竖直平面内的圆周运动临界问题(超级经典全面)
竖直面内的圆周运动(解析版)
![竖直面内的圆周运动(解析版)](https://img.taocdn.com/s3/m/fd449dbc6137ee06eff918c0.png)
竖直面内的圆周运动一、竖直平面内圆周运动的临界问题——“轻绳、轻杆”模型1.“轻绳”模型和“轻杆”模型不同的原因在于“轻绳”只能对小球产生拉力,而“轻杆”既可对小球产生拉力也可对小球产生支持力。
2.有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况。
物理情景最高点无支撑最高点有支撑实例球与绳连接、水流星、沿内轨道的“过山车”等球与杆连接、球在光滑管道中运动等图示异同点受力特征除重力外,物体受到的弹力方向:向下或等于零除重力外,物体受到的弹力方向:向下、等于零或向上受力示意图力学方程mg+F N=mv2R mg±F N=mv2R临界特征F N=0mg=mv2minR即v min=gRv=0即F向=0F N=mg过最高点的条件在最高点的速度v≥gR v≥0【典例1】如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动。
小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图象如图乙所示,则()A .小球的质量为aRbB .当地的重力加速度大小为RbC .v 2=c 时,小球对杆的弹力方向向上D .v 2=2b 时,小球受到的弹力与重力大小相等 【答案】: ACD【典例2】用长L = 0.6 m 的绳系着装有m = 0.5 kg 水的小桶,在竖直平面内做圆周运动,成为“水流星”。
G =10 m/s 2。
求:(1) 最高点水不流出的最小速度为多少?(2) 若过最高点时速度为3 m/s ,此时水对桶底的压力多大? 【答案】 (1) 2.45 m/s (2) 2.5 N 方向竖直向上【解析】(1) 水做圆周运动,在最高点水不流出的条件是:水的重力不大于水所需要的向心力。
这是最小速度即是过最高点的临界速度v 0。
以水为研究对象, mg =m v 20L解得v 0=Lg =0.6×10 m/s ≈ 2.45 m/s(2) 因为 v = 3 m/s>v 0,故重力不足以提供向心力,要由桶底对水向下的压力补充,此时所需向心力由以上两力的合力提供。
圆周运动中的临界问题
![圆周运动中的临界问题](https://img.taocdn.com/s3/m/1ddcd15d284ac850ac02421d.png)
(当 v rg 时,绳对球产生拉力,轨道对球产生压力)
(3)不能过最高点条件: v rg
(实际上球还没有到最高点时,就脱离了轨道)
如图所示,固定在竖直平点为轨道最高点,DB为竖
特点
在最高点时,没有物体支 撑,只能产生拉力
轻杆对小球既能产生拉 力,又能产生支持力
圆周运动的临界问题
1.竖直平面内的圆周运动 ①轻绳模型 :
能过最高点的临界条件:
小球在最高点时绳子的拉力刚好 等于0,小球的重力充当圆周运 动所需的向心力。
m gmR 2 v临界 Rg
轻绳模型
(1)小球能过最高点的临界条件:绳子和轨道对小球刚好没 有力的作用:
B、的压力 D、24N的压力
例3:长L=,质量可以忽略的的杆,其下端
固定于O点,上端连接着一个质量m=2kg的小 球A,A绕O点做圆周运动(同图5),在A通过 最高点,试讨论在下列两种情况下杆的受力:
①当A的速率v1=1m/s时:
②当A的速率v2=4m/s时:
变式训练
.一轻杆下端固定一质量为M的小球,上端连在轴 上,并可绕轴在竖直平面内运动,不计轴和空气阻 力,在最低点给小球水平速度v0时,刚好能到达最 高点,若小球在最低点的瞬时速度从v0不断增大,
2
双体转动模型
如图所示,轻细杆可绕光滑的水平轴O在竖直 面内转动,杆的两端固定有质量均为m=1kg的 小球A和B,球心到轴O的距离分别为,。已知 A球转到最低点时速度为vA=4m/s,问此时A、B 球对杆的作用力的大小和方向?
B
vB
vA
A
谢谢观赏
N
fA AB mg
变式训练
圆周运动中的临界问题专题(最新整理)
![圆周运动中的临界问题专题(最新整理)](https://img.taocdn.com/s3/m/444731d114791711cd791719.png)
课题28圆周运动中的临界问题一、竖直面内圆周运动的临界问题(1)如图所示,没有物体支撑的小球,在竖直平面做圆周运动过最高点的情况:特点:绳对小球,轨道对小球只能产生指向圆心的弹力①临界条件:绳子或轨道对小球没有力的作用:mg=mv 2/R →v 临界= (可理解为恰好转过Rg 或恰好转不过的速度)即此时小球所受重力全部提供向心力注意:如果小球带电,且空间存在电、磁场时,临界条件应是小球重力、电场力和洛伦兹力的合力提供向心力,此时临界速度V 临≠Rg ②能过最高点的条件:v ≥,当v >时,绳对球产生拉力,轨道对球产生压力.Rg Rg ③不能过最高点的条件:v <V 临界(实际上球还没到最高点时就脱离了轨道做斜抛运动)【例题1】如图所示,半径为R 的竖直光滑圆轨道内侧底部静止着一个光滑小球,现给小球一个冲击使其在瞬时得到一个水平初速v 0,若v 0≤,则有关小球能够上升到最大高gR 310度(距离底部)的说法中正确的是( )A 、一定可以表示为B 、可能为 g v 2203R C 、可能为R D 、可能为R 35【延展】汽车过拱形桥时会有限速,也是因为当汽车通过半圆弧顶部时的速度时,汽车对弧顶的压力F N =0,此时汽车将脱离桥面做平抛运动,因为桥gr v 面不能对汽车产生拉力.(2)如右图所示,小球过最高点时,轻质杆(管)对球产生的弹力情况:特点:杆与绳不同,杆对球既能产生拉力,也能对球产生支持力.①当v =0时,F N =mg (N 为支持力)②当 0<v <时, F N 随v 增大而减小,且mg >F N >0,Rg F N 为支持力.③当v =时,F N =0Rg ④当v >时,F N 为拉力,F N随v 的增大而增大(此时F N 为拉力,方向指向圆心)Rg典例讨论1.圃周运动中临界问题分析,应首先考虑达到临界条件时物体所处的状态,然后分析该状态下物体的受力特点.结合圆周运动的知识,列出相应的动力学方程【例题2】在图中,一粗糙水平圆盘可绕过中心轴OO /旋转,现将轻质弹簧的一端固定在圆盘中心,另一端系住一个质量为m 的物块A ,设弹簧劲度系数为k ,弹簧原长为L 。
竖直平面内的圆周运动与临界问题
![竖直平面内的圆周运动与临界问题](https://img.taocdn.com/s3/m/12b075e1f8c75fbfc77db2be.png)
v2 m L
V
Lg
实例一:水流星 例2.绳系着装水的水桶,在竖直平面内做圆周 运动,水的质量m = 0.5kg,绳长L = 60cm,求: (1)为使桶在最高点时水不流 出,桶的最小速率? FN (2)桶在最高点速率v = 3m/s G 时,水对桶底的压力?
☆考点精炼
练习1.如图所示,长为L的细线,一端固 定在O点,另一端系一个球.把小球拉到与悬 点O处于同一水平面的A点,并给小球竖直向 下的初速度,使小球绕O点在竖直平面内做 圆周运动。要使小球能够在竖直平面内做圆 周运动,在A处小球竖直向下的最小初速度 V 应为( )
B
o
L
A
试分析: (1)当小球在最低点A 的速 度为v1时,绳的拉力与速度的 关系如何?
v1
T1
mg
v 最低点: T m g m 1 R
2 1
(2)当小球在最高点B 的速 度为v2 时,绳的拉力与速度的 mg T2 关系又如何? 2 v2 最高点:T2 m g m R 思考:小球过最高点的最小速 度是多少? 2 v2 T2 0 mg m v0 gR (临界状态) R 当v=v0,小球刚好能够通过最高点;绳拉力为0 当v<v0,小球偏离原运动轨迹,不能通过最高点; 当v>v0,小球能够通过最高点。绳为拉力
FN mg O 绳
FN mg O 轨道
1、物体在最高点的最小速度取决于该点所受的最小 2 v2 合外力。 F 0
N
mg m v0 gR (临界状态) R 2、当v=v0,小球刚好能够通过最高点;绳或轨道无力
3、当v<v0,小球偏离原运动轨道,不能通过最高点;
4、当v>v0,小球能够通过最高点,向下有力
竖直平面内的圆周运动临界问题(超级经典全面)
![竖直平面内的圆周运动临界问题(超级经典全面)](https://img.taocdn.com/s3/m/3f48842069eae009581becae.png)
B、a处为拉力,b处为推力
C、a处为推力,b处为拉力
D、a处为推力,b处为推力
b
a
例:长度为L=0.5m的轻质细杆OA,A端有一质量
为m=3.0kg的小球,如图5所示,小球以O点为圆心 在竖直平面内做圆周运动,通过最高点时小球的速 率是2.0m/s,g取10m/s2,则此时细杆OA受到 ( B)
A、6.0N的拉力 C、24N的拉力
练习习题
7.质量为m的小球在竖直平面内的圆形轨道的 内侧运动如图5-8-9所示,经过最高点而不 脱离轨道的速度临界值是v,当小球以2v的速 度经过最高点时,对轨道的压力值是( )
A.0
B.mg
C.3mg
D.5mg
2、用长为l的细绳,拴着质量为m的小球,在竖直平面 内做圆周运动,则下列说法中正确的是( ) A.小球在最高点所受的向心力一定是重力 B.小球在最高点绳的拉力可能为零 C.小球在最低点绳子的拉力一定大于重力 D.若小球恰好能在竖直平面内做圆周运动,则它在最 高点的速率为
A .O
C B
2、轻杆和圆管模型 :
N
能过最高点的临界条件:
mg
v临界=0
O
杆(管的下壁)对球的支持力FN=mg
N
mg O
小结二:有支撑的物体
小球与杆相连,球在光滑封闭管中运动
1、临界条件: 由于支撑作用,小球恰能到达最高点的临界速度V临界=0,此时弹力
等于重力
FN mg
2、小球过最高点时,轻杆对小球的弹力情况:
由牛顿第二定律有
FN+mg= mv^2/L
2.6 N(1分)
(3分) ∴mvF^N2=/L
-mg=
根据牛顿第三定律可知,水对桶底的压力大小为2.6 N,方向
5.7.4竖直平面内的圆周运动与临界问题
![5.7.4竖直平面内的圆周运动与临界问题](https://img.taocdn.com/s3/m/93747ee17c1cfad6195fa7b1.png)
一、绳球模型
长为R的细绳拴着质量为m 的小球在竖直 平面内做圆周运动。
v
当小球在最高点的速度为v 时, 绳的拉力与速度的关系如何?
o
R
水流星
在“水流星”表演中,杯子在竖直平面做圆周 运动,在最高点时,杯口朝下,但杯中水却不 会流下来,为什么? 2 v FN 对杯中水: mg FN m r G 当v gr 时,FN = 0
二、杆球模型
长为L的轻杆一端固定着一质量为m的小球, 使小球在竖直平面内做圆周运动。
当小球在最高点的速度为v 时,杆的受力与速度的关系 怎样?
物体在管型轨道内的运动
最高点临界速度:
F3
V2
G F2
F 0, v0
gR
;
当v<v0,内壁对球有向上的支持力;
当v>v0,外壁对球有向下的压力。
水恰好不流出 表演“水流星” ,需要保证杯子 在圆周运
思考:过山车为什么在最高点也不会掉下来?
物体沿竖直内轨运动
有一竖直放置、内壁光滑圆环,其半径 为r,质量为m 的小球沿它的内表面做圆 周运动,分析小球在最高点A的速度应满 足什么条件?
A mg FN
要保证过山车在最高点不掉下来,此时的速度 必须满足:v gr
竖直面内圆周运动的临界问题分析(讲解+练习)
![竖直面内圆周运动的临界问题分析(讲解+练习)](https://img.taocdn.com/s3/m/636db423482fb4daa58d4b32.png)
竖直面内圆周运动的临界问题分析竖直面内圆周运动特点:1、运动特点:速率时刻在改变,物体在最高点处的速率最小,在最低点处的速率最大。
---变速率圆周运动2、受力特点: 实质:沿半径方向的合力提供向心力,产生向心加速度,即牛顿第二定律在曲线运动中的运用。
F n 合=ma n = mv 2/r=mr 2ω1)过最低点:所需的向心力是向上,而重力向下,据:F -mg = mv 2/r 得:F >mg 所以弹力(拉力、支持力)必然向上且大于重力。
2)过最高点:所需的向心力是向下,而重力也向下,所以弹力的方向就不能确定了,要分三种情况进行讨论临界问题。
讨论: 的意义:例题1:(07理科综合)如图所示,质量为m 的小物块位于半径为R 的半球物体顶端,若给小物体水平速度 ,则物块( )A 、立即做平抛运动, BC 、落地速度大小为 ;D 、落地速度方向与地成450。
若给小物体水平速度 ;则小物块对半球物体顶端的压力 。
例题2:杂技演员表演的“水流星”,是一根细长绳的一端系着一个盛了水的容器,以绳的另一端不圆心,使容器在竖直平面内做半径为R 的圆周运动,N 为圆周最低点,M 为圆周最低点,若“水流星”通过最低点的速度为 ,则下列说法正确的是( ) 。
gR v =gR v 2=gR v 2=gR v 5=2gR v =A、“水流星”过最高点速度为0;B 、“水流星”过最高点时,有水从容器中流出;C、“水流星”过最高点时,水对容器底没有压力;D、“水流星”过最高点时,绳对容器有向下的拉力。
速度大小v可以取任意值。
但可以进一步讨论:①当v=时,②当时,③当v= 时,④当时,例题3:(04年理综)轻杆的一端有一个小球,另一端有光滑的固定轴O,现给球一初速度,使和杆一起绕O轴在竖直面内转动,不计空气阻力,用F表示球到达最高点时杆对小球的作用力,则()。
A、一定是拉力;B、一定是推力;C、一定等于0;D、可能是拉力可能是推力等于0总结:竖直平面内圆周运动的临界问题:由于物体在竖直平面内做圆周运动的依托物(绳、轻杆、轨道、管道等)不同,所以物体在通过最高点时临界条件不同.例题4:在空间中存在竖直向上的电场,小球带正电,讨论;(1)当E q<mg时:小球过最高点的临界速度?(2)当E q=mg时:小球过最高点的临界速度?课后练习:1、质量是1×103kg的汽车驶过一座拱桥,已知桥顶点桥面的圆弧半径是90m,g=10m/s2。
(完整word版)圆周运动中的临界问题专题
![(完整word版)圆周运动中的临界问题专题](https://img.taocdn.com/s3/m/6cee07bcf78a6529647d53c9.png)
课题28圆周运动中的临界问题一、竖直面内圆周运动的临界问题(1)如图所示,没有物体支撑的小球,在竖直平面做圆周运动过最高点的情况:特点:绳对小球,轨道对小球只能产生指向圆心的弹力①临界条件:绳子或轨道对小球没有力的作用:mg=mv2/R宀v临界=.Rg (可理解为恰好转过或恰好转不过的速度)即此时小球所受重力全部提供向心力注意:如果小球带电,且空间存在电、磁场时,临界条件应是小球重力、电场力和洛伦兹力的合力提供向心力,此时临界速度V临工Rg②能过最高点的条件:v> Rg,当v> Rg时,绳对球产生拉力,轨道对球产生压力.③不能过最高点的条件:v v V临界(实际上球还没到最高点时就脱离了轨道做斜抛运动)【例题1】如图所示,半径为R的竖直光滑圆轨道内侧底部静止着一个光滑小球,现给小球一个冲击使其在瞬时得到一个水平初速V o,若v o w10■ -gR,则有关小球能够上升到最大高3 g度(距离底部)的说法中正确的是(2Vo ,定可以表示为2g B、可能为R3C、可能为RD、可能为5R3【延展】汽车过拱形桥时会有限速,也是因为当汽车通过半圆弧顶部时的速度v gr时,汽车对弧顶的压力F N=O,此时汽车将脱离桥面做平抛运动,因为桥面不能对汽车产生拉力.(2)如右图所示,小球过最高点时,轻质杆(管)对球产生的弹力情况:特点:杆与绳不同,杆对球既能产生拉力,也能对球产生支持力.①当v= 0时,F N = mg (N为支持力)②当0 v v v Rg时,F N随v增大而减小,且mg > F N > 0, F N为支持力.③当v= . Rg 时,F N = 0④当v> . R g时,F N为拉力,F N随v的增大而增大(此时F N为拉力,方向指向圆心)典例讨论1. 圃周运动中临界问题分析,应首先考虑达到临界条件时物体所处的状态,然后分析该状态下物体的受力特点.结合圆周运动的知识,列出相应的动力学方程【例题2】在图中,一粗糙水平圆盘可绕过中心轴0O旋转,现将轻质弹簧的一端固定O在圆盘中心,另一端系住一个质量为 m 的物块A,设弹簧劲度系数为 k ,弹簧原长为L 。
竖直、水平面内圆周运动中的临界问题和周期性问题(有解答)
![竖直、水平面内圆周运动中的临界问题和周期性问题(有解答)](https://img.taocdn.com/s3/m/efcd434a700abb68a882fb83.png)
水平面内圆周运动中的临界问题一、圆周运动问题的解题步骤:1确定研究对象2、画出运动轨迹、找出圆心、求半径3、分析研究对象的受力情况,画受力图4、确定向心力的来源5、由牛顿第二定律F n ma n 2 小V 2 / 2 \ 2m m r m(——)rr T二、临界问题常见类型:1按力的种类分类:(1 )、与弹力有关的临界问题:接触面间的弹力:从有到无,或从无到有绳子的拉力:从无到有,从有到最大,或从有到无(2)、与摩擦力有关的弹力问题:从静到动,从动到静,临界状态下静摩擦力达到最大静摩擦2、按轨道所在平面分类:(1 )、竖直面内的圆周运动(2)、水平面内的圆周运动三、竖直面内的圆周运动的临界问题1、单向约束之绳、外轨道约束下的竖直面内圆周运动临界问题:特点:绳对小球,轨道对小球只能产生指向圆心的弹力①临界条件:绳子或轨道对小球没有力的作用:mg=mv2/R宀v临界=.Rg (可理解为恰好转过或恰好转不过的速度)即此时小球所受重力全部提供向心力②能过最高点的条件:v> Rg,当v> . Rg时,绳对球产生拉力,轨道对球产生压力.③不能过最高点的条件:v v V临界(实际上球还没到最高点时就脱离了轨道做斜抛运动)例1、绳子系着装有水的木桶,在竖直面内做圆周运动,水的质量m=0.5kg,绳子长度为求:(g 取10m/s2)A、最高点水不留出的最小速度?B、设水在最高点速度为V=3m/s,求水对桶底的压力?答案:(1)、、6m/s (2)2.5N列方程求解l=60cm ,变式1、如图所示,一质量为m的小球,用长为L细绳系住,使其在竖直面内作圆周运动.(1)若过小球恰好能通过最高点,则小球在最高点和最低点的速度分别是多少?小球的受力情况分别如何?(2)若小球在最低点受到绳子的拉力为10mg,则小球在最高点的速度及受到绳子的拉力是多少?2、单向约束之内轨道约束下(拱桥模型)的竖直面内圆周运动的临界问题:汽车过拱形桥时会有限速,是因为当汽车通过半圆弧顶部时的速度V gr时,汽车对弧顶的压力FN=O,此时汽车将脱离桥面做平抛运动, 因为桥面不能对汽车产生拉力.例2、半径为R的光滑半圆球固定在水平面上,顶部有一小物体,如图所示。
竖直面内的圆周运动(解析版)
![竖直面内的圆周运动(解析版)](https://img.taocdn.com/s3/m/fd449dbc6137ee06eff918c0.png)
竖直面内的圆周运动一、竖直平面内圆周运动的临界问题——“轻绳、轻杆”模型1.“轻绳”模型和“轻杆”模型不同的原因在于“轻绳”只能对小球产生拉力,而“轻杆”既可对小球产生拉力也可对小球产生支持力。
2.有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况。
物理情景最高点无支撑最高点有支撑实例球与绳连接、水流星、沿内轨道的“过山车”等球与杆连接、球在光滑管道中运动等图示异同点受力特征除重力外,物体受到的弹力方向:向下或等于零除重力外,物体受到的弹力方向:向下、等于零或向上受力示意图力学方程mg+F N=mv2R mg±F N=mv2R临界特征F N=0mg=mv2minR即v min=gRv=0即F向=0F N=mg过最高点的条件在最高点的速度v≥gR v≥0【典例1】如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动。
小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图象如图乙所示,则()A .小球的质量为aRbB .当地的重力加速度大小为RbC .v 2=c 时,小球对杆的弹力方向向上D .v 2=2b 时,小球受到的弹力与重力大小相等 【答案】: ACD【典例2】用长L = 0.6 m 的绳系着装有m = 0.5 kg 水的小桶,在竖直平面内做圆周运动,成为“水流星”。
G =10 m/s 2。
求:(1) 最高点水不流出的最小速度为多少?(2) 若过最高点时速度为3 m/s ,此时水对桶底的压力多大? 【答案】 (1) 2.45 m/s (2) 2.5 N 方向竖直向上【解析】(1) 水做圆周运动,在最高点水不流出的条件是:水的重力不大于水所需要的向心力。
这是最小速度即是过最高点的临界速度v 0。
以水为研究对象, mg =m v 20L解得v 0=Lg =0.6×10 m/s ≈ 2.45 m/s(2) 因为 v = 3 m/s>v 0,故重力不足以提供向心力,要由桶底对水向下的压力补充,此时所需向心力由以上两力的合力提供。
高中物理课件-竖直平面内的圆周运动与临界问题
![高中物理课件-竖直平面内的圆周运动与临界问题](https://img.taocdn.com/s3/m/b81af6e616fc700aba68fc00.png)
B
F3
v2
最低点:F1
m
g
m
v12 L
mg
F2
o
最高点:F2
m
g
m
v22 L
拉力
F1
v1 A mg
mg-
F3
m
v22 L
支持力
思考:最高点的最小速度是多少?
最小速度v=0,此时mg=F3
问题2:杆球模型:
B F3 v2
最高点:F2
m
g
m
v22 L
拉力
mg
F2
o
F1
mg-
F3
m
v22 L
支持力
思考:在最高点时,何时杆表现为
当球以角速度
4g L
做圆锥摆运动时,
细绳的张力T为多大?
物理彩色导学练案 P25;3
如图所示,在匀速转动的水平圆盘上,沿半径 方向放置两个用细线相连的质量均为m的小物 体A、B,它们到转轴的距离分别为 0.2m; 0.3m,A、B与盘面间最大静摩擦力均为重力 的0.4倍,试求: (1)当细线上开始出现张力时,圆盘的角速 度。
有一竖直放置、内壁光滑圆环,其半径为r,
质量为m 的小球沿它的内表面做圆周运动,分
析小球在最高点A的速度应满足什么条件?
A
mg FN
mg
FN
m v2 r
思考:小球过最高点的最小速度
是多少? FN 0,v0 gr
当v=v0,小球刚好能够通过最高点; 当v<v0,小球偏离原运动轨道,不能通过最高点; 当v>v0,小球能够通过最高点。
N
N
mg
O 绳
mg
O 轨道
mg O 杆
圆周运动中的临界问题(最新整理)
![圆周运动中的临界问题(最新整理)](https://img.taocdn.com/s3/m/f97ed2d1a6c30c2258019e31.png)
C、24N 的拉力
D、24N 的压力
m
A L O
例 3 长 L=0.5m,质量可以忽略的的杆,其下端固定于 O 点, 上端连接着一个质量 m=2kg 的小球 A,A 绕 O 点做圆周运动(同 图 5),在 A 通过最高点,试讨论在下列两种情况下杆的受力:
①当 A 的速率 v1=1m/s 时 ②当 A 的速率 v2=4m/s 时
离圆心,大小等于最大静摩擦力 2N。 此时,对 M 运用牛顿第二定律。
M
ro
有
T-fm=Mω12r
且 T=mg
解得 ω1=2.9 rad/s
m
第5页
图 7
当ω为所求范围最大值时,M 有背离圆心运动的趋势,水平面对 M 的静摩擦力的方向向着圆
心,大小还等于最大静摩擦力 2N。
再对 M 运用牛顿第二定律。
有
T+fm=Mω22r
解得 ω2=6.5 rad/s
所以,题中所求ω的范围是: 2.9 rad/s<ω<6.5 rad/s
第6页
注意:解题时注意圆心的位置(半径的大小)。
如果ω<2.4 rad/s 时,TBC=0,AC 与轴的夹角小于 30°。 如果ω>3.16rad/s 时,TAC=0,BC 与轴的夹角大于 45
例 5 解析:要使 m 静止,M 也应与平面相对静止。而 M 与平面静止时有两个临界状态:
当ω为所求范围最小值时,M 有向着圆心运动的趋势,水平面对 M 的静摩擦力的方向背
①当 v1=1m/s< 5m/s 时,小球受向下的重力 mg 和向上的支持力 N v2
由牛顿第二定律 mg-N=m L v2
N=mg-m =16N L
竖直平面内圆周运动的临界问题
![竖直平面内圆周运动的临界问题](https://img.taocdn.com/s3/m/c5c8bd6948d7c1c708a145be.png)
rg , F 为拉力,有FN >0, F 随v的增大
N N
例题2:一根长L=0.625
m的细杆, 一端拴一质量m=0.4 kg的小球,使其 在竖直平面内绕绳的另一端做圆周运 动,求: (1)小球通过最高点时的最小速度; (2)若小球以速度v1=3.0m/s通过圆 周最高点时,杆对小球的作用力拉力 多大?方向如何?
在最高点均是有支撑的小球
特 点
在最高点时,没有物体支 撑,只能产生拉力
轻杆对小球既能产生拉 力,又能产生支持力
竖直平面内的圆周运动
1.轻绳模型 :
mg
能过最高点的临界条件:
小球在最高点时绳子的拉力刚好 等于0,小球的重力充当圆周运 动所需的向心力。
F
mg m R v临界 Rg
2
m v2 mg+F= R
例题1:杂技演员在做水流星表演时,用绳系
着装有水的水桶,在竖直平面内做圆周运动, 若水的质量m=0.5 kg,绳长L=60cm,求: (1)最高点水不流出的最小速率。 (2)水在最高点速率v=3 m/s时,水对桶底 的压力.
解:(1)水在最高点不流出,且速度最小,满足的条件是:在最高点 只受重力的作用,即只有重力提供向心力,由向心力公式得
轻绳模型
轻杆模型
常见 类型
特点
临界 条件
在最高点时,没有物体支 撑,只能产生拉力
能过最高点的条件
轻杆对小球既能产生拉 力,又能产生支持力
能过最高点的条件
v gr
v0
文萃微课
专题:竖直平面内圆周 运动的临界问题
对于物体在竖直面内所做的圆周 运动在生活当中经常见到,它也是 高考命题的热点。该类运动有临界 问题,题中经常出现“最大”“最 小”“刚好”等词语。常见的有两 种模型——轻绳模型和轻杆模型。分 析比较如下:
(完整word版)圆周运动的临界问题
![(完整word版)圆周运动的临界问题](https://img.taocdn.com/s3/m/f33e46420508763230121210.png)
圆周运动的临界问题要点提示一.圆周运动中的临界问题的分析方法首先明确物理过程,对研究对象进行正确的受力分析,然后确定向心力,根据向心力公式列出方程,由方程中的某个力的变化与速度变化的对应关系,从而分析找到临界值.二.竖直平面内作圆周运动的临界问题竖直平面内的圆周运动是典型的变速圆周运动。
一般情况下,只讨论最高点和最低点的情况,常涉及过最高点时的临界问题。
1.“绳模型”如图6-11-1所示,小球在竖直平面内做圆周运动过最高点情况。
(注意:绳对小球只能产生拉力)(1)小球能过最高点的临界条件:绳子和轨道对小球刚好没有力的作用mg =2vmRv临界(2)小球能过最高点条件:v(当v(3)不能过最高点条件:v(实际上球还没有到最高点时,就脱离了轨道)2.“杆模型”如图6-11-2所示,小球在竖直平面内做圆周运动过最高点情况(注意:轻杆和细线不同,轻杆对小球既能产生拉力,又能产生推力。
)(1)小球能最高点的临界条件:v = 0,F = mg(F为支持力)(2)当0< vF随v增大而减小,且mg > F > 0(F为支持力)图6-11-1a b图6-11-2(3)当v =Rg时,F=0(4)当v >Rg时,F随v增大而增大,且F >0(F为拉力)注意:管壁支撑情况与杆一样。
杆与绳不同,杆对球既能产生拉力,也能对球产生支持力.由于两种模型过最高点的临界条件不同,所以在分析问题时首先明确是哪种模型,然后再利用条件讨论.(3)拱桥模型如图所示,此模型与杆模型类似,但因可以离开支持面,在最高点当物体速度达v=rg时,F N=0,物体将飞离最高点做平抛运动。
若是从半圆顶点飞出,则水平位移为s= 2R。
【典型题目】竖直平面内作圆周运动的临界问题(1)绳模型1、如图6-11-5所示,细线的一端有一个小球,现给小球一初速度,使小球绕细线另一端O在竖直平面内转动,不计空气阻力,用F表示球到达最高点时细线对小球的作用力,则F可能()A.是拉力B.是推力C.等于零D.可能是拉力,可能是推力,也可能等于零2、如图,质量为0.5kg的小杯里盛有1kg的水,用绳子系住小杯在竖直平面内做“水流星”表演,转动半径为1m,小杯通过最高点的速度为4m/s,g取10m/s2,求:(1) 在最高点时,绳的拉力?(2) 在最高点时水对小杯底的压力?(3) 为使小杯经过最高点时水不流出, 在最高点时最小速率是多少?(2)杆模型1、长度为L=0.5 m的轻质细杆OA,A端有一质量为m=3.0kg的小球,如图所示,小球以O点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率是2.0m/s,g 取10m/s2,则此时细杆OA受到()ALO mA.6.0N 的拉力B.6.0N 的压力C.24N 的拉力D.24N 的压力2、如图所示,小球m 在竖直放置的光滑圆形管道内做圆周运动,下列说法中正确的有:A .小球通过最高点的最小速度为B .小球通过最高点的最小速度为零C .小球在水平线ab 以下管道中运动时,外侧管壁对小球一定有作用力D .小球在水平线ab 以上管道中运动时,内侧管壁对小球一定有作用力3、在质量为M 的电动机的飞轮上,固定着一个质量为m 的重物,重物到转轴的距离为r ,如图所示,为了使放在地面上的电动机不会跳起,电动机飞轮的角速度不能超过( ) A .g mr m M + B .g mr mM + C .g mrm M - D .mr Mg(3)拱桥模型1、如图4-3-1所示,汽车车厢顶部悬挂一个轻质弹簧,弹簧下端拴一个质量为m 的小球,当汽车以某一速率在水平地面上匀速行驶时弹簧长度为L 1;当汽车以同一速度匀速率通过一个桥面为圆弧形凸形桥的最高点时,弹簧长度为L 2,下列答案中正确的是( ) A .L 1=L 2 B .L 1>L 2C .L 1<L 2D .前三种情况均有可能2、半径为 R 的光滑半圆球固定在水平面上,顶部有一小物体,如图所示。
竖直平面内圆周运动的临界问题及应用
![竖直平面内圆周运动的临界问题及应用](https://img.taocdn.com/s3/m/e0c98a95d5bbfd0a79567360.png)
五、竖直平面内的圆周运动竖直平面内的圆周运动是典型的变速运动,高中阶段只分析通过最高点和最低点的情况,经常考查临界状态,其问题可分为以下两种模型. 一、两种模型 模型1:“轻绳类”绳对小球只能产生沿绳收缩方向的拉力(圆圈轨道问题可归结为轻绳类),即只能沿某一个方向给物体力的作用,如图1、图2所示,没有物体支撑的小球,在竖直平面做圆周运动过最高点的情况:(1)临界条件:在最高点,绳子(或圆圈轨道)对小球没有力的作用,v gR =0(2)小球能通过最高点的条件:v gR ≥,当v gR >时绳对球产生拉力,圆圈轨道对球产生向下的压力. (3)小球不能过最高点的条件:v gR <,实际上球还没到最高点就脱离了圆圈轨道,而做斜抛运动. 模型2:“轻杆类”有物体支撑的小球在竖直平面内做圆周运动过最高点的情况,如图3所示,(小球在圆环轨道内做圆周运动的情况类似“轻杆类”, 如图4所示,): (1)临界条件:由于硬杆和管壁的支撑作用,小球恰能到达最高点的临界速度0v =0(2)小球过最高点时,轻杆对小球的弹力情况: ①当0v =时,轻杆对小球有竖直向上的支持力N ,其大小等于小球的重力,即N mg =;②当0v gR <<时,因2v mg N m R -=,则2v N mg m R=-.轻杆对小球的支持力N 竖直向上,其大小随速度的增大而减小,其取值范围是0mg N >>. ③当v gR =时,0N =;④当v gR >时,则2v mg N m R +=,即2v N m mg R=-,杆对小球有指向圆心的拉力,其大小随速度的增大而增大,注意 杆与绳不同,在最高点,杆对球既能产生拉力,也能对球产生支持力,还可对球的作用力为零.小结 如果小球带电,且空间存在电磁场时,临界条件应是小球重力、电场力和洛伦兹力的合力作为向心力,此时临界速度v ≠gR (应根据具体情况具体分析).另外,若在月球上做圆周运动则可将上述的g 换成g 月,若在其他天体上则把g 换成g 天体.二、两种模型的应用【例1】如图5所示,质量为m 的小球从光滑的斜面轨道的A 点由静止下滑,若小球恰能通过半径为R 的竖直圆形轨道的最高点B 而做圆周运动,问A 点的高度h 至少应为多少? 【解析】此题属于“轻绳类”,其中“恰能”是隐含条件,即小球在最高点的临界速度是v Rg =临界,根据机械能守恒定律得2122mgh mg R mv =⋅+临界把v Rg =临界代入上式得:min 52h R =. 【例2】如图6所示,在竖直向下的匀强电场中,一个带负电q 、质量为m 且重力大于所受电场力的小球,从光滑的斜面轨道的A 点由静止下滑,若小球恰能通过半径为R 的竖直圆形轨道的最高点B 而做圆周运动,问A 点的高度h 至少应为多少?【解析】此题属于“轻杆类”,带电小球在圆形轨道的最高点B 受到三个力作用:电场力F qE =,方向竖直向上;重力mg ;弹力N ,方向竖直向下.由向心力公式,有2Bv mg N qE m R+-=要使小球恰能通过圆形轨道的最高点B 而做圆周运动,说明小球此时处于临界状态,其速率B v 为临界速度,临界条件是0N =.由此可列出小球的临界状态方程为2Bv mg qE m R-= ①根据动能定理,有21()(2)2B mg qE h R mv -⋅-= ②解之得:min 52h R =说明 把②式中的mg qE -换成2Bv m R,较容易求出min 52h R =【例3】如图6所示,在竖直向下的匀强电场中,一个带正电q 、质量为m 且重力大于所受电场力的小球,从光滑的斜面轨道的A 点由静止下滑,若小球恰能通过半径为R 的竖直圆形轨道的最高点B 而做圆周运图1 图2图3 图4图5图6动,问A 点的高度h 至少应为多少?【解析】此题属于“轻绳类”,题中“恰能”是隐含条件,要使带电小球恰能通过圆形轨道的最高点B 而做圆周运动,说明小球此时处于临界状态,其速率B v 为临界速度,临界条件是0N =.由此可列出小球的临界状态方程为:2Bv mg qE m R+= ①根据动能定理,有21()(2)2B mg qE h R mv +⋅-= ②由上述二式解得:min 52h R =小结 上述两题条件虽然不同,但结果相同,为什么?因为电场力与重力做功具有相同的特点,重力做功仅与初、末位置的高度差有关;在匀强电场中,电场力做功也仅与沿电场力方向的距离差有关.我们不妨可以这样认为,例2中的“等效重力加速度1g ”比例1中的重力加速度g 减小,例3中的“等效重力加速度2g ”比例1中的重力加速度g 增大.例2中1v Rg =临界,211122mg h mg R mv =⋅+临界;例3中2v Rg =临界,222122mg h mg R mv =⋅+临界.把v 临界代入各自对应的式子,结果1mg 、2mg 分别都约去了,故min 52h R =. 【例4】如图7所示,一个带正电q 、质量为m 的电荷,从光滑的斜面轨道的A 点由静止下滑,若小球恰能通过半径为R 的竖直圆形轨道的最高点B (圆弧左半部分加上垂直纸面向外的匀强磁场),问点A 的高度至少应为多少?【解析】此题属于“轻绳类”,题中“恰能”是隐含条件,要使小球恰能通过圆形轨道的最高点B ,说明小球此时处于临界状态,其速率B v 为临界速率,临界条件是0N =,由此可列出小球的临界状态方程为2BB v mg qv B m R+= ①2122B mgh mg R mv =⋅+, ②由①式可得: 224()2B R m g v qB qB m R ⎡⎤=±+⎢⎥⎢⎥⎣⎦因B v 只能取正值,即224()2B R m g v qB qB m R ⎡⎤=++⎢⎥⎢⎥⎣⎦则2222min242()8R m g h R qB qB R m g ⎡⎤=+++⎢⎥⎢⎥⎣⎦【例5】如图8所示,在竖直向下的均匀电场中,一个带正电q 、质量为m 的电荷,从光滑的斜面轨道的A 点由静止下滑,若小球恰能通过半径为R 的竖直圆形轨道的最高点B (圆弧左半部分加上垂直纸面向外的匀强磁场),问点A 的高度h 至少应为多少? 【解析】此题属于“轻绳类”,题中“恰能”是隐含条件,要使小球恰能通过圆形轨道的最高点B ,说明小球此时处于临界状态,其速率B v 为临界速率,临界条件是0N =,由此可列出小球的临界状态方程为 2BB v mg qv B qE m R++= ①21()(2)2B mg qE h R mv +⋅-= ②由①式可得: 24()()2B R m v qB qB mg qE m R ⎡⎤=±++⎢⎥⎣⎦因B v 只能取正值,即24()()2B R m v qB qB mg qE m R ⎡⎤=+++⎢⎥⎣⎦则222min42()()8()R m h R qB qB mg qE m mg qE R ⎡⎤=++++⎢⎥+⎣⎦小结 小球受到的洛伦兹力与轨道的弹力有相同的特点,即都与速度v 的方向垂直,它们对小球都不做功,而临界条件是0N =.【例6】如图9所示,ABD 为竖直平面内的光滑绝缘轨道,其中AB 段是水平的,BD 段为半径0.2m R =的半圆,两段轨道相切于B 点,整个轨道处在竖直向下的匀强电场中,场强大小35.010V/m E =⨯.一不带电的绝缘小球甲,以速度0v 沿水平轨道向右运动,与静止在B 点带正电的小球乙发生弹性碰撞。