写出m 的取值范围.15.如图,过点A(−2,0)的直线l1:y=kx+b与直线l2:y=−x+1交于P(−1,a).(1)求直线l1对应的表达式;(2)求四边形PAOC的面积.16.科学调查结果显示:当中学生电子产品日平均使用时间小于30分钟时,近视率较低.使用时长从30分钟到1小时的过程中,近视率会急剧上升,研究发现近视率y是日平均使用时长x(分钟)的一次函数,当日平均使用时长为30分钟时,近视率为10%,当日平均使用时间为60分钟时,近视率为70%.(1)求y与x之间的函数表达式;(2)当日平均使用时间为40分钟时,近视率是多少?17.卷蹄是云南少数民族的传统美食,素以色鲜味美、食法多样、易于贮存而深受人们的喜爱,其中尤以弥渡县一带所制最为有名,故又称“弥渡卷蹄”.某经销商准备从一卷蹄加工厂购进甲、乙两种卷蹄进行销售,加工厂的厂长为了答谢经销商,对甲种卷蹄的出售价格根据购买量给予优惠,对乙种卷蹄按80元/千克的价格出售,设经销商购进甲种卷蹄x千克,付款y元,y与x之间的函数关系如图所示.(1)求y与x之间的函数关系式.(2)若经销商计划一次性购进甲、乙两种卷蹄共100千克,其中甲种卷蹄不少于40千克且不超过70千克,如何分配甲、乙两种卷蹄的购进量,才能使经销商付款总金额w最少?参考答案1.A2.A3.B4.A5.B6.B7.B8.B9.1010.y =−2x −111.612.x =−113.1或2或414.(1)解:设一次函数解析式为y =kx +b将A ,B 两点坐标代入函数解析式得{−2k +b =4k +b =1解得{k =−1b =2所以一次函数解析式为y =−x +2.(2)解:将A 点坐标代入y =mx 得m =−2将B 点坐标代入y =mx 得m =1又正比例函数y =mx 的图象与线段AB 有公共点所以m ≥1或m ≤−2.15.(1)解:把P(−1,a)代入y =−x +1得a =2,则P 点坐标为(−1,2);把A(−2,0),P(−1,2)代入y =kx +b 得:{0=−2k +b 2=−k +b解得{k =2b =4所以直线l 1的表达式为:y =2x +4;(2)解:∵y =−x +1交x 轴于B ,交y 轴于C∴B(1,0) C(0,1)∴S 四边形PAOC =S △PAB −S △COB =12×AB ×y P −12×OB ×OC =12×3×2−12×1×1=52.16.(1)解:由题意设y 与x 之间的函数表达式为y =kx+b把x =30,y =10%与x =60,y =70%代入可得:{30k +b =10%60k +b =70%,解得:{k =150b =12 ∴y 与x 之间的函数表达式为y =150x −12;(2)解:当x =40时y =150×40−12=0.3=30%∴当日平均使用时间为40分钟时,近视率是30%.17.(1)解:当0≤x ≤50时设y =k 1x ,将(50,4500)代入,得50k 1=4500解得k 1=90所以当0≤x ≤50时y =90x .当x >50时设y =k 2x +b ,将(50,4500),(90,7300)代入,得{50k 2+b =450090k 2+b =7300解得{k 2=70b =1000所以当x >50时y =70x +1000所以y 与x 之间的函数关系式为y ={90x(0≤x ≤50)70x +1000(x >50); (2)解:由题意,知40≤x ≤70,分两种情况:当40≤x ≤50时w =90x +80(100−x)=10x +8000.∵10>0∴w 随x 的增大而增大当x =40时,w 最小,最小值为8400.当50<x ≤70时w =70x +1000+80(100−x)=−10x +9000.∵−10<0∴w 随x 的增大而减小当x =70时,w 最小,最小值为8300.∵8400>8300∴当x =70时,付款总金额最少,最少金额为8300元此时购进乙种卷蹄100−70=30(千克).答:当购进甲种卷蹄70千克,乙种卷蹄30千克时,才能使经销商付款总金额最少.。

八年级数学综合提优3:一次函数的应用拓展训练

八年级数学综合提优3:一次函数的应用拓展训练

八年级数学:一次函数的应用拓展训练【考点训练】:1、坐标平面上,有一线性函数过(﹣3,4)和(﹣7,4)两点,判断此函数图形会过哪两象限?()A.第一象限和第二象限B.第一象限和第四象限C.第二象限和第三象限D.第二象限和第四象限2、某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系3、如图,在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为(﹣2,0),(﹣1,0),BC⊥x轴,将△ABC以y轴为对称轴作轴对称变换,得到△A′B′C′(A和A′,B和B′,C和C′分别是对应顶点),直线y=x+b经过点A,C′,则点C′的坐标是.(第3题图) (第4题图) (第5题图)4、梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含l0千克)的种子,超过l0千克的那部分种子的价格将打折,并依此得到付款金额y(单位:元)与一次购买种子数量x(单位:千克)之间的函数关系如图所示.下列四种说法:①一次购买种子数量不超过l0千克时,销售价格为5元/千克;②一次购买30千克种子时,付款金额为100元;③一次购买10千克以上种子时,超过l0千克的那部分种子的价格打五折:④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱.其中正确的个数是( ).(A)1个 (B)2个 (C)3个 (D) 4个5、钓鱼岛自古就是中国领土,中国政府已对钓鱼岛开展常态化巡逻.某天,为按计划准点到达指定海域,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程y(海里)与所用时间t(小时)的函数图象,则该巡逻艇原计划准点到达的时刻是.6、在平面直角坐标系xOy中,已知点A(0,1),B(1,2),点P在x轴上运动,当点P到A、B两点距离之差的绝对值最大时,点P的坐标是。

北师大版八年级(上)数学《一次函数》回顾与思考拓展习题(含答案)

北师大版八年级(上)数学《一次函数》回顾与思考拓展习题(含答案)

一次函数 拓展训练1.若点(m ,n )在函数y=2x+1的图象上,则2m ﹣n 的值是( ) A .2B .﹣2C .1D .﹣12.一次函数y=mx+∣m-1∣的图象过点(0,2)且y 随x 的增大而增大,则m=( ) A .-1 B .3 C . 1 D .-1或33.下列四组点中,可以在同一个正比例函数图象上的一组点是( ) A .(2.-3),(-4,6) B .(-2,3),(4,6) C .(-2,-3),(4,-6) D .(2,3),(-4,6)4.面直角坐标系中,点O 为原点,直线y kx b =+交x 轴于点A(-2,0),交y 轴于点B .若△AOB 的面积为8,则k 的值为( )A .1B .2C .-2或4D .4或-45.面直角坐标系中,把直线y=2x 向左平移一个单位长度后,其直线解析式为( )A .y=2x+1 B.y=2x+2 C.y=2x D. y=2x-26.在平面直角坐标系中,对于函数①y=-x-1,②y=x+1,③y=-x+1,④y=-2(x+1)的图象,下列说法正确的是( ) A .通过点(-1,0)的是①③ B .交点在y 轴上的是②④ C .相互平行的是①③ D .关于x 轴对称的是②④7.若函数222-+-=+n x y m 是正比例函数,则m 的值是 ,n 的值为 8.一次函数y=kx+b 中,y 随x 的增大而减小,且kb>0,则这个函数的图象一定不经过第 象限.9.如图,一次函数y=kx+b 的图象与正比例函数y=2x 的图象平行且经过点A (1,﹣2),则kb=10.一辆汽车在行驶过程中,路程 y (千米)与时间 x (小时)之间的函数关系如图所示 当时 0≤x ≤1,y 关于x 的函数解析式为 ,那么当 1≤x ≤2时,y 关于x 的函数解析式为 _ .11.如图,射线OA 、BA 分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s 、t 分别表示行驶距离和时间,则这两人骑自行车的速度相差 _ km/h .12.如图,在平面直角坐标系中,A 、B 均在边长为1的正方形网格格点上.求线段AB 所在直线的函数解析式,并写出当0<y ≤1时,自变量x 的取值范围是 。

2022-2023学年北师大版八年级数学上册《4-4一次函数的应用》解答题优生辅导训练(附答案)

2022-2023学年北师大版八年级数学上册《4-4一次函数的应用》解答题优生辅导训练(附答案)

2022-2023学年北师大版八年级数学上册《4.4一次函数的应用》解答题优生辅导训练(附答案)1.一次函数y=﹣x+2的图象经过A(0,a)、B(b,0)两点.(1)求a、b的值,并画出一次函数的图象;(2)点C是第一象限内一点,△ABC为等腰直角三角形且∠C=90°,求点C的坐标;(3)在(2)的条件下,将直线BC向左平移恰好经过点A时与x轴交于点D.求直线AD、AB与x轴所围成的三角形的面积.2.如图,在直角坐标系中,A(1,4),B(1,1),C(5,1),点D是x轴上的动点.(1)四边形ABDC的面积是;(2)当直线AD平分△ABC的面积时,求此时直线的表达式;(3)当△ACD的面积是10时,直接写出点D的坐标.3.如图①,平面直角坐标系中,直线y=kx+b与x轴交于点A(﹣10,0),与y轴交于点B,与直线y=﹣x交于点C(a,7).(1)求点C的坐标及直线AB的表达式;(2)如图②,在(1)的条件下,过点E作直线l⊥x轴,交直线y=﹣x于点F,交直线y=kx+b于点G,若点E的坐标是(﹣15,0).①求△CGF的面积;②点M为y轴上OB的中点,直线l上是否存在点P,使PM﹣PC的值最大?若存在,直接写出这个最大值;若不存在,说明理由;(3)若(2)中的点E是x轴上的一个动点,点E的横坐标为m(m<0),点E在x轴上运动,当m取何值时,直线l上存在点Q,使得以A,C,Q为顶点的三角形与△AOC 全等?请直接写出相应的m的值.4.如图,已知点A(2,﹣5)在直线l1:y=2x+b上,l1和l2:y=kx﹣1的图象交于点B,且点B的横坐标为8.(1)直接写出b、k的值;(2)若直线l1、l2与y轴分别交于点C、D,点P在线段BC上,满足S△BDP=S△BDC,求出点P的坐标;(3)若点Q是直线l2上一点,且∠BAQ=45°,求出点Q的坐标.5.如图,在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2).(1)求直线AC的表达式;(2)求△OAC的面积;(3)动点M在线段OA和射线AC上运动,是否存在点M,使△OMC的面积是△OAC 的面积的?若存在,求出此时点M的坐标;若不存在,请说明理由.6.如图,在平面直角坐标系中,点D是边长为4cm的正方形ABCO的边AB的中点,直线y=x交BC于点E,连接DE并延长交x轴于点F.(1)求出点E的坐标;(2)求证:△ODE是直角三角形;(3)过D作DH⊥x轴于点H,动点P以2cm/s的速度从点D出发,沿着D→H→F方向运动,设运动时间为t,当t为何值时,△PEH是等腰三角形?7.如图,A,B是直线y=x+4与坐标轴的交点,直线y=﹣2x+b过点B,与x轴交于点C.(1)求A,B,C三点的坐标;(2)当点D是AB的中点时,在x轴上找一点E,使ED+EB的和最小,画出点E的位置,并求E点的坐标.(3)若点D是折线A﹣B﹣C上一动点,是否存在点D,使△ACD为直角三角形,若存在,直接写出D点的坐标;若不存在,请说明理由.8.如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=﹣x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.(1)求点A、点B、点C的坐标,并求出△COB的面积;(2)若直线l2上存在点P(不与B重合),满足S△COP=S△COB,请求出点P的坐标;(3)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M在点N的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.9.如图,直线l:y=﹣x+6与x轴、y轴分别交于A、B两点,AC⊥x轴,BC⊥y轴.如果点E由点O出发沿OA方向向点A匀速运动,同时点D由点C出发沿CB方向向点B 匀速运动,它们的速度分别为每秒2个单位长度和每秒1个单位长度.DF⊥OA,分别交AB、OA于点P和F,设运动时间为t秒(0<t<4).(1)求线段AB的长;(2)连接DE与AB交于点Q,当t为何值时,DE⊥AB?(3)连接EP,当△EP A的面积为3时,求t的值.10.如图,直线l:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一定点P(0,6).动点Q从A点出发以每秒1个单位的速度匀速沿x轴向左移动.(1)请直接写出点A和点B的坐标;(2)求△POQ的面积S与Q的移动时间t之间的函数关系式;(3)当t为何值时,△POQ≌△AOB,求出此时点Q的坐标.11.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在y轴上运动.(1)求直线AB的函数关系式;(2)当点M的坐标为时,AM+BM的长最小;(3)在y轴的负半轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.12.某天早上,小军来到学校大门口时,才发现饭卡还在家里.此时离学校大门关闭的时间还有15分钟.于是他立即步行回家取饭卡,同时打电话告诉他父亲将饭卡沿路送来.他父亲从家里出发骑摩托车以他5倍的速度给他送饭卡,两人在途中相遇,随后小军立即坐父亲的摩托车赶回学校.,如图中线段AB、OB分别表示父子俩送卡、取卡过程中,离学校大门的路程S(米)与所用时间t(分钟)之间的函数关系,结合图象解答下列问题(假设骑摩托车和步行的速度始终保持不变):(1)求点B的坐标和AB所在直线的函数关系式;(2)小军能否在学校大门关闭前到达学校?13.如图,已知直线l1:y=﹣x+2与直线l2:y=2x+8相交于点F,l1、l2分别交x轴于点E、G,矩形ABCD顶点C、D分别在直线l1、l2,顶点A、B都在x轴上,且点B与点G重合.(1)求点F的坐标和∠GEF的度数;(2)求矩形ABCD的边DC与BC的长;(3)若矩形ABCD从原地出发,沿x轴正方向以每秒1个单位长度的速度平移,设移动时间为t(0≤t≤6)秒,矩形ABCD与△GEF重叠部分的面积为s,求s关于t的函数关系式,并写出相应的t的取值范围.14.某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式;(3)小英家3月份用水24吨,她家应交水费多少元?15.如图所示,平面直角坐标系中,直线AB交x轴于点B(﹣3,0),交y轴于点A(0,1),直线x=﹣1交AB于点D,P是直线x=﹣1上一动点,且在点D上方,设P(﹣1,n).(1)求直线AB的解析式;(2)求△ABP的面积(用含n的代数式表示);(3)点C是y轴上一点,当S△ABP=2时,△BPC是等腰三角形,①满足条件的点C的个数是个(直接写出结果);②当BP为等腰三角形的底边时,求点C的坐标.16.某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李票,且行李费y(元)是行李质量x(千克)的一次函数,现已知李明带了60千克的行李,交了行李费5元;张华带了90千克的行李,交了行李费10元.(1)写出y与x之间的函数表达式.(2)旅客最多可免费携带多少千克的行李?17.如图,l1反映了某公司产品的收入与销售量的关系,l2反映了该公司产品的成本与销售量的关系,根据图象解决下列问题:(1)当销售量为2t时,收入=元,成本=元,盈利为元,当销售量=t时,收入=成本;(2)求出盈利w与销售量x的函数表达式.18.如图,在平面直角坐标系中,直线y=﹣2x+12与x轴交于点A,与y轴交于点B,与直线y=x交于点C.(1)求点C的坐标.(2)若P是x轴上的一个动点,直接写出当△POC是等腰三角形时P的坐标.(3)在直线AB上是否存在点M,使得△MOC的面积是△AOC面积的2倍?若存在,请求出点M的坐标;若不存在,请说明理由.19.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与行驶时间x(小时)之间的函数关系如图所示,已知甲对应的函数关系式为y=60x,根据图象提供的信息,解决下列问题:(1)求乙离开A城的距离y与x的关系式;(2)求乙出发后几小时追上甲车?20.如图所示,在平面直角坐标系中,矩形ABCD的边AB位于x轴,A(1,0),B(3,0),矩形的宽AD为1,一条直线y=kx+2(k≠0)与折线ABC交于点E.(1)证明:直线y=kx+2始终经过一个定点,并写出该定点坐标;(2)当直线y=kx+2与矩形ABCD有交点时,求k的取值范围;(3)设△CDE的面积为S,试求S与k的函数解析式.21.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(6,4),E为AB的中点,过点D(8,0)和点E的直线分别与BC、y轴交于点F、G.(1)求直线DE的函数关系式;(2)函数y=mx﹣2的图象经过点F且与x轴交于点H,求出点F的坐标和m值;(3)在(2)的条件下,求出四边形OHFG的面积.22.三水区响应“绿色环保”号召,鼓励市民节约用电,对电费采用分段收费标准,若某户居民每月应交电费y(元)与用电量x(度)之间关系的图象如图所示:(1)当用电量不超过50度时,每度收费多少元?超过50度时,超过的部分每度收费多少元?(2)若某户居民某月交电费120元,该户居民用电多少度?23.在抗击新冠肺炎疫情期间,司机小张开车免费将志愿者从A市送到B市,到达B市放下志愿者后立即按原路原速返回A市(志愿者下车时间忽略不计),而快递员小李则骑摩托车从B市向A市运送快递,他们出发时间相同,均沿两市间同一条公路匀速行驶,设两人行驶的时间为x(h),两人相距y(km),如图表示y随x变化而变化的情况,根据图象解决以下问题:(1)A、B两市之间的路程为km;点M表示的实际意义是;(2)小张开车的速度是km/h;小李骑摩托车的速度是km/h.(3)试求出发多长时间后,两人相距60km.24.甲、乙两车分别从A、B两地同时出发,在同一条公路上,匀速行驶,相向而行,到两车相遇时停止.甲车行驶一段时间后,因故停车0.5小时,故障解除后,继续以原速向B 地行驶,两车之间的路程y(千米)与出发后所用时间x(小时)之间的函数关系如图所示.(1)求甲、乙两车行驶的速度V甲、V乙.(2)求m的值.(3)若甲车没有故障停车,求可以提前多长时间两车相遇.参考答案1.解:(1)∵y=﹣x+2的图象经过A(0,a)、B(b,0)两点,当x=0时,y=2,∴A(0,2),∴a=2,当y=0时,x=3,∴B(3,0),∴b=3,一次函数的图象如图:(2)如图,当点C在AB上方时,作CM⊥x轴于点M,CN⊥y轴于点N,∵ON⊥OM,CM⊥x轴,CN⊥y轴,∴四边形ONCM是矩形,∴CM⊥CN,∴∠MCN=90°,∵∠ACB=90°,∴∠ACN=∠BCM,∵△ABC为等腰直角三角形且∠C=90°,∴AC=BC,∵∠ANC=∠BMC,∴△ACN≌△BCM(AAS),∴CN=CM,AN=BM,∴矩形ONCM是正方形,∴ON=OM,∵A(0,2)、B(3,0),∴2+AN=3﹣BM,∴AN=BM=,∴ON=OM=,∴C点坐标为(,);如图,当点C在AB下方时,同理可得C点坐标为(,﹣),∵点C是第一象限内一点,∴C点坐标为(,﹣),不合题意,舍去,综上,C点坐标为(,);(3)设直线BC的解析式是y=kx+b,∵B(3,0),C点坐标为(,),∴,解得:.则直线BC的解析式是:y=﹣5x+15.∵将直线BC向左平移恰好经过点A.A(0,2),∴直线AD的解析式为y=﹣5x+2,∴点D的坐标为(,0),∴直线AD、AB与x轴所围成的三角形的面积为:S△ADB=×(3﹣)×2=.2.解:(1)如图,过点D作DE⊥BC于点E,∵A(1,4),B(1,1),C(5,1),∴AB=3,BC=4,且AB⊥BC,DE=1,∴△ABC的面积=×3×4=6,△BDC的面积=×4×1=2,∴四边形ABDC的面积=△ABC的面积+△BDC的面积=8.故答案为:8.(2)当直线AD过边BC的中点F时,直线AD平分△ABC的面积,∵B(1,1),C(5,1),∴F(3,1),设直线AF的解析式为y=kx+b,∴,解得,∴直线AF的解析式为y=﹣x+.(3)如图,延长AC交x轴于点G,设直线AC的解析式为:y=mx+n,∵A(1,4),C(5,1),∴,解得,∴直线AC的解析式为:y=﹣x+.令y=0,则x=.∴G(,0),设点D的坐标为(t,0),则DG=|t﹣|,∴△ADG的面积为×4×|t﹣|=2|t﹣|,△DCG的面积为:×1×|t﹣|=|t﹣|,∴△ACD的面积=△ADG的面积﹣△CDG的面积=|t﹣|=10,解得t=13或t=﹣.∴点D的坐标为(13,0)或(﹣,0).3.解:(1)将点C(a,7)代入y=x,可得a=﹣3,∴点C的坐标(﹣3,7),将点C(﹣3,7)和点A(﹣10,0)代入y=kx+b,可得,,解得,∴直线AB的解析式为y=x+10;(2)①∵点E的坐标是(﹣15,0),∴当x=﹣15时,y=﹣=35,y=﹣15+10=﹣5,∴点F的坐标为(﹣15,35),点G的坐标为(﹣15,﹣5),∴S△CGF==;②存在,证明:由三角形的三边关系可知当点P、M、C在一条直线上时,PM﹣PC的值最大,令x=0,则y=10,∴点B的坐标(0,10),∵点M为y轴上OB的中点,∴点M的坐标为(0,5),设直线MC的解析式为y=ax+5,将C(﹣3,7)代入得:7=﹣3a+5,解得:a=﹣,∴直线MC的解析式为y=x+5,当x=﹣15时,y=,∴点P的坐标为(﹣15,15),∴PM﹣PC=CM==;(3)∵B(0,10),A(﹣10,0),∴OA=OB=10,∠CAO=∠ABO=45°,分三种情况讨论:①当△OAC≌△QCA,如图:∴∠CAO=∠QCA=45°,∴QC⊥OA,即CQ∥y轴,∴CQ经过点E,∴m=﹣3;②当△ACO≌△ACQ,如图:∴∠CAQ=∠CAO=45°,∴QA⊥OA,即QA经过点E,∴点E,A重合,∴m=﹣10;③当△ACO≌△CAQ,如图,∴∠CAO=∠ACQ=45°,AO=CQ,∴CQ∥x轴,∴四边形AOCQ是平行四边形,CQ=AO=10,AE=3,∴m=﹣13;综上所述,当m取﹣3或﹣10或﹣13时,直线l上存在点Q,使得以A,C,Q为顶点的三角形与△AOC全等.4.解:(1)将点A的坐标代入y=2x+b中,得﹣5=2×2+b,解得:b=﹣9,∴直线l1的解析式为y=2x﹣9,将x=8代入y=2x﹣9中,解得:y=7,∴点B的坐标为(8,7),将点B的坐标代入y=kx﹣1中,得7=8k﹣1,解得:k=1,综上:b=﹣9,k=1;(2)过点B作BE⊥y轴于点E,过点P作PF⊥y轴于F,∵点B的坐标为(8,7),∴BE=8,∵S△BDP=S△BDC,∴S△CDP=S△BDC,∴CD•PF=×CD•BE,∴×8PF=×8×8,∴PF=6,即点P的横坐标为6,将x=6代入y=2x﹣9中,解得:y=3,∴点P的坐标为(6,3);(3)过Q作QE⊥AQ交AB于E,过Q作FG∥y轴,过A作AF⊥FG于F,过E作EG ⊥FG于G,∵∠G=∠F=∠EQA=90°,∴∠EQG+∠AQF=90°,∠QAF+∠AQF=90°,∴∠EQG=∠QAF,∵∠EQA=90°,∠QAE=45°,∴△AQE是等腰直角三角形,∴EQ=QA,在△EGQ和△QF A中,,∴△EGQ≌△QF A(AAS),∴EG=QF,QG=AF,设Q(a,a﹣1),∵A(2,﹣5),∴AF=2﹣a,FQ=a+4,GE=a+4,QG=2﹣a,∴点E坐标(2a+4,1),把E(2a+4,1)代入y=2x﹣9中,得4a+8﹣9=1,解得:a=,∴点Q的坐标为(,﹣).5.解:(1)设直线AC的解析式是y=kx+b,根据题意得:,解得:.则直线AC的解析式是:y=﹣x+6;(2)∵C(0,6),A(4,2),∴OC=6,∴S△OAC=×6×4=12;(3)设OA的解析式是y=mx,则4m=2,解得:m=.则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴M到y轴的距离是×4=1,∴点M的横坐标为1或﹣1;当M的横坐标是:1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).当M的横坐标是:﹣1,在y=﹣x+6中,当x=﹣1时,y=7,则M的坐标是(﹣1,7).综上所述:M的坐标是:M1(1,)或M2(1,5)或M3(﹣1,7).6.解:(1)D是边长为4cm的正方形ABCO的边AB的中点,则点D(2,4),当x=4时,y=x=3,故点E(4,3);(2)点O、D、E的坐标分别为:(0,0)、(2,4)、(4,3),则DO2=20,OE2=25,DE2=5,故OE2=OD2+ED2,故:△ODE是直角三角形;(3)点E、H的坐标分别为:(4,3)、(2,0),①当点P在HD上时,此时0<t≤2,点P(2,4﹣2t),则PH2=(4﹣2t)2,PE2=4+(1﹣2t)2,HE2=13,当PH=PE时,(4﹣2t)2=4+(1﹣2t)2,解得:t=;当PH=HE时,同理可得:t=(不合题意值已舍去);当PE=HE时,同理可得:t=4;②当点P在HF上时,点P(2t﹣2),由点D、E的坐标得,直线ED的表达式为:y=﹣x+5,令y=0,则x=10,即点F(10,0),则2<t≤6;PE2=(2t﹣6)2+9,PH2=(2t﹣4)2,EH2=13;当PE=PH时,(2t﹣6)2+9=(2t﹣4)2,解得:t=;当PE=EH时,同理可得:t=4;当PH=EH时,同理可得:t=综上,当t=或4或或或.7.解:(1)在y=x+4中,令x=0,得y=4,令y=0,得x=﹣4,∴A(﹣4,0),B(0,4).把B(0,4)代入,y=﹣2x+b,得b=4∴直线BC为:y=﹣2x+4.在y=﹣2x+4中,令y=0,得x=2,∴C点的坐标为(2,0);(2)如图点E为所求点D是AB的中点,A(﹣4,0),B(0,4).∴D(﹣2,2).点B关于x轴的对称点B1的坐标为(0,﹣4).设直线DB1的解析式为y=kx+b.把D(﹣2,2),B1(0,﹣4)代入一次函数表达式并解得:故该直线方程为:y=﹣3x﹣4.令y=0,得E点的坐标为(﹣,0).(3)存在,D点的坐标为(﹣1,3)或.①当点D在AB上时,由OA=OB=4得到:∠BAC=45°,由等腰直角三角形求得D点的坐标为(﹣1,3);②当点D在BC上时,如图,设AD交y轴于点F.在△AOF与△BOC中,∠F AO=∠CBO,∠AOF=∠BOD,AO=BO,∴△AOF≌△BOC(ASA).∴OF=OC=2,∴点F的坐标为(0,2),易得直线AD的解析式为,与y=﹣2x+4组成方程组并解得:x=,∴交点D的坐标为.8.解:(1)直线l2的解析式为y=﹣x+3,与x轴、y轴分别交于点A、点B,则点A、B 的坐标分别为(6,0)、(0,3),联立式y=x,y=﹣x+3并解得:x=2,故点C(2,2);△COB的面积=×OB×x C=×3×2=3;(2)设点P(m,﹣m+3),S△COP=S△COB,则BC=PC,则(m﹣2)2+(﹣m+3﹣2)2=22+12=5,解得:m=4或0(舍去0),故点P(4,1);(3)设点M、N、Q的坐标分别为(m,m)、(m,3﹣m)、(0,n),①当∠MQN=90°时,∵∠GNQ+∠GQN=90°,∠GQN+∠HQM=90°,∴∠MQH=∠GNQ,∠NGQ=∠QHM=90°,QM=QN,∴△NGQ≌△QHM(AAS),∴GN=QH,GQ=HM,即:m=3﹣m﹣n,n﹣m=m,解得:m=,n=;②当∠QNM=90°时,则MN=QN,即:3﹣m﹣m=m,解得:m=,n=y N=3﹣=;③当∠NMQ=90°时,同理可得:n=;综上,点Q的坐标为(0,)或(0,)或(0,).9.解:(1)∵y=﹣x+6与x轴、y轴分别交于A、B两点,∴点B(0,6),点A(8,0),∴AB==10;(2)∵AC⊥x轴,BC⊥y轴,DF⊥OA,∴四边形ACDF是矩形,∴AC=DF=6,由题意可得OE=2t,CD=t,∴AF=t,AE=OA﹣OE=8﹣2t,BD=8﹣t,∴EF=8﹣3t,∵DE⊥AB,∴∠QEA+∠QAE=90°,又∵∠DEF+∠EDF=90°,∴∠EDF=∠QAE,且∠DFE=∠BOA=90°,∴t=;(3)PF=t,∵△EP A的面积为3,∴(8﹣2t)×t=3,∴t=2.10.解:(1)∵若x=0,则y=2,若y=0,则0=﹣x+2,∴点B的坐标为(0,2),点A的坐标为(6,0);(2)①点Q在x轴的正半轴,则S=OQ•OP=(6﹣t)×6,即S=﹣3t+18(0≤t<6);②若Q在O时,则S=0,此时t=6;③若点Q在x轴的负半轴,S=(t﹣6)×6,即S=3t﹣18(t>6);(3)∵OP=OA,∠AOB=∠POQ=90°,∴只需OB=OQ=2,则△POQ≌△AOB,若Q在x轴的正半轴时,AQ=6﹣2=4,则t=4,若Q在x轴的负半轴,AQ=6+2=8,则t=8,故当t=4或8时,△POQ≌△AOB,此时Q(2,0)或(﹣2,0).11.解:(1)设直线AB的解析式为y=kx+b,把A(4,2),B(6,0)代入可得,解得,∴直线AB的解析式为y=﹣x+6.(2)如图,作点B关于y轴的对称点B′,连接AB′交y轴于M,此时MB+MA的值最小,∵B′(﹣6,0),A(4,2),设直线AB′的解析式为y=mx+n,则有,解得,∴直线AB′的解析式为y=x+,∴M(0,),AM+BM的最小值=AB′==2,故答案为(0,).(3)如图,①过点A作AB的垂线AM交y轴与M.∵直线AB的解析式为y=﹣x+6,∴直线AB与x轴的夹角为45°,∴直线AM与x轴的夹角为45°∴直线AM的解析式为y=x﹣2,∴M(0,﹣2).②过点B作BM′⊥AB交y轴与M′,同法可得直线BM′的解析式为y=x﹣6,∴M′(0,﹣6),综上所述,满足条件的点M的坐标为(0,﹣2)或(0,﹣6).12.解:(1)从图象可以看出:父子俩从出发到相遇时花费了15分钟,设小军步行的速度为x米/分,则小军父亲骑车的速度为5x米/分,依题意得:15x+15×5x=3600,解得:x=40,所以两人相遇处离学校大门口的距离为40×15=600米,所以点B的坐标为(15,600),设直线AB的函数关系式为s=kt+b(k≠0),由题意,直线AB经过点A(0,3600)、B(15,600),得:,解得,所以直线AB的函数关系式为:S=﹣200t+3600;(2)由S=﹣200t+3600;令S=0,得0=﹣200t+3600解得:t=18,即小军的父亲从出发到学校门口花费的时间为18分钟,因而小军取票的时间也为18分钟,因为15﹣18=﹣3(分钟),所以小军不能在学校大门关闭前到达学校.13.解:(1)由题意得,解得x=﹣2,y=4,∴F点坐标:(﹣2,4);过F点作直线FM垂直X轴交x轴于M,ME=MF=4,△MEF是等腰直角三角形,∠GEF=45°;(2)∵点G是直线l2与x轴的交点,∴当y=0时,2x+8=0,解得x=﹣4,∴G点的坐标为(﹣4,0),则C点的横坐标为﹣4,∵点C在直线l1上,∴点C的坐标为(﹣4,6),∵由图可知点D与点C的纵坐标相同,且点D在直线l2上,∴点D的坐标为(﹣1,6),∵由图可知点A与点D的横坐标相同,且点A在x轴上,∴点A的坐标为(﹣1,0),∴DC=|﹣1﹣(﹣4)|=3,BC=6;(3)∵点E是l1与x轴的交点,∴点E的坐标为(2,0),S△GFE===12,若矩形ABCD从原地出发,沿x轴正方向以每秒1个单位长度的速度平移,当t秒时,移动的距离是1×t=t,则B点的坐标为(﹣4+t,0),A点的坐标为(﹣1+t,0);①在运动到t秒,若BC边与l2相交设交点为N,AD与l1相交设交点为K,那么﹣4≤﹣4+t≤﹣2,即0≤t≤2时.N点的坐标为(﹣4+t,2t),K点的坐标为(﹣1+t,3﹣t),s=S△GFE﹣S△GNB﹣S△AEK=12﹣=﹣t2+3t+,②在运动到t秒,若BC边与l1相交设交点为N,AD与l1相交设交点为K,那么﹣2<﹣4+t且﹣1+t≤2,即2<t≤3时.N点的坐标为(﹣4+t,6﹣t),K点的坐标为(﹣1+t,3﹣t),s=S梯形BNKA==,③在运动到t秒,若BC边与l1相交设交点为N,AD与l1不相交,那么﹣4+t≤2且﹣1+t>2,即3<t≤6时.N点的坐标为(﹣4+t,6﹣t),s=S△BNE==,答:(1)F点坐标:(﹣2,4),∠GEF的度数是45°;(2)矩形ABCD的边DC的长为3,BC的长为6;(3)s关于t的函数关系式:S=.14.解:(1)设每吨水的政府补贴优惠价为a元,市场调节价为b元.解得:答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元.(2)∵当0≤x≤14时,y=x;当x>14时,y=14+(x﹣14)×2.5=2.5x﹣21,∴所求函数关系式为:y=(3)∵x=24>14,∴把x=24代入y=2.5x﹣21,得:y=2.5×24﹣21=39(元).答:小英家三月份应交水费39元.15.解:(1)设直线AB的解析式是y=kx+b,把点A(0,1),点B(﹣3,0)代入得:,解得:,∴直线AB的解析式是:y=x+1;(2)∵P(﹣1,n),∴D(﹣1,),即PD=n﹣,∴S△APB=PD•OB=(n﹣)×3=n﹣1;(3)当S△ABP=2时,2=n﹣1,解得n=2,∴点P(﹣1,2).∵E(﹣1,0),∴PE=BE=2,∴∠EPB=∠EBP=45°,BP=2,当CP=BP时,如图,以点P为圆心,BP长为半径作弧,交y轴于点C、C′,过点P 作PF⊥y轴于点F.∵BP=2,∴BP=PC=PC′=2,∵点P(﹣1,2).∴PF=1,OF=2,∵PC=PC′=2,∴CF=C′F==,∴CO=CF+OF=2+,C′O=C′F﹣OF=﹣2,∴点C的坐标为(0,2+)或(0,2﹣),当CP=CB时,如图,作BP的垂直平分线,垂足为M,交y轴于点C,过点P作PH⊥y轴于点H.∵BP=2,∴BM=PM=,∵点P(﹣1,2).∴PH=1,OH=2,∵PC=BC,∴∠CBP=∠CPB,∵∠EPB=∠EBP=45°,∴∠CBP﹣∠EBP=∠CPB﹣∠EPB,即∠EPC=∠OBC,∵PE∥y轴,∴∠EPC=∠PCH,∴∠OBC=∠PCH,∵∠BOC=∠CHP=90°,PC=BC,∴△BOC≌△CHP,∴CH=OB=3,∴CO=CH﹣OH=2﹣1=1,∴点C的坐标为(0,﹣1),当BP=CB时,如图,∵OB⊥y轴,∴点B到y轴的最短距离为OB的长,∵BP=2,OB=3,2<3,∴以点B为圆心,BP长为半径作弧与y轴没有交点,∴此种情况不存在.综上,点C的坐标为(0,2+)或(0,2﹣)或(0,﹣1),有3个,故答案为:3;②由①得当BP为等腰三角形的底边时,CP=CB,此时点C的坐标为(0,﹣1).16.解:(1)设行李费y(元)关于行李质量x(千克)的一次函数关系式为y=kx+b 由题意得,解得k=,b=﹣5∴该一次函数关系式为(2)∵,解得x≤30∴旅客最多可免费携带30千克的行李.答:(1)行李费y(元)关于行李质量x(千克)的一次函数关系式为;(2)旅客最多可免费携带30千克的行李.17.解:(1)通过图象观察可以得出,当x=2时,对应的与l1的交点是(2,4000),与l2的交点是(2,6000),∴当销售量为2t时,收入=4000元,成本=6000元,∴盈利为:收入﹣成本=4000﹣6000=﹣2000(元).l1与l2的交点坐标是(4,8000),则当销售量是4t时,收入=成本.故答案为:4000,6000,﹣2000,4;(2)设l1对应的函数表达式是y1=ax,将(2,4000)代入y1=ax,∴4000=2a,解得;a=2000,∴l1对应的函数表达式是:y1=2000x;设l2对应的函数关系式为y2=kx+b,∵l2过点(0,4000),∴b=4000,又∵l2过点(2,6000),∴6000=2k+4000,解得:k=1000,所以y2=1000x+4000;w=y1﹣y2=2000x﹣(1000x+4000)即w=1000x﹣4000.18.解:(1)联立两直线解析式成方程组,得:,解得:,∴点C的坐标为(4,4);(2)设点P(m,0),而点C(4,4),点O(0,0);PC2=(m﹣4)2+16,PO2=m2,OC2=32;当PC=PO时,(m﹣4)2+16=m2,解得:m=4;当PC=OC时,同理可得:m=0(舍去)或8;当PO=OC时,同理可得:m=;故点P的坐标为:(4,0)或(8,0)或(,0)或(,0);(3)当y=0时,有0=﹣2x+12,解得:x=6,∴点A的坐标为(6,0),∴OA=6,∴S△OAC=×6×4=12.设M(x,y)当M在x轴下方时,△MOC的面积是△AOC面积的2倍,∴△MOA的面积等于△AOC的面积,×6×|y|=12,当y=﹣4时,﹣4=﹣2x+12,x=8,∴M(8,﹣4),当M在x轴上方时,△MOC的面积是△AOC面积的2倍,∴△MOA的面积等于△AOC的面积的3倍,×6×|y|=12×3;当y=12时,12=﹣2x+12,x=0,∴M(0,12),综上所述,M(8,﹣4)或(0,12).19.解:(1)设乙对应的函数关系式为y=kx+b将点(4,300),(1,0)代入y=kx+b得:解得:,∴乙对应的函数关系式y=100x﹣100;(2)易得甲车对应的函数解析式为y=60x,联立,解得:,2.5﹣1=1.5(小时),∴乙车出发后1.5小时追上甲车.20.解:(1)不论k取何值,当x=0时,y=2,则函数一定经过定点(0,2);(2)当直线经过点A时,把点(1,0)代入y=kx+2得:k+2=0,解得:k=﹣2;当直线经过点C(3,1)时,代入y=kx+2得:3k+2=1,解得:k=﹣,则k的取值范围是:﹣2≤k≤﹣;(3)CD=3﹣1=2,当直线经过点B时,把B的坐标(3,0),代入y=kx+2得:3k+2=0,解得:k=﹣,当﹣2≤k≤﹣时,E在AB上,则S△CDE=×2×1=1;当﹣<k<﹣时,E在BC上,在y=kx+2中,令x=3,则y=3k+2,则CE=1﹣(3k+2)=﹣3k﹣1则S△CDE=×2×(﹣3k﹣1)=﹣3k﹣1.即S=﹣3k﹣1.21.解:(1)设直线DE的解析式为:y=kx+b,∵顶点B的坐标为(6,4),E为AB的中点,∴点E的坐标为:(6,2),∵D(8,0),∴,解得:,∴直线DE的函数关系式为:y=﹣x+8;(2)∵点F的纵坐标为4,且点F在直线DE上,∴﹣x+8=4,解得:x=4,∴点F的坐标为;(4,4);∵函数y=mx﹣2的图象经过点F,∴4m﹣2=4,解得:m=;(3)由(2)得:直线FH的解析式为:y=x﹣2,∵x﹣2=0,解得:x=,∴点H(,0),∵G是直线DE与y轴的交点,∴点G(0,8),∴OH=,CF=4,OC=4,CG=OG﹣OC=4,∴S四边形OHFG=S梯形OHFC+S△CFG=×(+4)×4+×4×4=18.22.解:(1)不超过50度时每度收费:30÷50=0.6(元),超过50度时,超过的部分每度收费:(60﹣30)÷(80﹣50)=1(元);答:当用电量不超过50度时,每度收费0.6元,超过50度时,超过的部分每度收费1元.(2)120﹣0.6×50=90(元),90÷1=90(度),50+90=140(度).答:该户居民用电140度.23.解:(1)根据函数图象中的数据可得A、B两市之间的路程为240km,M表示的实际意义是出发2小时小张与小李相遇;故答案为:240;出发2小时小张与小李相遇;(2)小张开车的速度为:240÷3=80(km/h),小李骑摩托车的速度为:240÷2﹣80=40(km/h).故答案为:80;40;(3)设出发x小时两人相距60km.有三种情况:相遇前:80x+40x+60=240,解得x=1.5;相遇后小张未到达B市前:80x+40x﹣60=240,解得x=2.5;小张返回途中:40x﹣80(x﹣3)=60,解得x=4.5;答:出发1.5,2.5,4.5小时,两人相距60km.24.解:(1)由图可得,,解得,,答:甲的速度是60km/h乙的速度是80km/h;(2)m=(1.5﹣1)×(60+80)=0.5×140=70,即m的值是70;(3)甲车没有故障停车,则甲乙相遇所用的时间为:180÷(60+80)=,若甲车没有故障停车,则可以提前:1.5﹣=(小时)两车相遇,即若甲车没有故障停车,可以提前小时两车相遇.。

八年级数学上册 4.4《一次函数的应用》拓展素材 (新版)北师大版

八年级数学上册 4.4《一次函数的应用》拓展素材 (新版)北师大版

《一次函数的应用》拓展1、某移动通讯公司开设两种业务.“全球通”:先缴50元月租费,然后每通话1分钟,再付0.4元,“神州行”:不缴纳月租费,每通话1分钟,付话费0.6元(通话均指市话).若设一个月内通话x 分钟,两种方式的费用分别为y 1和y 2元.(通话时不足1分钟的按1分钟计算,如3分20秒按4分钟收费)(1)写出y 1、y 2与x 之间的函数关系式.(2)在同一坐标系下做出以上两个函数的图象.(3)一个月内通话多少分钟,两种费用相同.(4)某人估计一个月内通话300分钟,应选择哪种合算?答案:(1)y 1=50+0.4x ,y 2=0.6x(2图略(3)令y 1=y 2得:50+0.4x =0.6xx =250,即一个月通话250分钟时,费用相同.(4)当x =300时,y 1=170,y 2=1802、如图,点A 的坐标为(4,0),点P 在第一象限且在直线x +y =6上.(1)设点P 坐标为(x ,y ),写出△OPA 的面积S 与x 之间的关系式(其中P 点横坐标在O 与A 点之间变化);(2)当S =10时,求点P 坐标;(3)若△OPA 是以OA 为底边的等腰三角形,你能求出P 的坐标吗?若能,请求出坐标;若不能,请说明理由.答案:(1)122S x =-.(2)P 点坐标为(1,5).(3)P 点坐标为(2,4).3、某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A 、B 两种产品,共50件。

已知生产一件A 种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B 种产品需用甲种原料4千克、乙种原料10千克,可获利润1200元。

(1)按要求安排A 、B 两地产品的生产件数,有哪几种方案?请你给设计出来。

(2)设生产A 、B 两种产品获总利润为y (元),其中一种的生产件数为x ,试写出y 与x 之间的函数关系式,并利用函数的性质说明(1)中哪种生产方案获总利润最大?最大利润是多少?答案:设安排生产A 种产品为x 件,则生产B 种产品为(50-x )件依题意得不等式组:9x+4(50-x )≤3603x+10(50-x )≤290 解得 30≤x ≤32由题意知x 只能取30,31,32,相应的(50-x )的值为20,19,18,所以生产方案有三种:第一种生产方案:生产A 种产品30件,B 种产品20件;第二种生产方案:生产A 种产品31件,B 种产品19件;第三种生产方案:生产A 种产品32件,B 种产品18件。

北师大版八年级数学上册第四章第4节一次函数的应用(附答案)

北师大版八年级数学上册第四章第4节一次函数的应用(附答案)

八年级数学上册第四章第4节一次函数的应用(附答案)一、选择题1.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间(分)之间的关系如图所示,乙从B地到A地需要()分钟.A. 12B. 14C. 18D. 202.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回,设x秒后两车间的距离为y米,y关于x的函数关系如图所示,则甲车的速度为()A. 10米/秒B. 11米/秒C. 12米/秒D. 13米/秒3.公式L=L0+KP表示当重力为P时的物体作用在弹簧上时弹簧的长度,L0代表弹簧的初始长度,用厘米(cm)表示,K表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是()A. L=10+0.5PB. L=10+5PC. L=80+0.5PD. L=80+5P4.如图,表示一艘轮船和一艘快艇沿相同路线从甲港岀发到乙港行驶路程随时间变化的图象.则下列结论错误的是()A. 轮船的速度为20千米/时B. 快艇的速度为40千米/时C. 轮船比快艇先出发2小时D. 快艇到达乙港用了6小时5.某市体育馆将举办明星足球赛,为此体育馆推出两种团体购票方案(设购票张数为x张,购票总价为y元).方案一:购票总价由图中的折线OAB所表示的函数关系确定;方案二:提供8000元赞助后,每张票的票价为50元.则两种方案购票总价相同时,x的值为()A. 80B. 120C. 160D. 2006.如图,OA和BA分别表示甲乙两名学生运动的一次函数的图象,图中s和t分别表示路程和时间,根据图象判定跑260米时,快者比慢者少用多少秒()A. 6秒B. 6.5秒C. 7秒D. 7.5秒7.王亮家与姥姥家相距25km,王亮早上提前从家出发,骑自行车(匀速)去姥姥家,妈妈随后从家出发,乘车沿相同路线去姥姥家,王亮和妈妈的行进路程s(km)与王亮的行进时间t(ℎ)之间的函数关系式的图象如图所示,则下列说法正确的是()A. 王亮骑自行车的速度是12.5km/ℎB. 王亮比妈妈提前0.5ℎ出发C. 妈妈比王亮先到姥姥家D. 妈妈从家到姥姥家共用了2h8.一条公路旁依次有A,B,C三个村庄,甲乙两人骑自行车分别从A村、B村同时出发前往C村,甲乙之间的距离s(km)与骑行时间t(ℎ)之间的函数关系如图所示,下列结论:①A,B两村相距10km;②出发1.25ℎ后两人相遇;③甲每小时比乙多骑行8km;④相遇后,乙又骑行了15min或65min时两人相距2km.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个9.端午节前夕举行了南通濠河国际龙舟邀请赛,在500米直道竞速赛道上,甲、乙两队所划行的路程y(单位:米)与时间t(单位:分)之间的函数关系式如图所示,根据图中提供的信息,有下列说法:①甲队比乙队提前0.5分到达终点②当划行1分钟时,甲队比乙队落后50米③当划行5分钟时,甲队追上乙队3④当甲队追上乙队时,两队划行的路程都是300米其中错误的是()A. ①B. ②C. ③D. ④10.甲、乙两车分别从A,B两地同时出发,沿同一条公路相向而行,相遇时甲、乙所走路程的比为2︰3,甲、乙两车离AB中点C的路程y(千米)与甲车出发时间t(时)的关系图象如图所示,则下列说法错误的是()A. A,B两地之间的距离为180千米B. 乙车的速度为36千米/时C. a的值为3.75D. 当乙车到达终点时,甲车距离终点还有30千米二、计算题11.抗击新冠疫情期间,一方危急,八方支援.当吉林市疫情严重时,急需大量医疗防护物资.现知A城有医疗防护物资200t,B城有医疗防护物资300t.现要把这些医疗物资全部运往C、D两市.从A城往C、D两市的运费分别为20元/t和25元/t;从B城往C、D两市的运费分别为15元/t和24元/t.现C市需要物资240t,D市需要物资260t.若设从A城往C市运xt.请回答下列问题:(1)用含x的式子表示从A往D市运物资的数量为t,从B往C市运物资的数量为t,从B往D市运物资的数量为t(写化简后的式子).(2)求出怎样调运物资可使总运费最少?最少运费是多少?12.赛龙舟是端午节的主要习俗,某市甲、乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A驶向终点B,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题(1)起点A与终点B之间相距______米.(2)哪支龙舟队先到达终点?______(填“甲”或“乙”)(3)分别求甲、乙两支龙舟队离开起点的距离y关于x的函数关系式;(4)甲龙舟队出发多长时间时,两支龙舟队相距200米?三、解答题13.自2017年3月起,成都市中心城区居民用水实行以户为单位的三级阶梯收费办法:第I级:居民每户每月用水18吨以内含18吨每吨收水费a元;第Ⅱ级:居民每户每月用水超过18吨但不超过25吨,未超过18吨的部分按照第Ⅰ级标准收费,超过部分每吨收水费b元;第Ⅲ级:居民每户每月用水超过25吨,未超过25吨的部分按照第I、Ⅱ级标准收费,超过部分每吨收水费c元.设一户居民月用水x吨,应缴水费为y元,y与x之间的函数关系如图所示(1)根据图象直接作答:a=______,b=______;(2)求当x≥25时y与x之间的函数关系;(3)把上述水费阶梯收费办法称为方案①,假设还存在方案②:居民每户月用水一律按照每吨4元的标准缴费,请你根据居民每户月“用水量的大小设计出对居民缴费最实惠的方案.(写出过程)14.星期五小颖放学步行从学校回家,当她走了一段路后,想起要去买彩笔做画报,于是原路返回到刚经过的文具用品店.买到彩笔后继续往家走如图是她离家的距离与所用时间的关系示意图,请根据图中提供的信息回答下列问题:(1)小颖家与学校的距离是______米;(2)AB表示的实际意义是______;(3)小颖本次从学校回家的整个过程中,走的路程是多少米?(4)买到彩笔后,小颖从文具用品店回到家步行的速度是多少米/分?答案1.【答案】A2.【答案】B3.【答案】A4.【答案】D5.【答案】D6.【答案】D7.【答案】A8.【答案】D9.【答案】D 10.【答案】D11.【答案】解:(1)用含x 的式子表示从A 往D 市运 ( 200−x )t ,从B 往C 市运 (240−x)t ,从B 往 D 市运 (60+x)t ,(2)设总运费为W 元,则有W =20x +25( 200−x )+15(240−x)+24(60+x)=4x +10040,∵0≤x ≤200,W 随x 的增大而增大,∴当x =0时,W 有最小值,即从A 往D 调200t ,从B 往D 调60t ,从B 往C 调240t 时,总运费最少为10040元. 12.【答案】解:(1)3000;(2)乙;(3)设甲龙舟队的y 与x 函数关系式为y =kx ,把(25,3000)代入,可得3000=25k ,解得k =120,∴甲龙舟队的y 与x 函数关系式为y =120x(0≤x ≤25),设乙龙舟队的y 与x 函数关系式为y =ax +b ,把(5,0),(20,3000)代入,可得{0=5a +b 3000=20a +b, 解得{a =200b =−1000, ∴乙龙舟队的y 与x 函数关系式为y =200x −1000(5≤x ≤20);(4)令120x =200x −1000,可得x =12.5,即当x =12.5时,两龙舟队相遇,当x <5时,令120x =200,则x =53(符合题意);当5≤x <12.5时,令120x −(200x −1000)=200,则x =10(符合题意); 当12.5<x ≤20时,令200x −1000−120x =200,则x =15(符合题意); 当20<x ≤25时,令3000−120x =200,则x =703(符合题意); 综上所述,甲龙舟队出发53或10或15或703分钟时,两支龙舟队相距200米.13.【答案】(1)3,4;(2)解:设当x ≥25时,y 与x 之间的函数关系式为y =mx +n(m ≠0),将(25,82),(35,142)代入y =mx +n ,得:{25m +n =8235m +n =142, 解得:{m =6n =−68, ∴当x ≥25时,y 与x 之间的函数关系式为y =6x −68.(3) 解:根据题意得:选择缴费方案②需交水费y(元)与用水数量x(吨)之间的函数关系式为y =4x .当6x −68<4x 时,x <34;当6x −68=4x 时,x =34;当6x −68>4x 时,x >34.∴当x <34时,选择缴费方案①更实惠;当x =34时,选择两种缴费方案费用相同;当x >34时,选择缴费方案②更实惠.14.【答案】解:(1)小颖家与学校的距离是2600米;故答案为:2600;(2)AB 表示的实际意义是小颖在文具用品店买彩笔所花时间;故答案为:小颖在文具用品店买彩笔所花时间;(3)2600+2×(1800−1400)=3400(米),答:小颖本次从学校回家的整个过程中,走的路程是3400米;(4)1800÷(50−30)=90(米/分),买到彩笔后,小颖从文具用品店回到家步行的速度是90米/分.。

北师大版八年级数学上册全套备课课时练习课件:一次函数的应用

北师大版八年级数学上册全套备课课时练习课件:一次函数的应用

举一反三 某种汽车的油箱最多可储油60升,油箱中的余油
量Q(升)与行驶的时间t(小时)之间的关系如图4-4-6 所示,根据图象回答下列问题:
图4-4-6
(1)求油箱中的余油Q与行驶时间t的函数关系,并求 出t的取值范围.
(2)从开始算起,如果汽车每小时行驶60千米,当油 箱中余油10升时,该汽车行驶了多少千米?
4.4 一次函数的应用
学习目标
1. 能通过函数图象获取信息,提高学生的形象思维 能力.
2. 能利用函数图象解决简单的实际问题. 3. 初步体会方程与函数的关系.
课前预习
1. 已知一次函数y=mx+的图象与y轴交于点(0,3), 且y随x值的增大而增大,则m的值是 2 .
2. 如图4-4-1所示,当x=0时,y= 2 ;当y= 0时,x= -2 ;当x> -2 时,y>0;y随x的增大 而 增大 .
图4-4-5 (1)每月行驶的路程在什么范围内时,租国有出租 车公司的车合算? (2)每月行驶的路程等于多少时,租两家车的费用 相同?
(3)如果这个单位估计每月行驶的路程为2 600 km, 那么这个单位租哪家车合算?
解析 本题从给出的两个函数图象中可获取以下信 息:都是一次函数,一个是正比例函数;两条直线交 点的横坐标为1 500,表明当x=1 500时,两个函数值 相等;根据图象可知:x>1 500时,y2>y1;0<x< 1 500时,y2<y1.
图4-4-4
(1)小华买奖品的钱共是多少元?
100元 (2)每个奖品多少元?
2.5元 (3)若买20个奖品,还剩多少元?
50元 (4)写出图象的函数关系式.
y=-2.5x+100(0≤x≤40)
新知 2 同一坐标系中,两个一次函数图象的应用

2022学年北师大版八年级数学上册【一次函数的应用】训练卷附答案解析

2022学年北师大版八年级数学上册【一次函数的应用】训练卷附答案解析

2022学年北师大版八年级数学上册【一次函数的应用】训练卷一、单选题1.“漏壶”是一种古代计时器,如图所示,在壶内盛一定量的水,水从壶底的小孔漏出,壶内壁画有刻度,人们根据壶中水面的位置计算时间.用x 表示漏水时间,y 表示壶底到水面的高度,不考虑水量变化对压力的影响,下列图象能表示y 与x 对应关系的是( )A .B .C .D .2.某社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S (单位:2m )与工作时间t (单位:h )之间的函数关系如图所示.则该绿化组提高工作效率前每小时完成的绿化面积是( )A .2150mB .2200mC .2250mD .2300m3.为了让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m 2,打开进水口注水时,游泳池的蓄水量y (m 3)与注水时间t (h )之间满足一次函数关系,其图像如图所示,下列说法错误的是( )A .注水2小时,游泳池的蓄水量为380m 3B .该游泳池内开始注水时已经蓄水100m 3C .注水2小时,还需注水100m 3,可将游泳池注满D .每小时可注水190m 34.现有甲、乙两个长方体蓄水池,将甲池中的水匀速注入乙池,甲、乙两个蓄水池中水的深度y (米)(小时)之间的函数图象如图所示,当甲、乙两池中水的深度相同时,y 的值为( )A .3.2米B .4米C .4.2米D .4.8米5.在平面直角坐标系中,长方形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA =3,OB =4,D 为边OB 的中点,若E 为x 轴上的一个动点,当△CDE 的周长最小时,求点E 的坐标( )A .(一3,0)B .(3,0)C .(0,0)D .(1,0)6.如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .7.已知A 、B 两地相距600米,甲、乙两人同时从A 地出发前往B 地,所走路程y (米)与行驶时间x (分)之间的函数关系如图所示,则下列说法中:△甲每分钟走100米;△2分钟后,乙每分钟走50米;△甲比乙提前3分钟到达B 地;△当x =2或6时,甲乙两人相距100米.其中,正确的是( )A .△△△B .△△△C .△△△D .△△8.A 、B 两地相距350km ,甲骑摩托车从A 地匀速驶向B 地.当甲行驶1小时途径C 地时,一辆货车刚好从C 地出发匀速驶向B 地,当货车到达B 地后立即掉头以原速匀速驶向A 地.如图表示两车与B 地的距离(km)y 和甲出发的时间(h)x 的函数关系.则下列说法错误的是( )A .甲行驶的速度为80km/hB .货车返回途中与甲相遇后又经过3h 8甲到B 地C .甲行驶2.7小时时货车到达B 地D .甲行驶到B 地需要35h 8二、填空题9.弹簧的长度()cm y 与所挂物体的质量()kg x 的关系如图所示,则当弹簧所挂物体质量是10kg 时的长度是______cm .10.如图,在平面直角坐标系中有两点(1,4)A ,(2,2)B ,点M 是y 轴上一点,使MA MB +最小,则点M 的坐标为11.星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y (千米)与时间t (分钟)的关系如图所示,则上午8:45小明离家的距离是_ _千米.12.如图,平面直角坐标系内,点A (4,0)与点B (0,8)是坐标轴上两点,点C 是直线y =2x 上一动点(点C 不与原点重合),若△ABC 是直角三角形,则点C 的坐标为 ___ __.13.某市出租车收费与行驶路程关系如图所示.如果小明姥姥乘出租车去小明家花去了22元,那么小明姥姥乘车路程为__________千米.14.甲、乙两车从A 地出发,匀速驶往B 地.乙车出发1h 后,甲车才沿相同的路线开始行驶.甲车先到达B 地并停留30分钟后,又以原速按原路线返回,直至与乙相遇.图中的折线段表示从开始到相遇止,两车之间的距离y (km )与甲车行驶的时间x (h )的函数关系的图象,则 (1)=a ___________________. (2)d =___________________.三、解答题 15.如图一次函数y kx b =+的图象经过点(1,5)A -,与x 轴交于点B ,与正比例函数3y x =的图象交于点C ,点C 的横坐标为1.(1)求AB 的函数表达式.(2)若点D 在y 轴负半轴,且满足13COD BOC S S =△△,求点D 的坐标.(3)若3kx b x +<,请直接写出x 的取值范围.16.某公交车每月的支出费用为4000元,每月的乘车人数x (人)与每月的利润y (元)的变化关系如下表所示:(利润=收入费用-支出费用,每位乘客的公交票价是固定不变的):(1)在这个变化过程中,直接写出自变量和因变量;(2)观察表中数据可知,每月乘客量达到_____人以上时,该公交车才会盈利; (3)请你估计每月乘车人数为3500人时,每月的利润为______元;(4)根据表格直接写出y 与x 的表达式,并求出5月份乘客量需达多少人时,可获得5000元的利润.17.某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元. 设小明计划今年夏季游泳次数为x (x 为正整数).(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多? (Ⅱ)当x >20时,小明选择哪种付费方式更合算?并说明理由.18.如图,在平面直角坐标系中,点O 为坐标原点,直线y =kx +b 经过A (-6,0),B (0,3)两点,点C 在直线AB 上,C 的纵坐标为4.(1)求k 、b 的值及点C 坐标;(2)若点D 为直线AB 上一动点,且△OBC 与△OAD 的面积相等,试求点D 的坐标.19.一列快车和一列慢车同时从甲地出发,分别以速度1v 、2v (单位:km/h ,且122v v >)匀速驶向乙地.快车到达乙地后停留了2h ,沿原路仍以速度1v 匀速返回甲地,设慢车行驶的时间为()h x ,两车之间的距离为()km y ,图中的折线表示从慢车出发至慢车到达乙地的过程中,y 与x 之间的函数关系.(1)甲乙两地相距______km;点A实际意义:______;(2)求a,b的值;(3)慢车出发多长时间后,两车相距480km?20.如图△,在A、B两地之间有汽车站C,客车由A地驶往C站,货车由B地驶往A地,两车同时出发,匀速行驶,图△是客车、货车离C站的路程1y、2y(km)与行驶时间x(h)之间的函数图像.(1)客车的速度是km/h;(2)求货车由B地行驶至A地所用的时间;(3)求点E的坐标,并解释点E的实际意义。

北师大版八年级(上)数学《函数》课后拓展训练(含答案)

北师大版八年级(上)数学《函数》课后拓展训练(含答案)

4.1函数1.如图6-5所示,在矩形ABCD 中,AB =2,BC =1,动点P 从点B 出发,沿路线B →C →D 做匀速运动,那么△ABP 的面积S 与点P 运动的路程x 之间的函数图象大致是(如图6-6所示) ( )2.已知函数y =51x x ++,当x =-2时,函数y 的值为 ( ) A .3 B .-3 C .13 D .-133.已知x ,y 满足等式x =213y +,则y 等于 ( ) A.2133x + B .312x + C .312x - D .3122x - 4.等腰三角形的底角y 与顶角x 之间的函数关系式是 .5.菱形的周长为80 cm ,各边长都减少x cm(x >0)后,得到的新菱形的周长为y cm ,则y 与x 的函数关系式为 .6.当x =2时,函数y =kx +2与y =2x -k 的值相等,则k 的值是 7.当x =2时,函数y =2x +k 和y =3kx -2的值相等,则k = ;当x =3时,两函数的函数值分别是 , . 8.写出函数关系式,并指出自变量的取值范围.(1)如果每盒圆珠笔有12支,售价为18元,求圆珠笔的售价y (元)与圆珠笔的支数x 之间的函数关系式;(2)如果高度每升高1 km ,气温就下降6℃,求气温降低数T (℃)与高度增加数h (km)之间的函数关系式;(3)设正方形ABCD 的边长为5,P 是DC 边上一动点(不与D ,C 重合),设DP 的长为x ,求梯形ABCP 的面积y 与x 的函数关系式.参考答案1.B2.B3.D4.y=-12x+90°(0°<x<180°)5.y=-4x+80(0<x<20)6.23[提示:当x=2时,函数y=kx+2的值为2k+2,函数y=2x-k的值为4-k,由题意,得2k+2=4-k,所以k=23.]7.1.2 7.2 8.88.解:(1)每支圆珠笔的价格为1812=32元,∴y=32x,x为自然数.(2)由题意得T=6h,h≥0.(3)由梯形的面积公式,得y=12×5×(5+5-x)=25-52x,0<x<5.。

北师大版八年级数学上册4.4一次函数的应用(2)

北师大版八年级数学上册4.4一次函数的应用(2)

第四章一次函数4.4一次函数的应用(2)学习目标:1.经历分析实际问题中两个变量之间关系,并解决有关问题的过程,发展应用意识.2.进一步体会数形结合的思想,发展数形结合解决问题的能力.3.利用一次函数图像分析解决简单实际问题,发展几何直观.4.初步体会函数与方程的联系.学习重难点:1. 体会数形结合的思想,发展数形结合解决问题的能力2.利用一次函数图像分析解决简单实际问题学习过程:一、基础训练:1、如图是某一次函数的图象,根据图象填空:(1)当0y=时,______x=;(2)直线对应的函数表达式是_____________.2、由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.干旱持续时间t(天)与蓄水量V(万米3)的关系如下图所示,根据图象回答下列问题:(1)水库干旱前的蓄水量是_______________(2)干旱持续10天后,蓄水量为______________,连续干旱23天后呢?(3)蓄水量小于400万米3时,将发生严重干旱警报.干旱__________天后将发出严重干旱警报?(4)按照这个规律,预计持续干旱___________天水库将干涸?3、假定甲乙两人在一次赛跑中,路程S与时间t的关系如图所示,那么可以知道:这是一次______米赛跑;甲、乙两人中先到达终点的是______;乙在这次赛跑中的速度为______米/秒.二、例题展示:1、例2某种摩托车的油箱加满油后,油箱中的剩余油量y(L)与摩托车行驶路程x(km)之间的关系如图所示.根据图象回答下列问题.(1)油箱最多可储油多少升?(2)一箱汽油可供摩托车行驶多少千米?(3)摩托车每行驶100km消耗多少升汽油?(4)油箱中剩余油量小于1L时,摩托车将自动报警.行驶多少千米后.摩托车自动报警.三、做一做:1、某地长途客运公司规定,旅客可随身携带一定质量的行李.如果超过规定,则需购买行李票,行李票费用y(元)是行李质量x(千克)的一次函数,其图象如图所示.(1)写出y与x之间的函数关系式,并指出自变量x的取值范围.(2)旅客最多可免费携带多少千克行李?四、议一议:一元一次方程0.5x+1=0与一次函数y=0.5x+1有什么联系.(一元一次方程0.5x+1=0的解______ ,一次函数y=0.5x+1,当y=0时,相应的自变量x的值为____________。

北师大版八年级数学上册4.1一次函数的应用优秀教学案例

北师大版八年级数学上册4.1一次函数的应用优秀教学案例
2.学生通过合作交流,分享解题思路,互相学习,培养团队协作能力。
3.教师巡回指导,解答学生疑问,给予鼓励和评价,提高学生的自信心。
(四)总结归纳
1.教师引导学生回顾本节课所学内容,总结一次函数在购物、出行等方面的应用。
2.学生总结一次函数的图像特征和性质,加深对一次函数的理解。
3.教师强调一次函数在实际生活中的重要性,激发学生的学习兴趣。
三、教学策略
(一)情景创设
1.利用多媒体展示购物、出行等实际场景,让学生身临其境,引发学生的学习兴趣。
2.设计具有挑战性和趣味性的数学问题,激发学生的求知欲。
3.以生活实例为载体,引导学生发现数学规律,感知数学与生活的紧密联系。( Nhomakorabea)问题导向
1.引导学生提出问题,激发学生的思考,培养学生的问题意识。
五、案例亮点
1.生活情境导入:通过购物、出行等生活场景的展示,引导学生发现数学问题,激发学生的学习兴趣,增强学生的数学应用意识。
2.问题导向:本节课以问题为导向,引导学生主动探究、积极思考,培养学生的问题意识和解决问题的能力。
3.小组合作:组织学生进行小组讨论,培养学生的团队协作能力和沟通能力,提高学生的学习效果。
(四)反思与评价
1.引导学生对学习过程进行反思,总结经验,提高学生的学习能力。
2.组织学生进行自我评价、同伴评价,培养学生的评价能力。
3.教师对学生的学习过程和结果进行多元化评价,激发学生的学习动力。
本节课的教学策略旨在充分发挥学生的主体作用,引导学生主动探究、积极思考,提高学生的数学素养。通过情景创设、问题导向、小组合作和反思与评价等策略,培养学生的问题意识、团队协作能力和自我评价能力,使学生在学习一次函数的应用过程中,既能掌握数学知识,又能培养良好的学习习惯和价值观。

北师大版八年级(上)数学《一次函数》应用题练习(含答案)

北师大版八年级(上)数学《一次函数》应用题练习(含答案)

第四章 一次函数1.某商场购进一批内衣,经试验发现,若每件按20元销售时,每月能卖360件;若每件按25元销售时,每月能卖210件,假定每月销售数y (件)是销售单价x (元)的一次函数,求y 与x 之间的函数关系式.2.已知甲、乙两人分别从相距18km 的A 、B 两地同时相向而行,甲以4千米/时的平均速度步行,乙以每小时比甲快1千米的平均速度步行,相遇为止.(1)求甲、乙两人相距的距离为y (km )和所用时间x (小时)的函数关系式;(2)求出函数图像与x 轴、y 轴的交点坐标,画出函数图像,并求出自变量的取值范围;(3)求当甲、乙两人相距6千米时,所需用的时间.3.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月基础费,然后每通话1分钟,再付电话费0.4元;“神州行”不缴月基础费,每通话1分钟,付话费0.6元(这里均指市内通话).若一个月内通话x 分钟,两种通讯方式的费用分别为1y 和2y 元.(1)写出1y 、2y 与x 之间的函数关系式;(2)一个月内通话多少分钟,两种通讯方式的费用相同?(3)若某人预计一个月内使用话费200元,则应选择哪种通讯方式较合算?4.某城市按以下规定收取每月煤气费:用煤气不超过603m ,按0.8元/3m 收费;如果超过603m ,超过部分按1.2元/3m 收费.(1)设煤气用量为)60(m 3 x x ,应交煤气资为y 元,写出y 关于x 的函数解析式,并画出函数的图像;(2)已知某用户一月份的煤气费平均每立方米0.88元,那么一月份该用户应交煤气费共多少元?5.如图,公路上有A、B、C三个车站,一辆汽车在上午8时从离A站10km 的P地出发向C站匀速前进,15分钟后,离A站20km.(1)设出发x小时后,(2)当汽车行驶到离A站150km 汽车离A站y km,写出y与x之间的函数关系式;的B站时,接到通知要在中午12时前赶到离B站30千米的C站,汽车若按原速能否按时到达?若能,是在几点几分到达;若不能,车速最少应提高多少?6.随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势.试用你所学的函数知识解决下列问题:(1)求入学儿童人数y(人)与年份x(年)的函数关系式;(2)利用所求函数关系式,预测该地区从哪一年起入学儿童的人数不超过1000人?年份(x)2000 2001 2002 …入学儿童人数(y)2520 2330 2140 …7.《中华人民共和国个人所得税》规定,公民月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表累进计算:全月应纳税所得额税率不超过500元的部分5%超过500元至2000元的部分10%超过2000元至5000元的部分15%……(纳税款=应纳税所得额×对应的税率)按此规定解答下列问题:(1)设某甲的月工资、薪金所得为x 元(28001300<<x ),需缴交的所得税款为y 元,试写出y 与x 的函数关系式;(2)若某乙一月份应缴交所得税款95元,那么他一月份的工资、薪金是多少元?8.某家电集团公司生产某种型号的新家电,前期投资200万元,每生产1台这种新家电,后期还需其他投资0.3万元,已知每台新家电可实现产值0.5万元.(1)分别求出总投资额1y (万元)和总利润比2y (万元)关于新家电的总产量x (台)的函数关系式;(2)当新家电的总产量为900台时,该公司的盈亏情况如何?(3)请你利用(1)中2y 与x 的函数关系式,分析该公司的盈亏情况. (注:总投资=前期投资+后期其他投资,总利润=总产值-总投资)9.通过电脑拨号上“因特网”的费用是由电话费和上网费两部分组成.以前我市通过“黄冈热线”上“因特网”的费用为电话费0.18元/3分钟,上网费为7.2元/小时,后根据信息产业部调整“因特网”资费的要求,自1999年3月1日起,我市上“因特网”的费用调整为电话费0.2元/3分钟,上网费为每月不超过60小时,按4元/小时计算;超过60小时部分,按8元/小时计算.(1)根据调整后的规定,将每月上“因特网”的费用y (元)表示为上网时间x (小时)的函数;(2)资费调整前,网民晓刚在其家庭经济预算中,一直有一笔每月70小时的上网费用支出,“因特网”资费调整后,晓刚要想不超过其家庭经济预算中的上网费用支出,他现在每月至多可上网多少小时?(3)从资费调整前后的角度分析,比较我市网民上网费用的支出情况.10.某服装厂现有A种布料70m,B种布料52m,现计划用这两种布料生产M、N两种型号的时装共80套,已知做一套M型号的时装需用A种布料0.6m,B种布料0.9m,可获利润45元,做一套N型号的时装需用A种布料1.1m,B 种布料0.4m,可获利润50元,若设生产N型号的时装套数为N,用这批布料生产这两种型号的时装所获的总利润为y元.(1)求y(元)与x(套)的函数关系式,并求出自变量的取值范围;(2)该服装厂在生产这批时装中,当N型号的时装为多少套时,所获利润最大?最大利润是多少?参考答案1..96030+-=x y2.(1)189+-=x y (2)(2,0),(0,18),20≤<x (3)34小时 3.(1).6.04.05021x y x y =+=, (2)每月内通话250分钟,两种移动通讯费用相同. (3)200元话费用“全球通”可通话375分钟,“神州行”可通话31333分钟,选择“全球通”合算. 4.(1).242.1)60(2.1608.0-=-+⨯=x y x y , (2)x x 88.0242.1=-,75=x ,667588.0=⨯=y (元)5.(1)汽车速度为40千米/时,.1040+=x y (2)汽车若按原速度不能按时到达,若要汽车按时到达C 站,车速最少应提高到每小时60km .6.(1)直线b kx y +=过(2000,2500),(2001,2330)两点,∴ ⎩⎨⎧=+=+,23302001,25202000b k b k 解得⎩⎨⎧=-=.382520,190b k ∴.382520190+-=x y (2)设x 年时,入学人数为1000人,1000382520190=+-x ,2008=x ,即从2008年起入学儿童人数不超过1000人.7.(1)∵ 28001300<<x ,∴ 2000800500<-<x ,∴ %.5500%10)500800(⨯+⨯--=x y(2)∵ %5%1020095%5500+⨯<<⨯,∴ 2000,251.0)1300(95=+⨯-=x x ,某乙一月份工资、薪金是2000元.8.(1).2002.0)2003.0(5.02003.021-=+-=+=x x x y x y ,(2)当总产量是900台时,该公司会亏损,亏损20万元.(3)产量小于1000台时,该公司亏损,产量是1000台时,该公司不亏损也不盈利,产量大于1000台时,该公司会盈利.9.(1)⎩⎨⎧>-≤≤=).60(,2404.12),600(,4.8x x x x y (2)资费调整前,上网70小时所需费用为75670)2.76.3(=⨯+元.资费调整后,若上网60小时,则所需费用为504604.8=⨯(元). ∵ 504756>,∴ 晓刚现在上网时间超过60小时.由7562404.12≤-x ,解得32.80≤x . ∴ 晓刚现在每月至多可上网约80.32小时.(3)设调整前所需费用为1y (元);调整后所需费用2y (元),则x y 8.101=.当600≤≤x 时,x x x y 4.88.104.82>=,,故21y y >. 当60>x 时,2404.122-=x y ,当21y y =时,150,2404.128.10=-=x x x ;当21y y >时,150,2404.128.10<->x x x ;当21y y <时,150,2404.128.10>-<x x x .综上可得:当150<x 时,调整后所需费用少;当150=x 时,调整前后所需费用相同;当150>x 时,调整前所需费用少.10.(1)x x y 50)80(45+-=.由⎩⎨⎧≤+-≤+-.524.0)80(9.0,701.1)80(6.0x x x x 解得4440≤≤x . ∴ 自变量的取值范围为40,41,42,43,44.(2)当44=x 时,有最大值,最大值为3820元.。

2023学年北师大版数学八年级上学期同步考点解读训练4-4 一次函数的应用(能力提升)(含详解)

2023学年北师大版数学八年级上学期同步考点解读训练4-4 一次函数的应用(能力提升)(含详解)

专题4.4 一次函数的应用(能力提升)(原卷版)一、选择题。

1.(2022春•将乐县期中)如图,射线l甲,l乙分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的关系,则图中显示的他们行进的速度关系是()A.甲比乙快B.乙比甲快C.甲、乙同速D.不一定2.(2021春•嘉定区校级月考)小高从家门口骑车去单位上班,先走平路到达A地,再上坡到达B地,最后下坡到达工作单位,所用的时间与路程的关系如图所示.那么,小高上班时下坡的速度是()A.千米/分B.2千米/分C.1千米/分D.千米/分3.(2021春•宣恩县期末)在一定范围内,某种产品的购买量y吨与单价x元之间满足一次函数关系,若购买1000吨,每吨为800元;购买2000吨,每吨为700元,一客户购买400吨单价应该是()A.820元B.840元C.860元D.880元4.(2022•洪山区模拟)如图,甲、乙两人沿同一直线同时出发去往B地,运动过程中甲、乙两人到B地的距离y(km)与出发时间t(h)的关系如图所示,图中实线表示甲,虚线表示乙,下列说法错误的是()A.甲的速度是25km/hB.甲到达B地时两人相距40kmC.出发时乙在甲前方20kmD.甲、乙两人在出发后2h第一次相遇5.(2022春•商丘期末)如图,折线表示一骑车人离家的距离y与时间x的关系,骑车人9:00离开家,15:00回到家,则下列说法错误的是()A.骑车人离家最远距离是45kmB.骑车人中途休息的总时间长是1.5hC.从9:00到10:30骑车人离家的速度越来越大D.骑车人返家的平均速度是30km/h6.(2021秋•新郑市期末)在某大国的技术封锁下,华为公司凭借自身强大的创造力和凝聚力,华为概念指数从年初至今涨幅连连翻倍,比如硕贝德股票涨幅接近200%(如图AB段),小丽在图片中建立了坐标系,将AB段看作一次函数y=kx+b图象的一部分,则k,b的取值范围是()A.k>0,b<0B.k>0,b>0C.k<0,b<0D.k<0,b>07.(2021•潼南区一模)甲、乙两人在笔直的公路上同起点、同终点、同方向匀速步行1200米,先到终点的人原地休息.已知甲先出发3分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为40米/分;②乙用9分钟追上甲;③整个过程中,有4个时刻甲乙两人的距离为90米;④乙到达终点时,甲离终点还有280米.其中正确的结论有()A.①③B.①②④C.①③④D.①②③④8.(2021春•延庆区期末)图(1)是饮水机的图片.打开出水口,饮水桶中水面由图(1)的位置下降到图(3)的位置的过程中,如果水减少的体积是y,水面下降的高度是x,那么能够表示y与x之间函数关系的图象可能是()A.B.C.D.9.(2021秋•九龙坡区校级月考)如图1,某游泳池长25米,小林和小明两个人分别在游泳池的AB和CD两边,同时朝着另一边以各自的速度匀速游泳,他们游泳的时间为t(s),其中0≤t≤180,到AB边距离为y(m),图2中的实线和虚线分别表示小林和小明在游泳过程中y与t的对应关系.以下推断:①在整个游泳过程中,小林的总路程比小明的总路程更短;②小明游泳的速度是m/s;③两人第一次与第三次相遇的时间间隔是72s;④小林远离A地超过20米的总时长为36s;其中正确的个数是()A.1B.2C.3D.410.(2021秋•温州期末)已知A,B两地相距1680米,甲步行沿一条笔直的公路从A地出发到B地,乙骑自行车比甲晚7分钟从B地出发,沿同一条公路到达A地后立刻以原速度返回,并与甲同时到达B地、甲、乙离A地的距离y(米)与甲行走时间x(分)的函数图象如图所示,则甲出发后两人第一次相遇所需的时间是()A.10分钟B.10.5分钟C.11分钟D.11.5分钟二、填空题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【课时闯关】北师大八上数学一次函数的应用课后拓
展训练
1.早晨,小强从家出发,以v1的速度前往学校,途中在一饮食店吃早点,之后,以v2的速度向学校行进.已知v1>v2,如图6-27所示的图象中表示小强从家到学校的时间t(分钟)与路程s(千米)之间的关系的是( )
2.两个物体A,B所受压强分别为p A(帕)与p B(帕),它们所受压力F(牛)与受力面积S(米2)的函数关系图象分别是射线l A,l B,如图6-28所示,则( ) A.p A<p B B.p A=p B C.p A>p B D.p A≤p B
3.函数y=-x+4(-2≤x≤5)的图象与x轴的交点坐标是,函数的最大值是.
4.若直线y=3x+k与两坐标轴围成的三角形的面积为24,则常数k的值是.
5.如果直线y=k1x+4和直线y=k2x-1的交点在x轴上,那么k1:k2=.
6.随着教学手段不断更新,要求计算器进入课堂,某电子厂家经过市场调查,发现某种计算器的需求量x1(万个)与单价y1(万元)之间的函数关系如图6-29的需求线所示,供应量x2(万个)与单价y2(万元)之间的函数关系如图6-29的供应线所示,如果你是这个电子厂厂长,应计划生产这种计算器多少个,且每个售价多少元时才能使市场达到供需平衡?
7.某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票,同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆,如图6-30所示的线段AB,OB分别表示父、子俩送票、取票过程中,离体育馆的路程s(米)与所用时间t(分钟)之间的函数关系,结合图象解答下列问题(假设骑自行车和步行的速度始终保
持不变).
(1)求点B的坐标和AB所在直线的函数关系式;
(2)小明能否在比赛开始前到达体育馆?
参考答案
1.A
2.A
3.(4,0) 6
4.±12
5.(-4):1
6.解:设需求线为y1=k1x+b1(k1≠0),供应线为y2=k2x+b2(k2≠0).由图知需求线y1
过点(0,60),(30,70),∴60=k l·0+b1,70=k l·30+b1,解得k1=1
3
,b1=60,由此得y1
=1
3
x+60.同理可得y2=-x+80,当供需平衡时,y1=y2,∴
1
3
x+60=-x+80,∴x=15,
当x=15时,y1=y2=65.故生产这种计算器15万个,每1万个售价65万元(即每个售价65元)时,能使市场达到供需平衡.
7.解:(1)设小明步行速度为x米/分,则父亲骑车速度为3x米/分,由图象可知15(3x +x)=3600,解得x=60,15×60=900(米),∴点B的坐标为(15,900).设直线AB为s=
kt+b(k≠0),把
15,0,
900,3600,
t t
s s
==
⎧⎧
⎨⎨
==
⎩⎩
代入s=kt+b,得900=15k+b,3600=b,∴k=-180,
b=3600,∴直线AB的函数关系式为s=-180t+3600.(2)把s=0代入s=-180t+3600得0=-180t+3600,解得t=20.答:小明能在比赛开始之前到达体育馆.。

相关文档
最新文档