立体几何-高考文科数学强化训练专题
2020高三数学立体几何专项训练文科
2020届高三数学立体几何专题(文科)吴丽康2019-111、如图,四棱锥P-ABCD中,底面ABCD为矩形,P A⊥平面ABCD,E为PD的点、(Ⅰ)证明:PB // 平面AEC;3,(Ⅱ)设AP=1,AD=3,三棱锥P-ABD的体积V=4求A点到平面PBD的距离、2、如图,四棱锥P-ABCD中,AB∥CD,AB=2CD,E为PB的中点.(1)求证:CE∥平面P AD;(2)在线段AB上就是否存在一点F,使得平面P AD∥平面CEF?若存在,证明您的结论,若不存在,请说明理由.3如图,在四棱锥P -ABCD 中,平面P AC ⊥平面ABCD ,且P A ⊥AC ,P A =AD =2,四边形ABCD 满足BC ∥AD ,AB ⊥AD ,AB =BC =1、点E ,F 分别为侧棱PB ,PC 上的点, 且PE PB =PF PC=λ(λ≠0). (1)求证:EF ∥平面P AD ;(2)当λ=12时,求点D 到平面AFB 的距离.4、如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 就是正方形.(1)证明:平面A 1BD ∥平面CD 1B 1;(2)若平面ABCD ∩平面B 1D 1C =直线l ,证明:B 1D 1∥l 、5、、如图,四边形ABCD就是平行四边形,点P就是平面ABCD外一点,M就是PC的中点,在DM上取一点G,过G与AP作平面交平面BDM于GH、求证:AP∥GH、6、如图,在四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E就是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE、7、(2018北京通州三模,18)如图,在四棱锥P-ABCD中,平面PAB⊥平面ABCD,四边形ABCD 为正方形,△PAB为等边三角形,E就是PB中点,平面AED与棱PC交于点F、(1)求证:AD∥EF; (2)求证:PB⊥平面AEFD;(3)记四棱锥P-AEFD的体积为V1,四棱锥P-ABCD的体积为V2,直接写出的值、8、、、如图,在四棱锥P-ABCD中,底面ABCD就是∠DAB=60°且边长为a的菱形,侧面P AD为正三角形,其所在平面垂直于底面ABCD,若G为AD的中点.(1)求证:BG⊥平面P AD;(2)求证:AD⊥PB;(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD?并证明您的结论.9、(2016·高考北京卷)如图,在四棱锥P-ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC、(1)求证:DC⊥平面P AC;(2)求证:平面P AB⊥平面P AC;(3)设点E为AB的中点.在棱PB上就是否存在点F,使得P A∥平面CEF?说明理由.10、、如图,在四棱锥P-ABCD中,底面ABCD就是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD交于点F、(1)求证:AB∥EF;(2)若AF⊥EF,求证:平面P AD⊥平面ABCD、11、、如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,P A =AB =BC =3,AD =CD =1,∠ADC =120°,点M 就是AC 与BD 的交点,点N 在线段PB 上,且PN =14PB 、 (1)证明:MN ∥平面PDC ;(2)求直线MN 与平面P AC 所成角的正弦值.12、、(2016·高考四川卷)如图,在四棱锥PABCD 中,P A ⊥CD ,AD ∥BC ,∠ADC =∠P AB =90°,BC =CD =12AD. (1)在平面P AD 内找一点M ,使得直线CM ∥平面P AB ,并说明理由;(2)证明:平面P AB ⊥平面PBD.13.(2016·高考江苏卷)如图,在直三棱柱ABC A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且B 1D ⊥A 1F ,A 1C 1⊥A 1B 1、求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F 、14、【2014,19】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11、(1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB 求三棱柱111C B A ABC -的高、15、(2017天津,文17)如图,在四棱锥P-ABCD中,AD⊥平面PDC,AD∥ BC, PD⊥PB,AD=1,BC=3,CD=4,PD=2、(1)求异面直线AP与BC所成角的余弦值;(2)求证:PD⊥平面PBC;(3)求直线AB与平面PBC所成角的正弦值、16、(2016·高考浙江卷)如图,在三棱台ABC DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3、(1)求证:BF⊥平面ACFD;(2)求直线BD与平面ACFD所成角的余弦值.17、、(2018·全国Ⅲ)如图,矩形ABCD所在平面与半圆弧CD所在平面垂直,M就是CD上异于C,D的点.(1)证明:平面AMD⊥平面BMC、(2)在线段AM上就是否存在点P,使得MC∥平面PBD?说明理由.立体几何中的翻折问题18、、、如图(1),在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =12AD =a , E 就是AD 的中点,O 就是AC 与BE 的交点.将△ABE 沿BE 折起到图(2)中△A 1BE 的位置,得到四棱锥A 1BCDE 、(1)证明:CD ⊥平面A 1OC ;(2)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1BCDE 的体积为362,求a 的值.19、.如图1,在直角梯形ABCD 中,∠ADC =90°,AB ∥CD ,AD =CD =12AB =2, E 为AC 的中点,将△ACD 沿AC 折起,使折起后的平面ACD 与平面ABC 垂直, 如图2、在图2所示的几何体D -ABC 中:(1)求证:BC ⊥平面ACD ;(2)点F 在棱CD 上,且满足AD ∥平面BEF ,求几何体F -BCE 的体积.20.如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8、点E,F分别在A1B1,D1C1上,过点E、F的平面α与此长方体的面相交,交线围成一个正方形EFGH、(1)求证:A1E=D1F;(2)判断A1D与平面α的关系.2020届高三数学立体几何专题(文科)1解析:(Ⅰ)设AC的中点为O, 连接EO、在三角形PBD中,中位线EO//PB,且EO 在平面AEC 上,所以PB //平面AEC 、(Ⅱ)∵AP =1,3AD =,-34P ABD V =, -11=32P ABD V PA AB AD ∴⋅⋅⋅33==64AB ,∴32AB =, 作AH ⊥PB 角PB 于H ,由题意可知BC ⊥平面P AB ,∴BC ⊥AH ,故AH ⊥平面PBC .又31313PA AB AH PB ⋅==,故A 点到平面PBC 的距离31313、 2、(1)证明:如图所示,取P A 的中点H ,连接EH ,DH ,因为E 为PB 的中点, 所以EH ∥AB ,EH =12AB , 又AB ∥CD ,CD =12AB. 所以EH ∥CD ,EH =CD , 因此四边形DCEH 就是平行四边形, 所以CE ∥DH ,又DH ⊂平面P AD ,CE ⊄平面P AD , 所以CE ∥平面P AD.(2)如图所示,取AB 的中点F ,连接CF ,EF , 所以AF =12AB , 又CD =12AB ,所以AF =CD ,又AF ∥CD ,所以四边形AFCD 为平行四边形,所以CF ∥AD , 又CF ⊄平面P AD ,所以CF ∥平面P AD ,由(1)可知CE ∥平面P AD , 又CE ∩CF =C ,故平面CEF ∥平面P AD ,故存在AB 的中点F 满足要求.3、(1)证明 ∵PE PB =PFPC =λ(λ≠0),∴EF ∥BC 、∵BC ∥AD ,∴EF ∥AD 、又EF ⊄平面P AD ,AD ⊂平面P AD ,∴EF ∥平面P AD 、(2)解 ∵λ=12,∴F 就是PC 的中点, 在Rt △P AC 中,P A =2,AC =2,∴PC =P A 2+AC 2=6,∴PF =12PC =62、∵平面P AC ⊥平面ABCD ,且平面P AC ∩平面ABCD =AC , P A ⊥AC ,P A ⊂平面P AC ,∴P A ⊥平面ABCD ,∴P A ⊥BC 、又AB ⊥AD ,BC ∥AD ,∴BC ⊥AB ,又P A ∩AB =A ,P A ,AB ⊂平面P AB ,∴BC ⊥平面P AB , ∴BC ⊥PB ,∴在Rt △PBC 中,BF =12PC =62、 连接BD ,DF ,设点D 到平面AFB 的距离为d ,在等腰三角形BAF 中,BF =AF =62,AB =1, ∴S △ABF =54,又S △ABD =1,点F 到平面ABD 的距离为1, ∴由V F -ABD =V D -AFB ,得13×1×1=13×d ×54,解得d =455,即点D 到平面AFB 的距离为455、 4、证明 (1)由题设知BB 1∥DD 1且BB 1=DD 1,所以四边形BB 1D 1D 就是平行四边形,所以BD ∥B 1D 1、又BD ⊄平面CD 1B 1,B 1D 1⊂平面CD 1B 1,所以BD ∥平面CD 1B 1、因为A 1D 1∥B 1C 1∥BC 且A 1D 1=B 1C 1=BC ,所以四边形A 1BCD 1就是平行四边形,所以A 1B ∥D 1C 、又A 1B ⊄平面CD 1B 1,D 1C ⊂平面CD 1B 1, 所以A 1B ∥平面CD 1B 1、又因为BD ∩A 1B =B ,BD ,A 1B ⊂平面A 1BD , 所以平面A 1BD ∥平面CD 1B 1、(2)由(1)知平面A 1BD ∥平面CD 1B 1,又平面ABCD ∩平面B 1D 1C =直线l ,平面ABCD ∩平面A 1BD =直线BD ,所以直线l ∥直线BD ,在四棱柱ABCD -A 1B 1C 1D 1中,四边形BDD 1B 1为平行四边形,所以B1D1∥BD,所以B1D1∥l、5、连接AC交BD于点O,连接MO,因为PM=MC,AO=OC,所以P A∥MO, 因为P A⊄平面MBD,MO⊂平面MBD,所以P A∥平面MBD.因为平面P AHG∩平面MBD=GH,所以AP∥GH、6、[证明] (1)在四棱锥P-ABCD中,因为P A⊥底面ABCD, CD⊂平面ABCD,所以P A⊥CD,因为AC⊥CD,且P A∩AC=A,所以CD⊥平面P AC,而AE⊂平面P AC,所以CD⊥AE、(2)由P A=AB=BC,∠ABC=60°,可得AC=P A、因为E就是PC的中点,所以AE⊥PC、由(1)知AE⊥CD,且PC∩CD=C,所以AE⊥平面PCD.而PD⊂平面PCD,所以AE⊥PD.因为P A⊥底面ABCD,所以P A⊥AB.又因为AB⊥AD且P A∩AD=A,所以AB⊥平面P AD,而PD⊂平面P AD,所以AB⊥PD.又因为AB∩AE=A,所以PD⊥平面ABE、7、(1)证明因为ABCD为正方形,所以AD∥BC、因为AD⊄平面PBC,BC⊂平面PBC,所以AD∥平面PBC、因为AD⊂平面AEFD,平面AEFD∩平面PBC=EF, 所以AD∥EF、(2)证明因为四边形ABCD就是正方形,所以AD⊥AB、因为平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AD⊂平面ABCD, 所以AD⊥平面PAB、因为PB⊂平面PAB,所以AD⊥PB、因为△PAB为等边三角形,E就是PB中点,所以PB⊥AE、因为AE⊂平面AEFD,AD⊂平面AEFD,AE∩AD=A,所以PB⊥平面AEFD、(3)解由(1)知,V1=V C-AEFD,V E-ABC=V F-ADC=V C-AEFD=V1,∴V BC-AEFD=V1,则V P-ABCD=V1+V1=V1, ∴、8、[解] (1)证明:在菱形ABCD中,∠DAB=60°,G为AD的中点,所以BG⊥AD.又平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,所以BG⊥平面P AD.(2)证明:如图,连接PG、因为△P AD为正三角形,G为AD的中点,所以PG⊥AD.由(1)知,BG⊥AD,又PG∩BG=G,所以AD⊥平面PGB.因为PB⊂平面PGB,所以AD⊥PB.(3)当F为PC的中点时,满足平面DEF⊥平面ABCD.证明如下:取PC的中点F,连接DE、EF、DF、在△PBC中,FE∥PB,在菱形ABCD中,GB∥DE、而FE⊂平面DEF,DE⊂平面DEF,EF∩DE=E,PB⊂平面PGB,GB⊂平面PGB, PB∩GB=B,所以平面DEF∥平面PGB.因为BG⊥平面P AD,PG⊂平面P AD,所以BG⊥PG、又因为PG⊥AD,AD∩BG=G,所以PG⊥平面ABCD.又PG⊂平面PGB,所以平面PGB⊥平面ABCD,所以平面DEF⊥平面ABCD.9、【解】(1)证明:因为PC⊥平面ABCD,所以PC⊥DC、又因为DC ⊥AC ,且PC ∩AC =C ,所以DC ⊥平面P AC 、(2)证明:因为AB ∥DC ,DC ⊥AC ,所以AB ⊥AC 、因为PC ⊥平面ABCD ,所以PC ⊥AB.又因为PC ∩AC =C ,所以AB ⊥平面P AC 、又AB ⊂平面P AB ,所以平面P AB ⊥平面P AC 、(3)棱PB 上存在点F ,使得P A ∥平面CEF 、理由如下:如图,取PB 中点F ,连接EF ,CE ,CF 、又因为E 为AB 的中点,所以EF ∥P A 、又因为P A ⊄平面CEF ,且EF ⊂平面CEF ,所以P A ∥平面CEF 、10、证明 (1)因为四边形ABCD 就是矩形,所以AB ∥CD 、 又AB ⊄平面PDC ,CD ⊂平面PDC ,所以AB ∥平面PDC ,又因为AB ⊂平面ABE ,平面ABE ∩平面PDC =EF ,所以AB ∥EF 、(2)因为四边形ABCD 就是矩形,所以AB ⊥AD 、因为AF ⊥EF ,(1)中已证AB ∥EF ,所以AB ⊥AF 、又AB ⊥AD ,由点E 在棱PC 上(异于点C ),所以点F 异于点D ,所以AF ∩AD =A ,AF ,AD ⊂平面P AD ,所以AB ⊥平面P AD ,又AB ⊂平面ABCD ,所以平面P AD ⊥平面ABCD 、11、(1)证明 因为AB =BC ,AD =CD , 所以BD 垂直平分线段AC 、又∠ADC =120°,所以MD =12AD =12,AM =32、 所以AC =3、 又AB =BC =3,所以△ABC 就是等边三角形,所以BM =32,所以BM MD =3,又因为PN =14PB ,所以BM MD =BN NP=3,所以MN ∥PD 、 又MN ⊄平面PDC ,PD ⊂平面PDC ,所以MN ∥平面PDC 、(2)解 因为P A ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥P A ,又BD ⊥AC ,P A ∩AC =A ,P A ,AC ⊂平面P AC ,所以BD ⊥平面P AC 、由(1)知MN ∥PD ,所以直线MN 与平面P AC 所成的角即直线PD 与平面P AC 所成的角, 故∠DPM 即为所求的角.在Rt △P AD 中,PD =2,所以sin ∠DPM =DM DP =122=14, 所以直线MN 与平面P AC 所成角的正弦值为14、 12、【解】 (1)取棱AD 的中点M (M ∈平面P AD ),点M 即为所求的一个点.理由如下:因为AD ∥BC ,BC =12AD ,所以BC ∥AM ,且BC =AM , 所以四边形AMCB 就是平行四边形,从而CM ∥AB.又AB ⊂平面P AB ,CM ⊄平面P AB ,所以CM ∥平面P AB.(说明:取棱PD 的中点N ,则所找的点可以就是直线MN 上任意一点)(2)证明:由已知,P A ⊥AB ,P A ⊥CD ,因为AD ∥BC ,BC =12AD ,所以直线AB 与CD 相交. 所以P A ⊥平面ABCD ,从而P A ⊥BD.连接BM ,因为AD ∥BC ,BC =12AD ,所以BC ∥MD ,且BC =MD. 所以四边形BCDM 就是平行四边形.所以BM =CD =12AD ,所以BD ⊥AB. 又AB ∩AP =A ,所以BD ⊥平面P AB.又BD ⊂平面PBD ,所以平面P AB ⊥平面PBD.13、[证明] (1)在直三棱柱ABC A 1B 1C 1中,A 1C 1∥AC 、在△ABC 中,因为D ,E 分别为AB ,BC 的中点,所以DE ∥AC ,于就是DE ∥A 1C 1、又DE ⊄平面A 1C 1F ,A 1C 1⊂平面A 1C 1F ,所以直线DE ∥平面A 1C 1F 、(2)在直三棱柱ABC A 1B 1C 1中,A 1A ⊥平面A 1B 1C 1、因为A 1C 1⊂平面A 1B 1C 1,所以A 1A ⊥A 1C 1、又A 1C 1⊥A 1B 1,A 1A ⊂平面ABB 1A 1,A 1B 1⊂平面ABB 1A 1,A 1A ∩A 1B 1=A 1,所以A 1C 1⊥平面ABB 1A 1、因为B 1D ⊂平面ABB 1A 1,所以A 1C 1⊥B 1D.又B 1D ⊥A 1F ,A 1C 1⊂平面A 1C 1F ,A 1F ⊂平面A 1C 1F ,A 1C 1∩A 1F =A 1, 所以B 1D ⊥平面A 1C 1F 、因为直线B 1D ⊂平面B 1DE ,所以平面B 1DE ⊥平面A 1C 1F14、证明:(Ⅰ)连接 BC 1,则O 为B 1C 与BC 1的交点,∵AO ⊥平面BB 1C 1C 、 ∴AO ⊥B 1C , …2分因为侧面BB 1C 1C 为菱形,∴BC 1⊥B 1C ,…4分∴BC 1⊥平面ABC 1,∵AB ⊂平面ABC 1,故B 1C ⊥AB 、 …6分(Ⅱ)作OD ⊥BC ,垂足为D ,连结AD ,∵AO ⊥BC ,∴BC ⊥平面AOD ,又BC ⊂平面ABC ,∴平面ABC ⊥平面AOD ,交线为AD ,作OH ⊥AD ,垂足为H ,∴OH ⊥平面ABC 、 …9分∵∠CBB 1=60°,所以ΔCBB 1为等边三角形,又BC =1,可得OD =34, 由于AC ⊥AB 1,∴11122OA B C ==,∴2274AD OD OA =+=, 由 OH·AD=OD·OA ,可得OH=2114,又O 为B 1C 的中点,所以点B 1到平面ABC 的距离为217, 所以三棱柱ABC-A 1B 1C 1的高高为217。
届高三数学立体几何专项训练(文科)
高三数学立体几何专题(文科)(一)吴丽康 2019-111.如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的点. (Ⅰ)证明:PB //平面AEC ;(Ⅱ)设AP=1,AD=,三棱锥P-ABD 的体积V=,求A 点到平面PBD 的距离.2. 如图,四棱锥P -ABCD 中,AB ∥CD ,AB =2CD ,E 为PB 的中点.(1)求证:CE ∥平面PAD ;(2)在线段AB 上是否存在一点F ,使得平面PAD ∥平面CEF ?若存在,证明你的结论,若不存在,请说明理由.3如图,在四棱锥P -ABCD 中,平面PAC ⊥平面ABCD ,且PA ⊥AC ,PA =AD =2,四边形ABCD 满足BC ∥AD ,AB ⊥AD ,AB =BC =1.点E ,F 分别为侧棱PB ,PC 上的点, 且PE PB =PF PC=λ(λ≠0). (1)求证:EF ∥平面PAD ;(2)当λ=12时,求点D 到平面AFB 的距离. 4.如图,四棱柱ABCD -A1B1C1D1的底面ABCD 是正方形.(1)证明:平面A1BD ∥平面CD1B1;(2)若平面ABCD ∩平面B1D1C =直线l ,证明:B1D1∥l.5..如图,四边形ABCD 是平行四边形,点P 是平面ABCD 外一点, M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH.求证:AP∥GH.6.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.7.(2018北京通州三模,18)如图,在四棱锥P-ABCD中,平面PAB⊥平面ABCD,四边形ABCD为正方形,△PAB为等边三角形,E是PB中点,平面AED与棱PC 交于点F.(1)求证:AD∥EF; (2)求证:PB⊥平面AEFD;(3)记四棱锥P-AEFD的体积为V1,四棱锥P-ABCD的体积为V2,直接写出的值.8...如图,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD,若G为AD的中点.(1)求证:BG⊥平面PAD;(2)求证:AD⊥PB;(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD?并证明你的结论.9.(2016·高考北京卷)如图,在四棱锥P-ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(1)求证:DC⊥平面PAC;(2)求证:平面PAB⊥平面PAC;(3)设点E为AB的中点.在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.10..如图,在四棱锥P-ABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD交于点F.(1)求证:AB∥EF;(2)若AF⊥EF,求证:平面PAD⊥平面ABCD.11..如图,在四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=BC=3,AD=CD=1,∠ADC=120°,点M是AC与BD的交点,点N在线段PB上,且PN=1PB.4(1)证明:MN∥平面PDC;(2)求直线MN与平面PAC所成角的正弦值.12..(2016·高考四川卷)如图,在四棱锥P ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=1AD.2(1)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;(2)证明:平面PAB⊥平面PBD.13.(2016·高考江苏卷)如图,在直三棱柱ABC A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.14.【2014,19】如图,三棱柱中,侧面为菱形,的中点为,且平面.(1)证明:(2)若,求三棱柱的高.15.(2017天津,文17)如图,在四棱锥P-ABCD中,AD⊥平面PDC,AD∥ BC, PD⊥PB,AD=1,BC=3,CD=4,PD=2.(1)求异面直线AP 与BC 所成角的余弦值;(2)求证:PD ⊥平面PBC;(3)求直线AB 与平面PBC 所成角的正弦值.16.(2016·高考浙江卷)如图,在三棱台ABC DEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE =EF =FC =1,BC =2,AC =3.(1)求证:BF ⊥平面ACFD ;(2)求直线BD 与平面ACFD 所成角的余弦值.17..(2018·全国Ⅲ)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直, M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC.(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.立体几何中的翻折问题18...如图(1),在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图(2)中△A1BE 的位置,得到四棱锥A1-BCDE.(1)证明:CD ⊥平面A1OC ;(2)当平面A1BE ⊥平面BCDE 时,四棱锥A1-BCDE 的体积为362,求a 的值.19..如图1,在直角梯形ABCD 中,∠ADC =90°,AB ∥CD ,AD =CD =12AB =2, E 为AC 的中点,将△ACD 沿AC 折起,使折起后的平面ACD 与平面ABC 垂直,如图2.在图2所示的几何体D -ABC 中:(1)求证:BC ⊥平面ACD ;(2)点F 在棱CD 上,且满足AD ∥平面BEF ,求几何体F -BCE 的体积.20.如图,长方体ABCD-A1B1C1D1中,AB =16,BC =10,AA1=8.点E ,F 分别在A1B1,D1C1上,过点E 、F 的平面α与此长方体的面相交,交线围成一个正方形EFGH.(1)求证:A1E =D1F ;(2)判断A1D 与平面α的关系.高三数学立体几何专题(文科)1解析:(Ⅰ)设AC 的中点为O ,连接EO. 在三角形PBD 中,中位线EO//PB ,且EO 在平面AEC 上,所以PB//平面AEC.(Ⅱ)∵AP=1,,,,∴,作AH ⊥PB 角PB 于H , 由题意可知BC ⊥平面PAB ,∴BC ⊥AH ,故AH ⊥平面PBC . 又,故A 点到平面PBC 的距离.2.(1)证明:如图所示,取PA 的中点H ,连接EH ,DH ,因为E 为PB 的中点, 所以EH ∥AB ,EH =12AB , 又AB ∥CD ,CD =12AB .所以EH ∥CD ,EH =CD , 因此四边形DCEH 是平行四边形, 所以CE ∥DH ,又DH ⊂平面PAD ,CE ⊄平面PAD , 所以CE ∥平面PAD .(2)如图所示,取AB 的中点F ,连接CF ,EF , 所以AF =12AB ,又CD =12AB ,所以AF =CD ,又AF ∥CD ,所以四边形AFCD 为平行四边形,所以CF ∥AD , 又CF ⊄平面PAD ,所以CF ∥平面PAD ,由(1)可知CE ∥平面PAD , 又CE ∩CF =C ,故平面CEF ∥平面PAD ,故存在AB 的中点F 满足要求.3.(1)证明 ∵PE PB =PF PC =λ(λ≠0),∴EF ∥BC.∵BC ∥AD ,∴EF ∥AD. 又EF ⊄平面PAD ,AD ⊂平面PAD ,∴EF ∥平面PAD.(2)解 ∵λ=12,∴F 是PC 的中点, 在Rt △PAC 中,PA =2,AC =2,∴PC =PA2+AC2=6,∴PF =12PC =62.∵平面PAC ⊥平面ABCD ,且平面PAC ∩平面ABCD =AC , PA ⊥AC ,PA ⊂平面PAC ,∴PA ⊥平面ABCD ,∴PA ⊥BC.又AB ⊥AD ,BC ∥AD ,∴BC ⊥AB ,又PA ∩AB =A ,PA ,AB ⊂平面PAB ,∴BC ⊥平面PAB ,∴BC ⊥PB ,∴在Rt △PBC 中,BF =12PC =62. 连接BD ,DF ,设点D 到平面AFB 的距离为d ,在等腰三角形BAF 中,BF =AF =62,AB =1, ∴S △ABF =54,又S △ABD =1,点F 到平面ABD 的距离为1, ∴由VF -ABD =VD -AFB ,得13×1×1=13×d ×54,解得d =455,即点D 到平面AFB 的距离为455. 4.证明 (1)由题设知BB1∥DD1且BB1=DD1,所以四边形BB1D1D是平行四边形,所以BD∥B1D1.又BD⊄平面CD1B1,B1D1⊂平面CD1B1,所以BD∥平面CD1B1.因为A1D1∥B1C1∥BC且A1D1=B1C1=BC,所以四边形A1BCD1是平行四边形,所以A1B∥D1C.又A1B⊄平面CD1B1,D1C⊂平面CD1B1,所以A1B∥平面CD1B1.又因为BD∩A1B=B,BD,A1B⊂平面A1BD,所以平面A1BD∥平面CD1B1.(2)由(1)知平面A1BD∥平面CD1B1,又平面ABCD∩平面B1D1C=直线l,平面ABCD∩平面A1BD=直线BD,所以直线l∥直线BD,在四棱柱ABCD-A1B1C1D1中,四边形BDD1B1为平行四边形,所以B1D1∥BD,所以B1D1∥l.5.连接AC交BD于点O,连接MO,因为PM=MC,AO=OC,所以PA∥MO,因为PA⊄平面MBD,MO⊂平面MBD,所以PA∥平面MBD.因为平面PAHG∩平面MBD=GH,所以AP∥GH.6.[证明] (1)在四棱锥P-ABCD中,因为PA⊥底面ABCD, CD⊂平面ABCD,所以PA⊥CD,因为AC⊥CD,且PA∩AC=A,所以CD⊥平面PAC,而AE⊂平面PAC,所以CD⊥AE.(2)由PA=AB=BC,∠ABC=60°,可得AC=PA.因为E是PC的中点,所以AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,所以AE⊥平面PCD.而PD⊂平面PCD,所以AE⊥PD.因为PA⊥底面ABCD,所以PA⊥AB.又因为AB⊥AD且PA∩AD=A,所以AB⊥平面PAD,而PD⊂平面PAD,所以AB⊥PD.又因为AB∩AE=A,所以PD⊥平面ABE.7.(1)证明因为ABCD为正方形,所以AD∥BC.因为AD⊄平面PBC,BC⊂平面PBC,所以AD∥平面PBC.因为AD⊂平面AEFD,平面AEFD∩平面PBC=EF,所以AD∥EF.(2)证明因为四边形ABCD是正方形,所以AD⊥AB.因为平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AD⊂平面ABCD,所以AD⊥平面PAB.因为PB⊂平面PAB,所以AD⊥PB.因为△PAB为等边三角形,E是PB中点,所以PB⊥AE.因为AE⊂平面AEFD,AD⊂平面AEFD,AE∩AD=A,所以PB⊥平面AEFD.(3)解由(1)知,V1=VC-AEFD,VE-ABC=VF-ADC=VC-AEFD=V1,∴VBC-AEFD=V1,则VP-ABCD=V1+V1=V1,∴.8.[解] (1)证明:在菱形ABCD中,∠DAB=60°,G为AD的中点,所以BG⊥AD.又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以BG⊥平面PAD.(2)证明:如图,连接PG.因为△PAD为正三角形,G为AD的中点,所以PG⊥AD.由(1)知,BG⊥AD,又PG∩BG=G,所以AD⊥平面PGB.因为PB⊂平面PGB,所以AD⊥PB.(3)当F为PC的中点时,满足平面DEF⊥平面ABCD.证明如下:取PC的中点F,连接DE、EF、DF.在△PBC中,FE∥PB,在菱形ABCD中,GB∥DE.而FE⊂平面DEF,DE⊂平面DEF,EF∩DE=E,PB⊂平面PGB,GB⊂平面PGB,PB∩GB=B,所以平面DEF∥平面PGB.因为BG⊥平面PAD,PG⊂平面PAD,所以BG⊥PG.又因为PG⊥AD,AD∩BG=G,所以PG⊥平面ABCD.又PG⊂平面PGB,所以平面PGB⊥平面ABCD,所以平面DEF⊥平面ABCD.9.【解】(1)证明:因为PC⊥平面ABCD,所以PC⊥DC.又因为DC⊥AC,且PC∩AC=C,所以DC⊥平面PAC.(2)证明:因为AB∥DC,DC⊥AC,所以AB⊥AC.因为PC⊥平面ABCD,所以PC⊥AB.又因为PC∩AC=C,所以AB⊥平面PAC.又AB⊂平面PAB,所以平面PAB⊥平面PAC.(3)棱PB上存在点F,使得PA∥平面CEF.理由如下:如图,取PB中点F,连接EF,CE,CF.又因为E为AB的中点,所以EF∥PA.又因为PA⊄平面CEF,且EF⊂平面CEF,所以PA∥平面CEF.10.证明(1)因为四边形ABCD是矩形,所以AB∥CD.又AB⊄平面PDC,CD⊂平面PDC,所以AB∥平面PDC,又因为AB⊂平面ABE,平面ABE∩平面PDC=EF,所以AB∥EF.(2)因为四边形ABCD是矩形,所以AB⊥AD.因为AF⊥EF,(1)中已证AB∥EF,所以AB⊥AF.又AB ⊥AD ,由点E 在棱PC 上(异于点C),所以点F 异于点D ,所以AF ∩AD =A ,AF ,AD ⊂平面PAD ,所以AB ⊥平面PAD ,又AB ⊂平面ABCD ,所以平面PAD ⊥平面ABCD.11.(1)证明 因为AB =BC ,AD =CD ,所以BD 垂直平分线段AC.又∠ADC =120°,所以MD =12AD =12,AM =32.所以AC = 3. 又AB =BC =3,所以△ABC 是等边三角形,所以BM =32,所以BM MD =3,又因为PN =14PB ,所以BM MD =BN NP=3,所以MN ∥PD. 又MN ⊄平面PDC ,PD ⊂平面PDC ,所以MN ∥平面PDC.(2)解 因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥PA ,又BD ⊥AC ,PA ∩AC =A ,PA ,AC ⊂平面PAC ,所以BD ⊥平面PAC.由(1)知MN ∥PD ,所以直线MN 与平面PAC 所成的角即直线PD 与平面PAC 所成的角, 故∠DPM 即为所求的角.在Rt △PAD 中,PD =2,所以sin ∠DPM =DM DP =122=14,所以直线MN 与平面PAC 所成角的正弦值为14. 12.【解】 (1)取棱AD 的中点M(M ∈平面PAD),点M 即为所求的一个点.理由如下:因为AD ∥BC ,BC =12AD ,所以BC ∥AM ,且BC =AM , 所以四边形AMCB 是平行四边形,从而CM ∥AB .又AB ⊂平面PAB ,CM ⊄平面PAB ,所以CM ∥平面PAB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点)(2)证明:由已知,PA ⊥AB ,PA ⊥CD ,因为AD ∥BC ,BC =12AD ,所以直线AB 与CD 相交. 所以PA ⊥平面ABCD ,从而PA ⊥BD .连接BM ,因为AD ∥BC ,BC =12AD ,所以BC ∥MD ,且BC =MD . 所以四边形BCDM 是平行四边形.所以BM =CD =12AD ,所以BD ⊥AB . 又AB ∩AP =A ,所以BD ⊥平面PAB .又BD ⊂平面PBD ,所以平面PAB ⊥平面PBD .13.[证明] (1)在直三棱柱ABC A1B1C1中,A1C1∥AC.在△ABC 中,因为D ,E 分别为AB ,BC 的中点,所以DE ∥AC ,于是DE ∥A1C1.又DE ⊄平面A1C1F ,A1C1⊂平面A1C1F ,所以直线DE ∥平面A1C1F.(2)在直三棱柱ABC A1B1C1中,A1A ⊥平面A1B1C1.因为A1C1⊂平面A1B1C1,所以A1A ⊥A1C1.又A1C1⊥A1B1,A1A ⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.因为B1D ⊂平面ABB1A1,所以A1C1⊥B1D .又B1D ⊥A1F ,A1C1⊂平面A1C1F ,A1F ⊂平面A1C1F ,A1C1∩A1F =A1, 所以B1D ⊥平面A1C1F.因为直线B1D ⊂平面B1DE ,所以平面B1DE ⊥平面A1C1F14.证明:(Ⅰ)连接 BC1,则O 为B1C 与BC1的交点,∵AO ⊥平面BB1C1C. ∴AO ⊥B1C , …2分因为侧面BB1C1C为菱形,∴BC1⊥B1C,…4分∴BC1⊥平面ABC1,∵AB平面ABC1,故B1C⊥AB.…6分(Ⅱ)作OD⊥BC,垂足为D,连结AD,∵AO⊥BC,∴BC⊥平面AOD,又BC平面ABC,∴平面ABC⊥平面AOD,交线为AD,作OH⊥AD,垂足为H,∴OH⊥平面ABC. …9分∵∠CBB1=60°,所以ΔCBB1为等边三角形,又BC=1,可得OD=,由于AC⊥AB1,∴,∴,由OH·AD=OD·OA,可得OH=,又O为B1C的中点,所以点B1到平面ABC的距离为,所以三棱柱ABC-A1B1C1的高高为。
高二高三立体几何文科大题训练,附详细答案
侧视DCBAP图5图41、(佛山市2013届高三上学期期末)如图所示,已知圆O 的直径AB 长度为4,点D 为 线段AB 上一点,且13AD DB =,点C 为圆O 上一点,且BC =.点P 在圆O 所在平面上的正投影为 点D ,PD BD =.(1)求证:CD ⊥平面PAB ; (2)求点D 到平面PBC 的距离.2、(广州市2013届高三上学期期末)已知四棱锥P ABCD -的正视图是一个底边长为4、腰长为3的等腰三角形,图4、图5 分别是四棱锥P ABCD -的侧视图和俯视图. (1)求证:AD PC ⊥;(2)求四棱锥P ABCD -的侧面PAB 的面积.1解析:(Ⅰ)法1:连接CO ,由3AD DB =知,点D 为AO 的中点, 又∵AB 为圆O 的直径,∴AC CB ⊥,BC =知,60CAB ∠=,∴ACO ∆为等边三角形,从而CD AO ⊥.-----------------3分 ∵点P 在圆O 所在平面上的正投影为点D , ∴PD ⊥平面ABC ,又CD ⊂平面ABC , ∴PD CD ⊥,-----------------5分 由PDAO D =得,CD ⊥平面PAB .-----------------6分(注:证明CD ⊥平面PAB 时,也可以由平面PAB ⊥平面ACB 得到,酌情给分.) 法2:∵AB 为圆O 的直径,∴AC CB ⊥, ∵在Rt ABC ∆中,4AB =,∴由3AD DB =BC =得,3DB =,4AB =,BC =,∴BD BC BC AB ==,则BDC BCA ∆∆∽, ∴BCA BDC ∠=∠,即CD AO ⊥.-----------------3分 ∵点P 在圆O 所在平面上的正投影为点D , ∴PD ⊥平面ABC ,又CD ⊂平面ABC , ∴PD CD ⊥,-----------------5分 由PDAO D =得,CD ⊥平面PAB .-----------------6分法3:∵AB 为圆O 的直径,∴AC CB ⊥,在Rt ABC ∆BC =得,30ABC ∠=,∵4AB =,由3AD DB =得,3DB =,BC = 由余弦定理得,2222cos303CD DB BC DB BC =+-⋅=, ∴222CD DB BC +=,即CD AO ⊥.-----------------3分 ∵点P 在圆O 所在平面上的正投影为点D , ∴PD ⊥平面ABC ,又CD ⊂平面ABC , ∴PD CD ⊥,-----------------5分由PD AO D=得,CD⊥平面PAB.-----------------6分(Ⅱ)法1:由(Ⅰ)可知CD=3PD DB==,--------7分(注:在第(Ⅰ)问中使用方法1时,此处需要求出线段的长度,酌情给分.)∴1111133332322P BDC BDCV S PD DB DC PD-∆=⋅=⋅⋅⋅=⨯⨯=.--------10分又PB==,PC==BC==∴PBC∆为等腰三角形,则122PBCS∆=⨯=.--------12分设点D到平面PBC的距离为d,由P BDC D PBCV V--=得,13PBCS d∆⋅=,解得d=.--------14分法2:由(Ⅰ)可知CD=,3PD DB==,过点D作DE CB⊥,垂足为E,连接PE,再过点D作DF PE⊥,垂足为F.-----------------8分∵PD⊥平面ABC,又CB⊂平面ABC,∴PD CB⊥,又PD DE D=,∴CB⊥平面PDE,又DF⊂平面PDE,∴CB DF⊥,又CB PE E=,∴DF⊥平面PBC,故DF为点D到平面PBC的距离.--------10分在Rt DEB∆中,3sin302DE DB=⋅=,2PE==,在Rt PDE∆中,335PD DEDFPE⨯⋅===,即点D到平面PBC的距离为5.-------14分2(1)证明:依题意,可知点P在平面ABCD上的正射影是线段CD的中点E,连接PE,则PE⊥平面ABCD. …………… 2分FE D CBAP∵AD ⊂平面ABCD ,∴AD PE ⊥. …………… 3分 ∵AD CD ⊥,CD PE E CD ,=⊂平面PCD ,PE ⊂平面PCD , ∴AD ⊥平面PCD . …………… 5分 ∵PC ⊂平面PCD ,∴AD PC ⊥. …………… 6分 (2)解:依题意,在等腰三角形PCD 中,3PC PD ==,2DE EC ==, 在R t △PED 中,225PE PD DE =-=,…………… 7分过E 作EF AB ⊥,垂足为F ,连接PF ,∵PE ⊥平面ABCD ,AB ⊂平面ABCD ,∴AB PE ⊥. …………… 8分 ∵EF ⊂平面PEF ,PE ⊂平面PEF ,EF PE E =,∴AB ⊥平面PEF . …………… 9分 ∵PF ⊂平面PEF ,∴AB PF ⊥. …………… 10分 依题意得2EF AD ==. …………… 11分 在R t △PEF 中, 223PF PE EF =+=, …………… 12分∴△PAB 的面积为162S AB PF ==. ∴四棱锥P ABCD -的侧面PAB 的面积为6. …………… 14分3、(惠州市2013届高三上学期期末)如图所示,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别为1DD 、DB 的中点.(1)求证:EF //平面11ABC D ; (2)求证:1CF B E ⊥; (3)求三棱锥1C B FE V -的体积.3解:(1)连结1BD ,在B DD 1∆中,E 、F 分别为1D D ,DB 的中点,则∵EF 为中位线…………2分1//EF D B ∴而1D B ⊂面11ABC D ,EF ⊄面11ABC D//EF ∴面11ABC D …………4分(2)等腰直角三角形BCD 中,F 为BD 中点BD CF ⊥∴①…………5分正方体1111ABCD A B C D -ABCD 1面⊥∴DD ,ABCD 面⊂CF CF DD ⊥∴1②…………7分综合①②,且1111,,B BDD BD DD D BD DD 面⊂=⋂11B BDD CF 面⊥∴,而111B E BDD B ⊂面,E B CF 1⊥∴…………………………………………………9分(3)由(2)可知11CF BDD B ⊥平面1CF EFB ∴⊥平面 即CF 为高 ,2CF BF ==…………10分1132EF BD ==,222211(2)26B F BF BB =+=+= 222211111(22)3B E B D D E =+=+=∴22211EF B F B E += 即190EFB ∠=∴223211=⋅=∆F B EF S EF B …………12分11113B EFC C B EF B EF V V S CF --∆∴==⋅⋅=1222331=⋅⋅…………14分4、(茂名市2013届高三上学期期末)在如图所示的多面体ABCDE 中,AB ⊥平面ACD ,DE ⊥平面ACD,1AB CD ==,3AC =,AD=DE=2,G 为AD 的中点。
高考文科数学专题5 立体几何 高考文科数学 (含答案)
专题五 立体几何第一讲 空间几何体1.棱柱、棱锥 (1)棱柱的性质侧棱都相等,侧面是平行四边形;两个底面与平行于底面的截面是全等的多边形;过不相邻的两条侧棱的截面是平行四边形;直棱柱的侧棱长与高相等且侧面与对角面是矩形. (2)正棱锥的性质侧棱相等,侧面是全等的等腰三角形,斜高相等;棱锥的高、斜高和斜高在底面内的射影构成一个直角三角形;棱锥的高、侧棱和侧棱在底面内的射影也构成一个直角三角形;某侧面的斜高、侧棱及底面边长的一半也构成一个直角三角形;侧棱在底面内的射影、斜高在底面内的射影及底面边长的一半也构成一个直角三角形. 2.三视图(1)三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高; (2)三视图排列规则:俯视图放在正视图的下面,长度与正视图一样;侧视图放在正视图的右面,高度和正视图一样,宽度与俯视图一样. 3.几何体的切接问题(1)解决球的内接长方体、正方体、正四棱柱等问题的关键是把握球的直径即棱柱的体对角线长.(2)柱、锥的内切球找准切点位置,化归为平面几何 问题.4.柱体、锥体、台体和球的表面积与体积(不要求记忆) (1)表面积公式①圆柱的表面积 S =2πr (r +l ); ②圆锥的表面积S =πr (r +l );③圆台的表面积S =π(r ′2+r 2+r ′l +rl ); ④球的表面积S =4πR 2. (2)体积公式①柱体的体积V =Sh ;②锥体的体积V =13Sh ;③台体的体积V =13(S ′+SS ′+S )h ;④球的体积V =43πR 3.1. (2013·广东)某四棱台的三视图如图所示,则该四棱台的体积是( )A .4 B.143C.163D .6答案 B解析 由三视图知四棱台的直观图为由棱台的体积公式得:V =13(2×2+1×1+2×2×1×1)×2=143.2. (2013·四川)一个几何体的三视图如图所示,则该几何体的直观图可以是( )答案 D解析由三视图可知上部是一个圆台,下部是一个圆柱,选D.3. (2013·江西)如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n=( )A.8 B.9 C.10 D.11答案 A解析取CD的中点H,连接EH,HF.在四面体CDEF中,CD⊥EH,CD⊥FH,所以CD⊥平面EFH,所以AB⊥平面EFH,所以正方体的左、右两个侧面与EF平行,其余4个平面与EF相交,即n=4.又因为CE与AB在同一平面内,所以CE与正方体下底面共面,与上底面平行,与其余四个面相交,即m=4,所以m+n=4+4=8.4. (2013·新课全国Ⅱ)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为( )答案 A解析根据已知条件作出图形:四面体C1-A1DB,标出各个点的坐标如图(1)所示,可以看出正视图为正方形,如图(2)所示.故选A.5. (2013·福建)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是________.答案12π解析由三视图知,该几何体为正方体和球组成的组合体,正方体的对角线为球的直径.所以2R=23,即R=3,球的表面积为S=4πR2=12π.题型一空间几何体的三视图例1(1)(2012·广东)某几何体的三视图如图所示,它的体积为( )A.12πB.45πC.57πD.81π(2)(2012·陕西)将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的左(侧)视图为( )审题破题根据三视图先确定原几何体的直观图和形状,然后再解题.答案(1)C (2)B解析 (1)由三视图知该几何体是由圆柱、圆锥两几何体组合而成,直观图如图所示. 圆锥的底面半径为3,高为4,圆柱的底面半径为3,高为5,∴V =V 圆锥+V 圆柱=13Sh 1+Sh 2=13×π×32×4+π×32×5=57π.(2)还原正方体后,将D 1,D ,A 三点分别向正方体右侧面作垂线.D 1A 的射影为C 1B ,且为实线,B 1C 被遮挡应为虚线.反思归纳 将三视图还原成直观图是解答该类问题的关键,其解题技巧是对常见简单几何体及其组合体的三视图,特别是正方体、长方体、圆柱、圆锥、棱柱、棱锥、球等几何体的三视图分别是什么图形,数量关系有什么特点等都应该熟练掌握,会画出其直观图,然后由三视图验证.变式训练1 若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是________ cm 3.答案 18解析 由几何体的三视图可知,该几何体由两个直四棱柱构成,其直观图如图所示.上底面直四棱柱的长是3 cm ,宽是3 cm ,高是1 cm ,故其体积为9 cm 3,下底面直四棱柱的高是3 cm ,长是1 cm ,宽是3 cm ,其体积为9 cm 3.故该几何体的体积为V =18 cm 3. 题型二 空间几何体的表面积和体积例2 如图所示,已知E 、F 分别是棱长为a 的正方体ABCD —A 1B 1C 1D 1的棱A 1A 、CC 1的中点,求四棱锥C 1—B 1EDF 的体积.审题破题 本题可从两个思路解题:思路一:先求出四棱锥C 1—B 1EDF 的高及其底面积,再利用棱锥的体积公式求出其体积; 思路二:先将四棱锥C 1—B 1EDF 化为两个三棱锥B 1—C 1EF 与D —C 1EF ,再求四棱锥C 1—B 1EDF 的体积.解 方法一 连接A 1C 1,B 1D 1交于点O 1,连接B 1D ,过O 1作。
高三数学专项训练:立体几何解答题(三)(文科)
中,CA CB =,1AB AA =,160BAA Ð=。
(Ⅰ)证明:1AB A C ^;(Ⅱ)若2AB CB ==,16A C =高三数学专项训练:立体几何解答题(三)(文科)1.如图,在.如图,在四棱锥四棱锥A-BCDE 中,侧面∆ADE 是等边三角形,底面BCDE 是等腰是等腰梯形梯形,且CD ∥BE,DE=2BE,DE=2,,CD=4,60CDE Ð=° ,M 是DE 的中点,F 是AC 的中点,且AC=4AC=4,,求证:(1)平面ADE ADE⊥平面⊥平面BCD;BCD;(2)FB (2)FB∥平面∥平面ADE. ADE.2.(本小题满分12分)如图,分)如图,三棱柱三棱柱111ABC A B C -,求三棱柱111ABC A B C -的体积。
45..如图,三棱锥P ABC -中,90ABC °Ð=,PA ABC ^底面(Ⅰ)求证:PAC PBC ^平面平面;(Ⅱ)若AC BC PA ==,M 是PB 的中点,求AM 3.如图,在.如图,在四棱锥四棱锥P -ABCD 中,中,PD PD PD⊥⊥平面ABCD ABCD,,AB AB∥∥DC DC,已知,已知BD BD==2AD 2AD==2PD 2PD==8,AB =2DC 2DC==(Ⅰ)设M 是PC 上一点,证明:平面MBD MBD⊥平面⊥平面PAD PAD;;(Ⅱ)若M 是PC 的中点,求棱锥P -DMB 的体积.4与平面PBC 所成角的所成角的正切正切值5中,CB DA 、是梯形的高,2AE BF ==,22AB =,现将梯形沿CB DA 、折起,使//EF AB ,且2E F A B =如图所示,已知M N P 、、(1)求证://MN6^PA 底面ABCD ,F E ,分别是PB AC ,的中点的中点. . .PFEDC B A(1)求证://EF 平面PCD ;(2)求证:平面^PBD 平面PAC ;(3)若AB PA =,求PD 与平面PAC 所成的角的大小所成的角的大小. . ..如图,在等腰.如图,在等腰梯形梯形CDEF ,得一简单,得一简单组合组合体ABCDEF 分别为,,AF BD EF 的中点平面BCF ;(2)求证:AP ^平面DAE ..如图,.如图,四棱锥四棱锥ABCD P -的底面ABCD 为正方形,7中,2AB BC =,点M 在边CD 上,点F 在边AB 上,且DF AM^,垂足为E ,若将ADM D 沿AM 折起,使点ABCM D -¢.(Ⅰ)求证:F D AM p ,求直线D8.如图,在四棱锥-P .如图,在.如图,在矩形矩形ABCD D 位于D ¢位置,连接B D ¢,C D ¢得四棱锥¢^;(Ⅱ)若3p =¢ÐEF D ,直线F D ¢与平面ABCM 所成角的大小为3A ¢与平面ABCM 所成角的所成角的正弦正弦值.值.ABCD 中,四边形ABCD 是菱形,PA PC =,E 为PB 的中点.(Ⅰ)求证:PD ∥平面AEC ;(Ⅱ)求证:平面AEC ^平面PBD .-的中点,E 为PA 的中点.的中点.ADO C PBEMNC C 1B 1A 1BA9.如图,在直.如图,在直三棱柱三棱柱ABC ABC--A 1B 1C 1中,点M 是A 1B 的中点,点N 是B 1C 的中点,连接MN MN(Ⅰ)证明:(Ⅰ)证明:MN//MN//MN//平面平面ABC ABC;; (Ⅱ)若AB=1AB=1,,AC=AA 1=3,BC=2BC=2,求二面角,求二面角A —A 1C —B 的余弦值的大小值的大小1010..如图,四棱锥P ABCD 的底面是直角的底面是直角梯形梯形,//AB CD ,AB AD ^,PAB D 和PADD 是两个边长为2的正三角形,4DC =,O 为BD (Ⅰ)求证:PO ^平面ABCD ;(Ⅱ)求证://OE 平面PDC ;(Ⅲ)求(Ⅲ)求直线直线CB 与平面PDC 所成角的所成角的正弦正弦值.11中,底面ABED 、090ADC Ð=,12BC CD AD ==,PA PD =,,EF .A B C -中,点D 是BC 的中点的中点..(Ⅰ)求证(Ⅰ)求证: : AD ^平面11BCC B ;(Ⅱ)求证(Ⅱ)求证: : 1A C 平面1AB D .A BCDA 1B 1C 1.在.在四棱锥四棱锥P ABCD -为直角为直角梯形梯形,//BC AD 为,AD PC 的中点.(1)求证://PA 平面BEF ;(2)求证:AD PB ^1212.如图,正.如图,正.如图,正三棱柱三棱柱111ABC13.如图,在多面体ABCDFE 中,四边形ABCD 是矩形,AB ∥EF , 902=Ð=EAB EF AB,(1)若G 点是DC )求证:BAF DAF 面面^.(3)若,2,1===AB AD AE ,平面ABCD ABFE 平面^.中点,求证:AED FG 面//.(2求的体积三棱锥AFC D -.∴,3AM DE AM ^=,∵在∆DMC 中,中,DM=1DM=1DM=1,,60CDE Ð=°,CD=4,CD=4,,∴22241241cos6013MC =+-´´×°= ,即MC=13.在∆AMC 中,222222(3)(13)4AM MC AC +=+==∴AM AM⊥⊥MC,MC,又∵,AM DE ^MC DE M = , , ∴∴AM ^平面BCD,BCD,∵AM Í平面ADE, ADE, ∴平面∴平面ADE ADE⊥平面⊥平面BCD.BCD.(2)取DC 的中点N ,连结FN,NB,FN,NB,∵F,N 分别是AC AC,,DC 的中点,∴的中点,∴FN FN FN∥∥AD,AD,由因为由因为FN Ë平面ADE,AD Í平面ADE, ADE, ∴∴FN FN∥平面∥平面ADE,ADE,∵N 是DC 的中点,∴的中点,∴BC=NC=2BC=NC=2BC=NC=2,又,又60CDE Ð=°,∴∆BCN 是等边三角形,∴是等边三角形,∴BN BN BN∥∥DE,DE, 由BN Ë平面ADE,ED Í平面ADE, ADE, ∴∴BN BN∥平面∥平面ADE,ADE,∵FN BN N = , , ∴平面∴平面ADE ADE∥平面∥平面FNB,FNB,∵FB Í平面FNB, FNB, ∴∴FB FB∥平面∥平面ADE.ADE.考点:考点:1.1. 1.直线与平面垂直的判定;直线与平面垂直的判定;直线与平面垂直的判定;2.2.2.平面一平面垂直的判定;平面一平面垂直的判定;平面一平面垂直的判定;3.3.3.直线与平面平行的判定直线与平面平行的判定直线与平面平行的判定..2.(1)取AB 的中点O ,连接1OC O 、1OA O 、1A B ,因为CA=CB CA=CB,所以,所以OC AB ^,由于AB=AA 1,∠,∠BA A BA A 1=600,所以1OA AB ^,所以AB ^平面1OAC ,因为1A C Ì平面1OAC ,所以AB AB⊥⊥A 1C ;(2)因为221A C OC =因为ABC D 为等边三角形,所以3CO =,底面积1232232S =´´=高三数学专项训练:立体几何解答题(三)(文科)参考答案1.(1)证明详见解析;(2)证明详见解析 【解析】【解析】试题分析:(1)首先根据直线与平民啊垂直的)首先根据直线与平民啊垂直的判定定理判定定理证明AM ^平面BCD,BCD,然后再根据平面垂直的判定定理证明平面ADE ADE⊥平面⊥平面BCD BCD;;(2),取DC 的中点N ,首先证FN ∥平面ADE,ADE,然后再证∴然后再证∴然后再证∴BN BN BN∥平面∥平面ADE,ADE,再根据平面与平民啊平行的判定定理证明∴平面再根据平面与平民啊平行的判定定理证明∴平面ADE ∥平面FNB,FNB,最后由面面平行的性质即可最后由面面平行的性质即可最后由面面平行的性质即可..试题解析:(1)∵∆ADE 是等边三角形,,M 是DE 的中点,的中点,,所以,所以体积体积123323V =´´=(Ⅱ)163P DMB V -=. 【解析】【解析】试题分析:试题解析:(I )证明:在ABD D 中,由于4,8,45A D B D A B ===,所以222AD BD AB +=.故AD BD ^。
高中数学专项训练(立体几何文科提升版)
高高高高高高高高高立体几何文科提升版高高高高高高高高1.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A. 20πB. 24πC. 28πD. 32π2.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A. 81π4B. 16π C. 9π D. 27π43.已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A. 若m//α,n//α,则m//nB. 若m⊥α,n⊂α,则m⊥nC. 若m⊥α,m⊥n,则n//αD. 若m//α,m⊥n,则n⊥α4.一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A. 13+23π B. 13+√23π C. 13+√26π D. 1+√26π5.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A. 18+36√5B. 54+18√5C. 90D. 816.已知m,n为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的有()(1)m⊂α,n⊂α,m//β,n//β⇒α//β(2)n//m,n⊥α⇒m⊥α(3)α//β,m⊂α,n⊂β⇒m//n(4)m⊥α,m⊥n⇒n//αA. 0个B. 1个C. 2个D. 3个7.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是()A. 17πB. 18πC. 20πD. 28π8.设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A. 若m//α,n//α,则m//nB. 若α//β,m⊂α,n⊂β,则m//nC. 若α∩β=m,n⊂α,n⊥m,则n⊥βD. 若m⊥α,m//n,n⊂β则α⊥β9.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A. πB. 3π4C. π2D. π410.已知A,B,C,D是同一球面上的四个点,其中△ABC是正三角形,AD⊥平面ABC,AD=2AB=6,则该球的体积为()A. 32√3πB. 48πC. 24πD. 16π11.已知一个简单几何体的三视图如图所示,则该几何体的体积为().A. 3π+6B. 6π+6C. 3π+12D. 1212.设α,β,γ是三个不重合的平面,l是直线,给出下列命题①若α⊥β,β⊥γ,则α⊥γ;②若l上两点到α的距离相等,则l//α;③若l⊥α,l//β,则α⊥β;④若α//β,l⊄β,且l//α,则l//β.其中正确的命题是()A. ①②B. ②③C. ②④D. ③④13.某几何体的三视图如图所示,则该几何体的体积是()A. πB. 2πC. 4πD. 8π14.已知三棱锥P−ABC的三条侧棱两两互相垂直,且AB=√5,BC=√7,AC=2,则此三棱锥的外接球的体积为()A. 83π B. 8√23π C. 163π D. 323π15.已知S,A,B,C是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=AB=1,BC=√2,则球O的表面积等于()A. 4πB. 3πC. 2πD. π16.一个几何体的三视图如图所示,其中正视图是一个正三角形,则该几何体的外接球的体积为()A. √33π B. π C. 263π D. 32√327π17.已知m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A. 若m//n,m⊥α,则n⊥αB. 若m//α,n//α,则m//nC. 若m⊥α,m//β,则α//βD. 若m//α,α⊥β,则m⊥β18.A,B,C,D是同一球面上的四个点,△ABC中,∠BAC=2π3,AB=AC,AD⊥平面ABC,AD=6,AB=2√3,则该球的表面积为______ .19.在三棱锥V−ABC中,面VAC⊥面ABC,VA=AC=2,∠VAC=120°,BA⊥BC则三棱锥V−ABC的外接球的表面积是______.20.如图,在三棱锥P−ABC中,PA⊥AB,PA⊥BC,,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:;(2)求证:平面BDE⊥平面PAC;(3)当PA//平面BDE时,求三棱锥E−BCD的体积.21.如图,四棱锥P−ABCD的底面是矩形,PA⊥平面ABCD,E,F分别是AB,PD的中点,且PA=AD.(1)求证:AF//平面PEC;(2)求证:平面PEC⊥平面PCD.22.如图,在平行四边形ABCD中,AB=1,BC=2,∠ABC=60°,在直角梯形ABEF中,BE=2,AF=3,BE//AF,∠BAF=90°,平面ABCD⊥平面ABEF.(Ⅰ)求证:AC⊥平面ABEF;(Ⅱ)求证:CD//平面AEF;(Ⅲ)求三棱锥D−AEF的体积.23.如图,在四棱锥P−ABCD中,底面ABCD是正方形.点E是棱PC的中点,平面ABE与棱PD交于点F.(Ⅰ)求证:AB//EF;(Ⅱ)若PA=AD,且平面PAD⊥平面ABCD,求证:AF⊥平面PCD.24.已知直四棱柱ABCD−A1B1C1D1的底面是菱形,且∠DAB=60°,AD=AA1,F为棱BB1的中点,M为线段AC1的中点.(1)求证:FM//平面ABCD;(2)求证:平面AFC1⊥平面ACC1A1.25.如图,在斜三棱柱ABC−A1B1C1中,侧面AA1C1C是菱形,AC1与A1C交于点O,E是棱AB上一点,且OE//平面BCC1B1(1)求证:E是AB中点;(2)若AC1⊥A1B,求证:AC1⊥BC.答案和解析1.【答案】C【解析】【分析】本题考查由三视图求表面积,空间立体几何三视图,属于基础题.空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2√3,在轴截面中圆锥的母线长使用勾股定理求出,写出表面积,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,求出圆柱的表面积,注意不包括重合的平面. 【解答】解:由三视图知,空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2√3, ∴在轴截面中圆锥的母线长是√12+4=4, ∴圆锥的侧面积是π×2×4=8π,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4, ∴圆柱表现出来的表面积是π×22+2π×2×4=20π. ∴空间组合体的表面积是. 故选C . 2.【答案】A【解析】【分析】本题主要考查四棱锥外接球的表面积,属于基础题.利用正四棱锥的底面边长和高求出外接球的半径,进而可得表面积. 【解答】解:由题可知正四棱锥P −ABCD 的外接球的球心在它的高PO 1上,记为O ,设球的半径为R ,∵棱锥的高为4,底面边长为2, ∴R 2=(4−R)2+(√2)2, ∴R =94,∴该球的表面积为4π×(94)2=81π4.故选A .3.【答案】B【解析】【分析】本题考查空间直线与平面的位置关系,考查直线与平面的平行、垂直的判断与性质,记熟这些定理是迅速解题的关键,注意观察空间的直线与平面的模型,属于基础题. A .运用线面平行的性质,结合线线的位置关系,即可判断; B .运用线面垂直的性质,即可判断;C.运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;D.运用线面平行的性质和线面垂直的判定,即可判断.【解答】解:A.若m//α,n//α,则m,n相交或平行或异面,故A错;B.若m⊥α,n⊂α,则m⊥n,故B正确;C.若m⊥α,m⊥n,则n//α或n⊂α,故C错;D.若m//α,m⊥n,则n//α或n⊂α或n⊥α或n与α相交,故D错.故选B.4.【答案】C【解析】【分析】本题考查空间几何体的三视图和体积,属于基础题.由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,进而可得答案.【解答】解:由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,由棱锥的底面棱长为1,可得2R=√2,故R=√22,故半球的体积为23π⋅(√22)3=√26π,棱锥的底面面积为1,高为1,故棱锥的体积V=13,故组合体的体积为13+√26π,故选C.5.【答案】B【解析】【分析】本题考查由几何体的三视图求表面积考查棱柱的表面积,属于一般题.由已知中的三视图可得:该几何体是一个以边长为3的正方形为底面的斜四棱柱,进而得到答案.【解答】解:由已知中的三视图可得:该几何体是一个以边长为3的正方形为底面的斜四棱柱,其上下底面面积均为:3×3=9,侧面的面积为:(3×6+3×√32+62)×2=36+18√5,故棱柱的表面积为:9×2+36+18√5=54+18√5.故选B.6.【答案】B【解析】【分析】本题考查命题的真假判断与应用,考查空间中直线与直线,直线与平面,平面与平面的位置关系,考查空间想象能力和思维能力,属于中档题.由空间中直线与直线,直线与平面,平面与平面的位置关系逐一核对四个命题得答案.【解答】解:对于(1),m⊂α,n⊂α,m//β,n//β⇒α//β,错误,当m//n时,α与β可能相交;对于(2),n//m,n⊥α⇒m⊥α,正确,原因是:n⊥α,则n垂直于α内的两条相交直线,又m//n,则m也垂直α内的这两条相交直线,则m⊥α;对于(3),α//β,m ⊂α,n ⊂β⇒m//n ,错误,m 与n 有可能异面; 对于(4),m ⊥α,m ⊥n ⇒n //α,错误,也可能是n ⊂α. ∴正确命题的个数是1个. 故选B . 7.【答案】A【解析】【分析】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积. 【解答】解:由题意可知三视图复原的几何体是去掉18后的球,如图:可得78×43πR 3=28π3,R =2..故选A . 8.【答案】D【解析】【分析】本题考查空间中的线面关系以及面面垂直的判定定理,属于基础题. 由空间中的线面关系一一判定即可. 【解答】解:A.错误,同时和一个平面平行的两直线不一定平行,可能相交,可能异面; B .错误,两平面平行,两平面内的直线不一定平行,可能异面;C .错误,一个平面内垂直于两平面交线的直线,只有在两个平面互相垂直的时候才与另一个平面垂直;D .正确,由m ⊥α,m//n ,得n ⊥α,又n ⊂β,∴α⊥β. 故选D . 9.【答案】B【解析】【分析】本题考查圆柱的体积的求法,考查圆柱、球等基础知识,考查运算求解能力、空间想象能力,属于中档题.推导出该圆柱底面圆周半径r =√12−(12)2=√32,由此能求出该圆柱的体积.【解答】解:如图所示:∵圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上, ∴该圆柱底面圆周半径r =√12−(12)2=√32,∴该圆柱的体积:V =Sℎ=π×(√32)2×1=3π4.故选B .10.【答案】A【解析】【分析】本题考查了球的内接体与球的体积,考查运算求解能力,空间想象能力,属于中档题. 把三棱锥D −ABC 扩展为三棱柱,上下底面中心E ,F 的连线的中点O 与A 的距离为球的半径,根据题中条件求出半径OA ,即可求出球的体积. 【解答】解:由题意画出几何体的图形如图,把三棱锥D −ABC 扩展为三棱柱,上下底面中心F ,E 的连线的中点O 与A 的距离为球的半径R , AD =2AB =6,OE =3,△ABC 是正三角形, 所以AE =23√AB 2−AB 24=√3.AO =√32+(√3)2=2√3.所求球的体积为43πR 3=43π⋅(2√3)3=32√3π. 故选A .11.【答案】A【解析】【分析】本题考查由三视图求面积、体积,关键是由三视图还原几何体,是中档题.由三视图还原几何体,可知该几何体为组合体,左边部分是四分之一圆锥,右边部分为三棱锥,然后由锥体体积求解. 【解答】解:由三视图还原几何体如图,该几何体为组合体,左边部分是四分之一圆锥,右边部分为三棱锥,则其体积V=14×13×π×32×4+13×12×3×3×4=3π+6.故选A.12.【答案】D【解析】【分析】本题考查的知识点是空间直线与平面之间的位置关系判定及命题的真假判断与应用,其中熟练掌握空间直线与平面位置关系的判定方法是解答本题的关键,属于基础题.由空间平面与平面之间位置关系的定义及判定方法,可以判断①的正误;根据空间直线与平面位置关系的定义及判定方法,可以判断②与④的正误;根据线面垂直的判定方法可以得到③为真命题,综合判断结论,即可得到答案.【解答】解:若α⊥β,β⊥γ,则α与γ可能相交,也可能平行,故①错误;若l上两点到α的距离相等,则l与α可能相交,也可能平行,故②错误;若l//β,则存在直线a⊂β,使l//a,又l⊥α,∴a⊥α,则α⊥β,故③正确;若α//β,且l//α,则l⊂β或l//β,又由l⊄β,∴l//β,故④正确;故选D.13.【答案】A【解析】【分析】由三视图可知,该几何体为底面直径为2,高为2的圆柱的一半,求出体积即可.本题的考点是由三视图求几何体的体积,需要由三视图判断空间几何体的结构特征,并根据三视图求出每个几何体中几何元素的长度,代入对应的体积公式分别求解,考查了空间想象能力.【解答】解:由三视图可知,该几何体为底面直径为2,高为2的圆柱的一半.体积V=12×π×12×2=π.故选A.14.【答案】B【解析】【分析】本题给出三棱锥的空间特征及外接球问题,考查了计算能力和空间想象能力,属于中档题.求出PA=1,PC=√3,PB=2,以PA、PB、PC为过同一顶点的三条棱,作长方体如图,则长方体的外接球同时也是三棱锥P−ABC外接球.算出长方体的对角线,即球直径,进而利用球的体积公式求解.【解答】解:∵AB=√5,BC=√7,AC=2,∴PA=1,PC=√3,PB=2,以PA、PB、PC为过同一顶点的三条棱,作长方体如图,则长方体的外接球同时也是三棱锥P−ABC外接球.∵长方体的对角线长为√1+3+4=2√2,∴球直径为2√2,半径R=√2,因此三棱锥P−ABC外接球的体积是43πR3=43π×(√2)3=8√23π,故选B.15.【答案】A【解析】【分析】本题主要考查了线面垂直的判定和性质,以及外接球的表面积等有关知识,考查空间想象能力、运算能力和推理论证能力,属于中档题.先寻找球心,根据S,A,B,C是球O表面上的点,则OA=OB=OC=OS,根据直角三角形的性质可知O为SC的中点,则SC即为直径,根据球的表面积公式求解即可.【解答】解:如图所示:取SC的中点O,连接AO,BO,因为SA⊥平面ABC,,,∴SA⊥AC,SA⊥BC,∴在Rt△ASC中,OA=OS=OC,又AB⊥BC,SA∩AB=A,,又,∴BC⊥SB,∴在Rt△SBC中,有OB=OS=OC,又SA=AB=1,BC=√2,AB⊥BC,∴SC=2,∴OA=OB=OC=OS=1,即球O 的半径为1,∴球O 的表面积为4πR 2=4π.故选A .16.【答案】D【解析】解:设外接球半径为r ,则有(√3−r)2+1=r 2,所以r =2√33,所以V =43πr 3=32√327π. 故选:D .设外接球半径为r ,则有(√3−r)2+1=r 2,解出利用体积计算公式即可得出.本题考查了三棱锥的三视图、球的体积计算公式,考查了推理能力与计算能力,属于中档题.17.【答案】A【解析】【分析】本题主要考查了空间中直线与平面之间的位置关系,同时考查了推理能力,属于基础题. 根据线面、面面平行、垂直的判定与性质,进行判断,即可得出结论.【解答】解:对于A ,根据线面垂直的性质定理,可得A 正确;对于B ,若m//α,n//α,则m//n ,m ,n 相交或异面,不正确;对于C ,若m ⊥α,m//β,则α⊥β,不正确;对于D ,若m//α,α⊥β,则m 与β的位置关系不确定,不正确.故选:A .18.【答案】84π【解析】【分析】本题考查球的表面积的求法,球的内接体问题,考查空间想象能力以及计算能力,属于中档题.把A 、B 、C 、D 扩展为三棱柱,上下底面中心连线的中点与A 的距离为球的半径,求出半径即可求解球的表面积.【解答】解:由题意,设△ABC 外接圆的圆心为E ,球心为O ,把A 、B 、C 、D 扩展为三棱柱,AD =6,AB =AC =2√3,OE =3,△ABC 中,BC =√12+12−2×2√3×2√3×(−12)=6, ∴AE =12√32=2√3,∴球半径AO =√12+9=√21.所求球的表面积S =4π(√21)2=84π.故答案为84π.19.【答案】16π【解析】【分析】本题考查三棱锥的外接球表面积,考查直线和平面的位置关系,确定三棱锥的外接球的半径是关键,属于中档题.设AC中点为M,VA中点为N,过M作面ABC的垂线,球心O必在该垂线上,连接ON,则ON⊥AV.可得OA=2,即三棱锥V−ABC的外接球的半径为2,即可求出三棱锥的外接球表面积.【解答】解:如图,设AC中点为M,VA中点为N,∵面VAC⊥面ABC,BA⊥BC,∴过M作面ABC的垂线,由面面垂直得到OM垂直面ABC,即球心O是三角形VAC的外接圆圆心,球心O必在该垂线上,连接ON,则ON⊥AV.在Rt△OMA中,AM=1,∠OAM=60°,∴OA=2,即三棱锥V−ABC的外接球的半径为2,∴三棱锥V−ABC的外接球的表面积S=4πR2=16π.故答案为:16π.20.【答案】(1)证明:由PA⊥AB,PA⊥BC,AB⊂平面ABC,BC⊂平面ABC,且AB∩BC=B,可得PA⊥平面ABC,由BD⊂平面ABC,可得PA⊥BD;(2)证明:由AB=BC,D为线段AC的中点,可得BD⊥AC,由PA⊥平面ABC,PA⊂平面PAC,可得平面PAC⊥平面ABC,又平面PAC∩平面ABC=AC,BD⊂平面ABC,且BD⊥AC,即有BD⊥平面PAC,BD⊂平面BDE,可得平面BDE⊥平面PAC;(3)解:PA//平面BDE,PA⊂平面PAC,且平面PAC∩平面BDE=DE,可得PA//DE,又D为AC的中点,可得E为PC的中点,且DE=12PA=1,由PA⊥平面ABC,可得DE⊥平面ABC,可得S△BDC=12S△ABC=12×12×2×2=1,则三棱锥E−BCD的体积为13DE⋅S△BDC=13×1×1=13.【解析】本题考查空间的线线、线面和面面的位置关系,三棱锥的体积的求法,考查空间想象能力和推理能力,属于中档题.(1)运用线面垂直的判定定理可得PA⊥平面ABC,再由性质定理即可得证;(2)要证平面BDE⊥平面PAC,可证BD⊥平面PAC,由(1)运用面面垂直的判定定理可得平面PAC⊥平面ABC,再由等腰三角形的性质可得BD⊥AC,运用面面垂直的性质定理和判定定理,即可得证;(3)由线面平行的性质定理可得PA//DE,运用中位线定理,可得DE的长,以及DE⊥平面ABC,求得三角形BCD的面积,运用三棱锥的体积公式计算即可得到所求值.21.【答案】证明:(1)取PC的中点G,连结FG、EG,∴FG为△CDP的中位线,FG//CD,FG=12CD.∵四边形ABCD为矩形,E为AB的中点,∴AE//CD,AE=12CD.∴FG=AE,FG//AE,∴四边形AEGF是平行四边形,∴AF//EG.又EG⊂平面PEC,AF⊄平面PEC,∴AF//平面PEC;(2)∵PA=AD,F是PD的中点,∴AF⊥PD,∵PA⊥平面ABCD,CD⊂平面ABCD,∴PA⊥CD,又因为CD⊥AD,AP∩AD=A,AP,AD⊂平面APD,∴CD⊥平面APD,∵AF⊂平面APD,∴CD⊥AF,又AF⊥PD,且PD∩CD=D,PD,CD⊂平面PDC,∴AF⊥平面PDC,由(1)得EG//AF,∴EG⊥平面PDC,又EG⊂平面PEC,∴平面PEC⊥平面PCD.【解析】本题主要考查了空间线面平行、面面垂直的判定,考查逻辑推理能力和空间想象能力,属于中档题.(1)取PC的中点G,连结FG、EG,AF//EG又EG⊂平面PEC,AF⊄平面PEC,AF//平面PEC;(2)由(1)得EG//AF,只需证明AF⊥平面PDC,即可得到平面PEC⊥平面PCD.22.【答案】解:(Ⅰ)证明:∵在△ABC中,AB=1,BC=2,∠ABC=60°,∴AC2=AB2+BC2−2AB⋅BC⋅cos∠ABC=12+22−2×1×2×12=3,∴AC2+AB2=BC2,∴AB⊥AC,∵平面ABCD⊥平面ABEF,平面ABCD∩平面ABEF=AB,且AC⊂平面ABCD,∴AC⊥平面ABEF;(Ⅱ)∵四边形ABCD是平行四边形,∴CD//AB,∵CD⊄平面ABEF,AB⊂平面ABEF,∴CD//平面AEF;(Ⅲ)连结CF,由(Ⅱ)知CD//平面AEF,∴点D到平面AEF的距离等于点C到平面AEF的距离,由(Ⅰ)知AC=√3,∴三棱锥D−AEF的体积V三棱锥D−AEF =V三棱锥C−AEF=13×(12×3×1)×√3=√32.【解析】本题考查线面垂直、线面平行的证明,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想,是中档题.(Ⅰ)推导出AB⊥AC,由此利用平面ABCD⊥平面ABEF,能证明AC⊥平面ABEF;(Ⅱ)求出CD//AB,利用线面平行的判定定理证明CD//平面AEF;(Ⅲ)利用等体积法求三棱锥的体积,即由V三棱锥D−AEF=V三棱锥C−AEF,求出三棱锥D−AEF的体积.23.【答案】解:(Ⅰ)证明:因为底面ABCD是正方形,所以AB//CD,又因为AB⊄平面PCD,CD⊂平面PCD,所以AB//平面PCD,又因为A,B,E,F四点共面,且平面ABEF∩平面PCD=EF,AB⊂平面ABEF,所以AB//EF.(Ⅱ)证明:在正方形ABCD中,CD⊥AD,又因为平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD,又AF⊂平面PAD,所以CD⊥AF,由(Ⅰ)可知AB//EF,又因为AB//CD,所以CD//EF,由点E是棱PC中点,所以点F是棱PD中点,在△PAD中,因为PA=AD,所以AF⊥PD,又因为PD∩CD=D,PD,CD⊂平面PCD,所以AF⊥平面PCD.【解析】本题考查线面平行的性质,平面与平面垂直的性质,考查线面垂直的判定,考查学生分析解决问题的能力,属于中档题.(Ⅰ)先证明AB//平面PCD,即可证明AB//EF;(Ⅱ)利用平面PAD⊥平面ABCD,即可证明CD⊥AF,再证明AF⊥PD,进而即可证明AF⊥平面PCD.24.【答案】证明:(1)延长C1F交CB的延长线于点N,连接AN.∵F是BB1的中点,∴F为C1N的中点,B为CN的中点.又M是线段AC1的中点,故MF//AN.又MF不在平面ABCD内,AN⊂平面ABCD,∴MF//平面ABCD.(2)连BD,由直四棱柱ABCD−A1B1C1D1,可知A1A⊥平面ABCD,又∵BD⊂平面ABCD,∴A1A⊥BD.∵四边形ABCD为菱形,∴AC⊥BD.又∵AC∩A1A=A,AC,A1A⊂平面ACC1A1,∴BD⊥平面ACC1A1.在四边形DANB中,DA//BN且DA=BN,∴四边形DANB为平行四边形,故NA//BD,∴NA⊥平面ACC1A1,又∵NA⊂平面AFC1,∴平面AFC1⊥ACC1A1.【解析】(1)延长C1F交CB的延长线于点N,由三角形的中位线的性质可得MF//AN,从而证明MF//平面ABCD.(2)由A1A⊥BD,AC⊥BD,可得BD⊥平面ACC1A1,由DANB为平行四边形,故NA//BD,故NA⊥平面ACC1A1,从而证得平面AFC1⊥ACC1A1.本题考查直线与平面平行的判定,考查平面与平面垂直的判断,考查推理分析与运算能力,考查等价转化思想与数形结合思想的综合运用,属于中档题.25.【答案】证明:(1)连结BC1,取AB中点E′,∵侧面AA1C1C是菱形,AC1与A1C交于点O,∴O为AC1的中点,∵E′是AB的中点,∴OE′//BC1;∵OE//平面BCC1B1,平面OEBC1∩平面BCC1B1=BC1∴OE//BC1,∴E,E′重合,∴E是AB中点;(2)∵侧面AA1C1C是菱形,∴AC1⊥A1C,∵AC1⊥A1B,A1C∩A1B=A1,A1C⊂平面A1BC,A1B⊂平面A1BC,∴AC1⊥平面A1BC,∵BC⊂平面A1BC,∴AC1⊥BC.【解析】【分析】本题考查的知识要点:线面平行的判定定理,线面垂直的判定定理和性质定理,属于中档题.(1)利用同一法,首先通过连接对角线得到中点,进一步利用中位线,得到线线平行,进一步利用线面平行的判定定理,得到结论.(2)利用菱形的对角线互相垂直,进一步利用线面垂直的判定定理,得到线面垂直,最后转化成线线垂直.。
2020届高三数学立体几何专项训练(文科)
2021届高三数学立体几何专题(文科)1解析:〔Ⅰ〕设AC的中点为O,连接EO.在三角形PBD中,中位线EO//PB,且EO在平面AEC上,所以PB//平面AEC.〔Ⅱ〕∵AP=1,AD3,3 V,P-ABD411V=PAABADP-ABD32作AH⊥PB角PB于H,33=AB=,∴643AB,2由题意可知BC⊥平面PAB,∴BC⊥AH,故AH⊥平面PBC.又313PAABAHPB13 ,故A点到平面PBC的距离31313.2.(1)证明:如下图,取PA的中点H,连接EH,DH,因为E为PB的中点,所以EH∥AB,EH=1AB,2又AB∥CD,CD=12AB.所以EH∥CD,EH=CD,因此四边形DCEH是平行四边形,所以CE∥DH,又DH?平面PAD,CE?平面PAD,所以CE∥平面PAD.1(2)如下图,取AB的中点F,连接CF,EF,所以AF=AB,21又CD=AB,所以AF=CD,又AF∥CD,所以四边形AFCD为平行四边形,所以CF∥AD,2又CF?平面PAD,所以CF∥平面PAD,由(1)可知CE∥平面PAD,又CE∩CF=C,故平面CEF∥平面PAD,故存在AB的中点F满足要求.3.(1)证明∵P EPF==λ(λ≠0),∴EF∥BC.∵BC∥AD,∴EF∥AD. PBPC又EF?平面PAD,AD?平面PAD,∴EF∥平面PAD.(2)解∵λ=12,∴F是PC的中点,在Rt△PAC中,PA=2,AC=2,∴PC=P A2+AC2=6,----12∴PF=PC=6.∵平面PAC⊥平面ABCD,且平面PAC∩平面ABCD=AC,2PA⊥AC,PA?平面PAC,∴PA⊥平面ABCD,∴PA⊥BC.又AB⊥AD,BC∥AD,∴BC⊥AB,又PA∩AB=A,PA,AB?平面PAB,7----∴BC⊥平面PAB,∴BC⊥PB,∴在Rt△PBC中,BF=12PC=62.连接BD,DF,设点D到平面AFB的距离为d,在等腰三角形BAF中,BF=AF=6,AB=1,2∴S△ABF=5,又S△ABD=1,点F到平面ABD的距离为1,4∴由V F-ABD=V D-AFB,得13×1×1=13×d×545,解得d=,即点D到平面AFB的距离为45455.4.证明(1)由题设知BB1∥DD1且BB1=DD1,所以四边形BB1D1D是平行四边形,所以BD∥B1D1.又BD?平面CD1B1,B1D1?平面CD1B1,所以BD∥平面CD1B1.因为A1D1∥B1C1∥BC且A1D1=B1C1=BC,所以四边形A1BCD1是平行四边形,所以A1B∥D1C.又A1B?平面CD1B1,D1C?平面CD1B1,所以A1B∥平面CD1B1.又因为BD∩A1B=B,BD,A1B?平面A1BD,所以平面A1BD∥平面CD1B1. (2)由(1)知平面A1BD∥平面CD1B1,又平面ABCD∩平面B1D1C=直线l,平面ABCD∩平面A1BD=直线BD,所以直线l∥直线BD,在四棱柱ABCD-A1B1C1D1中,四边形BDD1B1为平行四边形,所以B1D1∥BD,所以B1D1∥l.5.连接AC交BD于点O,连接MO,因为PM=MC,AO=OC,所以PA∥MO,因为PA?平面MBD,MO?平面MBD,所以PA∥平面MBD.因为平面PAHG∩平面MBD=GH,所以AP∥GH.6.[证明](1)在四棱锥P-ABCD中,因为PA⊥底面ABCD,CD?平面ABCD,所以PA⊥CD,因为AC⊥CD,且PA∩AC=A,所以CD⊥平面PAC,而AE?平面PAC,所以CD⊥AE.(2)由PA=AB=BC,∠ABC=60°,可得AC=PA.因为E是PC的中点,所以AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,所以AE⊥平面PCD.而PD?平面PCD,所以AE⊥PD.因为PA⊥底面ABCD,所以PA⊥AB.又因为AB⊥AD且PA∩AD=A,所以AB⊥平面PAD,而PD?平面PAD,所以AB⊥PD.8----又因为AB∩AE=A,所以PD⊥平面ABE.7.(1)证明因为ABCD为正方形,所以AD∥BC.因为AD?平面PBC,BC?平面PBC,所以AD∥平面PBC.因为AD?平面AEFD,平面AEFD∩平面PBC=EF,所以AD∥EF.(2)证明因为四边形ABCD是正方形,所以AD⊥AB.因为平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AD?平面ABCD,所以AD⊥平面PAB.因为PB?平面PAB,所以AD⊥PB.因为△PAB为等边三角形,E是PB中点,所以PB⊥AE.因为AE?平面AEFD,AD?平面AEFD,AE∩AD=A,所以PB⊥平面AEFD.(3)解由(1)知,V1=VC-AEFD,VE-ABC=VF-ADC=VC-AEFD=V1,∴V BC-AEFD=V1,那么V P-ABCD=V1+V1=V1,∴.8.[解](1)证明:在菱形ABCD中,∠DAB=60°,G为AD的中点,所以BG⊥AD.又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以BG⊥平面PAD.(2)证明:如图,连接PG.因为△PAD为正三角形,G为AD的中点,所以PG⊥AD.由(1)知,BG⊥AD,又PG∩BG=G,所以AD⊥平面PGB.因为PB?平面PGB,所以AD⊥PB.(3)当F为PC的中点时,满足平面DEF⊥平面ABCD.证明如下:取PC的中点F,连接DE、EF、DF.在△PBC中,FE∥PB,在菱形ABCD中,GB∥DE.而FE?平面DEF,DE?平面DEF,EF∩DE=E,PB?平面PGB,GB?平面PGB,PB∩GB=B,所以平面DEF∥平面PGB.因为BG⊥平面PAD,PG?平面PAD,所以BG⊥PG.又因为PG⊥AD,AD∩BG=G,所以PG⊥平面ABCD.又PG?平面PGB,所以平面PGB⊥平面ABCD,所以平面DEF⊥平面ABCD.9.【解】(1)证明:因为PC⊥平面ABCD,所以PC⊥DC.又因为DC⊥AC,且PC∩AC=C,所以DC⊥平面PAC.(2)证明:因为AB∥DC,DC⊥AC,所以AB⊥AC.因为PC⊥平面ABCD,所以PC⊥AB.又因为PC∩AC=C,所以AB⊥平面PAC.又AB?平面PAB,所以平面PAB⊥平面PAC.9----(3)棱PB上存在点F,使得PA∥平面CEF.理由如下:如图,取PB中点F,连接E F,CE,CF.又因为E为AB的中点,所以EF∥PA.又因为PA?平面CEF,且EF?平面CEF,所以PA∥平面CEF.10.证明(1)因为四边形ABCD是矩形,所以AB∥CD.又AB?平面PDC,CD?平面PDC,所以AB∥平面PDC,又因为AB?平面ABE,平面ABE∩平面PDC=EF,所以AB∥EF.(2)因为四边形ABCD是矩形,所以AB⊥AD.因为AF⊥EF,(1)中已证AB∥EF,所以AB⊥AF.又AB⊥AD,由点E在棱PC上(异于点C),所以点F异于点D,所以AF∩AD=A,AF,AD?平面PAD,所以AB⊥平面PAD,又AB?平面ABCD,所以平面PAD⊥平面ABCD.11.(1)证明因为AB=BC,AD=CD,所以BD垂直平分线段A C.又∠ADC=120°,所以MD=11,AM=2AD=232.所以AC=3.又AB=BC=3,所以△ABC是等边三角形,3所以BM=,所以2 B MMD1=3,又因为PN=4PB,所以B MMDBNNP==3,所以MN∥PD.又MN?平面PDC,PD?平面PDC,所以MN∥平面PDC.(2)解因为PA⊥平面ABCD,BD?平面ABCD,所以BD⊥PA,又BD⊥AC,PA∩AC=A,PA,AC?平面PAC,所以BD⊥平面PAC.由(1)知MN∥PD,所以直线MN与平面PAC所成的角即直线PD与平面PAC所成的角,故∠DPM即为所求的角.在Rt△PAD中,PD=2,1所以sin∠DPM=D MDP=22=14,所以直线MN与平面PAC所成角的正弦值为14.12.【解】(1)取棱AD的中点M(M∈平面PAD),点M即为所求的一个点.理由如下:1因为AD∥BC,BC=2AD,所以BC∥AM,且BC=AM,所以四边形AMCB是平行四边形,从而CM∥AB.又AB?平面PAB,CM?平面PAB,所以CM∥平面PAB.(说明:取棱PD的中点N,那么所找的点可以是直线MN上任意一点)10(2)由,PA⊥AB,PA⊥CD,因为AD∥BC,BC=1 2所以PA⊥平面ABCD,从而PA⊥BD.连接B M,1因为AD∥BC,BC=AD,所以BC∥MD,且BC=MD.21所以四边形BCDM是平行四边形.所以BM=CD=2AD,所以BD⊥AB.又AB∩AP=A,所以BD⊥平面PAB.又BD?平面PBD,所以平面PAB⊥平面PBD.13.[证明](1)在直三棱柱ABCA1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,于是DE∥A1C1.又DE?平面A1C1F,A1C1?平面A1C1F,所以直线D E∥平面A1C1F.(2)在直三棱柱ABCA1B1C1中,A1A⊥平面A1B1C1.因为A1C1?平面A1B1C1,所以A1A⊥A1C1.又A1C1⊥A1B1,A1A?平面ABB1A1,A1B1?平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.因为B1D?平面ABB1A1,所以A1C1⊥B1D.又B1D⊥A1F,A1C1?平面A1C1F,A1F?平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F.因为直线B1D?平面B1DE,所以平面B1DE⊥平面A1C1F14.证明:(Ⅰ)连接B C1,那么O为B1C与BC1的交点,∵AO⊥平面BB1C1C.∴AO⊥B1C,⋯2分因为侧面BB1C1C为菱形,∴BC1⊥B1C,⋯4分∴BC1⊥平面ABC1,∵AB平面ABC1,故B1C⊥AB.⋯6分(Ⅱ)作OD⊥BC,垂足为D,连结A D,∵AO⊥BC,∴BC⊥平面AOD,又BC平面ABC,∴平面ABC⊥平面AOD,交线为AD,作OH⊥AD,垂足为H,∴OH⊥平面ABC.⋯9分∵∠CBB1=60°,所以ΔCBB1为等边三角形,又BC=1,可得OD=3 4,11由于AC⊥AB1,∴OAB1C,∴22227ADODOA,4 11由OH·AD=O·DOA,可得OH=2114,又O为B1C的中点,所以点B1到平面ABC的距离为217,所以三棱柱ABC-A1B1C1的高高为217。
专题6 立体几何(文科)解答题30题 教师版--高考数学专题训练
专题6立体几何(文科)解答题30题1.(贵州省贵阳市2023届高三上学期8月摸底考试数学(文)试题)如图,在直三棱柱111ABC A B C -中,1CA CB ==,90BCA ∠=︒,12AA =,M ,N 分别是11A B ,1A A 的中点.(1)求证:1BN C M ⊥;(2)求三棱锥1B BCN -的体积.2.(广西普通高中2023届高三摸底考试数学(文)试题)如图,多面体ABCDEF中,∠=︒,FA⊥平面ABCD,//ED FA,且22 ABCD是菱形,60ABC===.AB FA ED(1)求证:平面BDE⊥平面FAC;(2)求多面体ABCDEF的体积.))如图所示,取中点G ,连接3.(江西省五市九校协作体2023届高三第一次联考数学(文)试题)如图多面体ABCDEF 中,四边形ABCD 是菱形,60ABC ∠=︒,EA ⊥平面ABCD ,//EA BF ,22AB AE BF ===.(1)证明:平面EAC ⊥平面EFC ;(2)求点B 到平面CEF 的距离.(2)设B 到平面CEF 的距离为因为EA ⊥平面ABCD ,AC 因为//EA BF ,EA ⊥平面ABCD 且BC ⊂平面ABCD ,所以BF 因为60ABC ∠=︒,2AB =4.(新疆乌鲁木齐地区2023届高三第一次质量监测数学(文)试题)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AD CD ⊥,AD BC ∥,且2PA AD CD ===,3BC =,E 是PD 的中点,点F 在PC 上,且2PF FC =.(1)证明:DF ∥平面PAB ;(2)求三棱锥P AEF -的体积.(2)作FG PD ⊥交PD 于点G 因为PA ⊥面ABCD ,所以PA 又AD CD ⊥,PA 与AD 交于点所以CD ⊥面PAD ,CD PD ⊥又FG PD ⊥,所以//FG CD ,所以所以PF FG PC CD =,得43FG =,因为E 为PD 中点,所以P AEF D AEF F ADE V V V ---===5.(新疆阿克苏地区柯坪湖州国庆中学2021-2022学年高二上学期期末数学试题)如图所示,已知AB ⊥平面BCD ,M ,N 分别是AC ,AD 的中点,BC CD ⊥.(1)求证://MN 平面BCD ;(2)求证:CD BM ⊥;【答案】(1)证明见解析;(2)证明见解析.【分析】1)根据中位线定理,可得//MN CD ,即可由线面平行的判定定理证明//MN 平面BCD ;(2)由已知推导出AB CD ⊥,再由CD BC ⊥,得CD ⊥平面ABC ,由此能证明CD BM ⊥;【详解】(1)M ,N 分别是AC ,AD 的中点,//MN CD ∴,MN ⊂/ 平面BCD ,且CD ⊂平面BCD ,//MN ∴平面BCD ;(2)AB ⊥Q 平面BCD ,M ,N 分别是AC ,AD 的中点,AB CD ∴⊥,BC CD ⊥ ,,AB BC B AB BC =⊂ ,平面ABC ,CD \^平面ABC ,BM ⊂ 平面ABC ,CD BM ∴⊥.6.(内蒙古乌兰浩特第一中学2022届高三全真模拟文科数学试题)如图在梯形中,//BC AD ,22AB AD BC ===,23ABC π∠=,E 为AD 中点,以BE 为折痕将ABE 折起,使点A 到达点P 的位置,连接,PD PC ,(1)证明:平面PED ⊥平面BCDE ;(2)当2PC =时,求点D 到平面PEB 的距离.因为PE PD =,F 为ED 因为平面PED ⊥平面BCDE 因为21122PF ⎛⎫=-= ⎪⎝⎭设D 到平面PEB 的距离为7.(山西省运城市2022届高三5月考前适应性测试数学(文)试题(A 卷))如图,四棱柱1111ABCD A B C D -中,底面ABCD 为平行四边形,侧面11ADD A 为矩形,22AB AD ==,160D DB ∠=︒,1BD AA =(1)证明:平面ABCD ⊥平面11BDD B ;(2)求三棱锥11D BCB -的体积.8.(黑龙江省八校2021-2022学年高三上学期期末联合考试数学(文)试题)已知直三棱柱111ABC A B C -中,AC BC =,点D 是AB 的中点.(1)求证:1BC ∥平面1C AD ;(2)若底面ABC 边长为2的正三角形,1BB =11B A DC -的体积.【答案】(1)证明见解析(2)1【分析】(1)连接1AC 交1AC 于点E ,连接DE ,由三角形中位线定理,得1DE BC ∥,进而由线面平行的判定定理即可证得结论;(2)利用等体积转化1111B A DC C A B D V V --=,依题意,高为CD ,再求底面11A B D 的面积,进而求三棱锥的体积.【详解】(1)连接1AC 交1AC 于点E ,连接DE∵四边形11AAC C 是矩形,∴E 为1AC 的中点,又∵D 是AB 的中点,∴1DE BC ∥,又∵DE ⊂平面1C AD ,1BC ⊄平面1C AD ,∴1BC ∥面1C AD .(2)∵AC BC =,D 是AB 的中点,∴AB CD ⊥,9.(青海省西宁市2022届高三二模数学(文)试题)如图,V是圆锥的顶点,O是底面圆心,AB是底面圆的一条直径,且点C是弧AB的中点,点D是AC的中点,2AB=,VA=.2(1)求圆锥的表面积;又D 是AC 的中点,所以OD AC ⊥,又VO OD O ⋂=,VO ⊂平面VOD ,OD ⊂平面VOD所以AC ⊥平面VOD ,又AC ⊂平面VAC ,所以平面VAC ⊥平面VOD .10.(河南省郑州市2023届高三第一次质量预测文科数学试题)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AD ⊥AB ,AB DC ,2AD DC AP ===,1AB =,点E 为棱PC 的中点.(1)证明:平面PBC ⊥平面PCD ;(2)求四棱锥E ABCD -的体积;又点E 为棱PC 的中点,BE 由勾股定理得2AC AD =+∵△PAC 为直角三角形,E 111.(江西省部分学校2023届高三上学期1月联考数学(文)试题)如图,在正三棱柱111ABC A B C -中,12AA AB ==,D ,E 分别是棱BC ,1BB 的中点.(1)证明:平面1AC D ⊥平面1ACE .(2)求点1C 到平面1ACE 的距离.(2)连接1EC .因为1AA 由正三棱柱的性质可知因为ABC 是边长为2的等边三角形,所以故三棱锥11A CC E -的体积以15A E CE ==,1A E 则1ACE △的面积212S =12.(广西玉林、贵港、贺州市2023届高三联合调研考试(一模)数学(文)试题)在三棱锥-P ABC 中,底面ABC 是边长为2的等边三角形,点P 在底面ABC 上的射影为棱BC 的中点O ,且PB 与底面ABC 所成角为π3,点M 为线段PO 上一动点.(1)证明:BC AM ⊥;(2)若12PM MO =,求点M 到平面PAB 的距离.AO BC ∴⊥,点P 在底面ABC 上的投影为点PO ∴⊥平面ABC , PO BC ∴⊥,13.(广西南宁市第二中学2023届高三上学期第一次综合质检数学(文)试题)如图,D ,O 是圆柱底面的圆心,ABC 是底面圆的内接正三角形,AE 为圆柱的一条母线,P 为DO 的中点,Q 为AE 的中点,(1)若90APC ∠=︒,证明:DQ ⊥平面PBC ;(2)设2DO =,圆柱的侧面积为8π,求点B 到平面PAC 的距离.∴//,AQ PD AQ PD =,∴四边形AQDP 为平行四边形,∴//DQ PA .又∵P 在DO 上,而OD ∴O 为P 在ABC 内的投影,且ABC 是圆内接正三角形∴三棱锥-P ABC 为正三棱锥∴PAB PAC PBC △≌△≌△∴APB APC BPC ∠=∠=∠即,PA PC PA PB ⊥⊥.∵PC PB P = ,,PB PC14.(江西省吉安市2023届高三上学期1月期末质量检测数学(文)试题)如图,在四棱锥P -ABCD 中,AB CD ,12AD CD BC PA PC AB =====,BC PA ⊥.(1)证明:平面PBC ⊥平面PAC ;(2)若PB =D 到平面PBC 的距离.又BC PA ⊥,PA AC A = 所以BC ⊥平面PAC ,又BC (2)因为BC ⊥平面PAC ,由22PB =,BC PC =,得15.(江西省部分学校2023届高三下学期一轮复习验收考试(2月联考)数学(文)试题)如图,在长方体1111ABCD A B C D -中,1AB AD ==,1AA =E 在棱1DD 上,且1AE A D ⊥.(1)证明:1AE A C ⊥;(2)求三棱锥1E ACD -的体积.【答案】(1)证明见解析;)在平面11ADD A 中,由AE ⊥1AD DE AA AD =,所以12112A DE S DE AD =⋅= 16.(新疆兵团地州学校2023届高三一轮期中调研考试数学(文)试题)如图1,在等腰梯形ABCD 中,M ,N ,F 分别是AD ,AE ,BE 的中点,4AE BE BC CD ====,将ADE V 沿着DE 折起,使得点A 与点P 重合,平面PDE ⊥平面BCDE ,如图2.(1)证明:PC∥平面MNF.(2)求点C到平面MNF的距离.17.(宁夏银川市第一中学2023届高三上学期第四次月考数学(文)试题)如图1,在直角梯形ABCD 中,,90,5,2,3AB DC BAD AB AD DC ∠==== ∥,点E 在CD 上,且2DE =,将ADE V 沿AE 折起,使得平面ADE ⊥平面ABCE (如图2).(1)求点B 到平面ADE 的距离;(2)在线段BD 上是否存在点P ,使得CP 平面ADE ?若存在,求三棱锥-P ABC 的体积;若不存在,请说明理由..18.(陕西省汉中市2023届高三上学期教学质量第一次检测文科数学试题)如图,多面体ABCDEF 中,四边形ABCD 为菱形,60,ABC FA ∠=⊥ 平面,ABCD FA ED ∥,且22AB FA ED ===.(1)求证:BD FC ⊥;(2)求点A 到平面FBD 的距离.19.(内蒙古赤峰市2022届高三下学期5月模拟考试数学(文科)试题)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,60PAB PAD BAD ∠=∠=∠= .(1)证明:BD ⊥平面PAC ;(2)若23AB PA ==,,求四棱锥P ABCD -的体积.解:如图,记AC 与BD 的交点为因为底面ABCD 为菱形,故又60PAB PAD BAD ∠=∠=∠=又PO AC O = ,故BD ⊥平面(2)解:因为2,3,AB PA ==∠20.(内蒙古2023届高三仿真模拟考试文科数学试题)如图,在四棱锥P ABCD -中,四边形ABCD 是直角梯形,AD AB ⊥,//AB CD ,22PB CD AB AD ===,PD =,PC DE ⊥,E 是棱PB 的中点.(1)证明:PD ⊥平面ABCD ;(2)若F 是棱AB 的中点,2AB =,求点C 到平面DEF 的距离.,AB AD=AB AD⊥,2BD∴=为棱PB中点,DE PBE∴⊥,又∴⊥平面PBC,又BC⊂平面DE在直角梯形ABCD中,取CD中点 ,DM AB=2CD AB∴=,又DM ∴四边形ABMD为正方形,BM∴∴===,又BC BM AD AB222BD DE⊂平面PBD ,,=BD DE D21.(山西省晋中市2022届高三下学期5月模拟数学(文)试题)如图,在三棱锥-P ABC中,PAB 为等腰直角三角形,112PA PB AC ===,PC ,平面PAB ⊥平面ABC .(1)求证:PA BC ⊥;(2)求三棱锥-P ABC 的体积.∴OP AB ⊥,22OP =,AB =又∵平面PAB ⊥平面ABC ,平面∴OP ⊥平面ABC .22.(山西省太原市2022届高三下学期三模文科数学试题)已知三角形PAD 是边长为2的正三角形,现将菱形ABCD 沿AD 折叠,所成二面角P AD B --的大小为120°,此时恰有PC AD ⊥.(1)求BD 的长;(2)求三棱锥-P ABC 的体积.∵PAD 是正三角形,∴PM AD ⊥,又∴,PC AD PC PM P⊥=I ∴AD ⊥平面PMC ,∴AD MC ⊥,故ACD 为等腰三角形23.(陕西省联盟学校2023届高三下学期第一次大联考文科数学试题)如图,在四棱锥P ABCD -中,底面ABCD 是长方形,22AD CD PD ===,PA 二面角P AD C--为120︒,点E 为线段PC 的中点,点F 在线段AB 上,且12AF =.(1)平面PCD ⊥平面ABCD ;(2)求棱锥C DEF -的高.824.(陕西省榆林市2023届高三上学期一模文科数学试题)如图,在四棱锥P ABCD -中,平面PAD ⊥底面,,60,ABCD AB CD DAB PA PD ∠=⊥ ∥,且2,22PA PD AB CD ====.(1)证明:AD PB ⊥;(2)求点A 到平面PBC 的距离.(2)因为AB CD ,所以∠2222BC BD CD BD CD =+-⋅由222BD BC CD =+,得BC 25.(陕西省宝鸡教育联盟2022-2023学年高三下学期教学质量检测(五)文科数学试题)如图,在三棱柱111ABC A B C -中,平面11ABB A ⊥平面ABC ,四边形11ABB A 是边长为2的菱形,ABC 为等边三角形,160A AB ∠=︒,E 为BC 的中点,D 为1CC 的中点,P为线段AC上的动点.AB平面PDE,请确定点P在线段AC上的位置;(1)若1//-的体积.(2)若点P为AC的中点,求三棱锥C PDE(2)解:如图,取AB 的中点∵四边形11ABB A 为边长为2∴12A B =,1AA B 为等边三角形,26.(山西省运城市2022届高三上学期期末数学(文)试题)如图,在四棱锥P -ABCD中,底面ABCD 是平行四边形,2APB π∠=,3ABC π∠=,PB =,24PA AD PC ===,点M 是AB 的中点,点N 是线段BC 上的动点.(1)证明:CM⊥平面PAB;(2)若点N到平面PCM BNBC的值.27.(2020届河南省许昌济源平顶山高三第二次质量检测文科数学试题)如图,四棱锥P ABCD -中,//AB CD ,33AB CD ==,2PA PD BC ===,90ABC ∠=︒,且PB PC =.(1)求证:平面PAD ⊥平面ABCD ;(2)求点D 到平面PBC 的距离.因为//AB CD ,33AB CD ==,所以四边形ABCD 为梯形,又M 、E 为AD 、BC 的中点,所以ME 为梯形的中位线,28.(青海省海东市2022-2023学年高三上学期12月第一次模拟数学(文)试题)如图,在直三棱柱111ABC A B C -中,ABC 是等边三角形,14AB AA ==,D 是棱AB 的中点.(1)证明:平面1ACD ⊥平面11ABB A .(2)求点1B 到平面1A CD 的距离.由题意可得11A B D △的面积因为ABC 是边长为4的等边三角形,且29.(河南省十所名校2022-2023学年高三阶段性测试(四)文科数学试题)如图,在四棱锥P —ABCD 中,PC BC ⊥,PA PB =,APC BPC ∠=∠.(1)证明:PC AD ⊥;(2)若AB CD,PD AD ⊥,PC =,且点C 到平面PAB AD 的长.∵PA PB =,APC BPC ∠=∠∴90PCA PCB ∠=∠=︒,即∵PC BC ⊥,AC BC = ∴PC ⊥平面ABCD ,又∵PA PB =,E 为AB 中点∴PE AB ⊥,由(1)知AC BC =,E 为∵PE CE E = ,,PE CE 30.(河南省部分重点中学2022-2023学年高三下学期2月开学联考文科数学试题)如图,在直三棱柱111ABC A B C -中,5AB AC ==,16BB BC ==,D ,E 分别是1AA 和1B C 的中点.(1)求证:平面BED ⊥平面11BCC B ;(2)求三棱锥E BCD -的体积.。
立体几何文-高考文科数学试题专题分类汇编
立体几何1.【2018年浙江卷】已知四棱锥S-ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S-AB-C的平面角为θ3,则A.θ1≤θ2≤θ3B. θ3≤θ2≤θ1C. θ1≤θ3≤θ2D. θ2≤θ3≤θ1【答案】 D点睛:线线角找平行,线面角找垂直,面面角找垂面.2.【2018年浙江卷】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A. 2B. 4C. 6D. 8【答案】 C【解析】分析:先还原几何体为一直四棱柱,再根据柱体体积公式求结果.详解:根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为1,2,梯形的高为2,因此几何体的体积为选C.点睛:先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.3.【2018年文北京卷】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A. 1B. 2C. 3D. 4【答案】 C共三个,故选 C.点睛:此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解.4.【2018年新课标I卷文】在长方体中,,与平面所成的角为,则该长方体的体积为A. B. C. D.【答案】 C点睛:该题考查的是长方体的体积的求解问题,在解题的过程中,需要明确长方体的体积公式为长宽高的乘积,而题中的条件只有两个值,所以利用题中的条件求解另一条边的长久显得尤为重要,此时就需要明确线面角的定义,从而得到量之间的关系,从而求得结果.5.【2018年新课标I卷文】已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A. B. C. D.【答案】 B【解析】分析:首先根据正方形的面积求得正方形的边长,从而进一步确定圆柱的底面圆半径与圆柱的高,从而利用相关公式求得圆柱的表面积.详解:根据题意,可得截面是边长为的正方形,结合圆柱的特征,可知该圆柱的底面为半径是的圆,且高为,所以其表面积为,故选 B.点睛:该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和.6.【2018年全国卷Ⅲ文】设是同一个半径为4的球的球面上四点,为等边三角形且。
高三数学专项训练:立体几何解答题(文科)(一)
(Ⅱ)求证:EF∥平面PAB;
21.
(本小题满分12分)如图,已知 平面 , 平面 , 为等边三角形, , 为 中点.
(1)求证: 平面 ;
(2)求证:平面 平面 ;
(3)求直线 与平面 所成角的正弦值.
22.如图,四棱锥P—ABCD的底面ABCD是边长为1的菱形,∠BCD﹦60°,E是CD中点,
(Ⅰ)求证: 平面 ;
(Ⅱ)求三棱锥 的体积.
11.如图,在三棱锥 中,侧面 与侧面 均为等边三角形, , 为 中点.
(Ⅰ)证明: 平面 ;
(Ⅱ)求异面直线BS与AC所成角的大小.
12.(本题满分12分)
如图,已知AB 平面ACD,DE∥AB,△ACD是正三角形, ,且F是CD的中点.
(Ⅰ)求证AF∥平面BCE;
(1)求证:B1C∥平面AC1M;
(2)求证:平面AC1M⊥平面AA1B1B.
44.(本小题满分12分)
如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形, BCD=60 ,E是CD的中点,PA 底面ABCD,PA=2。
(1)证明:平面PBE 平面PAB;
(2)求PC与平面PAB所成角的余弦值.
(Ⅰ)求证:EF//平面PAD;
(Ⅱ)求三棱锥C—PBD的体积。
15.右图为一组合体,其底面 为正方形, 平面 , ,且
(Ⅰ)求证: 平面 ;
(Ⅱ)求四棱锥 的体积;
(Ⅲ)求该组合体的表面积.
16.四棱锥 中,底面 为平行四边形,侧面 底面 , 为 的中点,已知 ,
(Ⅰ)求证: ;
(Ⅱ)在 上求一点 ,使 平面 ;
(Ⅲ)求三棱锥 的体积.
17.(本小题满分12分) 在三棱柱 中,底面是边长为 的正三角形,点 在底面 上的射影 恰是 中点.
立体几何(文科)小题大做-备战高考数学冲刺横向强化精练精讲(解析版)
立体几何(文科)小题大做一、单选题1.(2021·上海青浦·一模)下列条件中,能够确定一个平面的是()A.两个点B.三个点C.一条直线和一个点D.两条相交直线【答案】D【分析】两个点能确定一条直线,但一条直线不能确定一个平面,可判断A;若三个点共线,则不能确定一个平面,可判断B;若点在直线上,则一条直线和一个点不能确定一个平面,可判断C;两条直线能确定一个平面,可判断D.【详解】解:对于A,两个点能确定一条直线,但一条直线不能确定一个平面,所以两个点不能确定一个平面;对于B,三个不共线的点可以确定一个平面,若三个点共线,则不能确定一个平面,故B不能;对于C,一条直线和这条直线外一点能确定一个平面,若这个点在直线上,则不能确定一个平面,故C不能;对于D,两条相交直线能确定一个平面,故D能.故选:D.2.(广东省佛山市顺德区郑裕彤中学2019-2020学年高二上学期期中数学试题)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.【答案】A【分析】利用线面平行判定定理逐项判断可得答案.【详解】对于选项A,OQ∥AB,OQ与平面MNQ是相交的位置关系,故AB和平面MNQ不平行:对于选项B,由于AB∥CD∥MQ,结合线面平行判定定理可知AB∥平面MNQ:对于选项C,由于AB∥CD∥MQ,结合线面平行判定定理可知AB∥平面MNQ:对于选项D ,由于AB ∥CD ∥NQ ,结合线面平行判定定理可知AB ∥平面MNQ :故选:A .3.(2021年浙江省高考数学试题)如图已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则( )A .直线1A D 与直线1DB 垂直,直线//MN 平面ABCDB .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC .直线1AD 与直线1D B 相交,直线//MN 平面ABCDD .直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B【答案】A【分析】由正方体间的垂直、平行关系,可证1//,MN AB A D ⊥平面1ABD ,即可得出结论.【详解】连1AD ,在正方体1111ABCD A B C D -中,M 是1A D 的中点,所以M 为1AD 中点,又N 是1D B 的中点,所以//MN AB ,MN ⊄平面,ABCD AB ⊂平面ABCD ,所以//MN 平面ABCD .因为AB 不垂直BD ,所以MN 不垂直BD则MN 不垂直平面11BDD B ,所以选项B,D 不正确;在正方体1111ABCD A B C D -中,11AD A D ⊥,AB ⊥平面11AA D D ,所以1AB A D ⊥,1AD AB A ⋂=,所以1A D ⊥平面1ABD ,1D B ⊂平面1ABD ,所以11A D D B ⊥,且直线11,A D D B 是异面直线,所以选项C 错误,选项A 正确.故选:A.【点睛】关键点点睛:熟练掌握正方体中的垂直、平行关系是解题的关键,如两条棱平行或垂直,同一个面对角线互相垂直,正方体的对角线与面的对角线是相交但不垂直或异面垂直关系.4.(2018年全国普通高等学校招生统一考试文数(全国卷II ))在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为A .22B .32C .52D .72【答案】C【分析】利用正方体1111ABCD A B C D -中,//CD AB ,将问题转化为求共面直线AB 与AE 所成角的正切值,在ABE ∆中进行计算即可.【详解】在正方体1111ABCD A B C D -中,//CD AB ,所以异面直线AE 与CD 所成角为EAB ∠, 设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以5BE a =,则55tan 22BE a EAB AB a ∠===.故选C.【点睛】求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角; (2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.5.(2020年天津市高考数学试卷)若棱长为23该球的表面积为( )A .12πB .24πC .36πD .144π 【答案】C【分析】求出正方体的体对角线的一半,即为球的半径,利用球的表面积公式,即可得解.【详解】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即()()()22223232332R ++==,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C.【点睛】本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.求多面体的外接球的面积和体积问题,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.6.(2021·四川成都·一模(理))在△ABC 中,已知AB ⊥BC ,AB =BC =2.现将△ABC 绕边AC 旋转一周,则所得到的旋转体的表面积是( )A .2πB .22πC .32πD .42π【答案】D【分析】由题知该旋转体为两个倒立的圆锥底对底组合在一起,根据圆锥的侧面积S RL π=计算公式可得.【详解】解:由题知该几何体为两个倒立的圆锥底对底组合在一起,其中圆锥母线长2L =,圆锥底面半径2R =,22242S ππ∴=⨯⨯⨯= 故选:D .7.(2021·辽宁·模拟预测)攒尖是我国古代建筑中屋顶的一种结构样式,多见于亭阁式建筑、园林建筑.下面以圆形攒尖为例.如图所示的建筑屋顶可近似看作一个圆锥,其轴截面(过圆锥旋转轴的截面)是底边长为6m ,顶角为23π的等腰三角形,则该屋顶的体积约为( )A .36m πB .333m πC .393m πD .312m π【答案】B【分析】 根据给定条件求出圆锥的高,再利用圆锥体积公式计算即可得解.【详解】 依题意,该圆形攒尖的底面圆半径3r =,高tan 36h r π==,则21333V r h ππ==(3m ), 所以该屋顶的体积约为333m π. 故选:B8.(2021·全国全国·模拟预测)如图,已知圆锥的顶点为S ,AB 是底面圆的直径,点C 在底面圆上且60ABC ∠=︒,点M 为劣弧AC 的中点,过直线AC 作平面α,使得直线SB ∥平面α,设平面α与SM 交于点N ,则SN SM的值为( )A .13B .23C .12D .34【答案】B【分析】连接BM 交AC 于点D ,连接ND ,根据线面平行的性质定理知//ND SB ,再根据平行线分线段成比例定理得到SN BD SM BM=,然后根据圆的性质得到DAB DCM △△∽,进而得21BD AB DM MC ==,即可求出SN SM 的值. 【详解】解:如图,连接BM 交AC 于点D ,连接ND ,则平面SBM ⋂平面ND α=,又//SB 平面α,所以//ND SB ,所以SN BD SM BM=.因为AB 是底面圆的直径,60ABC ∠=︒,点M 为劣弧AC 的中点,连接MC ,所以30ABM MBC BAC BMC ∠=∠=∠=∠=︒,所以12MC BC AB ==,易得DAB DCM △△∽,所以21BD AB DM MC ==,则23BD SN BM SM ==.故选:B.9.(2021年天津高考数学试题)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为323π,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为( )A .3πB .4πC .9πD .12π 【答案】B【分析】作出图形,计算球体的半径,可计算得出两圆锥的高,利用三角形相似计算出圆锥的底面圆半径,再利用锥体体积公式可求得结果.【详解】如下图所示,设两个圆锥的底面圆圆心为点D ,设圆锥AD 和圆锥BD 的高之比为3:1,即3AD BD =,设球的半径为R ,则343233R ππ=,可得2R =,所以,44AB AD BD BD =+==, 所以,1BD =,3AD =,CD AB ⊥,则90CAD ACD BCD ACD ∠+∠=∠+∠=,所以,CAD BCD ∠=∠,又因为ADC BDC ∠=∠,所以,ACD CBD △∽△,所以,AD CD CD BD=,3CD AD BD ∴=⋅ 因此,这两个圆锥的体积之和为()21134433CD AD BD πππ⨯⋅+=⨯⨯=. 故选:B.10.(2021·陕西临渭·一模(理))已知,a b 是两条异面直线,直线c 与,a b 都垂直,则下列说法正确的是( )A .若c ⊂平面α,则a α⊥B .若c ⊥平面α,则//,//a b ααC .存在平面α,使得,,//c a b ααα⊥⊂D .存在平面α,使得,,c a b ααα⊥⊥//【答案】C【分析】在A 中,a 与α相交、平行或a ⊂α;在B 中,a ,b 与平面α平行或a ,b 在平面α内;在C 中,由线面垂直的性质得:存在平面α,使得c ⊥α,a ⊂α,b ∥α;在D 中,a ∥b ,与已知a ,b 是两条异面直线矛盾.【详解】由a ,b 是两条异面直线,直线c 与a ,b 都垂直,知:在A 中,若c ⊂平面α,则a 与α相交、平行或a ⊂α,故A 错误;在B 中,若c ⊥平面α,则a ,b 与平面α平行或a ,b 在平面α内,故B 错误; 在C 中,由线面垂直的性质得:存在平面α,使得c ⊥α,a ⊂α,b ∥α,故C 正确; 在D 中,若存在平面α,使得c ∥α,a ⊥α,b ⊥α,则a ∥b ,与已知a ,b 是两条异面直线矛盾,故D 错误.故选:C11.(2018年全国普通高等学校招生统一考试文科数学(新课标I 卷))已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A .2πB .12πC .82πD .10π 【答案】B【详解】分析:首先根据正方形的面积求得正方形的边长,从而进一步确定圆柱的底面圆半径与圆柱的高,从而利用相关公式求得圆柱的表面积. 详解:根据题意,可得截面是边长为22 2的圆,且高为2所以其表面积为22(2)222212S πππ=+⋅⋅=,故选B.点睛:该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和.12.(2021·云南昆明·模拟预测(理))已知正四棱锥的底面边长为2,高为2,若存在点O 到该正四棱锥的四个侧面和底面的距离都等于d ,则d =( )A .512-B .312-C .322- D .622- 【答案】A【分析】作出四棱锥,根据题意sin OE O F SE SO α'==',解方程即可求解. 【详解】由题意可得2211sin 521OE SE α===+,且sin 25O F d SO d α'=='-, 解得51d -=. 故选:A二、填空题13.(2019年北京市高考数学试卷(文科))已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【答案】如果l ⊥α,m ∥α,则l ⊥m 或如果l ⊥α,l ⊥m ,则m ∥α.11【分析】将所给论断,分别作为条件、结论加以分析.【详解】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l ⊥α,m ∥α,则l ⊥m . 正确;(2)如果l ⊥α,l ⊥m ,则m ∥α.正确;(3)如果l ⊥m ,m ∥α,则l ⊥α.不正确,有可能l 与α斜交、l ∥α.【点睛】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力.14.(2021年全国高考甲卷数学(文)试题)已知一个圆锥的底面半径为6,其体积为30π则该圆锥的侧面积为________.【答案】39π【分析】利用体积公式求出圆锥的高,进一步求出母线长,最终利用侧面积公式求出答案.【详解】∵216303V h ππ=⋅= ∴52h = ∴2222513622l h r ⎛⎫=+=+= ⎪⎝⎭∴136392S rl πππ==⨯⨯=侧. 故答案为:39π.15.(2019年江苏省高考数学试卷)如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.试卷第12页,共14页【答案】10.【分析】由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.【详解】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点, 所以112CE CC =, 由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高,所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=. 【点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.16.(2021年全国高考乙卷数学(文)试题)以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).13【答案】③④(答案不唯一)【分析】由题意结合所给的图形确定一组三视图的组合即可.【详解】选择侧视图为③,俯视图为④,如图所示,长方体1111ABCD A B C D -中,12,1AB BC BB ===,,E F 分别为棱11,B C BC 的中点,则正视图①,侧视图③,俯视图④对应的几何体为三棱锥E ADF -.故答案为:③④.【点睛】三视图问题解决的关键之处是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系.试卷第14页,共14页15。
高三数学立体几何专项训练(文科)(教育课资)
2020届高三数学立体几何专题(文科)吴丽康 2019-111.如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的点. (Ⅰ)证明:PB // 平面AEC ;(Ⅱ)设AP=1,AD =,三棱锥P -ABD 的体积V =,求A 点到平面PBD 的距离.2. 如图,四棱锥P ABCD 中,AB ∥CD ,AB =2CD ,E 为PB 的中点. (1)求证:CE ∥平面P AD ;(2)在线段AB 上是否存在一点F ,使得平面P AD ∥平面CEF ? 若存在,证明你的结论,若不存在,请说明理由.3如图,在四棱锥P -ABCD 中,平面P AC ⊥平面ABCD ,且P A ⊥AC ,P A =AD =2,四边形ABCD 满足BC ∥AD ,AB ⊥AD ,AB =BC =1.点E ,F 分别为侧棱PB ,PC 上的点, 且PE PB =PFPC=λ(λ≠0). (1)求证:EF ∥平面P AD ;(2)当λ=12时,求点D 到平面AFB 的距离.3434.如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形.(1)证明:平面A1BD∥平面CD1B1;(2)若平面ABCD∩平面B1D1C=直线l,证明:B1D1∥l.5..如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH.6.如图,在四棱锥PABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.7.(2018北京通州三模,18)如图,在四棱锥P-ABCD中,平面PAB⊥平面ABCD,四边形ABCD为正方形,△PAB为等边三角形,E是PB中点,平面AED与棱PC交于点F.(1)求证:AD∥EF; (2)求证:PB⊥平面AEFD;(3)记四棱锥P-AEFD的体积为V1,四棱锥P-ABCD的体积为V2,直接写出V1的值.V28...如图,在四棱锥PABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面P AD为正三角形,其所在平面垂直于底面ABCD,若G为AD的中点.(1)求证:BG⊥平面P AD;(2)求证:AD⊥PB;(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD?并证明你的结论.9.(2016·高考北京卷)如图,在四棱锥PABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(1)求证:DC⊥平面P AC;(2)求证:平面P AB⊥平面P AC;(3)设点E为AB的中点.在棱PB上是否存在点F,使得P A∥平面CEF?说明理由.10..如图,在四棱锥P-ABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD交于点F.(1)求证:AB∥EF;(2)若AF⊥EF,求证:平面P AD⊥平面ABCD.11..如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,P A =AB =BC =3,AD =CD =1,∠ADC =120°,点M 是AC 与BD 的交点,点N 在线段PB 上,且PN =14PB .(1)证明:MN ∥平面PDC ;(2)求直线MN 与平面P AC 所成角的正弦值.12..(2016·高考四川卷)如图,在四棱锥P ABCD 中,P A ⊥CD ,AD ∥BC ,∠ADC =∠P AB =90°,BC =CD =12AD .(1)在平面P AD 内找一点M ,使得直线CM ∥平面P AB ,并说明理由; (2)证明:平面P AB ⊥平面PBD .13.(2016·高考江苏卷)如图,在直三棱柱ABC A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且B 1D ⊥A 1F ,A 1C 1⊥A 1B 1. 求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .14.【2014,19】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11. (1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB 求三棱柱111C B A ABC -的高.15.(2017天津,文17)如图,在四棱锥P-ABCD 中,AD ⊥平面PDC,AD ∥ BC, PD ⊥PB, AD=1,BC=3,CD=4,PD=2.(1)求异面直线AP 与BC 所成角的余弦值;(2)求证:PD ⊥平面PBC;(3)求直线AB 与平面PBC 所成角的正弦值.16.(2016·高考浙江卷)如图,在三棱台ABC DEF 中,平面BCFE ⊥平面ABC , ∠ACB =90°,BE =EF =FC =1,BC =2,AC =3. (1)求证:BF ⊥平面ACFD ;(2)求直线BD 与平面ACFD 所成角的余弦值.17..(2018·全国Ⅲ)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直, M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC .(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.立体几何中的翻折问题18...如图(1),在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图(2)中△A 1BE 的位置,得到四棱锥A 1BCDE .(1)证明:CD ⊥平面A 1OC ;(2)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1BCDE 的体积为362,求a 的值.19..如图1,在直角梯形ABCD 中,∠ADC =90°,AB ∥CD ,AD =CD =12AB =2,E 为AC 的中点,将△ACD 沿AC 折起,使折起后的平面ACD 与平面ABC 垂直, 如图2.在图2所示的几何体D -ABC 中: (1)求证:BC ⊥平面ACD ;(2)点F 在棱CD 上,且满足AD ∥平面BEF ,求几何体F -BCE 的体积.20.如图,长方体ABCD A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8.点E ,F 分别在A 1B 1,D 1C 1上,过点E 、F 的平面α与此长方体的面相交,交线围成一个正方形EFGH .(1)求证:A 1E =D 1F ;(2)判断A 1D 与平面α的关系.2020届高三数学立体几何专题(文科)1解析:(Ⅰ)设AC 的中点为O , 连接EO . 在三角形PBD 中,中位线EO //PB ,且EO 在平面AEC 上,所以PB //平面AEC . (Ⅱ)∵AP =1,3AD =,-3P ABD V =, -11=32P ABD V PA AB AD ∴⋅⋅⋅33==AB ,∴32AB =, 作AH ⊥PB 角PB 于H ,由题意可知BC ⊥平面P AB ,∴BC ⊥AH ,故AH ⊥平面PBC .又313PA AB AH PB ⋅==,故A 点到平面PBC 的距离313. 2.(1)证明:如图所示,取P A 的中点H ,连接EH ,DH ,因为E 为PB 的中点, 所以EH ∥AB ,EH =12AB ,又AB ∥CD ,CD =12AB . 所以EH ∥CD ,EH =CD ,因此四边形DCEH 是平行四边形, 所以CE ∥DH , 又DH ⊂平面P AD ,CE ⊄平面P AD , 所以CE ∥平面P AD . (2)如图所示,取AB 的中点F ,连接CF ,EF , 所以AF =12AB ,又CD =12AB ,所以AF =CD ,又AF ∥CD ,所以四边形AFCD 为平行四边形,所以CF ∥AD ,又CF ⊄平面P AD ,所以CF ∥平面P AD ,由(1)可知CE ∥平面P AD , 又CE ∩CF =C ,故平面CEF ∥平面P AD ,故存在AB 的中点F 满足要求.3.(1)证明 ∵PE PB =PFPC =λ(λ≠0),∴EF ∥BC .∵BC ∥AD ,∴EF ∥AD .又EF ⊄平面P AD ,AD ⊂平面P AD ,∴EF ∥平面P AD . (2)解 ∵λ=12,∴F 是PC 的中点,在Rt △P AC 中,P A =2,AC =2,∴PC =P A 2+AC 2=6,∴PF =12PC =62.∵平面P AC ⊥平面ABCD ,且平面P AC ∩平面ABCD =AC ,P A ⊥AC ,P A ⊂平面P AC ,∴P A ⊥平面ABCD ,∴P A ⊥BC .又AB ⊥AD ,BC ∥AD ,∴BC ⊥AB ,又P A ∩AB =A ,P A ,AB ⊂平面P AB , ∴BC ⊥平面P AB , ∴BC ⊥PB ,∴在Rt △PBC 中,BF =12PC =62.连接BD ,DF ,设点D 到平面AFB 的距离为d ,在等腰三角形BAF 中,BF =AF =62,AB =1, ∴S △ABF =54,又S △ABD =1,点F 到平面ABD 的距离为1, ∴由V F -ABD =V D -AFB ,得13×1×1=13×d ×54,解得d =455,即点D 到平面AFB 的距离为455.4.证明 (1)由题设知BB 1∥DD 1且BB 1=DD 1,所以四边形BB 1D 1D 是平行四边形, 所以BD ∥B 1D 1.又BD ⊄平面CD 1B 1,B 1D 1⊂平面CD 1B 1,所以BD ∥平面CD 1B 1.因为A 1D 1∥B 1C 1∥BC 且A 1D 1=B 1C 1=BC , 所以四边形A 1BCD 1是平行四边形,所以A 1B ∥D 1C .又A 1B ⊄平面CD 1B 1,D 1C ⊂平面CD 1B 1, 所以A 1B ∥平面CD 1B 1.又因为BD ∩A 1B =B ,BD ,A 1B ⊂平面A 1BD , 所以平面A 1BD ∥平面CD 1B 1. (2)由(1)知平面A 1BD ∥平面CD 1B 1,又平面ABCD ∩平面B 1D 1C =直线l , 平面ABCD ∩平面A 1BD =直线BD ,所以直线l ∥直线BD , 在四棱柱ABCD -A 1B 1C 1D 1中,四边形BDD 1B 1为平行四边形, 所以B 1D 1∥BD ,所以B 1D 1∥l .5.连接AC 交BD 于点O ,连接MO ,因为PM =MC ,AO =OC ,所以P A ∥MO , 因为P A ⊄平面MBD ,MO ⊂平面MBD ,所以P A ∥平面MBD .因为平面P AHG ∩平面MBD =GH ,所以AP ∥GH .6.[证明] (1)在四棱锥P ABCD 中,因为P A ⊥底面ABCD , CD ⊂平面ABCD ,所以P A ⊥CD ,因为AC ⊥CD ,且P A ∩AC =A ,所以CD ⊥平面P AC ,而AE ⊂平面P AC ,所以CD ⊥AE . (2)由P A =AB =BC ,∠ABC =60°,可得AC =P A . 因为E 是PC 的中点,所以AE ⊥PC .由(1)知AE ⊥CD ,且PC ∩CD =C ,所以AE ⊥平面PCD . 而PD ⊂平面PCD ,所以AE ⊥PD . 因为P A ⊥底面ABCD ,所以P A ⊥AB . 又因为AB ⊥AD 且P A ∩AD =A ,所以AB ⊥平面P AD ,而PD ⊂平面P AD ,所以AB ⊥PD . 又因为AB ∩AE =A ,所以PD ⊥平面ABE .7.(1)证明 因为ABCD 为正方形,所以AD ∥BC.因为AD ⊄平面PBC,BC ⊂平面PBC,所以AD ∥平面PBC. 因为AD ⊂平面AEFD,平面AEFD ∩平面PBC=EF, 所以AD ∥EF. (2)证明 因为四边形ABCD 是正方形,所以AD ⊥AB.因为平面PAB ⊥平面ABCD,平面PAB ∩平面ABCD=AB,AD ⊂平面ABCD, 所以AD ⊥平面PAB.因为PB ⊂平面PAB,所以AD ⊥PB. 因为△PAB 为等边三角形,E 是PB 中点,所以PB ⊥AE.因为AE ⊂平面AEFD,AD ⊂平面AEFD,AE ∩AD=A,所以PB ⊥平面AEFD. (3)解 由(1)知,V 1=V C-AEFD ,V E-ABC =V F-ADC =23V C-AEFD =23V 1,∴V BC-AEFD =53V 1,则V P-ABCD =V 1+53V 1=83V 1, ∴V 1V 2=38.8.[解] (1)证明:在菱形ABCD 中,∠DAB =60°,G 为AD 的中点,所以BG ⊥AD .又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD , 所以BG ⊥平面P AD .(2)证明:如图,连接PG.因为△P AD为正三角形,G为AD的中点,所以PG⊥AD.由(1)知,BG⊥AD,又PG∩BG=G,所以AD⊥平面PGB.因为PB⊂平面PGB,所以AD⊥PB.(3)当F为PC的中点时,满足平面DEF⊥平面ABCD.证明如下:取PC的中点F,连接DE、EF、DF.在△PBC中,FE∥PB,在菱形ABCD中,GB∥DE.而FE⊂平面DEF,DE⊂平面DEF,EF∩DE=E,PB⊂平面PGB,GB⊂平面PGB,PB∩GB=B,所以平面DEF∥平面PGB.因为BG⊥平面P AD,PG⊂平面P AD,所以BG⊥PG.又因为PG⊥AD,AD∩BG=G,所以PG⊥平面ABCD.又PG⊂平面PGB,所以平面PGB⊥平面ABCD,所以平面DEF⊥平面ABCD.9.【解】(1)证明:因为PC⊥平面ABCD,所以PC⊥DC.又因为DC⊥AC,且PC∩AC=C,所以DC⊥平面P AC.(2)证明:因为AB∥DC,DC⊥AC,所以AB⊥AC.因为PC⊥平面ABCD,所以PC⊥AB.又因为PC∩AC=C,所以AB⊥平面P AC.又AB⊂平面P AB,所以平面P AB⊥平面P AC.(3)棱PB上存在点F,使得P A∥平面CEF.理由如下:如图,取PB中点F,连接EF,CE,CF.又因为E为AB的中点,所以EF∥P A.又因为P A⊄平面CEF,且EF⊂平面CEF,所以P A∥平面CEF.10.证明(1)因为四边形ABCD是矩形,所以AB∥CD.又AB⊄平面PDC,CD⊂平面PDC,所以AB∥平面PDC,又因为AB⊂平面ABE,平面ABE∩平面PDC=EF,所以AB∥EF.(2)因为四边形ABCD是矩形,所以AB⊥AD.因为AF⊥EF,(1)中已证AB∥EF,所以AB⊥AF.又AB⊥AD,由点E在棱PC上(异于点C),所以点F异于点D,所以AF∩AD=A,AF,AD⊂平面P AD,所以AB⊥平面P AD,又AB⊂平面ABCD,所以平面P AD⊥平面ABCD.11.(1)证明 因为AB =BC ,AD =CD , 所以BD 垂直平分线段AC .又∠ADC =120°,所以MD =12AD =12,AM =32. 所以AC = 3. 又AB =BC =3,所以△ABC 是等边三角形,所以BM =32,所以BM MD =3,又因为PN =14PB ,所以BM MD =BN NP=3,所以MN ∥PD . 又MN ⊄平面PDC ,PD ⊂平面PDC ,所以MN ∥平面PDC .(2)解 因为P A ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥P A ,又BD ⊥AC ,P A ∩AC =A ,P A ,AC ⊂平面P AC ,所以BD ⊥平面P AC .由(1)知MN ∥PD ,所以直线MN 与平面P AC 所成的角即直线PD 与平面P AC 所成的角, 故∠DPM 即为所求的角.在Rt △P AD 中,PD =2,所以sin ∠DPM =DM DP =122=14, 所以直线MN 与平面P AC 所成角的正弦值为14. 12.【解】 (1)取棱AD 的中点M (M ∈平面P AD ),点M 即为所求的一个点.理由如下:因为AD ∥BC ,BC =12AD ,所以BC ∥AM ,且BC =AM , 所以四边形AMCB 是平行四边形,从而CM ∥AB .又AB ⊂平面P AB ,CM ⊄平面P AB ,所以CM ∥平面P AB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点)(2)证明:由已知,P A ⊥AB ,P A ⊥CD ,因为AD ∥BC ,BC =12AD ,所以直线AB 与CD 相交. 所以P A ⊥平面ABCD ,从而P A ⊥BD .连接BM ,因为AD ∥BC ,BC =12AD ,所以BC ∥MD ,且BC =MD . 所以四边形BCDM 是平行四边形.所以BM =CD =12AD ,所以BD ⊥AB . 又AB ∩AP =A ,所以BD ⊥平面P AB .又BD ⊂平面PBD ,所以平面P AB ⊥平面PBD .13.[证明] (1)在直三棱柱ABC A 1B 1C 1中,A 1C 1∥AC .在△ABC 中,因为D ,E 分别为AB ,BC 的中点,所以DE ∥AC ,于是DE ∥A 1C 1.又DE ⊄平面A 1C 1F ,A 1C 1⊂平面A 1C 1F ,所以直线DE ∥平面A 1C 1F .(2)在直三棱柱ABC A 1B 1C 1中,A 1A ⊥平面A 1B 1C 1.因为A 1C 1⊂平面A 1B 1C 1,所以A 1A ⊥A 1C 1.又A 1C 1⊥A 1B 1,A 1A ⊂平面ABB 1A 1,A 1B 1⊂平面ABB 1A 1,A 1A ∩A 1B 1=A 1,所以A 1C 1⊥平面ABB 1A 1.因为B 1D ⊂平面ABB 1A 1,所以A 1C 1⊥B 1D .又B 1D ⊥A 1F ,A 1C 1⊂平面A 1C 1F ,A 1F ⊂平面A 1C 1F ,A 1C 1∩A 1F =A 1, 所以B 1D ⊥平面A 1C 1F .因为直线B 1D ⊂平面B 1DE ,所以平面B 1DE ⊥平面A 1C 1F14.证明:(Ⅰ)连接 BC 1,则O 为B 1C 与BC 1的交点,∵AO ⊥平面BB 1C 1C . ∴AO ⊥B 1C , …2分因为侧面BB 1C 1C 为菱形,∴BC 1⊥B 1C ,…4分∴BC 1⊥平面ABC 1,∵AB ⊂平面ABC 1,故B 1C ⊥AB . …6分(Ⅱ)作OD ⊥BC ,垂足为D ,连结AD ,∵AO ⊥BC ,∴BC ⊥平面AOD ,又BC ⊂平面ABC ,∴平面ABC ⊥平面AOD ,交线为AD ,作OH ⊥AD ,垂足为H ,∴OH ⊥平面ABC . …9分∵∠CBB 1=60°,所以ΔCBB 1为等边三角形,又BC =1,可得OD =3, 由于AC ⊥AB 1,∴11122OA B C ==,∴2274AD OD OA =+=, 由 OH·AD=OD·OA ,可得OH=21,又O 为B 1C 的中点, 所以点B 1到平面ABC 的距离为217, 所以三棱柱ABC -A 1B 1C 1的高高为21。
2020届高三数学立体几何专项训练(文科)
2020届高三数学立体几何专题(文科)吴丽康2019—111.如图,四棱锥P—ABCD中,底面ABCD为矩形,P A⊥平面ABCD,E为PD的点。
(Ⅰ)证明:PB //平面AEC;3,(Ⅱ)设AP=1,AD=3,三棱锥P-ABD的体积V=4求A点到平面PBD的距离.2.如图,四棱锥P。
ABCD中,AB∥CD,AB=2CD,E为PB的中点.(1)求证:CE∥平面P AD;(2)在线段AB上是否存在一点F,使得平面P AD∥平面CEF?若存在,证明你的结论,若不存在,请说明理由.13如图,在四棱锥P-ABCD中,平面P AC⊥平面ABCD,且P A⊥AC,P A=AD=2,四边形ABCD满足BC∥AD,AB⊥AD,AB=BC=1。
点E,F分别为侧棱PB,PC上的点,且错误!=错误!=λ(λ≠0).(1)求证:EF∥平面P AD;(2)当λ=错误!时,求点D到平面AFB的距离.4。
如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形.(1)证明:平面A1BD∥平面CD1B1;(2)若平面ABCD∩平面B1D1C=直线l,证明:B1D1∥l。
25。
如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH。
6.如图,在四棱锥P.ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE。
37.(2018北京通州三模,18)如图,在四棱锥P-ABCD中,平面PAB⊥平面ABCD,四边形ABCD为正方形,△PAB为等边三角形,E是PB中点,平面AED与棱PC交于点F。
(1)求证:AD∥EF; (2)求证:PB⊥平面AEFD;(3)记四棱锥P—AEFD的体积为V1,四棱锥P—ABCD的体积为V2,直接写出的值。
高三立体几何习题文科含答案(K12教育文档)
高三立体几何习题文科含答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高三立体几何习题文科含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高三立体几何习题文科含答案(word版可编辑修改)的全部内容。
23正视图 图1侧视图 图22 2图3立几习题21若直线l 不平行于平面a ,且l a ∉,则 A .a 内的所有直线与异面 B .a 内不存在与l 平行的直线C .a 内存在唯一的直线与l 平行D .a 内的直线与l 都相交2.1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是(A )12l l ⊥,23l l ⊥13//l l ⇒(B )12l l ⊥,23//l l ⇒13l l ⊥(C )233////l l l ⇒1l ,2l ,3l 共面(D)1l ,2l ,3l 共点⇒1l ,2l ,3l 共面3.如图1 ~ 3,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体的体积为A .3.4 C .3.24。
某几何体的三视图如图所示,则它的体积是( )A 。
283π- B.83π-C 。
8-2πD 。
23π5、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB=AD,∠BAD=60°,E 、F 分别是AP 、AD 的中点求证:(1)直线EF‖平面PCD;(2)平面BEF⊥平面PAD5(本小题满分13分)如图,ABEDFC为多面体,平面ABED与平面ACFD垂直,点O在线段AD上,1OA=,OD=,△OAB,△OAC,△ODE,△ODF都是正三角形。
最新高三数学(文科)一轮复习、高考考前复习补充训练、强化训练题、补习资料:第七章 立体几何(解析版)
所示,下面选项中,不可能是该锥体的俯视图的是( )解析:若俯视图为选项C,侧视图的宽应为俯视图中三角形的高是线段CD的中点,则三棱锥P-A1B1A的侧视图为( )解析:如图,画出原正方体的侧视图,显然对于三棱锥P-A B A,B(C) 4.如图,矩形O′A′B′C是水平放置的一个平面图形的直观图,C.菱形 D.一般的平行四边形解析:如图,在原图形OABC中,22+2是菱形,因此选C..如图所示是一个物体的三视图,则此三视图所描述物体的直解析:先观察俯视图,由俯视图可知选项B和D中的一个正确,由正视图和侧视图可知选项D正确,故选D.答案:D6.[2019·济南模拟]我国古代数学家刘徽在学术研究中,不迷信古人,坚持实事求是.他对《九章算术》中“开立圆术”给出的公式产生质疑,为了证实自己的猜测,他引入了一种新的几何体“牟合方盖”:以正方体相邻的两个侧面为底做两次内切圆柱切割,然后剔除外部,剩下的内核部分.如果“牟合方盖”的主视图和左视图都是圆,则其俯视图形状为( )解析:本题考查几何体的三视图.由题意得在正方体内做两次内切圆柱切割,得到的几何体的直观图如图所示,由图易得其俯视图为B,故选B.答案:B7.[2019·河北模拟]某几何体的三视图如图所示,记A为此几何体所有棱的长度构成的集合,则( )A.3∈A B.5∈AC.26∈A D.43∈A解析:由三视图可得,该几何体的直观图如图所示,其中底面是的棱的长度为( )C. 6D. 5解析:根据三视图,利用棱长为2的正方体分析知,该多面体是几何体的各个面中,面积最小的面的面积为( )A.8 B.4C.4 3 D.4 2解析:由三视图可知该几何体的直观图如图所示,由三视图特征答案:D10.[2019·江西南昌模拟]如图,在正四棱柱ABCD-A B C D中,.:.:1.:.:2解析:根据题意,三棱锥正四棱柱的底面边长、高为正四棱柱的高;侧视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高.故三棱锥视图与侧视图的面积之比为:1.答案:A二、填空题11.下列说法正确的有________个.(1)有一个面是多边形,其余各面都是三角形的几何体是棱锥.(2)正棱锥的侧面是等边三角形.(3)底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.解析:(1)错误.棱锥的定义是:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.而“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,故此说法是错误的.如图所示的几何体满足此说法,但它不是棱锥,理由是△ADE和△BCF无公共顶点.(2)错误.正棱锥的侧面都是等腰三角形,不一定是等边三角形.(3)错误.由已知条件知,此三棱锥的三个侧面未必全等,所以不一定是正三棱锥.如图所示的三棱锥中有AB=AD=BD=BC=CD.满足底面△BCD为等边三角形.三个侧面△ABD,△ABC,△ACD都是等腰三角形,但AC长度不一定,三个侧面不一定全等.答案:012.[2019·山东安丘模拟]一个几何体的三视图如图所示,其中正视图是边长为2的正三角形,俯视图是正方形,那么该几何体的侧视图的面积是________.解析:根据三视图可知该几何体是一个四棱锥,其底面是正方形,四边形BFD1E在该正方体的面上的射影可能是________.解析:分别作出在六个面上的射影可知选②③.15.[2019·惠州调研]某三棱锥的三视图如图所示,且图中的三D.647解析:将三视图还原为如图所示的三棱锥P-ABC,其中底面ABC =x,所以-72]=+-2=64128-x2,即x=2xy的最大值是64.答案:C16.如图所示是水平放置三角形的直观图,点D是△ABC的BC⎛52-⎝×(2+29答案:空间几何体的表面积和体积[基础达标]一、选择题1.若圆锥的侧面展开图是圆心角为120°,半径为l的扇形,则这个圆锥的表面积与侧面积比是()A.:2 B.:1.:3.:解析:底面半径r=23π2πl:某几何体的三视图如图所示,则其表面积为()A.12+2 2 B.8+2 2答案:D3.[2019·益阳市,湘潭市高三调研]如图,网格纸上小正方体的解析:由三视图可得三棱锥为图中所示的三棱锥A-PBC(放到棱视图为扇形,则该几何体的体积为()2ππ体的表面积为()A.4+2 3 B.4+4 2解析:由三视图还原几何体和直观图如图所示,易知BC⊥平面出的是某多面体的三视图,则该多面体的表面积为()A.14 B.10+4 2解析:解法一 由三视图可知,该几何体为一个直三棱柱切去一⎣⎢⎡+2×2+2,故选已知一个球的表面上有粗实线画出的是某空间几何体的三视图,则该几何体的体积为( )A.+3B.+3C. 3 D.2 3解析:取AB的中点O,连接OO,如图,在△ABC中,AB=22,二、填空题11.[2019·南昌模拟]如图,直角梯形ABCD中,AD⊥DC,AD∥BD=3,∠CBD=90°,则球O的体积为________.解析:设A到平面BCD的距离为h,∵三棱锥的体积为3,BC 314.[2018·江苏卷,10]如图所示,正方体的棱长为2,以其所有粗线画出的是某个几何体的三视图,则该几何体的表面积为( )A .4+42+2 3B .14+4 2C .10+42+2 3D .4解析:如图,该几何体是一个底面为直角梯形,有一条侧棱垂直52+SB 2+BC 2=(2角三角形.过22-62=SCD 的面积为的面积为12×22×4=4 2.+42+23=10+4何体的体积是( )A .13B .14解析:所求几何体可看作是将长方体截去两个三棱柱得到的几何________.解析:依题意可得该几何体的直观图为图中所示的三棱锥B-答案:11π空间点、直线、平面之间的位置关系[基础达标]一、选择题1.[2019·江西七校联考]已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是( )A.相交或平行 B.相交或异面C.平行或异面 D.相交、平行或异面解析:依题意,直线b和c的位置关系可能是相交、平行或异面.答案:D2.若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是( )A.b⊂αB.b∥αC.b⊂α或b∥αD.b与α相交或b⊂α或b∥α解析:b与α相交或b⊂α或b∥α都可以.答案:D3.如图所示,ABCD-A1B1C1D1是正方体,O是B1D1的中点,直线A1C 交平面AB1D1于点M,则下列结论正确的是( )A.A,M,O三点共线B.A,M,O,A1不共面C.A,M,C,O不共面D.B,B1,O,M共面解析:连接A1C1,AC(图略),则A1C1∥AC,∴A1,C1,A,C四点共面,∴A1C⊂平面ACC1A1.∵M∈A1C,∴M∈平面ACC1A1.又M∈平面AB1D1,∴M在平面ACC1A1与平面AB1D1的交线上,同理A,O在平面ACC1A1与平面AB1D1的交线上,∴A,M,O三点共线.解析:1连接A D,过点A作A M⊥AC于点M,连接BM,设AA=2,由∠A AM 44解法二令M为AC的中点,连接MB,MA,易得MA,MB,MA两a∩β=P时,②错;的序号).解析:图(1)中,直线GH∥MN;直线AB与MN所成角的大小为________.解析:如图,取AC的中点P,连接PM,PN,则PM∥AB,且PM∵PM∥AB,∴∠PMN或其补角是AB与MN所成的角,∵AB=CD,∴PM=PN,若∠PMN=60°,则△PMN是等边三角形,∴∠PMN=60°,∴AB与MN所成的角为60°.若∠MPN=120°,则∠PMN=30°,∴AB与MN所成的角为30°,综上,异面直线AB与MN所成的角为30°或60°.答案:30°或60°三、解答题9.如图,在四边形ABCD中,已知AB∥CD,直线AB,BC,AD,DC 分别与平面α相交于点E,G,H,F,求证:E,F,G,H四点必定共线.证明:因为AB∥CD,所以AB,CD确定一个平面β.又因为AB∩α=E,AB⊂β,所以E∈α,E∈β,即E为平面α与β的一个公共点.同理可证F,G,H均为平面α与β的公共点,因为若两个平面有公共点,那么它们有且只有一条通过公共点的公共直线,所以E,F,G,H四点必定共线.10.如图,已知不共面的三条直线a,b,c相交于点P,A∈a,B∈a,C∈b,D∈c,求证:AD与BC是异面直线.证明:假设AD和BC共面,所确定的平面为α,那么点P,A,B,C,D都在平面α内,∴直线a,b,c都在平面α内,与已知条件a,b,c不共面矛盾,假设不成立.∴AD和BC是异面直线.F分别在棱AB,CD上,且AE=CF=1.(1)求异面直线A E与C F所成角的余弦值;解析:(1)如图,在正方体ABCD-A1B1C1D1中,延长DC至M,使CM=1,则AE綊CM.直线、平面平行的判定和性质[基础达标]一、选择题1.已知α∥β,a⊂α,B∈β,则在β内过点B的所有直线中( )A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一一条与a平行的直线解析:因为a与点B确定一个平面,该平面与β的交线即为符合条件的直线.答案:D2.[2019·河南开封模拟]在空间中,a,b是两条不同的直线,α,β是两个不同的平面,则下列命题中的真命题是( ) A.若a∥α,b∥α,则a∥b B.若a⊂α,b⊂β,α⊥β,则a⊥bC.若a∥α,a∥b,则b∥α D.若α∥β,a⊂α,则a∥β解析:对于A,若a∥α,b∥α,则a,b可能平行,可能相交,可能异面,故A是假命题;对于B,设α∩β=m,若a,b均与m平行,则a∥b,故B是假命题;对于C,b∥α或b在平面α内,故C 是假命题;对于D,若α∥β,a⊂α,则a与β没有公共点,则a∥β,故D是真命题.故选D.答案:D3.[2019·石家庄模拟]过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有( )A.4条 B.6条C.8条 D.12条解析:如图,H,G,F,I是相应线段的中点,棱的中点,则能得出平面ABC∥平面DEF的是( )解析:在B中,如图,连接MN,PN,∵A,B,C为正方体所在棱的中点,AA1于点Q,则线段AQ的长为________.18.[2019·福建泉州模拟]如图,在正方体ABCD-A B C D中,O为底9.[2019·安徽合肥一中模拟]如图,四棱锥P-ABCD中,E为AD10.[2019·江西临川二中月考]如图,在矩形ABCD中,AB=1,AD11.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD为(2)取AC中点M,连接EM,DM,因为E为PC的中点,M是AC的中点,直线、平面垂直的判定和性质[基础达标]一、选择题1.直线a⊥平面α,b∥α,则a与b的关系为( )A.a⊥b,且a与b相交B.a⊥b,且a与b不相交C.a⊥bD.a与b不一定垂直解析:∵b∥α,∴b平行于α内的某一条直线,设为b′,∵a⊥α,且b′⊂α,∴a⊥b′,∴a⊥b,但a与b可能相交,也可能异面.答案:C2.PA垂直于正方形ABCD所在平面,连接PB,PC,PD,AC,BD,则下列垂直关系正确的是( )①平面PAB⊥平面PBC;②平面PAB⊥平面PAD;③平面PAB⊥平面PCD;④平面PAB⊥平面PAC.A.①② B.①③C.②③ D.②④解析:由PA⊥平面ABCD,BC⊂平面ABCD得PA⊥BC,又BC⊥AB,PA∩AB=A,则BC⊥平面PAB,又BC⊂平面PBC,得平面PAB⊥平面PBC,故①正确,同理可证②正确.答案:A3.[2019·成都诊断性检测]已知m,n是空间中两条不同的直线,α,β为空间中两个互相垂直的平面,则下列命题正确的是( ) A.若m⊂α,则m⊥βB.若m⊂α,n⊂β,则m⊥nC.若m⊄α,m⊥β,则m∥αD.若α∩β=m,n⊥m,则n⊥α解析:选项A中,若m⊂α,则直线m和平面β可能垂直,也可能平行或相交,故选项A不正确;选项B中,直线m与直线n的关系不确定,可能平行,也可能相交或异面,故选项B不正确;选项C中,若m⊥β,则m∥α或m⊂α,又m⊄α,故m∥α,选项C正确;选项D中,缺少条件n⊂β,故选项D不正确,故选C.答案:C4.[2017·全国卷Ⅲ]在正方体ABCDA1B1C1D1中,E为棱CD的中点,则( )A.A1E⊥DC1 B.A1E⊥BDC.A1E⊥BC1 D.A1E⊥AC解析:∵ A1E在平面ABCD上的投影为AE,而AE不与AC,BD垂直,∴ B,D错;∵ A1E在平面BCC1B1上的投影为B1C,且B1C⊥BC1,∴ A1E⊥BC1,故C正确;(证明:由条件易知,BC1⊥B1C,BC1⊥CE,又CE∩B1C=C,∴ BC1⊥平面CEA1B1.又A1E⊂平面CEA1B1,∴ A1E⊥BC1)∵ A1E在平面DCC1D1上的投影为D1E,而D1E不与DC1垂直,故A 错.故选C.答案:C5.[2019·惠州调研]设l,m,n为三条不同的直线,α为一个平面,则下列命题中正确的个数是( )①若l⊥α,则l与α相交;②若m⊂α,n⊂α,l⊥m,l⊥n,则l⊥α;③若l∥m,m∥n,l⊥α,则n⊥α;④若l∥m,m⊥α,n⊥α,则l∥n.A.1 B.2C.3 D.4解析:对于①,若l⊥α,则l与α不可能平行,l也不可能在α内,所以l与α相交,①正确;对于②,若m⊂α,n⊂α,l⊥m,l⊥n,则有可能是l⊂α,故②错误;对于③,若l∥m,m∥n,则l∥n,又l⊥α,所以n⊥α,故③正确;对于④,因为m⊥α,n⊥α,所以m∥n,又l∥m,所以l∥n,故④正确.选C.答案:C二、填空题6.如图,∠BAC=90°,PC⊥平面ABC,则在△ABC,△PAC的边所在的直线中,与PC垂直的直线有________;与AP垂直的直线有________.解析:∵PC⊥平面ABC,∴PC垂直于直线AB,BC,AC;∵AB⊥AC,AB⊥PC,AC∩PC=C,∴AB⊥平面PAC,∴AB⊥AP.与AP垂直的直线是AB.答案:AB,BC,AC AB7.假设平面α∩平面β=EF,AB⊥α,CD⊥β,垂足分别为B,D,如果增加一个条件,就能推出BD⊥EF,现有下面四个条件:①AC⊥α;②AC∥α;③AC与BD在β内的射影在同一条直线上;④AC∥EF.其中能成为增加条件的是________.(把你认为正确的条件序号都填上)解析:如果AB与CD在一个平面内,可以推出EF垂直于该平面,又BD在该平面内,所以BD⊥EF.故要得到BD⊥EF,只需AB,CD在一个平面内即可,只有①③能保证这一条件.答案:①③8.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD(只要填写一个你认为正确的条件即可).解析:∵PC在底面ABCD上的射影为AC,且AC⊥BD,∴BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD,而PC⊂平面PCD,∴平面MBD⊥平面PCD.答案:DM⊥PC(或BM⊥PC)三、解答题9.[2019·陕西质量检测]如图,在三棱柱ABC-A1B1C1中,AA1=AB,∠ABC=90°,侧面A1ABB1⊥底面ABC.(1)求证:AB1⊥平面A1BC;(2)若AC=5,BC=3,∠A1AB=60°,求三棱柱ABC-A1B1C1的体积.解析:(1)证明:在侧面A1ABB1中,∵A1A=AB,∴四边形A1ABB1为菱形,∴AB1⊥A1B.∵侧面A1ABB1⊥底面ABC,∠ABC=90°,∴CB⊥平面A1ABB1.∵AB1⊂平面A1ABB1,∴CB⊥AB1.又A1B∩BC=B,∴AB1⊥平面A1BC.(2)解法一如图,过A1作A1D⊥AB,垂足为D.∵平面ABC⊥平面A1ABB1,平面ABC∩平面A1ABB1=AB,∴A1D⊥平面ABC,∴A1D为三棱柱ABC-A1B1C1的高.∵BC=3,AC=5,∠ABC=90°,∴AB=4,又AA1=AB,∠A1AB=60°,PB的中点.(1)求证:PE⊥BC;因为F,G分别为PB,PC的中点,(2)记平面PAB与平面PCE相交于直线l,求证:AB∥l.5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.立体几何
1.如图,在三棱柱ABF -DCE 中,∠ABC =120°,BC =2CD, AD =AF, AF ⊥平面ABCD .
(1)求证:BD ⊥EC ;
(2)若AB =1,求四棱锥B -ADEF 的体积.
(1)证明 已知ABF -DCE 为三棱柱,且AF ⊥平面ABCD , ∴DE ∥AF ,ED ⊥平面ABCD . ∵BD ⊂平面ABCD ,∴ED ⊥BD ,
又ABCD 为平行四边形,∠ABC =120°,故∠BCD =60°, 又BC =2CD ,故∠BDC =90°,故BD ⊥CD ,
∵ED ∩CD =D ,ED ,CD ⊂平面ECD ,∴BD ⊥平面ECD ,∵EC ⊂平面ECD ,故BD ⊥EC . (2)解 由BC =2CD 得AD =2AB ,∵AB =1,故AD =2,作BH ⊥AD 于点H ,
∵AF ⊥平面ABCD ,BH ⊂平面ABCD ,
∴AF ⊥BH ,又AD ∩AF =A ,AD ,AF ⊂平面ADEF , ∴BH ⊥平面ADEF ,又∠ABC =120°, ∴在△ABH 中,∠BAH =60°,又AB =1, ∴BH =
32
, ∴V B -ADEF =13×(2×2)×32=23
3
.
2.如图,在△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥平面BCD ,∠ADB =60°,E ,F 分别是
AC ,AD 上的动点,且AE AC =AF
AD
=λ(0<λ<1).
(1)求证:无论λ为何值,总有平面BEF ⊥平面ABC ; (2)是否存在实数λ,使得平面BEF ⊥平面ACD . (1)证明 ∵AB ⊥平面BCD ,CD ⊂平面BCD , ∴AB ⊥CD .
∵CD ⊥BC ,AB ∩BC =B ,AB ,BC ⊂平面ABC , ∴CD ⊥平面ABC . 又∵AE AC =
AF
AD
=λ(0<λ<1),
∴无论λ为何值,恒有EF ∥CD , ∴EF ⊥平面ABC . 又∵EF ⊂平面BEF ,
∴无论λ为何值,总有平面BEF ⊥平面ABC . (2)解 假设存在λ,使得平面BEF ⊥平面ACD . 由(1)知BE ⊥EF ,
∵平面BEF ⊥平面ACD ,平面BEF ∩平面ACD =EF ,BE ⊂平面BEF , ∴BE ⊥平面ACD . 又∵AC ⊂平面ACD , ∴BE ⊥AC .
∵BC =CD =1,∠BCD =∠ABD =90°,∠ADB =60°, ∴BD =2,∴AB =2tan60°=6, ∴AC =AB 2
+BC 2
=7. 由Rt△AEB ∽Rt△ABC , 得AB 2
=AE ·AC ,∴AE =
67
,
∴λ=AE AC =67
.
故当λ=6
7
时,平面BEF ⊥平面ACD .
3.如图,在四棱锥P —ABCD 中,PC =AD =CD =1
2
AB =2,AB ∥DC ,AD ⊥CD ,PC ⊥平面ABCD .
(1)求证:BC ⊥平面PAC ;
(2)若M 为线段PA 的中点,且过C ,D ,M 三点的平面与线段PB 交于点N ,确定点N 的位置,说明理由;并求三棱锥A —CMN 的高.
(1)证明 连接AC ,在直角梯形ABCD 中,AC =AD 2
+DC 2
=22,
BC =(AB -CD )2+AD 2=22,
所以AC 2
+BC 2
=AB 2
,
即AC ⊥BC .又PC ⊥平面ABCD ,BC ⊂平面ABCD , 所以PC ⊥BC ,又AC ∩PC =C ,AC ,PC ⊂平面PAC , 故BC ⊥平面PAC .
(2)解 N 为PB 的中点,连接MN ,CN .
因为M 为PA 的中点,N 为PB 的中点,所以MN ∥AB , 且MN =1
2
AB =2.
又因为AB ∥CD ,所以MN ∥CD ,所以M ,N ,C ,D 四点共面, 所以N 为过C ,D ,M 三点的平面与线段PB 的交点. 因为BC ⊥平面PAC ,N 为PB 的中点, 所以点N 到平面PAC 的距离d =1
2BC = 2.
又S △ACM =12S △ACP =12×1
2×AC ×PC =2,
所以V 三棱锥N —ACM =13×2×2=2
3.
由题意可知,在Rt△PCA 中,
PA =AC 2+PC 2=23,CM =3,
在Rt△PCB 中,PB =BC 2+PC 2
=23,
CN =3,所以S △CMN =12
×2×2= 2.
设三棱锥A —CMN 的高为h ,
V 三棱锥N —ACM =V 三棱锥A —CMN =13×2×h =23
,
解得h =2,故三棱锥A —CMN 的高为 2.
4.(2018·乐山联考)如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且PO =OB =1.
(1)若D 为线段AC 的中点,求证:AC ⊥平面PDO ; (2)求三棱锥P -ABC 体积的最大值;
(3)若BC =2,点E 在线段PB 上,求CE +OE 的最小值.
(1)证明 在△AOC 中,因为OA =OC, D 为AC 的中点,所以AC ⊥OD . 又PO 垂直于圆O 所在的平面,所以PO ⊥AC .
因为DO ∩PO =O ,DO ,PO ⊂平面PDO ,所以AC ⊥平面PDO .
(2)解 因为点C 在圆O 上,所以当CO ⊥AB 时,C 到AB 的距离最大,且最大值为1. 又AB =2,所以△ABC 面积的最大值为1
2×2×1=1.
又因为三棱锥P -ABC 的高PO =1,
故三棱锥P -ABC 体积的最大值为13×1×1=1
3.
(3)解 在△POB 中,PO =OB =1,∠POB =90°, 所以PB =12
+12
= 2.
同理PC =2,所以PB =PC =BC .在三棱锥P -ABC 中,将侧面BCP 绕PB 旋转至平面C ′PB ,使之与平面ABP 共面,如图所示.
当O ,E ,C ′共线时,CE +OE 取得最小值. 又因为OP =OB ,C ′P =C ′B ,
所以OC ′垂直平分PB ,即E 为PB 中点.
从而OC′=OE+EC′=
2
2
+
6
2
=
2+6
2
,
即CE+OE的最小值为2+6 2
.。