高中数学第二章推理与证明习题苏教版选修2_2

合集下载

2017-2018学年高中数学选修2-2教材用书:第二章推理与证明2.1.2 演绎推理含答案

2017-2018学年高中数学选修2-2教材用书:第二章推理与证明2.1.2 演绎推理含答案

2.1。

2 演绎推理演绎推理看下面两个问题:(1)一切奇数都不能被2整除,(22 017+1)是奇数,所以(22 017+1)不能被2整除;(2)两个平面平行,则其中一个平面内的任意直线必平行于另一个平面,如果直线a是其中一个平面内的一条直线,那么a平行于另一个平面.问题1:这两个问题中的第一句都说的什么?提示:都说的一般原理.问题2:第二句又都说的什么?提示:都说的特殊示例.问题3:第三句呢?提示:由一般原理对特殊示例做出判断.1.演绎推理的概念从一般性的原理出发,推出某个特殊情况下的结论的推理称为演绎推理.2.三段论“三段论”是演绎推理的一般模式,包括:(1)大前提—-已知的一般原理;(2)小前提——所研究的特殊情况;(3)结论——根据一般原理,对特殊情况做出的判断.“三段论"可以表示为:大前提:M是P。

小前提:S是M。

结论:S是P。

演绎推理的三个特点(1)演绎推理的前提是一般性原理,演绎推理所得的结论是蕴含于前提之中的个别、特殊事实,结论完全蕴含于前提之中.(2)在演绎推理中,前提与结论之间存在必然的联系,只要前提是真实的,推理的形式是正确的,那么结论也必定是正确的.因而演绎推理是数学中严格证明的工具.(3)演绎推理是由一般到特殊的推理.把演绎推理写成三段论的形式将下列演绎推理写成三段论的形式.(1)一切奇数都不能被2整除,75不能被2整除,所以75是奇数.(2)三角形的内角和为180°,Rt△ABC的内角和为180°。

(3)菱形对角线互相平分.(4)通项公式为a n=3n+2(n≥2)的数列{a n}为等差数列.(1)一切奇数都不能被2整除.(大前提)75不能被2整除.(小前提)75是奇数.(结论)(2)三角形的内角和为180°。

(大前提)Rt△ABC是三角形.(小前提)Rt△ABC的内角和为180°。

(结论)(3)平行四边形对角线互相平分.(大前提)菱形是平行四边形.(小前提)菱形对角线互相平分.(结论)(4)数列{a n}中,如果当n≥2时,a n-a n-1为常数,则{a n}为等差数列.(大前提)通项公式a n=3n+2,n≥2时,a n-a n-1=3n+2-=3(常数).(小前提)通项公式为a n=3n+2(n≥2)的数列{a n}为等差数列.(结论)三段论的推理形式三段论推理是演绎推理的主要模式,推理形式为“如果b⇒c,a⇒b,则a⇒c”.其中,b⇒c为大前提,提供了已知的一般性原理;a⇒b为小前提,提供了一个特殊情况;a⇒c为大前提和小前提联合产生的逻辑结果.把下列推断写成三段论的形式:(1)y=sin x(x∈R)是周期函数.(2)若两个角是对顶角,则这两个角相等,所以若∠1和∠2是对顶角,则∠1和∠2相等.解:(1)三角函数是周期函数,大前提y=sin x(x∈R)是三角函数,小前提y=sin x(x∈R)是周期函数.结论(2)两个角是对顶角,则这两个角相等,大前提∠1和∠2是对顶角,小前提∠1和∠2相等.结论三段论在证明几何问题中的应用用三段论证明并指出每一步推理的大、小前提.如右图,在锐角△ABC中,AD,BE是高,D,E为垂足,M 为AB的中点.求证:ME=MD.∵有一个内角为直角的三角形为直角三角形,……大前提在△ABD中,AD⊥CB,∠ADB=90°,………………………………小前提∴△ABD为直角三角形.………………………………………………结论同理△ABE也为直角三角形.∵直角三角形斜边上的中线等于斜边的一半,………………大前提M是直角△ABD斜边AB上的中点,DM为中线,………………………………小前提∴DM=1 2AB。

新课程标准数学选修2-2第二章课后习题解答[唐金制]

新课程标准数学选修2-2第二章课后习题解答[唐金制]

新课程标准数学选修2—2第二章课后习题解答第二章 推理与证明2.1合情推理与演绎推理 练习(P77)1、由12341a a a a ====,猜想1n a =.2、相邻两行数之间的关系是:每一行首尾的数都是1,其他的数都等于上一行中与之相邻的两个数的和.3、设111O P Q R V -和222O P QR V -分别是四面体111O P Q R -和222O P Q R -的体积,则111222111222O P Q R O P Q R V OP OQ OR V OP OQ OR --=⋅⋅. 练习(P81) 1、略.2、因为通项公式为n a 的数列{}n a ,若1n na p a +=,其中p 是非零常数,则{}n a 是等比数列; ……………………大前提又因为0cq ≠,则0q ≠,则11n n nna cqq a cq++==; ……………………………小前提所以,通项公式为(0)n n a cq cq =≠的数列{}n a 是等比数列. ……………………结论 3、由AD BD >,得到A C D B C D ∠>∠的推理是错误的. 因为这个推理的大前提是“在同一个三角形中,大边对大角”,小前提是“AD BD >”,而A D 与B D 不在同一个三角形中. 习题2.1 A 组(P83) 1、21n a n =+()n N *∈.2、2F V E +=+.3、当6n ≤时,122(1)n n -<+;当7n =时,122(1)n n -=+;当8n =时,122(1)n n ->+()n N *∈.4、212111(2)nnA A A n π++≥-(2n >,且n N *∈).5、121217n n b b b b b b -= (17n <,且n N *∈).6、如图,作D E ∥A B 交B C 于E .因为两组对边分别平行的四边形是平行四边形, 又因为A D ∥B E ,A B ∥D E . 所以四边形A B E D 是平行四边形. 因为平行四边形的对边相等.又因为四边形A B E D 是平行四边形. 所以AB D E =.(第6题)因为与同一条线段等长的两条线段的长度相等,又因为AB D E =,A B D C =, 所以D E D C = 因为等腰三角形的两底角是相等的.又因为△D E C 是等腰三角形, 所以D EC C ∠=∠ 因为平行线的同位角相等又因为D E C ∠与B ∠是平行线A B 和D E 的同位角, 所以D E C B ∠=∠ 因为等于同角的两个角是相等的,又因为D EC C ∠=∠,D E C B ∠=∠, 所以B C ∠=∠ 习题2.1 B 组(P84) 1、由123S =-,234S =-,345S =-,456S =-,567S =-,猜想12n n S n +=-+.2、略.3、略. 2.2直接证明与间接证明 练习(P89)1、因为442222cos sin (cos sin )(cos sin )cos 2θθθθθθθ-=+-=,所以,命题得证.2、要证>22>,即证1313+>+>,只需要22>,即证4240>,这是显然成立的. 所以,命题得证. 3、因为 222222222()()()(2sin )(2tan )16sin tan a b a b a b αααα-=-+==, 又因为 sin (1cos )sin (1cos )1616(tan sin )(tan sin )16cos cos ab αααααααααα+-=+-=⋅22222222sin (1cos )sin sin 161616sin tan cos cos αααααααα-===,从而222()16a b ab -=,所以,命题成立.说明:进一步熟悉运用综合法、分析法证明数学命题的思考过程与特点.练习(P91)1、假设B ∠不是锐角,则90B ∠≥︒. 因此9090180C B ∠+∠≥︒+︒=︒. 这与三角形的内角和等于180°矛盾.所以,假设不成立. 从而,B ∠一定是锐角.2、假设=所以22=,化简得5=,从而225=,即2540=, 这是不可能的. 所以,假设不成立.从而,.说明:进一步熟悉运用反证法证明数学命题的思考过程与特点. 习题2.2 A 组(P91)1、由于0a ≠,因此方程至少有一个跟b x a=.假设方程不止一个根,则至少有两个根,不妨设12,x x 是它的两个不同的根,则 1ax b = ①2ax b = ②①-②得12()0a x x -=因为12x x ≠,所以120x x -≠,从而0a =,这与已知条件矛盾,故假设不成立. 2、因为 (1tan )(1tan )2A B ++=展开得 1tan tan tan tan 2A B A B +++=,即tan tan 1tan tan A B A B +=-. ① 假设1tan tan 0A B -=,则cos cos sin sin 0cos cos A B A BA B-=,即cos()0cos cos A B A B+=所以cos()0A B +=.因为A ,B 都是锐角,所以0A B π<+<,从而2A B π+=,与已知矛盾.因此1tan tan 0A B -≠. ①式变形得tan tan 11tan tan A B A B+=-, 即tan()1A B +=. 又因为0A B π<+<,所以4A B π+=.说明:本题也可以把综合法和分析法综合使用完成证明. 3、因为1tan 12tan αα-=+,所以12tan 0α+=,从而2sin cos 0αα+=.另一方面,要证 3sin 24cos 2αα=-,只要证226sin cos 4(cos sin )αααα=-- 即证 222sin 3sin cos 2cos 0αααα--=, 即证 (2s i n c o s)(s i n2c oαααα+-= 由2sin cos 0αα+=可得,(2sin cos )(sin 2cos )0αααα+-=,于是命题得证.说明:本题可以单独使用综合法或分析法进行证明,但把综合法和分析法结合使用进行证明的思路更清晰.4、因为,,a b c 的倒数成等差数列,所以211b a c=+.假设2B π<不成立,即2B π≥,则B 是A B C ∆的最大内角,所以,b a b c >>(在三角形中,大角对大边),从而11112acbbb+>+=. 这与211bac=+矛盾.所以,假设不成立,因此,2B π<.习题2.2 B 组(P91)1、要证2s a <,由于22s ab <,所以只需要2ss b<,即证b s <.因为1()2s a b c =++,所以只需要2b a b c <++,即证b a c <+.由于,,a b c 为一个三角形的三条边,所以上式成立. 于是原命题成立. 2、由已知条件得 2b ac = ① 2x a b =+,2y b c =+ ② 要证2a c x y+=,只要证2ay cx xy +=,只要证224ay cx xy +=由①②,得 22()()2ay cx a b c c a b ab ac bc +=+++=++, 24()()2xy a b b c ab b ac bc ab ac bc =++=+++=++, 所以,224ay cx xy +=,于是命题得证. 3、由 tan()2tan αβα+= 得sin()2sin cos()cos αβααβα+=+,即sin()cos 2cos()sin αβααβα+=+. ……①要证 3sin sin(2)βαβ=+即证 3sin[()]sin[()]αβααβα+-=++即证 3[sin()cos cos()sin ]sin()cos cos()sin αβααβααβααβα+-+=+++ 化简得sin()cos 2cos()sin αβααβα+=+,这就是①式.所以,命题成立.说明:用综合法和分析法证明命题时,经常需要把两者结合起来使用. 2.3数学归纳法 练习(P95)1、先证明:首项是1a ,公差是d 的等差数列的通项公式是1(1)n a a n d =+-. (1)当1n =时,左边=1a ,右边=11(11)a d a +-=,因此,左边=右边. 所以,当1n =时命题成立. (2)假设当n k =时,命题成立,即1(1)k a a k d =+-. 那么,11(1)[(1)1]k k k a a d a k d d a k d +=+=+-+=++-. 所以,当1n k =+时,命题也成立.根据(1)和(2),可知命题对任何n N *∈都成立. 再证明:该数列的前n 项和的公式是1(1)2n n n S na d -=+. (1)当1n =时,左边=11S a =,右边=111(11)12a d a ⨯-⨯+=,因此,左边=右边. 所以,当1n =时命题成立. (2)假设当n k =时,命题成立,即1(1)2k k k S ka d -=+.那么,1111(1)[(1)1]2k k k k k S S a ka d a k d ++-=+=++++-1(1)(1)[1]2k k a k d -=+++1(1)(1)2k kk a d +=++所以,当1n k =+时,命题也成立.根据(1)和(2),可知命题对任何n N *∈都成立. 2、略.习题2.3 A 组(P96) 1、(1)略.(2)证明:①当1n =时,左边=1,右边=211=,因此,左边=右边. 所以,当1n =时,等式成立.②假设当n k =时等式成立,即2135(21)k k ++++-= . 那么,22135(21)(21)(21)(1)k k k k k ++++-++=++=+ . 所以,当1n k =+时,等式也成立. 根据①和②,可知等式对任何n N *∈都成立.(3)略. 2、1111122S ==-⨯,2111111(1)()112232233S =+=-+-=-⨯⨯,3111111111(1)()()1122334223344S =++=-+-+-=-⨯⨯⨯. 由此猜想:111n S n =-+.下面我们用数学归纳法证明这个猜想. (1)当1n =时,左边=111111222S ==-=⨯,右边=11111122n -=-=+,因此,左边=右边. 所以,当1n =时,猜想成立. (2)假设当n k =时,猜想成立,即111111122334(1)1k k k ++++=-⨯⨯⨯++ .那么,11111111122334(1)(1)(2)1(1)(2)k k k k k k k +++++=-+⨯⨯⨯++++++ .111(1)12k k =--++121111122k k k k +-=-⋅=-+++ 所以,当1n k =+时,猜想也成立.根据(1)和(2),可知猜想对任何n N *∈都成立. 习题2.3 B 组(P96)1、略2、证明:(1)当1n =时,左边=111⨯=,右边=11(11)(12)16⨯⨯+⨯+=,因此,左边=右边. 所以,当1n =时,等式成立.(2)假设当n k =时,等式成立,即112(1)3(2)1(1)(2)6k k k k k k k ⨯+⨯-+⨯-++⨯=++ .那么,1(1)2[(1)1]3[(1)2](1)1k k k k ⨯++⨯+-+⨯+-+++⨯ .[12(1)3(2)1][123(1)]k k k k k =⨯+⨯-+⨯-++⨯++++++ 11(1)(2)(1)(2)62k k k k k =+++++1(1)(2)(3)6k k k =+++所以,当1n k =+时,等式也成立.根据(1)和(2),可知等式对任何n N *∈都成立.第二章 复习参考题A 组(P98)1、图略,共有(1)1n n -+(n N *∈)个圆圈.2、333n个(n N *∈).3、因为2(2)(1)4f f ==,所以(1)2f =,(3)(2)(1)8f f f ==,(4)(3)(1)16f f f ==…… 猜想()2n f n =.4、运算的结果总等于1.5、如图,设O 是四面体A B C D -内任意一点,连结A O ,B O ,C O ,D O 并延长交对面于A ',B ',C ',D ',则1O A O B O C O D A A B B C C D D ''''+++=''''用“体积法”证明: O A O B O C O D A A B B C C D D ''''+++''''O BC D O C D A O D AB O ABC A BC D B C D AC D ABD ABCV V V V V V V V --------=+++1A BC D A BC DV V --==6、要证 (1tan )(1tan )2A B ++=只需证 1tan tan tan tan 2A B A B +++=即证 t a n t a n 1t a n t A B A B +=- 由54A B π+=,得tan()1A B +=. ①又因为2A B k ππ+≠+,所以tan tan 11tan tan A B A B+=-,变形即得①式. 所以,命题得证.7、证明:(1)当1n =时,左边=1-,右边=1(1)11-⨯=-,因此,左边=右边. 所以,当1n =时,等式成立.(2)假设当n k =时,等式成立,即135(1)(21)(1)k k k k -+-++--=- .那么,1135(1)(21)(1)[2(1)1]k k k k +-+-++--+-+- .1(1)(1)[2(1)1]kk k k +=-+-+-1(1)[2(1)1]k k k +=--++- 1(1)(1)k k +=-+所以,当1n k =+时,等式也成立.根据(1)和(2),可知等式对任何n N *∈都成立.第二章 复习参考题B 组(P47)1、(1)25条线段,16部分; (2)2n 条线段; (3)最多将圆分割成1(1)12n n ++部分.下面用数学归纳法证明这个结论.(第5题)①当1n =时,结论成立.②假设当n k =时,结论成立,即:k 条线段,两两相交,最多将圆分割成1(1)12k k ++部分当1n k =+时,其中的k 条线段12,,,k l l l 两两相交,最多将圆分割成1(1)12k k ++部分,第1k +条线段1k a +与线段12,,,k l l l 都相交,最多增加1k +个部分,因此,1k +条线段,两两相交,最多将圆分割成11(1)1(1)(1)(2)122k k k k k ++++=+++ 部分所以,当1n k =+时,结论也成立.根据①和②,可知结论对任何n N *∈都成立. 2、要证 cos 44cos 43βα-=因为 cos 44cos 4cos(22)4cos(22)βαβα-=⨯-⨯ 2212sin 24(12sin 2)βα=--⨯-222218sin cos 4(18sin cos )ββαα=--⨯- 222218sin (1sin )4[18sin (1sin )]ββαα=---⨯-- 只需证 222218sin (1sin )4[18sin (1sin )]3ββαα---⨯--= 由已知条件,得 sin cos sin 2θθα+=,2sin sin cos βθθ=,代入上式的左端,得 222218sin (1sin )4[18sin (1sin )]ββαα---⨯-- 2238sin cos (1sin cos )32sin (1sin )θθθθαα=---+-2238sin cos 8sin cos 2(12sin cos )(32sin cos )θθθθθθθθ=--+++- 222238sin cos 8sin cos 68sin cos 8sin cos θθθθθθθθ=--++-+ 3= 因此,cos 44cos 43βα-=。

(必考题)高中数学高中数学选修2-2第一章《推理与证明》测试题(包含答案解析)(3)

(必考题)高中数学高中数学选修2-2第一章《推理与证明》测试题(包含答案解析)(3)

一、选择题1.数学归纳法证明*1111(1,)n 1n 2n 2n n N n +++>>∈+++,过程中由n k =到1n k =+时,左边增加的代数式为( )A .122k +B .121k + C .11+2122++k k D .112k 12k 2++- 2.正四面体ABCD 的棱AD 与平面α所成角为θ,其中02πθ<<,点D 在平面α内,则当四面体ABCD 转动时( )A .存在某个位置使得BC α,也存在某个位置使得BC α⊥B .存在某个位置使得BC α,但不存在某个位置使得BC α⊥ C .不存在某个位置使得BC α,但存在某个位置使得BC α⊥D .既不存在某个位置使得BC α,也不存在某个位置使得BC α⊥ 3.用反证法证明某命题时,对其结论“a ,b 都是正实数”的假设应为( ) A .a ,b 都是负实数B .a ,b 都不是正实数C .a ,b 中至少有一个不是正实数D .a ,b 中至多有一个不是正实数4.给出下面四个推理:①由“若a b 、是实数,则+≤+a b a b ”推广到复数中,则有“若12z z 、是复数,则1212z z z z +≤+”;②由“在半径为R 的圆内接矩形中,正方形的面积最大”类比推出“在半径为R 的球内接长方体中,正方体的体积最大”;③以半径R 为自变量,由“圆面积函数的导函数是圆的周长函数”类比推出“球体积函数的导函数是球的表面积函数”;④由“直角坐标系中两点11(,)A x y 、22(,)B x y 的中点坐标为1212(,)22x x y y ++”类比推出“极坐标系中两点11(,)C ρθ、22(,)D ρθ的中点坐标为1212(,)22ρρθθ++”.其中,推理得到的结论是正确的个数有( )个 A .1B .2C .3D .45.“杨辉三角形”是古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年,如图是三角形数阵,记n a 为图中第n 行各个数之和,则411a a +的值为A .528B .1032C .1040D .20646.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是( ) A .甲B .乙C .丙D .丁7.圆有6条弦,两两相交,这6条弦将圆最多分割成( )个部分 A .16 B .21 C .22 D .238.数学老师给同学们出了一道证明题,以下四人中只有一人说了真话,只有一人会证明此题,甲:我不会证明;乙:丙会证明;丙:丁会证明;丁:我不会证明.根据以上条件,可以判定会证明此题的人是( ) A .甲B .乙C .丙D .丁9.定义*A B ,*B C ,*C D ,*D A 的运算分别对应下面图中的⑴,⑵,⑶,⑷,则图中⑸,⑹对应的运算是( )A .*B D ,*A D B .*B D ,*AC C .*B C ,*AD D .*C D ,*A D10.由圆心与弦(非直径)中点的连线垂直于弦,想到球心与截面圆(不经过球心的小截面圆)圆心的连线垂直于截面,用的是( )A .类比推理B .三段论推理C .归纳推理D .传递性推理 11.根据给出的数塔猜测12345697⨯+( )19211⨯+=1293111⨯+= 123941111⨯+= 12349511111⨯+= 1234596111111⨯+=…A .1111111B .1111110C .1111112D .111111312.设十人各拿一只水桶,同到水龙头前打水,设水龙头注满第i (i =1,2,…,10)个人的水桶需T i 分钟,假设T i 各不相同,当水龙头只有一个可用时,应如何安排他(她)们的接水次序,使他(她)们的总的花费时间(包括等待时间和自己接水所花费的时间)最少( ) A .从T i 中最大的开始,按由大到小的顺序排队B .从T i 中最小的开始,按由小到大的顺序排队C .从靠近T i 平均数的一个开始,依次按取一个小的取一个大的的摆动顺序排队D .任意顺序排队接水的总时间都不变二、填空题13.观察如图等式,照此规律,第n 个等式为______.11234934567254567891049=++=++++=++++++=14.在圆中:半径为r 的圆的内接矩形中,以正方形的面积最大,最大值为22r .类比到球中:半径为R 的球的内接长方体中,以正方体的体积最大,最大值为__________. 15.某次高三英语听力考试中有5道选择题,每题1分,每道题在三个选项中只有一个是正确的.下表是甲、乙、丙三名同学每道题填涂的答案和这5道题的得分:1 2 3 4 5 得分甲 4 乙 3 丙2则甲同学答错的题目的题号是__________.16.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第个图案中有白色地面砖 块.17.在探究实系数一元二次方程的根与系数的关系时,可按下述方法进行: 设实系数一元二次方程22100a x a x a ++=……①在复数集C 内的根为1x ,2x ,则方程①可变形为()()2120a x x x x --=, 展开得()222122120a x a x x x a x x -++=.……②比较①②可以得到:11220122a x x a a x x a ⎧+=-⎪⎪⎨⎪=⎪⎩类比上述方法,设实系数一元n 次方程11100nn n n a x a xa x a --++++=(2n ≥且*N n ∈)在复数集C 内的根为1x ,2x ,…,n x ,则这n 个根的积1ni i x ==∏ __________.18.观察下列等式: (1)24sin sin 033ππ+= (2)2468sin sin sin sin 05555ππππ+++= (3)2468sinsin sin sin 7777ππππ+++1012sin sin 077ππ++= …… …… …… …… …… ……由以上规律推测,第n 个等式为:__________.19.小明在做一道数学题目时发现:若复数111cos i?sin ?,z αα=+222 cos i?sin ,z αα=+,333cos i?sin z αα=+(其中123,,R ααα∈), 则121212cos()i?sin(+)z z αααα⋅=++,232323cos()i?sin(+)z z αααα⋅=++ ,根据上面的结论,可以提出猜想: z 1·z 2·z 3=__________________. 20.观察下列各式:0014C =011334C C +=01225554;C C C ++=0123377774C C C C +++=……照此规律,当n ∈N 时,012121212121n n n n n C C C C -----++++=______________.三、解答题21.设数列{}n a 的前n 项和为n S ,对任意*n ∈N 都有2132n n S n a =+. (1)求数列{}n a 的通项公式;(2)记*4()n n b a n N =+∈*1)nn N b ++<∈ 22.已知数列{}n a 满足11a =,1(5)5n n n a a a ++=. (1)计算234,,a a a 的值,猜想数列{}n a 的通项公式; (2)用数学归纳法证明(1)中的猜想. 23.已知数列1111,,,,,112123123n+++++++,其前n 项和为n S ;(1)计算1234,,,S S S S ;(2)猜想n S 的表达式,并用数学归纳法进行证明.24.(1)当1x >时,求2()1x f x x =-的最小值.(2)用数学归纳法证明:11111222n n n +++≥++*()n N ∈. 25.在数列{}n a 中,111,21nn n a a a a +==+,其中1,2,3,n =.(Ⅰ)计算234,,a a a 的值;(Ⅱ)猜想数列{}n a 的通项公式,并用数学归纳法加以证明. 26.已知()()()()20121111nnn x a a x a x a x +=+-+-++-(2,*n n N ≥∈),(1)当5n =时,求12345a a a a a ++++的值; (2)设2233,2n n n n a b T b b b -==+++,试用数学归纳法证明:当2n ≥时,()()113n n n n T +-=。

2020高中数学 第二章 推理与证明 2. 数学归纳法讲义 2-2

2020高中数学 第二章 推理与证明 2. 数学归纳法讲义 2-2

2.3 数学归纳法1.数学归纳法的内容如下:一个错误!与正整数有关的命题,如果(1)错误!当n取第一个值n0(例如n0=1或n0=2等)时结论正确,(2)错误!假设当n=k(k∈N*,且k≥n0)时结论正确,能够证明当n=k+1时结论也正确,那么可以断定错误!这个命题对n∈N*且n≥n0的所有正整数都成立.2.数学归纳法的步骤中,第一步的作用是错误!递推的基础,第二步的作用是错误!递推的依据.3.数学归纳法实质上是错误!演绎推理法的一种,它是一种错误!严格的证明方法,它只能错误!证明结论,不能发现结论,并且只能证明错误!与正整数相关的命题.4.常把归纳法和数学归纳法结合起来,形成错误!归纳—猜想-证明的思想方法,既可以错误!发现结论,又能错误!给出严格的证明,组成一套完整的数学研究的思想方法.5.用数学归纳法证明命题时,两步错误!缺一不可,并且在第二步的推理证明中必须用错误!归纳假设,否则不是数学归纳法.对数学归纳法本质的理解数学归纳法可能与同学们以前所接触的证明方法差别很大,为了达到“知其然,知其所以然”的效果,可对比以下问题理解数学归纳法的实质.(1)有n个骨牌排成如图所示的一排,现推倒第一张骨牌,会有什么现象?(2)要使骨牌全部倒下,骨牌的摆放有什么要求?(骨牌的间距不大于骨牌的高度)(3)这样做的原因是什么?这样摆放可以达到什么样的效果?(前一张骨牌倒下,适当的间距导致后一张骨牌也倒下)(4)如果推倒的不是第一张骨牌,而是其他位置上的某一张骨牌,能使所有的骨牌倒下吗?(5)能够成功地推倒排成一排的骨牌的条件是什么?(通过观察和思考,可以得到的结论是:①第一张骨牌被推倒;②若某一张骨牌倒下,则其后面的一张骨牌必定倒下)错误!错误!错误!错误!错误!错误!…运用类比的方法,我们不难将推倒骨牌的原理进行迁移、升华,进而得到数学归纳法证明的步骤:(1)当n=1时,结论成立;(2)假设当n=k时结论成立,证明n=k+1时结论也必定成立.错误!错误!错误!错误!错误!错误!…1.判一判(正确的打“√”,错误的打“×")(1)与正整数n有关的数学命题的证明只能用数学归纳法.()(2)数学归纳法的第一步n0的初始值一定为1.()(3)数学归纳法的两个步骤缺一不可.( )答案(1)×(2)×(3)√2.做一做(1)已知f(n)=错误!+错误!+错误!+…+错误!,则f(n)共有________项,f(2)=________。

高中数学选修2-2_2-3知识点、考点、典型例题

高中数学选修2-2_2-3知识点、考点、典型例题

高中数学选修2----2知识点第一章 导数及其应用 知识点:一.导数概念的引入1. 导数的物理意义:瞬时速率。

一般的,函数()y f x =在0x x =处的瞬时变化率是000()()limx f x x f x x∆→+∆-∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =', 即0()f x '=000()()limx f x x f x x∆→+∆-∆2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。

容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即000()()lim()n x n f x f x k f x x x ∆→-'==-3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即0()()()lim x f x x f x f x x∆→+∆-'=∆知识点:二.导数的计算1)基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=;2 若()f x x α=,则1()f x xαα-'=;3 若()sin f x x =,则()cos f x x '=4 若()cos f x x =,则()sin f x x '=-;5 若()xf x a =,则()ln xf x a a '= 6 若()xf x e =,则()xf x e '=7 若()log xa f x =,则1()ln f x x a '=8 若()ln f x x =,则1()f x x'=2)导数的运算法则1. [()()]()()f x g x f x g x '''±=±2. [()()]()()()()f x g x f x g x f x g x '''•=•+•3. 2()()()()()[]()[()]f x f x g x f x g x g x g x ''•-•'= 3)复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=•考点:导数的求导及运算 ★1、已知()22sin f x x x π=+-,则()'0f =★2、若()sin x f x e x =,则()'f x =★3.)(x f =ax 3+3x 2+2 ,4)1(=-'f ,则a=( )319.316.313.310.D C B A ★★4.过抛物线y=x 2上的点M )41,21(的切线的倾斜角是( ) ° ° ° °★★5.如果曲线2932y x =+与32y x =-在0x x =处的切线互相垂直,则0x = 三.导数在研究函数中的应用 知识点:1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间单调递增; 如果()0f x '<,那么函数()y f x =在这个区间单调递减. 2.函数的极值与导数极值反映的是函数在某一点附近的大小情况. 求函数()y f x =的极值的方法是:(1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值; 4.函数的最大(小)值与导数函数极大值与最大值之间的关系.求函数()y f x =在[,]a b 上的最大值与最小值的步骤(1) 求函数()y f x =在(,)a b 内的极值;(2) 将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的最大值,最小的是最小值.四.生活中的优化问题利用导数的知识,,求函数的最大(小)值,从而解决实际问题 考点:1、导数在切线方程中的应用 2、导数在单调性中的应用 3、导数在极值、最值中的应用 4、导数在恒成立问题中的应用 一、题型一:导数在切线方程中的运用★1.曲线3x y =在P 点处的切线斜率为k,若k=3,则P 点为( ) A.(-2,-8) B.(-1,-1)或(1,1)C.(2,8)D.(-21,-81)★2.曲线53123+-=x x y ,过其上横坐标为1的点作曲线的切线,则切线的倾斜角为( ) A.6π B.4π C.3π D.π43二、题型二:导数在单调性中的运用★1.(05广东卷)函数32()31f x x x =-+是减函数的区间为( ) A.(2,)+∞ B.(,2)-∞ C.(,0)-∞ D.(0,2)★2.关于函数762)(23+-=x x x f ,下列说法不正确的是( ) A .在区间(∞-,0)内,)(x f 为增函数 B .在区间(0,2)内,)(x f 为减函数C .在区间(2,∞+)内,)(x f 为增函数D .在区间(∞-,0)),2(+∞⋃内,)(x f 为增函数★★3.(05江西)已知函数()y xf x '=的图象如右图所示(其中'()f x 是函数()f x 的导函数),下面四个图象中()y f x =的图象大致是( )★★★4、(2010年山东21)(本小题满分12分)已知函数).(111)(R a xaax nx x f ∈--+-= (Ⅰ)当处的切线方程;在点时,求曲线))2(,2()(1f x f y a=-=(Ⅱ)当12a ≤时,讨论()f x 的单调性.三、导数在最值、极值中的运用:★1.(05全国卷Ⅰ)函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( ) A .2 B. 3C. 4★2.函数5123223+--=x x x y 在[0,3]上的最大值与最小值分别是( ) , - 15 , 4 4 , - 15 , - 16 ★★★3.(根据04年天津卷文21改编)已知函数)0()(3≠++=a d cx ax x f 是R 上的奇函数,当1=x 时)(x f 取得极值-2.(1)试求a 、c 、d 的值;(2)求)(x f 的单调区间和极大值;★★★4.(根据山东2008年文21改编)设函数2312)(bx ax e x x f x ++=-,已知12=-=x x 和为)(x f 的极值点。

2021年高中数学苏教版选修2-2教学案:第2章 2.1 2.1.3 推理案例赏析

2021年高中数学苏教版选修2-2教学案:第2章 2.1 2.1.3 推理案例赏析

2.1.3推理案例赏析2.1.4[对应学生用书P23]归纳推理的应用[例1]观察如下图的 "三角数阵〞:记第n行的第2个数为a n(n≥2 ,n∈N*) ,请仔细观察上述 "三角数阵〞的特征,完成以下各题:(1)第6行的6个数依次为__________、__________、______________、______________、______________、______________;(2)依次写出a2、a3、a4、a5;(3)归纳出a n+1与a n的关系式.[思路点拨](1)观察数阵,总结规律:除首|末两数外,每行的数等于它上一行肩膀上的两数之和,得出(1)的结果.(2)由数阵可直接写出答案.(3)写出a3-a2 ,a4-a3 ,a5-a4 ,从而归纳出(3)的结论.[精解详析](1)由数阵可看出,除首|末两数外,每行中的数都等于它上一行肩膀上的两数之和,且每一行的首|末两数都等于行数.[答案]6,16,25,25,16,6(2)a2=2 ,a3=4 ,a4=7 ,a5=11(3)∵a3=a2+2 ,a4=a3+3 ,a5=a4+4 ,∴由此归纳:a n+1=a n+n.[一点通]对于数阵问题的解决方法,既要清楚每行、每列数的特征,又要对上、下行,左、右列间的关系进行研究,找到规律,问题即可迎刃而解了.1.设[x]表示不超过x的最|大整数,如[5]=2 ,[π]=3 ,[k]=k (k∈N*).我的发现:[1]+[2]+[3]=3;[4]+[5]+[6]+[7]+[8]=10;[9]+[10]+[11]+[12]+[13]+[14]+[15]=21;…通过归纳推理,写出一般性结论_____________________________________________ __________________________________________________________(用含n的式子表示).解析:第n行右边第|一个数是[n2] ,往后是[n2+1] ,[n2+2] ,…,最|后一个是[n2+2n].等号右边是n(2n+1).答案:[n2]+[n2+1]+[n2+2]+…+[n2+2n]=n(2n+1)2.(1)如图(a)、(b)、(c)、(d)所示为四个平面图形,数一数,每个平面图形各有多少个顶点?多少条边?它们将平面围成了多少个区域?顶点数边数区域数(a)(b)(c)(d)(2)观察上表,推断一个平面图形的顶点数、边数、区域数之间有什么关系?(3)现某个平面图形有999个顶点,且围成了999个区域,试根据以上关系确定这个平面图形有多少条边?解:(1)各平面图形的顶点数、边数、区域数分别为顶点数边数区域数(a) 3 3 2(b) 8 12 6(c) 6 9 5(d)10157(2)观察:3+2-3=2;8+6-12=2;6+5-9=2;10+7-15=2 ,通过观察发现,它们的顶点数V ,边数E ,区域数F之间的关系为V+F-E=2.(3)由V=999 ,F=999 ,代入上述关系式得E=1 996 ,故这个平面图形有1 996条边.类比推理的应用[例2] 通过计算可得以下等式: 23-13=3×12+3×1+1; 33-23=3×22+3×2+1; 43-33=3×32+3×3+1; …(n +1)3-n 3=3×n 2+3×n +1. 将以上各等式两边分别相加 ,得(n +1)3-13=3(12+22+…+n 2)+3(1+2+3+…+n )+n , 即12+22+32+…+n 2=16n (n +1)(2n +1).类比上述求法 ,请你求出13+23+33+…+n 3的值.[思路点拨] 类比上面的求法;可分别求出24-14 ,34-24,44-34 ,…(n +1)4-n 4 ,然后将各式相加求解.[精解详析] ∵24-14=4×13+6×12+4×1+1 , 34-24=4×23+6×22+4×2+1 , 44-34=4×33+6×32+4×3+1 , …(n +1)4-n 4=4×n 3+6×n 2+4×n +1. 将以上各式两边分别相加 ,得(n +1)4-14=4×(13+23+…+n 3)+6×(12+22+…+n 2)+4×(1+2+…+n )+n ∴13+23+…+n 3=14⎣⎡ (n +1)4-14-6×16n (n +1)·⎦⎤(2n +1)-4×n (n +1)2-n =14n 2(n +1)2.[一点通] (1)解题方法的类比通过对不同题目条件、结论的类比 ,从而产生解题方法的迁移 ,这是数学学习中很高的境界 ,需要学习者熟练地掌握各种题型及相应的解题方法.(2)类比推理的步骤与方法第|一步:弄清两类对象之间的类比关系及类比关系之间的(细微)差异.第二步:把两个系统之间的某一种一致性(相似性)确切地表述出来 ,也就是要把相关对象在某些方面一致性的模糊认识说清楚.3.二维空间中圆的一维侧度(周长)l =2πr ,二维测度(面积)S =πr 2 ,观察发现S ′=l ;三维空间中球的二维测度(外表积)S =4πr 2 ,三维测度(体积)V =43πr 3 ,观察发现V ′=S .那么四维空间中 "超球〞的三维测度V =8πr 3 ,猜测其四维测度W =________.解析:(2πr 4)′=8πr 3. 答案:2πr 44.在平面上 ,我们如果用一条直线去截正方形的一个角 ,那么截下一个直角三角形 ,按图所标边长 ,由勾股定理有:c 2=a 2+b 2.设想正方形换成正方体 ,把截线换成如图的截面 ,这时从正方体上截下三条侧棱两两垂直的三棱锥OLMN ,如果用S 1 ,S 2 ,S 3表示三个侧面的面积 ,S 4表示截面的面积 ,那么你类比得到的结论是________.解析:由于平面图形中的边长应与空间几何体中的面积类比 ,因此所得到的结论为:S 24=S 21+S 22+S 23.答案:S 24=S 21+S 22+S 23演绎推理的应用[例3] {a n }为等差数列 ,首|项a 1>1 ,公差d >0 ,n >1且n ∈N *. 求证:lg a n +1lg a n -1<(lg a n )2.[思路点拨] 对数之积不能直接运算 ,可由根本不等式转化为对数之和进行运算. [精解详析] ∵{a n }为等差数列 , ∴a n +1+a n -1=2a n . ∵d >0 ,∴a n -1a n +1=(a n -d )(a n +d )=a 2n -d 2<a 2n .∵a 1>1 ,d >0 ,∴a n =a 1+(n -1)d >1. ∴lg a n >0. ∴lg a n +1·lg a n -1≤⎝⎛⎭⎫lg a n +1+lg a n -122=⎣⎡⎦⎤12lg (a n -1a n +1)2<⎣⎡⎦⎤12lg a 2n 2=(lg a n )2 , 即lg a n +1·lg a n -1<(lg a n )2.[一点通] 三段论推理的根据 ,从集合的观点来讲 ,就是:假设集合M 的所有元素都具有性质P ,S 是M 的子集 ,那么S 中所有元素都具有性质P .5.如图 ,棱柱ABC -A 1B 1C 1的侧面BCC 1B 1是菱形 ,B 1C ⊥A 1B .(1)证明:平面AB 1C ⊥平面A 1BC 1;(2)设D 是A 1C 1上的点 ,且A 1B ∥平面B 1CD ,求A 1D ∶DC 1的值. 要求:写出每一个三段论的大前提、小前提、结论.解:(1)因为菱形的对角线互相垂直(大前提) ,侧面BCC 1B 1是菱形(小前提) , 所以B 1C ⊥BC 1(结论).又线面垂直的判定定理(大前提) , B 1C ⊥A 1B ,且A 1B ∩BC 1=B (小前提) , 所以B 1C ⊥平面A 1BC 1(结论). 又面面垂直的判定定理(大前提) ,B 1C ⊂平面AB 1C ,B 1C ⊥平面A 1BC (小前提) , 所以平面AB 1C ⊥平面A 1BC 1(结论).(2)设BC 1交B 1C 于点E ,连接DE ,那么DE 是平面A 1BC 1与平面B 1CD 的交线. 根据线面平行的性质定理(大前提) ,因为A 1B ∥平面B 1CD (小前提) ,所以A 1B ∥DE (结论). 又E 是BC 1的中点 ,所以D 为A 1C 1的中点 ,即A 1D ∶DC 1=1∶1. 6.求证:函数y =2x -12x +1是奇函数 ,且在定义域上是增函数.证明:y =f (x )=(2x +1)-22x +1=1-22x +1 ,所以f (x )的定义域为x ∈R .f (-x )+f (x )=⎝ ⎛⎭⎪⎫1-22-x +1+⎝ ⎛⎭⎪⎫1-22x+1 =2-⎝ ⎛⎭⎪⎫22x +1+22-x +1=2-⎝ ⎛⎭⎪⎫22x +1+2·2x2x +1=2-2(2x +1)2x +1=2-2=0 ,即f (-x )=-f (x ) ,所以f (x )是奇函数. 任取x 1 ,x 2∈R ,且x 1<x 2 ,那么f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫1-22x 1+1-⎝ ⎛⎭⎪⎫1-22x 2+1=2⎝ ⎛⎭⎪⎫12x 2+1-12x 1+1=2·2x 1-2x 2(2x 2+1)(2x 1+1).因为x 1<x 2 ,所以2x 1<2x 2 ,2x 1-2x 2<0 , 所以f (x 1)<f (x 2).故f (x )为增函数.1.通俗地说 ,合情推理是指 "符合情理〞的推理 ,数学研究中 ,得到一个新结论之前 ,合情推理常常能帮助我们猜测和发现结论;证明一个数学结论之前 ,合情推理常为我们提供证明的思路和方向.2.在数学推理活动中常常利用归纳和类比去发现结论 ,再想方法去证明或否认发现的结论.[对应学生用书P25]一、填空题1.设k 棱柱有f (k )个对角面 ,那么k +1棱柱对角面的个数为f (k +1)=f (k )+________. 解析:k 棱柱增加一条侧棱时 ,那么这条侧棱和与之不相邻的k -2条侧棱可构成k -2个对角面 ,而增加一条侧棱时也使一个侧面变成了对角面.所以f (k +1)=f (k )+k -2+1=f (k )+k -1. 答案:k -12.如果一个凸多面体是n 棱锥 ,那么这个凸多面体的所有顶点所确定的直线共有____条.这些直线中共有f (n )对异面直线 ,那么f (4)=______;f (n )=______.(答案用数字或含n的式子表示)解析:所有顶点确定的直线共有:棱数+底边数+对角线数 ,即n +n +n (n -3)2=n 2+n2.f (4)=4×2+4×12×2=12 ,f (n )=n (n -2)+n (n -3)2×(n -2)=n (n -1)(n -2)2.答案:n 2+n 2 12 n (n -1)(n -2)23.(陕西(高|考))f (x )= x1+x,x ≥0 ,假设 f 1(x )=f (x ) ,f n +1(x )=f (f n (x )) ,n ∈N *, 那么f 2 014(x )的表达式为________.解析:由f 1(x )=x 1+x ⇒f 2(x )=f ⎝ ⎛⎭⎪⎫x 1+x =x 1+x 1+x 1+x =x1+2x ;又可得f 3(x )=f (f 2(x ))=x1+2x 1+x 1+2x =x 1+3x ,故可猜测f 2 014(x )=x1+2 014x . 答案:x1+2 014x4.对于大于1的自然数m 的三次幂可用奇数进行以下方式的 "分裂〞: 23=⎩⎨⎧3 533=⎩⎨⎧791143=⎩⎨⎧1315 1719….仿此 ,假设m 3的 "分裂数〞中有一个是2 015 ,那么m =________. 解析:根据分裂特点 ,设最|小数为a 1 , 那么ma 1+m (m -1)2×2=m 3 ,∴a 1=m 2-m +1.∵a 1为奇数 ,又452=2 025 , ∴猜测m =45. 验证453=91 125=(1 979+2 071)×452.答案:45 5.观察以下等式sin 230°+cos 290°+3sin 30°·cos 90°=14;sin 225°+cos 285°+3sin 25°·cos 85°=14;sin 210°+cos 270°+3sin 10°·cos 70°=14.推测出反映一般规律的等式:____________________. 解析:∵90°-30°=60° ,85°-25°=60° ,70°-10°=60° , ∴其一般规律为sin 2α+cos 2(60°+α)+3sin αcos(60°+α)=14.答案:sin 2α+cos 2(60°+α)+3sin αcos(60°+α)=14二、解答题6.试将以下演绎推理写成三段论的形式:(1)太阳系的大行星都以椭圆形轨道绕太阳运行 ,海|王星是太阳系中的大行星 ,所以海|王星以椭圆形轨道绕太阳运行;(2)所有导体通电时发热 ,铁是导体 ,所以铁通电时发热;(3)一次函数是单调函数 ,函数y =2x -1是一次函数 ,所以y =2x -1是单调函数; (4)等差数列的通项公式具有形式a n =pn +q (p ,q 是常数) ,数列1,2,3… ,n 是等差数列 ,所以数列1,2,3 ,… ,n 的通项具有a n =pn +q 的形式.解:(1)太阳系的大行星都以椭圆形轨道绕太阳运行 ,(大前提) 海|王星是太阳系中的大行星 ,(小前提) 海|王星以椭圆形轨道绕太阳运行.(结论) (2)所有导体通电时发热 ,(大前提) 铁是导体 ,(小前提) 铁通电时发热.(结论)(3)一次函数都是单调函数 ,(大前提) 函数y =2x -1是一次函数 ,(小前提) y =2x -1是单调函数.(结论)(4)等差数列的通项公式具有形式a n =pn +q (p ,q 是常数) ,(大前提)数列1,2,3 ,… ,n是等差数列,(小前提)数列1,2,3 ,… ,n的通项具有a n=pn+q的形式.(结论)7.平面几何与立体几何的许多概念、性质是相似的,如: "长方形的每一边与其对边平行,而与其余的边垂直〞; "长方体的每一面与其相对面平行,而与其余的面垂直〞,请用类比法写出更多相似的命题.(写出三种即可)解:(1)(平面)在平行四边形中,对角线互相平分;(立体)在平行六面体中,体对角线相交于同一点,且在这一点互相平分.(2)(平面)在平行四边形中,各对角线长的平方和等于各边长的平方和;(立体)在平行六面体中,各体对角线长的平方和等于各棱长的平方和.(3)(平面)圆面积等于圆周长与半径之积的1/2;(立体)球体积等于球外表积与半径之积的1/3.(4)(平面)正三角形外接圆半径等于内切圆半径的2倍;(立体)正四面体的外接球半径等于内切球半径的3倍.8.某少数民族的刺绣有着悠久的历史,图(1)(2)(3)(4)为她们刺绣中最|简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮;现按同样的规律刺绣(小正方形的摆放规律相同) ,设第n个图形包含f(n)个小正方形.(1)写出f(5)的值;(2)利用合情推理的 "归纳推理思想〞,归纳出f(n+1)与f(n)之间的关系式,并根据你得到的关系式求出f(n)的表达式;(3)求1f(1)+1f(2)-1+1f(3)-1+…+1f(n)-1的值.解:(1)f(5)=41.(2)因为f(2)-f(1)=4=4×1 , f(3)-f(2)=8=4×2 ,f(4)-f(3)=12=4×3 ,f (5)-f (4)=16=4×4 , …由以上规律 ,可得出f (n +1)-f (n )=4n , 因为f (n +1)-f (n )=4n ,所以f (n +1)=f (n )+4n , 所以当n ≥2时 , f (n )=f (n -1)+4(n -1) =f (n -2)+4(n -1)+4(n -2)=f (n -3)+4(n -1)+4(n -2)+4(n -3) =…=f [n -(n -1)]+4(n -1)+4(n -2)+4(n -3)+…+4[n -(n -1)] =2n 2-2n +1.f (1)=1也适合上式 ,故f (u )=2n 2-2n +1(n ∈N *). (3)当n ≥2时 ,1f (n )-1=12n (n -1)=12⎝⎛⎭⎪⎫1n -1-1n ,所以1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1=1+12⎝ ⎛⎭⎪⎫1-12+12-13+13-14+…+1n -1-1n =1+12⎝⎛⎭⎫1-1n =32-12n .。

高中数学学修2-2 推理与证明导学案加课后作业及答案

高中数学学修2-2 推理与证明导学案加课后作业及答案

2.1.1合情推理(一)【学习要求】1.了解归纳推理的含义,能利用归纳推理进行简单的推理.2.了解归纳推理在数学发展中的作用.【学法指导】归纳是推理常用的思维方法,其结论不一定正确,但具有猜测和发现结论、探索和提供思路的作用,有利于创新意识的培养.【知识要点】1.推理:根据一个或几个已知事实(或假设)得出一个,这种思维方式就是推理.推理一般由两部分组成:和________.2.合情推理:前提为真时,结论的推理,叫做合情推理.3.归纳推理:根据一类事物的部分对象具有某种性质,推出这类事物的都具有这种性质的推理.4.归纳推理具有如下的特点:(1)归纳推理是从到的推理;(2)由归纳推理得到的结论正确;(3)归纳推理是一种具有创造性的推理.【问题探究】探究点一归纳推理的定义问题1在日常生活中我们常常遇到这样一些问题:看到天空乌云密布,燕子低飞,蚂蚁搬家等现象时,我们会得出一个判断——天要下雨了;张三今天没来上课,我们会推断——张三一定生病了;谚语说:“八月十五云遮月,来年正月十五雪打灯”等,像上面的思维方式就是推理,请问你认为什么是推理?问题2在等差数列{a n}中:a1=a1+0d,a2=a1+d=a1+1d,a3=a2+d=a1+2d,a4=a3+d=a1+3d,……观察可得什么结论?问题3设f(n)=n2+n+41,n∈N*,计算f(1),f(2),f(3),f(4),…,f(10)的值,同时作出归纳推理,并用n=40验证猜想的结论是否正确.探究点二归纳推理的应用例1已知数列{a n}的第1项a1=1,且a n+1=a n1+a n(n=1,2,3,…),试归纳出这个数列的通项公式.跟踪训练1已知数列{a n}满足a1=1,a n+1=2a n+1(n=1,2,3,…).(1)求a2,a3,a4,a5;(2)归纳猜想通项公式a n.例2在法国巴黎举行的第52届世兵赛期间,某商场橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有一层,就一个球;第2,3,4,…堆最底层(第一层)分别按图所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n堆第n层就放一个乒乓球,以f(n)表示第n堆的乒乓球总数,则f(3)=______;f(n)=______(答案用含n的代数式表示).跟踪训练2在平面内观察:凸四边形有2条对角线,凸五边形有5条对角线,凸六边形有9条对角线,…由此猜想凸n(n≥4且n∈N*)边形有几条对角线?例3观察下列等式,并从中归纳出一般法则.(1)1=12,1+3=22,1+3+5=32,1+3+5+7=42,1+3+5+7+9=52,……(2)1=12,2+3+4=32,3+4+5+6+7=524+5+6+7+8+9+10=72,5+6+7+8+9+10+11+12+13=92,……跟踪训练3在△ABC中,不等式1A+1B+1C≥9成立;在四边形ABCD中,不等式1A+1B+1C+1D≥16成立;在五边形ABCDE中,不等式1A+1B+1C+1D+1E≥253π成立.猜想在n边形A1A2…A n中有怎样的不等式成立_______.【当堂检测】1.已知2+23=223,3+38=338,4+415=4415,…,若6+ab=6ab(a、b均为实数).请推测a=______,b=________.2.将全体正整数排成一个三角形数阵:12 345 6789101112131415……………………按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为________. 3.已知正项数列{a n }满足S n =12(a n +1a n),求出a 1,a 2,a 3,a 4,并推测a n .【课堂小结】归纳推理的一般步骤(1)对有限的资料进行观察、分析、归纳、整理,发现某些相同的性质;(2)从已知的相同性质中推出一个明确表述的一般命题,提出带有规律性的结论,即猜想,注意:一般性的命题往往要用字母表示,这时需注明字母的取值范围.【课后作业】一、基础过关1.数列5,9,17,33,x ,…中的x 等于( )A .47B .65C .63D .1282.已知a 1=3,a 2=6且a n +2=a n +1-a n ,则a 33为( )A .3B .-3C .6D .-6 3.根据给出的数塔猜测123 456×9+7等于( )1×9+2=11 12×9+3=111 123×9+4=1 111 1 234×9+5=11 111 12 345×9+6=111 111A .1 111 110B .1 111 111C .1 111 112D .1 111 1134.我们把1,4,9,16,25,…这些数称做正方形数,这是因为这些数目的点子可以排成一个正方形(如图).试求第n 个正方形数是( )A .n (n -1)B .n (n +1)C .n 2D .(n +1)25.f (n )=1+12+13+…+1n (n ∈N *),计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,f (32)>72,推测当n ≥2时,有________.二、能力提升6.设x ∈R ,且x ≠0,若x +x -1=3,猜想x 2n +x -2n (n ∈R *)的个位数字是________. 7.如图,观察图形规律,在其右下角的空格处画上合适的图形,应为________.8.如图所示四个图形中,着色三角形的个数依次构成一个数列的前4项,则这个数列的一个通项公式为________.9.如图所示,图(a)是棱长为1的小正方体,图(b)、图(c)是由这样的小正方体摆放而成.按照这样的方法继续摆放,自上而下分别叫第1层,第2层,…,第n 层.第n 层的小正方体的个数记为S n .解答下列问题.(1)按照要求填表:(2)S 10=________.(3)S n =10.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n },可以推测:(1)b 2 012是数列{a n }中的第______项; (2)b 2k -1=________.(用k 表示)11.已知数列{a n }的前n 项和为S n ,a 1=1且S n -1+1S n +2=0(n ≥2),计算S 1,S 2,S 3,S 4,并猜想S n 的表达式.12.一条直线将平面分成2个部分,两条直线最多将平面分成4个部分. (1)3条直线最多将平面分成多少部分?(2)设n 条直线最多将平面分成f (n )部分,归纳出f (n +1)与f (n )的关系; (3)求出f (n ).三、探究与拓展13.在一容器内装有浓度r %的溶液a 升,注入浓度为p %的溶液14a 升,搅匀后再倒出溶液14a 升,这叫一次操作,设第n 次操作后容器内溶液的浓度为b n ,计算b 1、b 2、b 3,并归纳出计算公式bn .2.1.1 合情推理(二)【学习要求】1.通过具体实例理解类比推理的意义. 2.会用类比推理对具体问题作出判断.【学法指导】类比推理是在两类不同的事物之间进行对比,找出若干相同或相似点之后,推测在其他方面也可以存在相同或相似之处的一种推理模式.归纳和类比是合情推理常用的思维方法,其结论不一定正确【知识要点】1.类比推理:根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有___________________________的推理,叫做类比推理(简称类比). 2.类比推理的一般步骤:(1)找出两类事物之间的 ;(2)用一类事物的性质去推测另一类事物的性质,得出一个 .【问题探究】探究点一 平面图形与立体图形间的类比阅读下面的推理,回答后面提出的问题:1.科学家对火星进行研究,发现火星与地球有许多类似的特征: (1)火星也是绕太阳运行、绕轴自转的行星; (2)有大气层,在一年中也有季节变更;(3)火星上大部分时间的温度适合地球上某些已知生物的生存,等等.科学家猜想:火星上也可能有生命存在.2.根据等式的性质猜想不等式的性质.等式的性质: 猜想不等式的性质: (1)a =b ⇒a +c =b +c; (1)a >b ⇒a +c >b +c ; (2)a =b ⇒ac =bc; (2)a >b ⇒ac >bc ; (3)a =b ⇒a 2=b 2等等. (3)a >b ⇒a 2>b 2等等. 问题1 这两个推理实例在思维方式上有什么共同特点? 问题2 猜想正确吗?问题3 类比圆的特征,填写下表中球的有关特征例1 如图所示,面积为S 的平面凸四边形的第i 条边的边长记为a i (i =1,2,3,4),此四边形内任一点P 到第i 条边的距离记为h i (i =1,2,3,4),若a 11=a 22=a 33=a 44=k ,则h 1+2h 2+3h 3+4h 4=2Sk,类比以上性质,体积为V 的三棱锥的第i 个面的面积记为S i (i =1,2,3,4),此三棱锥内任一点Q 到第i 个面的距离记为H i (i =1,2,3,4),若S 11=S 22=S 33=S 44=K ,则H 1+2H 2+3H 3+4H 4等于多少?跟踪训练1 在平面几何里,有勾股定理:“设△ABC 的两边AB 、AC 互相垂直,则AB 2+AC 2=BC 2”.拓展到空间(如图),类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的结论是_________________________________________.探究点二 定义、定理或性质中的类比例2 在等差数列{a n }中,若a 10=0,证明等式a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N +)成立,并类比上述性质相应在等比数列{b n }中,若b 9=1,则有等式________成立.跟踪训练2 设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有:设等比数列{b n }的前n 项积为T n ,则T 4,________,________,T 16T 12成等比数列.【当堂检测】1.下列说法正确的是 ( ) A .由合情推理得出的结论一定是正确的 B .合情推理必须有前提、有结论 C .合情推理不能猜想D .合情推理得出的结论不能判断正误2.在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________.3.若数列{c n }是等差数列,则当d n =c 1+c 2+…+c nn 时,数列{d n }也是等差数列,类比上述性质,若数列{a n }是各项均为正数的等比数列,则当b n =_________时,数列{b n }也是等比数列. 4.对命题“正三角形的内切圆切于三边中点”可类比猜想:正四面体的内切球切于四面各正三角形的________.【课堂小结】1.合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向. 2.合情推理的过程概括为:从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想【课后作业】一、基础过关 1.下列推理正确的是( )A .把a (b +c )与log a (x +y )类比,则有log a (x +y )=log a x +log a yB .把a (b +c )与sin (x +y )类比,则有sin(x +y )=sin x +sin yC .把a (b +c )与ax +y类比,则有ax +y=a x +a yD .把a (b +c )与a ·(b +c )类比,则有a ·(b +c )=a ·b +a ·c 2.下面几种推理是合情推理的是( )①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°; ③张军某次考试成绩是100分,由此推出全班同学的成绩都是100分;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸多边形内角和是(n -2)·180°.A .①②B .①③C .①②④D .②④3.在等差数列{a n }中,若a n <0,公差d >0,则有a 4·a 6>a 3·a 7,类比上述性质,在等比数列{b n }中,若b n >0,q >1,则下列有关b 4,b 5,b 7,b 8的不等关系正确的是( )A .b 4+b 8>b 5+b 7B .b 5+b 7>b 4+b 8C .b 4+b 7>b 5+b 8D .b 4+b 5>b 7+b 84.已知扇形的弧长为l ,半径为的r ,类比三角形的面积公式:S =底×高2,可推知扇形面积公式S 扇=________.5.类比平面直角坐标系中△ABC 的重心G (x ,y )的坐标公式⎩⎨⎧x =x 1+x 2+x33y =y 1+y 2+y33(其中A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)),猜想以A (x 1,y 1,z 1)、B (x 2,y 2,z 2)、C (x 3,y 3,z 3)、D (x 4,y 4,z 3)为顶点的四面体A —BCD 的重心G (x ,y ,z )的公式为________.6.公差为d (d ≠0)的等差数列{a n }中,S n 是{a n }的前n 项和,则数列S 20-S 10,S 30-S 20,S 40-S 30也成等差数列,且公差为100d ,类比上述结论,相应地在公比为q (q ≠1)的等比数列{b n }中,若T n 是数列{b n }的前n 项积,则有_____________________________________. 二、能力提升7.把下面在平面内成立的结论类比地推广到空间,结论仍然正确的是________.(填序号) ①如果一条直线与两条平行线中的一条相交,则也与另一条相交; ②如果一条直线与两条平行线中的一条垂直,则也与另一条垂直; ③如果两条直线同时与第三条直线相交,则这两条直线相交或平行; ④如果两条直线同时与第三条直线垂直,则这两条直线平行.8.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列性质中,你认为比较恰当的是________.(填序号)①各棱长相等,同一顶点上的两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等; ③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.9.已知抛物线y 2=2px (p >0),过定点(p,0)作两条互相垂直的直线l 1、l 2,若l 1与抛物线交于P 、Q 两点,l 2与抛物线交于M 、N 两点,l 1的斜率为k ,某同学已正确求得弦PQ 的中点坐标为(p k 2+p ,pk),请你写出弦MN 的中点坐标:________.10.现有一个关于平面图形的命题:如图,同一个平面内有两个边长都是a 的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为a 24.类比到空间,有两个棱长均为a 的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为________.11.如图(1),在平面内有面积关系S △P A ′B ′S △P AB=P A ′P A ·PB ′PB ,写出图(2)中类似的体积关系,并证明你的结论.12.如图所示,在△ABC 中,射影定理可表示为a =b ·cos C +c ·cos B ,其中a ,b ,c 分别为角A ,B ,C 的对边,类比上述定理,写出对空间四面体性质的猜想.三、探究与拓展13.已知在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于D ,有1AD 2=1AB 2+1AC 2成立.那么在四面体A -BCD 中,类比上述结论,你能得到怎样的猜想,并说明猜想是否正确及给出理由.2.1.2 演绎推理【学习要求】1.理解演绎推理的意义.2.掌握演绎推理的基本模式,并能运用它们进行一些简单推理. 3.了解合情推理和演绎推理之间的区别和联系.【学法指导】演绎推理是数学证明的主要工具,其一般模式是三段论.学习中要挖掘证明过程包含的推理思路,明确演绎推理的基本过程.【知识要点】1.演绎推理:由概念的定义或一些真命题,依照_____________得到 的过程,通常叫做演绎推理. 2.演绎推理的特征是:当前提为真时,结论 . 3.演绎推理经常使用三段论推理,三段论一般可表示: ________________;所以,S 是P .【问题探究】探究点一 演绎推理与三段论问题1 分析下面几个推理,找出它们的共同点.(1)所有的金属都能导电,铀是金属,所以铀能够导电;(2)一切奇数都不能被2整除,(2100+1)是奇数,所以(2100+1)不能被2整除; (3)三角函数都是周期函数,正切函数是三角函数,因此正切函数是周期函数;(4)两条直线平行,同旁内角互补.如果∠A 与∠B 是两条平行直线的同旁内角,那么∠A +∠B =180°. 问题2 演绎推理有什么特点?问题3 演绎推理的结论一定正确吗? 问题4 演绎推理一般是怎样的模式? 例1 将下列演绎推理写成三段论的形式.(1)平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分; (2)等腰三角形的两底角相等,∠A ,∠B 是等腰三角形的底角,则∠A =∠B ; (3)通项公式为a n =2n +3的数列{a n }为等差数列. 跟踪训练1 把下列推断写成三段论的形式:(1)因为△ABC 三边的长依次为3,4,5,所以△ABC 是直角三角形; (2)函数y =2x +5的图象是一条直线; (3)y =sin x (x ∈R)是周期函数. 探究点二 三段论的错误探究例2 指出下列推理中的错误,并分析产生错误的原因: (1)整数是自然数, 大前提 -3是整数, 小前提 -3是自然数. 结论 (2)常函数的导函数为0, 大前提 函数f (x )的导函数为0, 小前提 f (x )为常函数. 结论 (3)无限不循环小数是无理数, 大前提 13(0.333 33…)是无限不循环小数, 小前提 13是无理数.结论跟踪训练2 指出下列推理中的错误,并分析产生错误的原因: (1)因为中国的大学分布在中国各地, 大前提 北京大学是中国的大学, 小前提 所以北京大学分布在中国各地. 结论 (2)因为所有边长都相等的凸多边形是正多边形, 大前提而菱形是所有边长都相等的凸多边形, 小前提 所以菱形是正多边形. 结论 探究点三 三段论的应用例3 如图,在锐角三角形ABC 中,AD ⊥BC ,BE ⊥AC ,D ,E 是垂足,求证:AB 的中点M 到点D ,E 的距离相等.跟踪训练3 已知:在空间四边形ABCD 中,点E ,F 分别是AB ,AD 的中点,如图所示, 求证:EF ∥平面BCD .【当堂检测】1.下面几种推理过程是演绎推理的是 ( )A .两条直线平行,同旁内角互补,如果∠A 与∠B 是两条平行直线的同旁内角,则∠A +∠B =180° B .某校高三1班有55人,2班有54人,3班有52人,由此得高三所有班人数超过50人C .由平面三角形的性质,推测空间四边形的性质D .在数列{a n }中,a 1=1,a n =12⎝⎛⎭⎫a n -1+1a n -1(n ≥2),由此归纳出{a n }的通项公式2.“因为对数函数y =log a x 是增函数(大前提),又x y 31log =是对数函数(小前提),所以y =x y 31log =是增函数(结论).”下列说法正确的是 ( )A .大前提错误导致结论错误B .小前提错误导致结论错误C .推理形式错误导致结论错误D .大前提和小前提都错误导致结论错误3.推理:“①矩形是平行四边形,②三角形不是平行四边形,③所以三角形不是矩形.”中 的小前提是 ( ) A .① B .② C .③ D .①②4.把“函数y =x 2+x +1的图象是一条抛物线”恢复成三段论,则大前提:____________; 小前提:____________; 结论:____________.【课堂小结】1.演绎推理是从一般性原理出发,推出某个特殊情况的推理方法;只要前提和推理形式正确,通过演绎推理得到的结论一定正确.2.在数学中,证明命题的正确性都要使用演绎推理,推理的一般模式是三段论,证题过程中常省略三段论的大前提.【课后作业】一、基础过关 1. 下列表述正确的是( )①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理; ③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理; ⑤类比推理是由特殊到特殊的推理.A .①②③B .②③④C .②④⑤D .①③⑤ 2. 下列说法不正确的是( )A .演绎推理是由一般到特殊的推理B .赋值法是演绎推理C .三段论推理的一个前提是肯定判断,结论为否定判断,则另一前提是否定判断D .归纳推理的结论都不可靠3. 正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin (x 2+1)是奇函数.以上推理 ( )A .结论正确B .大前提不正确C .小前提不正确D .全不正确4.“∵四边形ABCD 是矩形,∴四边形ABCD 的对角线相等.”以上推理的大前提是( )A .正方形都是对角线相等的四边形B .矩形都是对角线相等的四边形C .等腰梯形都是对角线相等的四边形D .矩形都是对边平行且相等的四边形 5. 给出演绎推理的“三段论”:直线平行于平面,则平行于平面内所有的直线;(大前提) 已知直线b ∥平面α,直线a ⊂平面α;(小前提) 则直线b ∥直线a .(结论) 那么这个推理是( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误 6. 下列几种推理过程是演绎推理的是( )A .5和22可以比较大小B .由平面三角形的性质,推测空间四面体的性质C .东升高中高二年级有15个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人D .预测股票走势图 二、能力提升7.三段论:“①小宏在2013年的高考中考入了重点本科院校;②小宏在2013年的高考中只要正常发挥就能考入重点本科院校;③小宏在2013年的高考中正常发挥”中,“小前提”是__________(填序号). 8.在求函数y =log 2x -2的定义域时,第一步推理中大前提是当a 有意义时,a ≥0;小前提是log 2x -2有意义;结论是__________________.9.由“(a 2+a +1)x >3,得x >3a 2+a +1”的推理过程中,其大前提是______________.10.对于平面上的点集Ω,如果连接Ω中任意两点的线段必定包含于Ω,则称Ω为平面上的凸集,给出平面上4个点集的图形如图(阴影区域及其边界):其中为凸集的是________(写出所有凸集相应图形的序号). 11.用演绎推理证明函数f (x )=|sin x |是周期函数.12.设a >0,f (x )=e x a +ae x 是R 上的偶函数,求a 的值.三、探究与拓展13.S 为△ABC 所在平面外一点,SA ⊥平面ABC ,平面SAB ⊥平面SBC .求证:AB ⊥BC .2.2.1 综合法与分析法(一)【学习要求】1.了解直接证明的两种基本方法——综合法和分析法.2.理解综合法和分析法的思考过程、特点,会用综合法和分析法证明数学问题.【学法指导】综合法和分析法是直接证明中最基本的两种证明方法,要结合实例了解两种证法的思考过程、特点.【知识要点】1. 和 是直接证明中最基本的两种证明方法,也是解决数学问题时常用的思维方式. 2.综合法是从 出发,经过 ,最后达到待证结论.3.分析法是从 出发,一步一步寻求结论成立的______,最后达到题设的已知条件,或已被证明的事实.【问题探究】 探究点一 综合法问题1 证明下面的问题,总结证明方法有什么特点? 已知a ,b >0,求证:a (b 2+c 2)+b (c 2+a 2)≥4abc .问题2 综合法又叫由因导果法,其推理过程是合情推理还是演绎推理?例1 在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,求证:△ABC 为等边三角形. 跟踪训练1 在△ABC 中,AC AB =cos B cos C,证明:B =C . 探究点二 分析法问题1 回顾一下:均值不等式a +b2≥ab (a >0,b >0)是怎样证明的?问题2 证明过程有何特点?问题3 综合法和分析法的区别是什么? 例2 求证:3+7<2 5.跟踪训练2 求证:a -a -1<a -2-a -3(a ≥3). 探究点三 综合法和分析法的综合应用问题 在实际证题中,怎样选用综合法和分析法?例3 已知α,β≠k π+π2(k ∈Z),且sin θ+cos θ=2sin α, ①sin θ·cos θ=sin 2β.②求证:1-tan 2α1+tan 2α=1-tan 2β+tan 2β.跟踪训练3 若tan(α+β)=2tan α,求证:3sin β=sin(2α+β).【当堂检测】1.下列表述:①综合法是由因导果法; ②综合法是顺推法; ③分析法是执果索因法; ④分析法是间接证明法; ⑤分析法是逆推法. 其中正确的语句有 ( )A .2个B .3个C .4个D .5个2.欲证2-3<6-7成立,只需证( )A .(2-3)2<(6-7)2B .(2-6)2<(3-7)2C .(2+7)2<(3+6)2D .(2-3-6)2<(-7)2 3.求证:1log 519+2log 319+3log 219<2.4.已知1-tan α2+tan α=1,求证:cos α-sin α=3(cos α+sin α).【课堂小结】1.综合法证题是从条件出发,由因导果;分析法是从结论出发,执果索因. 2.分析法证题时,一定要恰当地运用“要证”、“只需证”、“即证”等词语. 3.在解题时,往往把综合法和分析法结合起来使用.【课后作业】一、基础过关1. 已知a ,b ,c ∈R ,那么下列命题中正确的是( )A .若a >b ,则ac 2>bc 2B .若a c >bc ,则a >bC .若a 3>b 3且ab <0,则1a >1bD .若a 2>b 2且ab >0,则1a <1b2. A 、B 为△ABC 的内角,A >B 是sin A >sin B 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3. 已知直线l ,m ,平面α,β,且l ⊥α,m ⊂β,给出下列四个命题:①若α∥β,则l ⊥m ;②若l ⊥m ,则α∥β;③若α⊥β,则l ⊥m ;④若l ∥m ,则α⊥β. 其中正确命题的个数是( )A .1B .2C .3D .44. 设a ,b 都是正实数,且a ≠b ,a +b =2,则必有( )A .1≤ab ≤a 2+b 22B .ab <1<a 2+b 22C .ab <a 2+b 22<1D .a 2+b 22<ab <15. 已知a ,b 为非零实数,则使不等式:a b +ba≤-2成立的一个充分不必要条件是( )A .ab >0B .ab <0C .a >0,b <0D .a >0,b >0二、能力提升6. 设0<x <1,则a =2x ,b =1+x ,c =11-x中最大的一个是( )A .aB .bC .cD .不能确定7. 已知a 、b 、c ∈R ,且a +b +c =0,abc >0,则1a +1b +1c的值( )A .一定是正数B .一定是负数C .可能是0D .正、负不能确定8.设a =2,b =7-3,c =6-2,则a ,b ,c 的大小关系为________. 9.已知p =a +1a -2(a >2),q =2-a 2+4a -2(a >2),则p 、q 的大小关系为________.10.如果a a +b b >a b +b a ,求实数a ,b 的取值范围.11.设a ≥b >0,求证:3a 3+2b 3≥3a 2b +2ab 212.已知a >0,1b -1a >1,求证:1+a >11-b.三、探究与拓展13.已知a 、b 、c 是不全相等的正数,且0<x <1.求证:log x a +b 2+log x b +c 2+log x a +c2<log x a +log x b +log x c .2.2.1 综合法与分析法(二)【学习要求】加深对综合法、分析法的理解,应用两种方法证明数学问题.【学法指导】通过本节课的学习,比较两种证明方法的优点,进而灵活选择证明方法,规范证明步骤,养成言之有理、论之有据的好习惯,提高思维能力.【双基检测】1.分析法是从要证明的结论出发,逐步寻求使结论成立的 ( ) A .充分条件 B .必要条件 C .充要条件 D .等价条件2.用P 表示已知,Q 表示要证的结论,则综合法的推理形式为 ( ) A .P ⇒Q 1→Q 1⇒Q 2→Q 2⇒Q 3→…→Q n ⇒Q B .P ⇐Q 1→Q 1⇐Q 2→Q 2⇐Q 3→…→Q n ⇐Q C .Q ⇒Q 1→Q 1⇒Q 2→Q 2⇒Q 3→…→Q n ⇒P D .Q ⇐Q 1→Q 1⇐Q 2→Q 2⇐Q 3→…→Q n ⇐P 3.已知p :ab >0;q :b a +ab≥2,则( )A .p 是q 的充分而不必要条件B .p 是q 的必要而不充分条件C .p 是q 的充要条件D .p 是q 的既不充分也不必要条件 4.要证:a 2+b 2-1-a 2b 2≤0,只要证明( ) A .2ab -1-a 2b 2≤0 B .a 2+b 2-1-a 4+b 42≤0C .a +b 22-1-a 2b 2≤0 D .(a 2-1)(b 2-1)≥05.给出下列命题:①a <b <0⇒b a <1;②a <b <0⇒a -2<b -2;③a >b ,c >d ,abcd ≠0⇒a c >b d ;④a ·b ≠0⇒|a +b ||a |+|b |<1;⑤a >b >0,c >d >0⇒a d >bc.其中,真命题的序号是________. 【问题探究】题型一 选择恰当的方法证明不等式例1 设a ,b ,c 为任意三角形三边长,I =a +b +c ,S =ab +bc +ca ,试证:3S ≤I 2<4S . 跟踪训练1 (1)已知:a ,b ,c 都是正实数,且ab +bc +ca =1.求证:a +b +c ≥ 3. (2)已知a 、b 、c 为互不相等的正数且abc =1,求证:a +b +c <1a +1b +1c .题型二 选择恰当的方法证明等式例2 已知△ABC 的三个内角A ,B ,C 成等差数列,对应的三边为a ,b ,c ,求证:1a +b +1b +c =3a +b +c .跟踪训练2 设实数a ,b ,c 成等比数列,非零实数x ,y 分别为a 与b ,b 与c 的等差中项,试证:a x +cy =2.题型三 选择恰当的方法证明空间图形的位置关系例3 如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,P A =AB =BC ,E是PC 的中点.求证:(1)CD ⊥AE ;(2)PD ⊥平面ABE .跟踪训练3 如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直,EF ∥AC ,AB =2,CE =EF =1.求证:(1)AF ∥平面BDE ; (2)CF ⊥平面BDE .【课堂小结】1.综合法的特点是:从已知看可知,逐步推出未知.2.分析法的特点是:从未知看需知,逐步靠拢已知. 3.分析法和综合法各有优缺点.分析法思考起来比较自然,容易寻找到解题的思路和方法,缺点是思路逆行,叙述较繁;综合法从条件推出结论,较简捷地解决问题,但不便于思考.实际证题时常常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来.【课后作业】一、基础过关1. 已知a ≥0,b ≥0,且a +b =2,则( )A .a ≤12B .ab ≥12C .a 2+b 2≥2D .a 2+b 2≤3 2. 已知a 、b 、c 、d ∈{正实数},且a b <cd,则( )A .a b <a +c b +d <c dB .a +c b +d <a b <c dC .a b <c d <a +c b +dD .以上均可能3. 下面四个不等式:①a 2+b 2+c 2≥ab +bc +ac ; ②a (1-a )≤14; ③b a +ab ≥2; ④(a 2+b 2)(c 2+d 2)≥(ac +bd )2.其中恒成立的有( )A .1个B .2个C .3个D .4个4. 若实数a ,b 满足0<a <b ,且a +b =1,则下列四个数中最大的是( )A .12B .2abC .a 2+b 2D .a5.设a =3-2,b =6-5,c =7-6,则a 、b 、c 的大小顺序是________.6. 如图所示,SA ⊥平面ABC ,AB ⊥BC ,过A 作SB 的垂线,垂足为E ,过E 作SC 的垂线,垂足为F . 求证:AF ⊥SC .证明:要证AF ⊥SC ,只需证SC ⊥平面AEF ,只需证AE ⊥SC (因为______),只需证______,只需证AE ⊥BC (因为________),只需证BC ⊥平面SAB ,只需 证BC ⊥SA (因为________).由SA ⊥平面ABC 可知,上式成立. 二、能力提升7. 命题甲:(14)x 、2-x 、2x -4成等比数列;命题乙:lg x 、lg(x +2)、lg(2x +1)成等差数列,则甲是乙的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8. 若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg(a +b 2),则( )A .R <P <QB .P <Q <RC .Q <P <RD .P <R <Q9. 已知α、β为实数,给出下列三个论断:①αβ>0;②|α+β|>5;③|α|>22,|β|>2 2.以其中的两个论断为条件,另一个论断为结论,你认为正确的命题是________. 10.如果a ,b 都是正数,且a ≠b ,求证:a b +ba>a+b .11.已知a >0,求证: a 2+1a 2-2≥a +1a-2.12.已知a 、b 、c ∈R ,且a +b +c =1,求证:(1a -1)(1b -1)·(1c -1)≥8.13.已知函数f (x )=x 2+2x +a ln x (x >0),对任意两个不相等的正数x 1、x 2,证明:当a ≤0时,f (x 1)+f (x 2)2>f (x 1+x 22).三、探究与拓展14.已知a ,b ,c ,d ∈R ,求证:ac +bd ≤(a 2+b 2)(c 2+d 2).(你能用几种方法证明?)2.2.2 反证法【学习要求】1.了解反证法是间接证明的一种基本方法.2.理解反证法的思考过程,会用反证法证明数学问题.【学法指导】反证法需要逆向思维,难点是由假设推出矛盾,在学习中可通过动手证明体会反证法的内涵,归纳反证法的证题过程.【知识要点】1.定义一般地,由证明p ⇒q 转向证明:綈q ⇒r ⇒…⇒t ,t 与 矛盾,或与 矛盾.从而判定 为假,推出 为真的方法,叫做反证法. 2.反证法常见的矛盾类型反证法的关键是在正确的推理下得出矛盾.这个矛盾可以是与 矛盾或与___________________________矛盾,或与 矛盾等. 【问题探究】探究点一 反证法的概念问题1 王戎小时候,爱和小朋友在路上玩耍.一天,他们发现路边的一棵树上结满了李子,小朋友一哄而上,去摘李子,独有王戎没动,等到小朋友们摘了李子一尝,原来是苦的!他们都问王戎:“你怎么知道李子是苦的呢?”王戎说:“假如李子不苦的话,早被路人摘光了,而这树上却结满了李子,所以李子一定是苦的.” 这就是著名的“道旁苦李”的故事.王戎的论述,运用了什么方法? 问题2 上述方法的含义是什么?问题3 反证法证明的关键是经过推理论证,得出矛盾.反证法引出的矛盾有几种情况?问题4 反证法主要适用于什么情形?探究点二 用反证法证明定理、性质等一些事实结论例1 已知直线a ,b 和平面α,如果a ⊄α,b ⊂α,且a ∥b ,求证:a ∥α.跟踪训练1 已知:a ∥b ,a ∩平面α=A,如图.求证:直线b 与平面α必相交.探究点三 用反证法证明否定性命题例2 求证:2不是有理数.跟踪训练2 已知三个正数a ,b ,c 成等比数列,但不成等差数列,求证:a ,b ,c 不成等差数列. 探究点四 用反证法证明“至多”、“至少”“唯一”型命题例3 若函数f (x )在区间[a ,b ]上是增函数,那么方程f (x )=0在区间[a ,b ]上至多有一个实根.跟踪训练3 若a ,b ,c 均为实数,且a =x 2-2y +π2,b =y 2-2z +π3,c =z 2-2x +π6.求证:a 、b 、c 中至少有一个大于0.【当堂检测】1.证明“在△ABC 中至多有一个直角或钝角”,第一步应假设 ( ) A .三角形中至少有一个直角或钝角 B .三角形中至少有两个直角或钝角 C .三角形中没有直角或钝角D .三角形中三个角都是直角或钝角2.用反证法证明“三角形中至少有一个内角不小于60°”,应先假设这个三角形中 ( ) A .有一个内角小于60° B .每一个内角都小于60° C .有一个内角大于60° D .每一个内角都大于60° 3.“a <b ”的反面应是 ( ) A .a ≠b B .a >b C .a =b D .a =b 或a >b4.用反证法证明“在同一平面内,若a ⊥c ,b ⊥c ,则a ∥b ”时,应假设 ( ) A .a 不垂直于c。

(压轴题)高中数学高中数学选修2-2第一章《推理与证明》测试题(含答案解析)(4)

(压轴题)高中数学高中数学选修2-2第一章《推理与证明》测试题(含答案解析)(4)

一、选择题1.某快递公司的四个快递点,,,A B C D 呈环形分布(如图所示),每个快递点均已配备快递车辆10辆.因业务发展需要,需将,,,A B C D 四个快递点的快递车辆分别调整为5,7,14,14辆,要求调整只能在相邻的两个快递点间进行,且每次只能调整1辆快递车辆,则A .最少需要8次调整,相应的可行方案有1种B .最少需要8次调整,相应的可行方案有2种C .最少需要9次调整,相应的可行方案有1种D .最少需要9次调整,相应的可行方案有2种2.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.从下图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是 ( )A .B .C .D .3.某地铁换乘站设有编号为A ,B ,C ,D ,E 的五个安全出口.若同时开放其中的两个安全出口,疏散1000名乘客所需的时间如下: 安全出口编号 A ,BB ,CC ,DD ,EA ,E疏散乘客时间(s )186125160175145则疏散乘客最快的一个安全出口的编号是( ) A .AB .BC .CD .D4.德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数n ,如果n 是偶数,就将它减半(即2n);如果n 是奇数,则将它乘3加1(即3n+1),不断重复这样的运算,经过有限步后,一定可以得到1. 对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数n (首项)按照上述规则施行变换后的第8项为1(注:l 可以多次出现),则n 的所有不同值的个数为 A .4B .6C .8D .325.设实数a,b,c 满足a+b+c=1,则a,b,c 中至少有一个数不小于 ( ) A .0B .13C .12D .16.利用数学归纳法证明不等式()()1111++++,2,232n f n n n N +<≥∈的过程中,由n k =变成1n k =+时,左边增加了( )A .1项B .k 项C .12k -项D .2k 项7.“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是( )A .201620172⨯B .201501822⨯C .201520172⨯D .201601822⨯8.用数学归纳法证明“11112321n++++- ”时,由(1)n k k =>不等式成立,推证1n k =+时,左边应增加的项数是( )A .12k -B .21k -C .2kD .21k +9.一次猜奖游戏中,1,2,3,4四扇门里摆放了a ,b ,c ,d 四件奖品(每扇门里仅放一件).甲同学说:1号门里是b ,3号门里是c ;乙同学说:2号门里是b ,3号门里是d ;丙同学说:4号门里是b ,2号门里是c ;丁同学说:4号门里是a ,3号门里是c .如果他们每人都猜对了一半,那么4号门里是( ) A .aB .bC .cD .d10.如果把一个多边形的所有便中的任意一条边向两方无限延长称为一直线时,其他个边都在此直线的同旁,那么这个多边形就叫凸多边形.平行内凸四边形由2条对角线,凸五边形有5条对角线,以此类推,凸16变形的对角线条为( ) A .65B .96C .104D .11211.已知0x >,不等式12x x +≥,243x x +≥,3274x x+≥,…,可推广为1n ax n x+≥+ ,则a 的值为( ) A .2nB .n nC .2nD .222n -12.已知 222233+=,333388+=,44441515+=,m m m mt t+=()*,2m t N m ∈≥且,若不等式30m t λ--<恒成立,则实数λ的取值范围为( ) A .)22,⎡+∞⎣B .(),22-∞C .(),3-∞D .[1,3]二、填空题13.观察如图等式,照此规律,第n 个等式为______.11234934567254567891049=++=++++=++++++=14.36的所有正约数之和可按如下方法得到:因为223623=⨯,所以36的所有正约数之和为22(133)(22323)++++⨯+⨯22222(22323)(122)++⨯+⨯=++2(133)91++=,参照上述方法,可得100的所有正约数之和为__________.15.平面上画n 条直线,且满足任何2条直线都相交,任何3条直线不共点,则这n 条直线将平面分成__________个部分. 16.利用数学归纳法证明不等式“()*11112,23212n n n n N +++⋯+>≥∈-”的过程中,由“n k =”变到“1n k =+”时,左边增加了_____项.17.将正整数对作如下分组,第1组为()(){}1,2,2,1,第2组为()(){}1,3,3,1,第3组为()()()(){}1,4,2,3,3,2,4,1,第4组为()()()(){}1,5,2,44,25,1⋅⋅⋅⋅⋅⋅则第30组第16个数对为__________.18.甲、乙、丙、丁四人分别从一个装有编号为1,2,3,4,的四个完全相同的小球的袋中依次取出一个小球.现知道:①甲取出的小球编号为偶数;②乙取出的小球编号比甲大;③乙、丙取出的小球编号差的绝对值比甲大.则丁取出的小球编号是________. 19.观察下面的数阵,则第40行最左边的数是__________.20.观察下列式子:,,,,…,根据以上规律,第个不等式是_________.三、解答题21.若数列{}n a 的前n 项和为n S ,且13a =,()211324222n n S S n n n -=+-+≥. (1)求2a ,3a ,4a ;(2)猜想数列{}n a 的通项公式,并用数学归纳法加以证明. 22.若10a >,11a ≠,121+=+nn na a a (n =1,2,…). (1)求证:1+≠n n a a ; (2)令112a =,写出2a ,3a ,4a ,5a 的值,观察并归纳出这个数列的通项公式n a ,并用数学归纳法证明.23.已知数列11111,,,,,12233445(1)n n ⨯⨯⨯⨯⨯+,…的前n 项和为n S .(1)计算1234,,,S S S S 的值,根据计算结果,猜想n S 的表达式; (2)用数学归纳法证明(1)中猜想的n S 表达式.24.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含()f n 个小正方形.(Ⅰ)求出()5f ;(Ⅱ)利用合情推理的“归纳推理思想”归纳出()1f n +与()f n 的关系式,并根据你得到的关系式求()f n 的表达式. 25.依次计算数列114⎛⎫-⎪⎝⎭,111149⎛⎫⎛⎫--⎪⎪⎝⎭⎝⎭,1111114916⎛⎫⎛⎫⎛⎫--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭,11111111491625⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,的前4项的值,由此猜想21111111111491625(1)n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦(n *∈N )的结果,并用数学归纳法加以证明.26.设a ,b 均为正数,且ab .证明:(1)664224a b a b a b +>+(2)a b a b b a+>+【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先阅读题意,再结合简单的合情推理即可得解. 【详解】(1)A→D 调5辆,D→C 调1辆,B→C 调3辆,共调整:5+1+3=9次, (2)A→D 调4辆,A→B 调1辆,B→C 调4辆,共调整:4+1+4=9次, 故选D【点睛】本题考查了阅读能力及简单的合情推理,属中档题.2.C解析:C 【分析】 结合题意可知,代入数据,即可.【详解】A 选项,13不满足某个数的平方,故错误;B 选项,,故错误;C 选项,故正确;D 选项,,故错误.故选C. 【点睛】本道题考查了归纳推理,关键抓住利用边长点数计算总点数,难度中等.3.C解析:C 【解析】分析:根据疏散1000名乘客所需的时间,两两对比,即可求出结果. 详解:同时开放其中的两个安全出口,疏散1000名乘客,所需时间对比:开方AB 、出口时间为186s ,开方BC 、出口时间为125s ,得C 比A 快; 开方CD 、出口时间为160s ,开方DE 、出口时间为175s ,得C 比E 快;开方AB 、出口时间为186s ,开方A E 、出口时间为145s ,得E 比B 快; 开方BC 、出口时间为125s ,开方CD 、出口时间为160s ,得B 比D 快; 综上,疏散乘客最快的安全出口的编号是C. 故选C.点睛:本题考查简单的合情推理,考查学生推理论证能力.4.B解析:B 【解析】分析:利用第八项为1出发,按照规则,逆向逐项即可求解n 的所有可能的取值. 详解:如果正整数n 按照上述规则施行变换后第八项为1, 则变换中的第7项一定为2, 变换中的第6项一定为4,变换中的第5项可能为1,也可能是8, 变换中的第4项可能是2,也可能是16,变换中的第4项为2时,变换中的第3项是4,变换中的第2项是1或8,变换中的第1项是2或6,变换中的第4项为16时,变换中的第3项是32或5,变换中的第2项是64或108,变换中的第1项是128或21或20,或3,则n 的所有可能的取值为2,3,16,20,21,128,共6个,故选B.点睛:本题主要考查了归纳推理的应用,其中解答中正确理解题意,利用变换规则,进行逆向逐项推理、验证是解答的关键,着重考查了推理与论证能力,试题有一定的难度,属于中档试题.5.B解析:B 【解析】∵三个数a ,b ,c 的和为1,其平均数为13∴三个数中至少有一个大于或等于13假设a ,b ,c 都小于13,则1a b c ++<∴a ,b ,c 中至少有一个数不小于13故选B.6.D解析:D 【分析】分别写出n k =、1n k =+时,不等式左边的式子,从而可得结果. 【详解】当n k =时,不等式左边为1111232k++++,当1n k =+时,不等式左边为1111111232212k k k +++++++++,则增加了112(21)1222k k k k k ++-++=-=项,故选D. 【点睛】项数的变化规律,是利用数学归纳法解答问题的基础,也是易错点,要使问题顺利得到解决,关键是注意两点:一是首尾两项的变化规律;二是相邻两项之间的变化规律.7.B解析:B 【详解】由题意,数表的每一行从右往左都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为20142, 故第1行的从右往左第一个数为:122-⨯, 第2行的从右往左第一个数为:032⨯, 第3行的从右往左第一个数为:142⨯, …第n 行的从右往左第一个数为:2(1)2n n -+⨯ , 表中最后一行仅有一个数,则这个数是201501822⨯.8.C解析:C 【解析】左边的特点:分母逐渐增加1,末项为121n -; 由n=k ,末项为121k-到n=k+1,末项为11121212k k k+=--+, ∴应增加的项数为2k . 故选C .9.A解析:A【解析】由题意得,甲同学说:1号门里是b ,3号门里是c ,乙同学说:2号门里是b ,3号门里是d ;丙同学说:4号门里是b ,2号门里是c ;丁同学说:4号门里是a ,3号门里是cc ,若他们每人猜对了一半,则可判断甲同学中1号门中是b 是正确的;乙同学说的2号门中有d 是正确的;并同学说的3号门中有c 是正确的;丁同学说的4号门中有a 是正确的,则可判断在1,2,3,4四扇门中,分别存有,,,b d c a ,所以4号门里是a ,故选A. 点睛:本题主要考查了归纳推理问题,通过具体事例,根据各位同学的说法给出判断,其中正确理解题意,合理作出推理是解答此类问题的关键,同时注意仔细审题,认真梳理.10.C解析:C 【解析】可以通过列表归纳分析得到;16边形有2+3+4+…+14=2=104条对角线. 故选C .11.B解析:B 【分析】由题意归纳推理得到a 的值即可. 【详解】由题意,当分母的指数为1时,分子为111=; 当分母的指数为2时,分子为224=; 当分母的指数为3时,分子为3327=; 据此归纳可得:1n ax n x+≥+中,a 的值为n n . 本题选择B 选项. 【点睛】归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.12.C解析:C 【解析】分析:由等式归纳得出m 和t 的关系,从而得出关于m 的恒等式,利用函数单调性得出最小值即可得出λ的范围.=21t m =-, 30m t λ--<恒成立,即220m m λ--<恒成立,m N *∈且2m ≥,222m m m mλ+∴<=+.令()2f m m m =+,()221f m m ='-,2m ≥,()0f m ∴'>,()f m ∴单调递增,∴当2m =时,()f m 取得最小值()23f =,3λ∴<.故选:C.点睛:若f (x )≥a 或g (x )≤a 恒成立,只需满足f (x )min ≥a 或g (x )max ≤a 即可,利用导数方法求出f (x )的最小值或g (x )的最大值,从而问题得解.二、填空题13.【解析】分析:由题意结合所给等式的规律归纳出第个等式即可详解:首先观察等式左侧的特点:第1个等式开头为1第2个等式开头为2第3个等式开头为3第4个等式开头为4则第n 个等式开头为n 第1个等式左侧有1个解析:2(1)(32)(21)n n n n ++++-=-.【解析】分析:由题意结合所给等式的规律归纳出第n 个等式即可. 详解:首先观察等式左侧的特点: 第1个等式开头为1,第2个等式开头为2, 第3个等式开头为3,第4个等式开头为4, 则第n 个等式开头为n ,第1个等式左侧有1个数,第2个等式左侧有3个数, 第3个等式左侧有5个数,第4个等式左侧有7个数, 则第n 个等式左侧有2n -1个数, 据此可知第n 个等式左侧为:()()132n n n ++++-,第1个等式右侧为1,第2个等式右侧为9, 第3个等式右侧为25,第4个等式右侧为49, 则第n 个等式右侧为()221n -, 据此可得第n 个等式为()()()213221n n n n ++++-=-.点睛:归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.14.217【分析】根据题意类比36的所有正约数之和的方法分析100的所有正约数之和为(1+2+221+5+52)计算可得答案【详解】根据题意由36的所有正约数之和的方法:100的所有正约数之和可按如下方解析:217 【分析】根据题意,类比36的所有正约数之和的方法,分析100的所有正约数之和为(1+2+22)(1+5+52),计算可得答案. 【详解】根据题意,由36的所有正约数之和的方法:100的所有正约数之和可按如下方法得到:因为100=22×52, 所以100的所有正约数之和为(1+2+22)(1+5+52)=217. 可求得100的所有正约数之和为217; 故答案为:217. 【点睛】本题考查简单的合情推理应用,关键是认真分析36的所有正约数之和的求法,并应用到100的正约数之和的计算.15.【解析】分析:根据几何图形列出前面几项根据归纳推理和数列中的累加法即可得到结果详解:1条直线将平面分成2个部分即2条直线将平面分成4个部分即3条直线将平面分为7个部分即4条直线将平面分为11个部分即解析:(1)12n n ++ 【解析】分析:根据几何图形,列出前面几项,根据归纳推理和数列中的累加法即可得到结果。

【推荐】高中数学选修22第2章《推理与证明》单元测试题

【推荐】高中数学选修22第2章《推理与证明》单元测试题

选修2-2第二章《推理与证明》单元测试题一.选择题: (以下题目从4项答案中选出一项,每小题5分,共50分) 1. 集合P ={1, 4, 9, 16…},若a ∈P , b ∈P 则a ⊕b ∈P ,则运算⊕可能是( ) A .加法 B .减法 C .除法 D .乘法2. 若平面四边形ABCD 满足0AB CD +=,()0AB AD AC -⋅=,则该四边形一定是( ) A .直角梯形 B .矩形 C .正方形 D .菱形3.给出下面类比推理命题(其中Q 为有理数集,R 为实数集,C 为复数集): ①“若a,b b a b a R =⇒=-∈0,则”类比推出“若a,b b a b a C =⇒=-∈0,则”; ②“若a,b,c,d d b c a di c bi a R ==⇒+=+∈,,则复数”类比推出“若a,b,c,d ,Q ∈ 则d b c a d c b a ==⇒+=+,22”;③“若a,b b a b a R >⇒>-∈0,则” 类比推出“若a,b b a b a C >⇒>-∈0,则”; 其中类比结论正确的个数是( ) (A)0 (B)1 (C)2(D)34.平面向量也叫二维向量,二维向量的坐标表示及其运算可以推广到(3)n n ≥维向量,n 维向量可用 123(,,,,)n x x x x 表示.设123(,,,,)n a a a a a =,123(,,,,)n b b b b b =,规定向量a 与b 夹角θ的余弦为∑∑∑====n i ni i i ni ii b a ba 11221))((cos θ.当(1,1,1,1)a =,(1,1,1,1)b =--时,cos θ=( )A .n n 1- B .nn 3- C .n n 2- D .n n 4- 5. 下列函数中,在区间02π⎛⎫⎪⎝⎭,上为增函数且以π为周期的函数是( )A .sin2xy = B . sin y x = C . tan y x =- D . cos 2y x =- 6. 若一系列函数的解析式相同、值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为 y =x 2、值域为{0,4}的“同族函数”共有( )个. A. 2 B. 3 C. 4 D.无数7.对于使22x x M -+≤成立的所有常数M 中,我们把M 的最小值1叫做22x x -+的上确界,若 ,,1a b R a b +∈+=且,则122a b--的上确界为( ) A .92 B .92- C .41D .4- 8.如图,圆周上按顺时针方向标有1,2,3,4,5五个点。

数学:第二章《推理与证明》测试(2)(新人教A版选修1-2)

数学:第二章《推理与证明》测试(2)(新人教A版选修1-2)

高中新课标选修(1-2)推理与证明测试题一 选择题(5×12=60分)1. 如下图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子应是什么颜色的( )A .白色B .黑色C .白色可能性大D .黑色可能性大 2.“所有9的倍数(M )都是3的倍数(P ),某奇数(S )是9的倍数(M ),故某奇数(S )是3的倍数(P ).”上述推理是( )A .小前提错B .结论错C .正确的D .大前提错 3.F (n )是一个关于自然数n 的命题,若F (k )(k ∈N +)真,则F (k +1)真,现已知F (7)不真,则有:①F (8)不真;②F (8)真;③F (6)不真;④F (6)真;⑤F (5)不真;⑥F (5)真.其中真命题是( )A .③⑤B .①②C .④⑥D .③④ 4.下面叙述正确的是( )A .综合法、分析法是直接证明的方法B .综合法是直接证法、分析法是间接证法C .综合法、分析法所用语气都是肯定的D .综合法、分析法所用语气都是假定的 5.类比平面正三角形的“三边相等,三内角相等”的性质,可知正四面体的下列哪些性质,你认为比较恰当的是( )① 各棱长相等,同一顶点上的任两条棱的夹角都相等;② 各个面都是全等的正三角形,相邻两个面所成的二面角都相等; ③ 各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等。

A .①B .①②C .①②③D .③6.(05·春季上海,15)若a ,b ,c 是常数,则“a >0且b 2-4ac <0”是“对x ∈R ,有ax 2+bx +c >0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .不充分不必要条件7.(04·全国Ⅳ,理12)设f (x )(x ∈R )为奇函数,f (1)=12 ,f (x +2)=f (x )+f(2),f (5)=( )A .0B .1C .52D .58.设S (n )=1n +1n +1 +1n +2 +1n +3 +…+1n2 ,则( )A .S (n )共有n 项,当n =2时,S (2)=12 +13B .S (n )共有n +1项,当n =2时,S (2)=12+13+14C .S (n )共有n 2-n 项,当n =2时,S (2)=12+13+14D .S (n )共有n 2-n +1项,当n =2时,S (2)=12+13+149.在R 上定义运算⊙:x ⊙y =x2-y ,若关于x 的不等式(x -a )⊙(x +1-a )>0的解集是集合{x |-2≤x ≤2,x ∈R }的子集,则实数a 的取值范围是( ) A .-2≤a ≤2 B .-1≤a ≤1 C .-2≤a ≤1 D .1≤a ≤210.已知f (x )为偶函数,且f (2+x )=f (2-x ),当-2≤x ≤0时,f (x )=2x,若n ∈N *,a n =f (n ),则a 2006=( )A .2006B .4C .14D .-411.函数f (x )在[-1,1]上满足f (-x )=-f (x )是减函数,α、β是锐角三角形的两个内角,且α≠β,则下列不等式中正确的是( )A .f (sin α)>f (sin β)B . f (c o s α)>f (sin β)C .f (c o s α)<f (c o s β)D .f (sin α)<f (sin β)12.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖了”,丁说:“是乙获奖”。

高中数学 第2章 推理与证明 2.2 直接证明与间接证明 2.2.1 直接证明讲义(含解析)苏教版选

高中数学 第2章 推理与证明 2.2 直接证明与间接证明 2.2.1 直接证明讲义(含解析)苏教版选

直接证明[对应学生用书P26]1.若实数a,b满足a+b=3,证明:2a+2b≥4 2.证明:因为2a+2b≥22a·2b=22a+b,又a+b=3,所以2a+2b≥223=4 2.故2a+2b≥42成立.问题1:本题利用什么公式?提示:基本不等式.问题2:本题证明顺序是什么?提示:从已知到结论.2.求证:3+22<2+7.证明:要证明3+22<2+7,由于3+22>0,2+7>0,只需证明(3+22)2<(2+7)2,展开得11+46<11+47,只需证明6<7,显然6<7成立.所以3+22<2+7成立.问题1:本题证明从哪里开始?提示:从结论开始.问题2:证题思路是什么?提示:寻求上一步成立的充分条件.1.直接证明(1)直接从原命题的条件逐步推得命题成立,这种证明通常称为直接证明.(2)直接证明的一般形式⎭⎪⎬⎪⎫本题条件已知定义已知公理已知定理⇒…⇒本题结论.2.综合法和分析法直接证明 定义推证过程综合法 从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止.这种证明方法称为综合法已知条件⇒…⇒…⇒结论分析法从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止,这种证明方法称为分析法 结论⇐…⇐…⇐已知条件1.综合法是从“已知”看“可知”逐步推向未知,由因导果通过逐步推理寻找问题成立的必要条件.它的证明格式为:因为×××,所以×××,所以×××……所以×××成立.2.分析法证明问题时,是从“未知”看“需知”,执果索因逐步靠拢“已知”,通过逐步探索,寻找问题成立的充分条件.它的证明格式:要证×××,只需证×××,只需证×××……因为×××成立,所以×××成立.[对应学生用书P27]综合法的应用[例1] 已知a ,b ,c ∈R ,且a +b +c =1,求证:a 2+b 2+c 2≥13.[思路点拨]从已知条件出发,结合基本不等式,即可得出结论. [精解详析]∵a 2+19≥2a 3,b 2+19≥2b 3,c 2+19≥2c 3,∴⎝⎛⎭⎪⎫a 2+19+⎝ ⎛⎭⎪⎫b 2+19+⎝ ⎛⎭⎪⎫c 2+19≥23a +23b +23c=23(a +b +c )=23. ∴a 2+b 2+c 2≥13.[一点通]综合法证明问题的步骤第一步:分析条件,选择方向.仔细分析题目的已知条件(包括隐含条件),分析已知与结论之间的联系与区别,选择相关的公理、定理、公式、结论,确定恰当的解题思路.第二步:转化条件、组织过程,把题目的已知条件,转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化.组织过程时要有严密的逻辑,简洁的语言,清晰的思路.第三步:适当调整,回顾反思.解题后回顾解题过程,可对部分步骤进行调整,有些语言可做适当的修饰,反思总结解题方法的选取.1.设a ,b ,c 为不全相等的正数,且abc =1, 求证:1a +1b +1c>a +b +c .证明:∵a >0,b >0,c >0,且abc =1, ∴1a +1b +1c=bc +ca +ab .又bc +ca ≥2bc ·ca =2abc 2=2c , 同理bc +ab ≥2b ,ca +ab ≥2a . ∵a 、b 、c 不全相等.∴上述三个不等式中的“=”不能同时成立. ∴2(bc +ca +ab )>2(c +a +b ), 即bc +ca +ab >a +b +c , 故1a +1b +1c>a +b +c .2.(1)如图,证明命题“a 是平面π内的一条直线,b 是π外的一条直线(b 不垂直于π),c 是直线b 在π上的投影,若a ⊥b ,则a ⊥c ”为真;(2)写出上述命题的逆命题,并判断其真假(不需证明).解:(1)证明:法一:如图,过直线b 上任一点作平面π的垂线n ,设直线a ,b ,c ,n 的方向向量分别是a ,b ,c ,n ,则b ,c ,n 共面.根据平面向量基本定理,存在实数λ,μ使得c =λb +μn ,则a·c =a·(λb +μn )=λ(a·b )+μ(a·n ),因为a ⊥b ,所以a·b =0, 又因为aπ,n ⊥π,所以a·n =0,故a·c =0,从而a ⊥c .法二:如图,记c ∩b =A ,P 为直线b 上异于点A 的任意一点,过P 作PO ⊥π,垂足为O ,则O ∈c . ∵PO ⊥π,a π,∴直线PO ⊥a . 又a ⊥b ,b平面PAO ,PO ∩b =P ,∴a ⊥平面PAO .又c平面PAO ,∴a ⊥c .(2)逆命题为:a 是平面π内的一条直线,b 是π外的一条直线(b 不垂直于π),c 是直线b 在π上的投影,若a ⊥c ,则a ⊥b .逆命题为真命题.分析法的应用[例2] 已知a >b >0,求证:(a -b )28a <a +b 2-ab <(a -b )28b.[思路点拨]本题条件较为简单,结论比较复杂,我们可以从要证的结论入手,一步步探求结论成立的充分条件,即用分析法.[精解详析]要证明(a -b )28a <a +b 2-ab <(a -b )28b 成立,只需证(a -b )24a <a +b -2ab <(a -b )24b 成立,即证(a -b )24a <(a -b )2<(a -b )24b 成立.只需证a -b 2a <a -b <a -b2b成立.只需证a+b2a<1<a+b2b成立,即证a+b<2a且a+b>2b,即b<a.∵a>b>0,∴b<a成立.∴(a-b)28a<a+b2-ab<(a-b)28b成立.[一点通]在已知条件较为简单,所要证的问题较为复杂,无从入手的情况下,我们可从结论入手逆推,执果索因,找到结论成立的条件,注明必要的文字说明,再用综合法写出步骤.3.若P=a+a+7,Q=a+3+a+4,a≥0,求证:P<Q.证明:要证P<Q,主要证P2<Q2,只要证2a+7+2a(a+7)<2a+7+2(a+3)(a+4),即证a2+7a<a2+7a+12,即证0<12.因为0<12成立,所以P<Q成立.4.已知a、b是正实数,求证:ab+ba≥a+b.证明:要证ab+ba≥a+b,只需证a a+b b≥ab(a+b).即证(a+b-ab)(a+b)≥ab(a+b),即证a+b-ab≥ab.也就是要证a+b≥2ab.因为a,b为正实数,所以a+b≥2ab成立,所以ab+ba≥a+b.综合法与分析法的综合应用[例3] 已知0<a ≤1,0<b ≤1,0<c ≤1, 求证:1+ab +bc +ca a +b +c +abc≥1.[思路点拨]因为0<a ≤1,0<b ≤1,0<c ≤1,所以要证明1+ab +bc +caa +b +c +abc≥1成立,可转化为证明1+ab +bc +ca ≥a +b +c +abc 成立.[精解详析]∵a >0,b >0,c >0, ∴要证1+ab +bc +ca a +b +c +abc≥1,只需证1+ab +bc +ca ≥a +b +c +abc , 即证1+ab +bc +ca -(a +b +c +abc )≥0. ∵1+ab +bc +ca -(a +b +c +abc ) =(1-a )+b (a -1)+c (a -1)+bc (1-a ) =(1-a )(1-b -c +bc )=(1-a )(1-b )(1-c ), 又a ≤1,b ≤1,c ≤1, ∴(1-a )(1-b )(1-c )≥0,∴1+ab +bc +ca -(a +b +c +abc )≥0成立, 即证明了1+ab +bc +caa +b +c +abc≥1.[一点通](1)较为复杂问题的证明如单纯利用分析法和综合法证明较困难,这时可考虑分析法、综合法轮流使用以达到证题目的.(2)综合法和分析法的综合应用过程既可先用分析法再用综合法,也可先用综合法再用分析法,一般无具体要求,只要达到证题的目的即可.5.在△ABC 中,三个内角A 、B 、C 成等差数列.求证:1a +b +1b +c =3a +b +c . 证明:要证1a +b +1b +c =3a +b +c, 只需证a +b +c a +b +a +b +c b +c =3,即c a +b +ab +c =1, 只需证c (b +c )+a (a +b )(a +b )(b +c )=1,即a 2+c 2+ab +bc b 2+ab +ac +bc=1.下面证明:a 2+c 2+ab +bcb 2+ab +ac +bc=1.∵A +C =2B ,A +B +C =180°, ∴B =60°. ∴b 2=a 2+c 2-ac .∴a 2+c 2+ab +bc b 2+ab +ac +bc =a 2+c 2+ab +bc a 2+c 2-ac +ab +ac +bc=1. 故原等式成立.6.若a ,b ,c 是不全相等的正数. 求证:lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .证明:要证lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c 成立,即证lg ⎝⎛⎭⎪⎫a +b 2·b +c 2·c +a 2>lg(abc )成立,只需证a +b 2·b +c 2·c +a2>abc 成立,∵a +b2≥ab >0,b +c2≥bc >0,c +a2≥ca >0,∴a +b 2·b +c 2·c +a2≥abc >0,(*)又∵a ,b ,c 是不全相等的正数,∴(*)式等号不成立, ∴原不等式成立.1.综合法是由因导果,步骤严谨,逐层递进、步步为营,书写表达过程是条理清晰、形式简洁,宜于表达推理的思维轨迹、缺点是探路艰难,不易达到所要证明的结论.2.分析法是执果索因,方向明确、利于思考,便于寻找解题思路.缺点是思路逆行、叙述繁琐、表述易出错.3.在解决一个问题时,我们常常把综合法和分析法结合起来使用.根据条件的结构特点去转化结论,得到中间结论P 1;根据原结论的特点去寻求使结论成立的条件,寻找到条件P 2;当由P 1可以推出P 2时,结论得证.[对应学生用书P29]一、填空题1.在△ABC中,A>B是sin A>sin B的________条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”).解析:在△ABC中,由正弦定理得asin A=bsin B.又∵A>B,∴a>b,∴sin A>sin B反之,若sin A>sin B,则a>b,∴A>B∴A>B是sin A>sin B的充要条件.答案:充要2.设n∈N,则n+4-n+3________n+2-n+1(判断大小).解析:要证n+4-n+3<n+2-n+1,只需证n+4+n+1<n+3+n+2,只需证(n+4+n+1)2<(n+2+n+3)2,即2n+5+2(n+4)(n+1)<2n+5+2(n+2)(n+3).只需证(n+1)(n+4)<(n+2)(n+3),只需证(n+1)(n+4)<(n+2)(n+3),即n2+5n+4<n2+5n+6,即4<6即可.而4<6成立,故n+4-n+3<n+2-n+1.答案:<3.如果a a+b b>a b+b a,则实数a,b应满足的条件是________.解析:a a+b b>a b+b a⇔a a-a b>b a-b b⇔a(a-b)>b(a-b)⇔(a-b)(a-b)>0⇔(a+b)(a-b)2>0,故只需a≠b且a,b都不小于零即可.答案:a≥0,b≥0且a≠b4.若三棱锥S-ABC中,SA⊥BC,SB⊥AC,则S在底面ABC上的射影为△ABC的________.(填重心、垂心、内心、外心之一)解析:如图,设S 在底面ABC 上的射影为点O , ∴SO ⊥平面ABC ,连接AO ,BO , ∵SA ⊥BC ,SO ⊥BC , ∴BC ⊥平面SAO , ∴BC ⊥AO . 同理可证,AC ⊥BO . ∴O 为△ABC 的垂心. 答案:垂心5.已知函数f (x )=10x,a >0,b >0,A =f ⎝⎛⎭⎪⎫a +b 2,B =f ()ab ,C =f ⎝ ⎛⎭⎪⎫2ab a +b ,则A ,B ,C 的大小关系为________.解析:由a +b2≥ab ≥2ab a +b ,又f (x )=10x在R 上是单调增函数,所以f ⎝ ⎛⎭⎪⎫a +b 2≥f ()ab ≥f ⎝⎛⎭⎪⎫2ab a +b ,即A ≥B ≥C . 答案:A ≥B ≥C 二、解答题6.已知函数f (x )=log 2(x +2),a ,b ,c 是两两不相等的正数,且a ,b ,c 成等比数列,试判断f (a )+f (c )与2f (b )的大小关系,并证明你的结论.解:f (a )+f (c )>2f (b ).证明如下:因为a ,b ,c 是两两不相等的正数, 所以a +c >2ac .因为b 2=ac ,所以ac +2(a +c )>b 2+4b , 即ac +2(a +c )+4>b 2+4b +4, 从而(a +2)(c +2)>(b +2)2. 因为f (x )=log 2(x +2)是增函数, 所以log 2(a +2)(c +2)>log 2(b +2)2, 即log 2(a +2)+log 2(c +2)>2log 2(b +2). 故f (a )+f (c )>2f (b ). 7.已知a >0,用分析法证明:a 2+1a 2-2>a +1a-2.证明:要证a 2+1a 2-2≥a +1a-2,只需证a 2+1a 2+2≥a +1a+ 2. 因为a >0,故只需证⎝ ⎛⎭⎪⎫a 2+1a 2+22≥⎝⎛⎭⎪⎫a +1a +22,即a 2+1a2+4a 2+1a 2+4≥a 2+2+1a 2+2 2⎝ ⎛⎭⎪⎫a +1a +2,从而只需证2a 2+1a 2≥2⎝ ⎛⎭⎪⎫a +1a , 只需证4⎝ ⎛⎭⎪⎫a 2+1a 2≥2⎝ ⎛⎭⎪⎫a 2+2+1a 2,即a 2+1a2≥2,而上述不等式显然成立,故原不等式成立.8.(某某高考改编)设{a n }是首项为a ,公差为d 的等差数列(d ≠0),S n 是其前n 项的和.记b n =nS nn 2+c ,n ∈N *,其中c 为实数.若c =0,且b 1,b 2,b 4成等比数列,证明:S nk =n 2S k (k ,n ∈N *).证明:由c =0,得b n =S n n=a +n -12d .又b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即⎝ ⎛⎭⎪⎫a +d 22=a ⎝ ⎛⎭⎪⎫a +32d , 化简得d 2-2ad =0.因为d ≠0,所以d =2a . 因此,对于所有的m ∈N *,有S m =m 2a .从而对于所有的k ,n ∈N *,有S nk =(nk )2a =n 2k 2a =n 2S k .。

高中数学选修2-2推理与证明合情推理

高中数学选修2-2推理与证明合情推理

2.1.1合情推理
[学习目标] 1.了解合情推理的含义,能利用归纳和类比进行简单的推理.2.了解合情推理在数学发展中的作用.
知识点一推理的定义与结构形式
1.定义:推理是人们思维活动的过程,是根据一个或几个已知的判断来确定一个新的判断的
思维过程.其作用是从已知的知识得到未知的知识,特别是可以得到不可能通过感觉经验掌
握的未知知识.
2.结构形式:从结构上来说,推理一般分为两部分,一部分是已知的事实(或假设),叫做前提,另一部分是由已知判断推出的新的判断,叫做结论.
思考(1)依据部分对象得到的推理结论可靠吗?
(2)推理一般用哪些关联词?
答案(1)不一定完全可靠.
(2)推理一般可用关联词将“前提”和“结论”联结,常用的关联词有“因为……所
以……”“根据……可知……”“如果……那么……”“若……则……”.
知识点二归纳推理与类比推理
定义特征一般模式思维过程
归纳推理由某类事物的部分对象具
有某些特征,推出该类事物
的全部对象都具有这些特
征的推理,或者由个别事实
概括出一般结论的推理
归纳推理是
由部分到整
体、由个别到
一般的推理
S1具有性质P
S2具有性质P……
S n具有性质P(S1,S2,…,
S n是A类事物对象)
所以A类事物具有性质P
实验观察→
概括推广→
猜测一般性
结论
类比推理由两类对象具有某些类似
特征和其中一类对象的某
类比推理是
由特殊到特
A类事物具有性质a,b,c,
d
观察、比较
――→
联想、类比
1。

苏教版数学高二数学苏教版选修2-2单元测试 第2章推理与证明

苏教版数学高二数学苏教版选修2-2单元测试 第2章推理与证明

第2章过关检测(时间90分钟,满分100分)一、填空题(本大题共14小题,每小题4分,满分56分)1.如果f (x +y )=f (x )f (y ),且f (1)=1,则f (2)f (1)+f (3)f (2)+…+f (2 010)f (2 009)等于__________.2.若从点O 所作的两条射线OM 、ON 上分别有点M 1、M 2与点N 1、N 2,则三角形面积之比为:S △OM 1N 1S △OM 2N 2=OM 1OM 2·ON 1ON 2.若从点O 所作的不在同一个平面内的三条射线OP 、OQ和OR 上分别有点P 1、P 2与点Q 1、Q 2和R 1、R 2,则类似的结论为:__________.3.根据图中的5个图形及相应的点的个数的变化规律,试猜测第n 个图中有__________个点.4.三段论:“①只有船准时起航,才能准时到达目的港;②这艘船是准时到达目的港的;③所以这艘船是准时起航的.”中的“小前提”是__________.5.设S (n )=1n +1n +1+1n +2+1n +3+…+1n 2,则S (n )共有__________项,S (2)=__________.6.用数学归纳法证明1+2+22+…+2n -1=2n -1(n ∈N *)的过程如下: ①当n =1时,左边=1,右边=21-1=1,等式成立. ②假设当n =k 时,等式成立,即1+2+22+…+2k -1=2k -1, 则当n =k +1时,1+2+22+…+2k -1+2k =1-2k +11-2=2k +1-1,所以当n =k +1时等式成立. 由此可知对任何n ∈N *,等式都成立. 上述证明的错误是__________.7.F (n )是一个关于自然数n 的命题,若F (k )(k ∈N *)真,则F (k +1)真,现已知F (7)不真,则有①F (8)不真;②F (8)真;③F (6)不真;④F (6)真;⑤F (5)不真;⑥F (5)真.其中真命题是__________.8.从1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),…,归纳出一般的式子是__________.9.已知a >b >0,且ab =1,若0<c <1,p =log c a 2+b 22,q =log c (1a +b )2,则p 、q的大小关系是__________.10.在椭圆中,我们有如下结论:椭圆x 2a 2+y 2b 2=1上斜率为1的弦的中点在直线x a 2+yb 2=0上,类比上述结论,得到正确的结论为:双曲线x 2a 2-y 2b 2=1上斜率为1的弦的中点在直线__________上.11.在等差数列{a n }中,当a r =a s (r ≠s )时,数列{a n }必定是常数列.然而在等比数列{a n }中,对某些正整数r ,s (r ≠s ),当a r =a s 时,非常数数列{a n }的一个例子是__________.12.将正奇数排列如下表,其中第i 行第j 个数表示a ij (i ∈N *,j ∈N *),例如a 32=9,a ij=2 009,则i +j =__________.13.在平面上的n 个圆中,每两个圆都相交,每三个圆不交于一点,则它们把平面分成__________部分.14.{a n }是由非负整数组成的数列,满足a 1=0,a 2=3,a n +1a n =(a n -1+2)(a n -2+2),n =3,4,5,…,则a 3=__________.二、解答题(本大题共4小题,满分44分)15.(10分)如图,已知平面α∩平面β=直线a ,直线b ⊂α,直线c ⊂β,b ∩a =A ,c ∥a .求证:b 与c 是异面直线.16.(10分)已知数列{a n}满足a1=1,且4a n+1-a n a n+1+2a n=9(n∈N*).(1)求a2,a3,a4;(2)由(1)猜想{a n}的通项公式a n,并用数学归纳法证明你的猜想.17.(12分)下列命题是真命题还是假命题,用分析法证明你的结论.命题:若a>b>c且a+b+c=0,则b2-aca< 3.18.(12分)已知f (n )=(2n +7)·3n +9,是否存在自然数m ,使对任意n ∈N *,都有m 整除f (n )?若存在,求出最大值的m 值,并证明你的结论;若不存在,说明理由.参考答案1.2 009 解析:令x =n (n ∈N *),y =1得f (n +1)=f (n )·f (1)=f (n ),所以f (n +1)f (n )=1,所以f (2)f (1)+f (3)f (2)+…+f (2 010)f (2 009)=1+1+…+1=2 009. 2.VO —P 1Q 1R 1VO —P 2Q 2R 2=OP 1OP 2·OQ 1OQ 2·OR 1OR 23.n 2-n +1 解析:如设第n 个图中的点数为a n ,则有a 1=1,a 2=3=22-1,a 3=7=32-2,a 4=13=42-3,a 5=21=52-4.故a n =n 2-(n -1)=n 2-n +1.4.② 解析:①的意思是:如果船不准时起航,那么它就不能准时到达目的港,它的逆否命题是:如果船准时到达目的港,那么它是准时起航.由此可知,①是大前提,②是小前题.5.n 2-n +1 1312解析:从n 到n 2共有n 2-n +1个自然数,即S (n )共有n 2-n +1项.S (2)=12+13+14=1312. 6.在证明n =k +1时,没有用假设n =k 时的结论7.③⑤ 解析:“F (k )真⇒F (k +1)真”等价于“F (k +1)假⇒F (k )假”.8.1-4+9-16+…+(-1)n +1n 2=(-1)n -1·n (n +1)2(n ∈N *) 解析:1-4=-(1+2)=(-1)2-1·2(2+1)2,1-4+9=1+2+3=(-1)3-13(3+1)2,1-4+9-16=-(1+2+3+4)=(-1)4-14(4+1)2,由此可归纳出结论. 9.p >q 解析:∵a 2+b 22≥ab =1,∴p =log c a 2+b 22<0.又q =log c (1a +b )2=log c 1a +b +2ab>log c 14ab =log c 14>0,∴q >p . 10.x a 2-yb2=0 11.1,-1,1,-1,…(不唯一)12.60 解析:2 009是正奇数1,3,5,…中的第1 005个,则1 005=1+2+3+…+(i -1)+j =(i -1)i2+j .估算:当i =45时,(i -1)i2=990,j =15,所以i +j =60.13.n 2-n +2 解析:n =1时,a 1=2; n =2时,a 2=4=a 1+2=a 1+2×1; n =3时,a 3=8=a 2+4=a 2+2×2; n =4时,a 4=14=a 3+6=a 3+2×3; …a n +1=a n +2n .由⎩⎪⎨⎪⎧a 1=2a n +1=a n+2n⇒a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2(n -1)+2(n -2)+…+2×1+2=n 2-n +2.14.2 解析:由已知a 4a 3=(a 2+2)(a 1+2)=5×2=10×1, ∴a 3可能取值1,2,5,10. 若a 3=1,a 4=10,从而a 5=(a 3+2)(a 2+2)a 4=1510=32,显然a 5不是非负整数,与题设矛盾. 若a 3=10,则a 4=1,从而a 5=60. 但再计算a 6=35,也与题设矛盾.∴a 3=2,a 4=5(或a 3=5,a 4=2⇒a 5∉N *,舍去). 15.证明:假设b 、c 不是异面直线,即b 与c 共面, 设b 与c 确定的平面为γ,则γ∩α=b ,γ∩β=c , ∵a ∥c ,∴α∥γ.又a ⊂α,且α∩γ=b , ∴a ∥b ,这与a ∩b =A 矛盾.因此b 与c 不可能共面,故b 与c 是异面直线. 16.解:(1)由4a n +1-a n a n +1+2a n =9得 a n +1=9-2a n 4-a n =2-1a n -4,求得a 2=73,a 3=135,a 4=197.(2)猜想a n =6n -52n -1.证明:①当n =1时,猜想成立.②设当n =k 时(k ∈N +)时,猜想成立,即a k =6k -52k -1,则当n =k +1时,有a k +1=2-1a k -4=2-16k -52k -1-4=6k +12k +1=6(k +1)-52(k +1)-1,所以当n =k +1时猜想也成立.③综合①②,猜想对任何n ∈N +都成立. 17.解:此命题是真命题.∵a +b +c =0,a >b >c ,∴a >0,c <0. 要证b 2-ac a <3成立,只要证b 2-ac <3a ,即证b 2-ac <3a 2,也就是证(a +c )2-ac <3a 2,即证(a-c)(2a+c)>0,∵a-c>0,2a+c=(a+c)+a=a-b>0,∴(a-c)(2a+c)>0成立.故原不等式成立.18.解:由f(1)=36,f(2)=108,f(3)=360,f(4)=1 224,猜想f(n)被36整除.证明:①当n=1时,猜想显然成立.②设n=k时,f(k)能被36整除.则n=k+1时,f(k+1)=[2(k+1)+7]·3k+1+9=3[(2k+7)·3k+9]+18(3k-1-1),根据假设3[2(k+7)·3k+9]被36整除,而3k-1-1是偶数,∴18(3k-1-1)能被36整除,从而f(k+1)能被36整除.综上所述,n∈N*时,f(n)能被36整除,由于f(1)=36,故36是整除f(n)的自然数中的最大数.。

(完整版)数学选修2-2练习题及答案

(完整版)数学选修2-2练习题及答案

目录:数学选修2-2第一章 导数及其应用 [基础训练A 组] 第一章 导数及其应用 [综合训练B 组] 第一章 导数及其应用 [提高训练C 组] 第二章 推理与证明 [基础训练A 组] 第二章 推理与证明 [综合训练B 组]第二章 推理与证明 [提高训练C 组] 第三章 复数 [基础训练A 组] 第三章 复数 [综合训练B 组]第三章 复数 [提高训练C 组](数学选修2-2)第一章 导数及其应用[基础训练A 组]一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3.函数3yx x 的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________;2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数5523--+=x x x y 的单调递增区间是___________________________。

高中数学 第二章 推理与证明练习 新人教A版选修2-2-新人教A版高二选修2-2数学试题

高中数学 第二章 推理与证明练习 新人教A版选修2-2-新人教A版高二选修2-2数学试题

第二章 推理与证明(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.证明:n +22<1+12+13+14+…+12n<n +1(n >1),当n =2时,中间式子等于( ) A.1 B.1+12C.1+12+13D.1+12+13+14解析:选D.n =2时中间式子的最后一项为14,所以中间式子为1+12+13+14.2.用反证法证明命题:“若函数f (x )=x 2+px +q ,那么|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12”时,反设正确的是( )A.假设|f (1)|,|f (2)|,|f (3)|都不小于12B.假设|f (1)|,|f (2)|,|f (3)|都小于12C.假设|f (1)|,|f (2)|,|f (3)|至多有两个小于12D.假设|f (1)|,|f (2)|,|f (3)|至多有一个小于12解析:选B.“|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12”的反设为“|f (1)|,|f (2)|,|f (3)|都小于12”.3.设x >0,则不等式x +1x ≥2,x +4x 2≥3,x +27x 3≥4,…,推广到x +axn ≥n +1,则a=( )A.2nB.2nC.n 2D.n n解析:选D.结合已知的三个不等式可以发现第二个加数的分子是分母x 的指数的指数次方,可得a =n n.4.下面是一段“三段论”推理过程:若函数f (x )在(a ,b )内可导且单调递增,则在(a ,b )内,f ′(x )>0恒成立.因为f (x )=x 3在(-1,1)内可导且单调递增,所以在(-1,1)内,f ′(x )=3x 2>0恒成立.以上推理中( )A.大前提错误B.小前提错误C.结论正确D.推理形式错误解析:选A.f (x )在(a ,b )内可导且单调递增,则在(a ,b )内,f ′(x )≥0恒成立,故大前提错误,故选A.5.用数学归纳法证明:1+11+2+11+2+3+…+11+2+3+…+n =2nn +1时,由n =k 到n =k +1左边需要添加的项是( )A.2k (k +2)B.1k (k +1)C.1(k +1)(k +2)D.2(k +1)(k +2)解析:选D.由n =k 到n =k +1时,左边需要添加的项是11+2+3+…+(k +1)=2(k +1)(k +2).故选D.6.分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证 b 2-ac <3a ”索的因应是( )A.a -b >0B.a -c <0C.(a -b )(a -c )>0D.(a -b )(a -c )<0解析:选C.要证明 b 2-ac <3a ,只需证b 2-ac <3a 2,只需证(a +c )2-ac <3a 2,只需证-2a 2+ac +c 2<0,即证2a 2-ac -c 2>0,即证(a -c )(2a +c )>0,即证(a -c )(a -b )>0.7.若sin A a =cos B b =cos C c,则△ABC 是( )A.等边三角形B.有一个内角是30°的直角三角形C.等腰直角三角形D.有一个内角是30°的等腰三角形解析:选C.因为sin A a =cos B b =cos C c,由正弦定理得,sin A a =sin B b =sin Cc,所以sin B b =cos B b =cos C c =sin C c.所以sin B =cos B ,sin C =cos C , 所以∠B =∠C =45°,所以△ABC 是等腰直角三角形.8.已知f (x )=x 3+x ,a ,b ,c ∈R ,且a +b >0,a +c >0,b +c >0,则f (a )+f (b )+f (c )的值一定( )A.大于0B.等于0C.小于0D.正负都可能解析:选A.f (x )为奇函数,也是增函数,因此由a +b >0可得a >-b ,所以f (a )>f (-b ),即f (a )>-f (b ),于是f (a )+f (b )>0,同理,f (a )+f (c )>0,f (b )+f (c )>0,所以f (a )+f (b )+f (c )>0.9.我们把平面中的结论“到定点的距离等于定长的点的轨迹是圆”拓展至空间中为“到定点的距离等于定长的点的轨迹是球”,类似可得:已知A (-1,0,0),B (1,0,0),则点集{P (x ,y ,z )||PA |-|PB |=1}在空间中的轨迹描述正确的是( )A.以A ,B 为焦点的双曲线绕轴旋转而成的旋转曲面B.以A ,B 为焦点的椭球体C.以A ,B 为焦点的双曲线单支绕轴旋转而成的旋转曲面D.以上都不对解析:选C.在平面中,点集{P (x ,y )||PA |-|PB |=1}是以A ,B 为焦点的双曲线的一支,点集{P (x ,y ,z )||PA |-|PB |=1}在空间中的轨迹是以A ,B 为焦点的双曲线单支绕轴旋转而成的旋转曲面,故选C.10.我国古代数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同,则积不容异”.“势”是高,“幂”是截面积.意思是:如果两个等高的几何体在同高处截得两几何体的截面积总相等,那么这两个几何体的体积相等.类比祖暅原理,如图所示,在平面直角坐标系中,区域①是一个形状不规则的封闭图形,区域②是一个上底长为1、下底长为2的梯形,且当实数t 取[0,3]上的任意值时,直线y =t 被区域①和区域②所截得的两线段长总相等,则区域①的面积为( )A.4B.92 C.5D.112解析:选B.根据题意,由祖暅原理分析可得①的面积等于②的面积,又②是一个上底长为1、下底长为2的梯形,所以①的面积为(1+2)×32=92.11.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是( )A.(7,5)B.(5,7)C.(2,10)D.(10,2)解析:选B.依题意,把“整数对”的和相同的分为一组,不难得知第n 组中每个“整数对”的和均为n +1,且第n 组共有n 个“整数对”,这样的前n 组一共有n (n +1)2个“整数对”,注意到10×(10+1)2<60<11×(11+1)2,因此第60个“整数对”处于第11组(每个“整数对”的和为12的组)的第5个位置,结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7).12.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( ) A.△A 1B 1C 1和△A 2B 2C 2都是锐角三角形 B.△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C.△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D.△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形解析:选D.因为三角形内角的正弦值是正值,所以△A 1B 1C 1的三个内角的余弦值均大于0.因此△A 1B 1C 1是锐角三角形.假设△A 2B 2C 2也是锐角三角形,并设cos A 1=sin A 2,则cos A 1=cos (90°-∠A 2), 所以∠A 1=90°-∠A 2.同理设cos B 1=sin B 2,cos C 1=sin C 2, 则有∠B 1=90°-∠B 2,∠C 1=90°-∠C 2. 又∠A 1+∠B 1+∠C 1=180°,所以(90°-∠A 2)+(90°-∠B 2)+(90°-∠C 2)=180°, 即∠A 2+∠B 2+∠C 2=90°. 这与三角形内角和等于180°矛盾,所以原假设不成立.若△A 2B 2C 2是直角三角形,不妨设A 2=π2,则sin A 2=1=cos A 1,而A 1在(0,π)内无解.故选D.二、填空题:本题共4小题,每小题5分.13.补充下列证明过程: 要证a 2+b 2+c 2≥ab +bc +ac (a ,b ,c ∈R ),即证,即证W. 因为a ,b ,c 为实数,上式显然成立,故命题结论成立. 答案:2(a 2+b 2+c 2)≥2ab +2bc +2ac (a -b )2+(b -c )2+(a -c )2≥014.已知a =5-12,函数f (x )=a x,若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为W.解析:因为当0<a <1时,函数f (x )=a x为减函数,a =5-12∈(0,1),所以函数f (x )=(5-12)x为减函数.故由f (m )>f (n )得m <n .答案:m <n15.有三X 卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一X 卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是W.解析:为方便说明,不妨将分别写有1和2,1和3,2和3的卡片记为A ,B ,C .从丙出发,由于丙的卡片上的数字之和不是5,则丙只可能是卡片A 或B ,无论是哪一X ,均含有数字1,再由乙与丙的卡片上相同的数字不是1可知,乙所拿的卡片必然是C ,最后由甲与乙的卡片上相同的数字不是2,知甲所拿的卡片为B ,此时丙所拿的卡片为A .答案:1和316.如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数且两端的数均为1n (n ≥2),每个数是它下一行左右相邻两数的和,如11=12+12,12=13+16,13=14+112,…,则第7行第4个数(从左往右数)为W. 11 1212 131613 14112112141512013012015…解析:由“第n 行有n 个数且两端的数均为1n ”可知,第7行第1个数为17,由“每个数是它下一行左右相邻两数的和”可知,第7行第2个数为16-17=142.同理易知,第7行第3个数为130-142=1105,第7行第4个数为160-1105=1140.答案:1140三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)定义在[-1,1]上的奇函数f (x ),当a ,b ∈[-1,1],a +b ≠0时,有f (a )+f (b )a +b>0.证明:函数f (x )的图象上不存在两个不同的点A ,B ,使直线AB 恰好与y 轴垂直.证明:假设函数f (x )的图象上存在两个不同的点A ,B ,使直线AB 恰好与y 轴垂直,则A ,B 两点的纵坐标相同.设它们的横坐标分别为x 1和x 2,x 1<x 2,且x 1,x 2∈[-1,1],则f (x 1)=f (x 2). 又f (x )是奇函数,所以f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1)+f (-x 2)x 1+(-x 2)[x 1+(-x 2)].又由题意,得f (x 1)+f (-x 2)x 1+(-x 2)>0,且x 1+(-x 2)<0,所以f (x 1)+f (-x 2)<0,即f (x 1)-f (x 2)<0, 这与f (x 1)=f (x 2)矛盾,故假设不成立,即函数f (x )的图象上不存在两个不同的点A ,B ,使直线AB 恰好与y 轴垂直. 18.(本小题满分12分)已知:A ,B 都是锐角,且A +B ≠90°,(1+tan A )(1+tan B )=2.求证:A +B =45°.证明:因为(1+tan A )(1+tan B )=2, 展开化简为tan A +tan B =1-tan A tan B . 因为A +B ≠90°,tan (A +B )=tan A +tan B 1-tan A tan B =1.又因为A ,B 都是锐角,所以0°<A +B <180°.所以A +B =45°.19.(本小题满分12分)已知a >0,b >0,2c >a +b ,求证:c -c 2-ab <a <c +c 2-ab . 证明:要证c -c 2-ab <a <c +c 2-ab . 只需证-c 2-ab <a -c <c 2-ab , 即证|a -c |<c 2-ab ,只需证(a -c )2<(c 2-ab )2, 只需证a 2-2ac +c 2<c 2-ab ,即证2ac >a 2+ab ,因为a >0,所以只需证2c >a +b .因为2c >a +b 已知, 所以原不等式成立.20.(本小题满分12分)如图,在直三棱柱ABC ­A 1B 1C 1中,A 1B 1=A 1C 1,D ,E 分别是棱BC ,CC 1上的点(点D 不同于点C ),且AD ⊥DE ,F为B 1C 1的中点.求证:(1)平面ADE ⊥平面BCC 1B 1; (2)直线A 1F ∥平面ADE .证明:(1)因为ABC ­A 1B 1C 1是直三棱柱, 所以CC 1⊥平面ABC .因为AD ⊂平面ABC ,所以CC 1⊥AD .因为AD ⊥DE ,CC 1,DE ⊂平面BCC 1B 1,CC 1∩DE =E , 所以AD ⊥平面BCC 1B 1. 因为AD ⊂平面ADE , 所以平面ADE ⊥平面BCC 1B 1.(2)因为A 1B 1=A 1C 1,F 为B 1C 1的中点, 所以A 1F ⊥B 1C 1,因为CC 1⊥平面A 1B 1C 1,且A 1F ⊂平面A 1B 1C 1, 所以CC 1⊥A 1F .因为CC 1,B 1C 1⊂平面BCC 1B 1,CC 1∩B 1C 1=C 1, 所以A 1F ⊥平面BCC 1B 1. 由(1)知AD ⊥平面BCC 1B 1, 所以A 1F ∥AD .因为AD ⊂平面ADE ,A 1F ⊄平面ADE , 所以A 1F ∥平面ADE .21.(本小题满分12分)设函数f (x )=x 3+11+x ,x ∈[0,1].证明:(1)f (x )≥1-x +x 2;(2)34<f (x )≤32.证明:(1)因为1-x +x 2-x 3=1-(-x )41-(-x )=1-x 41+x,由于x ∈[0,1],有1-x 41+x ≤1x +1,即1-x +x 2-x 3≤1x +1,所以f (x )≥1-x +x 2.(2)由0≤x ≤1得x 3≤x ,故f (x )=x 3+1x +1≤x +1x +1=x +1x +1-32+32=(x -1)(2x +1)2(x +1)+32≤32,所以f (x )≤32.由第一问得f (x )≥1-x +x 2=⎝ ⎛⎭⎪⎫x -122+34≥34,又因为f (12)=1924>34,所以f (x )>34.综上,34<f (x )≤32.22.(本小题满分12分)在各项为正的数列{a n }中,数列的前n 项和S n 满足S n =12⎝ ⎛⎭⎪⎫a n +1a n .(1)求a 1,a 2,a 3;(2)由(1)猜想数列{a n }的通项公式,并用数学归纳法证明你的猜想. 解:(1)易求得a 1=1,a 2=2-1,a 3=3- 2. (2)猜想a n =n -n -1(n ∈N *)证明:①当n =1时,a 1=1-0=1,命题成立. ②假设n =k (k ≥1,k ∈N *)时,a k =k -k -1成立, 则n =k +1时,a k +1=S k +1-S k =12⎝⎛⎭⎪⎫a k +1+1a k +1-12⎝⎛⎭⎪⎫a k +1ak=12⎝ ⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫k -k -1+1k -k -1 =12⎝ ⎛⎭⎪⎫a k +1+1a k +1-k ,所以,a 2k +1+2ka k +1-1=0,所以a k +1=k +1-k .即n =k +1时,命题成立. 由①②知,n ∈N *时,a n =n -n -1.。

高中数学第二章推理与证明2.1.2演绎推理学案含解析

高中数学第二章推理与证明2.1.2演绎推理学案含解析

2.1.2 演绎推理看下面两个问题:(1)一切奇数都不能被2整除,(22 017+1)是奇数,所以(22 017+1)不能被2整除;(2)两个平面平行,则其中一个平面内的任意直线必平行于另一个平面,如果直线a 是其中一个平面内的一条直线,那么a平行于另一个平面.问题1:这两个问题中的第一句都说的什么?提示:都说的一般原理.问题2:第二句又都说的什么?提示:都说的特殊示例.问题3:第三句呢?提示:由一般原理对特殊示例做出判断.1.演绎推理的概念从一般性的原理出发,推出某个特殊情况下的结论的推理称为演绎推理.2.三段论“三段论”是演绎推理的一般模式,包括:(1)大前提——已知的一般原理;(2)小前提——所研究的特殊情况;(3)结论——根据一般原理,对特殊情况做出的判断.“三段论”可以表示为:大前提:M是P.小前提:S是M.结论:S是P.演绎推理的三个特点(1)演绎推理的前提是一般性原理,演绎推理所得的结论是蕴含于前提之中的个别、特殊事实,结论完全蕴含于前提之中.(2)在演绎推理中,前提与结论之间存在必然的联系,只要前提是真实的,推理的形式是正确的,那么结论也必定是正确的.因而演绎推理是数学中严格证明的工具.(3)演绎推理是由一般到特殊的推理.(1)一切奇数都不能被2整除,75不能被2整除,所以75是奇数.(2)三角形的内角和为180°,Rt△ABC的内角和为180°.(3)菱形对角线互相平分.(4)通项公式为a n=3n+2(n≥2)的数列{a n}为等差数列.(1)一切奇数都不能被2整除.(大前提)75不能被2整除.(小前提)75是奇数.(结论)(2)三角形的内角和为180°.(大前提)Rt△ABC是三角形.(小前提)Rt△ABC的内角和为180°.(结论)(3)平行四边形对角线互相平分.(大前提)菱形是平行四边形.(小前提)菱形对角线互相平分.(结论)(4)数列{a n}中,如果当n≥2时,a n-a n-1为常数,则{a n}为等差数列.(大前提)通项公式a n=3n+2,n≥2时,a n-a n-1=3n+2-=3(常数).(小前提)通项公式为a n=3n+2(n≥2)的数列{a n}为等差数列.(结论)三段论的推理形式三段论推理是演绎推理的主要模式,推理形式为“如果b⇒c,a⇒b,则a⇒c”.其中,b⇒c为大前提,提供了已知的一般性原理;a⇒b为小前提,提供了一个特殊情况;a⇒c为大前提和小前提联合产生的逻辑结果.把下列推断写成三段论的形式:(1)y=sin x(x∈R)是周期函数.(2)若两个角是对顶角,则这两个角相等,所以若∠1和∠2是对顶角,则∠1和∠2相等.解:(1)三角函数是周期函数,大前提y=sin x(x∈R)是三角函数,小前提y=sin x(x∈R)是周期函数.结论(2)两个角是对顶角,则这两个角相等,大前提 ∠1和∠2是对顶角,小前提 ∠1和∠2相等.结论角△ABC 中,AD ,BE 是高,D ,E 为垂足,M 为AB 的中点.求证:ME =MD .∵有一个内角为直角的三角形为直角三角形,……大前提 在△ABD 中,AD ⊥CB ,∠ADB =90°,………………………………小前提∴△ABD 为直角三角形.………………………………………………结论 同理△ABE 也为直角三角形.∵直角三角形斜边上的中线等于斜边的一半,………………大前提M 是直角△ABD 斜边AB 上的中点,DM 为中线,………………………………小前提∴DM =12AB . ……………………………………………………………………………结论同理EM =12AB .∵和同一条线段相等的两条线段相等,………………………………………………大前提DM =12AB ,EM =12AB ,……………………………………………………………小前提∴ME =MD .结论三段论在几何问题中的应用(1)三段论是最重要且最常用的推理表现形式,我们以前学过的平面几何与立体几何的证明,都不自觉地运用了这种推理,只不过在利用该推理时,往往省略了大前提.(2)几何证明问题中,每一步都包含着一般性原理,都可以分析出大前提和小前提,将一般性原理应用于特殊情况,就能得出相应结论.如图,已知在梯形ABCD 中,,AB =CD =AD ,AC 和BD 是梯形的对角线,求证:AC 平分∠BCD ,DB 平分∠CBA .证明:∵等腰三角形两底角相等,………………………………………………大前提 △DAC 是等腰三角形,∠1和∠2是两个底角,………………………………小前提∴∠1=∠2.结论∵两条平行线被第三条直线截得的内错角相等,………………………………大前提∠1和∠3是平行线AD、BC被AC截得的内错角,………………………………小前提∴∠1=∠3.结论∵等于同一个角的两个角相等,……………………………………………………大前提∠2=∠1,∠3=∠1,………………………………………………………………小前提∴∠2=∠3,即AC平分∠BCD. …………………………………………………………结论同理可证DB平分∠CBA.已知函数f(x)=a x+x+1(a>1),求证:函数f(x)在(-1,+∞)上为增函数.如果在(-1,+∞)上f′(x)>0,那么函数f(x)在(-1,+∞)上是增函数,……………………………………………………………………………………………大前提∵a>1,∴f′(x)=a x ln a+3x +2>0,………………………………………………小前提∴函数f(x)在(-1,+∞)上为增函数.………………………………………………结论使用三段论应注意的问题(1)应用三段论证明问题时,要充分挖掘题目外在和内在条件(小前提),根据需要引入相关的适用的定理和性质(大前提),并保证每一步的推理都是正确的、严密的,才能得出正确的结论.(2)证明中常见的错误:①条件分析错误(小前提错).②定理引入和应用错误(大前提错).③推理过程错误等.已知a,b,m均为正实数,b<a,用三段论形式证明ba<b+ma+m.证明:因为不等式两边同乘一个正数,不等号不改变方向,……………大前提b<a,m>0,………………………………………………………………小前提所以mb<ma. …………………………………………………………………………结论因为不等式两边同加上一个数,不等号不改变方向,…………………………大前提mb<ma,………………………………………………………………………………小前提所以mb +ab <ma +ab ,即b (a +m )<a (b +m ).………………………………结论 因为不等式两边同除以一个正数,不等号不改变方向,……………………………大前提b (a +m )<a (b +m ),a (a +m )>0,………………………………小前提所以b a +m a a +m <a b +m a a +m ,即b a <b +ma +m.………………………………结论6.混淆三段论的大、小前提而致误定义在实数集R 上的函数f (x ),对任意x ,y ∈R ,有f (x -y )+f (x +y )=2f (x )f (y ),且f (0)≠0,求证:f (x )是偶函数.证明:令x =y =0,则有f (0)+f (0)=2f (0)×f (0). 又因为f (0)≠0,所以f (0)=1. 令x =0,则有f (-y )+f (y )=2f (0)f (y )=2f (y ), 所以f (-y )=f (y ), 因此,f (x )是偶函数.以上证明结论“f (x )是偶函数”运用了演绎推理的“三段论”,其中大前提是________________________________________________________________________.通过两次赋值先求得“f (0)=1”,再证得“f (-y )=f (y )”,从而得到结论“f (x )是偶函数”.所以这个三段论推理的小前提是“f (-y )=f (y )”,结论是“f (x )是偶函数”,显然大前提是“若对于定义域内任意一个x ,都有f (-x )=f (x ),则f (x )是偶函数”.若对于定义域内任意一个x ,都有f (-x )=f (x ),则f (x )是偶函数解本题的关键是透彻理解三段论推理的形式:大前提—小前提—结论,其中大前提是一个一般性的命题,即证明这个具体问题的理论依据.因此结合f (x )是偶函数的定义和证明过程容易确定本题答案.本题易误认为题目的已知条件为大前提而导致答案错误.所有眼睛近视的人都是聪明人,我近视得很厉害,所以我是聪明人.下列各项中揭示了上述推理是明显错误的是________(填序号).①我是个笨人,因为所有的聪明人都是近视眼,而我的视力那么好. ②所有的猪都有四条腿,但这种动物有八条腿,所以它不是猪.③小陈十分高兴,所以小陈一定长得很胖,因为高兴的人都长得很胖. ④所有尖嘴的鸟都是鸡,这种总在树上待着的鸟是尖嘴的,因此这种鸟是鸡. 解析:根据④中的推理可得:这种总在树上待着的鸟是鸡,这显然是错误的.①②③不符合三段论的形式.答案:④1.“四边形ABCD 是矩形,所以四边形ABCD 的对角线相等”,补充该推理的大前提是( )A .正方形的对角线相等B .矩形的对角线相等C .等腰梯形的对角线相等D .矩形的对边平行且相等解析:选B 得出“四边形ABCD 的对角线相等”的大前提是“矩形的对角线相等”. 2.“因为对数函数y =log a x 是增函数(大前提),而y =log 13x 是对数函数(小前提),所以y =log 13x 是增函数(结论).”上述推理错误的原因是( )A .大前提错导致结论错B .小前提错导致结论错C .推理形式错导致结论错D .大前提和小前提都错导致结论错解析:选A 大前提是错误的,因为对数函数y =log a x (0<a <1)是减函数. 3.求函数y =log 2x -2的定义域时,第一步推理中大前提是a 有意义,即a ≥0,小前提是log 2x -2有意义,结论是________.解析:由三段论的形式可知,结论是log 2x -2≥0. 答案:log 2x -2≥04.用三段论证明函数f (x )=x +1x在(1,+∞)上为增函数的过程如下,试将证明过程补充完整:①________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________(大前提) ②________________________________________________________________________________________________________________________________________________ ________________________________________________________________________(小前提)③________________________________________________________________________ ________________________________________________________________________(结论)答案:①如果函数f (x )满足:在给定区间内任取自变量的两个值x 1,x 2,若x 1<x 2,则f (x 1)<f (x 2),那么函数f (x )在给定区间内是增函数.②任取x 1,x 2∈(1,+∞),x 1<x 2,则f (x 1)-f (x 2)=x 1-x 2x 1x 2-x 1x 2,由于1<x 1<x 2,故x 1-x 2<0,x 1x 2>1,即x 1x 2-1>0,所以f (x 1)<f (x 2).③函数f (x )=x +1x在(1,+∞)上为增函数.5.将下列推理写成“三段论”的形式.(1)向量是既有大小又有方向的量,故零向量也有大小和方向; (2)矩形的对角线相等,正方形是矩形,所以正方形的对角线相等;(3)0.332·是有理数.解:(1)向量是既有大小又有方向的量.………………………………大前提 零向量是向量.……………………………………………………………小前提 零向量也有大小和方向.………………………………………………结论 (2)每一个矩形的对角线相等.……………………………………………大前提 正方形是矩形.………………………………………………………………小前提 正方形的对角线相等.………………………………………………………结论 (3)所有的循环小数都是有理数.……………………………………………大前提0.332·是循环小数.…………………………………………………………小前提0.332·是有理数.……………………………………………………………结论一、选择题1.给出下面一段演绎推理: 有理数是真分数,大前提 整数是有理数,小前提 整数是真分数.结论结论显然是错误的,是因为( ) A .大前提错误 B .小前提错误C .推理形式错误D .非以上错误解析:选A 推理形式没有错误,小前提也没有错误,大前提错误.举反例,如2是有理数,但不是真分数.2.“所有金属都能导电,铁是金属,所以铁能导电”这种推理方法属于( ) A .演绎推理 B .类比推理 C .合情推理 D .归纳推理解析:选A 是由一般到特殊的推理,故是演绎推理. 3.下面几种推理过程是演绎推理的是( )A .两条直线平行,同旁内角互补,如果∠A 与∠B 是两条平行直线的同旁内角,则∠A +∠B =180°B .某校高三(1)班有55人,(2)班有54人,(3)班有52人,由此得高三所有班人数超过50人C .由三角形的性质,推测四面体的性质D .在数列{a n }中,a 1=1,a n =12⎝ ⎛⎭⎪⎫a n -1+1a n -1(n ≥2),由此归纳出a n 的通项公式解析:选A B 项是归纳推理,C 项是类比推理,D 项是归纳推理.4.“∵四边形ABCD 是矩形,∴四边形ABCD 的对角线相等.”补充以上推理的大前提( )A .正方形都是对角线相等的四边形B .矩形都是对角线相等的四边形C .等腰梯形都是对角线相等的四边形D .矩形都是对边平行且相等的四边形解析:选B 推理的大前提应该是矩形的对角线相等,表达此含义的选项为B. 5.有一段演绎推理是这样的:直线平行于平面,则直线平行于平面内所有直线;已知直线b ⊄平面α,直线a ⊂平面α,直线b ∥平面α,则直线b ∥直线a .结论显然是错误的,这是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误解析:选A 大前提是错误的,直线平行于平面,则不一定平行于平面内所有直线,还有异面直线的情况.二、填空题6.若有一段演绎推理:“大前提:整数是自然数.小前提:-3是整数.结论:-3是自然数.”这个推理显然错误,则推理错误的是________(填“大前提”“小前提”或“结论”).解析:整数不全是自然数,还有零与负整数,故大前提错误. 答案:大前提7.已知推理:“因为△ABC 的三边长依次为3,4,5,所以△ABC 是直角三角形”.若将其恢复成完整的三段论,则大前提是____________________.解析:大前提:一条边的平方等于其他两条边的平方和的三角形是直角三角形;小前提:△ABC 的三边长依次为3,4,5,满足32+42=52;结论:△ABC 是直角三角形.答案:一条边的平方等于其他两条边的平方和的三角形是直角三角形8.若不等式ax 2+2ax +2<0的解集为空集,则实数a 的取值范围为________. 解析:①a =0时,有2<0,显然此不等式解集为∅.②a ≠0时需有⎩⎪⎨⎪⎧a >0,Δ≤0,⇒⎩⎪⎨⎪⎧a >0,4a 2-8a ≤0,⇒⎩⎪⎨⎪⎧a >0,0≤a ≤2,所以0<a ≤2.综上可知,实数a 的取值范围是. 答案: 三、解答题9.如下图,在直四棱柱ABCD ­A 1B 1C 1D 1中,底面是正方形,E ,F ,G 分别是棱B 1B ,D 1D ,DA 的中点.求证:(1)平面AD 1E ∥平面BGF ; (2)D 1E ⊥AC .证明:(1)∵E ,F 分别是B 1B 和D 1D 的中点, ∴D 1F 綊BE ,∴四边形BED 1F 是平行四边形,∴D 1E ∥BF . 又∵D 1E ⊄平面BGF ,BF ⊂平面BGF , ∴D 1E ∥平面BGF .∵F ,G 分别是D 1D 和DA 的中点, ∵FG 是△DAD 1的中位线,∴FG ∥AD 1. 又∵AD 1⊄平面BGF ,FG ⊂平面BGF ,∴AD 1∥平面BGF . 又∵AD 1∩D 1E =D 1, ∴平面AD 1E ∥平面BGF . (2)如右图,连接BD ,B 1D 1, ∵底面ABCD 是正方形, ∴AC ⊥BD .∵D 1D ⊥AC ,BD ∩D 1D =D , ∴AC ⊥平面BDD 1B 1.∵D 1E ⊂平面BDD 1B 1,∴D 1E ⊥AC .10.在数列{}a n 中,a 1=2,a n +1=4a n -3n +1,n ∈N *.(1)证明数列{}a n -n 是等比数列. (2)求数列{}a n 的前n 项和S n .(3)证明不等式S n +1≤4S n ,对任意n ∈N *皆成立. 解:(1)证明:因为a n +1=4a n -3n +1, 所以a n +1-(n +1)=4(a n -n ),n ∈N *. 又因为a 1-1=1,所以数列{}a n -n 是首项为1, 公比为4的等比数列. (2)由(1)可知a n -n =4n -1,于是数列{}a n 的通项公式为a n =4n -1+n ,所以数列{}a n 的前n 项和S n =4n-13+nn +2.(3)证明:对任意的n ∈N *, S n +1-4S n =4n +1-13+n +n +2-44n-13+n n +2=-12(3n 2+n -4)≤0,所以不等式S n +1≤4S n ,对任意n ∈N *皆成立.。

选修2-2第一章推理与证明练习题

选修2-2第一章推理与证明练习题

推理与证明过关检测试题1.考察下列一组不等式: ,5252522233⋅+⋅>+ ,5252523344⋅+⋅>+,525252322355⋅+⋅>+.将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式可以是 . 2.已知数列{}n a 满足12a =,111n n na a a ++=-(*n ∈N ),则3a 的值为 , 1232007a a a a ⋅⋅⋅⋅ 的值为 . 3. 已知2()(1),(1)1()2f x f x f f x +==+*x N ∈(),猜想(f x )的表达式为( ) A.4()22xf x =+; B.2()1f x x =+; C.1()1f x x =+; D.2()21f x x =+.4. 某纺织厂的一个车间有技术工人m 名(m N *∈),编号分别为1、2、3、……、m ,有n 台(n N *∈)织布机,编号分别为1、2、3、……、n ,定义记号i j a :若第i 名工人操作了第j 号织布机,规定1i j a =,否则0i j a =,则等式41424343n a a a a ++++= 的实际意义是( ) A 、第4名工人操作了3台织布机; B 、第4名工人操作了n 台织布机; C 、第3名工人操作了4台织布机; D 、第3名工人操作了n 台织布机. 5. 已知*111()1()23f n n N n=++++∈ ,计算得3(2)2f =,(4)2f >,5(8)2f >,(16)3f >,7(32)2f >,由此推测:当2n ≥时,有6. 观察下图中各正方形图案,每条边上有(2)n n ≥个圆圈,每个图案中圆圈的总数是n S ,按此规律推出:当2n ≥时,n S 与n 的关系式24n S == 38n S == 412n S ==7.观察下式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,则可得出一般结论: . 8.函数()f x 由下表定义:若05a =,1()n n a f a +=,0,1,2,n = ,则2007a = .9.在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝, 第二件首饰是由6颗珠宝构成如图1所示的正六边形, 第三件首饰是由15颗珠宝构成如图2所示的正六边形, 第四件首饰是由28颗珠宝构成如图3所示的正六边形, 第五件首饰是由45颗珠宝构成如图4所示的正六边形, 以后每件首饰都在前一件上,按照这种规律增加一定数量的珠宝,使它构成更大的正六边形,依此推断第6件首饰上应有_______颗珠宝;则前n 件首饰所用珠宝总数为_ 颗.(结果用n 表示)……10.那么2003应该在第 行,第 列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章推理与证明习题苏教版选修2-21 合情推理的妙用合情推理包括归纳推理和类比推理,在近几年的高考试题中,关于合情推理的试题多与其他知识联系,以创新题的形式出现在考生面前.下面介绍一些推理的命题特点,揭示求解规律,以期对同学们求解此类问题有所帮助.一、归纳推理的考查1.数字规律周期性归纳例1 观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 013的末四位数字为________.解析∵55=3 125,56=15 625,57=78 125,58末四位数字为0625,59末四位数字为3125,510末四位数字为5625,511末四位数字为8125,512末四位数字为0625,…,由上可得末四位数字周期为4,呈规律性交替出现,∴52 013=54×502+5末四位数字为3125.答案3125点评对于具有周期规律性的数或代数式需要多探索几个才能发现规律,当已给出事实与所求相差甚“远”时,可考虑到看是否具有周期性.2.代数式形式归纳例2 设函数f(x)=xx+2(x>0),观察:f1(x)=f(x)=xx+2,f2(x)=f(f1(x))=x3x+4,f3(x)=f(f2(x))=x7x+8,f4(x)=f(f3(x))=x15x+16,……根据以上事实,由归纳推理可得:当n∈N*且n≥2时,f n(x)=f(f n-1(x))=________.解析依题意,先求函数结果的分母中x项系数所组成数列的通项公式,由1,3,7,15,…,可推知该数列的通项公式为a n=2n-1.又函数结果的分母中常数项依次为2,4,8,16,…,故其通项公式为b n=2n.所以当n ≥2时,f n (x )=f (f n -1(x ))=x2n -1 x +2n .答案x2n-1 x +2n点评 对于与数列有关的规律归纳,一定要观察全面,并且要有取特殊值最后检验的习惯. 3.图表信息归纳例3 古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:图(1)图(2)他们研究过图(1)中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图(2)中的1,4,9,16,…这样的数为正方形数. 下列数中既是三角形数又是正方形数的是________. ①289 ②1 024 ③1 225 ④1 378分析 将三角形数和正方形数分别视作数列,则既是三角形数又是正方形数的数字是上述两数列的公共项.解析 设图(1)中数列1,3,6,10,…的通项公式为a n ,其解法如下:a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,…,a n -a n -1=n . 故a n -a 1=2+3+4+…+n ,∴a n =n n +12.而图(2)中数列的通项公式为b n =n 2,因此所给的选项中只有1 225满足a 49=49×502=b 35=352=1 225. 答案 ③点评 此类图形推理问题涉及的图形构成的元素一般为点.题目类型为已知几个图形,图形中元素的数量呈现一定的变化,这种数量变化存在着简单的规律性,如点的数目的递增关系或递减关系,依据此规律求解问题,一般需转化为求数列的通项公式或前n 项和等. 二、类比推理的考查 1.类比定义在求解类比某种熟悉的定义产生的类比推理型试题时,可以借助原定义来求解.例1 等和数列的定义是:若数列{a n }从第二项起,以后每一项与前一项的和都是同一常数,则此数列叫做等和数列,这个常数叫做等和数列的公和.如果数列{a n }是等和数列,且a 1=1,a 2=3,则数列{a n }的一个通项公式是________. 解析 由定义,知公和为4,且a n +a n -1=4,那么a n -2=-(a n -1-2),于是a n -2=(-1)n -1(a 1-2).因为a 1=1,得a n =2+(-1)n即为数列的一个通项公式. 答案 a n =2+(-1)n点评 解题的前提是正确理解等和数列的定义,将问题转化为一个等比数列来求解. 2.类比性质从一个特殊式子的性质、一个特殊图形的性质入手,提出类比推理型问题.求解时要认真分析两者之间的联系与区别,深入思考两者的转化过程是求解的关键.例2 平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行.类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件: 充要条件①____________________________;充要条件②________________________________________.解析 类比平行四边形的两组对边分别平行可得,两组相对侧面互相平行是一个四棱柱为平行六面体的充要条件.类比平行四边形的两组对边分别相等可得,两组相对侧面分别全等是一个四棱柱为平行六面体的充要条件.类比平行四边形的一组对边平行且相等可得,一组相对侧面平行且全等是一个四棱柱为平行六面体的充要条件.类比平行四边形的对角线互相平分可得,主对角线互相平分 是一个四棱柱为平行六面体的充要条件.类比平行四边形的对角线互相平分可得,对角面互相平分是一个四棱柱为平行六面体的充要条件.点评 由平行四边形的性质类比到平行六面体的性质,注意结论类比的正确性. 3.类比方法有一些处理问题的方法具有类比性,我们可以把这种方法类比应用到其他问题的求解中,注意知识的迁移.例3 已知数列{a n }的前n 项的乘积T n =3n+1,则其通项公式a n =________.解析 类比数列前n 项和S n 与通项a n 的关系a n =S n -S n -1(n ≥2),得到数列前n (n ≥2)项的乘积T n 与通项a n 的关系.注意对n =1的情况单独研究.当n =1时,a 1=T 1=31+1=4.当n ≥2时,a n =T n T n -1=3n+13n -1+1,a 1不适合上式,所以通项公式a n =⎩⎪⎨⎪⎧4,n =13n+13n -1+1,n ≥2.答案 ⎩⎪⎨⎪⎧4,n =13n+13n -1+1,n ≥2.2 各有特长的综合法与分析法做任何事情都要讲究方法,方法对头,事半功倍;方法不当,事倍功半.解答数学问题,关键在于掌握思考问题的方法,少走弯路,以尽快获得满意的答案.证明数学问题的方法很多,其中综合法与分析法是最常见、使用频率最高的方法.综合法是从已知条件出发,一步步地推导结果,最后推出要证明的结果,即从“已知”看“可知”,逐步推向“未知”,其逐步推理实际上是寻找它的必要条件;分析法则是从待证结论出发,一步步地寻求使其成立的条件,直至寻求到已知条件或公理、定义、定理等,即从“未知”看“需知”,逐步靠拢“已知”,其逐步推理实际上是寻找它的充分条件.综合法表现为“由因导果”,分析法表现为“执果索因”,它们的应用十分广泛.要证明一个命题正确,我们可以从已知条件出发,通过一系列已确立的命题(如定义、定理等),逐步向后推演,最后推得要证明的结果,这种思维方法就叫做综合法,可简单地概括为“由因导果”,即“由原因去推导结果”.要证明一个命题正确,为了寻找正确的证题方法或途径,我们可以先设想它的结论是正确的,然后追究它成立的原因,再就这些原因分别研究,看它们成立又各需具备什么条件,如此逐步往上逆求,直至达到已知的事实,这种思维方法就叫做分析法,可简单地概括为“执果索因”,即“拿着结果去寻找原因”. 例1 已知a >b >c ,求证:1a -b +1b -c +4c -a≥0. 分析 首先使用分析法寻找证明思路. 证法一 (分析法)要证原不等式成立, 只需证1a -b +1b -c ≥4a -c. 通分,得 b -c + a -b a -b b -c ≥4a -c ,即证a -c a -b b -c ≥4a -c .因为a >b >c ,所以a -b >0,b -c >0,a -c >0. 只需证(a -c )2≥4(a -b )(b -c )成立.由上面思路可得如下证题过程. 证法二 (综合法)∵a >b >c , ∴a -b >0,b -c >0,a -c >0.∴4(a -b )(b -c )≤[(a -b )+(b -c )]2=(a -c )2.∴a -c a -b b -c ≥4a -c, 即 b -c + a -b a -b b -c -4a -c ≥0. ∴1a -b +1b -c +4c -a≥0. 从例题不难发现,分析法和综合法各有其优缺点:从寻求解题思路来看,分析法“执果索因”,常常根底渐近,有希望成功;综合法“由因导果”,往往枝节横生,不容易奏效.从表达过程而论,分析法叙述繁琐,文辞冗长;综合法形式简洁,条理清晰.也就是说,分析法利于思考,综合法宜于表达.因此,在实际解题时,把分析法和综合法孤立起来运用是脱离实际的,两者结合,互相弥补才是应该提倡的;先以分析法为主寻求解题思路,再用综合法有条理地表达解题过程.最后,提醒一下,对于一些较复杂的问题,不论是从“已知”推向“未知”,还是由“未知”靠拢“已知”,都是一个比较长的过程,单靠分析法或综合法显得较为困难.为保证探索方向准确及过程快捷,人们常常把分析法与综合法两者并列起来使用,即常采取同时从已知和结论出发,寻找问题的一个中间目标的“两头凑”的方法去寻求证明途径:先从已知条件出发,看可以得出什么结果,再从要证明的结论开始寻求,看它成立需具备哪些条件,最后看它们的差距在哪里,从而找出正确的证明途径.例2 设f (x )=ax 2+bx +c (a ≠0),若函数f (x +1)与f (x )的图象关于y 轴对称.求证:f (x +12)为偶函数. 证明 方法一 要证f (x +12)为偶函数,只需证f (x +12)的对称轴为x =0,只需证-b 2a -12=0,只需证a =-b .因为函数f (x +1)与f (x )的图象关于y 轴对称, 即x =-b 2a -1与x =-b2a关于y 轴对称,所以-b 2a -1=--b2a,所以a =-b ,所以f (x +12)为偶函数.方法二 要证f (x +12)是偶函数,只需证f (-x +12)=f (x +12).因为f (x +1)与f (x )的图象关于y 轴对称, 而f (x )与f (-x )的图象关于y 轴对称, 所以f (-x )=f (x +1),f (-x +12)=f (-(x -12))=f ((x -12)+1)=f (x +12),所以f (x +12)是偶函数.点评 本题前半部分是用分析法证明,但寻找的充分条件不是显然成立的,可再用综合法证明,这种处理方法在推理证明中是常用的.3 体验反证法的独到之处反证法作为一种证明方法,在高考中,虽然很少单独命题,但是有时运用反证法的证明思路判断、分析命题有独到之处.下面举例分析用反证法证明问题的几个类型: 1.证明否定性问题例1 平面内有四个点,任意三点不共线.证明:以任意三点为顶点的三角形不可能都是锐角三角形.分析 假设以四点中任意三点为顶点的三角形都是锐角三角形,先固定三点组成一个三角形,则第四点要么在此三角形内,要么在此三角形外,且各个三角形的内角都是锐角,选取若干个角的和与一些已知结论对照即得矛盾.解 假设以任意三点为顶点的四个三角形都是锐角三角形,四个点为A ,B ,C ,D . 考虑△ABC ,则点D 有两种情况:在△ABC 内部和外部.(1)如果点D 在△ABC 内部(如图(1)),根据假设知围绕点D 的三个角∠ADB ,∠ADC ,∠BDC 都小于90°,其和小于270°,这与一个周角等于360°矛盾.(2)如果点D在△ABC外部(如图(2)),根据假设知∠BAD,∠ABC,∠BCD,∠ADC都小于90°,即四边形ABCD的内角和小于360°,这与四边形内角和等于360°矛盾.综上所述,可知假设错误,题中结论成立.点评结论本身是否定形式、唯一性或存在性命题时,常用反证法.2.证明“至多”“至少”“唯一”“仅仅”等问题例2 A是定义在[2,4]上且满足如下两个条件的函数φ(x)组成的集合:①对任意的x∈[1,2],都有φ(2x)∈(1,2);②存在常数L(0<L<1),使得对任意的x1,x2∈[1,2],都有|φ(2x1)-φ(2x2)|<L|x1-x2|. 设φ(x)∈A,试证:如果存在x0∈(1,2),使得x0=φ(2x0),那么这样的x0是唯一的.证明假设存在两个x0,x′0∈(1,2),x0≠x′0,使得x0=φ(2x0),x′0=φ(2x′0),则由|φ(2x0)-φ(2x′0)|<L|x0-x′0|,得|x0-x′0|<L|x0-x′0|.所以L>1.这与题设中0<L<1矛盾,所以原假设不成立.故得证.点评若直接证明,往往思路不明确,而运用反证法则能迅速找到解题思路,从而简便得证.3.证明较复杂的问题例3 如果△A1B1C1的三个内角的余弦值分别等于△A2B2C2的三个内角的正弦值,则________.①△A1B1C1和△A2B2C2都是锐角三角形②△A1B1C1和△A2B2C2都是钝角三角形③△A1B1C1是钝角三角形,△A2B2C2是锐角三角形④△A1B1C1是锐角三角形,△A2B2C2是钝角三角形解析因为正弦值在(0°,180°)内是正值,所以△A1B1C1的三个内角的余弦值均大于0.因此△A1B1C1是锐角三角形.假设△A2B2C2也是锐角三角形,并设cos A1=sin A2,则cos A1=cos(90°-A2).所以A1=90°-A2.同理设cos B1=sin B2,cos C1=sin C2,则有B1=90°-B2,C1=90°-C2.又A1+B1+C1=180°,∴(90°-A2)+(90°-B2)+(90°-C2)=180°,即A2+B2+C2=90°.这与三角形内角和等于180°矛盾,所以原假设不成立,故选④.答案④例4 已知a+b+c>0,ab+bc+ca>0,abc>0.求证:a>0,b>0,c>0.分析若从正面证明,比较复杂,需要考虑的方面比较多,故采用反证法来证明.证明假设a<0,由abc>0,知bc<0.由a+b+c>0,知b+c>-a>0,于是ab+bc+ca=a(b+c)+bc<0.这与已知矛盾.又若a=0,则abc=0,与abc>0矛盾.故a>0.同理可证b>0,c>0.小结至于什么情况下用反证法,应依问题的具体情况而定,切忌滥用反证法.一般说来,当非命题比原命题更具体、更明确、更简捷,易于推出矛盾时,才便于用反证法.运用反证法证题时,还应注意以下三点:1.必须周密考察原结论,防止否定有所遗漏;2.推理过程必须完全正确,否则,不能肯定非命题是错误的;3.在推理过程中,可以使用已知条件,推出的矛盾必须很明确,毫不含糊.另外,反证法证题的首要环节就是对所证结论进行反设,因此大家必须掌握一些常见关键词的否定形式.4 数学归纳法中如何用假设数学归纳法是高中数学重要的证明方法之一,它对证明与正整数有关的命题十分有效,解决这类问题的基础是第一步,关键是第二步.不管何类题目,只要利用数学归纳法证明,其假设条件必须用上,下面我们结合实例说明数学归纳法的假设条件如何运用. 1.直接运用例1 用数学归纳法证明:1+n 2≤1+12+13+…+12n ≤12+n (n 是正整数).证明 (1)当n =1时,左边=1+12=32,中间=1+12=32,右边=12+1=32,所以不等式成立.(2)假设当n =k (k ≥1,k ∈N *)时,不等式成立,即1+k 2≤1+12+13+…+12k ≤12+k .那么,当n =k +1时,1+12+13+…+12k +12k +1+12k +2+…+12k +1>1+k 2+2k ·12k +1=1+k +12, 1+12+13+…+12k +12k +1+12k +2+…+12k +1<12+k +2k·12k =12+(k +1). 这就是说,当n =k +1时不等式成立.根据(1)和(2),知对任意正整数n ,不等式均成立. 2.配凑后运用例2 已知f (n )=1+12+13+…+1n ,求证:n +f (1)+…+f (n -1)=nf (n )(n ≥2,且n 是正整数).证明 (1)当n =2时, 左边=2+f (1)=2+1=3,右边=2f (2)=2×⎝ ⎛⎭⎪⎫1+12=3,等式成立. (2)假设当n =k (k ≥2,k ∈N *)时,等式成立, 即k +f (1)+…+f (k -1)=kf (k ). 那么,当n =k +1时,(k +1)+f (1)+…+f (k -1)+f (k ) =1+f (k )+kf (k )=(k +1)f (k )+1=(k +1)⎣⎢⎡⎦⎥⎤f k +1k +1=(k+1)f(k+1).这就是说,当n=k+1时等式成立.根据(1)和(2),知等式对从2开始的所有正整数n都成立.点评解决此题的关键是盯住结论(k+1)f(k+1),凑出系数k+1.3.增减项后运用例3 证明:(n+1)(n+2)(n+3)…(2n)=2n·1·3·5·…·(2n-1)(n是正整数).证明(1)当n=1时,左边=2,右边=21·1=2,等式成立.(2)假设当n=k(k≥1,k∈N*)时,等式成立,即(k+1)(k+2)(k+3)…(2k)=2k·1·3·5·…·(2k-1).那么,当n=k+1时,左边=(k+2)(k+3)(k+4)…(2k)(2k+1)(2k+2),设法凑出假设:乘以(k+1),再除以(k+1),即左边=(k+1)·(k+2)(k+3)…(2k)(2k+1)(2k+2)·1k+1=2k+1·1·3·5·…·(2k-1)·(2k+1),这就是说,当n=k+1时等式成立.根据(1)和(2),知等式对任意正整数n都成立.点评对n=k+1时,等式的左边乘一项,除一项(或加一项,减一项),设法凑出假设条件的形式,从而证明n=k+1时等式成立,这说明解题时要有目标意识.5 用数学归纳法解题的常见误区数学归纳法一般用于证明与正整数有关的问题,用数学归纳法证明时要分两个步骤,且缺一不可.本文举例剖析用数学归纳法解题的几类常见误区.误区一、未注意初始值例1 判断2+4+…+2n=n2+n+1对大于1的自然数n是否都成立,若成立,请给出证明.错证假设n=k(k>1,k∈N*)时,结论成立,即2+4+…+2k=k2+k+1,则2+4+…+2k+2(k+1)=k2+k+1+2(k+1)=(k+1)2+(k+1)+1.所以当n=k+1时,等式也成立.因此,对大于1的自然数n,2+4+…+2n=n2+n+1都成立.剖析错解中忽略了当n=2时,左边是6,右边是7.左右两边不相等,即2+4+…+2n=n2+n+1对大于1的自然数n不是都成立的.这种第一步简单可省略是错误的,数学归纳法的两个步骤缺一不可.误区二、未用归纳假设例2 用数学归纳法证明:2+22+…+2n-1=2(2n-1-1)(n>2,n∈N*).错证 (1)当n =3时,左边=2+22=6,右边=2(22-1)=6,等式成立;(2)假设n =k (k >2,k ∈N *)时,结论成立,即2+22+…+2k -1=2(2k -1-1),那么由等比数列的前n 项和公式,得2+22+…+2k -1+2k=2 1-2k 1-2=2(2k -1). 所以当n =k +1时,等式也成立. 由(1)(2)可知,等式对任意n >2,n ∈N *都成立.剖析 错证中的第二步没用到归纳假设,直接使用了等比数列的求和公式.由于未用归纳假设,造成使用数学归纳法失误.正证 (1)当n =3时,左边=2+22=6,右边=2(22-1)=6,等式成立;(2)假设n =k (k >2,k ∈N *)时,结论成立,即2+22+…+2k -1=2(2k -1-1), 那么n =k +1时,2+22+…+2k -1+2k =2(2k -1-1)+2k =2·2k -2=2(2k-1). 所以当n =k +1时,等式也成立.由(1)(2)可知,等式对任意n >2,n ∈N *都成立.误区三、未注意从n =k 到n =k +1应增加的项例3 求证:1+2+4+…+2n -1=12(4n -1+2n -1)(n ∈N *). 错证 (1)当n =1时,左边=1,右边=12(41-1+21-1)=1,等式成立; (2)假设n =k (k ∈N *)时,结论成立,即1+2+4+…+2k -1=12(4k -1+2k -1), 那么1+2+4+…+2k -1+2k =12(4k -1+2k -1)+2k =12(4k +2k ). 所以当n =k +1时,等式也成立.由(1)(2),知等式对任意n ∈N *都成立.剖析 错证中有两个问题:第一未注意从n =k 到n =k +1应增加的项,实际上,并非仅增加了2k 一项,而是增加了2k -1项;第二“12(4k -1+2k -1)+2k =12(4k +2k )”是错误的,这是通过结论直接写出,实际上,这是使用数学归纳法的大忌.正证 (1)当n =1时,左边=1,右边=12(41-1+21-1)=1,等式成立; (2)假设n =k (k ∈N *)时,结论成立,即1+2+3+…+2k -1=12(4k -1+2k -1),那么1+2+3+…+2k -1+(2k -1+1)+(2k -1+2)+…+2k =1+2+3+…+2k -1+(2k -1+1)+(2k -1+2)+…+(2k -1+2k -1)=(1+2+3+…+2k -1)+(1+2+3+…+2k -1)+2k -1·2k -1=(4k -1+2k -1)+2k -1·2k -1=2×4k -1+2k -1=12(4k +2k ). 所以当n =k +1时,等式也成立.由(1)(2),知等式对任意n ∈N *都成立.。

相关文档
最新文档