2018届高考数学(理)二轮专题复习限时规范训练 第一部分 专题二 函数、不等式、导数 1-2-3 Word版 含答案

合集下载

【高三英语试题精选】2018届高考数学(理)二轮专题复习函数、不等式、导数1

【高三英语试题精选】2018届高考数学(理)二轮专题复习函数、不等式、导数1

2018届高考数学(理)二轮专题复习函数、不等式、导数1 K
j 限时规范训练六导数的简单应用限时45分钟,实际用时分值81分,实际得分
一、选择题(本题共6小题,每小题5分,共30分)
1.设函数f(x)=x24-aln x,若f′(2)=3,则实数a的值为( ) A.4 B.-4
C.2D.-2
解析选Bf′(x)=x2-ax,故f′(2)=22-a2=3,因此a=-4 2.曲线y=ex在点A处的切线与直线x-y+3=0平行,则点A 的坐标为( )
A.(-1,e-1)B.(0,1)
C.(1,e)D.(0,2)
解析选B设A(x0,ex0),y′=ex,∴y′|x=x0=ex0由导数的几何意义可知切线的斜率k=ex0
由切线与直线x-y+3=0平行可得切线的斜率k=1
∴ex0=1,∴x0=0,∴A(0,1).故选B
3.若函数f(x)=x3-2cx2+x有极值点,则实数c的取值范围为 ( )
A32,+∞
B32,+∞
C-∞,-32∪32,+∞
D-∞,-32∪32,+∞
解析选D若函数f(x)=x3-2cx2+x有极值点,则f′(x)=3x2-4cx+1=0有两根,故Δ=(-4c)2-12>0,从而c>32或c<-32
4.已知f(x)=aln x+12x2(a>0),若对任意两个不等的正实数x1,x2都有f x1 -f x2 x1-x2≥2恒成立,则实数a的取值范围是( )。

2018年高考数学(理)二轮检测(浙江)第一部分专题二函数专题能力训练5含答案

2018年高考数学(理)二轮检测(浙江)第一部分专题二函数专题能力训练5含答案

2018年⾼考数学(理)⼆轮检测(浙江)第⼀部分专题⼆函数专题能⼒训练5含答案专题能⼒训练5导数及其应⽤(时间:60分钟满分:100分)⼀、选择题(本⼤题共8⼩题,每⼩题5分,共40分)1.已知曲线y=在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.-2B.2C.-D.2.已知函数f(x)=ln x+ln(2-x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称3.已知a≥0,函数f(x)=(x2-2ax)e x.若f(x)在[-1,1]上是单调递减函数,则a的取值范围是()A.0B.C.a≥D.04.已知函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f'(x)>2,则f(x)>2x+4的解集为()A.(-1,1)B.(-1,+∞)C.(-∞,-1)D.(-∞,+∞)5.(2017浙江⾦丽衢⼗⼆校模拟)如图,已知直线y=kx+m与曲线y=f(x)相切于两点,则F(x)=f(x)-kx有()A.1个极⼤值点,2个极⼩值点B.2个极⼤值点,1个极⼩值点C.3个极⼤值点,⽆极⼩值点D.3个极⼩值点,⽆极⼤值点6.将函数y=ln(x+1)(x≥0)的图象绕坐标原点逆时针⽅向旋转⾓θ(θ∈(0,α]),得到曲线C,若对于每⼀个旋转⾓,曲线C都仍然是⼀个函数的图象,则α的最⼤值为()A.πB.C.D.7.已知函数f(x)=x+e x-a,g(x)=ln(x+2)-4e a-x,其中e为⾃然对数的底数,若存在实数x0,使f(x0)-g(x0)=3成⽴,则实数a的值为()A.-ln 2-1B.ln 2-1C.-ln 2D.ln 28.若函数f(x)=ln x与函数g(x)=x2+2x+a(x<0)有公切线,则实数a的取值范围是()A. B.(-1,+∞)C.(1,+∞)D.(-ln 2,+∞)⼆、填空题(本⼤题共6⼩题,每⼩题5分,共30分)9.若f(x)=x3+3ax2+3(a+2)x+1有极⼤值和极⼩值,则a的取值范围为.10.(2017浙江诸暨肇庆三模)已知函数f(x)=x3+ax2+3x-9,若x=-3是函数f(x)的⼀个极值点,则实数a= .11.设f'(x)是奇函数f(x)(x∈R)的导函数,f(-2)=0,当x>0时,xf'(x)-f(x)>0,则使得f(x)>0成⽴的x的取值范围是.12.已知函数f(x)=x3-2x+e x-,其中e是⾃然对数的底数.若f(a-1)+f(2a2)≤0,则实数a的取值范围是.13.已知函数f(x)=若对于?t∈R,f(t)≤kt恒成⽴,则实数k的取值范围是.14.设函数f(x)=ax3+bx2+cx+d(a≠0)满⾜f(1)+f(3)=2f(2),现给出如下结论:①若f(x)是区间(0,1)上的增函数,则f(x)是区间(3,4)上的增函数;②若a·f(1)≥a·f(3),则f(x)有极值;③对任意实数x0,直线y=(c-12a)(x-x0)+f(x0)与曲线y=f(x)有唯⼀公共点.其中正确的结论为.(填序号)三、解答题(本⼤题共2⼩题,共30分.解答应写出必要的⽂字说明、证明过程或演算步骤)15.(本⼩题满分15分)已知函数f(x)=x3+|x-a|(a∈R).(1)当a=1时,求f(x)在(0,f(0))处的切线⽅程;(2)当a∈(0,1)时,求f(x)在区间[-1,1]上的最⼩值(⽤a表⽰).16.(本⼩题满分15分)已知函数f(x)=ax(ln x-1)(a≠0).(1)求函数y=f(x)的单调递增区间;(2)当a>0时,设函数g(x)=x3-f(x),函数h(x)=g'(x),①若h(x)≥0恒成⽴,求实数a的取值范围;②证明:ln(1×2×3×…×n)2e<12+22+32+…+n2(n∈N*).参考答案专题能⼒训练5导数及其应⽤1.A解析由y'=得曲线y=在点(3,2)处的切线斜率为-,⼜切线与直线ax+y+1=0垂直,则a=-2.故选A.2.C解析f(x)=ln x+ln(2-x)=ln(-x2+2x),x∈(0,2).当x∈(0,1)时,x增⼤,-x2+2x增⼤,ln(-x2+2x)增⼤,当x∈(1,2)时,x增⼤,-x2+2x减⼩,ln(-x2+2x)减⼩,即f(x)在区间(0,1)上单调递增,在区间(1,2)上单调递减,故排除选项A,B;因为f(2-x)=ln(2-x)+ln[2-(2-x)]=ln(2-x)+ln x=f(x),所以函数y=f(x)的图象关于直线x=1对称,故排除选项D.故选C.3.C解析f'(x)=e x[x2+2(1-a)x-2a],∵f(x)在[-1,1]上单调递减,∴f'(x)≤0在[-1,1]上恒成⽴.令g(x)=x2+2(1-a)x-2a,则解得a≥.4.B解析由f(x)>2x+4,得f(x)-2x-4>0,设F(x)=f(x)-2x-4,则F'(x)=f'(x)-2,因为f'(x)>2,所以F'(x)>0在R上恒成⽴,所以F(x)在R上单调递增.⽽F(-1)=f(-1)-2×(-1)-4=2+2-4=0,故不等式f(x)-2x-4>0等价于F(x)>F(-1),所以x>-1.故选B.5.A解析F'(x)=f'(x)-k,如下图所⽰,从⽽可知函数y=F'(x)共有三个零点x1,x2,x3,因此函数F(x)在(-∞,x1)上单调递减,在(x1,x2)上单调递增,在(x2,x3)上单调递减,在(x3,+∞)上单调递增,故x1,x3为极⼩值点,x2为极⼤值点,即F(x)有1个极⼤值点,2个极⼩值点,应选A.6.D解析函数y=ln(x+1)(x≥0)的图象绕坐标原点逆时针⽅向连续旋转时,当且仅当其任意切线的倾斜⾓⼩于等于90°时,其图象都仍然是⼀个函数的图象,因为x≥0时y'=是减函数,且07.A解析由题意得f(x)-g(x)=x+e x-a-ln(x+2)+4e a-x,令h(x)=x-ln(x+2),x>-2,则h'(x)=1-,∴h(x)在区间(-2,-1)上单调递减,在区间(-1,+∞)上单调递增,∴h(x)min=h(-1)=-1,⼜∵e x-a+4e a-x≥2=4,∴f(x)-g(x)≥3,当且仅当时等号成⽴.。

2018届高考数学理科二轮总复习高考23题逐题特训二函数

2018届高考数学理科二轮总复习高考23题逐题特训二函数

(二)函数与导数(2)1.设函数f (x )=2(a +1)x (a ∈R ),g (x )=ln x +bx (b ∈R ),直线y =x +1是曲线y =f (x )的一条切线.(1)求a 的值;(2)若函数y =f (x )-g (x )有两个极值点x 1,x 2.①试求b 的取值范围;②证明:g (x 1)+g (x 2)f (x 1)+f (x 2)≤1e 2+12. 解 (1)设直线y =x +1与函数y =f (x )的图象相切于点(x 0,y 0),则y 0=x 0+1,y 0=2(a +1)x 0,a +1x 0=1,解得a =0. (2)记h (x )=f (x )-g (x ),则h (x )=2x -ln x -bx .①函数y =f (x )-g (x )有两个极值点的必要条件是h ′(x )有两个正零点.h ′(x )=1x -1x-b =-bx +x -1x , 令h ′(x )=0,得bx -x +1=0(x >0).令x =t ,则t >0.问题转化为bt 2-t +1=0有两个不等的正实根t 1,t 2,等价于⎩⎪⎨⎪⎧ Δ=1-4b >0,t 1t 2=1b >0,t 1+t 2=1b >0,解得0<b <14. 当0<b <14时,设h ′(x )=0的两正根为x 1,x 2,且x 1<x 2, 则h ′(x )=-bx +x -1x =-b (x -x 1)(x -x 2)x =-b (x -x 1)(x -x 2)x (x +x 1)(x +x 2). 当x ∈(0,x 1)时,h ′(x )<0;当x ∈(x 1,x 2)时,h ′(x )>0;当x ∈(x 2,+∞)时,h ′(x )<0. 所以x 1,x 2是h (x )=f (x )-g (x )的极值点,∴b 的取值范围是⎝⎛⎭⎫0,14. ②由①知x 1x 2=x 1+x 2=1b.可得g (x 1)+g (x 2)=-2ln b +1b -2,f (x 1)+f (x 2)=2b, 所以g (x 1)+g (x 2)f (x 1)+f (x 2)=12-b ln b -b . 记k (b )=12-b ln b -b ⎝⎛⎭⎫0<b <14, 则k ′(b )=-ln b -2,令k ′(b )=0,得b =1e 2∈⎝⎛⎭⎫0,14, 且当b ∈⎝⎛⎭⎫0,1e 2时,k ′(b )>0,k (b )单调递增; 当b ∈⎝⎛⎭⎫1e 2,14时,k ′(b )<0,k (b )单调递减,且当b =1e 2时,k (b )取最大值1e 2+12, 所以g (x 1)+g (x 2)f (x 1)+f (x 2)≤1e 2+12. 2.设函数f (x )=2ax +b x+c ln x . (1)当b =0,c =1时,讨论函数f (x )的单调区间;(2)若函数f (x )在x =1处的切线为y =3x +3a -6且函数f (x )有两个极值点x 1,x 2,x 1<x 2. ①求a 的取值范围;②求f (x 2)的取值范围.解 (1)f (x )=2ax +b x+c ln x ,x >0, f ′(x )=2a -b x 2+c x =2ax 2+cx -b x 2. 当b =0,c =1时,f ′(x )=2ax +1x. 当a ≥0时,由x >0,得f ′(x )=2ax +1x>0恒成立, 所以函数f (x )在(0,+∞)上单调递增.当a <0时,令f ′(x )=2ax +1x >0,解得x <-12a; 令f ′(x )=2ax +1x <0,解得x >-12a, 所以,函数f (x )在⎝⎛⎭⎫0,-12a 上单调递增,在⎝⎛⎭⎫-12a ,+∞上单调递减. 综上所述,①当a ≥0时,函数f (x )在(0,+∞)上单调递增;②当a <0时,函数f (x )在⎝⎛⎭⎫0,-12a上单调递增,在⎝⎛⎭⎫-12a ,+∞上单调递减. (2)①函数f (x )在x =1处的切线为y =3x +3a -6, 所以f (1)=2a +b =3a -3,f ′(1)=2a +c -b =3, 所以b =a -3,c =-a ,f ′(x )=2a -b x 2+c x =2ax 2-ax +3-a x 2, 函数f (x )有两个极值点x 1,x 2,x 1<x 2,则方程2ax 2-ax +3-a =0有两个大于0的解, ⎩⎨⎧ Δ=(-a )2-8a (3-a )>0,a 2a >0,3-a 2a >0,解得83<a <3. 所以a 的取值范围是⎝⎛⎭⎫83,3.②2ax 22-ax 2+3-a =0,x 2=a +9a 2-24a 4a =14⎝⎛⎭⎫1+ 9-24a , 由83<a <3,得x 2∈⎝⎛⎭⎫14,12, 由2ax 22-ax 2+3-a =0,得a =-32x 22-x 2-1. f (x 2)=2ax 2+a -3x 2-a ln x 2 =a ⎝⎛⎭⎫2x 2+1x 2-ln x 2-3x 2=-32x 2+1x 2-ln x 22x 22-x 2-1-3x 2. 设φ(t )=-32t +1t -ln t 2t 2-t -1-3t ,t ∈⎝⎛⎭⎫14,12, φ′(t )=-3⎝⎛⎭⎫2-1t 2-1t (2t 2-t -1)-⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2+3t2 =-31t 2(2t 2-t -1)2+3⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2+3t 2=3⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2. 当t ∈⎝⎛⎭⎫14,12时,2t +1t-ln t >0,4t -1>0,φ′(t )>0,所以φ(t )在⎝⎛⎭⎫14,12上单调递增,φ(t )∈⎝⎛⎭⎫163ln 2,3+3ln 2, 所以f (x 2)的取值范围是⎝⎛⎭⎫163ln 2,3+3ln 2.。

2018届高考数学(理)二轮专题复习:1-7 Word版含答案.doc

2018届高考数学(理)二轮专题复习:1-7 Word版含答案.doc

小题提速练(七)(满分80分,押题冲刺,45分钟拿下客观题满分)一、选择题(本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U =R ,A ={x ∈N |2x (x -4)<1},B ={x ∈N |y =ln(2-x )},则图中阴影部分表示的集合的子集个数为( )A .1B .2C .3D .4解析:选D.由韦恩图知阴影部分表示的是A ∩(∁U B ),∵A ={x ∈N |2x (x -4)<1}={1,2,3},B ={x ∈N |y =ln(2-x )}={0,1},∴阴影部分对应的集合是A ∩(∁U B )={2,3},则图中阴影部分表示的集合的子集个数为22=4.2.若复数a +3i1+2i(a ∈R ,i 为虚数单位)是纯虚数,则实数a 的值为( )A .-6B .-2C .4D .6 解析:选A.∵a +3i 1+2i =a +-+-=a ++-2a5为纯虚数,∴⎩⎪⎨⎪⎧a +6=0,3-2a ≠0,解得a =-6.3.给出命题p :若平面α与平面β不重合,且平面α内有不共线的三点到平面β的距离相等,则α∥β;命题q :向量a =(-2,-1),b =(λ,1)的夹角为钝角的充要条件为λ∈⎝ ⎛⎭⎪⎫-12,+∞.关于以上两个命题,下列结论中正确的是( ) A .命题“p ∨q ”为假 B .命题“p ∧q ”为真 C .命题“p ∨﹁q ”为假D .命题“p ∧﹁q ”为真解析:选A.命题p :若平面α与平面β不重合,且平面α内有不共线的三点到平面β的距离相等,则α∥β或相交,因此是假命题;命题q :向量a =(-2,-1),b =(λ,1)的夹角为钝角的充要条件为⎩⎪⎨⎪⎧a·b <0,且不异向共线,-2λ-1<0,解得λ>-12,由-λ+2=0,解得λ=2,此时a 与b 异向共线,因此向量a =(-2,-1),b =(λ,1)的夹角为钝角的充要条件为λ∈⎝ ⎛⎭⎪⎫-12,+∞且λ≠2,因此是假命题. 4.一个空间几何体的三视图如图所示,则该几何体的外接球的表面积为()A .24πB .6πC .4πD .2π解析:选B.几何体为三棱锥,可以将其补形为一个棱长为2的正方体,该正方体的外接球和几何体的外接球为同一个,故2R =22+22,R =62,所以外接球的表面积为4πR 2=6π. 5.下面图1是某学习小组学生数学考试成绩的茎叶图,1号到16号同学的成绩依次为A 1,A 2,…,A 16,图2是统计茎叶图中成绩在一定范围内的学生人数的算法流程图,那么该算法流程图输出的结果是( )7 8 9 10 116 9 1 3 6 72 9 4 1 58 6 3 1 4图1图2A .6B .10C .91D .92解析:选B.由算法流程图可知,其统计的是数学成绩大于等于90的人数,所以由茎叶图可知:数学成绩大于等于90的人数为10,因此输出结果为10.6.已知正数x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x -3y +5≥0,则z =4-x·⎝ ⎛⎭⎪⎫12y的最小值为( )A .1 B.14 32 C.116D.132解析:选C.根据约束条件画出可行域,把z =4-x ·⎝ ⎛⎭⎪⎫12y化成z =2-2x -y,直线z 1=-2x -y 过点A (1,2)时,z 1最小值是-4,∴z =2-2x -y的最小值是2-4=116.7.已知函数y =A cos ⎝ ⎛⎭⎪⎫π2x +φ(A >0)在一个周期内的图象如图所示,其中P ,Q 分别是这段图象的最高点和最低点,M ,N 是图象与x 轴的交点,且∠PMQ =90°,则A 的值为()A. 3B. 2 C .1D .2解析:选A.过Q ,P 分别作x 轴的垂线于B ,C ,∵函数的周期T =2ππ2=4,∴MN =2,CN =1,∵∠PMQ =90°,∴PQ =2MN =4,即PN =2,即PC =PN 2-NC 2=4-1=3,∴A = 3.8.已知函数f (n )=n 2cos(n π),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=( ) A .0 B .-100 C .100D .10200解析:选B.由题意可得a n =n 2cos(n π)+(n +1)2cos[(n +1)π]=(-1)n -1(2n +1),所以a 1+a 2+a 3+…+a 100=3-5+7-9+11-…+199-201=50×(-2)=-100.9.函数f (x )是定义域为R 的奇函数,且x ≤0时,f (x )=2x-12x +a ,则函数f (x )的零点个数是( )A .1B .2C .3D .4解析:选C.∵函数f (x )是定义域为R 的奇函数, ∴f (0)=0,又∵x ≤0时,f (x )=2x-12x +a ,∴f (0)=20+a =0,解得a =-1,故x ≤0时,f (x )=2x -12x -1,令f (x )=2x -12x -1=0,解得x =-1或x =0,故f (-1)=0,则f (1)=0,综上所述,函数f (x )的零点个数是3个.10.设A 1,A 2分别为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左右顶点,若双曲线上存在点M 使得两直线斜率kMA 1·kMA 2<2,则双曲线C 的离心率的取值范围为( )A .(0,3)B .(1,3)C .(3,+∞)D .(0,3)解析:选B.由题意可得A 1(-a,0),A 2(a,0),设M (m ,n ),可得m 2a 2-n 2b 2=1,即n 2m 2-a 2=b 2a 2,由题意k MA 1·k MA 2<2,即为n -0m +a ·n -0m -a <2,即有b 2a 2<2,即b 2<2a 2,c 2-a 2<2a 2,即c 2<3a 2,c <3a ,即有e =ca<3,由e >1,可得1<e < 3.11.已知△ABC 外接圆O 的半径为1,且OA →·OB →=-12,∠C =π3,从圆O 内随机取一个点M ,若点M 取自△ABC 内的概率恰为334π,则△ABC 的形状为( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形解析:选B.∵OA →·OB →=-12,圆的半径为1,∴cos∠AOB =-12,又0<∠AOB <π,故∠AOB =2π3,又△AOB 为等腰三角形,故AB =3,从圆O 内随机取一个点,取自△ABC 内的概率为334π,即S △ABC S 圆=334π,∴S △ABC =334,设BC =a ,AC =b ,∵C =π3,∴12ab sin C =334,得ab =3①,由AB 2=a 2+b 2-2ab cos C =3,得a 2+b 2-ab =3,a 2+b 2=6②,联立①②解得a =b =3,∴△ABC 为等边三角形.12.设函数f (x )的导函数为f ′(x ),对任意x ∈R 都有f ′(x )>f (x )成立,则( ) A .3f (ln 2)>2f (ln 3) B .3f (ln 2)=2f (ln 3) C .3f (ln 2)<2f (ln 3)D .3f (ln 2)与2f (ln 3)的大小不确定 解析:选C.令g (x )=f xe x ,则g ′(x )=f x x-f xxe2x=f x -f xex,因为对任意x ∈R 都有f ′(x )>f (x ),所以g ′(x )>0,即g (x )在R 上单调递增,又ln 2<ln 3,所以g (ln 2)<g (ln 3),即feln 2<feln 3,所以f2<f3,即3f (ln 2)<2f (ln 3),故选C.二、填空题(本题共4小题,每小题5分;共20分)13.已知过点P (2,2)的直线与圆(x -1)2+y 2=5相切,且与直线ax -y +1=0垂直,则a =________.解析:因为点P (2,2)满足圆(x -1)2+y 2=5的方程,所以P 在圆上,又过点P (2,2)的直线与圆(x -1)2+y 2=5相切,且与直线ax -y +1=0垂直,所以切点与圆心连线与直线ax -y +1=0平行,所以直线ax -y +1=0的斜率为a =2-02-1=2.答案:214.在△ABC 中,已知B =π3,AC =43,D 为BC 边上一点.若AB =AD ,则△ADC 的周长的最大值为________.解析:∵AB =AD ,B =π3,∴△ABD 为正三角形,∵∠DAC =π3-C ,∠ADC =2π3,在△ADC 中,根据正弦定理可得ADsin C =43sin 2π3=DCsin ⎝ ⎛⎭⎪⎫π3-C , ∴AD =8sin C ,DC =8sin ⎝ ⎛⎭⎪⎫π3-C ,∴△ADC 的周长为AD +DC +AC =8sin C +8sin ⎝ ⎛⎭⎪⎫π3-C +43=8⎝ ⎛⎭⎪⎫12sin C +32cos C +43=8sin ⎝ ⎛⎭⎪⎫C +π3+43,∵∠ADC =2π3,∴0<C <π3,∴π3<C +π3<2π3,∴当C +π3=π2,即C =π6时,sin ⎝ ⎛⎭⎪⎫C +π3的最大值为1,则△ADC 的周长最大值为8+4 3.答案:8+4 315.已知椭圆C :x 24+y 23=1的左、右焦点分别为F 1,F 2,椭圆C 上点A 满足AF 2⊥F 1F 2,若点P 是椭圆C 上的动点,则F 1P →·F 2A →的最大值为________.解析:由椭圆C :x 24+y 23=1可得a 2=4,b 2=3,c =a 2-b 2=1,可得F 1(-1,0),F 2(1,0),由AF 2⊥F 1F 2,令x =1,可得y =±3·1-14=±32,可设A ⎝ ⎛⎭⎪⎫1,32,设P (m ,n ),则m 24+n 23=1,又-3≤n ≤3,则F 1P →·F 2A →=(m +1,n )·⎝ ⎛⎭⎪⎫0,32=32n ≤332,可得F 1P →·F 2A →的最大值为332.答案:33216.定义在R 上的函数,对任意实数都有f (x +3)≤f (x )+3和f (x +2)≥f (x )+2,且f (1)=2,记a n =f (n )(n ∈N *),则a 2018=________.解析:∵f (x +3)≤f (x )+3和f (x +2)≥f (x )+2,∴f (x +1)+2≤f (x +3)≤f (x )+3,∴f (x +1)≤f (x )+1,∵f (x +1)+1≥f (x +2)≥f (x )+2,∴f (x +1)≥f (x )+1,∴f (x +1)=f (x )+1,∴f (x +1)-f (x )=1,∴{a n }是以f (1)为首项,公差为1的等差数列. ∴a 2018=f (2018)=f (1)+(2018-1)×1=2019. 答案:2019。

2018年高考数学(理)二轮专题复习课件:第二部分 专题二 函数与导数3

2018年高考数学(理)二轮专题复习课件:第二部分 专题二  函数与导数3
-9-
一、选择题
二、填空题
7.已知函数f(x)=x(ln x-ax)有两个极值点,则实数a的取值范围是 ( B )
A.(-∞,0)
B. 0,
1 2
C.(0,1)

D.(0,+∞)
解析: ∵f(x)=x(ln x-ax), ∴f'(x)=ln x-2ax+1,由题意可知f'(x)在(0,+∞)上有两个不同的零点,
2.3 函数与导数的应用专项练
1.导数的几何意义 函数y=f(x)在点x0处的导数的几何意义:函数y=f(x)在点x0处的导 数是曲线y=f(x)在P(x0,f(x0))处的切线的斜率f'(x0),相应的切线方程 是y-y0=f'(x0)(x-x0). 注意:在某点处的切线只有一条,但过某点的切线不一定只有一 条. 2.常用的求导方法 (1)(xm)'=mxm-1,(sin x)'=cos x,(cos x)'=-sin x,(ex)'=ex,
-4-
一、选择题
二、填空题
解析: 由题意可得, f'(x)=(2x+a)ex-1+(x2+ax-1)ex-1=[x2+(a+2)x+a-1]ex-1. 因为x=-2是函数f(x)的极值点,所以f'(-2)=0.所以a=-1. 所以f(x)=(x2-x-1)ex-1. 所以f'(x)=(x2+x-2)ex-1. 令f'(x)=0,解得x1=-2,x2=1.当x变化时,f'(x),f(x)的变化情况如下表:
x f'(x) f(x) (-∞,-2) + ↗ -2 0 (-2,1) 1 0 (1,+∞) +

2018高考数学(理)二轮复习规范答题示例课件与试卷(20份)最新版

2018高考数学(理)二轮复习规范答题示例课件与试卷(20份)最新版
规范答题示例1
函数的单调性、极值与最值问题
典例1 (12分)已知函数f(x)=ln x+a(1-x). (1)讨论f(x)的单调性; (2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.
审题路线图 求f′x ――讨―的论―― 符f―′号――x→ fx单调性 ―→ fx最大值 ―→ 解fxmax>2a-2 .
6分 9分
Байду номын сангаас
令g(a)=ln a+a-1,则g(a)在(0,+∞)上单调递增,g(1)=0. 于是,当0<a<1时,g(a)<0; 当a>1时,g(a)>0. 因此,a的取值范围是(0,1).
12分
构建答题模板 第一步 求导数:写出函数的定义域,求函数的导数. 第二步 定符号:通过讨论确定f′(x)的符号. 第三步 写区间:利用f′(x)的符号写出函数的单调区间. 第四步 求最值:根据函数单调性求出函数最值.
评分细则 (1)函数求导正确给1分; (2)分类讨论,每种情况给2分,结论1分; (3)求出最大值给2分; (4)构造函数g(a)=ln a+a-1给2分; (5)通过分类讨论得出a的范围,给2分.
跟踪演练1 (2017·山东)已知函数f(x)=x2+2cos x,g(x)=ex(cos x-sin x+ 2x-2),其中e=2.718 28…是自然对数的底数. (1)求曲线y=f(x)在点(π,f(π))处的切线方程; 解 由题意知f(π)=π2-2. 又f′(x)=2x-2sin x, 所以f′(π)=2π. 所以曲线y=f(x)在点(π,f(π))处的切线方程为y-(π2-2)=2π(x-π). 即2πx-y-π2-2=0.
规 范 解 答 ·分 步 得 分 解 (1)f(x)的定义域为(0,+∞),f′(x)=1x-a.

2018届高考数学(理)二轮专题复习:第一部分 专题二 函数、不等式、导数 1-2-4

2018届高考数学(理)二轮专题复习:第一部分 专题二 函数、不等式、导数 1-2-4

限时规范训练七 导数的综合应用限时45分钟,实际用时分值81分,实际得分一、选择题(本题共6小题,每小题5分,共30分)1.如果函数y =f (x )的导函数的图象如图所示,给出下列判断:①函数y =f (x )在区间⎝⎛⎭⎪⎫-3,-12内单调递增; ②函数y =f (x )在区间⎝ ⎛⎭⎪⎫-12,3内单调递减;③函数y =f (x )在区间(4,5)内单调递增; ④当x =2时,函数y =f (x )取极小值; ⑤当x =-12时,函数y =f (x )取极大值.则上述判断中正确的是( ) A .①② B .②③ C .③④⑤D .③解析:选D.当x ∈(-3,-2)时,f ′(x )<0,f (x )单调递减,①错;当x ∈⎝ ⎛⎭⎪⎫-12,2时,f ′(x )>0,f (x )单调递增,当x ∈(2,3)时,f ′(x )<0,f (x )单调递减,②错;当x =2时,函数y =f (x )取极大值,④错;当x =-12时,函数y =f (x )无极值,⑤错.故选D.2.若函数f (x )=2x 2-ln x 在其定义域内的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是( )A .[1,+∞)B .[1,2)C.⎣⎢⎡⎭⎪⎫1,32 D.⎣⎢⎡⎭⎪⎫32,2 解析:选C.f ′(x )=4x -1x =2x -12x +1x,∵x >0,由f ′(x )=0得x =12.∴令f ′(x )>0,得x >12;令f ′(x )<0,得0<x <12.由题意得⎩⎪⎨⎪⎧k -1≥0,k -1<12<k +1⇒1≤k <32.故C 正确.3.已知函数f (x )(x ∈R )满足f ′(x )>f (x ),则( ) A .f (2)<e 2f (0) B .f (2)≤e 2f (0) C .f (2)=e 2f (0)D .f (2)>e 2f (0)解析:选D.由题意构造函数g (x )=f xex,则g ′(x )=f ′x -f xex>0,则g (x )=f xex在R 上单调递增,则有g (2)>g (0),故f (2)>e 2f (0).4.不等式e x-x >ax 的解集为P ,且[0,2]⊆P ,则实数a 的取值范围是( ) A .(-∞,e -1) B .(e -1,+∞) C .(-∞,e +1)D .(e +1,+∞)解析:选A.由题意知不等式e x-x >ax 在区间[0,2]上恒成立,当x =0时,不等式显然成立,当x ≠0时,只需a <e xx -1恒成立,令f (x )=e xx-1,f ′(x )=e xx -1x 2,显然函数在区间(0,1]上单调递减,在区间[1,2]上单调递增,所以当x =1时,f (x )取得最小值e -1,则a <e -1,故选A.5.设函数f (x )=ln x ,g (x )=ax +b x,它们的图象在x 轴上的公共点处有公切线,则当x >1时,f (x )与g (x )的大小关系是( )A .f (x )>g (x )B .f (x )<g (x )C .f (x )=g (x )D .f (x )与g (x )的大小关系不确定解析:选B.由题意得f (x )与x 轴的交点(1,0)在g (x )上,所以a +b =0,因为函数f (x ),g (x )的图象在此公共点处有公切线,所以f (x ),g (x )在此公共点处的导数相等,f ′(x )=1x,g ′(x )=a -b x 2,以上两式在x =1时相等,即1=a -b ,又a +b =0,所以a =12,b =-12,即g (x )=x 2-12x ,f (x )=ln x ,令h (x )=f (x )-g (x )=ln x -x 2+12x ,则h ′(x )=1x -12-12x 2=2x -x 2-12x2=-x -122x2,因为x >1,所以h ′(x )<0,所以h (x )在(1,+∞)上单调递减,所以h (x )<h (1)=0,所以f (x )<g (x ).故选B.6.设函数f (x )=ax 3-x +1(x ∈R ),若对于任意x ∈[-1,1]都有f (x )≥0,则实数a 的取值范围为( )A .(-∞,2]B .[0,+∞)C .[0,2]D .[1,2]解析:选C.∵f (x )=ax 3-x +1,∴f ′(x )=3ax 2-1,当a <0时,f ′(x )=3ax 2-1<0,f (x )在[-1,1]上单调递减,f (x )min =f (1)=a <0,不符合题意.当a =0时,f (x )=-x +1,f (x )在[-1,1]上单调递减,f (x )min =f (1)=0,符合题意. 当a >0时,由f ′(x )=3ax 2-1≥0,得x ≥13a 或x ≤-13a ,当0<13a <1,即a >13时,f (x )在⎣⎢⎡⎦⎥⎤-1,-13a 上单调递增,在⎝ ⎛⎭⎪⎫-13a,13a 上单调递减,在⎝⎛⎦⎥⎤13a ,1上单调递增,∴⎩⎪⎨⎪⎧f -1=-a +1+1=2-a ≥0f ⎝ ⎛⎭⎪⎫13a =a ⎝ ⎛⎭⎪⎫13a 3-13a +1≥0,∴⎩⎪⎨⎪⎧a ≤2a ≥427a >13,∴13<a ≤2; 当13a ≥1,即0<a ≤13时,f (x )在[-1,1]上单调递减, f (x )min =f (1)=a >0,符合题意.综上可得,0≤a ≤2.二、填空题(本题共3小题,每小题5分,共15分)7.已知y =f (x )为R 上的连续可导函数,且xf ′(x )+f (x )>0,则函数g (x )=xf (x )+1(x >0)的零点个数为________.解析:因为g (x )=xf (x )+1(x >0),g ′(x )=xf ′(x )+f (x )>0,所以g (x )在(0,+∞)上单调递增,又g (0)=1,y =f (x )为R 上的连续可导函数,所以g (x )为(0,+∞)上的连续可导函数,又g (x )>g (0)=1,所以g (x )在(0,+∞)上无零点.答案:08.在函数f (x )=a ln x +(x +1)2(x >0)的图象上任取两个不同点P (x 1,y 1),Q (x 2,y 2),总能使得f (x 1)-f (x 2)≥4(x 1-x 2),则实数a 的取值范围为________.解析:不妨设x 1>x 2,则x 1-x 2>0,∵f (x 1)-f (x 2)≥4(x 1-x 2),∴f x 1-f x 2x 1-x 2≥4,∵f (x )=a ln x +(x +1)2(x >0)∴f ′(x )=a x +2(x +1),∴a x +2(x +1)≥4,∴a ≥-2x 2+2x ,又-2x 2+2x =-2⎝ ⎛⎭⎪⎫x -122+12≤12,∴a ≥12. 答案:a ≥129.设函数y =f (x )图象上任意一点(x 0,y 0)处的切线方程为y -y 0=(3x 20-6x 0)(x -x 0),且f (3)=0,则不等式x -1f x≥0的解集为________. 解析:∵函数y =f (x )图象上任意一点(x 0,y 0)处的切线方程为y -y 0=(3x 20-6x 0)(x -x 0),∴f ′(x 0)=3x 20-6x 0,∴f ′(x )=3x 2-6x ,设f (x )=x 3-3x 2+c ,又f (3)=0,∴33-3×32+c =0,解得c =0,∴f (x )=x 3-3x 2,∴x -1f x ≥0可化为x -1x 3-3x 2≥0,解得0<x ≤1或x <0或x >3. 答案:(-∞,0)∪(0,1]∪(3,+∞)三、解答题(本题共3小题,每小题12分,共36分) 10.(2017·高考全国卷Ⅲ)已知函数f (x )=x -1-a ln x . (1)若f (x )≥0,求a 的值;(2)设m 为整数,且对于任意正整数n ,⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122·…·⎝ ⎛⎭⎪⎫1+12n <m ,求m 的最小值.解:(1)f (x )的定义域为(0,+∞),①若a ≤0,因为f ⎝ ⎛⎭⎪⎫12=-12+a ln 2<0,所以不满足题意.②若a >0,由f ′(x )=1-a x =x -ax知,当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0. 所以f (x )在(0,a )单调递减,在(a ,+∞)单调递增. 故x =a 是f (x )在(0,+∞)的唯一最小值点. 因为f (1)=0,所以当且仅当a =1时,f (x )≥0, 故a =1.(2)由(1)知当x ∈(1,+∞)时,x -1-ln x >0. 令x =1+12n ,得ln ⎝ ⎛⎭⎪⎫1+12n <12n ,从而ln ⎝ ⎛⎭⎪⎫1+12+ln ⎝ ⎛⎭⎪⎫1+122+…+ln ⎝ ⎛⎭⎪⎫1+12n <12+122+…+12n =1-12n <1.故⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122·…·⎝ ⎛⎭⎪⎫1+12n <e.而⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122⎝ ⎛⎭⎪⎫1+123>2,所以m 的最小值为3. 11.设函数f (x )=e mx+x 2-mx .(1)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e -1,求m 的取值范围. 解:(1)证明:f ′(x )=m (e mx-1)+2x .若m ≥0,则当x ∈(-∞,0)时,e mx-1≤0,f ′(x )<0;当x ∈(0,+∞)时,e mx-1≥0,f ′(x )>0.若m <0,则当x ∈(-∞,0)时,e mx-1>0,f ′(x )<0;当x ∈(0,+∞)时,e mx-1<0,f ′(x )>0.所以,f (x )在(-∞,0)单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m ,f (x )在[-1,0]单调递减,在[0,1]单调递增,故f (x )在x =0处取得最小值.所以对于任意x 1,x 2∈[-1,1],|f (x 1)-f (x 2)|≤e -1的充要条件是⎩⎪⎨⎪⎧f 1-f 0≤e-1,f-1-f0≤e-1,即⎩⎪⎨⎪⎧e m-m ≤e-1,e -m+m ≤e-1.①设函数g (t )=e t-t -e +1,则g ′(t )=e t-1. 当t <0时,g ′(t )<0;当t >0时,g ′(t )>0. 故g (t )在(-∞,0)单调递减,在(0,+∞)单调递增.又g (1)=0,g (-1)=e -1+2-e <0,故当t ∈[-1,1]时,g (t )≤0. 当m ∈[-1,1]时,g (m )≤0,g (-m )≤0,即①式成立; 当m >1时,由g (t )的单调性,g (m )>0,即e m-m >e -1; 当m <-1时,g (-m )>0,即e -m+m >e -1. 综上,m 的取值范围是[-1,1].12.已知函数f (x )=mx 4x 2+16,g (x )=⎝ ⎛⎭⎪⎫12|x -m |,其中m ∈R 且m ≠0. (1)判断函数f (x )的单调性;(2)当m <-2时,求函数F (x )=f (x )+g (x )在区间[-2,2]上的最值;(3)设函数h (x )=⎩⎪⎨⎪⎧fx ,x ≥2,g x ,x <2,当m ≥2时,若对于任意的x 1∈[2,+∞),总存在唯一的x 2∈(-∞,2),使得h (x 1)=h (x 2)成立,试求m 的取值范围.解:(1)依题意,f ′(x )=m 4-x 24x 2+42=m 2-x 2+x4x 2+42, ①当m ≥0时,解f ′(x )≥0得-2≤x ≤2,解f ′(x )<0得x <-2或x >2;所以f (x )在[-2,2]上单调递增,在(-∞,-2),(2,+∞)上单调递减. ②当m <0时,解f ′(x )≤0得-2≤x ≤2,f ′(x )>0得x <-2或x >2; 所以f (x )在[-2,2]上单调递减;在(-∞,-2),(2,+∞)上单调递增. (2)当m <-2,-2≤x ≤2时,g (x )=⎝ ⎛⎭⎪⎫12|x -m |=⎝ ⎛⎭⎪⎫12x -m =2m ·⎝ ⎛⎭⎪⎫12x 在[-2,2]上单调递减,由(1)知,f (x )在[-2,2]上单调递减,所以F (x )=f (x )+g (x )=mx 4x 2+16+2m ⎝ ⎛⎭⎪⎫12x在[-2,2]上单调递减;∴F (x )max =F (-2)=4×2m-m16=2m +2-m16;F (x )min =F (2)=2m -2+m16.(3)当m ≥2,x 1∈[2,+∞)时,h (x 1)=f (x 1)=mx 14x 21+16,由(1)知h (x 1)在[2,+∞)上单调递减, 从而h (x 1)∈(0,f (2)],即h (x 1)∈⎝ ⎛⎦⎥⎤0,m 16;当m ≥2,x 2<2时,h (x 2)=g (x 2)=⎝ ⎛⎭⎪⎫12|x 2-m |=⎝ ⎛⎭⎪⎫12m -x 2=⎝ ⎛⎭⎪⎫12m ·2x 2在(-∞,2)上单调递增, 从而h (x 2)∈(0,g (2)),即h (x 2)∈⎝ ⎛⎭⎪⎫0,⎝ ⎛⎭⎪⎫12m -2;对于任意的x 1∈[2,+∞),总存在唯一的x 2∈(-∞,2),使得h (x 1)=h (x 2)成立,只需m16<⎝ ⎛⎭⎪⎫12m -2,即m 16-⎝ ⎛⎭⎪⎫12m -2<0成立即可.记函数H (m )=m16-⎝ ⎛⎭⎪⎫12m -2,易知H (m )=m16-⎝ ⎛⎭⎪⎫12m -2在[2,+∞)上单调递增,且H (4)=0. 所以m 的取值范围为[2,4).。

2018届高考数学(理)二轮限时规范训练(Word版,含答案解析)

2018届高考数学(理)二轮限时规范训练(Word版,含答案解析)

限时规范训练一 集合、常用逻辑用语限时40分钟,实际用时分值80分,实际得分一、选择题(本题共12小题,每小题5分,共60分) 1.集合A ={x ∈N |-1<x <4}的真子集个数为( ) A .7 B .8 C .15D .16解析:选C.A ={0,1,2,3}中有4个元素,则真子集个数为24-1=15.2.已知集合A ={x |2x 2-5x -3≤0},B ={x ∈Z |x ≤2},则A ∩B 中的元素个数为( ) A .2 B .3 C .4D .5解析:选B.A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12≤x ≤3,∴A ∩B ={0,1,2},A ∩B 中有3个元素,故选B. 3.设集合M ={-1,1},N ={x |x 2-x <6},则下列结论正确的是( ) A .N ⊆M B .N ∩M =∅ C .M ⊆ND .M ∩N =R解析:选C.集合M ={-1,1},N ={x |x 2-x <6}={x |-2<x <3},则M ⊆N ,故选C. 4.已知p :a <0,q :a 2>a ,则﹁p 是﹁q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B.因为﹁p :a ≥0,﹁q :0≤a ≤1,所以﹁q ⇒﹁p 且﹁p ⇒/﹁q ,所以﹁p 是﹁q 的必要不充分条件.5.下列命题正确的是( )A .若p ∨q 为真命题,则p ∧q 为真命题B .“a >0,b >0”是“b a +ab≥2”的充要条件C .命题“若x 2-3x +2=0,则x =1或x =2”的逆否命题为“若x ≠1或x ≠2,则x 2-3x +2≠0”D .命题p :∃x ∈R ,x 2+x -1<0,则﹁p :∀x ∈R ,x 2+x -1≥0解析:选D.若p ∨q 为真命题,则p ,q 中至少有一个为真,那么p ∧q 可能为真,也可能为假,故A 错;若a >0,b >0,则b a +a b ≥2,又当a <0,b <0时,也有b a +a b≥2,所以“a >0,b >0”是“b a +a b≥2”的充分不必要条件,故B 错;命题“若x 2-3x +2=0,则x =1或x =2”的逆否命题为“若x ≠1且x ≠2,则x 2-3x +2≠0”,故C 错;易知D 正确.6.设集合A ={x |x >-1},B ={x ||x |≥1},则“x ∈A 且x ∉B ”成立的充要条件是( )A .-1<x ≤1B .x ≤1C .x >-1D .-1<x <1解析:选D.由题意可知,x ∈A ⇔x >-1,x ∉B ⇔-1<x <1,所以“x ∈A 且x ∉B ”成立的充要条件是-1<x <1.故选D.7.“a =0”是“函数f (x )=sin x -1x+a 为奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C.f (x )的定义域为{x |x ≠0},关于原点对称.当a =0时,f (x )=sin x -1x,f (-x )=sin(-x )-1-x =-sin x +1x =-⎝⎛⎭⎪⎫sin x -1x =-f (x ),故f (x )为奇函数;反之,当f (x )=sin x -1x+a 为奇函数时,f (-x )+f (x )=0,又f (-x )+f (x )=sin (-x )-1-x +a +sin x -1x +a =2a ,故a =0,所以“a =0”是“函数f (x )=sin x -1x+a 为奇函数”的充要条件,故选C.8.已知命题p :“∃x ∈R ,e x-x -1≤0”,则﹁p 为( ) A .∃x ∈R ,e x-x -1≥0 B .∃x ∈R ,e x -x -1>0 C .∀x ∈R ,e x -x -1>0 D .∀x ∈R ,e x -x -1≥0解析:选C.特称命题的否定是全称命题,所以﹁p :∀x ∈R ,e x-x -1>0.故选C. 9.下列命题中假命题是( ) A .∃x 0∈R ,ln x 0<0 B .∀x ∈(-∞,0),e x>x +1 C .∀x >0,5x>3xD .∃x 0∈(0,+∞),x 0<sin x 0解析:选D.令f (x )=sin x -x (x >0),则f ′(x )=cos x -1≤0,所以f (x )在(0,+∞)上为减函数,所以f (x )<f (0),即f (x )<0,即sin x <x (x >0),故∀x ∈(0,+∞),sin x <x ,所以D 为假命题,故选D.10.命题p :存在x 0∈⎣⎢⎡⎦⎥⎤0,π2,使sin x 0+cos x 0>2;命题q :命题“∃x 0∈(0,+∞),ln x 0=x 0-1”的否定是∀x ∈(0,+∞),ln x ≠x -1,则四个命题(﹁p )∨(﹁q )、p ∧q 、(﹁p )∧q 、p ∨(﹁q )中,正确命题的个数为( )A .1B .2C .3D .4解析:选B.因为sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4≤2,故命题p 为假命题;特称命题的否定为全称命题,易知命题q 为真命题,故(﹁p )∨(﹁q )真,p ∧q 假,(﹁p )∧q 真,p ∨(﹁q )假.11.下列说法中正确的是( )A .命题“∀x ∈R ,e x >0”的否定是“∃x ∈R ,e x>0”B .命题“已知x ,y ∈R ,若x +y ≠3,则x ≠2或y ≠1”是真命题C .“x 2+2x ≥ax 在x ∈[1,2]上恒成立”⇔“对于x ∈[1,2],有(x 2+2x )min ≥(ax )max ” D .命题“若a =-1,则函数f (x )=ax 2+2x -1只有一个零点”的逆命题为真命题 解析:选B.全称命题“∀x ∈M ,p (x )”的否定是“∃x ∈M ,﹁p (x )”,故命题“∀x ∈R ,e x >0”的否定是“∃x ∈R ,e x≤0”,A 错;命题“已知x ,y ∈R ,若x +y ≠3,则x ≠2或y ≠1”的逆否命题为“已知x ,y ∈R ,若x =2且y =1,则x +y =3”,是真命题,故原命题是真命题,B 正确;“x 2+2x ≥ax 在x ∈[1,2]上恒成立”⇔“对于x ∈[1,2],有(x +2)min ≥a ”,由此可知C 错误;命题“若a =-1,则函数f (x )=ax 2+2x -1只有一个零点”的逆命题为“若函数f (x )=ax 2+2x -1只有一个零点,则a =-1”,而函数f (x )=ax 2+2x -1只有一个零点⇔a =0或a =-1,故D 错.故选B.12.“直线y =x +b 与圆x 2+y 2=1相交”是“0<b <1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B.若“直线y =x +b 与圆x 2+y 2=1相交”,则圆心到直线的距离为d =|b |2<1,即|b |<2,不能得到0<b <1;反过来,若0<b <1,则圆心到直线的距离为d =|b |2<12<1,所以直线y =x +b 与圆x 2+y 2=1相交,故选B. 二、填空题(本题共4小题,每小题5分,共20分)13.若命题“∃x 0∈R ,x 20-2x 0+m ≤0”是假命题,则m 的取值范围是________. 解析:由题意,命题“∀x ∈R ,x 2-2x +m >0”是真命题,故Δ=(-2)2-4m <0,即m >1.答案:(1,+∞)14.若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值范围是________.解析:由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m-2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)15.设集合S ,T 满足∅≠S ⊆T ,若S 满足下面的条件:(i)对于∀a ,b ∈S ,都有a -b ∈S 且ab ∈S ;(ⅱ)对于∀r ∈S ,n ∈T ,都有nr ∈S ,则称S 是T 的一个理想,记作S ⊲T .现给出下列集合对:①S ={0},T =R ;②S ={偶数},T =Z ;③S =R ,T =C (C 为复数集),其中满足S ⊲T 的集合对的序号是________.解析:①(ⅰ)0-0=0,0×0=0;(ⅱ)0×n =0,符合题意.②(ⅰ)偶数-偶数=偶数,偶数×偶数=偶数;(ⅱ)偶数×整数=偶数,符合题意. ③(ⅰ)实数-实数=实数,实数×实数=实数;(ⅱ)实数×复数=实数不一定成立,如2×i=2i ,不合题意.答案:①②16.已知f (x )=m (x -2m )(x +m +3),g (x )=2x-2.若同时满足条件: ①∀x ∈R ,f (x )<0或g (x )<0;②∃x ∈(-∞,-4),f (x )g (x )<0,则m 的取值范围是________.解析:当x <1时,g (x )<0;当x >1时,g (x )>0;当x =1时,g (x )=0.m =0不符合要求.当m >0时,根据函数f (x )和函数g (x )的单调性,一定存在区间[a ,+∞)使f (x )≥0且g (x )≥0,故m >0时不符合第①条的要求.当m <0时,如图所示,如果符合①的要求,则函数f (x )的两个零点都得小于1,如果符合第②条要求,则函数f (x )至少有一个零点小于-4,问题等价于函数f (x )有两个不相等的零点,其中较大的零点小于1,较小的零点小于-4.函数f (x )的两个零点是2m ,-(m +3),故m 满足⎩⎪⎨⎪⎧m <0,2m <-m +,2m <-4,-m +<1或⎩⎪⎨⎪⎧m <0,-m +<2m ,2m <1,-m +<-4,解第一个不等式组得-4<m <-2,第二个不等式组无解,故所求m 的取值范围是(-4,-2).答案:(-4,-2)限时规范训练二 平面向量、复数运算限时45分钟,实际用时分值80分,实际得分一、选择题(本题共12小题,每小题5分,共60分)1.设i 是虚数单位,如果复数a +i2-i的实部与虚部相等,那么实数a 的值为( )A.13 B .-13C .3D .-3解析:选C.a +i 2-i =2a -1+a +5,由题意知2a -1=a +2,解之得a =3.2.若复数z 满足(1+2i)z =(1-i),则|z |=( ) A.25 B.35 C.105D.10解析:选C.z =1-i 1+2i =-1-3i 5⇒|z |=105.3.已知复数z =1+i(i 是虚数单位),则2z-z 2的共轭复数是( )A .-1+3iB .1+3iC .1-3iD .-1-3i 解析:选 B.2z -z 2=21+i -(1+i)2=-+--2i =1-i -2i =1-3i ,其共轭复数是1+3i ,故选B.4.若z =(a -2)+a i 为纯虚数,其中a ∈R ,则a +i 71+a i=( )A .iB .1C .-iD .-1解析:选C.∵z 为纯虚数,∴a =2,∴a +i 71+a i =2-i 1+2i=2--2+2-2=-3i 3=-i.5.已知复数z =11-i ,则z -|z |对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 解析:选B.∵复数z =11-i =1+i -+=12+12i , ∴z -|z |=12+12i -⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫122=1-22+12i ,对应的点⎝ ⎛⎭⎪⎫1-22,12所在的象限为第二象限.故选B.6.若复数z 满足z (1-i)=|1-i|+i ,则z 的实部为( ) A.2-12B.2-1C .1D.2+12解析:选 A.由z (1-i)=|1-i|+i ,得z =2+i1-i=2++-+=2-12+2+12i ,z 的实部为2-12,故选A. 7.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m =( )A .2B .3C .4D .5解析:选B.由MA →+MB →+MC →=0知,点M 为△ABC 的重心,设点D 为边BC 的中点,则AM →=23AD →=23×12(AB →+AC →)=13(AB →+AC →),所以AB →+AC →=3AM →,故m =3,故选B. 8.已知向量a =(3,-2),b =(x ,y -1)且a ∥b ,若x ,y 均为正数,则3x +2y的最小值是( )A .24B .8 C.83D.53解析:选B.∵a ∥b ,∴-2x -3(y -1)=0,即2x +3y =3,∴3x +2y =⎝ ⎛⎭⎪⎫3x +2y ×13(2x +3y )=13⎝ ⎛⎭⎪⎫6+9y x +4x y +6≥13⎝ ⎛⎭⎪⎫12+29y x·4x y =8,当且仅当2x =3y =32时,等号成立.∴3x +2y的最小值是8.故选B.9.在平行四边形ABCD 中,AC =5,BD =4,则AB →·BC →=( ) A.414B .-414C.94D .-94解析:选 C.因为BD →2=(AD →-AB →)2=AD →2+AB →2-2AD →·AB →,AC →2=(AD →+AB →)2=AD →2+AB →2+2AD →·AB →,所以AC →2-BD →2=4AD →·AB →,∴AD →·AB →=AB →·BC →=94.10.在△ABC 中,已知向量AB →=(2,2),|AC →|=2,AB →·AC →=-4,则△ABC 的面积为( ) A .4 B .5 C .2D .3解析:选C.∵AB →=(2,2),∴|AB →|=22+22=2 2. ∵AB →·AC →=|AB →|·|AC →|cos A =22×2cos A =-4, ∴cos A =-22,∵0<A <π,∴sin A =22, ∴S △ABC =12|AB →|·|AC →|sin A =2.故选C.11.△ABC 的外接圆的圆心为O ,半径为1,2AO →=AB →+AC →且|OA →|=|AB →|,则向量BA →在BC →方向上的投影为( )A.12B.32 C .-12D .-32解析:选A.由2AO →=AB →+AC →可知O 是BC 的中点,即BC 为△ABC 外接圆的直径,所以|OA →|=|OB →|=|OC →|,由题意知|OA →|=|AB →|=1,故△OAB 为等边三角形,所以∠ABC =60°.所以向量BA →在BC →方向上的投影为|BA →|cos∠ABC =1×cos 60°=12.故选A.12.如图,菱形ABCD 的边长为2,∠BAD =60°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则AM →·AN →的最大值为( )A .3B .2 3C .6D .9解析:选D.由平面向量的数量积的几何意义知, AM →·AN →等于AM →与AN →在AM →方向上的投影之积,所以(AM →·AN →)max =AM →·AC →=⎝ ⎛⎭⎪⎫12AB →+AD →·(AB→+AD →)=12AB 2→+AD 2→+32AB →·AD →=9.二、填空题(本题共4小题,每小题5分,共20分) 13.已知复数z =3+i -32,z 是z 的共轭复数,则z ·z =________.解析:∵z =3+i -32=3+i-2-23i =3+i -2+3=3+-3-+3-3=23-2i -8=-34+14i ,∴z ·z =⎝ ⎛⎭⎪⎫-34+14i ⎝ ⎛⎭⎪⎫-34-14i =316+116=14. 答案:1414.已知向量a ,b 满足|a |=2,|b |=1,且对一切实数x ,|a +x b |≥|a +b |恒成立,则a ,b 夹角的大小为________.解析:|a +x b |≥|a +b |恒成立⇒a 2+2x a ·b +x 2b 2≥a 2+2a·b +b 2恒成立⇒x 2+2a ·b x -1-2a ·b ≥0恒成立,∴Δ=4(a·b )2-4(-1-2a·b )≤0⇒(a·b +1)2≤0,∴a·b =-1,∴cos〈a ,b 〉=a·b |a |·|b |=-12,又〈a ,b 〉∈[0,π],故a 与b 的夹角的大小为2π3.答案:23π15.已知在△ABC 中,AB =4,AC =6,BC =7,其外接圆的圆心为O ,则AO →·BC →=________.解析:如图,取BC 的中点M ,连OM ,AM ,则AO →=AM →+MO →, ∴AO →·BC →=(AM →+MO →)·BC →.∵O 为△ABC 的外心,∴OM ⊥BC ,即OM →·BC →=0,∴AO →·BC →=AM →·BC →=12(AB →+AC →)·(AC →-AB →)=12(AC 2→-AB 2→)=12(62-42)=12×20=10.答案:1016.已知非零向量a ,b ,c 满足|a |=|b |=|a -b |,〈c -a ,c -b 〉=2π3,则|c ||a |的最大值为________.解析:设OA →=a ,OB →=b ,则BA →=a -b . ∵非零向量a ,b ,c 满足|a |=|b |=|a -b |, ∴△OAB 是等边三角形. 设OC →=c ,则AC →=c -a ,BC →=c -b .∵〈c -a ,c -b 〉=2π3,∴点C 在△ABC 的外接圆上,∴当OC 为△ABC 的外接圆的直径时,|c ||a |取得最大值,为1cos 30°=233.答案:233限时规范训练三 算法、框图与推理限时45分钟,实际用时分值80分,实际得分一、选择题(本题共12小题,每小题5分,共60分)1.请仔细观察1,1,2,3,5,( ),13,运用合情推理,可知写在括号里的数最可能是( )A.8 B.9C.10 D.11解析:选A.观察题中所给各数可知,2=1+1,3=1+2,5=2+3,8=3+5,13=5+8,∴括号中的数为8.故选A.2.执行如图所示的程序框图,若输入的x的值为2,则输出的y的值为( )A.2 B.5C.11 D.23解析:选 D.x=2,y=5,|2-5|=3<8;x=5,y=11,|5-11|=6<8;x=11,y=23,|11-23|=12>8.满足条件,输出的y的值为23,故选D.3.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理可得:若定义在R 上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)等于( ) A.f(x) B.-f(x)C.g(x) D.-g(x)解析:选D.由所给等式知,偶函数的导数是奇函数.∵f(-x)=f(x),∴f(x)是偶函数,从而g(x)是奇函数.∴g(-x)=-g(x).4.执行如图所示的程序框图,输出的S值为-4时,则输入的S0的值为( )A .7B .8C .9D .10解析:选D.根据程序框图知,当i =4时,输出S .第1次循环得到S =S 0-2,i =2;第2次循环得到S =S 0-2-4,i =3;第3次循环得到S =S 0-2-4-8,i =4.由题意知S 0-2-4-8=-4,所以S 0=10,故选D.5.(2017·高考山东卷)执行如图所示的程序框图,当输入的x 的值为4时,输出的y 的值为2,则空白判断框中的条件可能为()A .x >3B .x >4C .x ≤4D .x ≤5解析:选B.输入x =4,若满足条件,则y =4+2=6,不符合题意;若不满足条件,则y =log 24=2,符合题意,结合选项可知应填x >4.故选B.6.如图所示的程序框图的运行结果为()A .-1B .12C .1D .2解析:选A.a =2,i =1,i ≥2 019不成立;a =1-12=12,i =1+1=2,i ≥2 019不成立; a =1-112=-1,i =2+1=3,i ≥2 019不成立;a=1-(-1)=2,i=3+1=4,i≥2 019不成立;…,由此可知a是以3为周期出现的,结束时,i=2 019=3×673,此时a=-1,故选A.7.设△ABC的三边长分别为a,b,c,△ABC的面积为S,内切圆半径为r,则r=2Sa+b+c.类比这个结论可知:四面体S­ABC的四个面的面积分别为S1,S2,S3,S4,内切球半径为R,四面体S­ABC的体积为V,则R等于( )A.VS1+S2+S3+S4B.2VS1+S2+S3+S4C.3VS1+S2+S3+S4D.4VS1+S2+S3+S4解析:选C.把四面体的内切球的球心与四个顶点连起来分成四个小三棱锥,其高都是R,四个小三棱锥的体积和等于四面体的体积,因此V=13S1R+13S2R+13S3R+13S4R,解得R=3VS1+S2+S3+S4.8.按照如图所示的程序框图执行,若输出的结果为15,则M处的条件为( )A.k≥16B.k<8C.k<16 D.k≥8解析:选 A.根据框图的循环结构依次可得S=0+1=1,k=2×1=2;S=1+2=3,k =2×2=4;S=3+4=7,k=2×4=8;S=7+8=15,k=2×8=16,根据题意此时跳出循环,输出S=15.所以M处的条件应为k≥16.故A正确.9.如图所示的程序框图中,输出S=( )A .45B .-55C .-66D .66解析:选B.由程序框图知,第一次运行T =(-1)2·12=1,S =0+1=1,n =1+1=2;第二次运行T =(-1)3·22=-4,S =1-4=-3,n =2+1=3;第三次运行T =(-1)4·32=9,S =-3+9=6,n =3+1=4…直到n =9+1=10时,满足条件n >9,运行终止,此时T =(-1)10·92,S =1-4+9-16+…+92-102=1+(2+3)+(4+5)+(6+7)+(8+9)-100=1+92×9-100=-55.故选B.10.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k ],即[k ]={5n +k |n ∈Z },k =0,1,2,3,4.给出如下四个结论:①2 018∈[3]; ②-2∈[2];③Z =[0]∪[1]∪[2]∪[3]∪[4];④整数a ,b 属于同一“类”的充要条件是“a -b ∈[0]”. 其中正确结论的个数为( ) A .1 B .2 C .3D .4解析:选C.因为2 018=403×5+3,所以2 018∈[3],①正确;-2=-1×5+3,-2∈[3],所以②不正确;因为整数集中被5除的数可以且只可以分成五类,所以③正确;整数a ,b 属于同一“类”,因为整数a ,b 被5除的余数相同,从而a -b 被5除的余数为0,反之也成立,故整数a ,b 属于同一“类”的充要条件是“a -b ∈[0]”,故④正确.所以正确的结论有3个,故选C.11.执行如图所示的程序框图,如果输入x ,t 的值均为2,最后输出S 的值为n ,在区间[0,10]上随机选取一个数D ,则D ≤n 的概率为( )A.25B.12C.35D.710解析:选D.这是一个循环结构,循环的结果依次为M=2,S=2+3=5,k=1+1=2;M =2,S=2+5=7,k=2+1=3.最后输出7,所以在区间[0,10]上随机选取一个数D,则D≤n的概率P=710,故选D.12.定义方程f(x)=f′(x)的实数根x0叫做函数f(x)的“新驻点”,若函数g(x)=x,h(x)=ln(x+1),φ(x)=x3-1的“新驻点”分别为α,β,γ,则α,β,γ的大小关系为( )A.α>β>γB.β>α>γC.γ>α>βD.β>γ>α解析:选C.g(x)=g′(x),即x=1,所以α=1;h(x)=h′(x),即ln(x+1)=1x+1,0<x<1,所以β∈(0,1);φ(x)=φ′(x),即x3-1=3x2,即x3-3x2=1,x2(x-3)=1,x>3,所以γ>3.所以γ>α>β.二、填空题(本题共4小题,每小题5分,共20分)13.执行如图所示的程序框图,若输出的结果是8,则输入的数是________.解析:令a≥b得,x2≥x3,解得x≤1.所以当x≤1时,输出a=x2,当x>1时,输出b =x3.当x≤1时,由题意得a=x2=8,解得x=-8=-2 2.当x>1时,由题意得b=x3=8,得x=2,所以输入的数为2或-2 2.14.刘老师带甲、乙、丙、丁四名学生去西安参加自主招生考试,考试结束后刘老师向四名学生了解考试情况.四名学生回答如下:甲说:“我们四人都没考好.”乙说:“我们四人中有人考得好.”丙说:“乙和丁至少有一人没考好.”丁说:“我没考好.”结果,四名学生中有两人说对了,则这四名学生中的________两人说对了.解析:甲与乙的关系是对立事件,二人说话矛盾,必有一对一错,如果选丁正确,则丙也是对的,所以丁错误,可得丙正确,此时乙正确.故答案为乙,丙.答案:乙,丙15.已知实数x∈[2,30],执行如图所示的程序框图,则输出的x不小于103的概率是________.解析:实数x∈[2,30],经过第一次循环得到x=2x+1,n=2;经过第二次循环得到x =2(2x+1)+1,n=3;经过第三次循环得到x=2[2(2x+1)+1]+1,n=4,此时输出x,输出的值为8x +7.令8x +7≥103,解得x ≥12.由几何概型的概率公式,得到输出的x 不小于103的概率为30-1230-2=914.16.集合{1,2,3,…,n }(n ≥3)中,每两个相异数作乘积,将所有这些乘积的和记为T n ,如:T 3=1×2+1×3+2×3=12×[62-(12+22+32)]=11;T 4=1×2+1×3+1×4+2×3+2×4+3×4=12×[102-(12+22+32+42)]=35; T 5=1×2+1×3+1×4+1×5+…+3×5+4×5=12×[152-(12+22+32+42+52)]=85.则T 7=________.(写出计算结果)解析:由T 3,T 4,T 5归纳得出T n =12[(1+2+…+n )2-(12+22+…+n 2)],则T 7=12×[282-(12+22+…+72)].又∵12+22+…+72=16×7×8×15=140,∴T 7=12×(784-140)=322.答案:322限时规范训练四 函数的图象与性质 限时40分钟,实际用时分值80分,实际得分一、选择题(本题共12小题,每小题5分,共60分) 1.函数y =x +x -2的定义域是( )A .(-1,+∞)B .[-1,+∞)C .(-1,2)∪(2,+∞)D .[-1,2)∪(2,+∞)解析:选C.由题意知,要使函数有意义,需⎩⎪⎨⎪⎧x -2≠0x +1>0,即-1<x <2或x >2,所以函数的定义域为(-1,2)∪(2,+∞).故选C.2.设函数f :R →R 满足f (0)=1,且对任意,x ,y ∈R 都有f (xy +1)=f (x )f (y )-f (y )-x +2,则f (2 017)=( )A .0B .1C .2 016D .2 018解析:选D.令x =y =0,则f (1)=f (0)f (0)-f (0)+2=1×1-1+2=2,令y =0,则f (1)=f (x )f (0)-f (0)-x +2,将f (0)=1,f (1)=2代入,可得f (x )=1+x ,所以f (2 017)=2 018.故选D.3.若函数f (x )满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”,则f (x )的解析式可以是( )A .f (x )=(x -1)2B .f (x )=e xC .f (x )=1xD .f (x )=ln(x +1)解析:选C.根据条件知,f (x )在(0,+∞)上单调递减. 对于A ,f (x )=(x -1)2在(1,+∞)上单调递增,排除A ; 对于B ,f (x )=e x在(0,+∞)上单调递增,排除B ; 对于C ,f (x )=1x在(0,+∞)上单调递减,C 正确;对于D ,f (x )=ln(x +1)在(0,+∞)上单调递增,排除D. 4.已知函数f (x )=2x +1(1≤x ≤3),则( ) A .f (x -1)=2x +2(0≤x ≤2) B .f (x -1)=2x -1(2≤x ≤4) C .f (x -1)=2x -2(0≤x ≤2) D .f (x -1)=-2x +1(2≤x ≤4)解析:选B.因为f (x )=2x +1,所以f (x -1)=2x -1.因为函数f (x )的定义域为[1,3],所以1≤x -1≤3,即2≤x ≤4,故f (x -1)=2x -1(2≤x ≤4).5.若函数y =f (x )的定义域是[0,2 018],则函数g (x )=f x +x -1的定义域是( ) A .[-1,2 017]B .[-1,1)∪(1,2 017]C .[0,2 019]D .[-1,1)∪(1,2 018]解析:选B.要使函数f (x +1)有意义,则0≤x +1≤2 018,解得-1≤x ≤2 017,故函数f (x +1)的定义域为[-1,2 017],所以函数g (x )有意义的条件是⎩⎪⎨⎪⎧-1≤x ≤2 017x -1≠0,解得-1≤x <1或1<x ≤2 017.故函数g (x )的定义域为[-1,1)∪(1,2 017].6.下列函数为奇函数的是( ) A .y =x 3+3x 2B .y =e x +e -x2C .y =x sin xD .y =log 23-x3+x解析:选D.依题意,对于选项A ,注意到当x =-1时,y =2;当x =1时,y =4,因此函数y =x 3+3x 2不是奇函数.对于选项B ,注意到当x =0时,y =1≠0,因此函数y =e x +e-x2不是奇函数.对于选项C ,注意到当x =-π2时,y =π2;当x =π2时,y =π2,因此函数y=x sin x 不是奇函数.对于选项D ,由3-x3+x>0得-3<x <3,即函数y =log 23-x3+x的定义域是(-3,3),该数集是关于原点对称的集合,且log 23--x 3+-x +log 23-x 3+x =log 21=0,即log 23--x 3+-x =-log 23-x 3+x,因此函数y =log 23-x 3+x是奇函数.综上所述,选D.7.设函数f (x )=ln(1+x )+m ln(1-x )是偶函数,则( ) A .m =1,且f (x )在(0,1)上是增函数 B .m =1,且f (x )在(0,1)上是减函数 C .m =-1,且f (x )在(0,1)上是增函数 D .m =-1,且f (x )在(0,1)上是减函数解析:选B.因为函数f (x )=ln(1+x )+m ln(1-x )是偶函数,所以f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫-12,则(m -1)ln 3=0,即m =1,则f (x )=ln(1+x )+ln(1-x )=ln(1-x 2),在(0,1)上,当x 增大时,1-x 2减小,ln(1-x 2)减小,即f (x )在(0,1)上是减函数,故选B.8.若关于x 的不等式4a x -1<3x -4(a >0,且a ≠1)对于任意的x >2恒成立,则a 的取值范围为( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎦⎥⎤0,12 C .[2,+∞) D .(2,+∞)解析:选B.不等式4ax -1<3x -4等价于ax -1<34x -1.令f (x )=ax -1,g (x )=34x -1,当a >1时,在同一坐标系中作出两个函数的图象,如图1所示,由图知不满足条件;当0<a <1时,在同一坐标系中作出两个函数的图象,如图2所示,则f (2)≤g (2),即a2-1≤34×2-1,即a ≤12,所以a 的取值范围是⎝ ⎛⎦⎥⎤0,12,故选B.9.已知函数y =a +sin bx (b >0且b ≠1)的图象如图所示,那么函数y =log b (x -a )的图象可能是( )解析:选C.由三角函数的图象可得a >1,且最小正周期T =2πb<π,所以b >2,则y=log b (x -a )是增函数,排除A 和B ;当x =2时,y =log b (2-a )<0,排除D ,故选C.10.已知函数y =f (x )是定义在R 上的偶函数,当x ∈(-∞,0]时,f (x )为减函数,若a =f (20.3),b =f (log 124),c =f (log 25),则a ,b ,c 的大小关系是( )A .a >b >cB .c >b >aC .c >a >bD .a >c >b解析:选B.函数y =f (x )是定义在R 上的偶函数,当x ∈(-∞,0]时,f (x )为减函数,∴f (x )在[0,+∞)为增函数, ∵b =f (log 124)=f (-2)=f (2),1<20.3<2<log 25,∴c >b >a ,故选B. 11.已知函数f (x )=x -4+9x +1,x ∈(0,4),当x =a 时,f (x )取得最小值b ,则函数g (x )=a |x +b |的图象为( )解析:选A.∵x ∈(0,4),∴x +1>1, ∴f (x )=x -4+9x +1=x +1+9x +1-5≥ 29x +1x +-5=1,当且仅当x =2时取等号,此时函数f (x )有最小值1. ∴a =2,b =1,∴g (x )=2|x +1|=⎩⎪⎨⎪⎧2x +1,x ≥-1,⎝ ⎛⎭⎪⎫12x +1,x <-1,此函数可以看成由函数y =⎩⎪⎨⎪⎧2x,x ≥0,⎝ ⎛⎭⎪⎫12x,x <0的图象向左平移1个单位得到,结合指数函数的图象及选项可知A 正确.故选A.12.若函数f (x )=1+2x +12x +1+sin x 在区间[-k ,k ](k >0)上的值域为[m ,n ],则m +n的值是( )A .0B .1C .2D .4解析:选D.∵f (x )=1+2·2x2x +1+sin x=1+2·2x+1-12x +1+sin x=2+1-22x +1+sin x=2+2x-12x +1+sin x .记g (x )=2x-12x +1+sin x ,则f (x )=g (x )+2,易知g (x )为奇函数,g (x )在[-k ,k ]上的最大值a 与最小值b 互为相反数, ∴a +b =0,故m +n =4.(a +2)+(b +2)=a +b +4=4. 二、填空题(本题共4小题,每小题5分,共20分)13.已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=log 2x -1,则f ⎝ ⎛⎭⎪⎫-22=________.解析:因为f (x )是定义在R 上的奇函数,所以f ⎝ ⎛⎭⎪⎫-22=-f ⎝ ⎛⎭⎪⎫22=-⎝ ⎛⎭⎪⎫log 222-1=32. 答案:3214.若函数f (x )=⎩⎪⎨⎪⎧log a x ,x >2,-x 2+2x -2,x ≤2(a >0,且a ≠1)的值域是(-∞,-1],则实数a 的取值范围是________.解析:当x ≤2时,f (x )=-x 2+2x -2=-(x -1)2-1,f (x )在(-∞,1)上递增,在(1,2]上递减,∴f (x )在(-∞,2]上的最大值是-1, 又f (x )的值域是(-∞,-1],∴当x >2时, log a x ≤-1,故0<a <1,且log a 2≤-1, ∴12≤a <1,故答案为⎣⎢⎡⎭⎪⎫12,1.答案:⎣⎢⎡⎭⎪⎫12,115.已知函数f (x )在实数集R 上具有下列性质:①直线x =1是函数f (x )图象的一条对称轴;②f (x +2)=-f (x );③当1≤x 1<x 2≤3时,[f (x 2)-f (x 1)]·(x 2-x 1)<0,则f (2 015)、f (2 016)、f (2 017)从大到小的顺序为______________.解析:由f (x +2)=-f (x )得f (x +4)=f (x ),所以f (x )的周期是4,所以f (2 015)=f (3),f (2 016)=f (0),f (2 017)=f (1).因为直线x =1是函数f (x )图象的一条对称轴,所以f (0)=f (2).由1≤x 1<x 2≤3时,[f (x 2)-f (x 1)]·(x 2-x 1)<0,可知当1≤x ≤3时,函数f (x )单调递减,所以f (1)>f (2)>f (3),即f (2 017)>f (2 016)>f (2 015).答案:f (2 017)>f (2 016)>f (2 015)16.已知函数f (x )=⎩⎪⎨⎪⎧|2x +1|,x <1,log 2x -m ,x >1,若f (x 1)=f (x 2)=f (x 3)(x 1,x 2,x 3互不相等),且x 1+x 2+x 3的取值范围为(1,8),则实数m 的值为________.解析:作出f (x )的图象,如图所示,可令x 1<x 2<x 3,则由图知点(x 1,0),(x 2,0)关于直线x =-12对称,所以x 1+x 2=-1.又1<x 1+x 2+x 3<8,所以2<x 3<9.结合图象可知点A的坐标为(9,3),代入函数解析式,得3=log 2(9-m ),解得m =1.答案:1限时规范训练五 不等式及线性规划限时45分钟,实际用时分值80分,实际得分一、选择题(本题共12小题,每小题5分,共60分) 1.设0<a <b <1,则下列不等式成立的是( ) A .a 3>b 3B.1a <1bC .a b >1D .lg(b -a )<a解析:选D.∵0<a <b <1,∴0<b -a <1-a ,∴lg(b -a )<0<a ,故选D. 2.已知a ,b 是正数,且a +b =1,则1a +4b( )A .有最小值8B .有最小值9C .有最大值8D .有最大值9解析:选B.因为1a +4b =⎝ ⎛⎭⎪⎫1a +4b (a +b )=5+b a +4ab≥5+2b a ·4a b =9,当且仅当b a =4a b且a +b =1,即a =13,b =23时取“=”,所以1a +4b的最小值为9,故选B.3.对于任意实数a ,b ,c ,d ,有以下四个命题: ①若ac 2>bc 2,则a >b ;②若a >b ,c >d ,则a +c >b +d ; ③若a >b ,c >d ,则ac >bd ;④若a >b ,则1a >1b.其中正确的有( ) A .1个 B .2个 C .3个D .4个解析:选B.①ac 2>bc 2,则c ≠0,则a >b ,①正确; ②由不等式的同向可加性可知②正确; ③需满足a 、b 、c 、d 均为正数才成立;④错误,如:令a =-1,b =-2,满足-1>-2,但1-1<1-2.故选B. 4.已知不等式ax 2-bx -1>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <-13,则不等式x 2-bx -a ≥0的解集是( )A .{x |2<x <3}B .{x |x ≤2或x ≥3}C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13<x <12 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <13或x >12 解析:选B.∵不等式ax 2-bx -1>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <-13, ∴ax 2-bx -1=0的解是x 1=-12和x 2=-13,且a <0.∴⎩⎪⎨⎪⎧-12-13=ba ,⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得⎩⎪⎨⎪⎧a =-6,b =5.则不等式x 2-bx -a ≥0即为x 2-5x +6≥0,解得x ≤2或x ≥3. 5.若x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y ≥0,x +y -4≤0,y ≥12x 2,则z =y -x 的取值范围为( )A .[-2,2] B.⎣⎢⎡⎦⎥⎤-12,2C .[-1,2]D.⎣⎢⎡⎦⎥⎤-12,1 解析:选B.作出可行域(图略),设直线l :y =x +z ,平移直线l ,易知当l 过直线3x-y =0与x +y -4=0的交点(1,3)时,z 取得最大值2;当l 与抛物线y =12x 2相切时,z 取得最小值,由⎩⎪⎨⎪⎧z =y -x ,y =12x 2,消去y 得x 2-2x -2z =0,由Δ=4+8z =0,得z =-12,故-12≤z ≤2,故选B.6.设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是( ) A.92 B.72 C .22+12D .22-12解析:选A.∵a n =a 1+(n -1)d =n ,S n =n+n2, ∴S n +8a n=n+n2+8n=12⎝ ⎛⎭⎪⎫n +16n +1≥12⎝⎛⎭⎪⎫2n ·16n +1=92,当且仅当n =4时取等号.∴S n +8a n 的最小值是92,故选A. 7.一条长为2的线段,它的三个视图分别是长为3,a ,b 的三条线段,则ab 的最大值为( )A. 5B. 6C.52D .3解析:选C.如图,构造一个长方体,体对角线长为2,由题意知a 2+x 2=4,b 2+y 2=4,x 2+y 2=3,则a 2+b 2=x 2+y 2+2=3+2=5,又5=a 2+b 2≥2ab ,所以ab ≤52,当且仅当a =b 时取等号,所以选C.8.设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12,则x +2y +3x +1的取值范围是( ) A .[1,5] B .[2,6] C .[3,11]D .[3,10]解析:选C.画出约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12的可行域如图阴影部分所示,则x +2y +3x +1=x +1+2y +2x +1=1+2×y +1x +1,y +1x +1的几何意义为过点(x ,y )和(-1,-1)的直线的斜率.由可行域知y +1x +1的取值范围为k MA ≤y +1x +1≤k MB ,即y +1x +1∈[1,5],所以x +2y +3x +1的取值范围是[3,11].9.设x ,y 满足不等式⎩⎪⎨⎪⎧y ≤2,x +y ≥1,x -y ≤1,若M =3x +y ,N =⎝ ⎛⎭⎪⎫12x-72,则M -N 的最小值为( )A.12 B .-12C .1D .-1解析:选A.作出不等式组所表示的平面区域,如图中阴影部分所示,易求得A (-1,2),B (3,2),当直线3x +y -M =0经过点A (-1,2)时,目标函数M =3x +y 取得最小值-1.又由平面区域知-1≤x ≤3,所以函数N =⎝ ⎛⎭⎪⎫12x-72在x =-1处取得最大值-32,由此可得M -N 的最小值为-1-⎝ ⎛⎭⎪⎫-32=12.10.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域的形状是三角形,则a 的取值范围是( )A .a ≥43B .0<a ≤1C .1≤a ≤43D .0<a ≤1或a ≥43解析:选 D.作出不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图中阴影部分所示.其中直线x -y =0与直线2x +y =2的交点是⎝ ⎛⎭⎪⎫23,23,而直线x +y =a 与x 轴的交点是(a,0).由图知,要使原不等式组表示的平面区域的形状为三角形,只需a ≥23+23或0<a ≤1,所以选D.11.已知不等式组⎩⎪⎨⎪⎧3x +4y -10≥0,x ≤4,y ≤3表示区域D ,过区域D 中任意一点P 作圆x2+y 2=1的两条切线,切点分别为A 、B ,当∠APB 最大时,cos∠APB =( )A.32 B.12 C .-32D .-12解析:选B.画出不等式组表示的可行域如图中阴影部分所示,易知当点P 到点O 距离最小时,∠APB 最大,此时|OP |=|3×0+4×0-10|32+42=2,又OA =1,故∠OPA =π6, ∴∠APB =π3,∴cos∠APB =12.12.已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( ) A .c ≤3 B .3<c ≤6 C .6<c ≤9D .c >9解析:选C.由0<f (-1)=f (-2)=f (-3)≤3,得0<-1+a -b +c =-8+4a -2b +c =-27+9a -3b +c ≤3,由-1+a -b +c =-8+4a -2b +c ,得3a -b -7=0,① 由-1+a -b +c =-27+9a -3b +c ,得 4a -b -13=0,②由①②,解得a =6,b =11,∴0<c -6≤3, 即6<c ≤9,故选C.二、填空题(本题共4小题,每小题5分,共20分)13.函数f (x )=1+log a x (a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -2=0上,其中mn >0,则1m +1n的最小值为________.解析:因为log a 1=0,所以f (1)=1,故函数f (x )的图象恒过定点A (1,1). 由题意,点A 在直线mx +ny -2=0上,所以m +n -2=0,即m +n =2. 而1m +1n =12⎝ ⎛⎭⎪⎫1m +1n ×(m +n ) =12⎝⎛⎭⎪⎫2+n m +m n ,因为mn >0,所以nm >0,m n>0. 由均值不等式,可得n m +m n ≥2×n m ×mn=2(当且仅当m =n 时等号成立), 所以1m +1n =12⎝ ⎛⎭⎪⎫2+n m +m n ≥12×(2+2)=2,即1m +1n的最小值为2.答案:214.设P (x ,y )是函数y =2x(x >0)图象上的点,则x +y 的最小值为________.解析:因为x >0,所以y >0,且xy =2.由基本不等式得x +y ≥2xy =22,当且仅当x =y 时等号成立.答案:2 215.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,y ≥x ,3x +2y ≤15,则w =4x ·2y的最大值是________.解析:作出不等式组表示的可行域如图阴影部分所示.w =4x ·2y =22x +y,要求其最大值,只需求出2x +y =t 的最大值即可,由平移可知t =2x +y 在A (3,3)处取得最大值t =2×3+3=9,故w =4x·2y的最大值为29=512.答案:51216.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1,若对任意的x ∈R ,不等式f (x )≤m 2-34m 恒成立,则实数m 的取值范围为________.解析:由题意知,m 2-34m ≥f (x )max .当x >1时,f (x )=log 13x 是减函数,且f (x )<0;当x ≤1时,f (x )=-x 2+x ,其图象的对称轴方程是x =12,且开口向下,∴f (x )max =-14+12=14.∴m 2-34m ≥14,即4m 2-3m -1≥0,∴m ≤-14或m ≥1.答案:⎝ ⎛⎦⎥⎤-∞,-14∪[1,+∞)限时规范训练六 导数的简单应用限时45分钟,实际用时分值81分,实际得分一、选择题(本题共6小题,每小题5分,共30分)1.设函数f (x )=x 24-a ln x ,若f ′(2)=3,则实数a 的值为( )A .4B .-4C .2D .-2解析:选B.f ′(x )=x 2-a x ,故f ′(2)=22-a2=3,因此a =-4.2.曲线y =e x在点A 处的切线与直线x -y +3=0平行,则点A 的坐标为( ) A .(-1,e -1) B .(0,1) C .(1,e)D .(0,2)解析:选B.设A (x 0,e x 0),y ′=e x,∴y ′|x =x 0=e x 0.由导数的几何意义可知切线的斜率k =e x 0.由切线与直线x -y +3=0平行可得切线的斜率k =1. ∴e x 0=1,∴x 0=0,∴A (0,1).故选B.3.若函数f (x )=x 3-2cx 2+x 有极值点,则实数c 的取值范围为 ( ) A.⎣⎢⎡⎭⎪⎫32,+∞ B.⎝⎛⎭⎪⎫32,+∞ C.⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞ D.⎝⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫32,+∞ 解析:选D.若函数f (x )=x 3-2cx 2+x 有极值点,则f ′(x )=3x 2-4cx +1=0有两根,故Δ=(-4c )2-12>0,从而c >32或c <-32. 4.已知f (x )=a ln x +12x 2(a >0),若对任意两个不等的正实数x 1,x 2都有f x 1-f x 2x 1-x 2≥2恒成立,则实数a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(0,1)D .(0,1]解析:选 A.由条件可知在定义域上函数图象的切线斜率大于等于2,所以函数的导数f ′(x )=ax+x ≥2.可得x =a 时,f ′(x )有最小值2.∴a ≥1.5.若定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .f ⎝ ⎛⎭⎪⎫1k<1kB .f ⎝ ⎛⎭⎪⎫1k >1k -1C .f ⎝⎛⎭⎪⎫1k -1<1k -1D .f ⎝⎛⎭⎪⎫1k -1>k k -1解析:选C.构造函数g (x )=f (x )-kx +1,则g ′(x )=f ′(x )-k >0,∴g (x )在R 上为增函数. ∵k >1,∴1k -1>0,则g ⎝ ⎛⎭⎪⎫1k -1>g (0). 而g (0)=f (0)+1=0, ∴g ⎝⎛⎭⎪⎫1k -1=f ⎝ ⎛⎭⎪⎫1k -1-k k -1+1>0,即f ⎝⎛⎭⎪⎫1k -1>k k -1-1=1k -1,所以选项C 错误,故选C.6.由曲线y =x 2,y =x 围成的封闭图形的面积为( ) A.16 B.13 C.23D .1解析:选 B.由题意可知所求面积(如图中阴影部分的面积)为⎠⎛01(x -x 2)d x =⎝⎛⎪⎪⎪⎭⎪⎪⎫23x 32-13x 310=13.所以选B.二、填空题(本题共3小题,每小题5分,共15分)7.(2016·高考全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.解析:直线y =kx +b 与曲线y =ln x +2,y =ln(x +1)均相切,设切点分别为A (x 1,y 1),B (x 2,y 2),由y =ln x +2得y ′=1x ,由y =ln(x +1)得y ′=1x +1,∴k =1x 1=1x 2+1,∴x 1=1k ,x 2=1k-1,∴y 1=-ln k +2,y 2=-ln k .即A ⎝ ⎛⎭⎪⎫1k,-ln k +2,B ⎝ ⎛⎭⎪⎫1k-1,-ln k ,∵A 、B 在直线y =kx +b 上, ∴⎩⎪⎨⎪⎧2-ln k =k ·1k +b ,-ln k =k ·⎝ ⎛⎭⎪⎫1k -1+b解得⎩⎪⎨⎪⎧b =1-ln 2,k =2.答案:1-ln 28.已知函数f (x )=-12x 2-3x +4ln x 在(t ,t +1)上不单调,则实数t 的取值范围是________.解析:由题意得,f (x )的定义域为(0,+∞),∴t >0, ∴f ′(x )=-x -3+4x=0在(t ,t +1)上有解,∴x 2+3x -4x=0在(t ,t +1)上有解,∴x 2+3x -4=0在(t ,t +1)上有解,由x 2+3x -4=0得x =1或x =-4(舍去),∴1∈(t ,t +1),∴t ∈(0,1),故实数t 的取值范围是(0,1).答案:(0,1)9.若f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,则实数b 的最大值是________.解析:函数的定义域是x +2>0,即x >-2,而f ′(x )=-x +bx +2=-x 2-2x +bx +2.因为x +2>0,函数f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,即-x 2-2x +b ≤0在x ∈(-1,+∞)上恒成立,得b ≤x 2+2x 在x ∈(-1,+∞)上恒成立,令g (x )=x 2+2x =(x +1)2-1,x ∈(-1,+∞),g (x )>g (-1)=-1,所以b ≤-1.所以b 的最大值为-1.答案:-1三、解答题(本题共3小题,每小题12分,共36分) 10.已知f (x )=2x +3-x +2x +1.(1)求证:当x =0时,f (x )取得极小值;(2)是否存在满足n >m ≥0的实数m ,n ,当x ∈[m ,n ]时,f (x )的值域为[m ,n ]?若存在,求m ,n 的值;若不存在,请说明理由.解:(1)证明:由已知得f (x )的定义域为⎝ ⎛⎭⎪⎫-12,+∞. 当x >-12时,f ′(x )=2-2-x +x +2=8x 2+8x +x +x +2.设F (x )=8x 2+8x +2ln(2x +1),则f ′(x )=F x x +2.当x >-12时,y =8x 2+8x =8⎣⎢⎡⎦⎥⎤x -⎝ ⎛⎭⎪⎫-122-2是单调递增函数,y =2ln(2x +1)也是单调递增函数.∴当x >-12时,F (x )=8x 2+8x +2ln(2x +1)单调递增.∴当-12<x <0时,F (x )<F (0)=0,当x >0时,F (x )>F (0)=0.∴当-12<x <0时,f ′(x )<0,f (x )单调递减,当x >0时,f ′(x )>0,f (x )单调递增.∴当x =0时,f (x )取得极小值.(2)由(1)知f (x )在[0,+∞)上是单调递增函数,若存在满足n >m ≥0的实数m ,n ,当x ∈[m ,n ]时,f (x )的值域为[m ,n ],则f (m )=m ,f (n )=n ,即f (x )=x 在[0,+∞)上有两个不等的实根m ,n .∴2x 2+7x +3-ln(2x +1)=0在[0,+∞)上有两个不等的实根m ,n . 设H (x )=2x 2+7x +3-ln(2x +1),则 H ′(x )=8x 2+18x +52x +1.当x >0时,2x +1>0,8x 2+18x +5>0, ∴H ′(x )=8x 2+18x +52x +1>0.∴H (x )在[0,+∞)上是单调递增函数,即当x ≥0时,H (x )≥H (0)=3. ∴2x 2+7x +3-ln(2x +1)=0在[0,+∞)上没有实数根. ∴不存在满足条件的实数m ,n .11.(2017·河南郑州质量检测)设函数f (x )=12x 2-m ln x ,g (x )=x 2-(m +1)x .(1)求函数f (x )的单调区间;(2)当m ≥0时,讨论函数f (x )与g (x )图象的交点个数.。

2018高三数学全国二模汇编(理科)专题02函数

2018高三数学全国二模汇编(理科)专题02函数

【2018高三数学各地优质二模试题分项精品】 一、选择题1.【2018衡水金卷高三一卷】已知函数()f x 是定义在R 内的奇函数,且满足()()2f x f x -=,若在区间(]0,1上, ()1f x x=,则111128128f f f ⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( )A.316 B. 3112 C. 356 D. 3512【答案】B故对*k N ∈, 11144141121414141414k k f k f f f k k k k k ⎡⎤+⎛⎫⎛⎫⎛⎫⎛⎫++=+=-+== ⎪ ⎪ ⎪ ⎪⎢⎥++++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 对k N ∈, ()11142242424242f k f fk k k k ⎛⎫⎛⎫⎛⎫++=+=-=-+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭当*k N ∈时,点睛:本题考查了运用函数的奇偶性和周期性求值,利用已知条件先求出函数周期性,在求函数值时利用递推关系分别求出41k +、42k +、43k +、44k +的表达式,从而能够计算出最后结果,本题的关键是求出在周期性下的值。

2.【2018天津高三九校联考】定义在R 上的奇函数()f x ,当0x ≥时, ()()[)[)2log 1,0,1{ 31,1,x x f x x x +∈=--∈+∞,则函数()()F x f x a =-(10a -<<)的所有零点之和为( ) A. 12a- B. 21a- C. 12a-- D. 21a--【答案】C【解析】∵函数f (x )是定义在R 上的奇函数, 当x ≥0时,f (x )=()[)[)2101{311log x x x x +∈--∈+∞,,,,,故函数f (x )的图象如下图所示:故关于x 的方程f (x )=a ,(﹣1<a <0)共有5个根: x 1,x 2,x 3,x 4,x 5,则x 1+x 2+x 4+x 5=0,x 1+x 2+x 3+x 4+x 5=x 3, 由log 2(x 3+1)=a 得:x 3=2a﹣1, 故关于x 的方程f (x )=a ,(0<a <1) 的所有根之和为1﹣2﹣a,故选:C .点睛:函数零点的求解与判断(1)直接求零点:令()0f x =,如果能求出解,则有几个解就有几个零点;(2)零点存在性定理:利用定理不仅要函数在区间[],a b 上是连续不断的曲线,且()()0f a f b ⋅<,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点;(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点,充分利用图象的对称性处理问题.3.【2018天津九校高三联考】定义在R 上的奇函数()f x 满足()()2f x f x +=-,当[]0,1x ∈时,()21x f x =-,设1lna π=, 2ln5b e-=, 0.113c -⎛⎫= ⎪⎝⎭,则( )A. ()()()f a f b f c <<B. ()()()f b f c f a <<C. ()()()f b f a f c <<D. ()()()f c f b f a << 【答案】A又1ln π2>=,且()21xf x =-在[]0,1上单调递增, ∴()1ln π2f f ⎛⎫> ⎪⎝⎭,即()() f a f b < 故选:A点睛:点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值0,1的应用,有时候要借助其“桥梁”作用,来比较大小. 4.【2018河南郑州高三二模】已知(){}|0M f αα==, (){}|0N g ββ==,若存在,M N αβ∈∈,使得n αβ-<,则称函数()f x 与()g x 互为“n 度零点函数”.若()231x f x -=-与()2x g x x ae =-互为“1度零点函数”,则实数a 的取值范围为( ) A. 214(,e e ⎤⎥⎦ B. 214(, e e ⎤⎥⎦ C. 242[, e e ⎫⎪⎭ D. 3242[, e e ⎫⎪⎭【答案】B【点睛】要学会分析题中隐含的条件和信息,如本题先观察出f(x)的零点及单调性是解题的关键,进一步转化为函数()2xg x x ae =-在区间(1,3)上存在零点,再进行参变分离,应用导数解决。

2018年高考数学(理)二轮复习讲练测专题02函数与导数(测)含解析

2018年高考数学(理)二轮复习讲练测专题02函数与导数(测)含解析

2018年高考数学(理)二轮复习讲练测专题二 函数与导数测试卷总分 _______ 时间 _______ 班级 _______ 学号 _______ 得分_______一、选择题(12*5=60分)1.44log 2log 8-等于( ) A. 2- B. 1- C. 1 D. 2 【答案】B【解析】44log 2log 8-,选B.2.下列函数中,既是偶函数,又在()0,+∞单调递增的函数是( )A. 21y x =-+ B. 1y x =- C. 3y x = D. 2xy -=【答案】C3.【2018届北京市西城区44中高三上12月月考】集合{}2,0xM y y x ==, {}2|log N y y x ==,那么“x M ∈”是“x N ∈”的( ).A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件 【答案】A【解析】∵集合{}{}2,01xM y y x y y ===, {}2|log N y y x R ===,∴M N Ö,∴“x M ∈” 是“x N ∈”的充分而不必要条件.选A .4.【2018届辽宁省丹东市五校协作体联考】设()f x 是定义在R 上的奇函数,当0x <时, ()xf x x e -=-,则()ln6=fA. ln66-+B. ln66-C. ln66+D. ln66-- 【答案】C【解析】∵()f x 是定义在R 上的奇函数,∴()()()()ln6ln6ln6ln6ln66ln66f f e =--=---=---=+.选C.5.【2018届福建省德化一中、永安一中、漳平一中高三上学期三校联考】定义运算,{,a a ba b b a b≤⊕=>,则函数()112xf x ⎛⎫=⊕ ⎪⎝⎭的图象是下图中A. B.C. D.【答案】D【解析】由题意可得()1,011{ 12,02xxx f x x ≤⎛⎫=⊕=⎪⎛⎫>⎝⎭ ⎪⎝⎭,则答案为D. 6.【2018届全国名校第三次大联考】已知e 为自然对数的底数,则曲线xy xe =在点()1,e 处的切线方程为( ) A. 21y x =+ B. 21y x =- C. 2y ex e =- D. 22y ex =- 【答案】C【解析】因为x y xe =,所以‘x x y e xe =+,曲线xy xe =在点()1,e 处的切线斜率k e 12e e =+⨯=,切线方程为21y e e x -=-(),化简得2y ex e =-,故选C. 7.【2018届山东省淄博市部分学校高三12月摸底】已知函数()y f x =的图象如图所示,则其导函数()'y f x =的图象可能为A. B.C. D.【答案】D【解析】0x <时,函数单调递增,导函数为正,舍去B,D;0x >时,函数先增后减再增,导函数先正后负再正,舍去A;选D.8.已知函数()()()210{2(0)x ax x f x a e x +≥=-<为R 上的单调函数,则实数a 的取值范围是( )A. (]2,3B. ()2,+∞C. (),3-∞D. ()2,3 【答案】A【解析】若f(x)在R 上单调递增,则有0{20 21a a a >->-≤解得2<a ⩽3;若f(x)在R 上单调递减,则有0{20 21a a a <-<-≥,a 无解,综上实数a 的取值范围是(2,3]. 故选A.9.【2018届湖北省稳派教育高三上第二次联考】设实数,,a b c 满足: 221log 332,,ln a b a c a --===,则,,a b c 的大小关系为( )A. c<a<bB. c<b< aC. a <c<bD. b<c< a 【答案】A【解析】由题意得22223log 1log 33222222,1,ln 03333a b c --⎛⎫⎛⎫====>==< ⎪ ⎪⎝⎭⎝⎭,所以c a b <<.选A.10.【2018届湖北省稳派教育高三上第二次联考】函数()()f x x g x =-的图象在点2x =处的切线方程是1y x =--,,则()()22g g +'=( )A. 7B. 4C. 0D. - 4 【答案】A11.已知定义在()0,∞+上的函数()f x ,满足①()0f x >;②()()()132f x f x f x '<< (其中()f x '是()f x 的导函数, e 是自然对数的底数),则()()12f f 的取值范围为A. 1231,e e -⎛⎫ ⎪⎝⎭B. 132e ,e ⎛⎫ ⎪⎝⎭C. 321,e e ⎛⎫ ⎪⎝⎭D. 1e,3e 2⎛⎫ ⎪⎝⎭【答案】A【解析】构造函数()()()12,0,ex f x g x x ∞=∈+,则()()()12120e xf x f xg x ''-=>,所以函数()()()120,e x f x g x ∞=+在上是增函数,所以()()12g g <,即()()1212eef f <,则()()121e 2f f -<;令()()()3,0,exf x h x x ∞=∈+,则()()()330exf x f x h x '-'=<, 函数()()()30,exf x h x ∞=+在上是减函数,所以()()12h h >,即()()3612eef f >,则()()3112e f f >.综上, ()()12311e e 2f f -<<,故答案为A. 12.设函数()f x 是定义为R 的偶函数,且()f x 对任意的x R ∈,都有()()22f x f x -=+且当[]2,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,若在区间(]2,6-内关于x 的方程()()log 20(1a f x x a -+=>恰好有3个不同的实数根,则a的取值范围是 ( )A. ()1,2B. ()2,+∞C. (34D. )34,2【答案】D【解析】∵对于任意的x ∈R,都有f(x −2)=f(2+x),∴函数f(x)是一个周期函数,且T=4.又∵当x ∈[−2,0]时,f(x)= 12x⎛⎫⎪⎝⎭−1,且函数f(x)是定义在R 上的偶函数,若在区间(−2,6]内关于x 的方程()()log 20a f x x -+=恰有3个不同的实数解, 则函数y=f(x)与y=()log 2a x +在区间(−2,6]上有三个不同的交点,如下图所示:又f(−2)=f(2)=3,则对于函数y=()log 2a x +,由题意可得,当x=2时的函数值小于3,当x=6时的函数值大于3,即4a log <3,且8a log >3,由此解得:34<a<2,故答案为:34,2).二、填空题(4*5=20分)13.【2018届北京市第四中学高三上期中】若函数()32,6,{log ,6,x x f x x x <=≥则()()2f f 等于__________。

2018届高考数学理二轮专题复习限时规范训练:第一部分 专题二 函数、不等式、导数 1-2-1 含答案 精品

2018届高考数学理二轮专题复习限时规范训练:第一部分 专题二 函数、不等式、导数 1-2-1 含答案 精品

限时规范训练四 函数的图象与性质 限时40分钟,实际用时分值80分,实际得分一、选择题(本题共12小题,每小题5分,共60分) 1.函数y =x +x -2的定义域是( )A .(-1,+∞)B .[-1,+∞)C .(-1,2)∪(2,+∞)D .[-1,2)∪(2,+∞)解析:选C.由题意知,要使函数有意义,需⎩⎪⎨⎪⎧x -2≠0x +1>0,即-1<x <2或x >2,所以函数的定义域为(-1,2)∪(2,+∞).故选C.2.设函数f :R →R 满足f (0)=1,且对任意,x ,y ∈R 都有f (xy +1)=f (x )f (y )-f (y )-x +2,则f (2 017)=( )A .0B .1C .2 016D .2 018解析:选D.令x =y =0,则f (1)=f (0)f (0)-f (0)+2=1×1-1+2=2,令y =0,则f (1)=f (x )f (0)-f (0)-x +2,将f (0)=1,f (1)=2代入,可得f (x )=1+x ,所以f (2 017)=2 018.故选D.3.若函数f (x )满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”,则f (x )的解析式可以是( )A .f (x )=(x -1)2B .f (x )=e xC .f (x )=1xD .f (x )=ln(x +1)解析:选C.根据条件知,f (x )在(0,+∞)上单调递减. 对于A ,f (x )=(x -1)2在(1,+∞)上单调递增,排除A ; 对于B ,f (x )=e x在(0,+∞)上单调递增,排除B ; 对于C ,f (x )=1x在(0,+∞)上单调递减,C 正确;对于D ,f (x )=ln(x +1)在(0,+∞)上单调递增,排除D. 4.已知函数f (x )=2x +1(1≤x ≤3),则( ) A .f (x -1)=2x +2(0≤x ≤2)B .f (x -1)=2x -1(2≤x ≤4)C .f (x -1)=2x -2(0≤x ≤2)D .f (x -1)=-2x +1(2≤x ≤4)解析:选B.因为f (x )=2x +1,所以f (x -1)=2x -1.因为函数f (x )的定义域为[1,3],所以1≤x -1≤3,即2≤x ≤4,故f (x -1)=2x -1(2≤x ≤4).5.若函数y =f (x )的定义域是[0,2 018],则函数g (x )=f x +x -1的定义域是( ) A .[-1,2 017]B .[-1,1)∪(1,2 017]C .[0,2 019]D .[-1,1)∪(1,2 018]解析:选B.要使函数f (x +1)有意义,则0≤x +1≤2 018,解得-1≤x ≤2 017,故函数f (x+1)的定义域为[-1,2 017],所以函数g (x )有意义的条件是⎩⎪⎨⎪⎧-1≤x ≤2 017x -1≠0,解得-1≤x<1或1<x ≤2 017.故函数g (x )的定义域为[-1,1)∪(1,2 017]. 6.下列函数为奇函数的是( ) A .y =x 3+3x 2B .y =e x +e -x2C .y =x sin xD .y =log 23-x3+x解析:选D.依题意,对于选项A ,注意到当x =-1时,y =2;当x =1时,y =4,因此函数y =x 3+3x 2不是奇函数.对于选项B ,注意到当x =0时,y =1≠0,因此函数y =e x +e-x2不是奇函数.对于选项C ,注意到当x =-π2时,y =π2;当x =π2时,y =π2,因此函数y =x sin x 不是奇函数.对于选项D ,由3-x3+x>0得-3<x <3,即函数y =log 23-x3+x 的定义域是(-3,3),该数集是关于原点对称的集合,且log 23--x3+-x +log 23-x 3+x =log 21=0,即log 23--x 3+-x =-log 23-x3+x,因此函数y =log 23-x 3+x是奇函数.综上所述,选D.7.设函数f (x )=ln(1+x )+m ln(1-x )是偶函数,则( ) A .m =1,且f (x )在(0,1)上是增函数 B .m =1,且f (x )在(0,1)上是减函数 C .m =-1,且f (x )在(0,1)上是增函数 D .m =-1,且f (x )在(0,1)上是减函数解析:选B.因为函数f (x )=ln(1+x )+m ln(1-x )是偶函数,所以f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫-12,则(m -1)ln3=0,即m =1,则f (x )=ln(1+x )+ln(1-x )=ln(1-x 2),在(0,1)上,当x 增大时,1-x 2减小,ln(1-x 2)减小,即f (x )在(0,1)上是减函数,故选B.8.若关于x 的不等式4a x -1<3x -4(a >0,且a ≠1)对于任意的x >2恒成立,则a 的取值范围为( )A.⎝ ⎛⎭⎪⎫0,12 B.⎝ ⎛⎦⎥⎤0,12 C .[2,+∞) D .(2,+∞)解析:选B.不等式4a x -1<3x -4等价于ax -1<34x -1. 令f (x )=ax -1,g (x )=34x -1,当a >1时,在同一坐标系中作出两个函数的图象,如图1所示,由图知不满足条件;当0<a <1时,在同一坐标系中作出两个函数的图象,如图2所示,则f (2)≤g (2),即a 2-1≤34×2-1,即a ≤12,所以a 的取值范围是⎝⎛⎦⎥⎤0,12,故选B.9.已知函数y =a +sin bx (b >0且b ≠1)的图象如图所示,那么函数y =log b (x -a )的图象可能是( )解析:选C.由三角函数的图象可得a >1,且最小正周期T =2πb<π,所以b >2,则y =log b (x-a )是增函数,排除A 和B ;当x =2时,y =log b (2-a )<0,排除D ,故选C.10.已知函数y =f (x )是定义在R 上的偶函数,当x ∈(-∞,0]时,f (x )为减函数,若a =f (20.3),b =f (log 124),c =f (log 25),则a ,b ,c 的大小关系是( )A .a >b >cB .c >b >aC .c >a >bD .a >c >b解析:选B.函数y =f (x )是定义在R 上的偶函数,当x ∈(-∞,0]时,f (x )为减函数,∴f (x )在[0,+∞)为增函数, ∵b =f (log 124)=f (-2)=f (2),1<20.3<2<log 25,∴c >b >a ,故选B. 11.已知函数f (x )=x -4+9x +1,x ∈(0,4),当x =a 时,f (x )取得最小值b ,则函数g (x )=a|x +b |的图象为( )解析:选A.∵x ∈(0,4),∴x +1>1, ∴f (x )=x -4+9x +1=x +1+9x +1-5≥ 29x +1x +-5=1,当且仅当x =2时取等号,此时函数f (x )有最小值1. ∴a =2,b =1,∴g (x )=2|x +1|=⎩⎪⎨⎪⎧2x +1,x ≥-1,⎝ ⎛⎭⎪⎫12x +1,x <-1,此函数可以看成由函数y =⎩⎪⎨⎪⎧2x,x ≥0,⎝ ⎛⎭⎪⎫12x,x <0的图象向左平移1个单位得到,结合指数函数的图象及选项可知A 正确.故选A.12.若函数f (x )=1+2x +12+1+sin x 在区间[-k ,k ](k >0)上的值域为[m ,n ],则m +n 的值是( )A .0B .1C .2D .4解析:选D.∵f (x )=1+2·2x2x +1+sin x=1+2·2x+1-12x +1+sin x=2+1-22x +1+sin x=2+2x-12x +1+sin x .记g (x )=2x-12x +1+sin x ,则f (x )=g (x )+2,易知g (x )为奇函数,g (x )在[-k ,k ]上的最大值a 与最小值b 互为相反数, ∴a +b =0,故m +n =4.(a +2)+(b +2)=a +b +4=4. 二、填空题(本题共4小题,每小题5分,共20分)13.已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=log 2x -1,则f ⎝ ⎛⎭⎪⎫-22=________. 解析:因为f (x )是定义在R 上的奇函数,所以f ⎝ ⎛⎭⎪⎫-22=-f ⎝ ⎛⎭⎪⎫22=-⎝ ⎛⎭⎪⎫log 222-1=32. 答案:3214.若函数f (x )=⎩⎪⎨⎪⎧log a x , x >2,-x 2+2x -2, x ≤2(a >0,且a ≠1)的值域是(-∞,-1],则实数a 的取值范围是________.解析:当x ≤2时,f (x )=-x 2+2x -2=-(x -1)2-1,f (x )在(-∞,1)上递增,在(1,2]上递减,∴f (x )在(-∞,2]上的最大值是-1, 又f (x )的值域是(-∞,-1],∴当x >2时, log a x ≤-1,故0<a <1,且log a 2≤-1, ∴12≤a <1,故答案为⎣⎢⎡⎭⎪⎫12,1. 答案:⎣⎢⎡⎭⎪⎫12,115.已知函数f (x )在实数集R 上具有下列性质:①直线x =1是函数f (x )图象的一条对称轴;②f (x +2)=-f (x );③当1≤x 1<x 2≤3时,[f (x 2)-f (x 1)]·(x 2-x 1)<0,则f (2 015)、f (2 016)、f (2 017)从大到小的顺序为______________.解析:由f (x +2)=-f (x )得f (x +4)=f (x ),所以f (x )的周期是4,所以f (2 015)=f (3),f (2 016)=f (0),f (2 017)=f (1).因为直线x =1是函数f (x )图象的一条对称轴,所以f (0)=f (2).由1≤x 1<x 2≤3时,[f (x 2)-f (x 1)]·(x 2-x 1)<0,可知当1≤x ≤3时,函数f (x )单调递减,所以f (1)>f (2)>f (3),即f (2 017)>f (2 016)>f (2 015).答案:f (2 017)>f (2 016)>f (2 015)16.已知函数f (x )=⎩⎪⎨⎪⎧|2x +1|,x <1,log 2x -m ,x >1,若f (x 1)=f (x 2)=f (x 3)(x 1,x 2,x 3互不相等),且x 1+x 2+x 3的取值范围为(1,8),则实数m 的值为________.解析:作出f (x )的图象,如图所示,可令x 1<x 2<x 3,则由图知点(x 1,0),(x 2,0)关于直线x =-12对称,所以x 1+x 2=-1.又1<x 1+x 2+x 3<8,所以2<x 3<9.结合图象可知点A 的坐标为(9,3),代入函数解析式,得3=log 2(9-m ),解得m =1.答案:1。

2018届高三数学(理)二轮复习专题集训:专题二函数、不等式、导数2.4.2Word版含解析

2018届高三数学(理)二轮复习专题集训:专题二函数、不等式、导数2.4.2Word版含解析

=ex+ bx2+ a,若在区间 [1,2] 上,不等式 m≤ g( x)≤ m2- 2 恒成立,则实数 m(
)
A .有最小值- e
B.有最小值 e
C.有最大值 e
D.有最大值 e+ 1
解析:
∵ f( x)= tan
x=
sin cos
xx,∴
f

(x)

cos2x-
sin x - cos2 x
sin
(2)求方程 f(x)= g(x)的根的个数,并说明理由. 解析: (1) 证明:由 h(x)= f(x)- g(x)=ex- 1- x-x 得, h(1)= e- 3<0, h(2)= e2-3- 2>0 ,所以函数 h(x)在区间 (1,2) 上有零点. (2)由 (1) 得 h( x)=ex- 1- x-x. 由 g(x)= x+ x 知,x∈ [0,+ ∞ ),而 h(0) =0,则 x=0 为 h(x)的一个零点, 而 h(x)在 (1,2)
ቤተ መጻሕፍቲ ባይዱ
x
2
-2.又对于任意的
t∈ [1,2] ,函数
g(x)= x3+ x2
f′
x
m +2
=x3 + x2

2x+
2+
m 2
在区间
(t,3)上
总不是单调函数, 只需 g(x)= x3+ m+2 x2- 2x 在 (2,3)上不是单调函数, 故 g′ (x)= 3x2+ (m 2
+4) x-2 在 (2,3)上有零点,即方程 m=- 3x- 4+2x在 (2,3)上有解.而 y=- 3x-4+ 2x在 (2,3)
上单调递减,故其值域为 - 37,- 9 ,所以实数 m 的取值范围是 - 37,- 9 .故选 D.

2018高考数学(理)二轮复习规范答题示例课件与试卷(20份)(3)全面版

2018高考数学(理)二轮复习规范答题示例课件与试卷(20份)(3)全面版

gm≤0, → 寻求 的条件 → 对m讨论得适合条件的范围 g - m ≤ 0
规 范 解 答· 分步得分
(1)证明 f′(x)=m(emx-1)+2x. 1分
若m≥0,则当x∈(-∞,0)时,emx-1≤0,f′(x)<0;
当x∈(0,+∞)时,emx-1≥0,f′(x)>0. 若m<0,则当x∈(-∞,0)时,emx-1>0,f′(x)<0;
12分
构建答题模板
第一步 求导数:一般先确定函数的定义域,再求f′(x).
第二步
定区间:根据f′(x)的符号确定函数的单调区间. 第三步 寻条件:一般将恒成立问题转化为函数的最值问题. 第四步 写步骤:通过函数单调性探求函数最值,对于最值可能在两点取到的恒 成立问题,可转化为不等式组恒成立.
第五步
f1-f0≤e-1, f-1-f0≤e-1,
m e -m≤e-1, 即 -m e +m≤e-1.
8分

设函数g(t)=et-t-e+1,则g′(t)=et-1.
9分
当t<0时,g′(t)<0;当t>0时,g′(t)>0. 故g(t)在(-∞,0)上单调递减,在(0,+∞)上单调递增.
单调递减
解答
(2)若对任意的x>1,恒有ln(x-1)+k+1≤kx成立,求k的取值范围; 解 因为x>1,
lnx-1+1 ln(x-1)+k+1≤kx⇔ ≤k⇔f(x-1)≤k, x-1
所以f(x-1)max≤k,所以k≥1.
解答
2 2 n -n-1 ln 2 ln 3 ln n (3)证明: 22 + 32 +…+ n2 < (n∈N*,n≥2). 4n+1
证明
只要我们坚持了,就没有克服不了的困难。或许,为了将来,为了自己的发展,我们会把一件事情想得非常透彻,对自己越来越严,要求越来越高,对任何机会都不曾错过,其 目的也只不过是不让自己随时陷入逆境与失去那种面对困难不曾屈服的精神。但有时,“千里之行,始于足下。”我们更需要用时间持久的用心去做一件事情,让自己其中那小 小的浅浅的进步,来击破打破突破自己那本以为可以高枕无忧十分舒适的区域,强迫逼迫自己一刻不停的马不停蹄的一直向前走,向前看,向前进。所有的未来,都是靠脚步去 丈量。没有走,怎么知道,不可能;没有去努力,又怎么知道不能实现?幸福都是奋斗出来的。那不如,生活中、工作中,就让这“幸福都是奋斗出来的”完完全全彻彻底底的 渗入我们的心灵,着心、心平气和的去体验、去察觉这一种灵魂深处的安详,侧耳聆听这仅属于我们自己生命最原始最动人的节奏。但,这种聆听,它绝不是仅限于、执着于 “我”,而是观察一种生命状态能够扩展和超脱到什么程度,也就是那“幸福都是奋斗出来的”深处又会是如何?生命不止,奋斗不息!又或者,对于很多优秀的人来说,我们 奋斗了一辈子,拼搏了一辈子,也只是人家的起点。可是,这微不足道的进步,对于我们来说,却是幸福的,也是知足的,因为我们清清楚楚的知道自己需要的是什么,隐隐约 约的感觉到自己的人生正把握在自己手中,并且这一切还是通过我们自己勤勤恳恳努力,去积极争取的!“宝剑锋从磨砺出,梅花香自苦寒来。”当我们坦然接受这人生的终局, 或许,这无所皈依的心灵就有了归宿,这生命中觅寻处那真正的幸福、真正的清香也就从此真正的灿烂了我们的人生。一生有多少属于我们的时光?陌上的花,落了又开了,开 了又落了。无数个岁月就这样在悄无声息的时光里静静的流逝。童年的玩伴,曾经的天真,只能在梦里回味,每回梦醒时分,总是多了很多伤感。不知不觉中,走过了青春年少, 走过了人世间风风雨雨。爱过了,恨过了,哭过了,笑过了,才渐渐明白,酸甜苦辣咸才是人生的真味!生老病死是自然规律。所以,面对生活中经历的一切顺境和逆境都学会 了坦然承受,面对突然而至的灾难多了一份从容和冷静。这世上没有什么不能承受的,只要你有足够的坚强!这世上没有什么不能放下的,只要你有足够的胸襟! 一生有多少 属于我们的时光?当你为今天的落日而感伤流泪的时候,你也将错过了明日的旭日东升;当你为过去的遗憾郁郁寡欢,患得患失的时候,你也将忽略了沿途美丽的风景,淡漠了 对未来美好生活的憧憬。没有十全十美的生活,没有一帆风顺的旅途。波平浪静的人生太乏味,抑郁忧伤的人生少欢乐,风雨过后的彩虹最绚丽,历经磨砺的生命才丰盈而深刻。 见过了各样的人生:有的轻浮,有的踏实;有的喧哗,有的落寞;有的激扬,有的低回。肉体凡胎的我们之所以苦恼或喜悦,大都是缘于生活里的际遇沉浮,走不出个人心里的 藩篱。也许我们能挺得过物质生活的匮乏,却不能抵挡住内心的种种纠结。其实幸福和欢乐大多时候是对人对事对生活的一种态度,一花一世界,一树一菩提,就是一粒小小的 沙子,也有自己精彩的乾坤。如果想到我们终有一天会灰飞烟灭,一切象风一样无影亦无踪,还去争个什么?还去抱怨什么?还要烦恼什么?未曾生我谁是我?生我之时我是谁? 长大成人方是我,合眼朦胧又是谁?一生真的没有多少时光,何必要和生活过不去,和自己过不去呢。你在与不在,太阳每天都会照常升起;你愁与不愁,生活都将要继续。时 光不会因你而停留,你却会随着光阴而老去。 有些事情注定会发生,有的结局早已就预见,那么就改变你可以改变的,适应你必须去适应的。面对幸与不幸,换一个角度,改变一种思维,也许心空就不再布满阴霾,头上就 是一片蔚蓝的天。一生能有多少属于我们的时光,很多事情,很多人已经渐渐模糊。而能随着岁月积淀下来,在心中无法忘却的,一定是触动心灵,甚至是刻骨铭心的,无论是 伤痛是欢愉。人生无论是得意还是失意,都不要错过了清早的晨曦,正午的骄阳,夕阳的绚烂,暮色中的朦胧。经历过很多世态炎凉之后,你终于能懂得:谁会在乎你?你又何 必要别人去在乎?生于斯世,赤条条的来,也将身无长物的离开,你在世上得到的,失去的,最终都会化作尘埃。原本就不曾带来什么,所以也谈不到失去什么,因此,对自己 经历的幸与不幸都应怀有一颗平常心有一颗平常心,面对人生小小的不如意或是飞来横祸就能坦然接受,知道人有旦夕祸福,这和命运没什么关系;有一颗平常心,面对台下的 鲜花掌声和头上的光环,身上的浮名都能清醒看待。花不常开,人不常在。再热闹华美的舞台也有谢幕的时候;再奢华的宴席,悠扬的乐曲,总有曲终人散的时刻。春去秋来, 我们无法让季节停留;同样如同季节一样无法挽留的还有我们匆匆的人生。谁会在乎你?生养我们的父母。纵使我们有千般不是,纵使我们变成了穷光蛋,唯有父母会依然在乎! 为你愁,为你笑,为你牵挂,为你满足。这风云变幻的世界,除了父母,不敢在断言还会有谁会永远的在乎你!看惯太多海誓山盟的感情最后星流云散;看过太多翻云覆雨的友 情灰飞烟灭。你春风得意时前呼后拥的都来锦上添花;你落寞孤寂时,曾见几人焦急赶来为你雪中送炭。其实,谁会在乎你?除了父母,只有你自己。父母待

2018届高考数学(理)二轮专题复习限时规范训练:第一部分 专题二 函数、不等式、导数 1-2-2

2018届高考数学(理)二轮专题复习限时规范训练:第一部分 专题二 函数、不等式、导数 1-2-2

限时规范训练五 不等式及线性规划限时45分钟,实际用时分值80分,实际得分一、选择题(本题共12小题,每小题5分,共60分) 1.设0<a <b <1,则下列不等式成立的是( )A .a 3>b 3B.1a <1bC .a b>1D .lg(b -a )<a解析:选D.∵0<a <b <1,∴0<b -a <1-a ,∴lg(b -a )<0<a ,故选D. 2.已知a ,b 是正数,且a +b =1,则1a +4b( )A .有最小值8B .有最小值9C .有最大值8D .有最大值9解析:选B.因为1a +4b =⎝ ⎛⎭⎪⎫1a +4b (a +b )=5+b a +4ab≥5+2b a ·4a b =9,当且仅当b a =4a b且a +b =1,即a =13,b =23时取“=”,所以1a +4b的最小值为9,故选B.3.对于任意实数a ,b ,c ,d ,有以下四个命题: ①若ac 2>bc 2,则a >b ;②若a >b ,c >d ,则a +c >b +d ; ③若a >b ,c >d ,则ac >bd ; ④若a >b ,则1a >1b.其中正确的有( ) A .1个 B .2个 C .3个D .4个解析:选B.①ac 2>bc 2,则c ≠0,则a >b ,①正确;②由不等式的同向可加性可知②正确; ③需满足a 、b 、c 、d 均为正数才成立;④错误,如:令a =-1,b =-2,满足-1>-2,但1-1<1-2.故选B. 4.已知不等式ax 2-bx -1>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <-13,则不等式x 2-bx -a ≥0的解集是( )A .{x |2<x <3}B .{x |x ≤2或x ≥3}C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13<x <12 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <13或x >12 解析:选B.∵不等式ax 2-bx -1>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <-13, ∴ax 2-bx -1=0的解是x 1=-12和x 2=-13,且a <0.∴⎩⎪⎨⎪⎧-12-13=ba ,⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得⎩⎪⎨⎪⎧a =-6,b =5.则不等式x 2-bx -a ≥0即为x 2-5x +6≥0,解得x ≤2或x ≥3.5.若x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y ≥0,x +y -4≤0,y ≥12x 2,则z =y -x 的取值范围为( )A .[-2,2]B.⎣⎢⎡⎦⎥⎤-12,2C .[-1,2]D.⎣⎢⎡⎦⎥⎤-12,1 解析:选B.作出可行域(图略),设直线l :y =x +z ,平移直线l ,易知当l 过直线3x -y =0与x +y -4=0的交点(1,3)时,z 取得最大值2;当l 与抛物线y =12x 2相切时,z 取得最小值,由⎩⎪⎨⎪⎧z =y -x ,y =12x 2,消去y 得x 2-2x -2z =0,由Δ=4+8z =0,得z =-12,故-12≤z ≤2,故选B.6.设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是( ) A.92 B.72 C .22+12D .22-12解析:选A.∵a n =a 1+(n -1)d =n ,S n =n 1+n2,∴S n +8a n=n 1+n2+8n=12⎝ ⎛⎭⎪⎫n +16n +1≥12⎝⎛⎭⎪⎫2n ·16n +1=92,当且仅当n =4时取等号.∴S n +8a n 的最小值是92,故选A. 7.一条长为2的线段,它的三个视图分别是长为3,a ,b 的三条线段,则ab 的最大值为( ) A. 5 B. 6C.52D .3解析:选C.如图,构造一个长方体,体对角线长为2,由题意知a 2+x 2=4,b 2+y 2=4,x2+y 2=3,则a 2+b 2=x 2+y 2+2=3+2=5,又5=a 2+b 2≥2ab ,所以ab ≤52,当且仅当a =b 时取等号,所以选C.8.设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12,则x +2y +3x +1的取值范围是( ) A .[1,5] B .[2,6] C .[3,11]D .[3,10]解析:选C.画出约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12的可行域如图阴影部分所示,则x +2y +3x +1=x +1+2y +2x +1=1+2×y +1x +1,y +1x +1的几何意义为过点(x ,y )和(-1,-1)的直线的斜率.由可行域知y +1x +1的取值范围为k MA ≤y +1x +1≤k MB ,即y +1x +1∈[1,5],所以x +2y +3x +1的取值范围是[3,11].9.设x ,y 满足不等式⎩⎪⎨⎪⎧y ≤2,x +y ≥1,x -y ≤1,若M =3x +y ,N =⎝ ⎛⎭⎪⎫12x-72,则M -N 的最小值为( )A.12 B .-12C .1D .-1解析:选A.作出不等式组所表示的平面区域,如图中阴影部分所示,易求得A (-1,2),B (3,2),当直线3x +y -M =0经过点A (-1,2)时,目标函数M =3x +y 取得最小值-1.又由平面区域知-1≤x ≤3,所以函数N =⎝ ⎛⎭⎪⎫12x-72在x =-1处取得最大值-32,由此可得M -N 的最小值为-1-⎝ ⎛⎭⎪⎫-32=12.10.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域的形状是三角形,则a 的取值范围是( )A .a ≥43B .0<a ≤1C .1≤a ≤43D .0<a ≤1或a ≥43解析:选D.作出不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图中阴影部分所示.其中直线x -y =0与直线2x +y =2的交点是⎝⎛⎭⎪⎫23,23,而直线x +y =a 与x 轴的交点是(a,0).由图知,要使原不等式组表示的平面区域的形状为三角形,只需a ≥23+23或0<a ≤1,所以选D.11.已知不等式组⎩⎪⎨⎪⎧3x +4y -10≥0,x ≤4,y ≤3表示区域D ,过区域D 中任意一点P 作圆x 2+y 2=1的两条切线,切点分别为A 、B ,当∠APB 最大时,cos∠APB =( )A.32 B.12 C .-32D .-12解析:选B.画出不等式组表示的可行域如图中阴影部分所示,易知当点P 到点O 距离最小时,∠APB 最大,此时|OP |=|3×0+4×0-10|32+42=2,又OA =1,故∠OPA =π6, ∴∠APB =π3,∴cos∠APB =12.12.已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( ) A .c ≤3 B .3<c ≤6 C .6<c ≤9D .c >9解析:选C.由0<f (-1)=f (-2)=f (-3)≤3,得0<-1+a -b +c =-8+4a -2b +c =-27+9a -3b +c ≤3,由-1+a -b +c =-8+4a -2b +c ,得3a -b -7=0,① 由-1+a -b +c =-27+9a -3b +c ,得 4a -b -13=0,②由①②,解得a =6,b =11,∴0<c -6≤3, 即6<c ≤9,故选C.二、填空题(本题共4小题,每小题5分,共20分)13.函数f (x )=1+log a x (a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -2=0上,其中mn >0,则1m +1n的最小值为________.解析:因为log a 1=0,所以f (1)=1,故函数f (x )的图象恒过定点A (1,1). 由题意,点A 在直线mx +ny -2=0上,所以m +n -2=0,即m +n =2. 而1m +1n =12⎝ ⎛⎭⎪⎫1m +1n ×(m +n ) =12⎝⎛⎭⎪⎫2+n m +m n ,因为mn >0,所以nm >0,m n>0.由均值不等式,可得n m +m n ≥2×n m ×mn=2(当且仅当m =n 时等号成立), 所以1m +1n =12⎝ ⎛⎭⎪⎫2+n m +m n ≥12×(2+2)=2,即1m +1n 的最小值为2.答案:214.设P (x ,y )是函数y =2x(x >0)图象上的点,则x +y 的最小值为________.解析:因为x >0,所以y >0,且xy =2.由基本不等式得x +y ≥2xy =22,当且仅当x =y 时等号成立.答案:2 215.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,y ≥x ,3x +2y ≤15,则w =4x ·2y的最大值是________.解析:作出不等式组表示的可行域如图阴影部分所示.w =4x ·2y =22x +y,要求其最大值,只需求出2x +y =t 的最大值即可,由平移可知t =2x +y 在A (3,3)处取得最大值t =2×3+3=9,故w =4x·2y的最大值为29=512.答案:51216.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1,若对任意的x ∈R ,不等式f (x )≤m 2-34m 恒成立,则实数m 的取值范围为________.解析:由题意知,m 2-34m ≥f (x )max .当x >1时,f (x )=log 13x 是减函数,且f (x )<0;当x ≤1时,f (x )=-x 2+x ,其图象的对称轴方程是x =12,且开口向下,∴f (x )max =-14+12=14.∴m 2-34m ≥14,即4m 2-3m -1≥0,∴m ≤-14或m ≥1.答案:⎝ ⎛⎦⎥⎤-∞,-14∪[1,+∞)。

2018年江苏高考数学二轮复习练习:专题限时集训2 函数 Word版含答案

2018年江苏高考数学二轮复习练习:专题限时集训2 函数 Word版含答案

专题限时集训(二) 函 数(对应学生用书第80页) (限时:120分钟)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填写在题中横线上.)1.(河南省豫北名校联盟2017届高三年级精英对抗赛)已知函数f (x )=⎩⎪⎨⎪⎧log 5x ,x >0,2x,x ≤0,则f⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫125=________.14 [f ⎝ ⎛⎭⎪⎫125=log 5125=-2,∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫125=f (-2)=2-2=14.] 2.(江苏省苏州市2017届高三上学期期中)已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=8x.则f ⎝ ⎛⎭⎪⎫-193=________.-2 [函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=8x,则f ⎝ ⎛⎭⎪⎫-193=f ⎝ ⎛⎭⎪⎫-13=-f ⎝ ⎛⎭⎪⎫13=-813=-2.] 3.(2017·江苏省淮安市高考数学二模)函数f (x )=-x2的定义域是________.[-2,2] [由lg(5-x 2)≥0,得5-x 2≥1, 即x 2≤4,解得-2≤x ≤2. ∴函数f (x )=-x2的定义域是[-2,2].故答案为:[-2,2].]4.(广西柳州市2017届高三10月模拟)设a ,b ,c 均为正数,且2a=log 12a ,⎝ ⎛⎭⎪⎫12b =log 12b ,⎝ ⎛⎭⎪⎫12c =log 2c ,则a ,b ,c 的大小关系为________.a <b <c [画图可得0<a <b <1<c .]5.(广东2017届高三上学期阶段测评(一))定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (37.5)等于________.0.5 [∵f (x +2)=-f (x ),∴f (x +4)=f (x )且f (-x )=-f (x ),0≤x ≤1时,f (x )=x ,∴f (37.5)=f (1.5)=-f ()-0.5=f ()0.5=0.5.]6.(广东省佛山市2017届高三教学质量检测(一))函数f (x )=1x -log 21+ax1-x 为奇函数,则实数a=________.±1 [因为函数f (x )为奇函数,所以f (-x )=1-x -log 21-ax 1+x =-1x +log 21+ax 1-x ,即1+x1-ax =1+ax1-x,所以a =±1.] 7.(天津六校2017届高三上学期期中联考)已知定义在R 上的偶函数f (x )满足f (x +2)·f (x )=1对于x ∈R 恒成立,且f (x )>0,则f (2 015)=________. 1 [因为f (x +2)·f (x )=1⇒f (x +4)=1fx +=f (x )⇒T =4,因此f (2 015)=f (3)=f (-1)=f (1);而f (x +2)·f (x )=1⇒f (-1+2)·f (-1)=1⇒f 2(1)=1,f (x )>0⇒f (1)=1,所以f (2 015)=1.]8.(河南省豫北名校联盟2017届高三年级精英对抗赛)已知函数f (x )是R 上的单调函数,且对任意实数x ,都有f ⎝⎛⎭⎪⎫fx +22x+1=13,则f (log 23)=________. 12 [因为函数f (x )是R 上的单调函数,且f ⎝⎛⎭⎪⎫fx +22x+1=13,所以可设f (x )+22x +1=t (t 为常数),即f (x )=t -22x +1,又因为f (t )=13,所以t -22t +1=13,令g (x )=x -22x +1,显然g (x )在R 上单调递增,且g (1)=13,所以t =1,f (x )=1-22x +1,f (log 23)=1-22log 23+1=12.]9.(湖北省荆州市2017届高三上学期第一次质量检测)已知函数f (x )=|ln x |-1,g (x )=-x2+2x +3,用min{m ,n }表示m ,n 中最小值,设h (x )=min{f (x ),g (x )},则函数h (x )的零点个数为________.3 [作出函数f (x )和g (x )的图象(两个图象的下面部分图象)如图,由g (x )=-x 2+2x +3=0,得x =-1或x =3,由f (x )=|ln x |-1=0,得x =e 或x =1e .∵g (e)>0,∴当x >0时,函数h (x )的零点个数为3个.]10.(江苏省南京市2017届高三上学期学情调研)已知f (x ),g (x )分别是定义在R 上的奇函数和偶函数,且f (x )+g (x )=⎝ ⎛⎭⎪⎫12x .若存在x 0∈⎣⎢⎡⎦⎥⎤12,1,使得等式af (x 0)+g (2x 0)=0成立,则实数a 的取值范围是________.【导学号:56394011】⎣⎢⎡⎦⎥⎤22,522 [由f (x )+g (x )=⎝ ⎛⎭⎪⎫12x 得f (-x )+g (-x )=⎝ ⎛⎭⎪⎫12-x ,即-f (x )+g (x )=⎝ ⎛⎭⎪⎫12-x,所以f (x )=12(2-x -2x ),g (x )=12(2-x +2x ).存在x 0∈⎣⎢⎡⎦⎥⎤12,1,使得等式af (x 0)+g (2x 0)=0成立,即x 0∈⎣⎢⎡⎦⎥⎤12,1,a =-g x 0f x 0,设h (x )=-g x f x ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤12,1,则h (x)=-12-2x+22x12-x -2x=22x +2-2x 2x -2-x =(2x -2-x )+22x -2-x ,x ∈⎣⎢⎡⎦⎥⎤12,1时,2x -2-x ∈⎣⎢⎡⎦⎥⎤22,32,设t =2x -2-x,则t ∈⎣⎢⎡⎦⎥⎤22,32,而h (x )=t +2t ,易知y =t +2t 在⎣⎢⎡⎦⎥⎤22,2上递减,在⎣⎢⎡⎦⎥⎤2,32上递增,因此y min =2+22=22,y max =22+222=522,所以h (x )∈⎣⎢⎡⎦⎥⎤22,522,即a ∈⎣⎢⎡⎦⎥⎤22,522.] 11.(江苏省苏州市2017届高三上学期期中)已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x >0,x 2+x ,x ≤0,若函数g (x )=f(x )-m 有三个零点,则实数m 的取值范围是________.⎝ ⎛⎦⎥⎤-14,0 [由g (x )=f (x )-m =0得f (x )=m ,若函数g (x )=f (x )-m 有三个零点, 等价为函数f (x )与y =m 有三个不同的交点,作出函数f (x )的图象如图:当x ≤0时,f (x )=x 2+x =⎝ ⎛⎭⎪⎫x +122-14≥-14,若函数f (x )与y =m 有三个不同的交点, 则-14<m ≤0,即实数m 的取值范围是⎝ ⎛⎦⎥⎤-14,0,故答案为:⎝ ⎛⎦⎥⎤-14,0.] 12.(2017·江苏省苏、锡、常、镇四市高考数学二模)已知函数f (x )=⎩⎪⎨⎪⎧4x -x 2,x ≥0,3x ,x <0,若函数g (x )=|f (x )|-3x +b 有三个零点,则实数b 的取值范围为________. (-∞,-6)∪⎝ ⎛⎦⎥⎤-14,0 [函数f (x )=⎩⎪⎨⎪⎧4x -x 2,x ≥0,3x,x <0,若函数g (x )=|f (x )|-3x+b 有三个零点,就是h (x )=|f (x )|-3x 与y =-b 有3个交点,h (x )=⎩⎪⎨⎪⎧x -x 2,0≤x ≤4,x 2-7x ,x >4,-3x-3x ,x <0,画出两个函数的图象如图:当x <0时,-3x-3x ≥6,当且仅当x =-1时取等号,此时-b >6,可得b <-6;当0≤x ≤4时,x -x 2≤14,当x =12时取得最大值,满足条件的b ∈⎝ ⎛⎦⎥⎤-14,0 .综上,b ∈(-∞,-6)∪⎝ ⎛⎦⎥⎤-14,0. 故答案为:(-∞,-6)∪⎝ ⎛⎦⎥⎤-14,0.] 13.(2017·江苏省淮安市高考数学二模)已知函数f (x )=⎩⎪⎨⎪⎧-x +m ,x <0,x 2-1,x ≥0,其中m >0,若函数y =f (f (x ))-1有3个不同的零点,则m 的取值范围是________.(0,1) [①当x <0时,f (f (x ))=(-x +m )2-1,图象为开口向上的抛物线在y 轴左侧的部分,顶点为(0,m 2-1);②当0≤x <1时,f (f (x ))=-x 2+1+m ,图象为开口向下的抛物线在0≤x <1之间的部分,顶点为(0,m +1).根据题意m >0,所以m +1>1;③当x ≥1时,f (f (x ))=(x 2-1)2-1,图象为开口向上的抛物线在x =1右侧的部分,顶点为(1,-1).根据题意,函数y =f (f (x ))-1有3个不同的零点,即f (f (x ))的图象与y =1有3个不同的交点.根据以上三种分析的情况:第③种情况x =1时,f (f (x ))=-1,右侧为增函数,所以与y =1有一个交点;第②种情况,当x →1时,f (f (x ))→m ,所以与y =1有交点,需m <1;第①种情况,当x →0时,f (f (x ))→m 2-1,只要m 2-1<1即可,又m >0,∴0<m <2, 综上m 的取值范围为(0,1).]14.(2017·江苏省无锡市高考数学一模)若函数f (x )=⎩⎪⎨⎪⎧12x -1,x <1,ln xx 2,x ≥1,则函数y =|f (x )|-18的零点个数为________. 4 [当x ≥1时,ln x x 2=18,即ln x =18x 2,令g (x )=ln x -18x 2,x ≥1时函数是连续函数,g (1)=-18<0,g (2)=ln 2-12=ln2e>0,g (4)=ln 4-2<0,由函数的零点判定定理可知g (x )=ln x -18x 2有2个零点.(结合函数y =ln x x 2与y =18可知函数的图象有2个交点.)当x <1时,y =⎩⎪⎨⎪⎧12x-1,x <0,1-12x,x ∈[0,,函数的图象与y =18的图象如图,考查两个函数有2个交点,综上函数y =|f (x )|-18的零点个数为4个.故答案为4.]二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)(2016-2017学年度江苏苏州市高三期中调研考试)已知函数f (x )=3x+λ·3-x(λ∈R ).(1)若f (x )为奇函数,求λ的值和此时不等式f (x )>1的解集; (2)若不等式f (x )≤6对x ∈[0,2]恒成立,求实数λ的取值范围.【导学号:56394012】[解] (1)函数f (x )=3x +λ·3-x的定义域为R ,∵f (x )为奇函数,∴f (-x )+f (x )=0对∀x ∈R 恒成立,即3-x+λ·3x +3x +λ·3-x=(λ+1)(3x +3-x)=0对∀x ∈R 恒成立,∴λ=-1. 3分此时f (x )=3x-3-x>1,即3x -3-x-1>0, 解得3x >1+52或3x<1-52(舍去),6分∴解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >log 31+52. 7分(2)由f (x )≤6得3x +λ·3-x ≤6,即3x+λ3x ≤6,令t =3x ∈[1,9],原问题等价于t +λt≤6对t ∈[1,9]恒成立,亦即λ≤-t 2+6t 对t ∈[1,9]恒成立,10分令g (t )=-t 2+6t ,t ∈[1,9],∵g (t )在[1,3]上单调递增,在[3,9]上单调递减. ∴当t =9时,g (t )有最小值g (9)=-27, ∴λ≤-27.14分16.(本小题满分14分)(泰州中学2016-2017年度第一学期第一次质量检测)设函数y =lg(-x 2+4x -3)的定义域为A ,函数y =2x +1,x ∈(0,m )的值域为B . (1)当m =2时,求A ∩B ;(2)若“x ∈A ”是“x ∈B ”的必要不充分条件,求实数m 的取值范围. [解] (1)由-x 2+4x -3>0, 解得1<x <3,所以A =(1,3), 2分又函数y =2x +1在区间(0,m )上单调递减, 所以y ∈⎝ ⎛⎭⎪⎫2m +1,2,即B =⎝⎛⎭⎪⎫2m +1,2,5分当m =2时,B =⎝ ⎛⎭⎪⎫23,2,所以A ∩B =(1,2).7分 (2)首先要求m >0,9分而“x ∈A ”是“x ∈B ”的必要不充分条件,所以B 是A 的真子集, 从而2m +1≥1,解得0<m ≤1.12分 所以实数m 的取值范围为(0,1].14分17.(本小题满分14分)(江苏省泰州中学2017届高三上学期第二次月考)无锡市政府决定规划地铁三号线:该线起于惠山区惠山城铁站,止于无锡新区硕放空港产业园内的无锡机场站,全长28公里,目前惠山城铁站和无锡机场站两个站点已经建好,余下的工程是在已经建好的站点之间铺设轨道和等距离修建停靠站.经有关部门预算,修建一个停靠站的费用为6 400万元,铺设距离为x 公里的相邻两个停靠站之间的轨道费用为400x 3+20x 万元.设余下工程的总费用为f (x )万元.(停靠站位于轨道两侧,不影响轨道总长度).(1)试将f (x )表示成x 的函数;(2)需要建多少个停靠站才能使工程费用最小,并求最小值.[解] (1)设需要修建k 个停靠站,则k 个停靠站将28公里的轨道分成相等的k +1段, ∴(k +1)x =28⇒k =28x-1,3分∴f (x )=6 400k +(k +1)(400x 3+20x )=6 400⎝ ⎛⎭⎪⎫28x -1+28x (400x 3+20x ),化简得f (x )=28×400x 2+28×6 400x-5 840,7分(2)f (x )=28×400x 2+28×3 200x +28×3 200x-5 840≥3328×400x 2·28×3 200x ·28×3 200x-5 840=128 560(万元),当且仅当28×400x 2=28×3 200x ,即x =2,k =28x-1=13时取“=”.13分故需要建13个停靠站才能使工程费用最小,最小值费用为128 560万元.14分18.(本小题满分16分)(泰州中学2017届高三上学期期中考试)已知函数f (x )=|x 2-1|+x 2+kx ,且定义域为(0,2).(1)求关于x 的方程f (x )=kx +3在(0,2)上的解;(2)若关于x 的方程f (x )=0在(0,2)上有两个的解x 1,x 2,求k 的取值范围.[解] (1)∵f (x )=|x 2-1|+x 2+kx ,f (x )=kx +3,即|x 2-1|+x 2=3.当0<x ≤1时, |x 2-1|+x 2=1-x 2+x 2=1,此时该方程无解.当1<x <2时,|x 2-1|+x 2=2x 2-1,原方程等价于:x 2=2,此时该方程的解为 2.综上可知:方程f (x )=kx +3在(0,2)上的解为 2.6分(2)当0<x ≤1时,kx =-1,① 当1<x <2时,2x 2+kx -1=0,② 若k =0,则①无解,②的解为x =±22∉(1,2),故k =0不合题意.若k ≠0,则①的解为x =-1k.8分(ⅰ)当-1k∈(0,1]时,k ≤-1时,方程②中Δ=k 2+8>0,故方程②中一 根在(1,2)内,一根不在(1,2)内.设g (x )=2x 2+kx -1,而x 1x 2=-12<0,则⎩⎪⎨⎪⎧g <0,g>0,⎩⎪⎨⎪⎧k <-1,k >-72,又k ≤-1,故-72<k <-1.12分(ⅱ)当-1k∉(0,1]时,即-1<k <0或k >0时,方程②在(1,2)需有两个不同解,而x 1x 2=-12<0,知道方程②必有负根,不合题意. 综上所述,故-72<k <-1. 19.(本小题满分16分)(江苏省南通市如东县、 徐州市丰县2017届高三10月联考)已知函数f (x )=-3x+a 3x +1+b. (1)当a =b =1时,求满足f (x )=3x的x 的值; (2)若函数f (x )是定义在R 上的奇函数.①存在t ∈R ,不等式f (t 2-2t )<f (2t 2-k )有解,求k 的取值范围;②若函数g (x )满足f (x )·[g (x )+2]=13(3-x -3x),若对任意x ∈R ,不等式g (2x )≥m ·g (x )-11恒成立,求实数m 的最大值 .[解] (1) 由题意,-3x+13x +1+1=3x ,化简得3·(3x )2+2·3x-1=0,解得3x =-1(舍)或3x=13,2分 所以x =-1.4分(2) 因为f (x )是奇函数,所以f (-x )+f (x )=0, 所以-3-x+a 3-x +1+b +-3x+a 3x +1+b=0,化简并变形得: (3a -b )(32x+1)+(2ab -6)·3x=0, 要使上式对任意的x 成立,则3a -b =0且2ab -6=0,解得⎩⎪⎨⎪⎧a =1,b =3或⎩⎪⎨⎪⎧a =-1,b =-3,因为f (x )的定义域是R ,所以⎩⎪⎨⎪⎧a =-1b =-3(舍去),所以a =1,b =3, 所以f (x )=-3x+13x +1+3.6分①f (x )=-3x+13x +1+3=13⎝⎛⎭⎪⎫-1+23x +1,对任意x 1,x 2∈R ,x 1<x 2有: f (x 1)-f (x 2)=13⎝ ⎛⎭⎪⎫23x 1+1-23x 2+1=23⎝⎛⎭⎪⎫3x 2-3x 1x 1+x 2+,因为x 1<x 2,所以3x 2-3x 1>0,所以f (x 1)>f (x 2), 因此f (x )在R 上递减.8分因为f (t 2-2t )<f (2t 2-k ),所以t 2-2t >2t 2-k , 即t 2+2t -k <0在t ∈R 上有解 , 所以Δ=4+4k >0,解得k >-1, 所以k 的取值范围为(-1,+∞). 10分②因为f (x )·[g (x )+2]=13(3-x -3x),所以g (x )=3-x-3x3f x -2,即g (x )=3x +3-x. 12分所以g (2x )=32x+3-2x=(3x+3-x )2-2.不等式g (2x )≥m ·g (x )-11恒成立, 即(3x+3-x )2-2≥m ·(3x +3-x)-11,即m ≤3x +3-x+93x +3-x 恒成立.14分令t =3x +3-x,t ≥2,则m ≤t +9t在t ≥2时恒成立,令h (t )=t +9t ,h ′(t )=1-9t2,t ∈(2,3)时,h ′(t )<0,所以h (t )在(2,3)上单调递减, t ∈(3,+∞)时,h ′(t )>0,所以h (t )在(3,+∞)上单调递增,所以h (t )min =h (3)=6,所以m ≤6, 所以实数m 的最大值为6 .16分20.(本小题满分16 分)(江苏省南通市如东县、徐州市丰县2017届高三10月联考)给出定义在(0,+∞)上的两个函数f (x )=x 2-a ln x ,g (x )=x -a x . (1)若f (x )在x =1处取最值,求a 的值;(2)若函数h (x )=f (x )+g (x 2)在区间(0,1]上单调递减 ,求实数a 的取值范围; (3)在(1)的条件下,试确定函数m (x )=f (x )-g (x )-6的零点个数,并说明理由.【导学号:56394013】[解] (1)f ′(x )=2x -a x,由已知f ′(1)=0,即2-a =0, 解得a =2,经检验a =2满足题意, 所以a =2.4分(2)h (x )=f (x )+g (x 2)=x 2-a ln x +x 2-ax =2x 2-a (x +ln x ),h ′(x )=4x -a ⎝ ⎛⎭⎪⎫1+1x ,要使得h (x )=2x 2-a (x +ln x )在区间(0,1]上单调递减,则h ′(x )≤0,即4x -a ⎝ ⎛⎭⎪⎫1+1x ≤0在区间(0,1]上恒成立, 6分因为x ∈(0,1],所以a ≥4x2x +1,设函数F (x )=4x2x +1,则a ≥F (x )max ,8分F (x )=4x 2x +1=4⎝ ⎛⎭⎪⎫1x 2+1x,因为x ∈(0,1],所以1x∈[1,+∞),所以⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫1x2+1x min =2, 所以F (x )max =2,所以a ≥2.10分- 11 - (3)函数m (x )=f (x )-g (x )-6有两个零点.因为m (x )=x 2-2ln x -x +2x -6,所以m ′(x )=2x -2x -1+1x =2x 2-2-x +x x =x -x x +2x +x +x.当x ∈(0,1)时,m ′(x )<0,当x ∈(1,+∞)时, m ′(x )>0,所以m (x )min =m (1)=-4<0, 14分m (e -2)=-+e +2e 3e 4<0,m (e -4)=1+2e 8+e 42-e 8>0,m (e 4)=e 4(e 4-1)+2(e 2-7)>0,故由零点存在定理可知:函数m (x )在(e -4,1)上存在一个零点,函数m (x )在(1,e 4)上存在一个零点, 所以函数m (x )=f (x )-g (x )-6有两个零点. 16分。

2018高考数学理二轮复习课时规范练:第二部分 专题一

2018高考数学理二轮复习课时规范练:第二部分 专题一

专题一 函数与导数、不等式 第4讲 导数与函数的单调性、极值与最值一、选择题1.函数f (x )=12x 2-ln x 的单调递减区间为( )A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)解析:由题意知,函数的定义域为(0,+∞),又由f ′(x )=x -1x≤0,解得0<x ≤1,所以函数f (x )的单调递减区间为(0,1].答案:B2.(2017·浙江卷)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )解析:利用导数与函数的单调性进行验证.f ′(x )>0的解集对应y =f (x )的增区间,f ′(x )<0的解集对应y =f (x )的减区间,验证只有D 选项符合.答案:D3.直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A .2 2 B .4 2 C .2D .4解析:由⎩⎪⎨⎪⎧y =4xy =x 3得x =0或x =2(x =-2舍). 根据定积分的几何意义,两曲线在第一象限内围成的封闭图形的面积S =∫2(4x -x 3)d x =⎝⎛⎭⎪⎫2x 2-x 44|20=4.答案:D4.(2016·山东卷)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( )A .y =sin xB .y =ln xC .y =e xD .y =x 3解析:对函数y =sin x 求导,得y ′=cos x ,当x =0时,该点处切线l 1的斜率k 1=1,当x =π时,该点处切线l 2的斜率k 2=-1,所以k 1·k 2=-1,所以l 1⊥l 2;对函数y =ln x 求导,得y ′=1x恒大于0,斜率之积不可能为-1;对函数y =e x 求导,得y ′=ex恒大于0,斜率之积不可能为-1;对函数y =x 3,得y ′=3x 2恒大于等于0,斜率之积不可能为-1.答案:A5.(2017·菏泽二模)若定义域为R 的单调递增函数y =f (x )对于任意两个不相等的实数m ,n 都有f ⎝⎛⎭⎪⎫m +n 2>f (m )+f (n )2成立,y =f ′(x )为函数y =f (x )的导函数,则f (a+1)-f (a ),f ′(a ),f ′(a +1)的大小关系为( )A .f ′(a )<f (a +1)-f (a )<f ′(a +1)B .f ′(a )<f ′(a +1)<f (a +1)-f (a )C .f ′(a +1)<f (a +1)-f (a )<f ′(a )D .f ′(a +1)<f ′(a )<f (a +1)-f (a ) 解析:因定义在R 上的增函数y =f (x )满足f ⎝ ⎛⎭⎪⎫m +n 2>f (m )+f (n )2(m ≠n );所以y =f (x )的图象上凸,如图所示,又f (a +1)-f (a )=f (a +1)-f (a )(a +1)-a表示两点M ,N 连线的斜率k MN .f ′(a )与f ′(a +1)分别表示曲线y =f (x )在点M ,N 处切线的斜率,因此f ′(a +1)<k MN <f ′(a ),即f ′(a +1)<f (a +1)-f (a )<f ′(a ).答案:C 二、填空题6.(2017·郑州调研)设D 是图中边长分别为1和2的矩形区域,E 是D 内位于函数y =1x(x >0)图象下方的阴影部分区域,则阴影部分E 的面积为________.解析:S E =12×2+∫1121x d x =1+(ln x )|112=1+ln 1-ln 12=1+ln 2.答案:1+ln 27.(2016·全国卷Ⅲ)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切点方程是________.解析:令x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,即f (-x )=f (x ),所以f (x )=ln x -3x (x >0),则f ′(x )=1x-3(x >0).所以f ′(1)=-2,所以在点(1,-3)处的切线方程为y +3=-2(x -1),即y =-2x -1. 答案:2x +y +1=08.(2017·佛山质检)若函数f (x )=-12x 2+4x -3ln x 在[t ,t +1]上不单调,则t 的取值范围是________.解析:f ′(x )=-x +4-3x =-x 2+4x -3x =-(x -1)(x -3)x.由f ′(x )=0及判断可知函数f (x )的两个极值点为1,3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,所以t <1<t +1或t <3<t +1,解得0<t <1或2<t <3. 答案:(0,1)∪(2,3) 三、解答题9.(2017·浙江卷)已知函数f (x )=(x -2x -1)·e -x ⎝ ⎛⎭⎪⎫x ≥12.(导学号 54850099)(1)求f (x )的导函数;(2)求f (x )在区间⎣⎢⎡⎭⎪⎫12,+∞上的取值范围. 解:(1)f ′(x )=(x -2x -1)′e -x+(x -2x -1)(e -x)′=⎝⎛⎭⎪⎫1-12x -1e -x -(x -2x -1)e -x=⎝ ⎛⎭⎪⎫1-12x -1-x +2x -1e -x=(1-x )⎝⎛⎭⎪⎫1-22x -1e -x ⎝ ⎛⎭⎪⎫x >12. (2)令f ′(x )=(1-x )⎝⎛⎭⎪⎫1-22x -1e -x=0, 解得x =1或52.当x 变化时,f (x ),f ′(x )的变化如下表:又f ⎝ ⎛⎭⎪⎫2=2e -2,f (1)=0,f ⎝ ⎛⎭⎪⎫2=2e -2,则f (x )在区间⎣⎢⎡⎭⎪⎫12,+∞上的最大值为12e -12.又f (x )=(x -2x -1)e -x =12·(2x -1-1)2e -x≥0.综上可知,f (x )在区间⎣⎢⎡⎭⎪⎫12,+∞上的取值范围是⎣⎢⎡⎦⎥⎤0,12e -12. 10.(2017·山东卷改编)已知函数f (x )=13x 3-12ax 2,其中参数a ≥0.(导学号 54850100)(1)当a =2时,求曲线y =f (x )在点(3,f (3))处的切线方程;(2)设函数g (x )=f (x )+(x -a )cos x -sin x ,讨论g (x )的单调性并判断有无极值,有极值时求出极值.解:(1)由题意f ′(x )=x 2-ax ,所以当a =2时,f (3)=0,f ′(x )=x 2-2x , 所以f ′(3)=3,因此曲线y =f (x )在点(3,f (3))处的切线方程是y =3(x -3),即3x -y -9=0. (2)因为g (x )=f (x )+(x -a )cos x -sin x ,所以g ′(x )=f ′(x )+cos x -(x -a )·sin x -cos x =x (x -a )-(x -a )sin x =(x -a )(x -sin x ),令h (x )=x -sin x ,则h ′(x )=1-cos x ≥0, 所以h (x )在R 上单调递增.因为h (0)=0,所以,当x >0时,h (x )>0; 当x <0时,h (x )<0.①当a =0时,g ′(x )=x (x -sin x ),当x ∈(-∞,+∞)时,g ′(x )≥0,g (x )单调递增;所以g (x )在(-∞,+∞)上单调递增,g (x )无极大值也无极小值. ②当a >0时,g ′(x )=(x -a )(x -sin x ),当x ∈(-∞,0)时,x -a <0,g ′(x )>0,g (x )单调递增; 当x ∈(0,a )时,x -a <0,g ′(x )<0,g (x )单调递减; 当x ∈(a ,+∞)时,x -a >0,g ′(x )>0,g (x )单调递增. 所以,当x =0时,g (x )取到极大值,极大值是g (0)=-a ; 当x =a 时,g (x )取到极小值,极小值是g (a )=-16a 3-sin a .综上所述,当a =0时,g (x )在R 上单调递增,无极值;当a >0时,函数g (x )在(-∞,0)和(a ,+∞)上单调递增,在(0,a )上单调递减,函数既有极大值,又有极小值,极大值是g (0)=-a ,极小值是g (a )=-16a 3-sin a .11.(2017·广州联考)已知f (x )=ln x +a x. (1)求f (x )的单调区间和极值;(2)若对任意x >0,均有x (2ln a -ln x )≤a 恒成立,求正数a 的取值范围. 解:(1)f ′(x )=1x -a x 2=x -ax2.①-a ≥0时,f ′(x )>0,即a ≤0,f (x )在(0,+∞)为增函数,无极值. ②a >0,0<x <a ,f ′(x )<0,f (x )在(0,a )为减函数;x >a ,f ′(x )>0,f (x )在(a ,+∞)为增函数, f (x )在(0,+∞)有极小值,无极大值, f (x )的极小值f (a )=ln a +1.(2)对任意x >0,均有x (2ln a -ln x )≤a 恒成立.所以2ln a -ln x ≤a x 在x >0时恒成立,即恒有2ln a ≤a x+ln x . 由(1)知f (x )=a x+ln x 的极小值f (a )=ln a +1. 因此2ln a ≤ln a +1,ln a ≤1.所以0<a ≤e ,则正数a 的取值范围是(0,e].。

专题02 函数-高考数学(理)二轮专项习题练(解析版)

专题02 函数-高考数学(理)二轮专项习题练(解析版)

专题02 函数 函数的概念和性质一、选择题1.(2018全国卷Ⅱ)函数2()--=x xe ef x x 的图像大致为B 【解析】当0<x 时,因为0--<xxe e ,所以此时2()0--=<x xe ef x x ,故排除A .D ;又1(1)2=->f e e,故排除C ,选B .2.(2018全国卷Ⅲ)函数422y x x =-++的图像大致为D 【解析】当0x =时,2y =,排除A ,B .由3420y x x '=-+=,得0x =或22x =±,结合三次函数的图象特征,知原函数在(1,1)-上有三个极值点,所以排除C ,故选D .3.(2018全国卷Ⅱ)已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)-=+f x f x .若(1)2=f ,则(1)(2)(3)(50)++++=…f f f f A .50-B .0C .2D .50C 【解析】解法一 ∵()f x 是定义域为(,)-∞+∞的奇函数,()()-=-f x f x .且(0)0=f .∵(1)(1)-=+f x f x ,∴()(2)=-f x f x ,()(2)-=+f x f x ∴(2)()+=-f x f x ,∴(4)(2)()+=-+=f x f x f x ,∴()f x 是周期函数,且一个周期为4,∴(4)(0)0==f f ,(2)(11)(11)(0)0=+=-==f f f f ,(3)(12)(12)(1)2=+=-=-=-f f f f ,∴(1)(2)(3)(50)120(49)(50)(1)(2)2+++⋅⋅⋅+=⨯++=+=f f f f f f f f , 故选C .解法二 由题意可设()2sin()2f x x π=,作出()f x 的部分图象如图所示.xy4321-22O由图可知,()f x 的一个周期为4,所以(1)(2)(3)(50)+++⋅⋅⋅+f f f f , 所以(1)(2)(3)(50)120(1)(2)2+++⋅⋅⋅+=⨯++=f f f f f f ,故选C . 4.(2018浙江)函数||2sin 2x y x =的图象可能是A .B .C .D .D 【解析】设||()2sin 2x f x x =,其定义域关于坐标原点对称,又||()2sin(2)()x f x x f x --=⋅-=-,所以()y f x =是奇函数,故排除选项A ,B ;令()0f x =,所以sin 20x =,所以2x k π=(k ∈Z ),所以2k x π=(k ∈Z ),故排除选项C .故选D .5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(1)1f =-,则满足1(2)1f x --≤≤的x 的取值范围是 A .B .C .D .D 【解析】由函数()f x 为奇函数,得(1)(1)1f f -=-=,不等式1(2)1f x --≤≤即为(1)(2)(1)f f x f --≤≤,又()f x 在(,)-∞+∞单调递减,所以得121x --≥≥,即13x ≤≤,选D . 6.若函数2()f x x ax b =++在区间[0,1]上的最大值是M ,最小值是m ,则M m -A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关 B 【解析】函数()f x 的对称轴为2a x =-, ①当02a-≤,此时(1)1M f a b ==++,(0)m f b ==,1M m a -=+; ②当12a-≥,此时(0)M f b ==,(1)1m f a b ==++,1M m a -=--;③当012a<-<,此时2()24a a m f b =-=-,(0)M f b ==或(1)1M f a b ==++,24a M m -=或214a M m a -=++.综上,M m -的值与a 有关,与b 无关.选B .7.已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为 A .a b c <<B .c b a <<C .b a c <<D .b c a <<C 【解析】由题意()g x 为偶函数,且在(0,)+∞上单调递增,所以22(log 5.1)(log 5.1)a g g =-=又2222log 4log 5.1log 83=<<=,0.8122<<, 所以0.822log 5.13<<,故b a c <<,选C .8.已知函数1()3()3x xf x =-,则()f xA .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数 A 【解析】11()3()(3())()33xx x x f x f x ---=-=--=-,得()f x 为奇函数,()(33)3ln 33ln 30x x x x f x --''=-=+>,所以()f x 在R 上是增函数.选A .9.已知函数f (x )的定义域为R .当x <0时,3()1f x x =- ;当11x -≤≤ 时,()()f x f x -=-;当12x >时,11()()22f x f x +=-,则f (6)= A .−2 B .−1C .0D .2D 【解析】当11x -时,()f x 为奇函数,且当12x >时,(1)()f x f x +=, 所以(6)(511)(1)f f f =⨯+=.而3(1)(1)[(1)1]2f f =--=---=, 所以(6)2f =,故选D .10.函数2||2x y x e =-在[–2,2]的图像大致为A .B .C .D .D 【解析】当0x时,令函数2()2x f x x e =-,则()4x f x x e '=-,易知()f x '在[0,ln 4)上单调递增,在[ln 4,2]上单调递减,又(0)10f '=-<,1()202f '=>,(1)40f e '=->,2(2)80f e '=->,所以存在01(0,)2x ∈是函数()f x 的极小值点,即函数()f x 在0(0,)x 上单调递减,在0(,2)x 上单调递增,且该函数为偶函数,符合条件的图像为D .11.已知函数()()f x x ∈R 满足()()2f x f x -=-,若函数1x y x+=与()y f x =图像的交点为()11x y ,,()22x y ,,…,()m m x y ,,则()1mi i i x y =+=∑A .0B .mC .2mD .4mB 【解析】由()()2f x f x -=-得()()2f x f x -+=,可知()f x 关于()01,对称, 而111x y x x+==+也关于()01,对称,∴对于每一组对称点0i i x x '+==2i i y y '+,∴()111022mmmi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .12.下列函数为奇函数的是A.y =B .sin y x =C .cos y x =D .x x y e e -=-D【解析】∵函数y =[0,)+∞,不关于原点对称,所以函数y =非偶函数,排除A ;因为|sin |y x =为偶函数,所以排除B ;因为cos y x =为偶函数,所以排除C ;因为()xxy f x e e -==-,()()()x x x x f x e e e e f x ---=-=--=-,所以()x x y f x e e -==-为奇函数.13.下列函数中,既不是奇函数,也不是偶函数的是A.y = B .1y x x =+C .122xx y =+ D .x y x e =+ D 【解析】选项A 、C 为偶函数,选项B 中的函数是奇函数;选项D 中的函数为非奇非偶函数.14.设函数()ln(1)ln(1)f x x x =+--,则()f x 是A .奇函数,且在(0,1)上是增函数B .奇函数,且在(0,1)上是减函数C .偶函数,且在(0,1)上是增函数D .偶函数,且在(0,1)上是减函数 A 【解析】由题意可知,函数()f x 的定义域为(1,1)-,且12()lnln(1)11x f x x x+==---,易知211y x=--在(0,1)上为增函数,故()f x 在(0,1)上为增函数,又()ln(1)ln(1)()f x x x f x -=--+=-,故()f x 为奇函数.15.已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数,()()g x f x =-()f ax (1)a >,则A .sgn[()]sgn g x x =B .sgn[()]sgn g x x =-C .sgn[()]sgn[()]g x f x =D .sgn[()]sgn[()]g x f x =-B 【解析】因为()f x 是R 上的增函数,令x x f =)(,所以x a x g )1()(-=,因为1>a ,所以)(xg 是R上的减函数,由符号函数1,0sgn0,01,0xx xx>⎧⎪==⎨⎪-<⎩知,1,0sgn[()]0,0sgn1,0xg x x xx->⎧⎪===-⎨⎪<⎩.16.函数()()2ax bf xx c+=+的图象如图所示,则下列结论成立的是A.0a>,0b>,0c<B.0a<,0b>,0c>C.0a<,0b>,0c<D.0a<,0b<,0c<C【解析】∵2()()ax bf xx c+=+的图象与,x y轴分别交于,N M,且点M的纵坐标与点N的横坐标均为正,∴0bxa=->,2byc=>,故0,0a b<>,又函数图象间断的横坐标为正,∴0c->,故0c.17.已知函数()f x的图象与函数2xy=的图象关于x轴对称,则()f x=()A.2x-B.2x-C.2log x-D.2log xA【解析】设点(,)x y是函数()f x上任意一点,则点(,)x y-在函数2xy=的图像上即22x xy y-=⇒=-所以函数()f x的解析式为:()2xf x=-故选:A18.函数3cos1()xf xx+=的部分图象大致是()A.B.C.D.【答案】B 【解析】由3cos 1()x f x x +=,可得()()f x f x -=-,故()f x 是奇函数,图象关于原点对称,排除A.当π02x <<时,()0f x >;当11cos 3x -≤<-时,()0f x <,排除C,D.故选:B.19.函数22()11xf x x =-+在区间[4,4]-附近的图象大致形状是( )A .B .C .D .B 【解析】22()11xf x x=-+过点()10,,可排除选项A ,D .又()20f <,排除C .故选:B 20.已知0.20.33log 0.3,0.3,0.2a b c ===,则( )A .a b c <<B .a c b <<C .c a b <<D .b c a <<B 【解析】3log 0.30a =<,由幂函数0.2y x =为()0,∞+上的增函数,可得0.20.200.2.3> 又由指数函数0.2xy =为R 上的减函数,可知0.30.200.2.20>>,所以a c b <<.故选:B 二、填空题21.(2018江苏)函数2()log 1f x x =-的定义域为 .[2,)+∞【解析】要使函数()f x 有意义,则2log 10x -≥,即2x ≥,则函数()f x 的定义域是[2,)+∞.22.(2018江苏)函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π⎧<⎪⎪=⎨⎪+<⎪⎩≤-≤则((15))f f 的值为 .2因为函数()f x 满足(4)()f x f x +=(x ∈R ),所以函数()f x 的最小正周期是4.因为在区间(2,2]- 上,cos ,02,2()1||,20,2x x f x x x π⎧<⎪⎪=⎨⎪+<⎪⎩≤-≤,所以1((15))((1))()cos242f f f f f π=-===. 23.(2018上海)已知11{2,1,,,1,2,3}22α∈---,若幂函数()α=f x x 为奇函数,且在0+∞(,)上递减,则α=_____【解析】由题意()f x 为奇函数,所以α只能取1,1,3-,又()f x 在(0,)+∞上递减,所以1α=-. 24.(2018北京)能说明“若()(0)f x f >对任意的(0,2]x ∈都成立,则()f x 在[0,2]上是增函数”为假命题的一个函数是__________.sin y x =(不答案不唯一)【解析】这是一道开放性试题,答案不唯一,只要满足()(0)f x f >对任意的(0,2]x ∈都成立,且函数()f x 在[0,2]上不是增函数即可,如,()sin f x x =,答案不唯一.25.设函数1,0()2,0xx x f x x +⎧=⎨>⎩≤,则满足1()()12f x f x +->的x 的取值范围是___. 1(,)4-+∞【解析】当12x >时,不等式为12221x x-+>恒成立; 当102x <≤,不等式12112xx +-+>恒成立; 当0x ≤时,不等式为11112x x ++-+>,解得14x >-,即104x -<≤;综上,x 的取值范围为1(,)4-+∞.26.已知函数31()2xx f x x x e e=-+-,其中e 是自然数对数的底数,若2(1)(2)0f a f a -+≤,则实数a 的取值范围是 .1[1,]2-【解析】因为31()2e ()e x x f x x f x x -=-++-=-,所以函数()f x 是奇函数,因为22()32e e 320x x f 'x x x -=-++≥-+≥,所以数()f x 在R 上单调递增,又21)02()(f f a a +-≤,即2())2(1a a f f ≤-,所以221a a ≤-,即2120a a +-≤,解得112a -≤≤,故实数a 的取值范围为1[1,]2-. 27.若函数e ()xf x (e=2.71828,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是 ①()2xf x -=②()3xf x -=③3()=f x x④2()2=+f x x①④【解析】①()2()2x x x x e e f x e -=⋅=在R 上单调递增,故()2xf x -=具有M 性质;②()3()3x x x x e e f x e -=⋅=在R 上单调递减,故()3xf x -=不具有M 性质; ③3()xxe f x e x =⋅,令3()xg x e x =⋅,则322()3(2)xxxg x e x e x x e x '=⋅+⋅=+,∴当2x >-时,()0g x '>,当2x <-时,()0g x '<,∴3()x x e f x e x =⋅在(),2-∞-上单调递减,在()2,-+∞上单调递增,故()3f x x =不具有M 性质;④2()(2)x x e f x e x =+,令()()22x g x e x =+,则22()(2)2[(1)1]0x x x g x e x e x e x '=++⋅=++>,∴2()(2)x x e f x e x =+在R 上单调递增,故2()2f x x =+具有M 性质.28.已知a ∈R ,函数4()||f x x a a x=+-+在区间[1,4]上的最大值是5,则a 的取值范围是 .9(,]2-∞【解析】∵[1,4]x ∈,∴4[4,5]x x+∈①当5a ≥时,44()2224f x a x a a x a a x x =--+=---=-≤, 所以()f x 的最大值245a -=,即92a =(舍去) ②当4a ≤时,44()5f x x a a x x x=+-+=+≤,此时命题成立.③当45a <<时,max ()max{|4|,|5|}f x a a a a =-+-+,则|4||5||4|5a a a a a a -+-+⎧⎨-+=⎩≥或|4||5||5|5a a a a a a -+<-+-+=,解得92a =或92a <, 综上可得,实数a 的取值范围是9(,]2-∞.29.已知f (x )是定义在R 上的偶函数,且在区间(,0)-∞上单调递增.若实数a 满足1(2)(a f f ->,则a 的取值范围是______.13(,)22【解析】由()f x 是偶函数可知,()0-∞,单调递增;()0+∞,单调递减 又()(12a f f ->,(f f =可得,12a -112a -<∴1322a <<. 30.设()f x 是定义在R 上且周期为2的函数,在区间[)1,1-上,(),10,2,01,5x a x f x x x +-<⎧⎪=⎨-<⎪⎩≤≤其中a ∈R ,若59()()22f f -=,则()5f a 的值是 .25-【解析】由题意得511()()222f f a -=-=-+,91211()()225210f f ==-=,由59()()22f f -=可得11210a -+=,则35a =,则()()()325311155f a f f a ==-=-+=-+=-. 31.若函数()ln(f x x x =为偶函数,则a =1【解析】由题意()ln(())==-=-f x x x f x x x ,=x ,解得1a .32.已知函数223,1()lg(1),1x x f x xx x ⎧+-⎪=⎨⎪+<⎩≥,则((3))f f -=_______,()f x 的最小值是______.3【解析】∵(3)1f -=,(1)0f ,即((3))0f f -=.又()f x 在(,0)-∞上单调递减,在(0,1)上单调递增,在上单调递减,在)+∞上单调递增,所以min ()min{(0),3f x f f ==.33.已知函数()(0,1)xf x a b a a =+>≠ 的定义域和值域都是[1,0]-,则a b += .32【解析】当1a >时1010a b a b -⎧+=-⎨+=⎩,无解; 当01a <<时1001a b a b -⎧+=⎨+=-⎩,解得2b =-,12a =,则13222a b +=-=-.34.若函数()6,2,3log ,2,a x x f x x x -+⎧=⎨+>⎩≤(0a > 且1a ≠ )的值域是[)4,+∞,则实数a 的取值范围是 .(1,2]【解析】因为6,2()3log ,2a x x f x x x -+⎧=⎨+>⎩≤,所以当2x ≤时,()4f x ≥;又函数()f x 的值域为[4,)+∞,所以13log 24a a >⎧⎨+⎩≥,解得12a ≤,所以实数a 的取值范围为(1,2].专题02 函数指数函数、对数函数、幂函数一、选择题1.(2018全国卷Ⅰ)已知函数0()ln 0⎧=⎨>⎩,≤,,,x e x f x x x ()()=++g x f x x a .若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞C 【解析】函数()()=++g x f x x a 存在 2个零点,即关于x 的方程()=--f x x a 有2 个不同的实根,即函数()f x 的图象与直线=--y x a 有2个交点,作出直线=--y x a 与函数()f x 的图象,如图所示,由图可知,1-≤a ,解得1≥a ,故选C .2.(2018全国卷Ⅲ)设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+B 【解析】由0.2log 0.3a =得0.31log 0.2a =,由2log 0.3b =得0.31log 2b=, 所以0.30.30.311log 0.2log 2log 0.4a b +=+=,所以1101a b <+<,得01a b ab+<<.又0a >,0b <,所以0ab <,所以0ab a b <+<.故选B .3.(2018天津)已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >> C .c b a >> D .c a b >>D 【解析】因为2log e >1a =,ln 2(0,1)b =∈,12221log log 3log 13c e ==>>. 所以c a b >>,故选D .4.(2017新课标Ⅰ)设,,x y z 为正数,且235xyz==,则A .235x y z <<B .523z x y <<C .352y z x <<D .325y x z << D 【解析】设235xyzk ===,因为,,x y z 为正数,所以1k >,则2log x k =,3log y k =,5log z k =, 所以22lg lg 3lg 913lg 23lg lg8x k y k =⨯=>,则23x y >,排除A 、B ;只需比较2x 与5z , 22lg lg 5lg 2515lg 25lg lg 32x k z k =⨯=<,则25x z <,选D . 5.(2017天津)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为 A .a b c <<B .c b a <<C .b a c <<D .b c a <<C 【解析】由题意()g x 为偶函数,且在(0,)+∞上单调递增,所以22(log 5.1)(log 5.1)a g g =-=又2222log 4log 5.1log 83=<<=,0.8122<<, 所以0.822log 5.13<<,故b a c <<,选C .6.(2017北京)已知函数1()3()3x xf x =-,则()f xA .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数 A 【解析】11()3()(3())()33xx x x f x f x ---=-=--=-,得()f x 为奇函数, ()(33)3ln 33ln 30x x x x f x --''=-=+>,所以()f x 在R 上是增函数.选A .7.(2017北京)根据有关资料,围棋状态空间复杂度的上限M 约为3613,而可观测宇宙中普通物质的原子总数N 约为8010.则下列各数中与M N最接近的是(参考数据:lg 3≈0.48)A .3310B .5310C .7310D .9310D 【解析】设36180310M x N ==,两边取对数得,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-≈,所以93.2810x =,即M N最接近9310,选D .8.若1a b >>,01c <<,则A .c c a b <B .c c ab ba <C .log log b a a c b c <D .log log a b c c <C 【解析】选项A ,考虑幂函数cy x =,因为0c >,所以cy x =为增函数,又1a b >>,所以cca b >,A 错.对于选项B ,ccab ba <()cb b aa ⇔<,又()xb y a=是减函数,所以B 错.对于选项D ,由对数函数的性质可知D 错,故选C . 9.已知432a =,254b =,1325c =,则A .b a c <<B .a b c <<C .b c a <<D .c a b <<A 【解析】因为4133216a ==,2155416b ==,1325c =,且幂函数13y x =在R 上单调递增,指数函数16xy =在R 上单调递增,所以b a c <<,故选A .10.设函数211log (2),1()2,1x x x f x x -+-<⎧=⎨⎩≥,则2(2)(log 12)f f -+=A .3B .6C .9D .12 C 【解析】由于2(2)1log 43f -=+=,22log 121log 62(log 12)226f ,所以2(2)(log 12)f f -+=9.11.如图,函数()f x 的图像为折线ACB ,则不等式()()2log 1f x x +≥的解集是A .{}|10x x -<≤B .{}|11x x -≤≤C .{}|11x x -<≤D .{}|12x x -<≤C 【解析】如图,函数2log (1)yx 的图象可知,2()log (1)f x x ≥的解集是{|11}x x ≤.12.已知定义在R 上的函数()21x mf x -=- (m 为实数)为偶函数,记0.5log 3a =,()2log 5b f =,()2c f m =则,,a b c 的大小关系为A .a b c <<B .a c b <<C .c a b <<D .c b a << C 【解析】因为函数()21x mf x -=-为偶函数,所以0m =,即()21xf x =-,所以221log log 330.521(log 3)log 21213123a f f ⎛⎫===-=-=-= ⎪⎝⎭,()2log 5b f =2log 5214=-=, ()02(0)210c f m f ===-=,所以c a b <<,故选C .13.若0.20.3a =,0.1log 2b =,0.10.3c -=,则a ,b ,c 的大小关系为( )A .c a b >>B .b a c >>C .a c b >>D .b c a >>A 【解析】因为00.11<<,2>1,所以0.1log 20b =<,因为00.31<<,所以指数函数0.3xy =为递减函数,又-0.1<0.2,所以0.10.20.30.30->>,即0c a>>,综上所述,c a b>>.故选:A 14.设函数31,1()2,1xx xf xx-<⎧=⎨⎩≥,则满足()(())2f af f a=的a的取值范围是A.2[,1]3B.[0,1]C.2[,)3+∞D.[1,)+∞C【解析】由()(())2f af f a=可知()1f a≥,则121aa≥⎧⎨≥⎩或1311aa<⎧⎨-≥⎩,解得23a≥.15.已知函数log()ay x c=+(,a c为常数,其中0,1a a>≠)的图象如图,则下列结论成立的是A.0,1a c>>B.1,01a c><<C.01,1a c<<>D.01,01a c<<<<D【解析】由图象可知01a<<,当0x=时,log()log0a ax c c+=>,得01c<<.16.设3log7a=, 1.12b=, 3.10.8c=,则A.cab<<B.bac<<C.abc<<D.bca<<.D【解析】由图象可知01a<<,当0x=时,log()log0a ax c c+=>,得01c<<.17.在同意直角坐标系中,函数xxgxxxfaa log)(),0()(=≥=的图像可能是xy1xy1xyxy1OOOO1-11-111-11-1D 【解析】当1a >时,函数()(0)af x x x =>单调递增,函数()log a g x x =单调递增,且过点(1,0),由幂函数的图象性质可知C 错;当01a <<时,函数()(0)af x x x =>单调递增,函数()log a g x x =单调递减,且过点(1,0),排除A ,又由幂函数的图象性质可知C 错,因此选D . 18.函数212()log (4)f x x 的单调递增区间是A .(0,)B .(,0)C .(2,) D .(),2D 【解析】240x,解得2x或2x .由复合函数的单调性知()f x 的单调递增区间为(,2)-∞-.19.设357log 6,log 10,log 14a b c ===,则A .c b a >>B .b c a >>C .a c b >>D .a b c >> D 【解析】33log 61log 2,a ==+5577log 101log 2,log 141log 2b c ==+==+,由下图可知D 正确解法二 3321log 61log 21log 3a ==+=+,5521log 101log 21log 5b ==+=+, 7721log 141log 21log 7c ==+=+,由222log 3log 5log 7<<,可得答案D 正确. 20.设0.60.332,log 0.6,log 0.6a b c ===,则有( )A .c b a <<B .a b c <<C .b c a <<D .c a b << A 【解析】因为0.60.332,log 0.61,log 0.0601a b c=<=><=<,所以c b a <<二、填空题21.(2018江苏)函数()f x =的定义域为 .[2,)+∞【解析】要使函数()f x 有意义,则2log 10x -≥,即2x ≥,则函数()f x 的定义域是[2,)+∞.22.(2018上海)已知11{2,1,,,1,2,3}22α∈---,若幂函数()α=f x x 为奇函数,且在(0,)+∞上递减,则α=_____.1-【解析】由题意()f x 为奇函数,所以α只能取1,1,3-,又()f x 在(0,)+∞上递减,所以1α=-.23.(2018上海)已知常数0a >,函数2()(2)x x f x ax =+的图像经过点6()5P p ,、1()5Q q -,,若236p qpq +=,则a =__________.6a =【解析】由题意2625=+p pap ,2125=-+q q aq ,上面两式相加, 得22122+=++p qpq ap aq,所以22+=p q a pq ,所以236=a , 因为0>a ,所以6=a .24.已知1a b >>,若5log log 2a b b a +=,b aa b =,则a = ,b = . 4 2【解析】设log b a t =,则1t >,因为21522t t a b t+=⇒=⇒=,因此22222, 4.b a b b a b b b b b b a =⇒=⇒=⇒==25.不等式224x x-<的解集为_______.(1,2)-【解析】由题意得:2212x x x -<⇒-<<,解集为(1,2)-.26.若4log 3a =,则22aa-+=_______.3log 4=a ,∴3234=⇒=a a ,∴33431322=+=+-a a . 27.设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是__.(,8]-∞【解析】当1x <时,由12x e -≤得1ln 2x +≤,∴1x <;当1x ≥时,由132x ≤得8x ≤,∴18x ≤≤,综上8x ≤. 28.函数2()lg f x x =的单调递减区间是________.(,0)-∞【解析】22lg ,0()lg 2lg ||2lg(),0x x f x x x x x >⎧===⎨-<⎩,知单调递减区间是(,0)-∞. 29.函数2()log )f x x =的最小值为_________.14-【解析】()222221()log (22log )log log 2f x x x x x =⋅+=+ 22111(log )244x =+--≥.当且仅当21log 2x =-,即2x =时等号成立. 30.若函数()(0,1)x f x a a a =>≠在[1,2]-上的最大值为4,最小值为m ,且函数()(14g x m =-在[0,)+∞上是增函数,则a =____.14【解析】 当1a >时,有214,a a m -==,此时12,2a m ==,此时()g x =不合题意.若01a <<,则124,a a m -==,故11,416a m ==,检验知符合题意.专题02 函数 函数与方程一、选择题1.(2018全国卷Ⅰ)已知函数0()ln 0⎧=⎨>⎩,≤,,,x e x f x x x ()()=++g x f x x a .若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞C 【解析】函数()()=++g x f x x a 存在 2个零点,即关于x 的方程()=--f x x a 有2 个不同的实根,即函数()f x 的图象与直线=--y x a 有2个交点,作出直线=--y x a 与函数()f x 的图象,如图所示,由图可知,1-≤a ,解得1≥a ,故选C . 2.(2017新课标Ⅲ)已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .1 C 【解析】令()0f x =,则方程112()2x x a ee x x --++=-+有唯一解,设2()2h x x x =-+,11()x x g x e e --+=+,则()h x 与()g x 有唯一交点,又11111()2x x x x g x ee e e--+--=+=+≥,当且仅当1x =时取得最小值2.而2()(1)11h x x =--+≤,此时1x =时取得最大值1,()()ag x h x =有唯一的交点,则12a =.选C . 3.(2017山东)已知当[0,1]x ∈时,函数2(1)y mx =-的图象与y m =的图象有且只有一个交点,则正实数m 的取值范围是 A .(])0,123,⎡+∞⎣B .(][)0,13,+∞ C.()23,⎡+∞⎣D .([)3,+∞B 【解析】当01m <≤时,11m≥,函数2()(1)y f x mx ==-,在[0,1]上单调递减,函数()y g x m ==,在[0,1]上单调递增,因为(0)1f =,(0)g m =,2(1)(1)f m =-,(1)1g m =+,所以(0)(0)f g >,(1)(1)f g <,此时()f x 与()g x 在[0,1]x ∈有一个交点;当1m >时,101m<<,函数2()(1)y f x mx ==-,在 1[0,]m 上单调递减,在1[,1]m 上单调递增,此时(0)(0)f g <,在1[0,]m无交点, 要使两个函数的图象有一个交点,需(1)(1)f g ≥,即2(1)1m m -+≥,解得3m ≥. 选B .4.已知函数()f x =2(4,0,log (1)13,03)a x a x a x x x ⎧+<⎨++≥-+⎩(0a >,且1a ≠)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是 A .(0,23] B .[23,34] C .[13,23]{34} D .[13,23){34}C 【解析】当0x <时,()f x 单调递减,必须满足4302a --,故304a <,此时函数()f x 在[0,)+∞上单调递减,若()f x 在R 上单调递减,还需31a,即13a ,所以1334a.当0x 时,函数|()|y f x =的图象和直线2y x =-只有一个公共点,即当0x 时,方程|()|2f x x =-只有一个实数解.因此,只需当0x <时,方程|()|2f x x =-只有一个实数解,根据已知条件可得,当0x <时,方程2(43)x a x +-+ 32a x =-,即22(21)320x a x a +-+-=在(,0)-∞上恰有唯一的实数解.判别式24(21)4(32)4(1)(43)a a a a ∆=---=--,当34a =时,0∆=,此时12x =-满足题意;令2()2(21)32h x x a x a =+-+-,由题意得(0)0h <,即320a -<,即23a <时,方程22(21)320x a x a +-+-=有一个正根、一个负根,满足要求;当(0)0h =,即23a =时,方程22(21)320x a x a +-+-=有一个为0、一个根为23-,满足要求;当(0)0h >,即320a ->,即2334a <<时对称轴(21)0a --<,此时方程22(21)320x a x a +-+-=有两个负根,不满足要求;综上实数a 的取值范围是123[,]{}334. 5.下列函数中,既是偶函数又存在零点的是A .y cos x =B .y sin x =C .y ln x =D .21y x =+ A 【解析】cos yx 是偶函数且有无数多个零点,sin y x 为奇函数,ln y x 既不是奇函数又不是偶函数,21yx 是偶函数但没有零点.故选A .6.若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于 A .6 B .7 C .8 D .9D 【解析】由韦达定理得a b p +=,a b q ⋅=,则0,0a b >>,当,,2a b -适当排序后成等比数列时,2-必为等比中项,故4a b q ⋅==,4b a=.当适当排序后成等差数列时,2-必不是等差中项,当a 是等差中项时,422a a=-,解得1a =,4b =;当4a 是等差中项时,82a a=-,解得4a =,1b =,综上所述,5a b p +==, 所以p q +9=,选D .7.已知函数()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中 b R ∈ ,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是 A .7(,)4+∞ B .7(,)4-∞ C .7(0,)4 D .7(,2)4D 【解析】由()()22,2,2,2,x x f x x x -≤⎧⎪=⎨->⎪⎩得222,0(2),0x x f x x x --≥⎧⎪-=⎨<⎪⎩, 所以222,0()(2)42,0222(2),2x x x y f x f x x x x x x x ⎧-+<⎪=+-=---≤≤⎨⎪--+->⎩, 即222,0()(2)2,0258,2x x x y f x f x x x x x ⎧++<⎪=+-=≤≤⎨⎪-+>⎩, ()()()(2)y f x g x f x f x b =-=+--,所以()()y f x g x =-恰有4个零点等价于方程()(2)0f x f x b +--=有4个不同的解,即函数y b =与函数()(2)y f x f x =+-的图象的4个公共点,由图象可知724b <<.8.对二次函数2()f x ax bx c =++(a 为非零整数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是A .-1是()f x 的零点B .1是()f x 的极值点C .3是()f x 的极值D .点(2,8)在曲线()y f x =上 A 【解析】由A 知0a b c -+=;由B 知()2f x ax b '=+,20a b +=;由C 知()2f x ax b '=+,令()0f x '=可得2b x a =-,则()32bf a-=,则2434ac b a -=;由D 知428a b c ++=,假设A 选项错误,则2020434428a b c a b ac b a a b c -+≠⎧⎪+=⎪⎪⎨-=⎪⎪++=⎪⎩,得5108a b c =⎧⎪=-⎨⎪=⎩,满足题意,故A 结论错误,同理易知当B 或C 或D 选项错误时不符合题意,故选A . 9.已知函数()12+-=x x f ,()kx x g =.若方程()()f x g x =有两个不相等的实根,则实数k 的取值范围是A .),(210B .),(121C .),(21D .),(∞+2B 【解析】如图所示,方程()()f x g x =有两个不相等的实根等价于两个函数的图象有两个不同的交点,结合图象可知,当直线y kx =的斜率大于坐标原点与点(2,1)的连续的斜率,且小于直线1y x =-的斜率时符合题意,故选112k <<.10.已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是 A .()0,1 B .()1,2 C .()2,4 D .()4,+∞ C 【解析】∵2(1)6log 160f =-=>,2(2)3log 220f =-=>,231(4)log 4022f =-=-<,∴()f x 零点的区间是()2,4. 11.已知函数13,(1,0]()1,(0,1]x f x x x x ⎧-∈-⎪=+⎨⎪∈⎩, 且()()g x f x mx m =--在(1,1]-内有且仅有两个不同的零点,则实数m 的取值范围是A .]21,0(]2,49(⋃--B .]21,0(]2,411(⋃-- C .]32,0(]2,49(⋃-- D .]32,0(]2,411(⋃--A 【解析】()()g x f x mx m =--在(1,1]-内有且仅有两个不同的零点就是函数()y f x=的图象与函数(1)y m x=+的图象有两个交点,在同一直角坐标系内作出函数13,(1,0]()1,(0,1]xf x xx x⎧-∈-⎪=+⎨⎪∈⎩,和函数(1)y m x=+的图象,如图,当直线(1)y m x=+与13,(1,0]1y xx=-∈-+和,(0,1]y x x=∈都相交时12m<≤;当直线(1)y m x=+与13,(1,0]1y xx=-∈-+有两个交点时,由(1)131y m xyx=+⎧⎪⎨=-⎪+⎩,消元得13(1)1m xx-=++,即2(1)3(1)10m x x+++-=,化简得2(23)20mx m x m++++=,当940m∆=+=,即94m=-时直线(1)y m x=+与13,(1,0]1y xx=-∈-+相切,当直线(1)y m x=+过点(0,2)-时,2m=-,所以9(,2]4m∈--,综上实数m的取值范围是91(,2](0,]42--⋃.12.已知()f x是定义在R上的奇函数,当0x≥时,2()=3f x x x-.则函数()()+3g x f x x=-的零点的集合为A.{1,3}B.{3,1,1,3}--C.{273}-D.{271,3}--D【解析】当0x≥时,函数()g x的零点即方程()3f x x=-的根,由233x x x-=-,解得1x=或3;当0x<时,由()f x是奇函数得2()()3()f x f x x x-=-=--,即()f x=23x x--,由()3f x x=-得27x=--.13.已知函数32()f x x ax bx c=+++有两个极值点12,x x,若112()f x x x=<,则关于x的方程23(())2()0f x af x b++=的不同实根个数为A.3 B.4 C.5 D.6A【解析】2'()32f x x ax b=++,12,x x是方程2320x ax b++=的两根,由23(())2()0f x af x b++=,则又两个()f x使得等式成立,11()x f x =,211()x x f x >=,其函数图象如下:21)=x 1如图则有3个交点,故选A.14.若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别位于区间A .(),a b 和(),b c 内B .(),a -∞和(),a b 内C .(),b c 和(),c +∞内D .(),a -∞和(),c +∞内A 【解析】由a b c <<,可得()()()0f a a b a c =-->,()()()0f b b c b a =--<,()()()0f c c a c b =-->.显然()()0f a f b ⋅<,()()0f b f c ⋅<,所以该函数在(,)a b 和(,)b c 上均有零点,故选A .15.函数()2ln f x x =的图像与函数()245g x x x =-+的图象的交点个数为A .3B .2C .1D .0B 【解析】二次函数()245g x x x =-+的图像开口向上,在x 轴上方,对称轴为2x =,(2)1g =; (2)2ln 2ln 41f ==>.所以(2)(2)g f <,从图像上可知交点个数为2.16.函数0.5()2|log |1x f x x =-的零点个数为A .1B .2C .3D .4B 【解析】令()0f x =,可得0.51log 2x x =,由图象法可知()f x 有两个零点. 17.函数121()()2xf x x =-的零点个数为A .0B .1C .2D .3B 【解析】因为()f x 在[0,)+∞内单调递增,又1(0)10,(1)02f f =-<=>, 所以()f x 在[0,)+∞内存在唯一的零点. 18.函数2()cos f x x x =在区间[0,4]上的零点个数为A .4B .5C .6D .7 C 【解析】0)(=x f ,则0=x 或0cos 2=x ,Z k k x ∈+=,22ππ,又[]4,0∈x ,4,3,2,1,0=k 所以共有6个解.选C .19.设函数)(x f ()x R ∈满足()()f x f x -=,()(2)f x f x =-,且当[]0,1x ∈时,()3=f x x .又函数()()=cos g x x x π,则函数()()()h x g x f x =-在13[,]22-上的零点个数为A .5B .6C .7D .8B 【解析】由题意()()f x f x -=知,所以函数()f x 为偶函数,所以()(2)(2)f x f x f x =-=-,所以函数()f x 为周期为2的周期函数,且(0)0f =,(1)1f =,而()|cos()|g x x x π=为偶函数,且113(0)()()()0222g g g g ==-==,在同一坐标系下作出两函数在13[,]22-上的图像,发现在13[,]22-内图像共有6个公共点,则函数()()()h x g x f x =-在13[,]22-上的零点个数为6,故选B .20.对实数a 与b ,定义新运算“⊗”:,1,, 1.a a b a b b a b -≤⎧⊗=⎨->⎩设函数()()22()2,.f x x x x x R =-⊗-∈若函数()y f x c =-的图像与x 轴恰有两个公共点,则实数c 的取值范围是 A .(]3,21,2⎛⎫-∞-⋃- ⎪⎝⎭ B .(]3,21,4⎛⎫-∞-⋃-- ⎪⎝⎭C .11,,44⎛⎫⎛⎫-∞⋃+∞ ⎪⎪⎝⎭⎝⎭ D .311,,44⎛⎫⎡⎫--⋃+∞ ⎪⎪⎢⎝⎭⎣⎭B 【解析】由题意知,若222()1x x x ---≤,即312x -≤≤时,2()2f x x =-;当222()1x x x --->,即1x <-或32x >时,2()f x x x =-,要使函数()y f x c =-的图像与x 轴恰有两个公共点,只须方程()0f x c -=有两个不相等的实数根即可,即函数()y f x =的图像与直线y c =有两个不同的交点即可,画出函数()y f x =的图像与直线y c =,不难得出答案B . 二、填空题21.(2018全国卷Ⅲ)函数()cos(3)6f x x π=+在[0,]π的零点个数为________.3【解析】由题意知,cos(3)06x π+=,所以362x k πππ+=+,k ∈Z ,所以93k x ππ=+,k ∈Z ,当0k =时,9x π=;当1k =时,49x π=;当2k =时,79x π=,均满足题意,所以函数()f x 在[0,]π的零点个数为3.22.(2018天津)已知0a >,函数222,0,()22,0.x ax a x f x x ax a x ⎧++=⎨-+->⎩≤若关于x 的方程()f x ax=恰有2个互异的实数解,则a 的取值范围是 .(48),【解析】当0x ≤时,由22x ax a ax ++=,得2a x ax =--;当0x >时,由222x ax a ax -+-=,得22a x ax =-+.令22,0(),0x ax x g x x ax x ⎧--=⎨-+>⎩≤,作出直线y a =,2y a =,函数()g x 的图象如图所示,()g x 的最大值为222424a a a -+=,由图象可知,若()f x ax =恰有2个互异的实数解,则224a a a <<,得48a <<. 23.(2018江苏)若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 .3-【解析】2()622(3)f x x ax x x a '=-=-(a ∈R ),当0a ≤时()0f x '>在(0,)+∞ 上恒成立,则()f x 在(0,)+∞上单调递增,又(0)1f =,所以此时()f x 在(0,)+∞内无零点,不满足题意.当0a >时,由()0f x '>得3a x >,由()0f x '<得03a x <<,则()f x 在(0,)3a 上单调递减,在(,)3a+∞上单调递增,又()f x 在(0,)+∞内有且只有一个零点,所以3()10327a a f =-+=,得3a =,所以32()231f x x x =-+, 则()6(1)f x x x '=-,当(1,0)x ∈-时,()0f x '>,()f x 单调递增,当(0,1)x ∈时,()0f x '<,()f x 单调递减,则max ()(0)1f x f ==,(1)4f -=-,(1)0f =,则min ()4f x =-,所以()f x 在[1,1]-上的最大值与最小值的和为3-.24.(2018浙江)已知λ∈R ,函数24,()43,x x f x x x x λλ-⎧=⎨-+<⎩≥,当2λ=时,不等式()0f x <的解集是_____.若函数()f x 恰有2个零点,则λ的取值范围是______.(1,4);(1,3](4,)+∞【解析】若2λ=,则当2x ≥时,令40x -<,得24x <≤;当2x <时,令2430x x -+<,得12x <<.综上可知14x <<,所以不等式()0f x <的解集为(1,4).令40x -=,解得4x =;令2430x x -+=,解得1x =或3x =.因为函数()f x 恰有2个零点,结合函数的图象(图略)可知13λ<≤或4λ>. 25.(2018浙江)我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为x ,y ,z ,则1001531003x y z x y z ++=⎧⎪⎨++=⎪⎩,当81z =时,x = ,y = .8;11【解析】因为81z =,所以195373x y x y +=⎧⎨+=⎩,解得811x y =⎧⎨=⎩.26.(2017江苏)设()f x 是定义在R 且周期为1的函数,在区间[0,1)上,2,(),x x Df x x x D⎧∈=⎨∉⎩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

限时规范训练六 导数的简单应用
限时45分钟,实际用时
分值81分,实际得分
一、选择题(本题共6小题,每小题5分,共30分)
1.设函数f (x )=x 2
4-a ln x ,若f ′(2)=3,则实数a 的值为( )
A .4
B .-4
C .2
D .-2
解析:选B.f ′(x )=x 2-a x ,故f ′(2)=22-a
2
=3,因此a =-4.
2.曲线y =e x
在点A 处的切线与直线x -y +3=0平行,则点A 的坐标为( ) A .(-1,e -1
) B .(0,1) C .(1,e)
D .(0,2)
解析:选B.设A (x 0,e x 0
),y ′=e x
,∴y ′|
x =x 0
=e x 0
.由导数的几何意义可知切线的斜率k
=e x 0
.
由切线与直线x -y +3=0平行可得切线的斜率k =1. ∴e x 0
=1,∴x 0=0,∴A (0,1).故选B.
3.若函数f (x )=x 3
-2cx 2
+x 有极值点,则实数c 的取值范围为 ( ) A.⎣⎢⎡⎭⎪⎫
32,+∞ B.⎝
⎛⎭⎪⎫
32,+∞ C.⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞ D.⎝
⎛⎭⎪⎫-∞,-
32∪⎝ ⎛⎭
⎪⎫32,+∞ 解析:选D.若函数f (x )=x 3
-2cx 2
+x 有极值点,则f ′(x )=3x 2
-4cx +1=0有两根,故Δ=(-4c )2
-12>0,从而c >
32或c <-3
2
. 4.已知f (x )=a ln x +12x 2(a >0),若对任意两个不等的正实数x 1,x 2都有
f x 1 -f x 2
x 1-x 2
≥2恒成立,则实数a 的取值范围是( )
A .[1,+∞)
B .(1,+∞)
C .(0,1)
D .(0,1]
解析:选A.由条件可知在定义域上函数图象的切线斜率大于等于2,所以函数的导数f ′(x )
=a x
+x ≥2.可得x =a 时,f ′(x )有最小值2.∴a ≥1.
5.若定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )
A .f ⎝ ⎛⎭⎪⎫1k
<1k
B .f ⎝ ⎛⎭⎪⎫1k >1k -1
C .f ⎝
⎛⎭⎪
⎫1k -1<1k -1
D .f ⎝
⎛⎭⎪
⎫1k -1>k k -1
解析:选C.构造函数g (x )=f (x )-kx +1,
则g ′(x )=f ′(x )-k >0,∴g (x )在R 上为增函数. ∵k >1,∴
1k -1>0,则g ⎝ ⎛⎭
⎪⎫1k -1>g (0). 而g (0)=f (0)+1=0, ∴g ⎝
⎛⎭⎪⎫1k -1=f ⎝ ⎛⎭⎪
⎫1k -1-k k -1+1>0,
即f ⎝
⎛⎭⎪⎫1k -1>k k -1
-1=1k -1,
所以选项C 错误,故选C.
6.由曲线y =x 2
,y =x 围成的封闭图形的面积为( ) A.1
6 B.13 C.23
D .1
解析:选 B.由题意可知所求面积(如图中阴影部分的面积)为⎠⎛0
1(x -x 2
)d x =

⎛⎪
⎪⎪

⎪⎪⎫23x 32-13x 310
=1
3.所以选
B.
二、填空题(本题共3小题,每小题5分,共15分)
7.(2016·高考全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.
解析:直线y =kx +b 与曲线y =ln x +2,y =ln(x +1)均相切,设切点分别为A (x 1,y 1),
B (x 2,y 2),由y =ln x +2得y ′=1x ,由y =ln(x +1)得y ′=1x +1,∴k =1x 1=1
x 2+1

∴x 1=1k ,x 2=1
k
-1,∴y 1=-ln k +2,y 2=-ln k .
即A ⎝ ⎛⎭
⎪⎫1k
,-ln k +2,B ⎝ ⎛⎭
⎪⎫1k
-1,-ln k ,
∵A 、B 在直线y =kx +b 上, ∴⎩⎪⎨
⎪⎧
2-ln k =k ·1
k +b ,-ln k =k ·⎝ ⎛⎭⎪⎫1k -1+b
解得⎩
⎪⎨
⎪⎧
b =1-ln 2,k =2.
答案:1-ln 2
8.已知函数f (x )=-12x 2
-3x +4ln x 在(t ,t +1)上不单调,则实数t 的取值范围是________.
解析:由题意得,f (x )的定义域为(0,+∞),∴t >0, ∴f ′(x )=-x -3+4
x
=0在(t ,t +1)上有解,
∴x 2+3x -4
x
=0在(t ,t +1)上有解,
∴x 2
+3x -4=0在(t ,t +1)上有解,由x 2
+3x -4=0得x =1或x =-4(舍去),∴1∈(t ,
t +1),∴t ∈(0,1),故实数t 的取值范围是(0,1).
答案:(0,1)
9.若f (x )=-12x 2
+b ln(x +2)在(-1,+∞)上是减函数,则实数b 的最大值是________.
解析:函数的定义域是x +2>0,即x >-2,而f ′(x )=-x +b
x +2=-x 2
-2x +b
x +2.因为x
+2>0,函数f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,即-x 2
-2x +b ≤0在x ∈(-1,
+∞)上恒成立,得b ≤x 2
+2x 在x ∈(-1,+∞)上恒成立,令g (x )=x 2
+2x =(x +1)2
-1,x ∈(-1,+∞),g (x )>g (-1)=-1,所以b ≤-1.所以b 的最大值为-1.
答案:-1
三、解答题(本题共3小题,每小题12分,共36分) 10.已知f (x )=2x +3-ln 2x +1
2x +1.
(1)求证:当x =0时,f (x )取得极小值;
(2)是否存在满足n >m ≥0的实数m ,n ,当x ∈[m ,n ]时,f (x )的值域为[m ,n ]?若存在,
求m ,n 的值;若不存在,请说明理由.
解:(1)证明:由已知得f (x )的定义域为⎝ ⎛⎭
⎪⎫-12,+∞. 当x >-12时,f ′(x )=2-2-2ln 2x +1
2x +1 2
=8x 2
+8x +2ln 2x +1
2x +1
2
. 设F (x )=8x 2
+8x +2ln(2x +1),则f ′(x )=F x 2x +1
2.
当x >-12时,y =8x 2
+8x =8⎣⎢⎡⎦⎥⎤x -⎝ ⎛⎭⎪⎫-122-2是单调递增函数,y =2ln(2x +1)也是单调递增
函数.
∴当x >-12
时,F (x )=8x 2
+8x +2ln(2x +1)单调递增.
∴当-1
2
<x <0时,F (x )<F (0)=0,当x >0时,F (x )>F (0)=0.
∴当-1
2<x <0时,f ′(x )<0,f (x )单调递减,当x >0时,f ′(x )>0,f (x )单调递增.
∴当x =0时,f (x )取得极小值.
(2)由(1)知f (x )在[0,+∞)上是单调递增函数,若存在满足n >m ≥0的实数m ,n ,当x ∈[m ,
n ]时,f (x )的值域为[m ,n ],则f (m )=m ,f (n )=n ,即f (x )=x 在[0,+∞)上有两个不等的实
根m ,n .
∴2x 2
+7x +3-ln(2x +1)=0在[0,+∞)上有两个不等的实根m ,n . 设H (x )=2x 2
+7x +3-ln(2x +1),则 H ′(x )=8x 2+18x +52x +1
.
当x >0时,2x +1>0,8x 2
+18x +5>0, ∴H ′(x )=8x 2
+18x +5
2x +1
>0.
∴H (x )在[0,+∞)上是单调递增函数,即当x ≥0时,H (x )≥H (0)=3. ∴2x 2
+7x +3-ln(2x +1)=0在[0,+∞)上没有实数根. ∴不存在满足条件的实数m ,n .
11.(2017·河南郑州质量检测)设函数f (x )=12x 2-m ln x ,g (x )=x 2
-(m +1)x .
(1)求函数f (x )的单调区间;
(2)当m ≥0时,讨论函数f (x )与g (x )图象的交点个数.。

相关文档
最新文档