[配套k12学习]2019年版本高考物理二轮总复习专题过关检测--专题:动量(全部含详细答案解析)-Word版
浙江鸭2019年高考物理二轮复习专题25动量相关知识在浙江高考中的运用试题含解析

专题25 动量相关知识在浙江高考中的运用一、动量、动量定理1.动量(1)定义:运动物体的质量和速度的乘积叫做物体的动量,通常用p来表示。
(2)表达式:p=mv。
(3)单位:kg·m/s。
(4)标矢性:动量是矢量,其方向和速度方向相同。
2.冲量(1)定义:力和力的作用时间的乘积叫做这个力的冲量。
(2)表达式:I=Ft。
单位:N·s。
(3)标矢性:冲量是矢量,它的方向由力的方向决定。
3.动量定理项目动量定理物体在一个过程始末的动量变化量等于它在这个过程中所受力的内容冲量表达式p′-p=F合t或mv′-mv=F合t意义合外力的冲量是引起物体动量变化的原因标矢性矢量式(注意正方向的选取)二、动量守恒定律1.内容:一个系统不受外力或者所受合外力为零,这个系统的总动量保持不变。
2.表达式:m1v1+m2v2=m1v1′+m2v2′或p=p′。
3.适用条件(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒。
(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒。
(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒。
三、弹性碰撞和非弹性碰撞1.碰撞碰撞是指物体间的相互作用持续时间很短,而物体间的相互作用力很大的现象。
2.特点在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒。
3.关于弹性碰撞的分析两球发生弹性碰撞时满足动量守恒定律和机械能守恒定律。
在光滑的水平面上,质量为m 1的钢球沿一条直线以速度v 0与静止在水平面上的质量为m 2的钢球发生弹性碰撞,碰后的速度分别是v 1、v 2①②由①②可得:③④利用③式和④式,可讨论以下五种特殊情况:a .当21m m >时,01>v ,02>v ,两钢球沿原方向原方向运动;b .当21m m <时,01<v ,02>v ,质量较小的钢球被反弹,质量较大的钢球向前运动;c .当21m m =时,01=v ,02v v =,两钢球交换速度。
专题08 动量-2019年高考真题和模拟题分项汇编物理 Word版含解析

专题08 动量1.(2019·江苏卷)质量为M 的小孩站在质量为m 的滑板上,小孩和滑板均处于静止状态,忽略滑板与地面间的摩擦.小孩沿水平方向跃离滑板,离开滑板时的速度大小为v ,此时滑板的速度大小为_________。
A .m v M B .M v m C .m v m M + D .M v m M+ 【答案】B【解析】设滑板的速度为u ,小孩和滑板动量守恒得:,解得:M u v m =,故B 正确。
2.(2019·新课标全国Ⅰ卷)最近,我国为“长征九号”研制的大推力新型火箭发动机联试成功,这标志着我国重型运载火箭的研发取得突破性进展。
若某次实验中该发动机向后喷射的气体速度约为3 km/s ,产生的推力约为4.8×106 N ,则它在1 s 时间内喷射的气体质量约为 A .1.6×102 kg B .1.6×103 kg C .1.6×105 kg D .1.6×106 kg【答案】B【解析】设该发动机在t s 时间内,喷射出的气体质量为m ,根据动量定理,Ft mv =,可知,在1s 内喷射出的气体质量,故本题选B 。
3.(2019·陕西省西安市高三第三次质量检测)如图所示,间距为L 、电阻不计的足够长平行光滑金属导轨水平放置,导轨左端有一阻值为R 的电阻,一质量为m 、电阻也为R 的金属棒横跨在导轨上,棒与导轨接触良好。
整个装置处于竖直向上、磁感应强度为B 的匀强磁场中,金属棒以初速度0v 沿导轨向右运动,在金属棒整个运动过程中,下列说法正确的是A .金属棒b 端电势比a 端高B .金属棒ab 克服安培力做的功等于电阻R 上产生的焦耳热C .金属棒ab 运动 的位移为022mv R B LD .金属棒ab 运动的位移为0222mv R B L 【答案】D【解析】由右手定则可知,金属棒ab 上电流的方向是a b →,说明b 端电势比a 端低,A 错误;由能量守恒知金属棒ab 克服安培力做的功等于电阻R 和金属棒上产生的焦耳热,B 错误;由动量定理,整个过程中感应电荷量,又,联立得2BLx I t R∆=,故金属棒的位移0222mv R x B L=,C 错误,D 正确。
高考物理二轮总复习 专题过关检测 专题动量(全含详细答案解析)

拾躲市安息阳光实验学校高考物理二轮总复习专题过关检测 动 量(时间:90分钟 满分:100分)一、选择题(本题包括10小题,共40分.每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得4分,选对但不全的得2分,错选或不选的得0分)1.一质量为m 的物体沿倾角为θ的固定斜面匀速下滑,滑到底端历时为t ,则下滑过程中斜面对物体的冲量大小和方向为( ) A.大小为mg cos θ·t B.方向垂直斜面向上 C.大小为mg sin θ·t D.方向竖直向上解析:物体沿固定斜面匀速下滑,则斜面对物体的作用力与重力大小相等、方向相反,故斜面对物体的冲量大小为mgt ,方向竖直向上,选项D 正确. 答案:D2.如图6-1所示,一个轻质弹簧左端固定在墙上,一个质量为m 的木块以速度v 0从右边沿光滑水平面向左运动,与弹簧发生相互作用,设相互作用的过程中弹簧始终在弹性限度范围内,那么整个相互作用过程中弹簧对木块的冲量I 的大小和弹簧对木块做的功W 分别是( ) 图6-1A.I =0,2021mv W = B.I =mv 0,2021mv W = C.I =2mv 0,W =0 D.I =2mv 0,2021mv W =解析:木块与弹簧相互作用的过程,木块和弹簧组成的系统机械能守恒,所以弹簧恢复原长、木块刚要离开弹簧时,木块的速度大小仍为v 0,方向水平向右.取水平向右为正方向,由动量定理得I =mv 0-m (-v 0)=2mv 0;由动能定理得,021212020=-=mv mv w 选项C 对.答案:C3.物体受到合力F 的作用,由静止开始运动,力F 随时间变化的图象如图6-2所示,下列说法中正确的是( ) 图6-2A.该物体将始终向一个方向运动B.3 s 末该物体回到原出发点C.0~3 s 内,力F 的冲量等于零,功也等于零D.2~4 s 内,力F 的冲量不等于零,功却等于零解析:图线和横坐标所围的面积等于冲量,0~1 s 内的冲量为负,说明速度沿负方向,而1~2 s 内冲量为正,且大于0~1 s 内的冲量,即速度的方向发生变化,所以A 错误.0~3 s 内,力F 的冲量为零,即物体0 s 时的速度和3 s 时的速度一样,故0~3 s 内力F 的冲量等于零,功也等于零,C 、D 正确.分析运动过程可以得到3 s 末物体回到原出发点,B 正确. 答案:BCD4.如图6-3所示,两个质量不相等的小车中间夹一被压缩的轻弹簧,现用两手分别按住小车,使它们静止在光滑水平面上.在下列几种释放小车的方式中,说法正确的是( ) 图6-3A.若同时放开两车,则此后的各状态下,两小车的加速度大小一定相等B.若同时放开两车,则此后的各状态下,两小车的动量大小一定相等C.若先放开左车,然后放开右车,则此后的过程中,两小车和弹簧组成的系统总动量向左D.若先放开左车,然后放开右车,则此后的过程中,两小车和弹簧组成的系统总动量向右解析:由于两车质量不相等,两车的加速度大小不相等.由动量守恒,若同时放开两车,初总动量为零,此后任意时刻总动量为零,所以两小车的动量大小一定相等;若先放开左车,然后放开右车,则初总动量向左,此后的过程中,两小车和弹簧组成的系统总动量向左,所以B 、C 正确.答案:BC5.质量为m 的小球A 在光滑的水平面上以速度v 与静止在光滑水平面上的质量为2m 的小球B 发生正碰,碰撞后,A 球的动能变为原来的1/9,那么碰撞后B 球的速度大小可能是( )A.v 31B.v 32C.v 94D.v 98解析:A 球碰撞后的速度大小为v /3,若A 碰后与原速度方向相同,则,'23mv v m mv +=则.31'v v =若A反弹,则,'2)3(mv v m mv +-=则,32'v v =所以A 、B正确.答案:AB6.在高速公路上发生一起交通事故,一辆质量为1 500 kg 向南行驶的长途客车迎面撞上了一辆质量为3 000 kg 向北行驶的卡车,碰后两辆车接在一起,并向南滑行了一段距离后停止.根据测速仪的测定,长途客车在碰前以20 m/s 的速率行驶.由此可判断卡车碰前的行驶速率( )A.小于10 m/sB.大于10 m/s,小于20 m/sC.大于20 m/s,小于30 m/sD.大于30 m/s,小于40 m/s解析:设卡车与客车碰后的共同速度为v ′,且v ′与客车的运动方向相同,则有m 客·v 客-m 卡·v =(m 客+m 卡)·v ′ v ′>0,m 客v 客-m 卡v >010m/s,m/s 3000201500=⨯=<卡客客m v m v 选项A 正确.答案:A7.A 、B 两物体在光滑水平面上沿同一直线运动,图6-4表示发生碰撞前后的vt图线,由图线可以判断( )图6-4A.A 、B 的质量比为3∶2B.A 、B 作用前后总动量守恒C.A 、B 作用前后总动量不守恒D.A 、B 作用前后总动能不变解析:因水平面光滑,水平方向上不受外力作用,所以系统的总动量守恒,B 对,C 错.m A v A +m B v B =m A v A ′+m B v B ′,代入图中数据得m A ∶m B =3∶2,A 对.碰撞前总动能)(5.272121221J m v m v m E B B B A A k =+=,碰撞后总动能),J (5.27'21'21222B B B A A k m v m v m E =+=故碰撞前后总动能不变,D 对.答案:ABD8.如图6-5所示,一轻弹簧与质量为m 的物块组成弹簧振子.物体沿竖直方向在A 、B 两点间做简谐运动,O 点为平衡位置.某时刻,物体正经过C 点向上运动,已知OC =h ,振动周期为T ,则从这时刻开始的半个周期内,下列说法中正确的是( ) 图6-5A.重力做的功为2mghB.回复力做的功为零C.重力的冲量为mgT /2D.回复力的冲量为零解析:做简谐运动的物体,在相隔半周期的两个时刻,速度大小相等、方向相反.故回复力(合力)做功为零,回复力的冲量为C 处物体动量的2倍,B 对,D 错.重力的冲量为,2Tmg C 对.在相隔半周期的两个时刻,振子所在位置关于平衡位置对称,所以重力做功W =mg ×2h =2mgh .A 对. 答案:ABC9.如图6-6甲所示,一轻弹簧的两端与质量分别为m 1和m 2的两木块A 、B 相连,静止在光滑水平面上.现使A 瞬时获得水平向右的速度v =3 m/s,以此时刻为计时起点,两木块的速度随时间变化的规律如图乙所示,从图示信息可知( ) 图6-6A.t 1时刻弹簧最短,t 3时刻弹簧最长B.从t 1时刻到t 2时刻弹簧由伸长状态恢复到原长C.两物体的质量之比为m 1∶m 2=1∶2D.在t 2时刻两物体动能之比为E k 1∶E k 2=1∶4解析:通过对A 、B 运动分析知,t 1时刻,弹簧最长,t 2时刻弹簧为原长,t 3时刻弹簧最短,A 错误,B 正确.A 和B 组成的系统动量守恒,0~t 1时间内,m 1v =(m 1+m 2)×1,所以m 1∶m 2=1∶2,C 正确.t 2时刻,121121121m m E k =⨯=,22212222m m E k =⨯=所以E k 1∶E k 2=1∶8,D错误.答案:BC10.如图6-7,一轻弹簧左端固定在长木块M 的左端,右端与小物块m 连接,且m 、M 及M 与地面间接触光滑.开始时,m 和M 均静止,现同时对m 、M 施加等大反向的水平恒力F 1和F 2,从两物体开始运动以后的整个运动过程中,对m 、M 和弹簧组成的系统(整个过程中弹簧形变不超过其弹性限度),正确的说法是( ) 图6-7A.由于F 1、F 2等大反向,故系统机械能守恒B.F 1、F 2分别对m 、M 做正功,故系统动量不断增加C.F 1、F 2分别对m 、M 做正功,故系统机械能不断增加D.当弹簧弹力大小与F 1、F 2大小相等时,m 、M 的动能最大 解析:由于F 1、F 2等大反向,系统所受合外力为零,所以系统动量守恒,系统机械能先增加后减小,当弹簧弹力大小与F 1、F 2大小相等时,m 、M 加速终止,m 、M 速度最大,以后开始减速,所以D 正确.答案:D二、填空实验题(2小题,共20分)11.(6分)用半径相同的两小球A 、B 的碰撞验证动量守恒定律,实验装置示意图如图6-8,斜槽与水平槽圆滑连接.实验时先不放B 球,使A 球从斜槽上某一固定点C 由静止滚下,落到位于水平地面的记录纸上留下痕迹.再把B 球静置于水平槽前端边缘处,让A 球仍从C 处由静止滚下,A 球和B 球碰撞后分别落在记录纸上留下各自的痕迹.记录纸上的O 点是重垂线所指的位置,若测得各落点痕迹到O 点的距离:OM =2.68 cm,OP =8.62 cm,ON =11.50 cm,并知A 、B 两球的质量之比为2∶1,则未放B 球时A 球落地点是记录纸上的________点,系统碰撞前总动量p 与碰撞后总动量p ′的百分误差=-pp p |'|_________ %(结果保留一位有效数字).图6-8解析:由实验数据可知系统碰撞前的总动量为t OP m p A /= 碰后总动量为t ON m t OM m p B A //'+= 且m A ∶m B =2∶1,则百分误差为答案:P 212.(14分)碰撞的恢复系数的定义为,||||102012v v v v e --=其中v 10和v 20分别是碰撞前两物体的速度,v 1和v 2分别是碰撞后两物体的速度.弹性碰撞的恢复系数e =1,非弹性碰撞的e <1.某同学借用验证动量守恒定律的实验装置(如图6-9所示)验证弹性碰撞的恢复系数是否为1,实验中使用半径相等的钢质小球1和2(它们之间的碰撞可近似为弹性碰撞),且小球1的质量大于小球2的质量. 图6-9实验步骤如下:安装好实验装置,作好测量前的准备,并记下重垂线所指的位置O .第一步,不放小球2,让小球1从斜槽上A 点由静止滚下,并落在地面上.重复多次,用尽可能小的圆把小球的所有落点圈在里面,其圆心就是小球落点的平均位置.第二步,把小球2放在斜槽前端边缘处的C 点,让小球1从A 点由静止滚下,使它们碰撞.重复多次,并使用与第一步同样的方法分别标出碰撞后两小球落点的平均位置.第三步,用刻度尺分别测量三个落地点的平均位置离O 点的距离,即线段OM 、OP 、ON 的长度.在上述实验中,(1)P 点是__________的平均位置,M 点是__________的平均位置,N 点是__________的平均位置. (2)请写出本实验的原理_________________________________________________________________________________________________________________________________________写出用测量量表示的恢复系数的表达式__________.(3)三个落地点距O 点的距离OM 、OP 、ON 与实验所用的小球质量是否有关?_________________________________________________________________________________________解析:(1)P 点是在实验的第一步中小球1落点的平均位置.M 点是小球1与小球2碰后小球1落点的平均位置. N 点是小球2落点的平均位置.(2)由小球从槽口C 飞出后做平抛运动的时间相同,假设为t ,则有OP =v 10t OM =v 1t O N=v 2t小球2碰撞前静止,即v 20=0(3)OP 与小球的质量无关,OM 和ON 与小球的质量有关. 答案:见解析 三、计算题13.(8分)一个物体静置于光滑水平面上,外面扣一质量为M 的盒子,如图6-10所示.现给盒子一初速度v 0,此后,盒子运动的vt 图象呈周期性变化,如图6-11所示.请据此求盒内物体的质量. 图6-10 图6-11解析:设物体的质量为m ,t 0时刻受盒子碰撞获得速度v ,根据动量守恒定律Mv 0=mv ①3t 0时刻物体与盒子右壁碰撞使盒子速度又变为v 0,说明碰撞是弹性碰撞2202121mv Mv =② 联立①②解得m =M ③(也可通过图象分析得出v 0=v ,结合动量守恒,得出正确结果). 答案:m =M14.(10分)图6-12 中有一个竖直固定在地面的透气圆筒,筒中有一劲度系数为k 的轻弹簧,其下端固定,上端连接一质量为m 的薄滑块.圆筒内壁涂有一层新型智能材料——E R 流体,它对滑块的阻力可调.起初 ,滑块静止,E R 流体对其阻力为0,弹簧的长度为L .现有一质量也为m 的物体从距地面2L 处自由落下,与滑块碰撞后粘在一起向下运动.为保证滑块做匀减速运动,且下移距离为kmg2时速度减为0,E R 流体对滑块的阻力须随滑块下移而变.试求(忽略空气阻力): 图6-12(1)下落物体与滑块碰撞过程中系统损失的机械能; (2)滑块向下运动过程中加速度的大小;(3)滑块下移距离d 时E R 流体对滑块阻力的大小. 解析:(1)设物体下落末速度为v 0,由机械能守恒定律有2021mv mgL =得gL v 20=设碰后共同速度为v 1,由动量守恒定律 2mv 1=mv 0得gL v 2211=碰撞过程中系统损失的机械能为 (2)设加速度大小为a ,由运动学公式有 2a s=v 12得.8mkL a =(3)设弹簧弹力为F N ,E R 流体对滑块的阻力为F ER ,受力分析如图所示,由牛顿第二定律有F N +F ER -2mg =2ma F N =kx得.4ER kd kLmg F -+= 答案:(1)mgL 21 (2)mkL 8 (3)kd kLmg -+415.(10分)(2010湖北部分重点中学二联,24)如图6-13所示,A BC 为光滑轨道,其中AB 段水平放置,BC 段是半径为R 的圆弧,AB 与BC 相切于B 点.A 处有一竖直墙面,一轻弹簧的一端固定于墙上,另一端与一质量为M 的物块相连接,当弹簧处于原长状态时,物块恰能与固定在墙上的L 形挡板接触于B 处但无挤压.现使一质量为m 的小球从圆弧轨道上距水平轨道高h 处的D 点由静止开始下滑.小球与物块相碰后立即共速但不粘连,物块与L 形挡板相碰后速度立即减为零也不粘连.(整个过程中,弹簧没有超过弹性限度.不计空气阻力,重力加速度为g )图6-13(1)试求弹簧获得的最大弹性势能;(2)求小球与物块第一次碰后沿BC 上升的最大高度;(3)若R>>h ,每次从小球接触物块至物块撞击L 形挡板历时均为Δt ,则小球由D 点出发经多长时间第三次通过B 点?解析:(1)由小球运动至第一次碰前,据动能定理有:mgh =mv 02/2①(1分)对碰撞过程,据动量守恒:mv 0=(M +m )v 1②(1分)碰后压缩弹簧过程中,M 、m 及弹簧系统机械能守恒:E pm =(M +m )v 12/2③(1分)由①②③式联立解得:.2pmmM ghm E +=④(1分)(2)第一次碰后小球向BC 轨道运动的初速度即为v 1,由机械能守恒得:'2121mgh mv =⑤(1分)由①②⑤式联立解得:.)('22h m M mh +=⑥(1分)(3)小球在BC 段运动可等效为单摆,其周期为:gR T π2=⑦(1分)分析得小球第三次通过B 点历时为:t Tt ∆+=43⑧(1分)由⑦⑧式联立解得:.23t gRt ∆+=π⑨(2分)答案:(1)mM ghm +2(2)h m M m 22)(+ (3)t g R t ∆+=π23 16.(12分)(2010四川成都高三一检,24)如图6-14所示的装置中,两个光滑定滑轮的半径很小,表面粗糙的斜面固定在地面上,现用一根伸长量可以忽略的轻质细绳跨过定滑轮连接可视为质点的甲、乙两物体,其中甲放在斜面上且连线与斜面平行,乙悬在空中,放手后,甲、乙均处于静止状态.当一水平向右飞来的子弹击中乙(未穿出)后,子弹立即和乙一起在竖直平面内来回运动,若乙在摆动过程中,悬线偏离竖直方向的最大偏角为α=60°,整个过程中,甲均未动,且乙经过最高点(此时乙沿绳方向的合外力为零)和最低点时,甲在斜面上均即将滑动.已知乙的重心到悬点O 的距离为l =0.9 m,乙的质量为m 乙=0.99 kg,子弹的质量m =0.01 kg,重力加速度g 取10 m/s 2.求:图6-14(1)子弹射入乙前的速度大小; (2)斜面对甲的最大静摩擦力.解析:(1)设子弹射入乙物体前的速度大小为v 0,射入后共同速度的大小为v .子弹击中乙的过程中,据动量守恒有mv 0=(m +m 乙)v ①(2分)乙摆到最高点的过程中,由机械能守恒有2)(21)cos 1()(v m m gl m m 乙乙+=-+α②(2分)联立①②解得v 0=300 m/s.(2分)(2)设甲物体的质量为m 甲,所受的最大静摩擦力为f ,斜面的倾角为θ,当乙物体运动到最高点时,绳子上的弹力设为T 1T 1=(m +m 乙)g cosα③(1分)此时甲物体恰好不下滑,由平衡条件有m 甲g sin θ=f +T 1④(1分) 当乙物体运动到最低点时,绳子上的弹力设为T 2 由牛顿第二定律有lv m m g m m T 22)()(乙乙+=+-⑤(1分)此时甲物体恰好不上滑,由平衡条件有m 甲g sin θ+f =T 2⑥(1分) 联立解得f =7.5 N.(2分) 答案:(1)300 m/s (2)7.5 N。
[配套K12]2019届高考物理一轮复习 第六章 动量学案
![[配套K12]2019届高考物理一轮复习 第六章 动量学案](https://img.taocdn.com/s3/m/d81735b39e314332396893ae.png)
第六章 动 量[全国卷5年考情分析](说明:2013~2016年,本章内容以选考题目出现)第1节动量定理(1)动量越大的物体,其速度越大。
(×)(2)物体的动量越大,其惯性也越大。
(×)(3)物体所受合力不变,则动量也不改变。
(×)(4)物体沿水平面运动时,重力不做功,其冲量为零。
(×)(5)物体所受合外力的冲量的方向与物体末动量的方向相同。
(×)(6)物体所受合外力的冲量方向与物体动量变化的方向是一致的。
(√)1.动量是矢量,其方向与物体的速度方向相同,动量变化量也是矢量,其方向与物体合外力方向相同。
2.力与物体运动方向垂直时,该力不做功,但该力的冲量不为零。
3.动量定理中物体动量的改变量等于合外力的冲量,包括物体重力的冲量。
4.动量定理是矢量方程,列方程时应选取正方向,且力和速度必须选同一正方向。
突破点(一) 动量与冲量的理解1.动能、动量、动量变化量的比较动能 动量 动量变化量 定义 物体由于运动而具有的能量 物体的质量和速度的乘积 物体末动量与初动量的矢量差定义式E k =12mv 2 p =mv Δp =p ′-p 标矢性标量 矢量 矢量 特点状态量 状态量 过程量 关联方程 E k =p 22m ,E k =12pv ,p =2mE k ,p =2E k v联系 (1)都是相对量,与参考系的选取有关,通常选取地面为参考系(2)若物体的;动能发生变化,则动量一定也发生变化;但动量发生变化时动能不一定发生变化2.冲量和功的区别(1)冲量和功都是过程量。
冲量表示力对时间的积累作用,功表示力对位移的积累作用。
(2)冲量是矢量,功是标量。
(3)力作用的冲量不为零时,力做的功可能为零;力做的功不为零时,力作用的冲量一定不为零。
3.冲量的计算(1)恒力的冲量:直接用定义式I=Ft计算。
(2)变力的冲量①方向不变的变力的冲量,若力的大小随时间均匀变化,即力为时间的一次函数,则力F在某段时间t内的冲量I=F1+F22t,其中F1、F2为该段时间内初、末两时刻力的大小。
2019版高三物理第二轮复习课件第1部分板块2专题7动量和动量守恒定律

高考统计·定方向
命题热点提炼
高考命题方向
五年考情汇总
1.动量和动量 定理
2.动量守恒定 律
3.碰撞与动量 守恒
2018·全国卷Ⅰ T14
动量和动量定理
2018·全国卷Ⅱ T15
2017·全国卷Ⅲ T20
动量守恒定律
2018·全国卷Ⅱ T24 2017·全国卷Ⅰ T14
B [列车启动的过程中加速度恒定,由匀变速直线运动的速度与时间关系 可知 v=at,且列车的动能为 Ek=12mv2,由以上整理得 Ek=12ma2t2,动能与时间 的平方成正比,动能与速度的平方成正比,A、C 错误;将 x=12at2 代入上式得 Ek=max,则列车的动能与位移成正比,B 正确;由动能与动量的关系式 Ek=2pm2 可知,列车的动能与动量的平方成正比,D 错误.]
Ft=mv,代入数据解得 F≈1×103 N,所以 C 正确.]
3.(多选)(2017·全国卷Ⅲ)一质量为 2 kg 的物块在合外力 F 的作用下 从静止开始沿直线运动.F 随时间 t 变化的图线如图 1 所示,则( )
图1
A.t=1 s 时物块的速率为 1 m/s B.t=2 s 时物块的动量大小为 4 kg·m/s C.t=3 s 时物块的动量大小为 5 kg·m/s D.t=4 s 时物块的速度为零 [题眼点拨] ①“合外力 F 的作用下”说明力 F 的冲量等于物块动量的增 量;②“从静止开始沿直线运动”说明物块的初动量为零.
AB [由动量定理可得:Ft=mv,故物块在 t=1 s 时的速度 v1=Fmt1=2×2 1 m/s=1 m/s,A 正确;物块在 t=2 s 时的动量大小 p2=Ft2=2×2 kg·m/s=4 kg·m/s, 在 t=3 s 时的动量大小 p3=(2×2-1×1) kg·m/s=3 kg·m/s,故 B 正确,C 错误; 在 t=4 s 时,I 合=(2×2-1×2)N·s=2 N·s,由 I 合=mv4 可得 t=4 s 时,物块的 速度大小 v4=1 m/s,D 错误.]
2019届高考物理二轮复习 第一部分 专题整合 专题二 功能与动量课时检测【共4套33页】

本套资源目录2019届高考物理二轮复习第一部分专题整合专题二功能与动量第1讲功和功率动能定理课时检测2019届高考物理二轮复习第一部分专题整合专题二功能与动量第2讲功能关系能量守恒定律课时检测2019届高考物理二轮复习第一部分专题整合专题二功能与动量第3讲动量定理与动量守恒定律课时检测2019届高考物理二轮复习第一部分专题整合专题二功能与动量第4讲力学三大观点的应用课时检测第一部分 专题二 第1讲 功和功率 动能定理一、单项选择题1.(2018·邯郸模拟)某人用同一水平力先后两次拉同一物体,第一次使此物体沿光滑水平面前进距离s ,第二次使此物体沿粗糙水平面也前进距离s ,若先后两次拉力做的功为W 1和W 2,拉力做功的功率是P 1和P 2,则正确的是A .W 1=W 2,P 1=P 2B .W 1=W 2,P 1>P 2C .W 1>W 2,P 1>P 2D .W 1>W 2,P 1=P 2解析 由W =Fs 可知两次拉力做功相同,但由于地面光滑时不受摩擦力,加速度较大,运动时间较短,由P =W t可知P 1>P 2,B 正确。
答案 B2.从地面竖直向上抛出一只小球,小球运动一段时间后落回地面。
忽略空气阻力,该过程中小球的动能E k 与时间t 的关系图像是解析 设小球抛出瞬间的速度大小为v 0,抛出后,某时刻t 小球的速度v =v 0-gt ,故小球的动能E k =12mv 2=12m (v 0-gt )2,结合数学知识知,选项A 正确。
答案 A3.(2018·上海市静安区教学质量检测)物体在平行于斜面向上的拉力作用下,分别沿倾角不同的斜面的底端,匀速运动到高度相同的顶端,物体与各斜面间的动摩擦因数相同,则图2-1-16A .沿倾角较小的斜面拉,拉力做的功较多B .沿倾角较大的斜面拉,克服重力做的功较多C .无论沿哪个斜面拉,拉力做的功均相同D .无论沿哪个斜面拉,克服摩擦力做的功相同 解析 设斜面倾角为θ,高度为h ,则斜面长度L =hsin θ。
2019届高考物理二轮复习 第五章 能量和动量单元质量检测.doc

2019届高考物理二轮复习第五章能量和动量单元质量检测一、选择题(第1~4题只有一项正确,第5~8题有多项正确)1. (2017·广州执信中学模拟)如图所示,水平路面上有一辆质量为M的汽车,车厢中有一个质量为m的人正用恒力F向前推车厢,在车以加速度a向前加速行驶距离L的过程中,下列说法正确的是( )A.人对车的推力F做的功为FLB.人对车做的功为maLC.车对人的作用力大小为maD.车对人的摩擦力做的功为(F-ma)L解析:选A 根据功的公式可知,人对车做功为W=FL,故A正确;在水平方向上,由牛顿第二定律可知,车对人的作用力为F′=ma,人对车的作用力为-ma,故人对车做的功为W=-maL,故B错误;因车对人还有支持力,大小等于mg,故车对人的作用力为N=ma2+mg2,故C错误;对人由牛顿第二定律得f-F=ma,解得f=ma+F,车对人的摩擦力做功为W=fL=(F+ma)L,故D错误。
2.(2017·马鞍山模拟)汽车从静止开始先做匀加速直线运动,然后做匀速运动。
汽车所受阻力恒定,下列汽车功率P与时间t的关系图像中,能正确描述上述过程的是( )解析:选C 根据P=Fv,F-F阻=ma,做匀加速运动时,v=at,所以P=Fat,故功率与时间成正比;做匀速运动时,合力为零,即F=F阻,P=Fv=F阻v,可知汽车由匀加速运动变为匀速运动,要求牵引力F突然减小,功率突然减小,然后保持不变,所以A、B、D 错误;C正确。
3. (2017·陕西西安一中模拟)如图所示,光滑水平面OB与足够长粗糙斜面BC交于B 点。
轻弹簧左端固定于竖直墙面,现用质量为m1的滑块压缩弹簧至D点,然后由静止释放,滑块脱离弹簧后经B点滑上斜面,上升到最大高度,并静止在斜面上。
不计滑块在B点的机械能损失,换用材料相同、质量为m2的滑块(m2>m1)压缩弹簧至同一点D后,重复上述过程,下列说法正确的是( )A.两滑块到达B点时速度相同B.两滑块沿斜面上升的最大高度相同C .两滑块上升到最高点的过程中克服重力做的功不相同D .两滑块上升到最高点的过程中机械能损失相同解析:选D 两滑块到达B 点的动能相同,但质量不同,则速度不同,故A 错误;两滑块在斜面上运动时加速度相同,由于初速度不同,故上升的最大高度不同,故B 错误;两滑块上升到最高点过程克服重力做功可表示为mgh ,由能量守恒定律得E p =mgh + μmg cot θ×h sin θ,所以mgh =E p 1+μcot θ,故两滑块上升到最高点过程克服重力做的功相同,故C 错误;由能量守恒定律得ΔE 损=W f =μmg cos θ×h sin θ=μmgh cot θ=μcot θ1+μcot θE p ,故D 正确。
[配套K12]2019版高考物理一轮复习 精选题辑 月考二 曲线运动 能量和动量
![[配套K12]2019版高考物理一轮复习 精选题辑 月考二 曲线运动 能量和动量](https://img.taocdn.com/s3/m/0016ad01580216fc700afdd6.png)
月考二必修二曲线运动能量和动量河水越靠近河中央水流速度越大.沿垂直于河岸的方向航行,它在静水中航行速度为v,则该船渡河的大致轨迹正确的是 ( )小船在垂直于河岸方向做匀速直线运动,平行河岸方向先做加速运动后做减速运因此合速度方向与河岸间的夹角先减小后增大,即运动轨迹的切线方向与项正确.45°的粗糙斜面AB和半径为0.5 m在竖直平面内,斜面和圆弧之间由小圆弧(长度不计)平滑连接,其中在同一水平线上.一物块(可视为质点物块与斜面间的动摩擦因数为.碰前滑块Ⅰ与滑块Ⅱ速度大小之比为7∶2 .碰前滑块Ⅰ的动量大小比滑块Ⅱ的动量大小大 .碰前滑块Ⅰ的动能比滑块Ⅱ的动能小.滑块Ⅰ的质量是滑块Ⅱ的质量的16图象的斜率等于速度,可知碰前滑块Ⅰ速度为,则碰前速度大小之比为:2碰撞前,滑块Ⅰ的动量为负,滑块Ⅱ的动量为正,由于碰撞后总动量为正,故碰撞前滑块Ⅰ的动量大小比滑块Ⅱ的小,+m )v ,解得忽略其他行星对冥王星的影响,则( )的过程中,速率逐渐变小的过程中,万有引力对它先做正功后做负功所用的时间等于T 04点的加速度大小为b -a 2+4本题考查开普勒行星运动定律、功的定义、其与太阳的连线在相同时间内扫过的面积相等,冥王星与太阳间的距离先变大后变小,+b -a 24,′=GMb -a 2+45.(广东六校联考)如图所示,在竖直平面内有一“V”形槽,其底部BC 是一段圆弧,两侧都与光滑斜槽相切,相切处B 、C 位于同一水平面上.一小物体从右侧斜槽上距BC 平面高度为2h 的A 处由静止开始下滑,经圆弧槽再滑上左侧斜槽,最高能到达距BC 所在水平面高度为h 的D 处,接着小物体再向下滑回,若不考虑空气阻力,则( )A .小物体恰好滑回到B 处时速度为零 B .小物体尚未滑回到B 处时速度已变为零C .小物体能滑回到B 处之上,但最高点要比D 处低 D .小物体最终一定会停止在圆弧槽的最低点 答案:C解析:小物体从A 处运动到D 处的过程中,克服摩擦力所做的功为W f 1=mgh ,小物体从D 处开始运动的过程,因为速度较小,小物体对圆弧槽的压力较小,克服摩擦力所做的功W f 2<mgh ,所以小物体能滑回到B 处之上,但最高点要比D 处低,C 正确,A 、B 错误;因为小物体与圆弧槽间的动摩擦因数未知,所以小物体可能停在圆弧槽上的任何地方,D 错误.6.(2018·湖南娄底五校联考)(多选)如图所示,一质量为M 的斜面体静止在水平地面上,物体A 、B 叠放在斜面体上,物体B 受沿斜面向上的力F 作用沿斜面匀速上滑,A 、B 之间的动摩擦因数为μ,μ<tan θ,且A 、B 质量均为m ,则( )A .A 、B 保持相对静止B .地面对斜面体的摩擦力等于mg (sin θ-μcos θ)cos θ+F cos θC .地面受到的压力等于(M +2m )gD .B 与斜面间的动摩擦因数为F -mg sin θ-μmg cos θ2mg cos θ答案:BD解析:对A 分析,因为μ<tan θ,则mg sin θ>μmg cos θ,所以A 、B 不能保持相对静止,故A 错误.以A 为研究对象,A 受到重力、支持力和B 对A 的摩擦力,如图甲所示.N =mg cos θ,mg sin θ-μN =ma ,由于μ<tan θ,则ma =mg sin θ-μmg cos θ>0. 将B 和斜面体视为整体,受力分析如图乙所示..(2018·山东师大附中三模)(多选)如图所示,一根不可伸长的轻绳两端分别系着小跨过固定于斜面体顶端的小滑轮O,倾角为30°的斜面体置于水平地面上.开始时,用手托住A,使OA段绳恰好处于水平伸直状态静止不动.将A由静止释放,在其下摆过程中,斜面体始两点分别是斜面的顶端、底端,C、点等高.从E点水平抛出质量相等的两个小球,球从抛出到落在斜面上的过程中从抛出到落到斜面上的过程中,运动的时间分别为k1、ΔE k2,重力做功分别为1,选项A正确;根据三角形相似得如图所示,内壁光滑、半径大小为的小球静止在轨道底部A点.现用小锤沿水平方向快速击打小球,使小球沿轨道在竖直面内运动.当小球回到小球才能运动到圆轨道的最高点.未脱离轨道,在第一次击打过程中小锤对小球做功W1,第二次击打过程中小锤对小球做功2W23质量分布均匀、半径为R的光滑半圆形金属槽静止在光滑的水平m的小球从距金属槽上端后向右运动,最后从槽的右端冲出,g,不计空气阻力,则(如图乙所示,用游标卡尺测得小球的直径d=________ mm. 小球经过光电门B时的速度表达式为________.H,重复上述实验,作出1t2随H的变化图象如图丙所示,及小球的直径d满足表达式________时,可判断小球下落过程中机械设小球静止时与竖直方向夹角为θ,小球的摆线长为绳对定滑轮的作用如图所示,可得,若已知S1和S2的距离为r,引力常量为的质量分别为m1、m2,运动的轨道半径分别为若不计摩擦和相互作用过程中的机械能损失.的初速度大小.的质量都增大到原来的2倍,再让小车两小车相互作用过程中弹簧的最大压缩量保持不变,小车(1)m1+m2v22m1+m2v4m设小车B的初速度大小为,A、B最大速度为v由系统动量守恒,有:m 2v 0=m 1v +m 2v 2相互作用前后系统的总动能不变,有:12m 2v 20=12m 1v 2+12m 2v 22解得:v 0=m 1+m 2v2m 2.(2)第一次弹簧被压缩至最短时,A 、B 两小球有相同的速度,据动量守恒定律,有:m 2v 0=(m 1+m 2)v 共,得v 共=m 2m 1+m 2·v 0此时弹簧的弹性势能最大,其值等于系统总动能的减少量,故有ΔE =12m 2v 20-12(m 1+m 2)·⎝ ⎛⎭⎪⎫m 2m 1+m 2·v 22=m 1m 2v 20m 1+m 2同理,两小车A 、B 的质量都增大到原来的2倍,小车B 的初速度设为v 3,A 、B 两小车相互作用过程中弹簧的压缩量最大时,系统总动能的减少量ΔE ′=2m 1·2m 2v 23m 1+2m 2=m 1m 2v 23m 1+m 2由ΔE =ΔE ′,得小车B 的初速度v 3=22v 0=2m 1+m 2v4m 2.16.(17分)如图甲所示,质量M =3 kg ,足够长的小车静止在水平面上,半径为R 的14固定光滑圆轨道的下端与小车的右端平滑对接,质量m =1 kg 的物块(可视为质点)由轨道顶端静止释放,接着物块离开圆轨道滑上小车.从物块滑上小车开始计时,物块运动前2 s 内速度随时间变化如图乙所示.已知小车与水平面间的动摩擦因数μ0=0.01,重力加速度为10 m/s 2,求:(1)物块经过圆轨道最低点时对轨道的压力F 大小;(2)直到物块与小车相对静止的过程中因摩擦共产生的热量Q .答案:(1)30 N (2)649J解析:(1)根据机械能守恒定律可得mgR =12mv 2(2分)解得R =0.8 m(1分)根据牛顿第二定律得F -mg =m v 2R(2分)解得F =30 N(1分)由牛顿第三定律得物块对轨道的压力大小为30 N(1分)(2)物块滑上小车后,由图象可知物块的加速度大小为a 1=1 m/s 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理二轮总复习专题过关检测动 量(附参考答案)(时间:90分钟 满分:100分)一、选择题(本题包括10小题,共40分.每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得4分,选对但不全的得2分,错选或不选的得0分)1.一质量为m 的物体沿倾角为θ的固定斜面匀速下滑,滑到底端历时为t ,则下滑过程中斜面对物体的冲量大小和方向为( ) A.大小为mg cos θ·t B.方向垂直斜面向上 C.大小为mg sin θ·t D.方向竖直向上解析:物体沿固定斜面匀速下滑,则斜面对物体的作用力与重力大小相等、方向相反,故斜面对物体的冲量大小为mgt ,方向竖直向上,选项D 正确. 答案:D2.如图6-1所示,一个轻质弹簧左端固定在墙上,一个质量为m 的木块以速度v 0从右边沿光滑水平面向左运动,与弹簧发生相互作用,设相互作用的过程中弹簧始终在弹性限度范围内,那么整个相互作用过程中弹簧对木块的冲量I 的大小和弹簧对木块做的功W 分别是( )图6-1A.I =0,2021mv W =B.I =mv 0,2021mv W =C.I =2mv 0,W =0D.I =2mv 0,2021mv W =解析:木块与弹簧相互作用的过程,木块和弹簧组成的系统机械能守恒,所以弹簧恢复原长、木块刚要离开弹簧时,木块的速度大小仍为v 0,方向水平向右.取水平向右为正方向,由动量定理得I =mv 0-m (-v 0)=2mv 0;由动能定理得,021212020=-=mv mv w 选项C 对. 答案:C3.物体受到合力F 的作用,由静止开始运动,力F 随时间变化的图象如图6-2所示,下列说法中正确的是( )图6-2A.该物体将始终向一个方向运动B.3 s 末该物体回到原出发点C.0~3 s 内,力F 的冲量等于零,功也等于零D.2~4 s 内,力F 的冲量不等于零,功却等于零解析:图线和横坐标所围的面积等于冲量,0~1 s 内的冲量为负,说明速度沿负方向,而1~2 s 内冲量为正,且大于0~1 s 内的冲量,即速度的方向发生变化,所以A 错误.0~3 s 内,力F 的冲量为零,即物体0 s 时的速度和3 s 时的速度一样,故0~3 s 内力F 的冲量等于零,功也等于零,C 、D正确.分析运动过程可以得到3 s 末物体回到原出发点,B 正确. 答案:BCD4.如图6-3所示,两个质量不相等的小车中间夹一被压缩的轻弹簧,现用两手分别按住小车,使它们静止在光滑水平面上.在下列几种释放小车的方式中,说法正确的是( )图6-3A.若同时放开两车,则此后的各状态下,两小车的加速度大小一定相等B.若同时放开两车,则此后的各状态下,两小车的动量大小一定相等C.若先放开左车,然后放开右车,则此后的过程中,两小车和弹簧组成的系统总动量向左D.若先放开左车,然后放开右车,则此后的过程中,两小车和弹簧组成的系统总动量向右 解析:由于两车质量不相等,两车的加速度大小不相等.由动量守恒,若同时放开两车,初总动量为零,此后任意时刻总动量为零,所以两小车的动量大小一定相等;若先放开左车,然后放开右车,则初总动量向左,此后的过程中,两小车和弹簧组成的系统总动量向左,所以B 、C 正确. 答案:BC5.质量为m 的小球A 在光滑的水平面上以速度v 与静止在光滑水平面上的质量为2m 的小球B 发生正碰,碰撞后,A 球的动能变为原来的1/9,那么碰撞后B 球的速度大小可能是( ) A.v 31B.v 32C.v 94D.v 98解析:A 球碰撞后的速度大小为v /3,若A 碰后与原速度方向相同,则,'23mv vmmv +=则.31'v v =若A 反弹,则,'2)3(mv v m mv +-=则,32'v v =所以A 、B 正确.答案:AB6.在高速公路上发生一起交通事故,一辆质量为1 500 kg 向南行驶的长途客车迎面撞上了一辆质量为3 000 kg 向北行驶的卡车,碰后两辆车接在一起,并向南滑行了一段距离后停止.根据测速仪的测定,长途客车在碰前以20 m/s 的速率行驶.由此可判断卡车碰前的行驶速率( ) A.小于10 m/sB.大于10 m/s,小于20 m/sC.大于20 m/s,小于30 m/sD.大于30 m/s,小于40 m/s解析:设卡车与客车碰后的共同速度为v ′,且v ′与客车的运动方向相同,则有 m 客·v 客-m 卡·v =(m 客+m 卡)·v ′ v ′>0,m 客v 客-m 卡v >010m/s,m/s 3000201500=⨯=<卡客客m v m v 选项A 正确.答案:A7.A 、B 两物体在光滑水平面上沿同一直线运动,图6-4表示发生碰撞前后的vt 图线,由图线可以判断( )图6-4A.A 、B 的质量比为3∶2B.A 、B 作用前后总动量守恒C.A 、B 作用前后总动量不守恒D.A 、B 作用前后总动能不变解析:因水平面光滑,水平方向上不受外力作用,所以系统的总动量守恒,B 对,C 错.m A v A +m B v B =m A v A ′+m B v B ′,代入图中数据得m A ∶m B =3∶2,A 对.碰撞前总动能)(5.272121221J m v m v m E B B B A A k =+=,碰撞后总动能),J (5.27'21'21222B B B A A k m v m v m E =+=故碰撞前后总动能不变,D 对.答案:ABD8.如图6-5所示,一轻弹簧与质量为m 的物块组成弹簧振子.物体沿竖直方向在A 、B 两点间做简谐运动,O 点为平衡位置.某时刻,物体正经过C 点向上运动,已知OC =h ,振动周期为T ,则从这时刻开始的半个周期内,下列说法中正确的是( )图6-5A.重力做的功为2mghB.回复力做的功为零C.重力的冲量为mgT /2D.回复力的冲量为零 解析:做简谐运动的物体,在相隔半周期的两个时刻,速度大小相等、方向相反.故回复力(合力)做功为零,回复力的冲量为C 处物体动量的2倍,B 对,D 错.重力的冲量为,2TmgC 对.在相隔半周期的两个时刻,振子所在位置关于平衡位置对称,所以重力做功W =mg ×2h =2mgh .A 对. 答案:ABC9.如图6-6甲所示,一轻弹簧的两端与质量分别为m 1和m 2的两木块A 、B 相连,静止在光滑水平面上.现使A 瞬时获得水平向右的速度v =3 m/s,以此时刻为计时起点,两木块的速度随时间变化的规律如图乙所示,从图示信息可知( )图6-6A.t 1时刻弹簧最短,t 3时刻弹簧最长B.从t 1时刻到t 2时刻弹簧由伸长状态恢复到原长C.两物体的质量之比为m 1∶m 2=1∶2D.在t 2时刻两物体动能之比为E k 1∶E k 2=1∶4解析:通过对A 、B 运动分析知,t 1时刻,弹簧最长,t 2时刻弹簧为原长,t 3时刻弹簧最短,A 错误,B 正确.A 和B 组成的系统动量守恒,0~t 1时间内,m 1v =(m 1+m 2)×1,所以m 1∶m 2=1∶2,C 正确.t 2时刻,121121121m m E k =⨯=,22212222m m E k =⨯=所以E k 1∶E k 2=1∶8,D 错误. 答案:BC10.如图6-7,一轻弹簧左端固定在长木块M 的左端,右端与小物块m 连接,且m 、M 及M 与地面间接触光滑.开始时,m 和M 均静止,现同时对m 、M 施加等大反向的水平恒力F 1和F 2,从两物体开始运动以后的整个运动过程中,对m 、M 和弹簧组成的系统(整个过程中弹簧形变不超过其弹性限度),正确的说法是( )图6-7A.由于F 1、F 2等大反向,故系统机械能守恒B.F 1、F 2分别对m 、M 做正功,故系统动量不断增加C.F 1、F 2分别对m 、M 做正功,故系统机械能不断增加D.当弹簧弹力大小与F 1、F 2大小相等时,m 、M 的动能最大解析:由于F 1、F 2等大反向,系统所受合外力为零,所以系统动量守恒,系统机械能先增加后减小,当弹簧弹力大小与F 1、F 2大小相等时,m 、M 加速终止,m 、M 速度最大,以后开始减速,所以D 正确. 答案:D二、填空实验题(2小题,共20分)11.(6分)用半径相同的两小球A 、B 的碰撞验证动量守恒定律,实验装置示意图如图6-8,斜槽与水平槽圆滑连接.实验时先不放B 球,使A 球从斜槽上某一固定点C 由静止滚下,落到位于水平地面的记录纸上留下痕迹.再把B 球静置于水平槽前端边缘处,让A 球仍从C 处由静止滚下,A 球和B 球碰撞后分别落在记录纸上留下各自的痕迹.记录纸上的O 点是重垂线所指的位置,若测得各落点痕迹到O 点的距离:OM =2.68 cm,OP =8.62 cm,ON =11.50 cm,并知A 、B 两球的质量之比为2∶1,则未放B 球时A 球落地点是记录纸上的________点,系统碰撞前总动量p 与碰撞后总动量p ′的百分误差=-pp p |'|_________ %(结果保留一位有效数字).图6-8解析:由实验数据可知系统碰撞前的总动量为t OP m p A /= 碰后总动量为t ON m t OM m p B A //'+= 且m A ∶m B =2∶1,则百分误差为%100|'|⨯-pp p %.2%100|)(|=⨯+-=OPm ON m OM m OP m A B A A答案:P 212.(14分)碰撞的恢复系数的定义为,||||102012v v v v e --=其中v 10和v 20分别是碰撞前两物体的速度,v 1和v 2分别是碰撞后两物体的速度.弹性碰撞的恢复系数e =1,非弹性碰撞的e <1.某同学借用验证动量守恒定律的实验装置(如图6-9所示)验证弹性碰撞的恢复系数是否为1,实验中使用半径相等的钢质小球1和2(它们之间的碰撞可近似为弹性碰撞),且小球1的质量大于小球2的质量.图6-9实验步骤如下:安装好实验装置,作好测量前的准备,并记下重垂线所指的位置O .第一步,不放小球2,让小球1从斜槽上A 点由静止滚下,并落在地面上.重复多次,用尽可能小的圆把小球的所有落点圈在里面,其圆心就是小球落点的平均位置.第二步,把小球2放在斜槽前端边缘处的C 点,让小球1从A 点由静止滚下,使它们碰撞.重复多次,并使用与第一步同样的方法分别标出碰撞后两小球落点的平均位置.第三步,用刻度尺分别测量三个落地点的平均位置离O 点的距离,即线段OM 、OP 、ON 的长度.在上述实验中,(1)P 点是__________的平均位置,M 点是__________的平均位置,N 点是__________的平均位置.(2)请写出本实验的原理__________________________________________________________ _______________________________________________________________________________ 写出用测量量表示的恢复系数的表达式__________.(3)三个落地点距O 点的距离OM 、OP 、ON 与实验所用的小球质量是否有关?__________ _______________________________________________________________________________ 解析:(1)P 点是在实验的第一步中小球1落点的平均位置. M 点是小球1与小球2碰后小球1落点的平均位置. N 点是小球2落点的平均位置.(2)由小球从槽口C 飞出后做平抛运动的时间相同,假设为t ,则有 OP =v 10t OM =v 1t O N=v 2t小球2碰撞前静止,即v 20=0.0201012OPOMON OP OM ON v v v v e -=--=--=(3)OP 与小球的质量无关,OM 和ON 与小球的质量有关. 答案:见解析三、计算题(本题包括4小题,共40分.解答应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案的不能得分.有数值计算的题目,答案中必须明确写出数值和单位)13.(8分)一个物体静置于光滑水平面上,外面扣一质量为M 的盒子,如图6-10所示.现给盒子一初速度v 0,此后,盒子运动的vt 图象呈周期性变化,如图6-11所示.请据此求盒内物体的质量.图6-10图6-11解析:设物体的质量为m ,t 0时刻受盒子碰撞获得速度v ,根据动量守恒定律 Mv 0=mv ①3t 0时刻物体与盒子右壁碰撞使盒子速度又变为v 0,说明碰撞是弹性碰撞2202121mv Mv =② 联立①②解得m =M ③(也可通过图象分析得出v 0=v ,结合动量守恒,得出正确结果). 答案:m =M14.(10分)图6-12 中有一个竖直固定在地面的透气圆筒,筒中有一劲度系数为k 的轻弹簧,其下端固定,上端连接一质量为m 的薄滑块.圆筒内壁涂有一层新型智能材料——E R 流体,它对滑块的阻力可调.起初 ,滑块静止,E R 流体对其阻力为0,弹簧的长度为L .现有一质量也为m 的物体从距地面2L 处自由落下,与滑块碰撞后粘在一起向下运动.为保证滑块做匀减速运动,且下移距离为kmg2时速度减为0,E R 流体对滑块的阻力须随滑块下移而变.试求(忽略空气阻力):图6-12(1)下落物体与滑块碰撞过程中系统损失的机械能; (2)滑块向下运动过程中加速度的大小;(3)滑块下移距离d 时E R 流体对滑块阻力的大小. 解析:(1)设物体下落末速度为v 0,由机械能守恒定律有2021mv mgL =得gL v 20=设碰后共同速度为v 1,由动量守恒定律 2mv 1=mv 0得gL v 2211=碰撞过程中系统损失的机械能为.21221212120mgL mv mv E =⨯-=∆ (2)设加速度大小为a ,由运动学公式有 2a s=v 12 得.8mkL a =(3)设弹簧弹力为F N ,E R 流体对滑块的阻力为F ER ,受力分析如图所示,由牛顿第二定律有 F N +F ER -2mg =2ma F N =kxkmgd x += 得.4ER kd kLmg F -+= 答案:(1)mgL 21 (2)m kL 8 (3)kd kLmg -+415.(10分)(2010湖北部分重点中学二联,24)如图6-13所示,A BC 为光滑轨道,其中AB 段水平放置,BC 段是半径为R 的圆弧,AB 与BC 相切于B 点.A 处有一竖直墙面,一轻弹簧的一端固定于墙上,另一端与一质量为M 的物块相连接,当弹簧处于原长状态时,物块恰能与固定在墙上的L 形挡板接触于B 处但无挤压.现使一质量为m 的小球从圆弧轨道上距水平轨道高h 处的D 点由静止开始下滑.小球与物块相碰后立即共速但不粘连,物块与L 形挡板相碰后速度立即减为零也不粘连.(整个过程中,弹簧没有超过弹性限度.不计空气阻力,重力加速度为g )图6-13(1)试求弹簧获得的最大弹性势能;(2)求小球与物块第一次碰后沿BC 上升的最大高度;(3)若R>>h ,每次从小球接触物块至物块撞击L 形挡板历时均为Δt ,则小球由D 点出发经多长时间第三次通过B 点?解析:(1)由小球运动至第一次碰前,据动能定理有: mgh =mv 02/2①(1分)对碰撞过程,据动量守恒: mv 0=(M +m )v 1②(1分)碰后压缩弹簧过程中,M 、m 及弹簧系统机械能守恒: E pm =(M +m )v 12/2③(1分)由①②③式联立解得:.2pmmM gh m E +=④(1分) (2)第一次碰后小球向BC 轨道运动的初速度即为v 1,由机械能守恒得:'2121mgh mv =⑤(1分) 由①②⑤式联立解得:.)('22h m M m h +=⑥(1分) (3)小球在BC 段运动可等效为单摆,其周期为:gRT π2=⑦(1分) 分析得小球第三次通过B 点历时为:t Tt ∆+=43⑧(1分) 由⑦⑧式联立解得:.23t gR t ∆+=π⑨(2分) 答案:(1)m M gh m +2 (2)h m M m 22)(+ (3)t g R t ∆+=π23 16.(12分)(2010四川成都高三一检,24)如图6-14所示的装置中,两个光滑定滑轮的半径很小,表面粗糙的斜面固定在地面上,现用一根伸长量可以忽略的轻质细绳跨过定滑轮连接可视为质点的甲、乙两物体,其中甲放在斜面上且连线与斜面平行,乙悬在空中,放手后,甲、乙均处于静止状态.当一水平向右飞来的子弹击中乙(未穿出)后,子弹立即和乙一起在竖直平面内来回运动,若乙在摆动过程中,悬线偏离竖直方向的最大偏角为α=60°,整个过程中,甲均未动,且乙经过最高点(此时乙沿绳方向的合外力为零)和最低点时,甲在斜面上均即将滑动.已知乙的重心到悬点O 的距离为l =0.9 m,乙的质量为m 乙=0.99 kg,子弹的质量m =0.01 kg,重力加速度g 取10 m/s 2.求:图6-14(1)子弹射入乙前的速度大小; (2)斜面对甲的最大静摩擦力.解析:(1)设子弹射入乙物体前的速度大小为v 0,射入后共同速度的大小为v .子弹击中乙的过程中,据动量守恒有mv 0=(m +m 乙)v ①(2分) 乙摆到最高点的过程中,由机械能守恒有2)(21)cos 1()(v m m gl m m 乙乙+=-+α②(2分)联立①②解得v 0=300 m/s.(2分)(2)设甲物体的质量为m 甲,所受的最大静摩擦力为f ,斜面的倾角为θ,当乙物体运动到最高点时,绳子上的弹力设为T 1 T 1=(m +m 乙)g c osα③(1分)此时甲物体恰好不下滑,由平衡条件有m 甲g sin θ=f +T 1④(1分) 当乙物体运动到最低点时,绳子上的弹力设为T 2 由牛顿第二定律有lv m m g m m T 22)()(乙乙+=+-⑤(1分)此时甲物体恰好不上滑,由平衡条件有m 甲g sin θ+f =T 2⑥(1分) 联立解得f =7.5 N.(2分) 答案:(1)300 m/s (2)7.5 N。