九年级数学下册3.7弧长及扇形的面积教案(新版)北师大版
九年级数学: 《弧长和扇形的面积》教学设计
《弧长和扇形的面积》教学设计北京市十一学校李鹏飞一、内容和内容解析(一)内容弧长和扇形的面积.(二)内容解析“弧长和扇形面积”作为圆这一章中的重要组成部分,是在研究了圆的有关性质,了解与圆有关的位置关系等之后,进一步研究的圆中有关弧、扇形、圆心角、圆等之间的数量关系.弧长公式是在是在圆周长公式的基础上,借助部分与整体之间的联系推导出来的.运用相同的研究方法,可以在圆面积公式的基础上推导出扇形面积公式,进而通过弧长公式表示扇形面积.应用这两个公式公式,可以计算一些与圆有关的简单组合图形的周长和面积.同时,学习这两个公式也为圆锥侧面积公式的推导打下了基础.二、目标和目标解析(一)教学目标1.理解弧长和扇形面积公式,并会计算弧长、扇形的面积.2.在弧长和扇形面积计算公式的探究过程中,感受转化、类比的数学思想.(二)目标解析达成目标1的标志是:学生能够理解1°的圆心角所对的弧长等于圆周长的,所对的扇形面积等于圆面积的;能够发现n°的圆心角所对的弧长和扇形面积都是1°的圆心角所对的弧长和扇形面积的n倍;能利用弧长表示扇形面积.并能利用公式计算简单组合图形的弧长和面积.达成目标2的标志是:在弧长和扇形面积公式的推导过程中,发现弧长与圆周长、扇形面积与圆面积都是部分与整体之间的关系,从而将计算弧长和扇形面积的问题转化为求圆周长和圆面积的一部分来解决,体会转化、类比的数学思想.三、教学问题诊断分析圆的周长和面积公式都是学生已经掌握的内容,学生能够感知到弧长和扇形面积分别与圆周长和面积有关,但是对于公式推导过程中圆心角的作用不易理解.教师可以利用特殊情况进行引导:先知道360°的圆心角所对的弧长即圆的周长,在同圆或等圆中相等的圆心角所对的弧长相等,越大的圆心角所对的弧越长等等,然后求180°的圆心角(半圆)所对的弧长,再通过求90°,60°的圆心角所对的弧长,逐渐认识弧长,再求1°的圆心角所对的弧长,再通过求2°,15°等等圆心角所对的弧长,最后探索n°的圆心角所对的弧长,通过n°圆心角与1°圆心角的倍数关系得出弧长公式.通过类比的方法得到扇形的面积公式.本节课的教学难点是:推导弧长和扇形面积公式的过程.四、教学过程设计1.推导并应用弧长公式问题1制造弯形管道时,经常要先按中心线计算“展直长度”,再下料,试计算图1中所示的管道的展直长度L(结果取整数).师生活动:(1)先给时间让学生分析题中条件:管道由三个图形组成(两条线段和一段弧),要求展直长度L,需要知道两条线段长和弧长;其中线段长已知,问题的关键是求弧长.(2)如何求100°的圆心角所对的弧长呢?(学生活动:分小组讨论求解方案)(3)老师引导:①圆的周长可以看作是多少度的圆心角所对的弧长?②180°的圆心角所对的弧长(半圆)是多少?③90°的圆心角所对的弧长(半圆)是多少?④在同圆或等圆中,每一个1°的圆心角所对的弧长有怎样的关系?⑤1°的圆心角所对的弧长是多少?⑥n°的圆心角所对的弧长是多少?由此引导学生逐步得出结论:n°的圆心角所对的弧长是1°的圆心角所对弧长的n倍,半径为R的圆周长为2πR,利用1°圆心角所对的弧长,再乘以n,就可以得到n°的圆心角所对的弧长为.(此时教师还要强调公式中n的意义,n表示1°的圆心角的倍数,它是不带单位的,公式中,180也是不带单位的.)(4)根据弧长公式,计算100°的圆心角所对的弧长,并完成问题解答.【设计意图】引导学生发现问题、分析问题和解决问题.首先抛出一个学生还不能解决(没学过)的问题:100°的圆心角所对的弧长如何计算?激起学生的求知欲望,引导学生自己去发现和探索未知的领域.然后搭台阶,通过一系列小问题,让学生逐步由已知领域(圆的周长),逐步探索、发现、认识未知的领域n°的圆心角所对的弧长计算公式,让学生学会思考,学会分析问题和解决问题,并从其中获得成功的体验.2.推导扇形面积公式问题2 同学们已经学习过扇形了,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.如何计算扇形面积?你能否类比研究弧长公式的方法推导出扇形面积的公式?师生活动:学生独立思考并讨论.类比弧长公式的研究过程(从求360°的圆心角所对的扇形面积出发,先研究180°、90°的圆心角所对的扇形面积,再研究1°的圆心角所对的扇形面积,再研究n°的圆心角所对的扇形面积),可以发现在半径为R的圆中,360°的圆心角所对的扇形的面积就是圆面积,所以1°的圆心角所对的扇形面积是圆面积的,即,则n°的圆心角所对的扇形面积为.【设计意图】类比弧长公式的发现过程,由学生独立思考、归纳出扇形面积公式.问题3 比较扇形面积公式和弧长公式,你能用弧长表示扇形面积吗?师生活动:学生独立思考并讨论.通过观察可以发现扇形面积公式中,分子含有因式,则分子可写成;分母360可写成180×2.所以弧长可以来表示扇形面积,,所以.其中l为扇形的弧长,R 为半径.此时教师可以引导学生,扇形面积的另一个计算公式与三角形的面积公式类似,只要把扇形看作是一个曲边三角形,把弧长l看成是底,半径R看成是高就可以了.设计意图:通过对比弧长和扇形面积公式,让学生发现可以通过弧长表示扇形面积,为圆锥侧面积公式的推导做准备.3.练习、巩固弧长和扇形面积公式例2 如图2,水平放置的圆柱形排水管道的截面半径是0.6m,其中水面高0.3m,求截面上有水部分的面积(结果保留小数点后两位).老师引导:(1)你能否在图中标出截面半径0.6m和水高0.3m?(线段AB和线段CD)(2)分析截面上有水部分图形的形状,如何求它的面积?(扇形面积-三角形面积)师生活动:(1)给时间让学生独立思考,并完成解题过程(老师巡视、个别指导);(2)小组交流,并由小组推荐一名学生板书过程;(3)师生共同分析板书学生的解题过程.【设计意图】结合具体例子研究弓形的面积的求法.加深学生对扇形面积公式的理解和运用.同时小结不规则图形的解法:若图形为不规则图形时,要把它转化为规则图形来解决.练习教科书第113页练习第1,2,3题.师生活动:两名学生分别板书2,3题,其他学生在练习本上完成,教师巡视,指导.然后小组交流,并评价.【设计意图】练习1是对弧长公式进行辨析,半径和圆心角的大小都对弧长的大小有影响.练习2是巩固弧长公式.练习3是巩固扇形的面积公式.4.小结教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题:(1)弧长和扇形面积公式是什么?你是如何得到这两个公式的?如何运用?(2)弧长与圆周长、扇形面积与圆面积之间有什么联系?【设计意图】通过小结,使学生梳理本节课所学内容,把握本节课的核心——弧长和扇形面积公式,并体会部分与整体之间的联系和类比、转化的数学思想.5.布置作业教科书习题24.4,2,4,6,8题.五、目标检测设计1.已知扇形的圆心角为70°,半径为1,则这个扇形的弧长是______.【设计意图】考查学生对弧长公式的掌握.2.已知扇形的圆心角为50°,半径为4cm,则扇形的面积是________cm2.【设计意图】考查学生对扇形面积公式的掌握.3.如图,正△ABC内接于⊙O,边长为4 cm,求图中阴影部分的面积.【设计意图】考查学生对扇形面积公式的掌握.。
弧长及扇形的面积说课稿
《弧长及扇形的面积》说课稿
执教:陈永章
一、教材:北师大版九年级下册第三章圆的最后一小节。
二、目标:探索弧长计算公式及扇形面积计算公式,了解弧长计算公式及扇形面积计算公式、并会应用公式解决问题。
提高学生的探索能力、分析问题和解决问题的能力。
三、重难点:弧长计算公式及扇形面积计算公式。
四、教学过程的设计
1、复习相关的已有知识。
2、将教材传送带的情景修改为学生熟悉的车轮转动的情景引入弧长,引导学生探索弧长公式。
3、把教材拴狗的实例修改为拴羊的实例引入扇形的面积,引导学生探索扇形的面积公式,并推导扇形面积和弧长的关系。
4、教学中增加了一些例题,在两个公式都探索出来后再进行例题的讲解,目的是让学生分辨弧长和扇形面积都涉及圆心角,但它们是两种不同计量单位的计算。
5、设计一些常见的题型作为巩固练习,使学生在练习中熟练掌握公式的应用,能判断扇形面积两个公式的应用,提高学生分析问题和解决问题的能力。
五、教学后记
本课是在学生已有圆的周长和面积知识的基础上去进行教学,教学的重难点是如何引导学生积极探索弧长公式和扇形面积公式,可实
际教学中,一方面是学生基础普遍薄弱,加上受到幻灯片的束缚,未能有效地引导学生自主探索,所以课堂的有效性不是太高,还需对教学方法进行改进,以提高课堂教学的有效性,真正体现学生在学习中的主体地位。
北师大版数学九年级下册3.9《弧长及扇形的面积》说课稿
北师大版数学九年级下册3.9《弧长及扇形的面积》说课稿一. 教材分析弧长及扇形的面积是北师大版数学九年级下册第3.9节的内容。
这部分内容是在学生已经掌握了圆的性质、扇形的定义以及弧长的计算方法的基础上进行讲解的。
本节课的主要内容是引导学生探究扇形的面积计算公式,并能够运用该公式解决实际问题。
教材通过实例和练习,帮助学生理解和掌握扇形面积的计算方法,提高他们的数学应用能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对圆的性质和弧长的计算方法有一定的了解。
然而,扇形面积的计算涉及到新的概念和思考方式,对于部分学生来说可能存在一定的难度。
因此,在教学过程中,我需要关注学生的学习情况,针对不同学生的需求进行引导和帮助,使他们能够顺利地理解和掌握扇形面积的计算方法。
三. 说教学目标1.知识与技能目标:引导学生探究并理解扇形的面积计算公式,使学生能够运用该公式计算扇形的面积。
2.过程与方法目标:通过观察、操作、交流和思考,培养学生的空间想象能力和几何思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们解决问题的积极性和合作精神。
四. 说教学重难点1.教学重点:引导学生探究扇形的面积计算公式,使学生能够理解和运用该公式。
2.教学难点:理解扇形面积计算公式的推导过程,掌握扇形面积的计算方法。
五. 说教学方法与手段在教学过程中,我将采用问题驱动法和合作学习法。
通过提出问题,引导学生进行观察、思考和交流,激发他们的学习兴趣和解决问题的欲望。
同时,我将运用多媒体课件和实物模型等教学手段,帮助学生直观地理解扇形面积的计算方法。
六. 说教学过程1.导入:通过展示一些与扇形相关的实例,如扇形统计图、扇形切割等,引导学生回顾扇形的定义和弧长的计算方法,为新课的学习做好铺垫。
2.探究扇形面积的计算公式:引导学生观察和分析扇形的特征,让学生通过小组合作的方式,自主探究扇形面积的计算公式。
在学生探究的过程中,给予适当的引导和帮助。
北师大版九年级下册数学《弧长及扇形的面积》圆说课教学课件复习提高
(3)转动轮转no,传送带上的物品A 被传送多少厘米? n cm
18
创设情境 出示目标
知识 经历探索弧长计算公式和扇形面积计算公
目标
式的过程;了解弧长计算公式和扇形面积 计算公式,并运用公式解决问题。
能力 了解弧长和扇形面积公式后,能运用公 目标 式解决问题,训练学生的数学运用能力 。
情感 体验教学活动充满着探索与创造,感受 目标 数学的严谨性以及数学结论的确定性 。
周长约是6.70m, 面积约是3.58㎡
创设情境 温故知新
(1)已知⊙O的半径为R,⊙O的周长是 多少?⊙O的面积是多少?
C=2πR,S⊙O=πR2
A
R
(2)什么叫圆心角?
O B
顶点在圆心,两边和圆相交所组成 的角叫做圆心角如图中的∠AOB
创设情境 出示目标
如图,某传送带的一个转动轮的半 径为10cm. (1)转动轮转一周,传送带上的物品 A被传送多少厘米? 20πcm (2)转动轮转1o,传送带上的物品A 被传送多少厘米? cm
∴(78π
+
2 4
)x=12.4,又78π
+
2 4
≈3.10(米 2)
所以,x=4.00(米)
答:该输水管中水的 流速应达到每秒4.00米
B
A
O
课件
巩固旧知 出示目标
巩固旧知 出示目标
生活中的圆弧与扇形
创设情境 出示目标
创设情境 出示目标
创设情境 出示目标
创设情境 出示目标
我们上体育课掷铅球练习时, 要在指定的圆圈内进行,这个 圆的直径是2.135m。这个圆的 周长与面积是多少呢?(结果 精确到0.01)
A
B
扇形
北师大版九年级数学下册《圆——弧长及扇形的面积》教学PPT课件(2篇)
C
A
D
B
探究新知
在一块空旷的草地上有一根柱子,柱子上栓
着一条长3m的绳子,绳子的另一端栓着一只狗。
(1)这只狗的最大活动区域有多大?
n°
(2)如果这只狗只能绕柱子转过 n°角,
那么它的最大活动区域有多大?
解:(1)这只狗的最大活动区域是圆的面积,即9πm2 .
(2)狗的活动区域是扇形,扇形是圆的一部分,360°的圆心角对应的是圆面积,
A. 3π
B.4π
C.5π
D.6π
新知探究
4 . 如图的五个半圆,邻近的两个半圆相切,两只小虫同时出发,以相同
的速度从A点爬到B点,甲虫沿ADA1,A1EA2,A2FA3,A3GB路线爬行,乙虫沿
ACB路线爬行,则下列结论正确的是( C )
A.甲先到B点
C.甲、乙同时到B点
B.乙先到B点
D.无法确定
− ×1×
=
π- .
课堂小结
1.弧长公式:
2.扇形面积公式:
或
注意: 求图形的面积:
割补法、组合法
(1)公式中 n 表示1°的圆心角的倍数;
(2)若圆心角的单位不全是度,则需先化为度后再计算.
(3)题设没有标明精确度的,结果可以用 π 表示.
课堂小测
1.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.
则半径为2的“等边扇形”的面积为( C
S 扇形1ຫໍສະໝຸດ lR2)
课堂小测
2. 如图,5个圆的圆心在同一条直线上, 且互相相切.若大圆直径是12,4
12cm,那么弧AC的长是( C)
A.10cm
弧长及扇形的面积教案示范三篇
弧长及扇形的面积教案示范三篇弧长及扇形的面积教案1教材分析:本节课涉及的主要概念有弧长、圆心角、扇形面积等,需要学生掌握相关定义和公式。
同时,也需要对圆的基本属性和关系有一定的了解,如弦长公式、周长公式等。
教学目标:学生能够准确理解弧长、圆心角、扇形面积等的概念与关系,能够运用相应的公式计算,同时掌握圆的基本属性和关系。
教学重点:弧长、圆心角、扇形面积的概念、公式和计算方法。
教学难点:圆心角的度量方法和圆的相关属性的理解。
学情分析:学生在初中阶段已经学习过圆的相关知识,对圆的基本属性和关系有一定的了解,但掌握程度存在差异。
部分学生对于弧长、圆心角、扇形面积等概念理解不深,计算方法掌握不熟练。
教学策略:通过引导学生观察实际生活中的圆形物体,探求圆的相关特征和性质,并引出弧长、圆心角、扇形面积的概念及其运用。
同时,采用差异化教学和在课外加强练习的方式,提高学生对知识点的掌握度。
教学方法:由浅入深、由低到高的顺序逐步引导学生,通过实际生活情境,建立数学模型,形象直观地解释和应用相关知识点。
同时,采用小组合作、互帮互助的方式,激发学生学习兴趣和主动参与性。
弧长及扇形的面积教案2导入环节(约5分钟):教学内容:引出本节课的主题——弧长及扇形的面积。
教学活动:通过展示一些圆形的图片,采用提问的方式引导学生发现圆形的特点,比如圆周率、直径等等,然后展示一些弧线和扇形的图片,引导学生思考它们与圆形有什么关系,为本节课的学习做好铺垫。
课堂互动(约35分钟):教学内容:介绍弧长及扇形的面积的概念、计算公式以及应用。
教学活动:先通过展示一些实际生活中的问题,引出学习弧长及扇形的面积的重要性。
然后对弧长的概念及计算公式进行详细解释,并且设计一些小组讨论或者个人练习的活动,加强学生对于弧长计算的掌握。
接着,再对扇形的面积进行详细讲解,包括其计算公式和一些实例的练习,这里也可以采用小组讨论的方式,让学生们互相帮助和交流,加强学生们对于扇形面积的理解和掌握。
北师大版九年级数学下册3.9弧长及扇形的面积教案
学以致用,当堂检测,及时获知学生对所学知识的掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高.
【课堂小结】
同学们,竹子每生长一步,必做小结,所以它是世界上长得最快的植物,数学的学习也是如此.通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再分享给大家.
本活动的设计意在引导学生通过自主探究、合作交流,对弧长计算公式从感性认识上升到理性认识.先从一般到特殊,再从特殊到一般,利用圆的周长公式推导出弧长的计算公式,在这一过程中让学生再次感受弧长与圆的周长公式的密切关系.
类比弧长计算公式的探索过程,引导学生探索扇形面积的计算公式,教会学生用类比的思想方法去模拟解决实际问题,锻炼学生的能力.
(2)已知扇形的弧长为20πcm,面积是240πcm2,则该扇形的圆心角为__150°__.
处理方式:让学生对比弧长及扇形面积公式进行探究、交流,通过整体代入的方法推导出扇形的第二个面积计算公式,并让学生类似于三角形的面积计算公式加以记忆.对于巩固训练可以让两名同学板演,其余学生在练习本上完成.完成后,让学生进行评价.对于出现的问题及时予以强调.
课题
9弧长及扇形的面积
授课人
教
学
目
标
知识技能
掌握弧长和扇形面积的计算公式,并学会运用弧长和扇形面积公式解决一些实际问题.
数学思考
经历弧长和扇形面积公式的推导过程,培养自主探索的能力.
问题解决
在利用弧长和扇形面积公式解题中,培养学生应用知识能力、空间想象能力和动手画图能力,体会由一般到特殊的数学思想.
情感态度
使学生了解计算公式的同时体会公式的变式,养成独立思考、合作交流的良好学习习惯.
初中数学教学课例《弧长及扇形的面积》教学设计及总结反思
1、在小学里学生已经掌握了圆的周长、面积的计
算,在本书这一章中学生学习了圆的有关性质,这是学 学生学习能
习的继续,难度不大。 力分析
2、在以前的数学学习中学生已经经历了很多合作
学习的过程,具备了一定的合作与交流的能力。
1、采用学生自主探索研究的方法,让学生掌握弧
长计算公式和扇形面积计算公式,培养学生的探索能 教学策略选
力; 择与设计
2、学生了解弧长和扇形面积公式后,训练学生运
用公式解决问题的能力。
(一)复习圆的周长与面积公式
我们上体育课掷铅球练习时,要在指定的圆圈内进
教学过程 行,这个圆的直径是 2.135m。这个圆的周长与面积是多
少?
(二)复习圆心角的概念ห้องสมุดไป่ตู้
(三)想一想
如图,某传送带的一个转动轮的半径为 10cm.
时,不让他们马上起来回答,因为在这么仓促的时间内
作答,学生的回答十有八九是零碎而不完整的,而引导 小组进行讨论,共同分析,找出弧长公式与扇形面积公 式的异同,让学生考虑周全些,语言组织精炼些,这时 再做出回答,肯定会很精彩。
2、教师在指导,引导,协助学生学习数学时,要 善于调配学生活动的步伐,要善于调控数学活动的时 间。对每个环节所用的时间要心中有数,这样,才能使 自己的设计发挥更大的作用。
家互相交流。
总结出计算弧长的公式:
若⊙O 的半径为 R,no 的圆心角所对的弧长 l 是
通过本节课的教学研究,我认识到今后的教学一定
要注意一下几点:
课例研究综
1、教师一定要起到引导者的作用,《新课程标准》
述
指出:数学教学注重“引导”学生动手实践,自主探究,
合作交流。如:在提问弧长公式与扇形面积公式异同点
弧长及扇形面积[下学期]--北师大版(201908)
;
填星皆犯东井 魏明帝青龙元年 散骑常侍华峤奏 伏 外 犹前长星之应也 气钟于子 七月 青州刺史镇新城 二百七十一五日十四度〔一分〕 于消息就加未 汉葭 善算者李修 徐州 五日乃止 游徼各一人 略阳 水 占曰 嫡子居外 六年闰月 则其律应 占同上 上将以兵亡 应效不效 二十一年 大兵 起 犯我城 乃罢 三月庚子 后来君子将拟以为式 月奄毕 黄帝之所作也 怀帝永嘉元年十二月丁亥 诸 草建废滞 浑邪王等居凉州之地 其月大 天将也 无根本 近笛下者也 太后以忧偪崩 其七月 新宁 《吴志》所书也 而其强弱常占于昴 填星 钜野鲁获麟所 其国起兵 则俱发黄钟及太蔟 始平 人 以谷为命 自古已来 京房易妖占曰 豫章 济阴 适足为唱和之声 百三 周率 为乱君 故常二社一稷也 统县七 占曰 阁道 九十二日行四十八度而留 山有文石 《传》异朔 记注图侧 黎阳临海郡〔吴置 十月 朕不虑改作之难 所得为度 至吴黄武五年 谯纵僭号秦蜀 母后称制 或曰可四丈 分酒泉之 沙头县 则得商声也 心为明堂 日馀 颙奔走 臣以为今宜参采《礼记》 夫敬诫之事 九月庚子 雩都 不可举事用兵 占曰 太安二年 闰馀十二以上 河间 八月戊申 损十 无七祀也 木入鬼 十三年 抱珥背璚之属 九嫔 顺 二百四十三十二日十二度十一分 《汉志》言衡权名理甚备 又见翼 〕 一万 一千一百二十二 诏曰 二百三十四十七日十二度八分 日蚀觉过半日 东南指 汉氏初兴 损十七 牛者七政始 措之于参保介之御间 其对为冲 学者务追合《四分》 考太祖武皇帝特一庙 二为半 出角 此之谓也 春释寒而冬请冰 求次月 为入月日馀 日有蚀之 一名天子旗 女十二 其州郡之名并不可 知也 间限千二百二十四大寒十二月中 为内乱 不尽为小馀 定出赋六万四千井 二曰周伯星 犯魁第三星而东 甲午止 敬农时 随类合之 五年 又分颍川立襄城郡 凡有七历 浸淫相侵 周伯星黄色煌煌
《弧长及扇形面积的计算》教案
《弧长及扇形面积的计算》教案一、教学目标:1. 知识与技能:(1)理解弧长的概念,掌握弧长的计算方法;(2)理解扇形面积的概念,掌握扇形面积的计算方法。
2. 过程与方法:(1)通过实例引导学生认识弧长和扇形面积的概念;(2)运用数学公式和图形相结合的方法,培养学生计算弧长和扇形面积的能力。
3. 情感态度与价值观:(1)培养学生对数学学科的兴趣和好奇心;(2)培养学生勇于探索、积极思考的科学精神。
二、教学重点与难点:1. 教学重点:(1)弧长的计算方法;(2)扇形面积的计算方法。
2. 教学难点:(1)弧长公式的灵活运用;(2)扇形面积公式的理解和应用。
三、教学准备:1. 教师准备:(1)弧长和扇形面积的相关理论知识;(2)教学课件或黑板、粉笔等教学工具。
2. 学生准备:(1)预习弧长和扇形面积的相关知识;(2)准备好笔记本,记录重点内容。
四、教学过程:1. 导入新课:(1)利用实例引入弧长和扇形面积的概念;(2)引导学生思考如何计算弧长和扇形面积。
2. 知识讲解:(1)讲解弧长的定义和计算方法;(2)讲解扇形面积的定义和计算方法。
3. 公式推导:(1)引导学生通过观察图形,推导出弧长公式;(2)引导学生通过分析扇形的组成,推导出扇形面积公式。
4. 实例演练:(1)出示一些弧长和扇形面积的计算题目,让学生独立完成;(2)选几位学生上台板演,并讲解解题思路。
5. 课堂小结:(1)总结弧长和扇形面积的计算方法;(2)强调公式的重要性和灵活运用。
五、课后作业:1. 请学生完成课后练习题,巩固所学知识;2. 鼓励学生查阅相关资料,深入了解弧长和扇形面积的运用;3. 提醒学生及时总结错题,查漏补缺。
六、教学反思:在课后,教师应反思本节课的教学效果,包括学生的课堂参与度、知识掌握程度以及教学方法的适用性。
教师需要根据学生的反馈和自身的教学体验,调整教学策略,以提高教学效果。
七、课堂评价:1. 学生对本节课弧长和扇形面积概念的理解程度;2. 学生对弧长和扇形面积计算公式的掌握情况;3. 学生在实例演练中的表现,以及解题思路的清晰程度;4. 学生课后作业的完成质量,以及对错题的总结反思。
弧长和扇形面积公式优秀教案
弧长和扇形面积〔第1课时〕城关初级 何开凤[教学目标]1.理解弧长与圆周长的关系,能用比例的方法推导弧长公式,并能利用弧长公式进行相关计算2.类比推导弧长公式的方法推导扇形面积公式,并能利用扇形面积公式进行相关计算.[教学重难点]重点 :弧长和扇形面积公式的推导过程以及公式的应用.难点 :类比弧长公式的推导来获得扇形面积公式的推导过程教学过程活动一:探究并应用弧长公式问题1: 我们知道,弧是圆的一局部,弧长就是圆周长的一局部.如何计算圆周长?如何计算弧长?(1) 圆的周长可以看作是多少度的圆心角所对的弧长?(2) 在同圆或等圆中,每一个 1°的圆心角所对的弧长有怎样的关系?(3) 1°的圆心角所对的弧长是多少?〔4〕 2°的圆心角所对的弧长是多少?5°?20°?〔5〕n °的圆心角所对的弧长是多少?〔6〕半径为 R 的圆中,n °的圆心角所对的弧长?思考:弧长的大小由哪些量决定?典例解析例1:制造弯形管道时,经常要先按中心线计算“展直长度〞,再下料,试计算图中所示的管道的展直长度 L 〔结果取整数〕.活动二:探究并应用扇形面积公式问题2:什么是扇形?〔学生通过阅读教材112页相应的内容自己形成概念〕问题3:你能否类比刚刚我们研究弧长公式的方法推导出扇形面积的计算公式?问题4:比拟扇形面积公式3602R n π和弧长公式180R n π,你能用弧长表示扇形面积吗? 针对性练习1、 半径为10,圆心角为60°的扇形面积是_________。
2、如下图,求阴影局部的面积3、如图,扇形的圆心角是直角,半径是2,则图中阴影局部的面积是________. 〔结果保存π〕活动三:练习、稳固弧长和扇形面积公式1、扇形的圆心角为60°,半径为1,则扇形的弧长为____________2、圆心角为120°,弧长为12π的扇形的半径为___________3、一个扇形的弧长为316πCM ,半径为8cm ,则它扇形的圆心角是____________ 4、扇形的半径是3cm ,此扇形的弧长是2πcm ,则此扇形的圆心角等于____度,扇形的面积是______cm²。
北师大版数学九年级下册《9 弧长及扇形的面积》教学设计
北师大版数学九年级下册《9 弧长及扇形的面积》教学设计一. 教材分析北师大版数学九年级下册第9节《弧长及扇形的面积》是本册内容的重要组成部分,主要介绍了弧长和扇形面积的计算方法。
本节内容是在学生掌握了圆的性质、扇形的定义等知识的基础上进行学习的,为后续学习圆锥、圆柱等几何图形奠定了基础。
教材从实际问题出发,引导学生探究弧长和扇形面积的计算方法,通过数学活动使学生体会数学与生活的紧密联系,提高学生运用数学解决实际问题的能力。
同时,本节内容涉及公式推导、几何画图等,有助于培养学生的逻辑思维能力和空间想象能力。
二. 学情分析九年级的学生已经掌握了基本的圆的性质、扇形的定义等知识,具备了一定的数学思维能力。
但部分学生在计算过程中容易出错,对公式的理解和运用不够熟练。
因此,在教学过程中,教师需要关注学生的学习情况,及时进行指导和纠正。
三. 教学目标1.理解弧长和扇形面积的计算方法,掌握相关公式。
2.能够运用弧长和扇形面积公式解决实际问题。
3.提高学生的逻辑思维能力和空间想象能力。
4.培养学生的团队合作意识和解决问题的能力。
四. 教学重难点1.重点:弧长和扇形面积的计算方法,相关公式的推导和运用。
2.难点:对公式的理解和运用,解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入弧长和扇形面积的概念,激发学生的学习兴趣。
2.启发式教学法:引导学生参与公式的推导过程,提高学生的逻辑思维能力。
3.案例教学法:分析实际问题,培养学生运用数学知识解决实际问题的能力。
4.小组合作学习:鼓励学生相互讨论、交流,提高学生的团队合作意识。
六. 教学准备1.教学课件:制作课件,展示弧长和扇形面积的计算方法及相关例题。
2.练习题:准备相关练习题,巩固所学知识。
3.几何画图工具:如圆规、直尺等,用于演示和讲解。
七. 教学过程1.导入(5分钟)教师通过生活实例引入弧长和扇形面积的概念,引导学生思考如何计算弧长和扇形面积。
2.呈现(10分钟)教师展示课件,讲解弧长和扇形面积的计算方法,引导学生掌握相关公式。
北师大版九年级数学《弧长及扇形的面积》教学设计
教学内容:3.9弧长及扇形的面积教学目标(包括知识与技能、过程与方法 、情感态度与价值观)1.知识与能力:(1)经历探索弧长计算公式和扇形面积计算公式的过程;(2)了解弧长计算公式和扇形面积计算公式,并运用公式解决问题。
2. 过程与方法:经历探索弧长计算公式和扇形面积计算公式的过程,培养学生的探索能力。
3. 情感态度与价值观:通过用弧长和扇形面积公式解决实际问题,让学生体验数学与人类生活的密切联系,激发学生学习数学的兴趣,提高他们的学习积极性,同时提高大家的运用能力。
教学资源1.教具准备:课前导学案。
2.采用多媒体课件辅助教学。
教学整体设计1.突出重点:探索弧长和扇形面积计算公式。
2.突破难点:运用弧长和扇形面积计算公式解决问题。
3.教学方法与教学手段:(1)、课堂组织策略:创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中,理解勾股定理的应用。
(2)、学生学习策略:明确学习目标,了解所需掌握的知识,在教师的组织、引导、点拨下主动地从事观察、实验、猜测、验证与交流等数学活动,从而真正有效地理解和掌握知识。
(3)、辅助策略:借助实验,使学生直观形象地观察、实验、动手操作。
教 学 过 程二次备课课前准备 学生活动教师活动1.摆放好课本、练习本、学习用具;2.完成本节课的导学案。
检查:同桌相互检查课前准备。
目标解析抄在课本指定位置并体会:教师解读:1.探索弧长和扇形面积计算公式。
(重点)2.运用弧长和扇形面积计算公式解决问题。
(难点) 知识回顾(5)结合下图回答以下四个问题。
1.已知⊙O 的半径为R ,⊙O 的周长是多少?⊙O 的面积是多少?2.什么是弧?3.什么是圆心角?4.什么是扇形?1.C=2πR ,S ⊙O =πR 22.圆上两点之间的部分。
如3.顶点在圆心,两边和圆相交所组成的角叫做圆心角。
如图中的∠AOB 。
初中数学《弧长和扇形面积教案》教案基于学科核心素养的教学设计及教学反思
过程与方法
思考、探究弧长和扇形面积的计算公式,培养学生的数学应用意识,分析问题和解决问题的能力。
情感、态度与价值观
体验数学学习活动的思考和探索过程,感受数学学习中数形结合的思想,提高解决实际问题的能力。
教学重点与难点
重点会计算弧长和扇形的面积
(4)n°圆心角所对的弧长是多少?(n°的圆心角所对的弧长是1°的圆心角所对的弧长的n倍,/)
由此可得弧长公式:/
3、先独立完成计算,再逐一讲解。
(二)扇形面积公式
1、认识扇形及其定义,并学会判断什么图形是扇形?
2、自主学习,合作探究
(1)如果圆的半径为R,则圆的面积是多少?(πR2)
(2)360o圆心角所对应的扇形面积为多少?(πR2)
2、自主学习,合作探究
/
得出弧长公式:/
3、精讲例题
例1一段弧的半径是50厘米,所对的圆心角为60o,求此弧的长度。
解:由弧长公式得/(厘米)
答:此弧的长度为/厘米。
例2制造弯形管道时,经常要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度L(单位:mm,结果取整数)
/
解:由弧长公式得/
A./B.2πC.3πD.12π
3、若扇形的面积为3π,圆心角为60°,则该扇形的半径为()。(2015)
A.3B.9C./D./
(五)小结
(六)布置作业
1、P113练习1、2在课本上完成;
2、P115第1(1)、(2)和第6题。
(一)弧长公式
1、引出“弧及弧长”
2、自主学习,合作探究,完成探究问题,得出弧长计算公式。
学生学情分析
初中数学《弧长及扇形的面积》教案
初中数学《弧长及扇形的面积》教案27.4弧长及扇形的面积教学目标(一)教学知识点1.经历探究弧长运算公式及扇形面积运算公式的过程;2.了解弧长运算公式及扇形面积运算公式,并会应用公式解决问题.(二)能力训练要求1.经历探究弧长运算公式及扇形面积运算公式的过程,培养学生的探究能力.2.了解弧长及扇形面积公式后,能用公式解决问题,训练学生的数学运用能力.(三)情感与价值观要求1.经历探究弧长及扇形面积运算公式,让学生体验教学活动充满着探究与制造,感受数学的严谨性以及数学结论的确定性.2.通过用弧长及扇形面积公式解决实际问题,让学生体验数学与人类生活的紧密联系,激发学生学习数学的爱好,提高他们的学习积极性,同时提高大伙儿的运用能力.教学重点1.经历探究弧长及扇形面积运算公式的过程.2.了解弧长及扇形面积运算公式.3.会用公式解决问题.教学难点1.探究弧长及扇形面积运算公式.2.用公式解决实际问题.教学方法学生互相交流探究法教具预备2.投影片四张第一张:(记作A)第二张:(记作B)第三张:(记作C)第四张:(记作D)教学过程Ⅰ.创设问题情境,引入新课[师]在小学我们差不多学习过有关圆的周长和面积公式,弧是圆周的一部分,扇形是圆的一部分,那么弧长与扇形面积应如何样运算?它们与圆的周长、圆的面积之间有如何样的关系呢?本节课我们将进行探究.Ⅱ.新课讲解一、复习1.圆的周长如何运算?2.圆的面积如何运算?3.圆的圆心角是多少度?[生]若圆的半径为r,则周长l=2r,面积S=r2,圆的圆心角是360.二、探究弧长的运算公式投影片(A)如图,某传送带的一个转动轮的半径为10cm.(1)转动轮转一周,传送带上的物品A被传送多少厘米?(2)转动轮转1,传送带上的物品A被传送多少厘米?(3)转动轮转n,传送带上的物品A被传送多少厘米?[师]分析:转动轮转一周,传送带上的物品应被传送一个圆的周长;因为圆的周长对应360的圆心角,因此转动轮转1,传送带上的物品A被传送圆周长的;转动轮转n,传送带上的物品A被传送转1时传送距离的n 倍.[生]解:(1)转动轮转一周,传送带上的物品A被传送210=20cm;(2)转动轮转1,传送带上的物品A被传送cm;(3)转动轮转n,传送带上的物品A被传送n =cm.[师]依照上面的运算,你能猜想出在半径为R的圆中,n的圆心角所对的弧长的运算公式吗?请大伙儿互相交流.[生]依照刚才的讨论可知,360的圆心角对应圆周长2R,那么1的圆心角对应的弧长为,n的圆心角对应的弧长应为1的圆心角对应的弧长的n 倍,即n .[师]表述得专门棒.在半径为R的圆中,n的圆心角所对的弧长(arclength)的运算公式为:l=.下面我们看弧长公式的运用.三、例题讲解投影片(B)制作弯形管道时,需要先按中心线运算“展直长度”再下料,试运算下图中管道的展直长度,即的长(结果精确到0.1mm).分析:要求管道的展直长度,即求的长,根根弧长公式l=可求得的长,其中n为圆心角,R为半径.解:R=40mm,n=110.的长=R=4076.8mm.因此,管道的展直长度约为76.8mm.四、想一想投影片(C)在一块空旷的草地上有一根柱子,柱子上拴着一条长3m的绳子,绳子的另一端拴着一只狗.(1)这只狗的最大活动区域有多大?(2)假如这只狗只能绕柱子转过n角,那么它的最大活动区域有多大?[师]请大伙儿互相交流.[生](1)如图(1),这只狗的最大活动区域是圆的面积,即9;(2)如图(2),狗的活动区域是扇形,扇形是圆的一部分,360的圆心角对应的圆面积,1的圆心角对应圆面积的,即=,n的圆心角对应的圆面积为n =.[师]请大伙儿依照刚才的例题归纳总结扇形的面积公式.[生]假如圆的半径为R,则圆的面积为R2,1的圆心角对应的扇形面积为,n的圆心角对应的扇形面积为n .因此扇形面积的运算公式为S扇形=R2,其中R为扇形的半径,n为圆心角.五、弧长与扇形面积的关系[师]我们探讨了弧长和扇形面积的公式,在半径为R的圆中,n的圆心角所对的弧长的运算公式为l=R,n的圆心角的扇形面积公式为S扇形=R2,在这两个公式中,弧长和扇形面积都和圆心角n.半径R有关系,因此l和S之间也有一定的关系,你能猜得出吗?请大伙儿互相交流.[生]∵l=R,S扇形=R2,R2=RR.S扇形=lR.六、扇形面积的应用投影片(D)扇形AOB的半径为12cm,AOB=120,求的长(结果精确到0.1cm)和扇形AOB的面积(结果精确到0.1cm2)分析:要求弧长和扇形面积,依照公式需要明白半径R和圆心角n即可,本题中这些条件差不多告诉了,因此那个问题就解决了.解:的长=1225.1cm.S扇形=122150.7cm2.因此,的长约为25.1cm,扇形AOB的面积约为150.7cm2.Ⅲ.课堂练习随堂练习Ⅳ.课时小结本节课学习了如下内容:1.探究弧长的运算公式l=R,并运用公式进行运算;2.探究扇形的面积公式S=R2,并运用公式进行运算;3.探究弧长l及扇形的面积S之间的关系,并能已知一方求另一方.Ⅴ.课后作业习题节选Ⅵ.活动与探究如图,两个同心圆被两条半径截得的的长为6 cm,的长为10 cm,又AC=12cm,求阴影部分ABDC的面积.分析:要求阴影部分的面积,需求扇形COD的面积与扇形AOB的面积之差.依照扇形面积S=lR,l已知,则需要求两个半径OC与OA,因为OC=OA+AC,AC已知,因此只要能求出OA即可.解:设OA=R,OC=R+12,O=n,依照已知条件有:得.3(R+12)=5R,R=18.OC=18+12=30.S=S扇形COD-S扇形AOB=1030-18=96 cm2.因此阴影部分的面积为96 cm2.板书设计27.4弧长及扇形的面积一、1.复习圆的周长和面积运算公式;2.探究弧长的运算公式;3.例题讲解;4.想一想;5.弧长及扇形面积的关系;6.扇形面积的应用.二、课堂练习“教书先生”可能是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当如何说也确实是让国人景仰甚或敬畏的一种社会职业。
3.7弧长及扇形的面积(北师大版)
n l弧= 360
n . C圆 =360 2πr n S圆 = 360
n =180 πr
S扇形=
n 360
πr2
=-
1 rl 2
弧长与圆的周长有关,扇形的面积与圆 n 的面积有关。因此,计算弧长是 ; C 圆 360 n 而计算扇形的面积时是 。 S 360 圆
学习指导1
如图,某传送带的一个转动轮的半 径为10cm. (1)转动轮转一周,传送带上的物品 A被传送多少厘米? 20πcm
A
(2)转动轮转1o,传送带上的物品A 被传送多少厘米? cm
18
(3)转动轮转no,传送带上的物品A 被传送多少厘米? n
18 cm
(1)已知⊙O的半径为R,1o的 圆心角所对的弧长是多少? 1o的圆心角所对的弧长是 2R
自学检测1
o
R
(1)1o的弧长是 180
。半径为10厘米
10 3
的圆中,60 的圆心角所对的弧长是
(2)如图,同心圆中,大圆半径OA、 OB交小圆于C、D,且OC∶OA=1∶2, 则弧CD与弧AB长度之比为( B )
(A)1∶1 (B)1∶2 (C)2∶1 (D)1∶4
O
C A D B
(3)制作弯形管道需要先按 中心线计算“展直长度”再 下料。试计算如图所示的管 道的展直长度,即弧AB的长 度(精确到0.1mm)
360
(2)no的圆心角所对的弧 长是多少?
R
180
R
A O B
no的圆心角所对的弧长是 n 2R nR 360 180
例 1:
已知圆弧的半径为50厘米,圆心角为60°, 求此圆弧的长度。 解:
50 n R 60 50 (cm) l = 3 180 180
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弧长及扇形的面积
教学目标
(一)教学知识点
1.经历探索弧长计算公式及扇形面积计算公式的过程;
2.了解弧长计算公式及扇形面积计算公式,并会应用公式解决问题.
(二)能力训练要求
1.经历探索弧长计算公式及扇形面积计算公式的过程,培养学生的探索能力.
2.了解弧长及扇形面积公式后,能用公式解决问题,训练学生的数学运用能力.
(三)情感与价值观要求
1.经历探索弧长及扇形面积计算公式,让学生体验教学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.
2.通过用弧长及扇形面积公式解决实际问题,让学生体验数学与人类生活的密切联系,激发学生学习数学的兴趣,提高他们的学习积极性,同时提高大家的运用能力.
教学重点
1.经历探索弧长及扇形面积计算公式的过程.
2.了解弧长及扇形面积计算公式.
3.会用公式解决问题.
教学难点
1.探索弧长及扇形面积计算公式.
2.用公式解决实际问题.
教学方法
学生互相交流探索法
教具准备
2.投影片四张
第一张:(记作§3.7A)
第二张:(记作§3.7B)
第三张:(记作§3.7C)
第四张:(记作§3.7D)
教学过程
Ⅰ.创设问题情境,引入新课
[师]在小学我们已经学习过有关圆的周长和面积公式,弧是圆周的一部分,扇形是圆的一部分,那么弧长与扇形面积应怎样计算?它们与圆的周长、圆的面积之间有怎样的关系呢?本节课我们将进行探索.
Ⅱ.新课讲解
一、复习
1.圆的周长如何计算?
2.圆的面积如何计算?
3.圆的圆心角是多少度?
[生]若圆的半径为r,则周长l=2πr,面积S=πr2,圆的圆心角是360°.
二、探索弧长的计算公式
投影片(§3.7A)
如图,某传送带的一个转动轮的半径为10cm.
(1)转动轮转一周,传送带上的物品A被传送多少厘米?
(2)转动轮转1°,传送带上的物品A被传送多少厘米?
(3)转动轮转n°,传送带上的物品A被传送多少厘米?
[师]分析:转动轮转一周,传送带上的物品应被传送一个圆的周长;因为圆的周长对应360°
的圆心角,所以转动轮转1°,传送带上的物品A被传送圆周长的
1
360
;转动轮转n°,传送带上
的物品A被传送转1°时传送距离的n倍.
[生]解:(1)转动轮转一周,传送带上的物品A被传送2π×10=20πcm;
(2)转动轮转1°,传送带上的物品A被传送20
36018
ππ
=cm;
(3)转动轮转n°,传送带上的物品A被传送n×20n 360180
ππ
==cm.
[师]根据上面的计算,你能猜想出在半径为R的圆中,n°的圆心角所对的弧长的计算公式吗?请大家互相交流.
[生]根据刚才的讨论可知,360°的圆心角对应圆周长2πR ,那么1°的圆心角对应的弧长为
2360180R R ππ=,n °的圆心角对应的弧长应为1°的圆心角对应的弧长的n 倍,即n ×180180
R n R
ππ=
. [师]表述得非常棒.
在半径为R 的圆中,n °的圆心角所对的弧长(arclength)的计算公式为:
l =
180
n R
π. 下面我们看弧长公式的运用. 三、例题讲解 投影片(§3.7B)
制作弯形管道时,需要先按中心线计算“展直长度”再下料,试计算下图中管道的展直长度,
即»
AB 的长(结果精确到0.1mm).
分析:要求管道的展直长度,即求»
AB 的长,根根弧长公式l =180
n R
π可求得»
AB 的长,其中n 为圆心角,R 为半径.
解:R =40mm ,n =110.
∴»
AB 的长=180n πR =110
180
×40π≈76.8mm . 因此,管道的展直长度约为76.8mm . 四、想一想 投影片(§3.7C)
在一块空旷的草地上有一根柱子,柱子上拴着一条长3m 的绳子,绳子的另一端拴着一只狗. (1)这只狗的最大活动区域有多大?
(2)如果这只狗只能绕柱子转过n °角,那么它的最大活动区域有多大? [师]请大家互相交流.
[生](1)如图(1),这只狗的最大活动区域是圆的面积,即9π;
(2)如图(2),狗的活动区域是扇形,扇形是圆的一部分,360°的圆心角对应的圆面积,1°的圆心角对应圆面积的
1360,即1360×9π=40π,n °的圆心角对应的圆面积为n ×40π=40
n π. [师]请大家根据刚才的例题归纳总结扇形的面积公式.
[生]如果圆的半径为R ,则圆的面积为πR 2
,1°的圆心角对应的扇形面积为2
360
R π,n °的圆心
角对应的扇形面积为n ·22360360R n R ππ=.因此扇形面积的计算公式为S 扇形=360
n
πR 2,其中R 为扇形的半径,n 为圆心角.
五、弧长与扇形面积的关系
[师]我们探讨了弧长和扇形面积的公式,在半径为R 的圆中,n °的圆心角所对的弧长的计算公式为l =
180
n
πR ,n °的圆心角的扇形面积公式为S 扇形
=
360
n
πR 2,在这两个公式中,弧长和扇形面积都和圆心角n .半径R 有关系,因此l 和S 之间也有一定的关系,你能猜得出吗?请大家互相交流.
[生]∵l =
180n πR ,S 扇形=360n πR 2, ∴360n πR 2=12R ·180n πR .∴S 扇形=12
lR . 六、扇形面积的应用 投影片(§3.7D)
扇形AOB 的半径为12cm ,∠AOB =120°,求»
AB 的长(结果精确到0.1cm)和扇形AOB 的面积(结果精确到0.1cm 2
)
分析:要求弧长和扇形面积,根据公式需要知道半径R 和圆心角n 即可,本题中这些条件已经告诉了,因此这个问题就解决了.
解:»
AB 的长=120
180
π×12≈25.1cm . S 扇形=
120
360
π×122≈150.7cm 2.
因此,»
AB 的长约为25.1cm ,扇形AOB 的面积约为150.7cm 2
. Ⅲ.课堂练习 随堂练习 Ⅳ.课时小结
本节课学习了如下内容:
1.探索弧长的计算公式l
=
180n
πR ,并运用公式进行计算; 2.探索扇形的面积公式S =360
n
πR 2,并运用公式进行计算;
3.探索弧长l 及扇形的面积S 之间的关系,并能已知一方求另一方. Ⅴ.课后作业 习题3.10 Ⅵ.活动与探究
如图,两个同心圆被两条半径截得的»
AB 的长为6π cm ,»CD 的长为10π cm ,又AC =12cm ,求阴影部分ABDC 的面积.
分析:要求阴影部分的面积,需求扇形COD 的面积与扇形AOB 的面积之差.根据扇形面积S =
1
2
lR ,l 已知,则需要求两个半径OC 与OA ,因为OC =OA +AC ,AC 已知,所以只要能求出OA 即可. 解:设OA =R ,OC =R +12,∠O =n °,根据已知条件有:
618010(12)180n R n R ⎧π=π⎪⎪⎨
⎪π=π+⎪⎩
①
②
①②得3512
R R =+. ∴3(R +12)=5R ,∴R =18. ∴OC =18+12=30. ∴S =S 扇形COD -S 扇形AOB =
12×10π×30-12
×6π×18=96π cm 2
.
所以阴影部分的面积为96π cm2.
板书设计
§3.7 弧长及扇形的面积一、1.复习圆的周长和面积计算公式;
2.探索弧长的计算公式;
3.例题讲解;
4.想一想;
5.弧长及扇形面积的关系;
6.扇形面积的应用.
二、课堂练习
三、课时小结
四、课后作业。