2019届沪科版八年级下《第18章勾股定理》单元测试卷有答案-(数学)精校版

合集下载

沪科版初二数学下学期第18章勾股定理单元测试题 (含答案)

沪科版初二数学下学期第18章勾股定理单元测试题 (含答案)

沪科版八年级数学下册第18章勾股定理单元检测卷(满分150分,考试时间120分钟)一、选择题(本大题共6题,每题4分,满分24分)1.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要( )A.450a元B.225a元C.150a元D.300a元2.如图,Rt△ABC中,∠C=90°,AC=12,BC=5.分别以AB、AC、BC为边在AB的同侧作正方形ABDE、ACFG、BCIH,四块阴影部分的面积分别为S1、S2、S3、S4.则S1+S2+S3+S4等于()A.90B.60C.169D.1443. 已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.32cm D.122cmcm C.62cm B.424.如图,Rt△ABC中,∠C=90°,CD⊥AB于点D,AB=13,CD=6,则(AC+BC)2等于( )A.25B.325C.2197D.4055. 已知三角形的三边长为a b c 、、,由下列条件能构成直角三角形的是( )A.()()2222221,4,1a m b m c m =-==+B.()()222221,4,1a m b m c m =-==+C.()()222221,2,1a m b m c m =-==+D.()()2222221,2,1a m b m c m =-==+6. 勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为( )A .90 B . 100 C . 110 D . 121B . 二、填空题(本大题共12 题,每题4分,满分48分)7.如图,B ,C 是河岸边两点,A 是对岸岸边一点,测得∠ABC =45°,∠ACB =45°,BC =60米,则点A 到岸边BC 的距离是______米.8.在直角三角形中,一条直角边为11cm ,另两边是两个连续自然数,则此直角三角形的周长为______.9.如图,圆柱形容器中,高为120cm ,底面周长为100cm ,在容器内壁离容器底部40cm 的点B 处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿40cm 与蚊子相对的点A 处,则壁虎捕捉蚊子的最短距离为__________cm .(容器厚度忽略不计)10.如图,平面上A、B两点处有甲、乙两只蚂蚁,它们都发现C处有食物,已知点C在A的东南方向,在B的西南方向.甲、乙两只蚂蚁同时从A、B两地出发爬向C处,速度都是30cm/min.结果甲蚂蚁用了2 min,乙蚂蚁2分40秒到达C处分享食物,两只蚂蚁原来所处地点相距_______cm.11. 小明要把一根长为70cm的长的木棒放到一个长、宽、高分别为50cm,40cm,30cm的木箱中,他能放进去吗?______________(填“能”或“不能”).12.如图,△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边做垂线,画出一个新的等腰直角三角形,如此继续下去,直到所画直角三角形的斜边与△ABC的BC边重叠为止,此时这个三角形的斜边长为__________.13.已知:△ABC中,AB=15,AC=13,BC边上的高AD=12,BC=_______.14.如图,E是边长为4cm的正方形ABCD的边AB上一点,且AE=1cm,P为对角线BD上的任意一点,则AP+EP的最小值是____________cm.15.如图,长方体的底面边长分别为1cm 和2cm,高为4cm,点P在边BC上,且BP=14 BC.如果用一根细线从点A开始经过3个侧面缠绕一圈到达点P,那么所用细线最短需要_________cm.16.小明把一根70cm长的木棒放到一个长宽高分别为30cm,40cm,50cm的木箱中,他能放进去吗?答:__________(选填“能”或“不能”).17. 已知长方形OABC,点A、C的坐标分别为OA=10,OC=4,点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,CP的长为________.18. 如图所示,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,∠BAD=________.三、解答题:(本大题共7题,满分78分)19.(本题满分10分)甲乙两船从位于东西走向的海岸线上的港口A同时出发,甲以每小时30海里的速度向北偏东35°方向航行,乙船以每小时40海里的速度向另一方向航行,2小时后,甲船到C岛,乙船到达B岛,B、C两岛相距100海里,判断乙船所走方向,说明理由.20.(本题满分10分)如图,△ABC中,∠A=90°,AC=20,AB=10,延长AB到D,使CD+DB=AC+AB,求BD 的长.21.(本题满分10分)如图,四边形ABCD是边长为9的正方形纸片,B'为CD边上的点,CB'=3.将纸片沿某条直线折叠,使点B落在点B'处,点A的对应点为A',折痕分别与AD,BC边交于点M,N.求BN的长.22. (本题满分10分)如图所示,已知D、E、F分别是△ABC中BC、AB、AC边上的点,且AE=AF,BE=BD,CF=CD,AB=4,AC=3,32BDCD=,求:△ABC的面积.23.(本小题满分12分)如图等腰△ABC的底边长为8cm,腰长为5cm,一个动点P在底边上从B向C以0.25cm/s的速度移动,请你探究,当P运动几秒时,P点与顶点A的连线PA与腰垂直.24.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.25.(本题满分14分)如图1,四根长度一定的木条,其中AB=6cm,CD=15cm,将这四根木条用小钉绞合在一起,构成一个四边形ABCD(在A、B、C、D四点处是可以活动的).现固定AB边不动,转动这个四边形,使它的形状改变,在转动的过程中有以下两个特殊位置.位置一:当点D在BA的延长线上时,点C在线段AD上(如图2);位置二:当点C在AB的延长线上时,∠C=90°.(1)在图2中,若设BC的长为x,请用x的代数式表示AD的长;(2)在图3中画出位置二的准确图形;(各木条长度需符合题目要求)(3)利用图2、图3求图1的四边形ABCD中,BC、AD边的长.参考答案一、选择题(本大题共6题,每题4分,满分24分)12 3 4 5 6 C C C D C D二、填空题(本大题共12 题,每题4分,满分48分)7.【答案】30;8.【答案】132cm ;【解析】由题意()222111n n +=+,解得60n =,所以周长为11+60+61=132.9.【答案】130;10.【答案】100;【解析】依题知AC =60cm ,BC =80cm ,∴ AB2=602+802=1002,AB=100cm . 11.【答案】能;【解析】可设放入长方体盒子中的最大长度是xcm ,根据题意,得x2=502+402+302=5000, 702=4900,因为4900<5000,所以能放进去.12.【答案】81; 13.【答案】14或4;【解析】当△ABC 是锐角三角形时,BC =9+5=14;当△ABC 是钝角三角形时,BC =9-5=4. 14.【答案】5【解析】作E 点关于直线BD 的对称点E ′,连接AE ′,则线段AE ′的长即为AP+EP 的最小值5.15.【答案】5【解析】∵长方体的底面边长分别为1cm 和2cm ,高为4cm ,点P 在边BC 上,且BP=14BC ,∴AC=4cm ,PC=34BC=3cm ,根据两点之间线段最短,AP=5. 16.【答案】能;【解析】解:可设放入长方体盒子中的最大长度是xcm ,根据题意,得x2=502+402+302=5000,702=4900,因为4900<5000,所以能放进去.17.【答案】3,2, 8;【解析】以O 为等腰三角形的顶点,作等腰三角形1OPD ,因为1OP =5,114PH OC ==,所以由勾股定理求得13OH =,所以13CP =,同理,以D 为等腰三角形的顶点,可求出232,8CP CP ==.如图所示.18.【答案】90°;【解析】延长AD 到M ,使DM =AD ,易得△ABD ≌△MCD .∴ CM =AB =5 AM =2AD =12 在△ACM 中22251213+= 即222CM AM AC +=∴∠AMC =∠BAD=90°三、解答题:(本大题共7题,满分78分)19.【解析】解:由题意得:甲2小时的路程=30×2=60海里,乙2小时的路程=40×2=80海里, ∵602+802=1002,∴∠BAC=90°,∵C 岛在A 北偏东35°方向,∴B 岛在A 北偏西55°方向.∴乙船所走方向是北偏西55°方向.20.【解析】解:设BD =x ,则CD =30-x .在Rt △ACD 中,根据勾股定理列出()222(30)1020x x -=++, 解得x =5.所以BD =5.21. 【解析】解:点A 与点A ',点B 与点B '分别关于直线MN 对称, ∴AM A M '=,BN B N '=.设BN B N x '==,则9CN x =-.∵ 正方形ABCD ,∴ o 90C ∠=.∴ 222CN B C B N ''+=.∵ C B '=3,∴ 222(9)3x x -+=.解得5x =.∴ 5BN =.22.【解析】 解:∵32BD CD =,设BD =3x ,则CD =2x ,由AE =AF ,BE =BD ,CF =CD , 即AF =3-2x ,AE =4-3x , ∴ 3-2x =4-3x ,解得x =1.∴ BC =3x +2x =5 又∵ 222345+=,即222AC AB BC +=∴ △ABC 是直角三角形,∠A =90°.∴ 1143622ABC S AB AC ==⨯⨯=g △ 23.【解析】解:如图,作AD ⊥BC ,交BC 于点D ,∵BC=8cm ,∴BD=CD=21BC=4cm , ∴AD=3,分两种情况:当点P 运动t 秒后有PA ⊥AC 时,∵AP2=PD2+AD2=PC2﹣AC2,∴PD2+AD2=PC2﹣AC2,∴PD2+32=(PD+4)2﹣52∴PD=2.25,∴BP=4﹣2.25=1.75=0.25t ,∴t=7秒,当点P 运动t 秒后有PA ⊥AB 时,同理可证得PD=2.25,∴BP=4+2.25=6.25=0.25t ,∴t=25秒,∴点P 运动的时间为7秒或25秒.24.【解析】解:(1)过点A 作AD ⊥ON 于点D ,∵∠NOM=30°,AO=80m ,∴AD=40m ,即对学校A 的噪声影响最大时卡车P 与学校A 的距离为40米;(2)由图可知:以50m 为半径画圆,分别交ON 于B ,C 两点,AD ⊥BC ,BD=CD=21BC ,OA=80m , ∵在Rt △AOD 中,∠AOB=30°,∴AD=21OA=21×80=40m , 在Rt △ABD 中,AB=50,AD=40,由勾股定理得:m AD AB BD 3040502222=-=-=,故BC=2×30=60米,即重型运输卡车在经过BD 时对学校产生影响.∵重型运输卡车的速度为18千米/小时,即3006018000=米/分钟, ∴重型运输卡车经过BD 时需要60÷300=0.2(分钟)=12(秒).答:卡车P 沿道路ON 方向行驶一次给学校A 带来噪声影响的时间为12秒.25.【解析】解:(1)∵ 在四边形ABCD 转动的过程中,BC 、AD 边的长度始终保持不变,BC =x , ∴ 在图2中,AC =BC -AB =x -6,AD =AC +CD =x +9.(2)位置二的图形见图3.(3)∵ 在四边形ABCD 转动的过程中,BC 、AD 边的长度始终保持不变, ∴ 在图3中,BC =x ,AC =AB +BC =6+x ,AD =x +9.在△ACD 中,∠C =90°由勾股定理得222AC CD AD +=.∴ 222(6)15(9)x x ++=+.整理,得2212362251881x x x x +++=++.化简,得6x =180.解得 x =30.即 BC =30.∴ AD =39.。

沪科版八年级下《第18章勾股定理》单元检测试卷(有答案)(数学)

沪科版八年级下《第18章勾股定理》单元检测试卷(有答案)(数学)

第18章勾股定理一、选择题1.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是().A. 1、2、3B. 2、3、4 C. 3、4、5 D. 4、5、62.一个直角三角形中,两直角边长分别为3和4,下列说法正确的是()A. 斜边长为25B. 三角形周长为25 C. 斜边长为5 D. 三角形面积为203.如图,已知O为圆锥的顶点,MN为圆锥底面的直径,一只蜗牛从M点出发,绕圆锥侧面爬行到N点时,所爬过的最短路线的痕迹(虚线)在侧面展开图中的位置是()A.B.C.D.4.如图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴在A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用()A. 9mB. 7 mC. 5mD. 3m5.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD= ,则BC的长为()A. ﹣1 B. +1C. ﹣1 D. +16.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A、B 在围成的正方体中的距离是()A. 0B.1 C.D.7.适合下列条件的△ABC中,直角三角形的个数为()①a=3,b=4,c=5;②a=6,∠A=45°;③a=2,b=2,c=2 ;④∠A=38°,∠B=52°.A. 1个 B. 2个 C. 3个 D. 4个8.如图字母B所代表的正方形的面积是()A. 12B. 13 C. 144D. 1949.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A. 24cm2B. 36cm2C. 48cm2D. 60cm210.如图,长方体的长为15宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.20B.25C.30D.3211.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心,一只蚂蚁在盒子表面由A 处向B处爬行,所走最短路程是(◆)A. 40cm B. cmC. 20cm D. cm二、填空题12.如图,有一圆柱体,它的高为8cm,底面周长为12cm.在圆柱的下底面A点处有一个蜘蛛,它想吃到上底面上与A点相对的B点处的苍蝇,需要爬行的最短路径是________ cm.13.请写出两组勾股数:________、________.14.如图是一块长、宽、高分别是6cm、4cm和3cm的长方体木块,一只蚂蚁要从顶点A出发,沿长方体的表面爬到和A相对的顶点B处吃食物,那么它需要爬行的最短路线的长是________.15. 北京召开的国际数学家大会会徽取材于我国古代数学家赵爽弦图它是由四全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,下列说法:①a2+b2=13;②b2=1;③a2﹣b2=12;④ab=6.其中正确结论序号是________16.已知甲、乙两人在同一地点出发,甲往东走4km,乙往南走了3km,这时甲、乙两人相距________ km.17.一根旗杆在离底部4.5米的地方折断,旗杆顶端落在离旗杆底部6米处,则旗杆折断前高为________18.在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为________ .19.学校有一块长方形的花圃如右图所示,有少数的同学为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了________步(假设1米=2步),却踩伤了花草,所谓“花草无辜,踩之何忍”!20.如图,长为12cm的弹性皮筋直放置在x轴上,固定两端A和B,然后把中点C向上拉升8cm至D点,则弹性皮筋被拉长了________.21. 在北京召开的国际数学大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是25,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,那么(a+b)2的值为________三、解答题22.如图所示,有一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,则这块地的面积.23.如图,四边形ABCD中,∠B=90°,AB=6,BC=8,CD=24,AD=26,求四边形ABCD的面积.24.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.作AD⊥BC于D,设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x→利用勾股定理求出AD的长,再计算三角形的面积.25.我们运用图(Ⅰ)中大正方形的面积可表示为(a+b)2,也可表示为c3+4(ab),即(a+b)2=c2+4(ab)由此推导出一个重要的结论a2+b2=c2,这个重要的结论就是著名的“勾股定理”.这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”.(1)请你用图(Ⅱ)(2002年国际数学家大会会标)的面积表达式验证勾股定理(其中四个直角三角形的较大的直角边长都为a,较小的直角边长都为b,斜边长都为c).(2)请你用(Ⅲ)提供的图形进行组合,用组合图形的面积表达式验证:(x+2y)2=x2+4xy+4y2.参考答案一、选择题C CD D D C C C A B C二、填空题12. 1013. 3、4、5;6、8、1014.15. ①④16. 5km17. 12米18. 42或3219. 420. 8cm21. 49三、解答题22. 解:如图,连接AC.在△ACD中,∵AD=4米,CD=3米,∠ADC=90°,∴AC=5米,又∵AC2+BC2=52+122=132=AB2,∴△ABC是直角三角形,∴这块地的面积=△ABC的面积﹣△ACD的面积= ×5×12﹣×3×4=24(平方米).23. 解:连结AC,在△ABC中,∵∠B=90°,AB=6,BC=8,∴AC= =10,S△ABC= AB•BC= ×6×8=24,在△ACD中,∵CD=24,AD=26,AC=10,∴CD2+AC2=AD2,∴△ACD是直角三角形,∴S△ACD= AC•CD= ×10×24=120.∴四边形ABCD的面积=S△ABC+S△ACD=24+120=144.24. 解:如图,在△ABC中,AB=15,BC=14,AC=13,设BD=x,则有CD=14﹣x,由勾股定理得:AD2=AB2﹣BD2=152﹣x2, AD2=AC2﹣CD2=132﹣(14﹣x)2,∴152﹣x2=132﹣(14﹣x)2,解之得:x=9,∴AD=12,∴S△ABC= BC•AD= ×14×12=8425. (1)解:S阴影=4×ab,S阴影=c2﹣(a﹣b)2,∴4×ab=c2﹣(a﹣b)2,即2ab=c2﹣a2+2ab﹣b2,则a2+b2=c2;(2)解:如图所示,大正方形的面积为x2+4y2+4xy,也可以为(x+2y)2,则(x+2y)2=x2+4xy+4y2.。

沪科版2019-2020学年八年级数学下学期第18章勾股定理单元测试卷及答案

沪科版2019-2020学年八年级数学下学期第18章勾股定理单元测试卷及答案

第18章勾股定理一、选择题(本大题共8小题,每小题4分,共32分)1.下列各组数中是勾股数的是()A.0.3,0.4,0.5B.1.5,2,2.5C.6,8,13D.9,12,152.已知一个直角三角形的两边长分别为3和5,则第三边长是 ()A.5B.4C.D.4或3.如图1,AB=AC,则数轴上点C所表示的数为()图1A.+1B.-1C.-+1D.--14.如图2,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度(滑轮上方的部分忽略不计)为()图2A.12 mB.13 mC.16 mD.17 m5.已知△ABC的三边长为a,b,c,下列条件能判定△ABC为直角三角形的是()A.a∶b∶c=1∶1∶B.a∶b∶c=1∶1∶C.a∶b∶c=2∶2∶3D.a∶b∶c=∶2∶6.如图3,西安路与南京路平行,并且均与八一街垂直,曙光路与环城路垂直.如果小红站在南京路与八一街的交叉口,准备去书店(点A处),按图中的街道行走,最近的路程为()图3A.600 mB.500 mC.400 mD.300 m7.如图4,在Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使点A与BC边的中点D重合,折痕为MN,则线段BN的长为()图4A.B.C.4 D.58.如图5,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2……按照此规律继续下去,则S2020的值为()图5A.2017B.2018C.2019D.2018二、填空题(本大题共5小题,每小题4分,共20分)9.如6,小明和小华同时从A处分别向北偏东30°和南偏东60°方向出发,他们的速度分别是3 m/s和4 m/s,则20 s后他们之间的距离为.图610.如图7,在△ABC中,AB=AC=41 cm,BC=80 cm,AD平分∠BAC交BC于点D,则S△ABC=.图711.如图8,直线l过正方形ABCD的顶点B,点A,C到直线l的距离AE,CF分别为5和3,则正方形ABCD的面积是.图812.图9是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD 和四边形EFGH都是正方形,如果AB=10,EF=2,那么AH等于.图913.如图10,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC扩充为等腰三角形ABD,且扩充部分是以AC为直角边的直角三角形,则CD的长为.图10三、解答题(本大题共4小题,共48分)14.(10分)有四根小木棒,它们的长度分别为5 cm,8 cm,12 cm,13 cm,从中选出三根作为一个三角形的三边,如果所构成的三角形为直角三角形,请回答下列问题:(1)你所选三根木棒的长度分别为多少?请说明理由;(2)求你所构成的直角三角形斜边上的高.15.(12分)如图11,在离水面高度为5 m的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13 m,此人以0.5 m/s的速度收绳,10 s后船移动到点D的位置,则船向岸边移动了多少米?(假设绳子是直的,结果保留根号)图1116.(12分)如图12,在长方形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,求AP的长.图1217.(14分)在△ABC中,BC=a,AC=b,AB=c.若∠C=90°,如图13①所示,根据勾股定理有a2+b2=c2.若△ABC不是直角三角形,如图②③所示,请你类比勾股定理,试猜想a2+b2与c2的大小关系,并证明你的结论.图13详解详析1.[答案] D2.[解析] D∵这个直角三角形的两边长分别为3和5,∴分两种情况:①若5是此直角三角形的斜边长,则另一直角边的长为-=4;②若3和5是此直角三角形的直角边长,则斜边长为=.故选D.3.[答案] B4.[解析] D如图所示,过点B作BC⊥AE于点C,则BC=DE=8.设AE=x,则AB=x,AC=x-2.在Rt△ABC中,AC2+BC2=AB2,即(x-2)2+82=x2,解得x=17.故选D.5.[答案] B6.[答案] B7.[解析] C设BN=x,由折叠的性质可得DN=AN=9-x.∵D是BC的中点,∴BD=3.在Rt△DNB 中,x2+32=(9-x)2,解得x=4.故线段BN的长为4.故选C.8.[解析] A∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴2S2=S1.观察发现规律:S1=22=4,S2=S1=2,S3=S2=1,S4=S3=,…,∴S n=n-3,当n=2020时,S2020=2020-3=2017.故选A.9.[答案] 100 m[解析] 小明和小华出发的方向成90°角,20 s后小明走了60 m,小华走了80 m,根据勾股定理,得他们之间的距离是=100(m).10.[答案] 360 cm2[解析] 由等腰三角形“三线合一”的性质,知AD⊥BC,且BD=CD.在Rt△ABD中,∵AB=41,BD=BC=40,∴AD=-=-=9,∴S△ABC=BC·AD=×80×9=360(cm2). 11.[答案] 34[解析] ∵四边形ABCD为正方形,∴AB=BC,∠ABC=90°.∵AE⊥EF,CF⊥EF,∴∠AEB=∠BFC=90°,∴∠BAE+∠ABE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF.在△ABE和△BCF中,,,,∴△ABE≌△BCF,∴AE=BF=5,BE=CF=3.根据勾股定理,得AB==, 则正方形ABCD的面积为34.12.[答案] 613.[答案] 3或或2[解析] 分三种情况:①若AD=AB,如图①所示,CD=BC=3;②若AD=BD,如图②所示.设CD=x,则AD=x+3.在Rt△ADC中,由勾股定理,得(x+3)2=x2+42,解得x=,∴CD=;③若BD=AB,如图③所示.在Rt△ABC中,AB==5,∴BD=5,∴CD=5-3=2.综上所述,CD的长为3或或2.14.解:(1)所选三根木棒的长度分别为5 cm,12 cm,13 cm.理由如下:四根木棒,任取三根,有四种组合,即5 cm,8 cm,12 cm;5 cm,12 cm,13 cm;5 cm,8 cm,13 cm;8 cm,12 cm,13 cm.∵5+8>12,5+12>13,5+8=13(无法构成三角形),8+12>13,∴可组成三个三角形.又∵52=25,82=64,122=144,132=169,52+122=169=132,∴根据勾股定理的逆定理,可知长为 5 cm,12 cm,13 cm的三根木棒可构成一个直角三角形.(2)设此直角三角形斜边上的高为x cm,则×13x=×5×12,即13x=60,解得x=.所以所构成的直角三角形斜边上的高是cm.15.解:∵在Rt△ABC中,∠CAB=90°,BC=13 m,AC=5 m,∴AB=-=12(m).∵此人以0.5 m/s的速度收绳,10 s后船移动到点D的位置,∴CD=13-0.5×10=8(m),∴AD=-=-=(m),∴BD=AB-AD=(12-)m.答:船向岸边移动了(12-)m.16.解:如图所示,设BE与CD交于点G.∵四边形ABCD是长方形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=8.根据题意,得△EBP≌△ABP,∴EP=AP,∠E=∠A=90°,EB=AB=8.在△ODP和△OEG中,∵, ,,∴△ODP≌△OEG,∴OP=OG,PD=GE,∴DG=EP.设AP=EP=x,则PD=GE=6-x,DG=x,∴CG=8-x,BG=8-(6-x)=2+x.根据勾股定理,得BC2+CG2=BG2,即62+(8-x)2=(2+x)2,解得x=4.8,∴AP=4.8.17.解:图②中,a2+b2>c2.证明:过点A作AD⊥BC于点D.设CD=x,则在Rt△ABD和Rt△ACD中,b2-x2=AD2=c2-(a-x)2, 整理,得a2+b2=c2+2ax.∵2ax>0,∴a2+b2>c2.图③中,a2+b2<c2.证明:过点B作BD⊥AC,交AC的延长线于点D.设CD=x,则在Rt△ADB和Rt△BDC中,c2-(b+x)2=BD2=a2-x2,整理,得a2+b2=c2-2bx.∵2bx>0,∴a2+b2<c2.。

沪科版数学八年级下册第18章勾股定理测试卷带答案

沪科版数学八年级下册第18章勾股定理测试卷带答案
【详解】
如图,已知AB=21m,CD=15m,CE=1m,
∵∠A=∠ADC=∠AEC=90°,
∴四边形ADCE是矩形,
∴AD=CE=1.
在Rt△BCD中,∵∠CDB=90°,
CD=15,BD=AB-AD=21-1=20,
∴BC= = =25m,
即目测点到杆顶的距离为25m.故选B.
【点睛】
本题考查了解直角三角形的应用,勾股定理,理解题意正确画出图形是解题的关键.
故选B.
5.A
【解析】
解:图(1)中,AB=5m,BC=3m,由勾股定理得AC=4m.∵梯子下滑了1m,
∴AE=1m,∴EC=3m,
图(2)中,EC=3m,ED=5m,由勾股定理得CD=4m,所以梯子向外端下滑了1m.故选A.
点睛:本题考查的是勾股定理的应用,要求熟练掌握.
6.B
【解析】
因为角的度数和它的两边的长短无关,所以得到的新三角形应该是直角三角形,故选B.
3.B
【解析】
试题解析:已知三角形的三边分别是BC=15,AB=20,AC=25,BD是AC上的高,
∵BC=15,AB=20,AC=25,
∴AC2=AB2+BC2,
∴三角形ABC为直角三角形,
∵BD是AC上的高,
∴ BD•AC= AB•BC,
∴BD=12.
故选B.
4.B
【解析】
解:A.因为∠C﹣∠B=∠A,∠C+∠B+∠A=180°,所以2∠C=180°,即∠C=90°.故选项正确;
3.一个三角形的三边长为15,20,25,则此三角形最大边上的高为()
A.10B.12C.24D.48
4.△ABC中,∠A,∠B,∠C的对边分别为a、b、c,下列说法中错误的()

沪科版八年级数学下册《第18章勾股定理》单元检测卷(附带答案)

沪科版八年级数学下册《第18章勾股定理》单元检测卷(附带答案)

沪科版八年级数学下册《第18章勾股定理》单元检测卷(附带答案) 学校:___________班级:___________姓名:___________考号:___________一、单选题(本大题共12小题,每小题3分,共36分)1.如图,在四边形ABCD中∠ABC=90°,AB2BC7DC=4,AD=5,则四边形ABCD的面积是()A.614B.16142C.1214+D.122.若3、4、a为勾股数,则a的值为()A7B.5C.5或7D.573.一云梯AB长25米,如图那样斜靠在一面墙上,云梯底端离墙7米,如果云梯的顶端下滑了4米,那么它的底端在水平方向滑动BB'的长是()A.10米B.8米C.6米D.4米4.已知,如图长方形ABCD中3AB=,9AD=将此长方形折叠,使点B与点D重合,折痕为EF,则ABE 的面积为()A .3B .4C .6D .125.在3×3的正方形方格中∠1和∠2的位置和大小分别如图所示,则∠1+∠2=( )A .30°B .45°C .60°D .75°6.如图,在ABC 中3ABC A ∠=∠,CD 平分ACB ∠且BD CD ⊥,BC=10,DC=8,则AC =( )A .18B .20C .22D .257.在正方形网格中网格线的交点称为格点,如图是 3×3 的正方形网格,已知 A ,B 是两格点,C 是不同于点A 和B 的格点,下列说法正确的是( ).A .ΔABC 是直角三角形,这样的点C 有4个B .ΔABC 是等腰三角形,这样的点C 有4个C .ΔABC 是等腰直角三角形,这样的点C 有6个D .ΔABC 是等腰直角三角形,这样的点C 有2个8.如图,在ABC 中3,4,90AC BC C ==∠=︒,若P 是AB 上的一个动点,则AP BP CP ++的最小值是( )A .5.5B .6.4C .7.4D .89.如图,在ABC 中1012AB AC BC ===,,AD 是BC 边上的高,若P ,Q 分别是AD 和AC 上的动点,则PC PQ +的最小值是( )A .4.8B .6C .9.6D .1210.如图,有一块直角三角形纸片,两直角边5AC cm =,12BC cm =现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .3cmB .103cmC .5cmD .8cm11.如图,如果半圆的直径恰为直角三角形的一条直角边,那么半圆的面积为( )2cm .A .4πB .6πC .12πD .24π12.∠ABC 中如果三边满足关系2BC =2AB +2AC ,则∠ABC 的直角是( )A .∠ CB .∠AC .∠BD .不能确定二、填空题(本大题共8小题,每小题3分,共24分)13.小聪准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竹竿顶和岸边的水面刚好相齐,则河水的深度为 m .14.如图,数轴上点A 、B 对应的数分别是1,2,过点B 作PQ AB ⊥,以点B 为圆心,AB 长为半径作圆弧,交PQ 于点C ,以原点A 为圆心,AC 长为半径画弧,交数轴于点M ,当点M 在点B 的右侧时,点M 对应的数是 .15.如图,在ABC 中90C ∠=︒,AD 平分BAC ∠,AB=15,9AC =则点D 到AB 的距离是 .16.如图,以直角三角形各边向外作正方形,其中两个正方形的面积分别为225和144,则正方形A 的边长为 .17.如图,在等边ABC 中6AB BD AC =⊥,于点D ,点E F 、分别是BC DC 、上的动点,沿EF 所在直线折叠CEF △,使点C 落在BD 上的点C '处,若BEC '△是直角三角形,则DC '的值为 .18.过线段AB 的一个端点B 作BD AB ⊥,使得12BD AB =,连接DA ,在DA 上截取DE DB =,在AB 上截取AC AE =,AB=2,求AC BC 的值 .19.已知:如图,在四边形ABCD 中∠DAB=90°,AD∠BC ,AD=1,AB=3,将∠ABD 沿直线BD 翻折,点A 恰好落在CD 边上点A '处,则BC 的长20.如图1,点P 从∠ABC 的顶点A 出发,沿A ﹣B ﹣C 匀速运动,到点C 停止运动.点P 运动时,线段AP 的长度y 与运动时间x 的函数关系如图2所示,其中D 为曲线部分的最低点,则∠ABC 的面积是 .三、解答题(本大题共5小题,每小题8分,共40分)21.如图,在ABC 中AD∠BC ,垂足为D ,∠B=60°,∠C=45°(1)求∠BAC 的度数;(2)若BD=2,求CD 的长.22.如图,在梯形ABCD 中,90,8AD BC ABC AB BC ∠=︒==∥,点E 在边AB 上DE CE ⊥,DE 的延长线与CB 的延长线相交于点F .(1)求证:DF CE =;(2)当点E 为AB 中点时,求CD 的长;(3)设,CE x AD y ==,试用x 的代数式表示y .23.如图,在∠ABC 中已知45B ∠=︒,和105C ∠=︒,20AC =求线段AB 的长.24.如图,∠ABC中∠ABC=90°,AB=6,BC=8,AD平分∠BAC,交BC于点D.动点Q从点B出发,按BC—CA的折线路径,以每秒1个单位长度的速度运动,设运动时间为t秒.(1)当点Q在AC边上运动时,线段AQ长为(用含t的代数式表示)(2)当点Q在AC边上运动时,线段BQ长度不可能是.(填序号即可)∠7.2∠5.3∠4.8∠4.5(3)求∠ADC的面积.(4)当∠ABQ为轴对称图形时,请直接写出t的值.25.定义:若一个三角形存在两边平方和等于第三边平方的3倍,则称此三角形为“平方倍三角形”.(1)若一个三角形的三边长分别是52,这个三角形是否为平方倍三角形?请你作出判断并说明理由;(2)若一个直角三角形是平方倍三角形,直角边长为a,b,斜边为c,求a:b:c的值;(3)如图,ABC中BC=2,CD为ABC的中线,且CD=1AB.若ACD是平方倍三角形,求ABC的面2积.参考答案:1.B2.B3.B4.C5.B6.C7.C8.C9.C10.B11.B12.B13.21421/1215.9216.917.633-31851+19.5.20.4821.(1)75°;(2)322.(1)11(2)10 (3)2216488y x x =--23.1031024.(1)18-t (2)∠(3)15(4)6或13或12或54525.(1)这个三角形是“平方倍三角形”;(2)::2a b c =25或2。

2019-2020沪科版数学八年级下册《第18章 勾股定理》单元测试卷解析版

2019-2020沪科版数学八年级下册《第18章 勾股定理》单元测试卷解析版

沪科版数学八年级下册《第19章勾股定理》单元测试卷及解析一、选择题(本大题共10小题,共50分)1. 下列各组数的三个数,可作为三边长构成直角三角形的是( )A. 1,2,3B. 32,42,52C. 13,14,15D. 0.3,0.4,0.5 2. 在Rt △ABC 中,斜边长BC =3,AB 2+AC 2+BC 2的值为( )A. 18B. 9C. 6D. 无法计算 3. 在Rt △ABC 中,a ,b ,c 为△ABC 三边长,则下列关系正确的是( )A. a 2+b 2=c 2B. a 2+c 2=b 2C. b 2+c 2=a 2D. 以上关系都有可能4. △ABC 中∠A 、∠B 、∠C 的对边分别是a 、b 、c ,下列命题中的假命题是( )A. 如果∠C −∠B =∠A ,则△ABC 是直角三角形B. 如果c 2=b 2−a 2,则△ABC 是直角三角形,且∠C =90°C. 如果(c +a)(c −a)=b 2,则△ABC 是直角三角形D. 如果∠A :∠B :∠C =5:2:3,则△ABC 是直角三角形5. 将直角三角形的三边都扩大相同的倍数后,得到的三角形一定是( )A. 直角三角形B. 锐角三角形C. 钝角三角形D. 以上三种情况都有可能 6. 在△ABC 中,AB =12cm ,AC =9cm ,BC =15cm ,下列关系成立的是( )A. ∠B +∠C >∠AB. ∠B +∠C =∠AC. ∠B +∠C <∠AD. 以上都不对7. 小刚准备测量河水的深度,他把一根竹竿插到岸边1.5m 远的河底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为( ) A. 2m B. 2.5m C. 2.25m D. 3m 8. 若一个三角形三边满足(a +b)2−c 2=2ab ,则这个三角形是( )A. 直角三角形B. 等腰直角三角形C. 等腰三角形D. 以上结论都不对9. △ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( )A. 42B. 32C. 42或32D. 37或33 10. 三角形的三边长分别是2n +1、2n 2+2n 、2n 2+2n +1(n 为自然数),则此三角形是( )A. 直角三角形B. 等腰直角三角形C. 等腰三角形D. 无法判定 二、填空题(本大题共4小题,共20分)11. 已知a ,b ,c 分别是Rt △ABC 的两条直角边长和斜边长,且a +b =14,c =10,则S △ABC = ______ . 12. 如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC 、BC 为直径作半圆,面积分别记为S 1、S 2,则S 1+S 2等于______. 13. 有一个长为12cm ,宽为4cm ,高为3cm 的长方形铁盒,在其内部要放一根笔直的铅笔,则铅笔最长是______ . 14. 如图,一圆柱高8cm ,底面半径为6πcm ,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程是__________cm .三、计算题(本大题共2小题,共20分)15. 如图,折叠长方形一边AD ,点D 落在BC 边的点F 处,BC =10cm ,AB =8cm ,求:(1)FC 的长; (2)EF 的长.16. “中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/ℎ.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A 处的正前方30m 的C 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?(参考数据转换:1m/s =3.6km/ℎ)四、解答题(本大题共4小题,共60分)17. 如图,有一个长方形的场院ABCD ,其中AB =9m ,AD =12m ,在B 处竖直立着一根电线杆,在电线杆上距地面8m 的E 处有一盏电灯.点D 到灯E 的距离是多少?18. 学校校内有一块如图所示的三角形空地ABC ,计划将这块空地建成一个花园,以美化校园环境,预计花园每平方米造价为30元,学校修建这个花园需要投资多少元?19.如图,长方体ABCD−A′B′C′D′中,AB=BB′=2,AD=3,一只蚂蚁从A点出发,沿长方体表面爬到C′点,求蚂蚁怎样走最短,最短路程是多少?20.如图,对任意符合条件的直角三角形BAC,绕其锐角顶点逆时针旋转90°得△DAE,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形ABFE面积等于Rt△BAE 和Rt△BFE的面积之和,根据图形写出一种证明勾股定理的方法.答案和解析1.【答案】D【解析】解:∵0.32+0.42=0.25,0.52=0.25,∴0.32+0.42=0.52,∴0.3,0.4,0.5能构成直角三角形的三边.故选D.根据勾股定理的逆定理即可判断.本题考查勾股定理的逆定理,解题的关键是记住勾股定理的逆定理的解题格式,属于中考常考题型.2.【答案】A【解析】解:∵Rt△ABC中,BC为斜边,∴AB2+AC2=BC2,∴AB2+AC2+BC2=2BC2=2×32=18.故选A.利用勾股定理将AB2+AC2转化为BC2,再求值.本题考查了勾股定理.正确判断直角三角形的直角边、斜边,利用勾股定理得出等式是解题的关键.3.【答案】D【解析】解:在Rt△ABC中,a,b,c为△ABC三边长,∠C是直角,则有a2+b2=c2;∠B是直角,则有a2+c2=b2;∠A是直角,则有b2+c2=a2.故选:D.根据勾股定理,分∠C是直角,∠B是直角,∠A是直角,三种情况讨论可得a,b,c之间的关系.考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.4.【答案】B【解析】解:A、根据三角形内角和定理,可求出角C为90度,故正确;B、解得应为∠B=90度,故错误;C、化简后有c2=a2+b2,根据勾股定理,则△ABC是直角三角形,故正确;D、设三角分别为5x,3x,2x,根据三角形内角和定理可求得三外角分别为:90度,36度,54度,则△ABC 是直角三角形,故正确.故选:B.直角三角形的判定方法有:①求得一个角为90°,②利用勾股定理的逆定理.本题考查了直角三角形的判定.5.【答案】A【解析】解:根据题意,新三角形与原三角形对应边成比例,所以两三角形相似,所以得到的三角形是直角三角形.故选A.根据“直角三角形的三边都扩大相同的倍数”得到新三角形与原三角形相似,所以是直角三角形.此题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.6.【答案】B【解析】解:因为122+92=152,所以三角形是直角三角形,则∠B+∠C=∠A.故选B.根据勾股定理的逆定理进行分析,从而得到三角形的形状,则不难求得其各角的关系.本题考查了直角三角形的判定及勾股定理逆定理的应用.7.【答案】A【解析】解:如图,若假设竹竿长x米,则水深(x−0.5)米,由题意得,x2=1.52+(x−0.5)2,解得.x=2.5.所以水深2.5−0.5=2(米).故选:A.经分析知:可以放到一个直角三角形中计算.此直角三角形的斜边是竹竿的长,设为x米.一条直角边是1.5,另一条直角边是(x−0.5)米.根据勾股定理,得:x2=1.52+(x−0.5)2,求出x的值,即可得出答案.此题考查了勾股定理的应用,解题的难点在于能够理解题意,正确画出图形.8.【答案】A【解析】解:∵(a+b)2−c2=2ab,∴a2+b2+2ab−c2=2ab,∴a2+b2=c2,∴这个三角形为直角三角形.故选:A.化简等式,可得a2+b2=c2,由勾股定理逆定理,进而可得其为直角三角形.本题考查了勾股定理逆定理的运用,是基础知识比较简单.9.【答案】C【解析】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD=√AB2−AD2=√152 −122 =9,在Rt△ACD中,CD=√AC2−AD2=√132 −122=5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD=√AB2−AD2=√152 −122 =9,在Rt△ACD中,CD=√AC2−AD2=√132 −122=5,∴BC=9−5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.故选:C.本题应分两种情况进行讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;(2)当△ABC为钝角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相减即为BC的长,从而可将△ABC的周长求出.此题考查了勾股定理及解直角三角形的知识,在解本题时应分两种情况进行讨论,易错点在于漏解,同学们思考问题一定要全面,有一定难度.10.【答案】A【解析】解:∵(2n2+2n)2+(2n+1)2=4n4+4n2+8n3+4n2+4n+1=4n4+8n3+8n2+4n+1;(2n2+2n+1)2=(2n2+2n+1)(2n2+2n+1)=4n4+4n3+2n2+4n3+4n2+2n+2n2+2n+1=4n4+8n3+8n2+4n+1;∴(2n2+2n)2+(2n+1)2=(2n2+2n+1)2,∴三角形是直角三角形.故选A.欲求证是否为直角三角形,这里给出三角形三边的长,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.勾股定理的逆定理:若三角形三边满足a2+b2=c2,那么这个三角形是直角三角形.11.【答案】24【解析】解:∵a,b,c分别是Rt△ABC的两条直角边长和斜边长,且a+b=14,c=10,∴a=14−b,则(14−b)2+b2=c2,故(14−b)2+b2=102,解得:b1=6,b2=8,则a1=8,a2=6,即S△ABC=12ab=12×6×8=24.故答案为:24.直接利用勾股定理结合已知得出关于b的等式,进而求出答案.此题主要考查了勾股定理以及三角形面积求法,正确得出直角边长是解题关键.12.【答案】2π【解析】解:S1=12π(AC2)2=18πAC2,S2=18πBC2,所以S1+S2=18π(AC2+BC2)=18πAB2=2π.故答案为:2π.根据半圆面积公式结合勾股定理,知S1+S2等于以斜边为直径的半圆面积.此题根据半圆的面积公式以及勾股定理证明:以直角三角形的两条直角边为直径的半圆面积和等于以斜边为直径的半圆面积,重在验证勾股定理.13.【答案】13cm【解析】解:铅笔的长为√122+42+32=√144+16+9=13cm.故答案为:13cm.本题根据题目中所给的信息,可以构造出直角三角形,再利用勾股定理解答即可.本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.14.【答案】10 【解析】【分析】此题主要考查了立体图形的展开和两点之间线段最短,解题的关键是根据题意画出展开图,表示出各线段的长度.此题最直接的解法,就是将圆柱展开,然后利用两点之间线段最短解答.【解答】解:底面圆周长为2πr,底面半圆弧长为πr,即半圆弧长为:12×2π×6π=6(cm),展开得:∵BC=8cm,AC=6cm,根据勾股定理得:AB=√82+62=10(cm).故答案为:10.15.【答案】解:(1)由题意可得,AF=AD=10cm,在Rt△ABF中,∵AB=8,∴BF=6cm,∴FC=BC−BF=10−6=4cm.(2)由题意可得EF=DE,可设DE的长为x,则在Rt△EFC中,(8−x)2+42=x2,解得x=5,即EF的长为5cm.【解析】(1)由于△ADE翻折得到△AEF,所以可得AF=AD,则在Rt△ABF中,第一问可求解;(2)由于EF=DE,可设EF的长为x,进而在Rt△EFC中,利用勾股定理求解直角三角形即可.本题主要考查了矩形的性质以及翻折的问题,能够熟练运用矩形的性质求解一些简答的问题.16.【答案】解:在Rt△ABC中,AC=30m,AB=50m;据勾股定理可得:BC=√AB2−AC2=√502−302=40(m)∴小汽车的速度为v=402=20(m/s)=20×3.6(km/ℎ)=72(km/ℎ);∵72(km/ℎ)>70(km/ℎ);∴这辆小汽车超速行驶.答:这辆小汽车超速了.【解析】本题求小汽车是否超速,其实就是求BC的距离,直角三角形ABC中,有斜边AB的长,有直角边AC的长,那么BC的长就很容易求得,根据小汽车用2s行驶的路程为BC,那么可求出小汽车的速度,然后再判断是否超速了.本题是将实际问题转化为直角三角形中的数学问题,可把条件和问题放到直角三角形中,进行解决.要注意题目中单位的统一.17.【答案】解:在Rt△BAD中,∠BAD=90°,AD=√AB2+AD2=√92+122=15米,在Rt△EBD中,∠EBD=90°,ED=√EB2+BD2=√82+152=17米.故点D到灯E的距离是17米.【解析】在Rt△ABD中求出BD,然后在Rt△EBD中利用勾股定理即可得出DE的长度.本题考查了勾股定理的应用,属于基础题,解答本题的关键是熟练掌握勾股定理的表达式.18.【答案】解:过点A作AD⊥BC于点D,设BD=x,则CD=14−x,在Rt△ABD与Rt△ACD中,∵AD2=AB2−BD2,AD2=AC2−CD2,∴AB2−BD2=AC2−CD2,即132−x2=152−(14−x)2,解得x=5,∴AD2=AB2−BD2=132−52=144,∴AD=12(米),∴学校修建这个花园的费用=30×12×14×12=2520(元).答:学校修建这个花园需要投资2520元.【解析】过点A作AD⊥BC于点D,设BD=x,则CD=14−x,再根据勾股定理求出x的值,进而可得出AD的长,由三角形的面积公式即可得出结论.本题考查的是勾股定理的应用及三角形的面积公式,根据题意作出辅助线,构造出直角三角形是解答此题的关键.19.【答案】解:如图1所示:由题意得:AD=3,DC′=2+2=4,在Rt△ADC′中,由勾股定理得AC′=√AD2+DC′2=√32+42=5,如图2所示:由题意得:AC=5,C′C=2,在Rt△ACC′中,由勾股定理得;AC′=√AC2+CC′2=√52+22=√29,∵√29>5.∴第一种方法蚂蚁爬行的路线最短,最短路程是5.【解析】做此题要把这个长方体中,蚂蚁所走的路线放到一个平面内,由于在平面内线段最短,根据勾股定理即可计算.本题考查了平面展开−最短路径问题,此题的关键是明确线段最短这一知识点,然后把立体的长方体放到一个平面内,求出最短的路线.20.【答案】解:由图可得:正方形ACFD的面积=四边形ABFE的面积=Rt△BAE和Rt△BFE的面积之和,即S正方形ACFD=S△BAE+S△BFE,∴b2=12c2+(b+a)(b−a)2,整理得:a2+b2=c2.【解析】证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和,化简整理得到勾股定理.本题主要考查了勾股定理的证明,勾股定理的证明方法有很多种,一般采用拼图的方法证明.在解题时注意:先利用拼图的方法拼图,然后再利用面积相等,证明勾股定理.。

2019至2020学年度沪科版八年级下《第18章勾股定理》单元测试卷有答案-(数学)(已审阅)

2019至2020学年度沪科版八年级下《第18章勾股定理》单元测试卷有答案-(数学)(已审阅)

第18章勾股定理单元测试卷一、选择题(每题3分,共30分)1.以下列各组数据为边长的三角形中,是直角三角形的是( )A.,,B.5,4,8C.,2,1D.,3,2.直角三角形的一条直角边长是另一条直角边长的,斜边长为10,则它的面积为( )A.10B.15C.20D.303.在Rt△ABC中,∠A,∠B,∠C的对边分别为a,b,c,若∠B=90°,则( )A.b2=a2+c2B.c2+b2=a2C.a2+b2=c2D.a+b=c4.如果将长为6 cm,宽为5 cm的长方形纸片折叠一次,那么这条折痕的长不可能是( )A.8 cmB.5cmC.5.5 cmD.1 cm5.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( )A. B. C. D.6.如图,每个小正方形的边长都为1,则△ABC的三边a,b,c的大小关系是( )A.a<c<bB.a<b<cC.c<a<bD.c<b<a7.有一个三角形的两边长分别是4和5,若这个三角形是直角三角形,则第三边长为( )A.3B.C.3或D.无法确定8.三角形三边长分别是6,8,10,则它的最短边上的高为( )A.6B.14C.2D.89.如图,以直角三角形的三边a,b,c为边或直径,分别向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3的图形个数是( )A.1B.2C.3D.410.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线上D'处.若AB=3,AD=4,则ED的长为( )A. B.3 C.1 D.二、填空题(每题4分,共16分)11.如图是八里河公园水上风情园一角的示意图,A,B,C,D为四个养有珍稀动物的小岛,连线代表连接各个小岛的晃桥(各岛之间也可以通过乘船到达),如果黄芳同学想从A岛到C岛,则至少要经过________米.12.三角形一边长为10,另两边长是方程x2-14x+48=0的两实根,则这是一个________三角形,面积为________.13.如图,四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若四边形ABCD的面积是24 cm2,则AC的长是________.(有一组邻边相等的长方形是正方形)14.如图,从点A(0,2)发出的一束光,经x轴反射,过点B(4,3),则这束光从点A到点B所经过路径的长为__________.三、解答题(15~22题每题8分,23题10分,共74分)15.如图,在△ABC中,AC=6,AB=8,BC=7,求△ABC的面积.(结果保留整数)16.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.17.如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿河岸向前走30 m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.18.龙梅和玉荣是好朋友,可是有一次经过一场争吵之后,两人不欢而散.龙梅的速度是0.5米/秒,4分钟后她停了下来,觉得有点后悔了,玉荣走的方向好像是和龙梅成直角,她的速度是米/秒,如果她和龙梅同时停下来,而这时候她俩正好相距200米,那么她们行走的方向是否成直角?如果她们现在想讲和,那么以原来的速度相向而行,多长时间后能相遇?19.如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD 的长和宽分别为a,b,AC的长为c.(1)你能用只含a,b的代数式表示S△ABC ,S△C'A'D'和S直角梯形A'D'BA吗?能用只含c的代数式表示S△ACA'吗?(2)利用(1)的结论,你能验证勾股定理吗?20.如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知点C周围200 m 范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A 向东走600 m到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?21.如图,两个村子A,B在河的同侧,A,B两村到河边的距离分别为AC=1 km,BD=3 km,CD=3 km.现需在河边CD上建造一水厂向A,B两村送水,铺设水管的工程费用约为每千米20 000元,请在河边CD上选择水厂的位置O,使铺设水管的费用最少,并求铺设水管的费用.22.如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________,点E的坐标为_________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.23.平面直角坐标系中,点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为,即=|x|+|y|(其中“+”是四则运算中的加法).(1)求点A(-1,3),B(+2,-2)的勾股值, ;(2)求满足条件=3的所有点N围成的图形的面积.参考答案一、1.【答案】C2.【答案】B解:设较短直角边长为x(x>0),则有x2+(3x)2=102,解得x=,∴直角三角形的面积S=x·3x=15.3.【答案】A4.【答案】A5.【答案】A解:在直角三角形ABC中,由AC及BC的长,利用勾股定理求出AB的长,然后过C作CD⊥AB于D,直角三角形的面积可以由两直角边乘积的一半来求,也可以由斜边AB乘斜边上的高CD除以2来求,两者相等,将AC,AB及BC的长代入求出CD的长,即为C 到AB的距离.6.【答案】C解:利用勾股定理可得a=,b=5,而c=4,所以c<a<b.7.【答案】C解:此题要考虑两种情况:当两直角边长是4和5时,斜边长为;当一直角边长是4,斜边长是5时,另一直角边长是3.故选C.8.【答案】D解:因为62+82=102,所以该三角形是直角三角形,所以最短边上的高为8.9.【答案】D解:因为直角三角形的三边为a,b,c,所以应用勾股定理可得a2+b2=c2.第一个图形中,首先根据等边三角形的面积的求法,表示出3个等边三角形的面积,然后根据a2+b2=c2,可得S1+S2=S3.第二个图形中,首先根据半圆形的面积的求法,表示出3个半圆形的面积,然后根据a2+b2=c2,可得S1+S2=S3.第三个图形中,首先根据等腰直角三角形的面积的求法,表示出3个等腰直角三角形的面积,然后根据a2+b2=c2,可得S1+S2=S3.第四个图形中,首先根据正方形的面积的求法,表示出3个正方形的面积,然后根据a2+b2=c2,可得S 1+S2=S3.10.【答案】A解:在Rt△ABC中,AC===5.设ED=x,则D'E=x,AD'=AC-CD'=2,AE=4-x,根据勾股定理可得方程22+x2=(4-x)2,再解方程即可.二、11.【答案】37012.【答案】直角;24解:解方程得x1=6,x2=8.∵+=36+64=100=102,∴这个三角形为直角三角形,从而求出面积.13.【答案】4cm解:过点A作AE⊥BC于点E,AF⊥CD交CD的延长线于点F.易得△ABE≌△ADF,所以AE=AF,进一步证明四边形AECF是正方形,且正方形AECF与四边形ABCD的面积相等,则AE==2(cm),所以AC=AE=×2=4(cm).14.【答案】解:如图,设这一束光与x轴交于点C,作点B关于x轴的对称点B',过B'作B'D⊥y轴于点D,连接B'C.易知A,C,B'这三点在同一条直线上,再由轴对称的性质知B'C=BC,则AC+CB=AC+CB'=AB'.由题意得AD=5,B'D=4,由勾股定理,得AB'=.所以AC+CB=.三、15.解:如图,过点A作AD⊥BC于点 D.在Rt△ABD中,由勾股定理得AD2=AB2-BD2.在Rt△ACD中,由勾股定理得AD2=AC2-CD2.所以AB2-BD2=AC2-CD2.设BD=x,则82-x2=62-(7-x)2,解得x=5.5,即BD=5.5.所以AD==≈5.8.所以S=·BC·AD≈×7×5.8=20.3≈20.△ABC16.解:如图,过B点作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=60°,∴∠ABC=30°,∴AB=2AC=20,∴BC===10.∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC=5,∴CM===15.在△EFD 中,∵∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM -MD=15-5.17.解:过点C 作CE⊥AD 于点E,由题意得AB=30 m,∠CAD=30°,∠CBD=60°,故可得∠ACB=∠CAB=∠BCE=30°,即可得AB=BC=30 m,∴BE=15 m. 在Rt△BCE 中,根据勾股定理可得CE===15(m).答:小丽自家门前小河的宽度为15 m.18.解:龙梅行走的路程为0.5×240=120(米),玉荣行走的路程为×240=160(米),两人相距200米,因为1202+1602=2002,根据勾股定理的逆定理可知,两人行走的方向成直角.因为=(秒)=(分钟),所以分钟后她们能相遇.19.解:(1)易知△ABC,△C'A'D'和△ACA'都是直角三角形,所以S △ABC =ab,S △C'A'D'=ab,S 直角梯形A'D'BA =(a+b)(a+b)=(a+b)2,S △ACA'=c 2. (2)由题意可知S △ACA'=S 直角梯形A'D'BA-S △ABC -S △C'A'D'=(a+b)2-ab-ab=(a 2+b 2),而S △ACA'=c 2.所以a 2+b 2=c 2.20.解:(1)MN不会穿过原始森林保护区.理由如下:过点C作CH⊥AB于点H.设CH=x m.由题意知∠EAC=45°,∠FBC=60°,则∠CAH=45°,∠CBA=30°.在Rt△ACH中,AH=CH=x m,在Rt△HBC中,BC=2x m.由勾股定理,得HB==x m.∵AH+HB=AB=600 m,∴x+x=600.解得x=≈220>200.∴MN不会穿过原始森林保护区.(2)设原计划完成这项工程需要y天,则实际完成这项工程需要(y-5)天.根据题意,得=(1+25%)×.解得y=25.经检验,y=25是原方程的根.∴原计划完成这项工程需要25天.21.解:如图,延长AC到A',使A'C=AC,连接A'B与CD交于点O,则点O为CD上到A,B两点的距离之和最小的点.过A'作CD的平行线,交BD的延长线于点G,连接AO,则BG=4 km,A'G=3 km.在Rt△A'BG中,A'B2=BG2+A'G2=42+32=25,解得A'B=5 km.易知OA=OA',则OA+OB=A'B=5 km,故铺设水管的费用最少为5×20 000=100 000(元).22.解:(1)(3,4);(0,1)(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形,∴BC=OA=4,∠AOC=∠DCE=90°,由折叠的性质可得DE=BD=BC-CD=4-1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC===2,则有OE=OC-CE=m-2.在Rt△AOE中,OA2+OE2=AE2,即42+(m-2)2=m2,解得m=3.23.解:(1) =|-1|+|3|=4.=|+2|+|-2|=+2+2-=4.(2)设N(x,y),∵=3,∴|x|+|y|=3.①当x≥0,y≥0时,x+y=3,即y=-x+3;②当x>0,y<0时,x-y=3,即y=x-3;③当x<0,y>0时,-x+y=3,即y=x+3;④当x≤0,y≤0时,-x-y=3,即y=-x-3.如图,满足条件=3的所有点N围成的图形是正方形,面积是18.。

沪科版八年级数学下《第18单元勾股定理》单元测试题含解析

沪科版八年级数学下《第18单元勾股定理》单元测试题含解析

密学校 班级姓名 学号密 封 线 内 不 得 答 题沪科版8年级数学(下)第18章单元精编试题(含解析)满分:150分一、单选题(共10题;共40分)1.以下列各组数为边长,能组成直角三角形的是( )A. 2,3,4B. 10,8,4C. 7,25,24D. 7,15,12 2.在△ABC 中,AB=6,AC=8,BC=10,则该三角形为()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰直角三角形3.如图所示,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前( )米.A. 15B. 20C. 3D. 244.下列几组数据能作为直角三角形的三边长的是( )A. 2,3,4B. 5,3,4C. 4,6,9D. 5,11,13 5.如图,在平面直角坐标系中,有两点坐标分别为(2,0)和(0,3),则这两点之间的距离是( )A.B.C. 13D. 56.以下列各组数作为三角形的三边长,其中不能构成直角三角形的是( ) A. 1,1, B. 6,8,10 C. 8,15,17 D. 1,2,27.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A. 90°B. 60°C. 45°D. 30° 8. 在Rt △ABC 中,∠C=90°,AC=5,BC=12,CD 是斜边AB 边上的中线,则CD=A.2.5B.6C.13D.6.59.若三角形三边的长为下列各组数,则其中是直角三角形的是( )A. 6,6,6B. 5,12,13C. 4,5,6D. 5,5,8 10.一艘轮船和一艘渔船同时沿各自的航向从港口O 出发,如图所示,轮船从港口O 沿北偏西20°的方向行60海里到达点M 处,同一时刻渔船已航行到与港口O 相距80海里的点N 处,若M 、N 两点相距100海里,则∠NOF 的度数为( )A. 50°B. 60°C. 70°D. 80°二、填空题(共4题;共20分)11.现用火柴棒摆一个直角三角形,两直角边分别用了7根、24根长度相同的火柴棒,则斜边需用________根同样的火柴棒.12.如图,正方形网格中的△ABC ,若小方格边长都为1,则△ABC 是:________三角形.13.如图是一段楼梯,高BC 是3米,斜边AC 是5米,如果在楼梯上铺地毯,那么至少需要地毯________米.14.一木杆于离地面9m 处断裂,木杆顶落于离木杆底部12m 处,则木杆在断裂前高________ m .三、解答题(共7题;共60分)15.(8分)一块空地的如图如示,AB=9m 、BC=12m 、CD=8m 、AD=17m 、∠ABC=90°,求这块空地的面积.16.(8分)如图,铁路上A 、B 两点相距25km ,C 、D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C 、D 两村到E 站的距离相等,则E 站应建在距A 站多少千米处?17.(8分)如图,在B 港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度全速前进,2小时后甲船到M 岛,乙船到P 岛,两岛相距34海里,你知道乙船沿那个方向航行吗?18.(8分)如图,在△ABC 中,AC=8,BC=6,在△ABE 中,DE 是AB 边上的高,且DE=7,△ABE 的面积为35,求∠C 的度数.19.(8分)在右图的正方形网格中,每个小正方形的边长为1.请在图中画一个面积为10的正方形,并写出其边长.(要求:正方形的顶点都在格点上)20.(10分)在四边形ABCD 中,AB=3,BC=4,AD=5 ,CD=5,∠ABC=90°,求对角线BD 的长.21.(10分)已知:如图,在Rt △ABC 中,∠ACB =90°,AB =5 cm ,AC =3 cm ,动点P 从点B 出发沿射线BC 以1 cm/s 的速度移动.设运动的时间为t s .(1)求BC 边的长;(2)当△ABP 为直角三角形时,求t 的值.四、综合题(共2题;共30分)22.如图,将长为2.5米长的梯子AB 斜靠在墙上,BE 长0.7米.(1)求梯子上端到墙的底端E 的距离(即AE 的长); (2)如果梯子的顶端A 沿墙下滑0.4米(即AC=0.4米),则梯脚B 将外移(即BD 长)多少米?23.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DE ∥AC 且DE= AC ,连接AE 点F ,连接CE 、OE .(1)求证:OE=CD ;(2)若菱形ABCD 的边长为2,∠ABC=60°,求AE 的长.密学校 班级姓名 学号密 封 线 内 不 得 答 题答案解析部分一、单选题1.【答案】C 【考点】勾股数 【解析】【解答】解:A 、不能,因为:22+32≠42; B 、不能,因为:82+42≠102; C 、能,因为:72+242=252; D 、不能,因为:72+122≠152; 故选:C .【分析】根据勾股定理的逆定理可知,当三角形中三边的关系为:a 2+b 2=c 2时,则三角形为直角三角形. 2.【答案】B【考点】勾股定理的逆定理 【解析】【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】在△ABC 中,AB=6,AC=8,BC=10,推断出62+82=102 , 由勾股定理的逆定理得此三角形是直角三角形, 故选B .【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可. 3.【答案】D【考点】勾股定理的应用【解析】【解答】解:因为AB=9米,AC=12米, 根据勾股定理得BC= =15米,于是折断前树的高度是15+9=24米. 故选D .【分析】根据勾股定理,计算树的折断部分是15米,则折断前树的高度是15+9=24米.4.【答案】B【考点】勾股定理的逆定理【解析】【解答】解:A 、22+32≠42 , 根据勾股定理的逆定理不是直角三角形,故错误; B 、32+42=52,根据勾股定理的逆定理是直角三角形,故正确;C 、42+62≠92 , 根据勾股定理的逆定理不是直角三角形,故错误; D 、52+112≠132 , 根据勾股定理的逆定理不是直角三角形,故错误. 故选B .【分析】勾股定理的逆定理是判定直角三角形的方法之一. 5.【答案】A【考点】勾股定理的应用 【解析】【解答】解:∵A (2,0)和B (0,3), ∴OA=2,OB=3, ∴AB= = = . 故选A .【分析】先根据A 、B 两点的坐标求出OA 及OB 的长,再根据勾股定理即可得出结论. 6.【答案】D【考点】勾股定理的逆定理 【解析】【解答】解:A 、12+12=2, 符合勾股定理的逆定理,故本选项不符合题意; B 、62+82=102 ,符合勾股定理的逆定理,故本选项不符合题意;C 、82+152=172 , 符合勾股定理的逆定理,故本选项不符合题意;D 、12+22=≠22 , 不符合勾股定理的逆定理,故本选项符合题意. 故选D .【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形. 7.【答案】C【考点】勾股定理 【解析】【分析】根据勾股定理即可得到AB ,BC ,AC 的长度,进行判断即可.【解答】根据勾股定理可以得到:AC=BC=,AB=.∵()2+()2=()2 .∴AC 2+BC 2=AB 2 .∴△ABC 是等腰直角三角形. ∴∠ABC=45°. 故选C .【点评】本题考查了勾股定理,判断△ABC 是等腰直角三角形是解决本题的关键. 8.【答案】D【考点】勾股定理 9.【答案】B【考点】勾股定理的逆定理 【解析】【分析】找出四个选项中三个数字中最大的数,求出最大数的平方,剩下两数求出平方和,结果相等可根据勾股定理的逆定理得到此三角形为直角三角形,否则不是直角三角形,利用此方法即可得到的符合题意的选项.【解答】A 、三边长都为6,此三角形为等边三角形,不合题意; B 、∵52+122=25+144=169,132=169, ∴52+122=132 ,则此三角形为直角三角形,符合题意; C 、∵42+52=16+25=41,62=36, ∴42+52≠62 ,则此三角形不是直角三角形,不合题意; D 、∵52+52=25+25=50,82=64, ∴52+52≠82 ,则此三角形不是直角三角形,不合题意,故选B .【点评】此题考查了勾股定理的逆定理的运用,勾股定理的逆定理为:三角形中,若一边的平方等于其余两边的平方和,则这条边所对的角为直角,此时三角形为直角三角形. 10.【答案】C【考点】勾股定理的逆定理 【解析】【解答】解:∵OM=60海里,ON=80海里,MN=100海里,∴OM 2+ON 2=MN 2 , ∴∠MON=90°, ∵∠EOM=20°, ∴∠NOF=180°﹣20°﹣90°=70°, 故选C .【分析】求出OM 2+ON 2=MN 2, 根据勾股定理的逆定理得出∠MON=90°,根据平角定义求出即可.二、填空题11.【答案】25【考点】勾股定理【解析】【解答】解:∵两直角边分别用了7根、24根长度相同的火柴棒 ∴斜边需用=25.【分析】根据勾股定理即可求得斜边需要的火柴棒的数量. 12.【答案】直角【考点】勾股定理,勾股定理的逆定理 【解析】【解答】解:∵AC 2=22+32=13,AB 2=62+42=52,BC 2=82+12=65, ∴AC 2+AB 2=BC 2,∴△ABC 是直角三角形.【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可. 13.【答案】7【考点】勾股定理的应用【解析】【解答】解:∵△ABC 是直角三角形,BC=3m ,AC=5m ∴AB= = =4(m ),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=7米. 故答案为:7. 【分析】先根据直角三角形的性质求出AB 的长,再根据楼梯高为BC 的高=3m ,楼梯的宽的和即为AB 的长,再把AB 、BC 的长相加即可. 14.【答案】24【考点】勾股定理的应用 【解析】【解答】解:如图,∵AB=9m ,AC=12m , ∵∠A=90°,∴AB 2+AC 2=BC 2, ∴BC=15m ,∴树折断之前有24m . 故答案为:24.【分析】根据题意画出图形,利用勾股定理计算出BC 的长,即可求得树折断之前的高度.三、解答题15.【答案】解:如图,连接AC . ∵AB=9m 、BC=12m ,∠ABC=90°,∴AC 2=AB 2+BC 2=152.又∵CD=8m、AD=17m ,∴AD 2=AC 2+CD 2=289, ∴AC ⊥CD ,∴这块空地的面积=S△ACD +S △ABC = AB•BC+ AC•CD= ×9×12+×15×8=114(m 2).答:这块空地的面积是114m 2 .【考点】勾股定理的应用【解析】【分析】由勾股定理逆定理可得△ACD 与△ABC 均为直角三角形,进而可求解其面积. 16.【答案】解:设AE=xkm ,∵C 、D 两村到E 站的距离相等,∴DE=CE ,即DE 2=CE 2 , 由勾股定理,得152+x 2=102+(25﹣x )2 , x=10. 故:E 点应建在距A 站10千米处. 【考点】勾股定理的应用 【解析】【分析】关键描述语:产品收购站E ,使得C 、D 两村到E 站的距离相等,在Rt △DAE 和中,设出AE 的长,可将DE 和CE 的长表示出来,列出等式进行求解即可. 17.【答案】解:BM=8×2=16海里, BP=15×2=30海里,在△BMP 中,BM 2+BP 2=256+900=1156,PM 2=1156, BM 2+BP 2=PM 2 , ∴∠MBP=90°, 180°﹣90°﹣60°=30°, 故乙船沿南偏东30°方向航行 【考点】勾股定理的逆定理 【解析】【分析】先根据路程=速度×时间,求出BM ,BP 的长,再根据勾股定理的逆定理得到∠进一步即可求解.18.【答案】解:∵DE=7,S △ABE =DE•AB=35,∴AB=10∵AC=8,BC=6,62+82=102 ,∴AC 2+BC 2=AB 2由勾股定理逆定理得∠C=90°.【考点】勾股定理 【解析】【分析】由S △ABE =35,求得AB=10,根据勾股定理的逆定理得出△ABC ∠C 的度数.19.【答案】解:∵面积为10的正方形的边长为,=,∴面积为5的正方形,如图所示.【考点】勾股定理 【解析】【分析】由正方形的面积得出边长,由勾股定理即可得出结果.密学校 班级姓名学号密 封 线 内 不 得 答 题20.【答案】解:作DM ⊥BC ,交BC 延长线于M ,连接AC ,如图所示:则∠M=90°,∴∠DCM+∠CDM=90°,∵∠ABC=90°,AB=3,BC=4, ∴AC 2=AB 2+BC 2=25, ∴AC=5,∵AD=5 ,CD=5, ∴AC 2+CD 2=AD 2 ,∴△ACD 是直角三角形,∠ACD=90°, ∴∠ACB+∠DCM=90°, ∴∠ACB=∠CDM , ∵∠ABC=∠M=90°, ∴△ABC ∽△CMD , ∴===1,∴CM=AB=5,DM=BC=4, ∴BM=BC+CM=9, ∴BD===.【考点】勾股定理,勾股定理的逆定理 【解析】【分析】作DM ⊥BC ,交BC 延长线于M ,连接AC ,由勾股定理得出AC 2=AB 2+BC 2=25,求出AC 2+CD 2=AD 2 , 由勾股定理的逆定理得出△ACD 是直角三角形,∠ACD=90°,证出∠ACB=∠CDM ,得出△ABC ∽△CMD ,由相似三角形的对应边成比例求出CM=AB=5,DM=BC=4,得出BM=BC+CM=9,再由勾股定理求出BD 即可.21.【答案】解:(1)在Rt △ABC 中,BC 2=AB 2-AC 2=52-32=16,∴BC =4 cm . (2)由题意知BP =t cm .①如图①,当∠APB 为直角时,点P 与点C 重合,BP =BC =4 cm ,即t =4; ②如图②,当∠BAP 为直角时,BP =t cm , CP =(t -4)cm ,AC =3 cm ,在Rt △ACP 中,AP 2=32+(t -4)2. 在Rt △BAP 中,AB2+AP 2=BP 2, 整理,得52+[32+(t -4)2]=t 2,解得t =254.故当△ABP 为直角三角形时,t 的值为4或254.四、综合题22.【答案】(1)解:由题意得:AB=2.5米,BE=0.7米, ∵AE 2=AB 2﹣BE 2 ,∴AE==2.4米(2)解:由题意得:EC=2.4﹣0.4=2(米), ∵DE 2=CD2﹣CE 2 , ∴DE==1.5(米),∴BD=0.8米【考点】勾股定理的应用 【解析】【分析】(1)在Rt △ABE 中利用勾股定理求出AC 的长即可;(2)首先在Rt △CDE 中利用勾股定理求出DE 的长,然后再计算出DB 的长即可.23.【答案】(1)证明:四边形ABCD 是菱形, ∴OA=OC= AC ,AD=CD,∵DE ∥AC 且DE=AC ,∴DE=OA=OC ,∴四边形OADE 、四边形OCED 都是平行四边形, ∴OE=AD, ∴OE=CD ;(2)解:∵AC ⊥BD , ∴四边形OCED 是矩形, ∵在菱形ABCD 中,∠ABC=60°, ∴AC=AB=2,∴在矩形OCED 中,CE=OD= = .∴在Rt △ACE 中,AE==.【考点】勾股定理的应用,菱形的性质,矩形的性质 【解析】【分析】(1)由菱形ABCD 中,DE ∥AC 且DE=AC ,易证得四边形OCED 是平行四边形,继而可得OE=CD 即可;(2)由菱形的对角线互相垂直,可证得四边形OCED 是矩形,根据菱形的性质得出AC=AB ,再根据勾股定理得出AE 的长度即可.。

沪科版八年级下册数学第18章 勾股定理含答案(完整版)

沪科版八年级下册数学第18章 勾股定理含答案(完整版)

沪科版八年级下册数学第18章勾股定理含答案一、单选题(共15题,共计45分)1、△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是()A.42B.32C.42或32D.42或372、如图,弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,P为弧AD 上任意一点,若AC=5,则四边形ACBP周长的最大值是()A.15B.15+5C.20D.15+53、下列各组线段中,不能构成直角三角形的是()A.3,4,5B.5,12,13C.8,16,17D.7,24,254、下列各组数中能够作为直角三角形的三边长的是()A.1,2,3B.2,3,4C.3,4,5D.4,5,65、连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图(扇形、菱形、直角梯形、红十字图标)中“直径”最小的是A. B. C. D.6、下列各组三条线段组成的三角形是直角三角形的是( )A.1,1,B.2,3,4C.2,2,3D.6,8,117、如图,在平面直角坐标系中,正方形的顶点O与坐标原点重合,顶点A、C分别在x轴、y轴上,反比例函数的图象与正方形的两边、分别交于点M、N,轴,垂足为D,连接、、,下列结论错误的是①;②四边形与面积相等;③;④若,,则点C的坐标为.其中正确的结论有()A.①②B.①②④C.②③④D.①②③④8、如图,在中,,,,垂足为D,,则BD的长为()A. B.2 C. D.39、如图,在Rt△ABC中,∠C=90°,D为BC上一点,∠DAC=30°,BD=2,AB=2,则AC的长为()A. B.2 C.3 D.10、下列长度的三条线段能组成钝角三角形的是( )A.3,4,4B.3,4,5C.3,4,6D.3,4,711、如图,正方形中,,E 是的中点,点 P 是对角线上一动点,则的最小值为()A.4B.C.D.12、如图使用4个全等三角形与1个小正方形镶嵌而成的正方形图案已知大正方形面积为49,小正方形面积为4,若用x、y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49;②x−y=2;③2xy+4=49;④x+y=9. 其中正确的是()A.①②B.①②③C.①②④D.①②③④13、在Rt△ABC中,∠C=90°,AB=10,BC=6,则AC的长是()A.8B.4C.64D.1614、若等腰三角形的腰长为13,底边长为10,则底边上的高为()A.6B.7C.9D.1215、如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P 是AB上的动点,则PC+PD的最小值为()A.4B.5C.6D.7二、填空题(共10题,共计30分)16、如图,在2×2的正方形网格中四个小正方形的顶点叫格点,已经取定格点A和B,在余下的格点中任取一点C,使△ABC为直角三角形的概率是________.17、如图,在ABCD中,线段BE、CE分别平分∠ABC和∠BCD,若AB=5,BE=8,则CE的长度为________.18、如图,已知圆柱的底面直径,高,小虫在圆柱表面爬行,从点爬到点,然后在沿另一面爬回点,则小虫爬行的最短路程为________.19、如图,△ABC中,AB=AC,AB=5,BC=8,AD是∠BAC的平分线,则AD的长为________.20、如图,在Rt△ABC中,∠C=90°,BC=2 ,AC=2,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D 交AB于点F.若△AB′F为直角三角形,则AE的长为________或________21、平面直角坐标系中,点到原点的距离是________.22、如图,点P是y轴正半轴上一点,以P为圆心的圆与x轴、y轴分别交于点A、B、C、D,已知点A的坐标为,点C的坐标为,则点D的坐标为________.23、已知a、b、c是△ABC三边的长,且满足关系式,则△ABC的形状为________24、如图,已知△ABC的三个顶点均在格点上,则cosA的值为________.25、一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,AB,AC的夹角为θ(θ=30°).要在楼梯上铺一条地毯,已知CA= cm,楼梯宽1 cm,则地毯的面积至少需要________平方米.三、解答题(共5题,共计25分)26、如图,方格纸上每个小正方形的面积为1.⑴在方格纸上,以线段AB为边画正方形ABCD,并计算所画正方形ABCD的面积.⑵请你在图上分别画出面积为5正方形A1B1C1D1和面积为10的正方形A 2B2C2D2,正方形的各个顶点都在方格纸的格点上.27、如图,在△ABC中,AB=AC,点E,F分别是边AB,AC的中点,点D在边BC 上.若DE=DF,AD=2,BC=6,求四边形AEDF的周长.28、如图,一根旗杆在离地面6米处折断,旗杆顶端落在离旗杆底部8米处,求旗杆折断之前有多高?29、如图,∠C=90°,AC=3,BC=4,AD=12,BD=13,试判断△ABD的形状,并说明理由.30、小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,求旗杆的高.参考答案一、单选题(共15题,共计45分)1、C2、B3、C4、C5、C6、A7、B8、C10、C11、B12、B13、A14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。

2019-2020年沪科版八年级下册数学单元测试卷 第十八章 勾股定理(全章)

2019-2020年沪科版八年级下册数学单元测试卷  第十八章 勾股定理(全章)

沪科版2020八下数学单元测试卷(含答案)第十八章 勾股定理 (全章)一、选择题(每小题3分,满分30分)1. 如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B 恰好碰到地面,经测量AB=2米,则树高为( )A. 5米B. 3米C. (5+1)米D. 3米第1题图 第3题图 第6题图 第 8 题图 第 10 题图2. 下列说法中不正确的是( )A. 三个角的度数之比为1:3:4的三角形是直角三角形B. 三个角的度数之比为3:4:5的三角形是直角三角形C. 三边长度之比为3:4:5的三角形是直角三角形D. 三边长度之比为5:12:13的三角形是直角三角形3. 如图,每个小正方形的边长为1,ΔABC 的三边a ,b ,c 的大小关系是( )A. a <c <bB. a <b <cC. c <a <bD.c <b <a4. 在ΔABC 中,∠A 、∠B 、∠C 的对边分别为a ,b ,c ,且c+a=2b ,c-a=2b ,则ΔABC 的形状是( )A. 等腰三角形B. 直角三角形C. 等边三角形D. 等腰直角三角形5. 在ΔABC 中,AB=15,AC=13,高AD=12,则三角形的周长是( )A. 42B. 32C. 42或32D. 37或336. 在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是( )A. 10B. 5或45或277、在Rt △ABC 中,∠C =90°,c 为斜边,a ,b 为直角边,a+b=14,c=10,则Rt △ABC 面积为( )A .24B .36C .48D .608、在Rt △ABC ,∠C =90°,AC=9,BC=12,则点C 到斜边AB 的距离是( )A 365B 125C .9D .6 9、已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A 6cm 2B 8cm 2C 10cm 2D 12cm 210、如图:小正方形的边长为a ,任意连接小正方形的三个顶点得△ABC ,则AB 边上的高是( )A .223aB . a 1053C . 553aD . a 554二、填空题(每小题4分,满分20分)11. 在R tΔABC中,斜边AB=2,则AB2+AC2+BC2= 。

沪科版2019-2020学年八年级数学第二学期第18章《勾股定理》单元测试题(含答案)

沪科版2019-2020学年八年级数学第二学期第18章《勾股定理》单元测试题(含答案)

密密 封 线 内 不 得 答 题沪科版8年级数学(下)第18章《勾股定理》单元 测试题满分:150分一、单选题(共10题;共40分)1.已知a ,b ,c 为△ABC 三边,且满足a 2c 2-b 2c 2=a 4-b 4 , 则它的形状为 ( )A. 等边三角形B. 直角三角形C. 等腰三角形D. 等腰三角形或直角三角形 2.已知a 、b 、c 是三角形的三边长,如果满足 =0,则三角形的形状是( ) A. 底与边不相等的等腰三角形 B. 等边三角形 C. 钝角三角形 D. 直角三角形 3.△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,下列说法中,错误的是( )A. 如果∠C ﹣∠B=∠A ,那么∠C=90°B. 如果∠C=90°,那么c2﹣b2=a2C. 如果(a+b )(a ﹣b )=c2,那么∠C=90°D. 如果∠A=30°∠B=60°,那么AB=2BC 4.如图所示的一块地,已知∠ADC=90°,AD=12m ,CD=9m ,AB=25m ,BC=20m ,则这块地的面积为( )平方米.A. 96B. 204C. 196D. 304 5.三角形的三边长分别为6,8,10,它的最长边上的高为( )A. 6B. 4.8C. 2.4D. 86.如图,平行四边形ABCD 中,E 是AB 上一点,DE 、CE分别是∠ADC 、∠BCD 的平分线,若AD=5,DE=6,则平行四边形的面积为( )A. 96B. 48C. 60D. 307.如图,在△ABC 中,AB=AC=13,BC=10,D 为BC 的中点,DE⊥AB 于E ,则DE 等于( )A. B. C. D.8.如图,在四边形ABCD 中,AB=1,BC=1,CD=2,DA=,且∠ABC=90°,则四边形ABCD 的面积是( )A. 2B. +C. 1+D.9.如图,正方形ABCD 中,AE 垂直于BE ,且AE=3,BE=4,则阴影部分的面积是( )A. 16B. 18C. 19D. 21 10.在△ABC 中,∠BAC=90°,AB=3,AC=4.AD 平分∠BAC 交BC 于D ,则BD 的长为A.B.C.D.二、填空题(共4题;共20分)11.若直角三角形的两条边长为a 、b ,且满足 ,则该直角三角形的斜边长为________ 12.有两棵树,一棵高6米,另一棵高2米,两树相距3米,小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了________米. 13.如图,一旗杆被大风刮断,旗杆的顶部着地点到旗杆底部的距离为4m , 折断点离旗杆底部的高度为3m , 则旗杆的高度为________m .14.如图是一段楼梯,高BC 是3米,斜边AC 是5米,若在楼梯上铺地毯,则至少需要地毯________米.三、解答题(共7题;共60分)15. 如图,Rt △ABC 中,∠C = 90°,把Rt △ABC 绕着B 点逆时针旋转,得到Rt △DBE ,点E 在AB 上.(1)若∠BDA = 70°,求∠BAC的度数.(2)若BC = 8,AC = 6,求△ABD中AD边上的高.16.一架方梯AB长25米,如图所示,斜靠在一面上:(1)若梯子底端离墙7米,这个梯子的顶端距地面有多高?(2)在(1)的条件下,如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?17.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?18.如图所示,在长方形ABCD中,AB=8,BC=4,将长方形沿AC折叠,使点D落在点D′处,求重叠部分△AFC 的面积.19.如图,∠C=90°,AC=3,BC=4,AD=12,BD=13,试判断△ABD的形状,并说明理由.20.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF= CD,求证:∠AEF=90°.21.如图,△ABC中,CD⊥AB于D,若AD=2BD,AC=6,BC=4,求BD的长.四、综合题(共2题;共30分)22.如图,在边长为4的正方形ABCD中,E是CD的中点,F是BC上的一点,且∠AEF=90°,延长AE交BC的延长线于点G.(1)求GE的长;(2)求证:AE平分∠DAF;(3)求CF的长.23.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE= AC,连接AE交OD于点F,连接CE、OE.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.密密 封 线 内 不 得 答 题答案解析部分一、单选题1.【答案】D【考点】因式分解-运用公式法,等腰三角形的判定,勾股定理 【解析】【解答】∵a 2c 2-b 2c 2=a 4-b 4 , ∴(a 2c 2-b 2c 2)-(a 4-b 4)=0,∴c 2(a+b)(a-b)-(a+b)(a-b)(a 2+b 2)=0, ∴(a+b)(a-b)(c 2-a2-b 2)=0, ∵a+b≠0,∴a-b=0或c 2-a 2-b 2=0,所以a=b 或c 2=a 2+b 2即它是等腰三角形或直角三角形. 故选D .【分析】把式子a 2c 2-b 2c 2=a 4-b 4变形化简后判定则可.如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果没有这种关系,这个就不是直角三角形. 2.【答案】D【考点】平方根,算术平方根,勾股定理的逆定理,绝对值的非负性【解析】【解答】解:∵(a ﹣6)2≥0,≥0,|c ﹣10|≥0, ∴a ﹣6=0,b ﹣8=0,c ﹣10=0, 解得:a=6,b=8,c=10, ∵62+82=36+64=100=102 , ∴是直角三角形. 故选D .【分析】首先根据绝对值,平方数与算术平方根的非负性,求出a ,b ,c 的值,在根据勾股定理的逆定理判断其形状是直角三角形. 3.【答案】C【考点】三角形内角和定理,含30度角的直角三角形,勾股定理的逆定理【解析】【解答】A ∵∠C ﹣∠B=∠A ,∠C+∠B+∠A=180°∴2∠C=180°∴∠C=90°故此选项正确; B ∵∠C=90° ∴c 是斜边∴满足c2﹣b2=a2故此选项正确; C ∵(a+b )(a ﹣b )=c2∴a2﹣b2=c2∴a是斜边 故此选项错误; D ∵∠A=30°∠B=60° ∴∠C=90°,AB 为斜边,BC 为30°角所对的边 ∴AB=2BC 故此选项正确; 故选C 【分析】根据勾股定理的逆定理,三角形内角和定理及含30度角的直角三角形对各个选项进行分析,从而不难求解,此题主要考查:①含30度角的直角三角形:在直角三角形中,30°角所对的直角边等于斜边的一半. ②三角形内角和定理:三角形内角和是180°.③勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a2+b2=c2,那么这个三角形就是直角三角形 4.【答案】A【考点】三角形的面积,勾股定理,勾股定理的逆定理【解析】【解答】解:连接AC,则在Rt△ADC 中,AC 2=CD 2+AD 2=122+92=225, ∴AC=15, 在△ABC 中,AB 2=1521,AC 2+BC 2=152+362=1521, ∴AB 2=AC2+BC 2 , ∴∠ACB=90°, ∴S △ABC -S △ACD =AC•BC -AD•CD=×15×20-×12×9=150-54=96(平方米),故选A .【分析】连接AC ,运用勾股定理逆定理可证△ACD ,△ABC 为直角三角形,可求出两直角三角形的面积,此块地的面积为两个直角三角形的面积差. 5.【答案】B【考点】三角形的面积,勾股定理的逆定理 【解析】【解答】解:已知三角形的三边长分别为6,8,10,根据勾股定理的逆定理可知这个三角形为直角三角形,设它的最长边上的高为x ,可得,解得x=4.8,故选B.6.【答案】B【考点】平行线的性质,三角形的面积,角平分线的性质,勾股定理 【解析】【解答】解:∵AB ∥CD , ∴∠CDE =∠AED .∵DE 平分∠ADC, ∴∠ADE =∠CDE , ∴∠ADE =∠AED , ∴AE =AD =5.同理可得:BE =BC =5, ∴AB =5+5=10, ∴CD =10.∵DE 平分∠ADC , CE 平分∠BCD , ∴∠CDE +∠DCE =90°, ∴∠CED =90°. 由勾股定理得.,.故选B.7.【答案】C【考点】等腰三角形的判定与性质,勾股定理 【解析】【解答】如下图:连接AD ,∵△ABC 中,AB=AC=13,∴△ABC 是等腰三角形,又∵ BC=10,D 为BC 的中点,即AD 是等腰△ABC 的中线, ∴AD BC ,且BD=BC=5, 在Rt ABD 中,AD===12,∵DE ⊥AB 于点E ,∴S ABD=AB DE=BD AD ,即:13DE=512,解得:DE=.故答案为:C.【分析】首先根据已知在△ABC 中,AB=AC ,得到△ABC 是等腰三角形;再根据“三线合一”,D 为BC 的中点,即AD 是等腰△ABC 的中线,所以AD 也是等腰△ABC 底边BC 的高,即AD BC ;所以在Rt ABD 中,根据勾股定理得到AD 的长;最后在RtABD 中利用等积法得到等式,即SABD=AB DE=BD AD ,解出DE 的长即可.8.【答案】B【考点】勾股定理,勾股定理的逆定理 【解析】【解答】解:∵AB=1,BC=1,∠ABC=90°, ∴AC= , 又∵CD=2,DA=,∴AC 2+CD 2= DA 2 , ∴∠ACD=90°, ∴S 四边形ABCD =S △ABC +S △ACD=×1×1+×2×=+.故选B.9.【答案】C【考点】勾股定理,正方形的性质 【解析】【解答】解:∵AE 垂直于BE ,且AE=3,BE=4, ∴在Rt △ABE 中,AB 2=AE 2+BE 2=25, ∴S 阴影部分=S 正方形ABCD ﹣S △ABE =AB 2﹣ ×AE×BE =25﹣×3×4=19.故选C .【分析】由已知得△ABE 为直角三角形,用勾股定理求正方形的边长AB ,用S 阴影部分=S 正方形ABCD ﹣S △ABE 求面积. 10.【答案】A【考点】三角形的面积,角平分线的性质,勾股定理 【解析】【分析】∵∠BAC=90°,AB=3,AC=4,∴。

沪科新版八年级下册第18章《勾股定理》单元检测(包含答案)

沪科新版八年级下册第18章《勾股定理》单元检测(包含答案)

沪科新版八年级下册第18章《勾股定理》单元检测时间100分钟,满分120分班级___________姓名___________学号___________成绩___________一.选择题(共10小题,满分30分)1.以下列各组数为边长,能构成直角三角形的是()A.1,2,3B.4,5,6C.,,D.32,42,52 2.如图,小方格都是边长为1的正方形,则△ABC中BC边上的高是()A.1.6B.1.4C.1.5D.23.△ABC三边长分别为a、b、c,则下列条件不能判断△ABC是直角三角形的是()A.a=3,b=4,c=5B.a=4,b=5,c=6C.a=6,b=8,c=10D.a=5,b=12,c=134.如图,在△ABC中,AB=8,BC=10,AC=6,则BC边上的高AD为()A.8B.9C.D.105.已知点A的坐标为(2,﹣1),则点A到原点的距离为()A.3B.C.D.16.如图,网格中每个小正方形的边长均为1,点A,B,C都在格点上,以A为圆心,AB 为半径画弧,交最上方的网格线于点D,则CD的长为()A.B.0.8C.3﹣D.7.如图,AB=AC,则数轴上点C所表示的数为()A.+1B.﹣1C.﹣+1D.﹣﹣18.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9B.6C.4D.39.已知△ABC的三边分别长为a、b、c,且满足(a﹣17)2+|b﹣15|+c2﹣16c+64=0,则△ABC是()A.以a为斜边的直角三角形B.以b为斜边的直角三角形C.以c为斜边的直角三角形D.不是直角三角形10.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了下图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2019次后形成的图形中所有的正方形的面积和是()A.1B.2018C.2019D.2020二.填空题(共7小题,满分28分)11.在△ABC中,∠C=90°,若c=10,a:b=3:4,则ab=.12.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了步路(假设2步为1米),却踩伤了花草.13.三角形的三边长为a、b、c,且满足等式(a+b)2﹣c2=2ab,则此三角形是三角形(直角、锐角、钝角).14.如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,则△ABD的面积是.15.等腰△ABC中,AB=AC=5,△ABC的面积为10,则BC=.16.如图,一圆柱高8cm,底面半径为cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是cm.17.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.三.解答题(共8小题,满分62分)18.已知:如图,在△ABC中,CD⊥AB,垂足为点D,AC=20,BC=15,DB=9.(1)求CD的长.(2)求AB的长.19.在△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C所对的边.(1)若b=2,c=3,求a的值;(2)若a:c=3:5,b=16,求△ABC的面积.20.如图,在等腰△ABC中,AB=AC,BC=5.点D为AC上一点,且BD=4,CD=3.(1)求证:BD⊥AC;(2)求AB的长.21.我校要对如图所示的一块地进行绿化,已知AD=4米,CD=3米,AD⊥DC,AB=13米,BC=12米,求这块地的面积.22.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.23.一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?24.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)25.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足P A=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值;(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.参考答案一.选择题(共10小题,满分30分)1.【解答】解:A、∵12+22≠32,∴该三角形不是直角三角形,故此选项不符合题意;B、∵42+52≠62,∴该三角形不是直角三角形,故此选项不符合题意;C、∵()2+()2=()2,∴该三角形是直角三角形,故此选项符合题意;D、∵(32)2+(42)2≠(52)2,∴该三角形不是直角三角形,故此选项不符合题意.故选:C.2.【解答】解:∵BC==5,∵S△ABC=4×4﹣×1×1﹣×3×4﹣×3×4=,∴△ABC中BC边上的高==,故选:B.3.【解答】解:A.∵32+42=52,∴△ABC是直角三角形;B.∵52+42≠62,∴△ABC不是直角三角形;C.∵62+82=102,∴△ABC是直角三角形;D.∵122+42=132,∴△ABC是直角三角形;故选:B.4.【解答】解:∵AB=8,BC=10,AC=6,∴62+82=102,∴△ABC是直角三角形,∠BAC=90°,则由面积公式知,S△ABC=AB•AC=BC•AD,∴AD=.故选:C.5.【解答】解:点A的坐标为(2,﹣1)到原点O的距离:OA==.故选:C.6.【解答】解:如图,连接AD,则AD=AB=3,由勾股定理可得,Rt△ADE中,DE==,又∵CE=3,∴CD=3﹣,故选:C.7.【解答】解:由勾股定理得,AB==,∴AC=,∵点A表示的数是﹣1,∴点C表示的数是﹣1.故选:B.8.【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故选:D.9.【解答】解:∵(a﹣17)2+|b﹣15|+c2﹣16c+64=0,∴(a﹣17)2+|b﹣15|+(c﹣8)2=0,∴a﹣17=0,b﹣15=0,c﹣8=0,∴a=17,b=15,c=8,∵82+152=172,∴△ABC是以a为斜边的直角三角形;故选:A.10.【解答】解:设直角三角形的是三条边分别是a,b,c.根据勾股定理,得a2+b2=c2,即正方形A的面积+正方形B的面积=正方形C的面积=1.推而广之,“生长”了2019次后形成的图形中所有的正方形的面积和是2020×1=2020.故选:D.二.填空题(共7小题,满分28分)11.【解答】解:设a=3x,b=4x,则c==5x,又c=10,所以x=2,即a=6,b=8,所以ab=48.故答案为:48.12.【解答】解:由勾股定理,得路长==5,少走(3+4﹣5)×2=4步,故答案为:4.13.【解答】解:∵(a+b)2﹣c2=2ab,∴a2+2ab+b2﹣c2=2ab,∴a2+b2=c2,∴三角形是直角三角形.故答案为直角.14.【解答】解:延长AD到点E,使DE=AD=6,连接CE,∵AD是BC边上的中线,∴BD=CD,在△ABD和△CED中,,∴△ABD≌△CED(SAS),∴CE=AB=5,∠BAD=∠E,∵AE=2AD=12,CE=5,AC=13,∴CE2+AE2=AC2,∴∠E=90°,∴∠BAD=90°,即△ABD为直角三角形,∴△ABD的面积=AD•AB=15,故答案为:15.15.【解答】解:作CD⊥AB于D,则∠ADC=∠BDC=90°,△ABC的面积=AB•CD=×5×CD=10,解得:CD=4,∴AD===3;分两种情况:①等腰△ABC为锐角三角形时,如图1所示:BD=AB﹣AD=2,∴BC===2;②等腰△ABC为钝角三角形时,如图2所示:BD=AB+AD=8,∴BD===4;综上所述:BC的长为2或4;故答案为:2或4.16.【解答】解:底面圆周长为2πr,底面半圆弧长为πr,即半圆弧长为:×2π×=6(cm),展开得:∵BC=8cm,AC=6cm,根据勾股定理得:AB==10(cm).故答案为:10.17.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.三.解答题(共8小题,满分62分)18.【解答】解:(1)∵CD⊥AB,∴∠CDB=∠CDA=90°,在Rt△BCD中,∵BC=15、DB=9,∴CD===12;(2)在Rt△ACD中,∵AC=20、CD=12,∴AD===16,则AB=AD+DB=16+9=25.19.【解答】解:(1)∵△ABC中,∠C=90°,b=2,c=3,∴a==;(2)∵a:c=3:5,∴设a=3x,c=5x,∵b=16,∴9x2+162=25x2,解得:x=4,∴a=12,∴△ABC的面积=×12×16=96.20.【解答】(1)证明:∵CD=3,BC=5,BD=4,∴CD2+BD2=9+16=25=BC2,∴△BCD是直角三角形,∴BD⊥AC;(2)解:设AD=x,则AC=x+3.∵AB=AC,∴AB=x+3.∵∠BDC=90°,∴∠ADB=90°,∴AB2=AD2+BD2,即(x+3)2=x2+42,解得:x=,∴AB=+3=.21.【解答】解:连接AC.由勾股定理可知AC===5,又∵AC2+BC2=52+122=132=AB2,∴△ABC是直角三角形,故所求面积=△ABC的面积﹣△ACD的面积==24(m2).22.【解答】解:(1)如图①所示:(2)如图②③所示.23.【解答】解:(1)根据勾股定理:梯子距离地面的高度为:=24米;(2)梯子下滑了4米,即梯子距离地面的高度为(24﹣4)=20米,根据勾股定理得:25=,解得A'B=8米.即下端滑行了8米.24.【解答】解:在Rt△ABC中,AC=30m,AB=50m;据勾股定理可得:(m)∴小汽车的速度为v==20(m/s)=20×3.6(km/h)=72(km/h);∵72(km/h)>70(km/h);∴这辆小汽车超速行驶.答:这辆小汽车超速了.25.【解答】解:(1)设存在点P,使得P A=PB,此时P A=PB=2t,PC=4﹣2t,在Rt△PCB中,PC2+CB2=PB2,即:(4﹣2t)2+32=(2t)2,解得:t=,∴当t=时,P A=PB;(2)当点P在∠BAC的平分线上时,如图1,过点P作PE⊥AB于点E,此时BP=7﹣2t,PE=PC=2t﹣4,BE=5﹣4=1,在Rt△BEP中,PE2+BE2=BP2,即:(2t﹣4)2+12=(7﹣2t)2,解得:t=,当t=6时,点P与A重合,也符合条件,∴当或6时,P在△ABC的角平分线上;(3)在Rt△ABC中,∵AB=5cm,BC=3cm,∴AC=4cm,根据题意得:AP=2t,当P在AC上时,△BCP为等腰三角形,∴PC=BC,即4﹣2t=3,∴t=,当P在AB上时,△BCP为等腰三角形,①CP=PB,点P在BC的垂直平分线上,如图2,过P作PE⊥BC于E,∴BE=BC=,∴PB=AB,即2t﹣3﹣4=,解得:t=,②PB=BC,即2t﹣3﹣4=3,解得:t=5,③PC=BC,如图3,过C作CF⊥AB于F,∴BF=BP,∵∠ACB=90°,由射影定理得;BC2=BF•AB,即32=×5,解得:t=,∴当时,△BCP为等腰三角形.。

沪科版八年级数学下册试题 第18章 勾股定理 章节测试卷(含解析)

沪科版八年级数学下册试题 第18章 勾股定理 章节测试卷(含解析)

第18章《勾股定理》章节测试卷一.选择题(共10小题,满分30分,每小题3分)1.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是( )A.如果a:b:c=1:1:2,那么△ABC是直角三角形B.如果∠A=∠B﹣∠C,那么△ABC是直角三角形C.如果a=35c,b=45c,那么△ABC为直角三角形D.如果b2=a2﹣c2,那么△ABC是直角三角形且∠B=90°2.如图,在四边形ABCD中,AB=BC=2,CD=3,AD=1,∠B=90°,∠D=α.则∠BCD的大小为( )A.αB.90°﹣αC.45°+αD.135°﹣α3.如图,已知钓鱼竿AC的长为10m,露在水面上的鱼线BC长为6m,某钓鱼者想看看鱼钩上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B'C'为8m,则BB'的长为( )A.1m B.2m C.3m D.4m4.如图,△ABC中,有一点P在AC上移动.若AB=AC=5,BC=6,则AP+BP+CP的最小值为( )A.8B.8.8C.9.8D.105.如图,在Rt△ABC中,分别以三角形的三条边为边向外作正方形,面积分别记为S1,S2,S3.若S1=9,S2=16,则S3的值为( )A.7B.10C.20D.256.如图所示的网格是正方形网格,A,B,C,D是网格线交点,则∠BAC与∠DAC 的大小关系为( )A.∠BAC>∠DAC B.∠BAC<∠DAC C.∠BAC=∠DAC D.无法确定7.下列长度的三条线段能组成锐角三角形的是( )A.2,3,4B.2,3,5C.3,4,4D.3,4,58.在证明勾股定理时,甲、乙两位同学分别设计了方案:甲:如图,用四个全等的直角三角形拼成,其中四边形ABDE和四边形CFGH 均是正方形,通过用两种方法表示正方形ABDE的面积来进行证明;乙:两个全等的直角三角板ABC和直角三角板DEF,顶点F在BC边上,顶点C、D重合,通过用两种方法表示四边形ACBE的面积来进行证明.对于甲、乙两种方案,下列判断正确的是( )A.甲、乙均对B.甲对、乙不对C.甲不对,乙对D.甲、乙均不对9.若一个直角三角形的两边长为4和5,则第三边长为( )A.3B.41C.8D.3或41 10.在数学活动课上,老师要求学生在4×4的正方形ABCD网格中(小正方形的边长为1)画直角三角形,要求三个顶点都在格点上,而且三边与AB或AD都不平行,则画出的形状不同的直角三角形有( )种.A.3B.4C.5D.6二.填空题(共6小题,满分18分,每小题3分)11.如图,一牧童在A处放羊,牧童的家在B处,A、B距河岸的距离AC、BD分别为500m和700m,且C、D两地相距500m,天黑前牧童要将羊赶往河边喝水再回家,那么牧童至少应该走 m.12.如图Rt△ABC中,AC=12,BC=5,分别以AB,AC,BC为直径作半圆,则图中阴影部分的面积为 .13.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b= ,c= .14.如图,设AD、BE、CF为三角形ABC的三条高,若AB=6,BC=5,AE﹣EC=11,则线段BE的长为 .515.周长为24,斜边长为10的直角三角形面积为 .16.甲、乙两艘客轮同时离开港口,航行的速度都是40m/min,甲客轮用15min 到达点A,乙客轮用20min到达点B.若A,B两点的直线距离为1000m,甲客轮沿着北偏东30°的方向航行,则乙客轮的航行方向可能是 .三.解答题(共7小题,满分52分).17.(6分)如图所示,已知△ABC中,CD⊥AB于D,AC=4,BC=3,DB=95(1)求CD的长;(2)求AD的长;(3)求证:△ABC是直角三角形.18.(6分)如图,已知等腰三角形ABC的底边BC=20cm,D是腰AB上的一点,且BD=12cm,CD=16cm.(1)求证:△BCD是直角三角形;(2)求△ABC的周长,19.(8分)早在我国西汉时期算书《周髀算经》就有“勾三股四弦五”的记载.如果一个直角三角形三边长都是正整数,这样的直角三角形叫做“整数直角三角形”,那么这三个整数叫做一组“勾股数”.在一次“构造勾股数”的探究性学习中,老师给出了下表(其中m,n为正整数,且m>n):m23344…n11212…a22+1232+1232+2242+1242+22…b4612816…c22﹣1232﹣1232﹣2242﹣1242﹣22…(1)探究a,b,c与m,n之间的关系并用含m,n的代数式表示:a= ,b= ,c= .(2)以a,b,c为边长的三角形是否一定为直角三角形?请说明理由.20.(8分)阅读理解并解答问题如果a、b、c为正整数,且满足a2+b2=c2,那么,a、b、c叫做一组勾股数.(1)请你根据勾股数的意思,说明为什么3、4、5是一组勾股数;(2)写出一组不同于3、4、5的勾股数;(3)如果m表示大于1的整数,且a=2m,b=m2﹣1,c=m2+1,请你根据勾股数的意思,说明a、b、c为勾股数.21.(8分)在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB=1.8千米.(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;(2)求原来的路线AC的长.22.(8分)如图,有一架秋千,当他静止时,踏板离地的垂直高度DE=0.6m,将他往前推送2.4m(水平距离BC=2.4m)时,秋千的踏板离地的垂直高度BF =1.2m,秋千的绳索始终拉得很直,求绳索AD的长度.23.(8分)(1)如图1,长方体的长为4cm,宽为3cm,高为12cm.求该长方体中能放入木棒的最大长度;(2)如图2,长方体的长为4cm,宽为3cm,高为12cm.现有一只蚂蚁从点A处沿长方体的表面爬到点G处,求它爬行的最短路程.(3)若将题中的长方体换成透明圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁且离容器上沿3cm的点A处.求蚂蚁吃到饭粒需要爬行的最短路程是多少?答案一.选择题1.【分析】利用勾股定理的逆定理,三角形内角和定理,进行计算逐一判断即可解答.【解答】解:A、∵a:b:c=1:1:2,∴设a=k,b=k,c=2k,∴a2+b2=k2+k2=2k2,c2=(2k)2=2k2,∴a2+b2=c2,∴△ABC是直角三角形,故A不符合题意;B、∵∠A=∠B﹣∠C,∴∠A+∠C=∠B,∵∠A+∠B+∠C=180°,∴2∠B=180°,∴∠B=90°,∴△ABC是直角三角形,故B不符合题意;C、∵a=35c,b=45c,∴a2+b2=(35c)2+(45c)2=c2,∴△ABC为直角三角形,故C不符合题意;D、∵b2=a2﹣c2,∴b2+c2=a2,∴△ABC为直角三角形,∴∠A=90°,故D符合题意;故选:D.2.【分析】由于∠B=90°,AB=BC=2,利用勾股定理可求AC,并可求∠BAC=45°,而CD=3,DA=1,易得AC2+DA2=CD2,可证△ACD是直角三角形,于是有∠CAD=90°,从而易求∠BAD,进而得出∠BCD.【解答】解:连接AC,∵∠B=90°,AB=BC=2,∴AC=AB2+BC2=22,∠BAC=45°,又∵CD=3,DA=1,∴AC2+DA2=8+1=9,CD2=9,∴AC2+DA2=CD2,∴△ACD是直角三角形,∴∠CAD=90°,∴∠DAB=45°+90°=135°,∵∠D=α,∴∠BCD=360°﹣90°﹣135°﹣α=135°﹣α,故选:D.3.【分析】根据勾股定理分别求出AB和AB′,再根据BB′=AB﹣AB′即可得出答案.【解答】解:∵AC=10m,BC=6m,∴AB=AC2−B C2=102−62=8(m),∵AC′=10m,B′C′=8m,∴AB′=AC'2−B′C'2=102−82=6(m),∴BB′=AB﹣AB′=8﹣6=2(m);故选:B.4.【分析】若AP+BP+CP最小,就是说当BP最小时,AP+BP+CP才最小,因为不论点P在AC上的那一点,AP+CP都等于AC.那么就需从B向AC作垂线段,交AC于P.先设AP=x,再利用勾股定理可得关于x的方程,解即可求x,在Rt△ABP中,利用勾股定理可求BP.那么AP+BP+CP的最小值可求.【解答】解:从B向AC作垂线段BP,交AC于P,设AP=x,则CP=5﹣x,在Rt△ABP中,BP2=AB2﹣AP2,在Rt△BCP中,BP2=BC2﹣CP2,∴AB2﹣AP2=BC2﹣CP2,∴52﹣x2=62﹣(5﹣x)2解得x=1.4,在Rt△ABP中,BP=52−1.42=23.04= 4.8,∴AP+BP+CP=AC+BP=5+4.8=9.8.故选:C.5.【分析】由正方形的面积公式可知S1=AB2,S2=AC2,S3=BC2,在Rt△ABC中,由勾股定理得AC2+AB2=BC2,即S1+S2=S3,由此可求S3.【解答】解:在Rt△ABC中,AC2+AB2=BC2,由正方形面积公式得S1=AB2,S2=AC2,S3=BC2,∵S1=9,S2=16,∴S3=S1+S2=9+16=25.故选:D.6.【分析】连接CD,BC,设小正方形的边长为1,根据勾股定理求出AB、AC、BC、AD、CD的长,根据求出的结果得出BC=AC,AD=CD,AC2+BC2=AB2,AD2+CD2=AC2,求出△ACB和△ADC都是等腰直角三角形,再得出选项即可.【解答】解:连接CD,BC,设小正方形的边长为1,由勾股定理得:AB2=22+42=4+16=20,BC2=12+32=1+9=10,AC2=12+32=1+9=10,AD2=12+22=1+4=5,CD2=12+22=1+4=5,所以BC=AC,AD=CD,AC2+BC2=AB2,AD2+CD2=AC2,即△ACB和△ADC都是等腰直角三角形,所以∠BAC=∠DAC=45°,故选:C.7.【分析】根据勾股定理求出以较短的两条边为直角边的三角形的斜边的长度,然后与较长的边进行比较作出判断即可.【解答】解:A、∵22+32=13<4,2+3>4,∴不能组成锐角三角形;B、∵2+3=5,∴不能组成三角形;C、∵32+42=5>4,3+4>4,∴能组成锐角三角形;D、∵32+42=5,是直角三角形,∴不能组成锐角三角形.故选:C.8.【分析】甲:根据题意,我们可在图中找等量关系,由中间的小正方形的面积等于大正方形的面积减去四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式;乙:根据三角形的面积和梯形的面积公式用两种方法求得四边形ACBE的面积,于是得到结论.【解答】甲:证明:Rt△ABC中,∠ACB=90°,设AC=b,BC=a,AB=c.由图可知S正方形ABDE=4S△ABC+S正方形FCHGab,正方形FCHG边长为a﹣b,∵S正方形ABDE=c2,S△ABC=12ab+(a﹣b)2=2ab+a2﹣2ab+b2∴c2=4×12即c2=a2+b2.故甲对;乙:证明:∵四边形ACBE的面积=S△ACB+S△ABE=12AB•DG+12AB•EG=12AB•(DG+EG)=12AB•DE=12c2,四边形ACBE的面积=S四边形ACFE+S△EFB=12×(AC+EF)•CF+12BF•EF=12(b+a)b+12(a﹣b)•a=12b2+12ab+12a2−12ab=12a2+12b2,∴12c2=12a2+12b2,即a2+b2=c2.故乙对,故选:A.9.【分析】分5是直角边、5是斜边两种情况,再由勾股定理即可得出答案.【解答】解:当5是直角边时,则第三边为:42+52=41;当5是斜边时,则第三边为:52−42=3,综上所述,第三边的长为3或41,故选:D.10.【分析】根据三个顶点都在格点上,而且三边与AB或AD都不平行,画出的形状不同的直角三角形即可.【解答】解:如图所示:直角边之比为1:2,如图①和②;直角边之比为1:3,如图③直角边之比为1:1,如图④和⑤.形状不同的直角三角形共有3种情况.故选:A.二.填空题11.【分析】本题可以把两线段的和最小的问题转化为两点之间线段最短的问题解决.转化的方法是作A关于CD的对称点,求解对称点与B之间的距离即可.【解答】解:作A关于CD的对称点E,连接BE,并作BF⊥AC于点F.则EF=BD+AC=500+700=1200m,BF=CD=500m.在Rt△BEF中,根据勾股定理得:BE=BF2+EF2=12002+5002= 1300米.12.【分析】利用勾股定理列式求出AB,再根据阴影部分的面积等于阴影部分所在的两个半圆的面积加上△ABC的面积减去大半圆的面积,列式计算即可得解.【解答】解:∵AC=12,BC=5,∴AB=AC2+BC2=122+52=13,∴阴影部分的面积=12π(122)2+12π(52)2+12×12×5−12π(132)2=1448π+258π+30−1698π=30.故答案为:30.13.【分析】认真观察三个数之间的关系:首先发现每一组的三个数为勾股数,第一个数为从3开始连续的奇数,第二、三个数为连续的自然数;进一步发现第一个数的平方是第二、三个数的和;最后得出第n组数为(2n+1),((2n+1)2−12),((2n+1)2+12),由此规律解决问题.【解答】解:在32=4+5中,4=32−12,5=32+12;在52=12+13中,12=52−12,13=52+12;…则在13、b、c中,b=132−12=84,c=132+12=85.14.【分析】可设AE=x,EC=y,则根据勾股定理和已知条件可得方程组,解方程组可求AE的长,再根据勾股定理可求线段BE的长.【解答】解:设AE=x,EC=y,则{36−x2=25−y2x−y=115,解得x=185,则BE=AB2−A E2=245.故答案为:245.15.【分析】设直角三角形两直角边长为a,b,由周长与斜边的关系得a+b=14,中由完全平方公式和勾股定理求出ab的值,即可求出三角形的面积.【解答】解:设直角三角形两直角边长为a,b,∵该直角三角形的周长为24,其斜边长为10,∴24﹣(a+b)=10,即a+b=14,由勾股定理得:a2+b2=102=100,∵(a+b)2=142,∴a2+b2+2ab=196,即100+2ab=196,∴ab=48,ab=24,∴直角三角形的面积=12故答案为:24.16.【分析】首先根据速度和时间计算出行驶路程,再根据勾股定理逆定理结合路程可判断出甲和乙两艘轮船的行驶路线呈垂直关系,进而可得答案.【解答】解:如图:∵甲乙两艘客轮同时离开港口,航行的速度都是每分钟40m,甲客轮用15分钟到达点A,乙客轮用20分钟到达点B,∴甲客轮走了40×15=600(m),乙客轮走了40×20=800(m),∵A、B两点的直线距离为1000m,∴6002+8002=10002,∴∠AOB=90°,∵甲客轮沿着北偏东30°的方向航行,∴乙客轮的航行方向可能是南偏东60°,同理可得:乙客轮的航行方向也可能是北偏西60°.综上所述:乙客轮的航行方向可能是南偏东60°或北偏西60°.故答案为:南偏东60°或北偏西60°.三.解答题17.(1)解:在Rt△BCD中,DC=BC2−B D2=32−(95)2=125;(2)解:在Rt△CDA中AD=AC2−D C2=42−(125)2=165;(3)证明:∵BC2=9,AC2=16,(BD+AD)2=25,∴BC2+AC2=AB2,∴△ABC是直角三角形.18.(1)证明:∵在△BDC中,BC=20cm,BD=12cm,CD=16cm.∴BD2+CD2=BC2,∴∠BDC=90°,∴△BCD是直角三角形;(2)解:设AB=AC=xcm,则AD=(x﹣12)cm,在Rt△ADC中,由勾股定理得:AD2+CD2=AC2,即(x﹣12)2+162=x2,解得:x=503,即AB=AC=503cm,∵BC=20cm,∴△ABC的周长是AB+AC+BC=503cm+503cm+20cm=1603cm.19.解:(1)观察得,a=m2+n2,b=2mn,c=m2﹣n2.故答案为:m2+n2,2mn,m2﹣n2;(2)以a,b,c为边长的三角形一定为直角三角形,理由如下:∵a2=(m2+n2)2=m4+2m2n2+n4,b2+c2=m4﹣2m2n2+n4+4m2n2=m4+2m2n2+n4,∴a2=b2+c2,∴以a,b,c为边长的三角形一定为直角三角形.20.解:(1)∵3、4、5是正整数,且32+42=52,∴3、4、5是一组勾股数;(2)∵122+162=202,且12,16,20都是正整数,∴一组勾股数可以是12,16,20.答案不唯一;(3)∵m表示大于1的整数,∴由a=2m,b=m2﹣1,c=m2+1得到a、b、c均为正整数;又∵a2+b2=(2m)2+(m2﹣1)2=4m2+m4﹣2m2+1=m4+2m2+1,而c2=(m2+1)2=m4+2m2+1,∴a2+b2=c2,∴a、b、c为勾股数.21.解:(1)是,理由是:在△CHB中,∵CH2+BH2=(2.4)2+(1.8)2=9BC2=9∴CH2+BH2=BC2∴CH⊥AB,所以CH是从村庄C到河边的最近路(2)设AC=x在Rt△ACH中,由已知得AC=x,AH=x﹣1.8,CH=2.4由勾股定理得:AC2=AH2+CH2∴x2=(x﹣1.8)2+(2.4)2解这个方程,得x=2.5,答:原来的路线AC的长为2.5千米.22.解:在Rt△ACB中,AC2+BC2=AB2,设秋千的绳索长为xm,则AC=(x+0.6﹣1.2)m,故x2=2.42+(x+0.6﹣1.2)2,5.76﹣1.2x+0.36=0解得:x=5.1,答:绳索AD的长度是5.1m.23.解:(1)由题意得:该长方体中能放入木棒的最大长度是:(32+42)2+122=13(cm).(2)分三种情况可得:AG=(4+12)2+32=265cm>AG= (3+12)2+42=241cm>AG=(3+4)2+122=193cm,所以最短路程为193cm;(3)∵高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm与饭粒相对的点A处,∴A′D=5cm,BD=12﹣3+AE=12cm,∴将容器侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B=A′D2+BD2=13(cm)。

沪科版数学八年级下册第18章勾股定理测试题附答案

沪科版数学八年级下册第18章勾股定理测试题附答案
∴CM=BN.
∵四边形MDNC的面积=S△CDM+S△CDN=S△CDM+S△ADM=S△ADC.故为定值.
∵CM2+CN2=MN2,
∴BN2+AM2=MN2.
当MN∥AB时,MN平分∠CND.
∴正确的有:①②③.
故选A.
考点:1.全等三角形的判定与性质;2.勾股定理;3.等腰直角三角形.
8.A
【解析】
③若a2+b2<c2,则∠c为____________.
15.如果一梯子底端离建筑物9 m远,那么15 m长的梯子可到达建筑物的高度是____m.
16.如图,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36 cm,点P从点A开始沿AB边向B点以每秒1 cm的速度移动,点Q从点B沿BC边向点C以每秒2 cm的速度移动,如果同时出发,则过3 s时,△BPQ的面积为__________cm2.
【详解】
解:如图,连接PQ,
∵∠ABP+∠PBC=60°,∠CBQ+∠PBC=60°,
∴∠ABP=∠CBQ,
在△ABP与△CBQ中,

∴△ABP≌△CBQ(SAS),
∴AP=CQ,
∵∠PBQ=60°,BQ=BP,
∴△BPQ为等边三角形,即BP=PQ,
又∵PA∶PB∶PC=3∶4∶5,
可设PA=3a,PB=4a,PC=5a,
求证:AE2+BF2=EF2.
参考答案
1.C
【解析】
由题意可知,AC=1,AB=2,∠CAB=90°
据勾股定理则BC= m;
∴AC+BC=(1+ )m.
答:树高为(1+ )米.
故选C.
2.C

沪科版数学八年级下册第18章勾股定理测试卷附答案

沪科版数学八年级下册第18章勾股定理测试卷附答案

沪科版数学八年级下册第18章勾股定理评卷人得分一、单选题1.如图,在△ABC中,三边a、b、c的大小关系是( )(A)a<b<c (B)c<a<b (C)c<b<a (D)b<a<c2.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,如图,其中正确的是()A.B.B.C.D.3.已知一个Rt△的两边长分别为3和4,则第三边长的平方是()A.25 B.14 C.7 D.7或254.A,B,C三地的两两距离如图所示,B地在A地的正西方向,那么B地在C地的()A.正南方向B.正北方向C.正东方向D.正西方向5.如图,一块直角三角形的纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于().A.2 cm B.4 cm C.3 cm D.5 cm6.直角三角形一直角边长为12,另两条边长均为自然数,则其周长为().A.30 B.28 C.56 D.不能确定7.如图,分别以直角三角形的三边为直径作半圆,则三个半圆的面积S1,S2+S3之间的关系是()A.S1>S2+S3B.S1=S2+S3C.S1<S2+S3D.无法确定8.下列命题的逆命题是真命题的是()A.若a=b,则a2=b2B.全等三角形的周长相等C.若a=0,则ab=0 D.有两边相等的三角形是等腰三角形9.图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中的边长为6的直角边分别向外延长一倍,得到图②所示的“数学风车”,则这个风车的外围周长是()A.51 B.49 C.76 D.无法确定10.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且(a+b)(a-b)=c2,则( )A.∠A为直角B.∠C为直角C.∠B为直角D.不是直角三角形11.小明和小刚二人同时从学校步行去公园,速度都是50m/min,小明从学校直接去公园走直线用了10min,而小刚走直线从学校出发先回家用时6min,再去公园,用时8min,则小刚从学校到公园走了个()A.锐角弯B.钝角弯C.直角弯D.不能确定12.如图,圆柱底面半径为2πcm,高为9cm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一根棉线从A点顺着圆柱侧面绕3圈到B点,则这根棉线的长度最短为()A.12cm B C.15cm D cm二、填空题13.已知|m+(p)2=0则以m、n、p为三边长的三角形是_______三角形.14.在△ABC中,∠C=90°,BC=1,AB=2,则AC=___________.15.如图,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的长为_______16.如图是一个三级台阶,它的每一级的长、宽和高分别为20 dm,3 dm,2 dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是__________dm.17.如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___米.18.如图,正方形ABDE、CDFI、EFGH的面积分别为25、9、16,△AEH、△BDC、△GFI 的面积分别为S1、S2、S3,则S1+S2+S3=___.三、解答题19.如图是一块地的平面图,AD=4m,CD=3m,AB=13m,BC=12m,∠ADC=90°,求这块地的面积.20.如图是单位长度为1的正方形网格.(1)在图1的线段AB;(2)在图2中画出一个以格点为顶点,面积为5的正方形.21.在B港有甲、乙两艘渔船,若甲船沿北偏东60°的方向以每小时8海里的速度前进,乙船沿南偏东某个角度的方向以每小时15海里的速度前进,2小时后,甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?22.如图,在△ABC中,CD⊥AB于点D,若AC CD=5,BC=13,求△ABC的面积.23.△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如图(1),根据勾股定理,则a2+b2=c2,若△ABC不是直角三角形,如图(2)和图(3),请你类比勾股定理,试猜想a2+b2与c2的关系,并证明你的结论.24.如图,一架梯子AB 长13米,斜靠在一面墙上,梯子底端离墙5米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了5米,那么梯子的底端在水平方向滑动了多少米?参考答案1.D【解析】试题分析:先分析出a 、b 、c 三边所在的直角三角形,再根据勾股定理求出三边的长,进行比较即可. 根据勾股定理,得103122=+=a ,52122=+=b ,133222=+=b , 13105<< ,∴,c<b<a故选D.考点:本题考查的是勾股定理点评:解答本题的关键是认真分析格点的特征,熟练运用勾股定理进行计算。

沪科版2019-2020学年初二数学下学期 第18章 勾股定理单元检测题(含答案)

沪科版2019-2020学年初二数学下学期 第18章 勾股定理单元检测题(含答案)

勾股定理检测题(本检测题满分:100分,时间:90分钟)得分一、选择题(每小题3分,共30分) 1.下列说法中正确的是( )A.已知c b a ,,是三角形的三边,则222c b a =+ B.在直角三角形中,两边的平方和等于第三边的平方 C.在Rt △ABC 中,∠C =90°,所以222c b a =+ D.在Rt △ABC 中,∠B =90°,所以222c b a =+2.如果把直角三角形的两条直角边长同时扩大到原来的2倍,那么斜边长扩大到原来 的( )A.1倍B.2倍C.3倍D.4倍 3.在△ABC 中,AB =6,AC =8,BC =10,则该三角形为( ) A.锐角三角形 B.直角三角形 C.钝角三角形D.等腰直角三角形4.如图,已知正方形B 的面积为144,如果正方形C 的面积为169,那么正方形A 的面积 为( )A.313B.144C.169D.25ABC第4题图5.如图,在Rt △ABC 中,∠ACB =90°,若AC =5 cm ,BC =12 cm ,则Rt △ABC 斜边上的高CD 的长为( )A.6 cmB.8.5 cmC.1360cm D.1330cm 6.分别满足下列条件的三角形中,不是直角三角形的是( )A.三内角之比为1︰2︰3B.三边长的平方之比为1︰2︰3C.三边长之比为3︰4︰5D.三内角之比为3︰4︰5 7.如图,在△ABC 中,∠ACB =90°,AC =40,BC =9,点M ,N 在AB 上,且AM =AC ,BN =BC ,则MN 的长为( )A.6B.7C.8D.98.如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程是( )A.6 cmB.8 cmC.10 cmD.12 cm9.如果一个三角形的三边长a ,b ,c 满足a 2+b 2+c 2+338=10a +24b +26c ,那么这个三角形一定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形BC第7题图10. 如图,在△ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,点E 是AB 的中点,CD =DE =a ,则AB 的长为( )A .2aB .22aC .3a D.433 a二、填空题(每小题3分,共24分)11.现有两根木棒的长度分别是40 cm 和50 cm ,若要钉成一个三角形木架,其中有一个角为直角,则所需木棒的最短长度为________.12.在△ABC 中,AB =AC =17 cm ,BC =16 cm ,AD ⊥BC 于点D ,则AD =_______.13. 在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,放置的四个正方形的面积依次是S 1,S 2,S 3,S 4则S 1+S 2+S 3+S 4=.14.如图,某会展中心在会展期间准备将高5 m ,长13 m ,宽2 m 的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要________元钱.△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH 都是正方形,如果AB=10,EF=2,那么AH等于.16.(2015·湖北黄冈中考)在△ABC中,AB=13 cm,AC=20 cm,BC边上的高为12 cm,则△ABC的面积为.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为7cm,则正方形A,B,C,D的面积之和为___________cm2.18.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了________步路(假设2步为1 m),却踩伤了花草.三、解答题(共46分)19.(6分)(2016·湖南益阳中考)在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解.........题思路完成解答过程.........20.(6分)如图,为修铁路需凿通隧道AC,现测量出∠ACB=90°,AB=5km,BC=4km,若每天凿隧道0.2km,问几天才能把隧道AC凿通?21.(6分)若三角形的三个内角的比是1︰2︰3,最短边长为1,最长边长为2.求:(1)这个三角形各内角的度数;(2)另外一条边长的平方.22.(7分)如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF.23.(7分)张老师在一次“探究性学习”课中,设计了如下数表:2+(1)请你分别观察a,b,c与n之间的关系,并用含自然数n(n>1)的代数式表示:a=__________,b=__________,c=__________.(2)以a,b,c为边长的三角形是不是直角三角形?为什么?24.(7分)如图,折叠长方形的一边AD ,使点D 落在BC 边上的点F 处,BC =10 cm ,AB =8 cm.求:(1)FC 的长;(2)EF 的长.25.(7分)如图,在长方体ABCD A B C D ''''-中,2AB BB '==,AD =3,一只蚂蚁从A 点出发,沿长方体表面爬到C '点,求蚂蚁怎样走路程最短,最短路程是多少?勾股定理检测题参考答案1.C 解析:A.不确定三角形是不是直角三角形,故A 选项错误;B.不确定第三边是不是斜边,故B 选项错误;C.∠C =90°,所以其对边为斜边,故C 选项正确;D.∠B =90°时,有b 2=a 2+c 2,所以a 2+b 2=c 2不成立,故D 选项错误.2.B 解析:设原直角三角形的两直角边长分别是a ,b ,斜边长是c ,则a 2+b 2=c 2,则扩大后的直角三角形两直角边长的平方和为()()222224422a b c a b (),+=+=斜边长的平方为()2242c c =,即斜边长扩大到原来的2倍,故选B.3.B 解析:在△ABC 中,由AB =6,AC =8,BC =10,可推出AB 2+AC 2=BC 2.由勾股定理的逆定理知此三角形是直角三角形,故选B .4.D 解析:设三个正方形A ,B ,C 的边长依次为a ,b ,c ,因为三个正方形的边组成一个直角三角形,所以a 2+b 2=c 2,故S A +S B =S C ,即S A =169-144=25.5.C 解析:由勾股定理可知22222512169AB AC BC =+=+=,所以AB =13 cm,再由三角形的面积公式,有1122AC BC AB CD ⋅=⋅,得60cm 13AC BC CD AB ⋅==(). 6.D 解析:在A 选项中,求出三角形的三个内角分别是30°,60°,90°;在B ,C 选项中,都符合勾股定理的条件,所以A ,B ,C 选项中的三角形都是直角三角形.在D 选项中,求出三角形的三个内角分别是45°,60°,75°,所以不是直角三角形,故选D .7.C 解析:在Rt △ABC 中,AC =40,BC =9,由勾股定理得AB =41.因为BN =BC =9,,所以.8.C 解析:如图为圆柱的侧面展开图,∵ 为的中点,则就是蚂蚁爬行的最短路径.∵ (cm ),∴ (cm ).∵cm ,∴ 22222=68AB CB AC +=+=100(cm ),∴ AB = 10 cm,即蚂蚁要爬行的最短路程是10 cm .9.B 解析:由,整理,得,即,所以,符合,所以这个三角形一定是直角三角形.10.A 解析:因为a ∶b =3∶4,所以设a =3k ,b =4k (k >0). 在Rt △ABC 中,∠C =90°,由勾股定理,得a 2+b 2=c 2.因为c =10,所以9k 2+16k 2=100,解得k =2,所以a =6,b =8, 所以S △ABC =12ab =12×6×8=24.故选A .11.30 cm 解析:当50 cm 长的木棒构成直角三角形的斜边时,设最短的木棒长为x cm (x >0),由勾股定理,得2224050x+=,解得x =30.12.15 cm 解析:如图,∵ 等腰三角形底边上的高、中线以及顶角的平分线互相重合,∴ 1.2BD BC =∵ BC =16,∴ 11168.22BD BC ==⨯= ∵ AD ⊥BC ,∴ ∠ADB =90°.在Rt △ADB 中,∵ AB =AC =17,由勾股定理,得22222178225AD AB BD =-=-=.∴ AD =15 cm .13.108 解析:因为,所以△是直角三角形,且两条直角边长分别为9,12,则用两个这样的三角形拼成的长方形的面积为.14.612解析:由勾股定理,得楼梯的底面至楼梯的最高层的水平距离为12m,所以楼道上铺地毯的长度为5+12=17(m).因为楼梯宽为2m,地毯每平方米18元,所以铺完这个楼道需要的钱数为18×17×2=612(元).15.6解析:∵△ABH≌△BCG≌△CDF≌△DAE,∴AH=DE.又∵四边形ABCD和EFGH都是正方形,∴AD=AB=10,HE=EF=2,且AE⊥DE.∴在Rt△ADE中,,∴+=∴+=,∴AH=6或AH= - 8(不合题意,舍去).16.126或66解析:本题分两种情况.(1)如图(1),在锐角△ABC中,AB=13,AC=20,BC边上的高AD=12,第16题答图(1)在Rt△ABD中,AB=13,AD=12,由勾股定理,得=25,∴BD=5.在Rt△ACD中,AC=20,AD=12,由勾股定理,得=256,∴CD=16,∴BC的长为BD+DC=5+16=21,△ABC的面积=·BC·AD =×21×12=126.(2)如图(2),在钝角△ABC中,AB=13,AC=20,BC边上的高AD=12,第16题答图(2)在Rt△ABD中,AB=13,AD=12,由勾股定理,得=25,∴BD=5.在Rt△ACD中,AC=20,AD=12,由勾股定理,得=256,∴CD=16.∴BC=DC-BD=16-5=11.△ABC的面积=·BC·AD =×11×12=66.综上,△ABC的面积是126或66.17.49 解析:正方形A,B,C,D的面积之和是最大的正方形的面积,即49 .18.4 解析:在Rt△ABC中,∠C=90°,由勾股定理,得224325=+=,所以AB=5.他们仅仅少走了(步).19.解:如图,在△ABC中,AB=15,BC=14,AC=13,设BD x=,∴14CD x=-.由勾股定理,得2222215AD AB BD x=-=-,2222213(14)A D A C C D x=-=--,∴ 2215x -=2213(14)x --, 解得9x =. ∴ 12AD =.∴ 12ABC S BC AD ∆=11412842=⨯⨯=. 20.解:在Rt △中,由勾股定理,得222AB AC BC =+,即22254AC =+,解得AC =3,或AC =-3(舍去). 因为每天凿隧道0.2 km ,所以凿隧道用的时间为3÷0.2=15(天). 答:15天才能把隧道AC 凿通.21.解:(1)因为三个内角的比是1︰2︰3, 所以设三个内角的度数分别为k ,2k ,3k (k ≠0). 由k +2k +3k =180°,得k =30°,所以三个内角的度数分别为30°,60°,90°.(2)由(1)知三角形为直角三角形,则一条直角边长为1,斜边长为2.设另外一条直角边长为x ,则22212x +=,即2=3x . 所以另外一条边长的平方为3.22.分析:旗杆折断的部分、未折断的部分和折断后原旗杆顶部离旗杆底部的部分构成了直角三角形,运用勾股定理可将折断的位置求出. 解:设旗杆未折断部分的长为x m ,则折断部分的长为(16-x )m , 根据勾股定理,得,解得,即旗杆在离底部6 m 处断裂.23.分析:从表中的数据找到规律. 解:(1)n 2-1 2n n 2+1(2)以a ,b ,c 为边长的三角形是直角三角形. 理由如下:∵ a 2+b 2=(n 2-1)2+4n 2=n 4-2n 2+1+4n 2=n 4+2n 2+1=(n 2+1)2=c 2,∴ 以a ,b ,c 为边长的三角形是直角三角形. 24.分析:(1)因为将△翻折得到△,所以,则在Rt △中,可求得 的长,从而的长可求;(2)由于,可设的长为,在Rt △中,利用勾股定理解直角三角形即可.解:(1)由题意,得AF =AD =BC =10 cm , 在Rt △ABF 中,∠B =90°,∵ cm ,∴ 2222210836BF AF AB =-=-=,BF =6 cm,∴(cm ). (2)由题意,得,设的长为,则.在Rt △中,∠C =90°,由勾股定理,得222+EC FC EF =,即,解得,即的长为5 cm .25.分析:要求蚂蚁爬行的最短路程,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.解:蚂蚁沿如图(1)所示的路线爬行时,长方形长为,宽为,连接,则构成直角三角形.由勾股定理,得222225229AC AC CC ''=+=+=. 蚂蚁沿如图(2)所示的路线爬行时,长方形长为,宽为,连接,则构成直角三角形.由勾股定理,得22222=+3425AC AD DC ''=+=,.蚂蚁沿如图(3)所示的路线爬行时,长方形ABC D ''长为=5BB B C '''+,宽为AB =2,连接AC ',则构成直角三角形. 由勾股定理,得22222=+=25=29.AC AB BC ''+∴ 蚂蚁从点出发穿过A'D'到达C '点时路程最短,最短路程是5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第18章勾股定理单元测试卷一、选择题(每题3分,共30分)1.以下列各组数据为边长的三角形中,是直角三角形的是( )A.,,B.5,4,8C.,2,1D.,3,2.直角三角形的一条直角边长是另一条直角边长的,斜边长为10,则它的面积为( )A.10B.15C.20D.303.在Rt△ABC中,∠A,∠B,∠C的对边分别为a,b,c,若∠B=90°,则( )A.b2=a2+c2B.c2+b2=a2C.a2+b2=c2D.a+b=c4.如果将长为6 cm,宽为5 cm的长方形纸片折叠一次,那么这条折痕的长不可能是( )A.8 cmB.5cmC.5.5 cmD.1 cm5.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( )A. B. C. D.6.如图,每个小正方形的边长都为1,则△ABC的三边a,b,c的大小关系是( )A.a<c<bB.a<b<cC.c<a<bD.c<b<a7.有一个三角形的两边长分别是4和5,若这个三角形是直角三角形,则第三边长为( )A.3B.C.3或D.无法确定8.三角形三边长分别是6,8,10,则它的最短边上的高为( )A.6B.14C.2D.89.如图,以直角三角形的三边a,b,c为边或直径,分别向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3的图形个数是( )A.1B.2C.3D.410.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线上D'处.若AB=3,AD=4,则ED的长为( )A. B.3 C.1 D.二、填空题(每题4分,共16分)11.如图是八里河公园水上风情园一角的示意图,A,B,C,D为四个养有珍稀动物的小岛,连线代表连接各个小岛的晃桥(各岛之间也可以通过乘船到达),如果黄芳同学想从A岛到C岛,则至少要经过________米.12.三角形一边长为10,另两边长是方程x2-14x+48=0的两实根,则这是一个________三角形,面积为________.13.如图,四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若四边形ABCD的面积是24 cm2,则AC的长是________.(有一组邻边相等的长方形是正方形)14.如图,从点A(0,2)发出的一束光,经x轴反射,过点B(4,3),则这束光从点A到点B所经过路径的长为__________.三、解答题(15~22题每题8分,23题10分,共74分)15.如图,在△ABC中,AC=6,AB=8,BC=7,求△ABC的面积.(结果保留整数)16.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.17.如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿河岸向前走30 m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.18.龙梅和玉荣是好朋友,可是有一次经过一场争吵之后,两人不欢而散.龙梅的速度是0.5米/秒,4分钟后她停了下来,觉得有点后悔了,玉荣走的方向好像是和龙梅成直角,她的速度是米/秒,如果她和龙梅同时停下来,而这时候她俩正好相距200米,那么她们行走的方向是否成直角?如果她们现在想讲和,那么以原来的速度相向而行,多长时间后能相遇?19.如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD 的长和宽分别为a,b,AC的长为c.(1)你能用只含a,b的代数式表示S△ABC ,S△C'A'D'和S直角梯形A'D'BA吗?能用只含c的代数式表示S△ACA'吗?(2)利用(1)的结论,你能验证勾股定理吗?20.如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知点C周围200 m 范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A 向东走600 m到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?21.如图,两个村子A,B在河的同侧,A,B两村到河边的距离分别为AC=1 km,BD=3 km,CD=3 km.现需在河边CD上建造一水厂向A,B两村送水,铺设水管的工程费用约为每千米20 000元,请在河边CD上选择水厂的位置O,使铺设水管的费用最少,并求铺设水管的费用.22.如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________,点E的坐标为_________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.23.平面直角坐标系中,点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为,即=|x|+|y|(其中“+”是四则运算中的加法).(1)求点A(-1,3),B(+2,-2)的勾股值, ;(2)求满足条件=3的所有点N围成的图形的面积.参考答案一、1.【答案】C2.【答案】B解:设较短直角边长为x(x>0),则有x2+(3x)2=102,解得x=,∴直角三角形的面积S=x·3x=15.3.【答案】A4.【答案】A5.【答案】A解:在直角三角形ABC中,由AC及BC的长,利用勾股定理求出AB的长,然后过C作CD⊥AB于D,直角三角形的面积可以由两直角边乘积的一半来求,也可以由斜边AB乘斜边上的高CD除以2来求,两者相等,将AC,AB及BC的长代入求出CD的长,即为C 到AB的距离.6.【答案】C解:利用勾股定理可得a=,b=5,而c=4,所以c<a<b.7.【答案】C解:此题要考虑两种情况:当两直角边长是4和5时,斜边长为;当一直角边长是4,斜边长是5时,另一直角边长是3.故选C.8.【答案】D解:因为62+82=102,所以该三角形是直角三角形,所以最短边上的高为8.9.【答案】D解:因为直角三角形的三边为a,b,c,所以应用勾股定理可得a2+b2=c2.第一个图形中,首先根据等边三角形的面积的求法,表示出3个等边三角形的面积,然后根据a2+b2=c2,可得S1+S2=S3.第二个图形中,首先根据半圆形的面积的求法,表示出3个半圆形的面积,然后根据a2+b2=c2,可得S1+S2=S3.第三个图形中,首先根据等腰直角三角形的面积的求法,表示出3个等腰直角三角形的面积,然后根据a2+b2=c2,可得S1+S2=S3.第四个图形中,首先根据正方形的面积的求法,表示出3个正方形的面积,然后根据a2+b2=c2,可得S 1+S2=S3.10.【答案】A解:在Rt△ABC中,AC===5.设ED=x,则D'E=x,AD'=AC-CD'=2,AE=4-x,根据勾股定理可得方程22+x2=(4-x)2,再解方程即可.二、11.【答案】37012.【答案】直角;24解:解方程得x1=6,x2=8.∵+=36+64=100=102,∴这个三角形为直角三角形,从而求出面积.13.【答案】4cm解:过点A作AE⊥BC于点E,AF⊥CD交CD的延长线于点F.易得△ABE≌△ADF,所以AE=AF,进一步证明四边形AECF是正方形,且正方形AECF与四边形ABCD的面积相等,则AE==2(cm),所以AC=AE=×2=4(cm).14.【答案】解:如图,设这一束光与x轴交于点C,作点B关于x轴的对称点B',过B'作B'D⊥y轴于点D,连接B'C.易知A,C,B'这三点在同一条直线上,再由轴对称的性质知B'C=BC,则AC+CB=AC+CB'=AB'.由题意得AD=5,B'D=4,由勾股定理,得AB'=.所以AC+CB=.三、15.解:如图,过点A作AD⊥BC于点 D.在Rt△ABD中,由勾股定理得AD2=AB2-BD2.在Rt△ACD中,由勾股定理得AD2=AC2-CD2.所以AB2-BD2=AC2-CD2.设BD=x,则82-x2=62-(7-x)2,解得x=5.5,即BD=5.5.所以AD==≈5.8.所以S=·BC·AD≈×7×5.8=20.3≈20.△ABC16.解:如图,过B点作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=60°,∴∠ABC=30°,∴AB=2AC=20,∴BC===10.∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC=5, ∴CM===15.在△EFD 中,∵∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM -MD=15-5.17.解:过点C 作CE⊥AD 于点E,由题意得AB=30m,∠CAD=30°,∠CBD=60°,故可得∠ACB=∠CAB=∠BCE=30°,即可得AB=BC=30 m,∴BE=15 m.在Rt△BCE 中,根据勾股定理可得CE===15(m).答:小丽自家门前小河的宽度为15 m.18.解:龙梅行走的路程为0.5×240=120(米),玉荣行走的路程为×240=160(米),两人相距200米,因为1202+1602=2002,根据勾股定理的逆定理可知,两人行走的方向成直角.因为=(秒)=(分钟),所以分钟后她们能相遇.19.解:(1)易知△ABC,△C'A'D'和△ACA'都是直角三角形,所以S △ABC =ab,S △C'A'D'=ab,S 直角梯形A'D'BA =(a+b)(a+b)=(a+b)2,S △ACA'=c 2.(2)由题意可知S △ACA'=S 直角梯形A'D'BA -S △ABC -S △C'A'D'=(a+b)2-ab-ab=(a 2+b 2),而S △ACA'=c 2.所以a 2+b 2=c 2.20.解:(1)MN不会穿过原始森林保护区.理由如下:过点C作CH⊥AB于点H.设CH=x m.由题意知∠EAC=45°,∠FBC=60°,则∠CAH=45°,∠CBA=30°.在Rt△ACH中,AH=CH=x m,在Rt△HBC中,BC=2x m.由勾股定理,得HB==x m.∵AH+HB=AB=600 m,∴x+x=600.解得x=≈220>200.∴MN不会穿过原始森林保护区.(2)设原计划完成这项工程需要y天,则实际完成这项工程需要(y-5)天.根据题意,得=(1+25%)×.解得y=25.经检验,y=25是原方程的根.∴原计划完成这项工程需要25天.21.解:如图,延长AC到A',使A'C=AC,连接A'B与CD交于点O,则点O为CD上到A,B两点的距离之和最小的点.过A'作CD的平行线,交BD的延长线于点G,连接AO,则BG=4 km,A'G=3 km.在Rt△A'BG中,A'B2=BG2+A'G2=42+32=25,解得A'B=5 km.易知OA=OA',则OA+OB=A'B=5 km,故铺设水管的费用最少为5×20 000=100 000(元).22.解:(1)(3,4);(0,1)(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形,∴BC=OA=4,∠AOC=∠DCE=90°,由折叠的性质可得DE=BD=BC-CD=4-1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC===2,则有OE=OC-CE=m-2.在Rt△AOE中,OA2+OE2=AE2,即42+(m-2)2=m2,解得m=3.23.解:(1) =|-1|+|3|=4.=|+2|+|-2|=+2+2-=4.(2)设N(x,y),∵=3,∴|x|+|y|=3.①当x≥0,y≥0时,x+y=3,即y=-x+3;②当x>0,y<0时,x-y=3,即y=x-3;③当x<0,y>0时,-x+y=3,即y=x+3;④当x≤0,y≤0时,-x-y=3,即y=-x-3.如图,满足条件=3的所有点N围成的图形是正方形,面积是18.。

相关文档
最新文档