八年级上册数学 全等三角形单元测试卷(含答案解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册数学全等三角形单元测试卷(含答案解析)

一、八年级数学轴对称三角形填空题(难)

1.如图,线段AB,DE的垂直平分线交于点C,且72

ABC EDC

∠=∠=︒,92

AEB

∠=︒,则EBD

∠的度数为 ________ .

【答案】128︒

【解析】

【分析】

连接CE,由线段AB,DE的垂直平分线交于点C,得CA=CB,CE=CD,

ACB=∠ECD=36°,进而得∠ACE=∠BCD,易证∆ACE≅∆BCD,设∠AEC=∠BDC=x,得则

∠BDE=72°-x,∠CEB=92°-x,BDE中,∠EBD=128°,根据三角形内角和定理,即可得到答案.

【详解】

连接CE,

∵线段AB,DE的垂直平分线交于点C,

∴CA=CB,CE=CD,

∵72

ABC EDC

∠=∠=︒=∠DEC,

∴∠ACB=∠ECD=36°,

∴∠ACE=∠BCD,

在∆ACE与∆BCD中,

CA CB

ACE BCD

CE CD

=

∠=∠

⎪=

∴∆ACE≅∆BCD(SAS),

∴∠AEC=∠BDC,

设∠AEC=∠BDC=x,则∠BDE=72°-x,∠CEB=92°-x,

∴∠BED=∠DEC-∠CEB=72°-(92°-x)=x-20°,

∴在∆BDE中,∠EBD=180°-(72°-x)-(x-20°)=128°.

故答案是:128︒.

【点睛】

本题主要考查中垂线的性质,三角形全等的判定和性质定理以及三角形内角和定理,添加辅助线,构造全等三角形,是解题的关键.

2.如图,在ABC 中,AB AC >,按以下步骤作图:分别以点B 和点C 为圆心,大于BC 一半长为半径作画弧,两弧相交于点M 和点N ,过点M N 、作直线交AB 于点D ,连接CD ,若10AB =,6AC =,则ADC 的周长为_____________________.

【答案】16

【解析】

【分析】

利用基本作图可以判定MN 垂直平分BC ,则DC=DB ,然后利用等线段代换得到ACD ∆的周长=AB+AC ,再把10AB =,6AC =代入计算即可.

【详解】

解:由作法得MN 垂直平分BC ,则DC=DB ,

10616ACD C CD AC AD DB AD AC AB AC ∆=++=++=+=+=

故答案为:16.

【点睛】

本题考查了基本作图和线段垂直平分线的性质,熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是本题的关键.

3.如图,已知△ABC 中,AB=AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 中点,两边

PE、PF分别交AB、AC于点E、F,给出下列四个结论:

①AE=CF;

②△EPF是等腰直角三角形;

③EF=AB;

1

2ABC

AEPF

S S

=

四边形

,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的有________(把你认为正确的结论的序号都填上).

【答案】①②④

【解析】

试题分析:∵∠APE、∠CPF都是∠APF的余角,

∴∠APE=∠CPF,

∵AB=AC,∠BAC=90°,P是BC中点,

∴AP=CP,

∴∠PAE=∠PCF,

在△APE与△CPF中,

{?

PAE PCF

AP CP

EPA FPC

∠=∠

=

∠=∠

∴△APE≌△CPF(ASA),

同理可证△APF≌△BPE,

∴AE=CF,△EPF是等腰直角三角形,S四边形AEPF=1

2

S△ABC,①②④正确;

而AP=

1

2

BC,当EF不是△ABC的中位线时,则EF不等于BC的一半,EF=AP,

∴故③不成立.

故始终正确的是①②④.

故选D.

考点:1.全等三角形的判定与性质;2.等腰直角三角形.

4.如图,A,B,C三点在同一直线上,分别以AB,BC(AB>BC)为边,在直线AC的同侧作等边

ΔABD和等边ΔBCE,连接AE交BD于点M,连接CD交BE于点N,连接MN. 以下结论:

①AE=DC,②MN//AB,③BD⊥AE,④∠DPM=60°,⑤ΔBMN是等边三角形.其中正确的是__________(把所有正确的序号都填上).

【答案】①②④⑤

【解析】

【分析】

①由三角形ABD与三角形BCE都为等边三角形,利用等边三角形的性质得到两条边对应相等,两个角相等都为60°,利用SAS即可得到三角形ABE与三角形DBC全等即可得结论;

②由①中三角形ABE与三角形DBC全等,利用全等三角形的对应角相等得到一对角相等,再由∠ABD=∠EBC=60°,利用平角的定义得到∠MBE=∠NBC=60°,再由EB=CB,利用ASA 可得出三角形EMB与三角形CNB全等,利用全等三角形的对应边相等得到MB=NB,再由∠MBE=60°,利用有一个角为60°的等腰三角形为等边三角形可得出三角形BMN为等边三角形;可得∠BMN=60°,进行可得∠BMN=∠ABD,故MN//AB,从而可判断②,⑤正确;

③无法证明PM=PN,因此不能得到BD⊥AE;

④由①得∠EAB=∠CDB,根据三角形内角和和外角的性质可证得结论.

【详解】

①∵等边△ABD和等边△BCE,

∴AB=DB,BE=BC,∠ABD=∠EBC=60°,

∴∠ABE=∠DBC=120°,

在△ABE和△DBC中,

AB DB

ABE DBC BE BC

∴△ABE≌△DBC(SAS),∴AE=DC,

故①正确;

∵△ABE≌△DBC,

∴∠AEB=∠DCB,

又∠ABD=∠EBC=60°,

∴∠MBE=180°-60°-60°=60°,即∠MBE=∠NBC=60°,

在△MBE和△NBC中,

AEB DCB EB CB

MBE NBC ∠∠

⎩∠

相关文档
最新文档