初中数学人教版八年级上学期 第十四章测试卷(II )卷
八年级上册数学第十四章 (14. 1~14.2)检测题(含答案)
八年级上册数学第十四章(14. 1~14.2)测试卷知识点一:同底数幂的乘法1.下列各题中的两个幂是同底数幂的是()A.-x²与(-x)³B.(-x)²与x²C.-x²与x³D.(a-b)⁵与(b-a)⁵2.下列各式中,运算正确的是()A. a³+a⁴=a⁷B.b³·b⁴=b⁷C.c³·c⁴=c¹²D.d³·d⁴= 2d⁷3.若x a·a²= a⁵,则x的值为()A.1 B.2 C.3 D.44.下列四个算式:①a³·a³= 2a³;②x³+ x³ =x⁶;③y³·y·y²=y⁶;④z²+ z²+ z²= 3z²,其中正确的个数是()A.1个B.2个C.3个D.4个5. 10³×10⁴=_____.6.(m-n)²(m-n)(m-n)⁵=_____.7.(-x)⁶·x⁷·x⁸=_____.8.已知a=-2,求(-a)²(-a) ³a⁴的值.知识点二:幂的乘方9.下列运算正确的是()A.(-2²)³=2⁶B.(-x⁴)⁵=x20C.(-x²ᵐ⁺¹)²=x⁴ᵐ⁺² D.[(x+y)²]⁷=(x+y)⁹10.(-aⁿ)²·aⁿ⁺¹等于()A.a²ⁿ⁺³B.a³ⁿ⁺¹C.-a³ⁿ⁺¹ D.-aⁿ⁺³11.下列各式中不正确的是()A.(m⁵)⁵=m²⁵B.(a⁴)ᵐ= (a²ᵐ)² C.x²ⁿ=(-xⁿ)²D.y²ⁿ=(-y²)ⁿ12.下列四个算式:①(a⁴)⁴=a⁴⁺⁴= a⁸;②[(b²)²]²- = b⁸;③[(-x)³]²=x⁶;④(-y)³=y⁶中,其中正确的算式有()A.0个B.1个C.2个D.3个13.填空题.(1)(5⁴)²=_____(2)=_____(3)(-a³)⁴=_____(4)(y²)³.y=_____(5)(a⁴)²+(a²)⁴=_____(6)(a²)².(a³)²=_____(7)c.(c⁵)².(-c)=_____(8)[(-m⁴)⁵.(-m²)⁷]²=_____(9)[(a-b)³]ᵐ.[(b-a)ᵐ]²=_____(10)(x²)ⁿ.(xⁿ¯¹)³=_____(11)当n为偶数时,[(-a²)ⁿ+(-aⁿ)²]²=_____(12)已知9⁵×27²=x3,则x=_____14.比较2100与3⁷⁵的大小.知识点三:积的乘方15.(-2x²y³)⁴的结果为()A.-2x⁸y¹²B.-2x²y¹²C.16x⁶y⁷D.16x⁸y¹²16.如果(2aᵐbᵐ⁺ⁿ)³=8a⁹b¹⁵成立,则m,n的值为()A.m=3, n-2B.m=3, n=9C.m=6, n=2D.m=2, n=517.(2×10²)³写成科学记数法的形式为()A.6×10⁵B. 0.6×10⁷C.8×10⁵D.8×10⁶18.填空题.(1)(ab)³=_____(2)(-x²y)⁵=_____(3)=_____(4) (0.1xy³)³=_____(5)(aⁿbᵐ)²=_____(6)(xⁿ⁺¹yⁿ¯¹)²=_____(7)(-3ab²)ᵐ=_____(8) (2²b⁵)²=_____(9)[(-2xy)³]²=_____(10) =_____知识点四:整式的乘方19.下列四个算式中,正确的是()A.3m(5a+2b)=3ma+6mb B.-2xy(3x²y-2xy²)=4x²y³- 6x³y²C.(x-3y)(-6x)=6x²- 18xy D.x⁶y²÷x²y =x³y20.如果计算(2-nx-3x²+ mx³)(-4x²)的结果中不含x⁵项,那么m应等于()A.0 B.1 C.-1 D.4121.已知(x-1)(x²+mx+n) =x³-6x²+11x-6,求m,n的值.22.对于任意自然数n,代数式n(n+7)-(n-3)(n-2)的值能被6整除吗?知识要点五:平方差公式23.下列多项式中,可以用平方差公式计算的是()A.(2a - 3b)(- 2a+3b) B.(- 3a+4b)(- 4b - 3a)C.(a-b)(b-a) D.(a-b -c)(-a+b+c)24.下列计算结果正确的是()A.(x+2)(x-2)=x²-2 B.(x+2)(3x-2)=3x²-4C .(ab-c)(ab+c)=a ²b ²-c ²D .(-x-y) (x+y) =x ²-y ² 25.已知(a+b-3)²+la- b+5l=0,求a ²-b ²的值.26.有两个正方体,棱长分别为acm ,bcm ,如果a-b=3,a+b=11,求它们的表面积的差.知识要点六:完全平方公式27.下列式子中是完全平方式的是( )A.a ²+ ab+ b ²B.a ²+2a+2C.a ²-2b+b ²D.a ²-2a+1 28.若(x-y)²=x ²+xy+y ²+N 则N 为( ) A. xy B .-xy C .3xy D .-3xy 29.填空题.(1)(8-y)²= 64+_____+y ²,(- x+y)²=_______2xy+y ²; (2)若kx ²+ 8x+1是一个完全平方式,则k=_____;(3)若x ²+kx+91=(x-31)²,则k=_____;(4)(a-3)²-a ²=_____;(5) (xy-1)²- (xy+1)²=_____.30.若x ²-2x+y ²+6y+10 =0,求x ,y 的值.31.证明:不论x ,y 取何值,代数式x ²+ y ²+ 4x-6y+13的值都不小于0.参考答案1.C2.B3.C4.B5. 10⁷6.(m-n )⁸ 7.x ²¹8.(-a )².(-a )³.a ⁴=(-a )².(-a )³.(-a )⁴=(-a )⁹= [-(-2)]⁹=2⁹. 9.C 10.B 11.D 12.C 13.(1)5⁸ (2)15)71((3) a ¹² (4) y ⁷ (5) 2a ⁸ (6) a ¹ᵒ(7) -c ¹² (8) m ⁶⁸ (9) (a-b)⁵ᵐ (10) X ⁵ⁿ¯³ (11) 4a ⁴ ⁿ (12) 16 14. 2¹ᴼᴼ=4252⨯=( 2⁴)²⁵=16²⁵, 3⁷⁵=3253⨯= (3³)²⁵=27²⁵,∵27²⁵> 16²⁵, ∴2¹ᴼᴼ< 3⁷⁵. 15.D 16.A 17.D18. (1) a³b³ (2) -x ¹ᴼy ⁵ (3) 278p ⁶q ⁹ (4) 0.001x³y ⁹(5) a ²ⁿb ²ᵐ (6) x ²ⁿ⁺²y ²ⁿ¯² (7) (-3)ᵐa ᵐb ²ᵐ (8) 16b ¹ᴼ (9) 64x ⁶y ⁶ (10)169-m ⁴n ⁶p ²19.B 20.A 21. m= -5.n=6 22. n(n+7)-(n-3)(n-2) =12n-6=6(2n-1) ∵6(2n -1)是6的倍数,∴能被6整除. 23.B 24.C 25.- 1526.表面积之差6(a ²-b ²) =6(a+b)(a-b)=6×11×3=198 (cm ²). 27.D 28.D29. (1) (-16y),x ² (2)16 (3)32-(4)-6a+9 (5) -4xy30.x ²- 2-x+y ²+6y+10=0,即(x ²-2x +1)+(y ²+6y+9)=0,即(x-1)²+(y+3)²=0,解得x=1,y=-3.31.x ²+y ²+ 4x-6y+13=x ²+4x +4+y ²-6y+9=(x+2)²+(y-3)², ∵(x+2)²≥0,(y-3)²≥0,∴(x+2)²+(y-3)²≥0.∴无论x,y 取何值,x ²+y ²+ 4x-6y+ 13的值都不小于0.。
人教版初中数学八年级上单元试卷第十四章 整式的乘法与因式分解(能力提升)八年级数学上册单元过关测试
2022-2023学年人教版八年级数学上册单元测试定心卷第十四章 整式的乘法与因式分解(能力提升)时间:100分钟 总分:120分一、选择题目(每题3分,共24分)1.计算()2223x x ⋅-的结果是 ( )A .46x -B .56xC .52x -D .62x【解析】 解:()2223x x ⋅-=46x -,故选:A .【点睛】本题考查单项式乘单项式,熟练掌握运算法则是解答的关键.2.下列单项式中,使多项式216a M +能用平方差公式因式分解的M 是 ( )A .aB .2bC .-16aD .2b -【解析】解:A 、16a 2+a ,不符合平方差公式,不符合题意;B 、16a 2+b 2,不符合平方差公式,不符合题意;C 、16a 2-16a ,不符合平方差公式,不符合题意;D 、16a 2-b 2,符合平方差公式,符合题意.故选:D .【点睛】本题考查了平方差公式:a 2-b 2=(a+b )(a-b ),掌握平方差公式是解题的关键.3.若323b a =+,则代数式224129a ab b -+的值为 ( )A .1-B .9C .7D .5【解析】解:∵323b a =+,∴323b a -=∴()222412932a ab b b a -+=-23= =9.故选:B .【点睛】本题考查求代数式的值,完全平方式,解题关键能发现所给的条件等式与所求代数式之间的关系.4.把一块边长为a 米(5a >)的正方形土地的一边增加5米,相邻的另一边减少5米,变成一块长方形土地,你觉得土地的面积 ( )A .没有变化B .变大了C .变小了D .无法确定【解析】解:由题意得:长方形土地的长为()5a +米,宽为()5a -米,∴长方形的面积为()()()225525m a a a +-=-,正方形的面积为2a 平方米,∴2225a a >-,∴我觉得土地的面积变小了;故选C .【点睛】本题主要考查平方差公式,熟练掌握平方差公式是解题的关键.5.观察图形,用两种不同的方法计算大长方形面积,我们可以验证等式 ( )A .(a +b )(a +2b )=a2+3ab +2b2B .(a +b )(2a +b )=2a2+3ab +b2C .(a +b )(a +2b )=2a2+3ab +b2D .(a +b (2a +b )=a2+3ab +2b2【解析】解:∵长方形的面积=(a +b )(a +2b )长方形的面积=a 2+ab +ab +ab +b 2+b 2= a2+3ab +2b2,∴(a +b )(a +2b )= a 2+3ab +2b 2故选:A .【点睛】本题考查多项式乘以多项式的几何意义,通过几何图形之间的数量关系对多项式乘以多项式做出几何解释.6.阅读材料:数学课上,杨老师在求代数式245x x -+的最小值时,利用公式222)2(a ab b a b ±+=±,对式子作如下变形:22245441(2)1x x x x x ++=+++=++,因为2(2)0x +≥,所以2(2)11x ++≥,当2x =-时,2(2)11x ++=,因此245x x ++的最小值是1.通过阅读,解答问题:当x 取何值时,代数式289x x ---有最大或最小值,是多少?( )A .当4x =时,有最小值7-.B .当4x =-时,有最小值7.C .当4x =-时,有最大值7.D .当4x =时,有最大值7-.【解析】解:289x x ---=()289x x -++=()28167x x -+++=()247x -++∴当4x =-时,有最大值7,故选:C .【点睛】本题考查求代数式的最值,完全平方公式的应用,解题的关键是参照样例对代数式进行变形.7.如图,有两个正方形A ,B ,现将B 放置在A 的内部得到图甲,将A 、B 并列放置,以正方形A 与正方形B 的边长之和为新的边长构造正方形得到图乙,若图甲和图乙中阴影部分的面积分别为1和8,则正方形A 、B 的面积之和为 ( )A .8B .9C .10D .12【解析】解:设大小正方形边长分别为a 、b ,S 阴1=(a ﹣b )2=1,即a 2+b 2﹣2ab =1,S 阴2=(a +b )2﹣a 2﹣b 2=8,得:ab =4.∴a 2+b 2﹣2×4=1,∴a 2+b 2=9.故选:B .【点睛】考查了完全平方式的应用,把阴影部分表示出来是解题的关键.8.若()()35M x x =--,()()26N x x =--,则M 与N 的关系为 ( )A .M NB .M N >C .M N <D .不能确定【解析】 解:∵()()235815M x x x x =--=-+,()()226812N x x x x =--=-+,()228158123M N x x x x -=-+--+=>0,∴M N >.故选:B .【点睛】本题主要考查多项式乘以多项式、整式的加减.注意不要漏项,漏字母,有同类项的合并同类项,掌握多项式乘以多项式的法则是解题的关键.二、填空题目(每题3分,共24分)9.计算:(21)(21)x x -+--_________.【解析】解:(21)(21)x x -+--241x =-.故答案为:241x -【点睛】本题主要考查了平方差公式,熟练掌握平方差公式是解题的关键.10.计算:4.3×202.2+7.6×202.2-1.9×202.2=__________.【解析】解:4.3×202.2+7.6×202.2-1.9×202.2=202.2×(4.3+7.6-1.9)=202.2×10=2022,故答案为:2022.【点睛】本题考查提公因式法分解因式,掌握提公因式的方法是正确应用的前提.11.已知(1)(1)8x y --=,8x y +=,则xy =________.【解析】解:(1)(1)8,x y --=18,xy x y ∴--+=()18,xy x y ∴-++=()7,xy x y ∴=++8,x y ∴+=7815.xy ∴=+=故答案为:15.【点睛】本题主要考查了多项式乘多项式,熟练掌握多项式乘多项式乘法法则是解此题的根据.12.若2(3)9x m x +-+是完全平方式,则m =______.【解析】解:∵2(3)9x m x +-+是完全平方式,∴m −3=±6,解得:m =-3或9.故答案为:-3或9.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.13.已知21m x =+,132m y +=+,若用含x 的代数式表示y ,则y =______.【解析】∵21m x =+,132m y +=+,∴12m x -=,322m y -=⨯,∴3(1)2y x -=-⨯,即21y x =+,故答案为:21x +.【点睛】本题考查了同底数幂的乘法的逆用,掌握同底数幂的乘法是解答本题的关键.14.若n 满足22(2020)(2022)1n n -+-=,则(2020)(2022)n n --=________.【解析】解:()()()()()()222420202022=20202022+220202022n n n n n n ⎡⎤=-+--+---⎣⎦, 又22(2020)(2022)1n n -+-=,212(2020)(2022)24n n ∴+--==,3(2020)(2022)2n n ∴--=, 故答案为:32.【点睛】本题考查了完全平方公式,能灵活运用完全平方公式进行变形计算是解此题的关键.15.已知6m n -=,216730mn c c +++=,则m +n +c 的值为__________.【解析】解:∵m −n =6,∴m =n +6,∵216730mn c c +++=,∴n (n +6)+c 2+16c +73=0,∴n 2+6n +c 2+16c +73=0,∴n 2+6n +9+c 2+16c +64=0,∴(n +3)2+(c +8)2=0,∴n +3=0,c +8=0,∴n =−3,c =−8,∴m =n +6=−3+6=3,∴m +n +c =3+(−3)+(−8)=−8,∴m +n +c 的值为−8.故答案为:−8.【点睛】本题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.16.如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”,他的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的.“杨辉三角”中有许多规律,如它的每一行的数字正好对应了()na b +(n 为非负整数)的展开式中a 按次数从大到小排列的项的系数,例如:()2222a b a ab b +=++展开式中的系数1,2,1恰好对应图中第三行的数字;()3322333a b a a b ab b +=+++展开式中的系数1,3,3,1恰好对应图中第四行的数字…….请认真观察此图,根据前面各式的规律,写出()5a b +的展开式:()5a b +=______.解:可得:(a+b )4=a 4+4a 3b+6a 2b 2+4ab 3+b 4;则(a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5.故答案为:a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5.【点睛】本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.三、解答题(每题8分,共72分)17.计算(1)计算:(2x ﹣y )2﹣(2x +y )(2x ﹣y );(2)用简便方法计算:20212﹣2020×2022.【解析】(1)解:原式=4x 2-4xy +y 2-4x 2+y 2=-4xy +2y 2;(2)解:原式=(2020+1)2-2020×(2020+2)=20202+2×2020×1+1-20202-2020×2=1.【点睛】本题考查整式混合运算,完全平方公式,平方差公式,熟练掌握完全平方公式和平方差公式是解题的关键.18.以下是小鹏化简代数式()()()()221123a a a a a -++---的过程.(1)小鹏的化简过程在第______步开始出错,错误的原因是______.(2)请你帮助小鹏写出正确的化简过程,并计算当0.5a =-时代数式的值.【解析】(1)小鹏在第①步开始出错,(a -2)2≠a 2-2a +4,错误的原因是完全平方公式运用错误. 故答案为:①,完全平方公式运用错误.(2)(a -2)2+(a +1)(a -1)-2a (a -3)=a 2-4a +4+a 2-1-2a 2+6a=2a +3.∴当0.5a =-时,原式=2×(-0.5)+3=2.【点睛】本题考查了整式的混合运算,熟练掌握相关公式及运算法则是解题的关键.19.甲、乙两个同学因式分解2x ax b ++时,甲看错了a ,分解结果为()()48x x +-,乙看错了b ,分解结果为()()26x x -+.求多项式2x ax b ++分解因式的正确结果.【解析】解:∵()()248432x x x x +-=--,甲看错了a 的值,又∵()()226412x x x x -+=+-,乙看错了b 的值,∴4a =,∴多项式()()2243284x ax b x x x x ++=+-=+-.故答案为:()()84x x +-.【点睛】本题考查因式分解和整式化简之间的关系,牢记各自的特点并能灵活应用是解题关键.20.如图,学校有一块长为()2m a b +,宽为()m a b +的长方形土地,四个角留出四个边长为()m b a -的小正方形空地,剩余部分进行绿化.(1)用含a 、b 的式子表示要进行绿化的土地面积;(结果要化简)(2)当6a =,10b =时,求要进行绿化的土地面积.【解析】(1)解:由于S 绿化面积=S 长方形﹣4S 小正方形,因此有,(a +b )(a +2b )﹣4(b ﹣a )2=a 2+3ab +2b 2﹣4a 2+8ab ﹣4b 2=(11ab ﹣3a 2﹣2b 2)(m 2),答:绿化的面积为(11ab ﹣3a 2﹣2b 2)(m 2);(2)解:当a =6,b =10时,原式=660﹣108﹣200=352(m 2)答:当a =6,b =10时,绿化的土地面积为352m 2.【点睛】本题考查完全平方公式的几何背景,多项式乘多项式,单项式乘多项式,掌握完全平方公式的结构特征,多项式乘多项式,单项式乘多项式的计算方法是正确解答的前提.21.计算并观察规律,完成下列问题:例:计算:32022202120222023-⨯⨯解:设2022x =,则原式3(1)(1)x x x x =--⋅⋅+32(1)x x x =--x =2022=.(1)计算:2223224222-⨯;(2)若123456789123456786M =⨯,123456788123456787N =⨯,请比较M 、N 的大小.【解析】(1)设223=x,∴2232-224×122=x2-(x+1)(x-1)=x2-x2+1=1;(2)设123456786=x,∴M=123456789×123456786=(x+3)•x=x2+3x,N=123456788×123456787=(x+2)(x+1)=x2+3x+2,∴M<N.【点睛】本题考查了整式的混合运算,单项式乘多项式,理解例题的解题思路是解题的关键.22.初中数学的一些代数公式可以通过几何图形的面积来推导和验证.如图①,从边长为a的正方形中挖去一个边长为b的小正方形后,将其沿虚线裁剪,然后拼成一个矩形(如图②).(1)通过计算图①和图②中阴影部分的面积,可以验证的公式是:.(2)小明在计算(2+1)(22+1)(24+1)时利用了(1)中的公式:(2+1)(22﹣1)(24+1)=1•(2+1)(22+1)(24+1)=.(请你将以上过程补充完整.)(3)利用以上的结论和方法、计算:12+(3+1)(32+1)(34+1)(38+1)(316+1).【解析】(1)解:图①中阴影部分的面积可以看作两个正方形的面积差,即a2−b2,图②是长为(a+b),宽为(a−b)的长方形,因此面积为(a+b)(a−b),由图①、图②面积相等可得:(a+b)(a −b)=a2−b2,故答案为:(a+b)(a−b)=a2−b2;(2)解:原式=(2−1)•(2+1)(22+1)(24+1)=(22−1)(22+1)(24+1)=(24−1)(24+1)=28−1,故答案为:28−1;(3)解:原式=12+12(3−1)(3+1)(32+1)(34+1)(38+1)(316+1)=12+12(32−1)(32+1)(34+1)(38+1)(316+1)=12+12(34−1)(34+1)(38+1)(316+1)=12+12(38−1)(38+1)(316+1)=12+12(316−1)(316+1)=12+12(332−1)=12+3232−12=3232. 【点睛】本题考查平方差公式的几何背景,掌握平方差公式的结构特征是正确解答的前提,用代数式表示图形中阴影部分的面积是正确解答的关键.23.先阅读,再解答.例:222450x y x y +-++=,求x y +的值.解:∵222450x y x y +-++=∴()2221)440x x y y -++++=( 即()221)20x y -++=( 221)0,(20x y -≥+≥()221020x y ∴-=+=(),()1,2x y ∴==- 1x y ∴+=-(1)已知22464100x y x y +-++=,求xy 的值;(2)已知c a b 、、为ΔABC 的三边,且满足()222220,a b c b a c ++-+=判断ΔABC 的形状,并说明理由.【解析】(1)解:∵22464100x y x y +-++=∴()2269)4410x x y y -++++=( 即()223)210x y -++=( ∵()223)0,210x y -≥+≥( ∴()()2230,210x y -=+= ∴13,2x y ==- ∴32xy =-.(2)解:ΔABC 是等边三角形,理由∵()222220,a b c b a c ++-+=∴()()2222220a ab b b bc c -++-+=∴()()220a b b c +-=-∵()()220,0a b b c -≥-≥∴()()220,0a b b c -=-=∴,a b b c ==即a b c ==∴ΔABC 是等边三角形.【点睛】本题考查了配方法的应用以及非负数的性质,等边三角形的判定,熟练掌握完全平方公式是解题的关键.24.(1)请用两种不同的方法表示图中阴影部分的面积和.方法1:____________________________;方法2:____________________________.(2)请你直接写出三个代数式:()2a b +,22a b +,ab 之间的等量关系.(3)根据(2)中的等量关系,解决如下问题:①已知5m n +=,2220m n +=,求mn 和()2m n -的值;②已知()()222021202374x x -+-=,求()22022x -的值.【解析】解:(1)方法1:两个阴影部分的面积和就是边长为a 的正方形,与边长为b 的正方形的面积和,即22a b +;方法2:两个阴影部分的面积和也可以看作从边长为a b +的正方形面积中减去两个长为a ,宽为b 的长方形面积,即2()2a b ab +-;故答案为:22a b +,2()2a b ab +-;(2)由(1)得,222()2a b a b ab +=+-;(3)①5m n +=,222()252m n m mn n ∴+==++,2220m n +=,25mn ∴=, 即52mn =;222()220515m n m mn n -=-+=-=,答:52mn =,2()15m n -=;②设2021a x =-,2023b x =-,则2a b -=,2222(2021)(2023)74a b x x +=-+-=, 所以2222()7423522a b a b ab +---===, 即(2021)(2023)35x x --=,所以2[(2022)1][(2022)1](2022)135x x x -+--=--=,即2(2022)36x -=.【点睛】本题考查完全平方公式的几何背景,解题的关键是用不同的代数式表示阴影部分的面积.25.在求代数式值的问题中,有时通过观察式子的特点,可以找到较为简单的解法. 例如,若x 满足()()2510x x --=,求()()2225x x ---的值,可以按下列的方法来解: 解:设()2x a -=,()5x b -=,则()()2510ab x x =--=,()()253a b x x -=---=,∴()()22449a b a b ab +=-+=,∴7a b +=±,∴()()()()2222257321x x a b a b a b ---=-=+-=±⨯=±.请仿照上面的方法求解下面的问题:(1)若x 满足()()496x x --=,求()()2249x x -+-的值; (2)将正方形ABCD 和正方形EFGH 按如图所示摆放,点F 在BC 边上,EH 与CD 交于点I ,且1ID =,2CG =,长方形EFCI 的面积为24,以CF 为边作正方形CFMN .设AD x =,①用含x 的代数式直接表示EF 和CF 的长;②求图中阴影部分的面积.【解析】(1)解:设()4x a -=,()9x b -=,则()()496ab x x =--=,()()495a b x x -=---=, ∴()()()22222249252637x x a b a b ab -+-=+=-+=+⨯=;(2)①∵四边形ABCD 是正方形,四边形EFGH 是正方形,四边形EFCI 是长方形,1ID =,2CG =, ∴CD =AD =x ,∴1EF IC x ==-,∴FG =1EF x =-,∴123CF x x =--=-;②∵长方形EFCI 的面积为24,∴()()1324x x --=,设1x a -=,3x b -=,则24ab =,2a b -=,∴()()224100a b a b ab +=-+=,∵0a >,0b >,∴10a b +=,∴()()()()22221320S x x a b a b a b =---=-=+-=阴影.【点睛】本题主要考查了完全平方公式和平分差公式的应用,牢记完全平方公式和平方差公式以及变形公式(a +b )2=(a −b )2+4ab 是解题关键.祝福语祝你考试成功!。
八年级上册数学第十四章 14.3因式分解 测试卷(含答案)
八年级上册数学第十四章 14.3因式分解 测试卷知识要点一:提公因式法1.下列变形是因式分解的是( ) A .a ²-b ²-1=(a+b)(a-b)-1 B .ax ²+x+b ²=x(ax+1)+b ² C .(a+2)(a-2)=a ²-4 D .4x ²-9=(2x+3)(2x-3)2.分解因式6xyz - 4x ²y ²z ²+ 2xz ²时,应提取的公因式是( ) A .xyz B .2x C .2z D .2xz 3.将21a ²b-ab ²提公因式后,另一个因式是( )A. a+2bB.-a+2bC.-a-b D .a- 2b4.下列因式分解中,是利用提公因式法分解的是( ) A. a ²-b ²= (a+b) (a-b) B.a ²-2ab+b ²= (a-b)² C.ab+ac=a (b+c) D.a ²+2ab+b ²= (a+b)²5.若a+b=4,ab=2,则3a ²b+3ab ²的值是( ) A .24 B .18 C .12 D .86.多项式x ²+x ⁶提取公因式x ²后的另一个因式是( ) A .x ⁴ B .x³ C .x ⁴+1 D .x³+17.若△ABC 的三边a ,b ,c 满足a ²+ b ²+ c ²=ac+ bc+ab ,则△ABC 是( )A .锐角三角形B .等腰三角形C .等边三角形D .直角三角形 8.分解因式:3x ²y-6xy +x=_____;3x³-6x ²+ 12x=_____.9.请写出含有公因式3m ²n ,且次数为5的两个多项式,分别为_____、_____. 10.若多项式ax+B 运用提公因式法分解因式的结果为a(x -y),则B 等于_____. 11.计算:5×3⁴+9×3⁴-12×3⁴=_____.12.已知a=49,6=109,则ab - 9a 的值为_____. 13.将下列式子因式分解:(1) (x+2y)² - 2xy -x ²; (2) 3xy ²+21x ²y-39xy.14.化简3a ²b (2ab³-a ²b³-1)+2(ab)⁴+a .3ab ,并求出当a= -1,b=2时原式的值.15.已知x ²+4x-1=0,求2x ⁴+ 8x³-4x ²-8x+1的值.16.已知关于x 的二次三项式2x ²+mx+n 因式分解的结果为(2x -3)(x+21),求m ,n 的值.知识要点二:公式法17.在下列各式中,不能用平方差公式分解因式的是()A. -x²+y²B.-1-m²C.a²-9b² D.4m²-118.下列各式中不是完全平方式的是()A.x²-10x+25 B.a²+a+41C.4n²+n+4 D.9m²+6m+119.下列四个多项式,能因式分解的是()A.a²+b²B.a²-a+2C.a²+3bD.(x+y)²-420.若x为任意有理数,则多项式-41x²+x-1的值()A.一定为负数B.一定为正数C.不可能为正数D.不可能为负数21.若n为任意整数,则(n+7)²-n²一定能被______整除()A.7 B.14 C.7或14 D.7的倍数22.下列因式分解不正确的是()A.2x³-2x= 2x (x²-1) B.mx²-6mx+ 9m= m(x -3)²C.3x²-3y²=3 (x+y)(x-y) D.x²-2xy+y²= (x-y)²23.若9x²-kx+4是一个完全平方式,则k=_____.24.已知x²+6xy+9y²+∣y-1∣=0,则x+y=_____.25.若x²+x+m=(x- n)²,则m=_____,n=_____.26.如果x+y=-3,x-y=6,则代数式2x²-2y²的值为_____.27.若9x²-M= (3x+y-1)(3x-y+1),则M=_____.28.分解因式:4+12 (a-b)+9(a-b)²=_____.29.因式分解:(1) 8a³ - 2a(a+1)²; (2) m²-4n²+4n -1.30.已知x-y=1,xy=2,求x³y-2x²y²+ xy³的值.31.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:4= 2²- 0²,12 = 4²- 2²,20=6²- 4²,因此4,12,20都是这种“神秘数”.(1) 28和2016这两个数是“神秘数”吗?试说明理由.(2)试说明神秘数能被4整除.(3)两个连续奇数的平方差是神秘数吗?试说明理由.32.当a,b为何值时,多项式a²+b²- 4a+6b+18有最小值?并求出这个最小值.33.已知x-1=5,求代数式(x+1)²-4(x+1)+4的值.参考答案1.D2.D3.A4.C5.A6.C7.C8.x(3xy-6y+1) 3x(x²-2x+4)9. 3m⁴n+3m²n 6m²n³-3m²n(答案不唯一)10. -ay 11. 162 12. 490013.(1)原式=(x+2y)²-x(x+2y)=(x+2y)(x+2y-x)=2y(x+ 2y);(2)原式=3xy(y+7x - 13).14.原式= 6a³b⁴-3a⁴b⁴ - 3a²b+2a⁴b⁴+ 3a²b=a³b⁴(6 -a).当a= -1, b-2时,原式=(-1)³×2⁴×【6 -(-1)】- 16×7=-112.15.∵x²+4x-1=0,∴x²+4x=1.∴2x⁴+ 8x³- 4x²-8x+1=2x²(x²+4x) -4(x²+4x) +8x+1=2x²·1 -4×1+8x+1= 2x²+8x -3 =2(x²+4x)-3=2×1-3=-1.16.因为2x²+mx+n=(2x-3)(x+ 21) =2x²-2x-23,所以m= -2, n= 23-.17.B 18.C 19.D 20.C 21.A 22.A23.±12 24.-2 25.4121-26.-3627.(y-1)²28.(2+3a - 3b)²29.(1)原式=2a[4a²- (a+1)²]=2a(3a+1)(a-1);(2)原式=m²- (4n²-4n+1)=m²-(2n -1)²= (m - 2n +1) (m+2n -1).30.x³y-2x ²y ²+ xy³= xy(x ² - 2xy+ y ²)= xy(x-y)²=2×1²=2. 31.(1)是.理由如下: ∵28=8²- 6², 2016= 505² - 503² ∴28是“神秘数”;2016是“神秘数”. (2)“神秘数”是4的倍数.理由如下:(2k+2)² - (2k)²= (2k+2 - 2k) (2k+2+2k)= 2(4k+2)=4(2k+1), ∴“神秘数”是4的倍数.(3)设两个连续的奇数为2k+1,2k -1,则(2k+1)²-(2k-1)²=8k ,而由(2)知“神秘数”是4的倍数,但不是8的倍数,所以两个连续的奇数的平方差不是“神秘数”. 32.a ²+b ²-4a+6b+18=(a ²- 4a+4)+(b ²+6b+9) +5=(a-2)²+(b+3)²+5,∴当a=2,b= -3时,a ²+b ²-4a+6b+18有最小值5.33.原式=[(x+1)-2]²-(x-1)²,当x-1=5时,原式=52)5( .。
人教版初中数学八年级上单元试卷第十四章 整式的乘法与因式分解八年级数学上学期单元测试卷(人教版)
第十四章整式的乘法与因式分解(时间:100分钟,分值:150分)一.选择题目(共12小题,每小题4分,共48分)1.下列运算正确的是()A.x4+x4=x8B.x6÷x2=x3C.x•x4=x5D.(x2)3=x5【解答】解:A、x4+x4=2x4,故A不符合题意;B、x6÷x2=x4,故B不符合题意;C、x•x4=x5,故C符合题意;D、(x2)3=x6,故D不符合题意;故选:C.2.计算﹣(﹣2x3y2)4的结果是()A.16x7y6B.﹣16x7y6C.16x12y8D.﹣16x12y8【解答】解:﹣(﹣2x3y2)4=﹣16x12y8,故选:D.3.多项式3x2y2﹣12x2y4﹣6x3y3的公因式是()A.3x2y2z B.x2y2C.3x2y2D.3x3y2z【解答】解:多项式3x2y2﹣12x2y4﹣6x3y3的公因式是3x2y2,故选:C.4.下列多项式乘以多项式能用平方差公式计算的是()A.(a+b)(﹣b﹣a)B.(﹣a+b)(﹣b﹣a)C.(a+b)(b+a)D.(﹣a+b)(b﹣a)【解答】解:能用平方差公式计算的是(﹣a+b)(﹣b﹣a),其它的不能用平方差公式计算.故选:B.5.下列各式中,正确的因式分解是()A.a2﹣b2+2ab﹣c2=(a+b﹣c)(a﹣b﹣c)B.﹣(x﹣y)2﹣(x﹣y)=﹣(x﹣y)(x﹣y+1)C.2(a﹣b)+3a(b﹣a)=(2+3a)(a﹣b)D.2x2+4x+2﹣2y2=(2x+2+2y)(x+1﹣y)【解答】解:A.a2﹣b2+2ab﹣c2=(a﹣b+c)(a﹣b﹣c),故此选项不合题意;B .﹣(x ﹣y )2﹣(x ﹣y )=﹣(x ﹣y )(x ﹣y +1),故此选项符合题意;C .2(a ﹣b )+3a (b ﹣a )=(2﹣3a )(a ﹣b )),故此选项不合题意;D .2x 2+4x +2﹣2y 2=2(x +1+2y )(x +1﹣y ),故此选项不合题意;故选:B .6.若2x 2+m 与2x 2+3的乘积中不含x 的二次项,则m 的值为( )A .﹣3B .3C .0D .1 【解答】解:(2x 2+m )(2x 2+3)=4x 4+6x 2+2mx 2+3m ,∵2x 2+m 与2x 2+3的乘积中不含x 的二次项,∴6+2m =0,∴m =﹣3.故选:A .7.计算(−23)2021×(32)2021的结果是( )A .﹣1B .1C .23D .32 【解答】解:(−23)2021×(32)2021=[(−23)×32]2021=(﹣1)2021=﹣1,故选:A .8.若(2x ﹣1)0有意义,则x 的取值范围是( )A .x =﹣2B .x ≠0C .x ≠12D .x =12 【解答】解:(2x ﹣1)0有意义,则2x ﹣1≠0,解得:x ≠12.故选:C .9.若x 2﹣mx +16是完全平方式,则m 的值等于( )A .2B .4或﹣4C .2或﹣2D .8或﹣8【解答】解:∵x 2﹣mx +16=x 2﹣mx +42,∴﹣mx =±2•x •4,解得m =8或﹣8.故选:D .10.已知a =817,b =279,c =913,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .a <b <cD .b >c >a【解答】解:∵a =817,b =279,c =913,∴a =(34)7=328,b =(33)9=327,c =(32)13=326.又∵328>327>326,∴a >b >c .故选:A .11.若(x 2+ax +2)(2x ﹣4)的结果中不含x 2项,则a 的值为( )A .0B .2C .12D .﹣2【解答】解:(x 2+ax +2)(2x ﹣4)=2x 3+2ax 2+4x ﹣4x 2﹣4ax ﹣8=2x 3+(﹣4+2a )x 2+(﹣4a +4)x ﹣8,∵(x 2+ax +2)(2x ﹣4)的结果中不含x 2项,∴﹣4+2a =0,解得:a =2.故选:B .12.如图所示的是4个全等的小长方形与1个小正方形密铺而成的正方形图案,已知该图案的面积为64,小正方形的面积为16,若分别为x ,y (x >y )表示为小长方形的长和宽,则下列关系式中不正确的是( )A .x +y =8B .xy =24C .x 2﹣y 2=32D .4xy +16=64【解答】解:由题意得:(x +y )2=64且(x ﹣y )2=16.(x >y >0).∴{x+y=8,x−y=4.解得:{x=6.y=2.∴x+y=8,xy=12,x2﹣y2=32,4xy+16=64.故选:B.二.填空题目(共4小题)13.计算:6m3÷2m=3m2.【解答】解:原式=6÷2•m3﹣1=3m2,故答案为:3m2.14.若a m=2,a n=5,则a2m+2n=100.【解答】解:∵a m=2,a n=5,∴a2m+2n=a2m•a2n=(a m)2•(a n)2=22×52=4×25=100,故答案为:100.15.计算:20212﹣2020×2022=1.【解答】解:20212﹣2020×2022=20212﹣(2021﹣1)(2021+1)=20212﹣(20212﹣12)=20212﹣20212+1=1.16.小丽在计算3×(4+1)×(42+1)时,把3写成(4﹣1)后,发现可以连续运用平方差公式进行计算.用类似方法计算:(1+12)×(1+122)×(1+124)×(1+128)+1215=2.【解答】解:(1+12)×(1+122)×(1+124)×(1+128)+1215=2×(1−12)×(1+12)×(1+122)×(1+124)×(1+128)+1215=2×(1−122)(1+122)×(1+124)×(1+128)+1215=2×(1−124)(1+124)×(1+128)+1215=2×(1−128)×(1+128)+1215=2×(1−1216)+1215=2−1215+1 215=2.故答案为:2.三.解答题(共14小题)17.(1)计算;√9−|﹣3|+(π﹣3.14)0﹣(﹣1);(2)199×201【解答】解:(1)原式=3﹣3+1+1=2;(2)解:199×201=(200﹣1)×(200+1)=2002﹣1=39999.18.计算:(1)(4a2b+6a2b2﹣ab2)÷2ab;(2)(2x-3y)2【解答】解:(1)(4a2b+6a2b2﹣ab2)÷2ab=4a2b÷2ab+6a2b2÷2ab﹣ab2÷2ab=2a+3ab−12 b.(2)(2x-3y)2=4x2﹣12xy+9y219.计算:(1)(x+y﹣2z)(x﹣y+2z).(2)(x﹣y)(2x+y)﹣(x+y)(x﹣y).【解答】(1)解:(x+y﹣2z)(x﹣y+2z)=[x+(y﹣2z)][x﹣(y﹣2z)]=x2﹣(y﹣2z)2=x2﹣(y2+4z2﹣4yz)=x2﹣y2﹣4z2+4yz.(2)解:原式=2x2﹣xy﹣y2﹣x2+y2=x2﹣xy.20.因式分解:(1)﹣3a3b2+6ab3(2)4x2﹣9.(3)2m2﹣12m+18.(4)(a﹣2b)2﹣(3a﹣2b)2【解答】(1)解:﹣3a3b2+6ab3 =﹣3ab2(a2﹣2b)(2)解:4x2﹣9=(2x+3)(2x﹣3).(3)解:2m2﹣12m+18=2(m2﹣6m+9)=2(m﹣3)2.(4)解:(a﹣2b)2﹣(3a﹣2b)2=(a﹣2b+3a﹣2b)(a﹣2b﹣3a+2b)=(4a﹣4b)•(﹣2a)=﹣8a(a﹣b).21.解方程或不等式:(1)(x﹣3)(x﹣2)+18=(x+9)(x+1)(2)x(3x﹣2)<3(x﹣2)(x+1)【解答】解:(1)(x﹣3)(x﹣2)+18=(x+9)(x+1),x2﹣2x﹣3x+6+18=x2+x+9x+9,x2﹣5x﹣10x﹣x2=9﹣6﹣18,﹣15x=﹣15,x=1;(2)x(3x﹣2)<3(x﹣2)(x+1),3x2﹣2x<3x2+3x﹣6x﹣6,3x2﹣2x﹣3x2﹣3x+6x<﹣6,x<﹣6.22.在计算(x+a)(x+b)时,甲把b错看成了6,得到结果是:x2+8x+12.(1)求出a的值;(2)在(1)的条件下,且b=﹣3时,计算(x+a)(x+b)的结果.【解答】解:(1)∵(x+a)(x+6)=x2+6x+ax+6a=x2+(6+a)x+6a,∴x2+(6+a)x+6a=x2+8x+12,∴6+a=8,6a=12,解得a=2;(2)当a=2,b=﹣3时,(x+a)(x+b)=(x+2)(x﹣3)=x2﹣3x+2x﹣6=x2﹣x﹣6.23.如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形“正方形(如图2).(1)观察图2请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是(a+b)2=(a﹣b)2+4ab;(2)根据(1)中的结论,若x+y=5,xy=94,则(x﹣y)2=16;(3)拓展应用:若(2019﹣m)2+(m﹣2020)2=7,求(2019﹣m)(m﹣2020)的值.【解答】解:(1)由题意可得,图2的面积为:(a +b )2=(a ﹣b )2+4ab ,故答案为:(a +b )2=(a ﹣b )2+4ab ;(2)由(1)题结论(a +b )2=(a ﹣b )2+4ab ,可得(a ﹣b )2=(a +b )2﹣4ab ,∴x +y =5,xy =94时,(x ﹣y )2=(x +y )2﹣4xy=52﹣4×94=25﹣9=16,故答案为:16;(3)由完全平方公式(a +b )2=a 2+2ab +b 2,可得ab =(a+b)2−(a 2+b 2)2, ∴当(2019﹣m )2+(m ﹣2020)2=7时,(2019﹣m )(m ﹣2020)=[(2019−m)+(m−2020)]2−[(2019−m)2+(m−2020)2]2=(−1)2−72 =−62=﹣3.24.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.(1)如图1所示的大正方形,是由两个正方形和两个形状大小完全相同的长方形拼成的.用两种不同的方法计算图中阴影部分的面积,可以得到的数学等式是 a 2+b 2=(a +b )2﹣2ab ;(2)如图2所示的大正方形,是由四个三边长分别为a 、b 、c 的全等的直角三角形(a 、b 为直角边)和一个正方形拼成,试通过两种不同的方法计算中间正方形的面积,并探究a、b、c之间满足怎样的等量关系;(3)利用(1)(2)的结论,如果直角三角形两直角边满足a+b=17,ab=60,求斜边c的值.【解答】解(1)方法一:阴影部分是两个正方形的面积和,即a2+b2;方法二:阴影部分也可以看作边长为(a+b)的面积,减去两个长为a,宽为b的长方形面积,即(a+b)2﹣2ab,由两种方法看出a2+b2=(a+b)2﹣2ab,故答案为:a2+b2=(a+b)2﹣2ab;(2)中间正方形的边长为c,因此面积为c2,也可以看作从边长为(a+b)的面积减去四个两条直角边分别a、b的面积,即c2=(a+b)2﹣2ab,也就是c2=a2+b2,所以c2=a2+b2;(3)∵a+b=17,ab=60,∴c2=a2+b2=(a+b)2﹣2ab=172﹣2×60=169,∴c=13,答:斜边的长为13.祝福语祝你考试成功!。
初中数学第十四章测试卷
一、选择题(每题3分,共30分)1. 在下列各数中,绝对值最小的是()A. -2B. 1C. 0D. -1/22. 下列各数中,有理数是()A. √9B. πC. √16D. √-43. 已知a=2,b=-3,则a+b的值是()A. -1B. 1C. 5D. -54. 下列各式中,正确的是()A. (a+b)² = a² + b²B. (a-b)² = a² - b²C. (a+b)² = a² + 2ab + b²D. (a-b)² = a² - 2ab + b²5. 若a、b、c是等差数列,且a=1,b=3,则c的值为()A. 5B. 4C. 2D. 06. 下列函数中,是奇函数的是()A. y=x²B. y=x³C. y=xD. y=|x|7. 若函数f(x) = 2x+1,则f(-3)的值为()A. -5B. 5C. -7D. 78. 下列各式中,正确的是()A. 2√5 > √20B. 3√2 < 2√3C. √16 = 4D. √-1 = i9. 下列各式中,正确的是()A. (x+y)² = x² + y²B. (x-y)² = x² - y²C. (x+y)² = x² + 2xy + y²D. (x-y)² = x² - 2xy + y²10. 已知等差数列的前三项分别为1,4,7,则该数列的公差是()A. 1B. 2C. 3D. 4二、填空题(每题5分,共25分)11. 已知x²+4x+4=0,则x的值为______。
12. 若a、b、c是等比数列,且a=2,b=4,则c的值为______。
13. 函数f(x) = 3x-2在x=2时的函数值是______。
人教版初中数学八年级上单元试卷第章 整式的乘法与因式分解【培优卷】(解析版)
第14章整式的乘法与因式分解培优卷一、单选题1. ( 3分) 某种品牌的洗面奶,外包装标明净含量为500±10g,表明了这种洗面奶的净含量x的范围是()A.490<x<510B.490≤x≤510C.490<x≤510D.490≤x<510【答案】B【考点】有理数的加法【解析】【解答】解:根据题意得:500﹣1≤x≤500+10,即490≤x≤510,故答案为:B【分析】由题意用有理数的加法法则可得490≤x≤510。
2. ( 3分) 方程3x(x﹣1)=4(x﹣1)的根是()A.43B.1 C.43和1 D.43和﹣1【答案】C【考点】因式分解﹣运用公式法,因式分解法解一元二次方程【解析】【解答】原方程变形整理后得:(x﹣1)(3x﹣4)=0,x﹣1=0或3x﹣4=0,解得:x1=1,x2=43,故答案为:C.【分析】将方程移项后进行因式分解,即可得到方程的两个根。
3. ( 3分) 下列说法错误的是()A.两条射线组成的图形叫角B.两点之间线段最短C.两点确定一条直线D.0是单项式【答案】A【考点】单项式,直线的性质:两点确定一条直线,线段的性质:两点之间线段最短,角的概念【解析】【解答】解:A、两条有公共端点的射线组成的图形叫角,此选项符合题意;B、两点之间线段最短,此选项不符合题意;C、两点确定一条直线,此选项不符合题意;D、数字0是单项式,此选项不符合题意;故答案为:A.【分析】根据角的定义、两点之间距离、直线的性质以及根据单项式的定义逐一判断即可.4. ( 3分) 任意给定一个非零数x,按下列箭头顺序执行方框里的相应运算,得出结果后,再进行下一方框里的相应运算,最后得到的结果是()→平方→→→结果A.xB.x2C.x+1D.x−1【答案】D【考点】整式的混合运算【解析】【解答】根据题意得:(x2+x)÷x-2=x2÷x+x÷x-2=x+1-2=x-1,故答案为:D.【分析】根据程序先列出算式,然后计算即可.5. ( 3分) 下列各式计算正确的是()A.(a+1)2=a2+1B.a2+a3=a5C.a8÷a2=a6D.3a2﹣2a2=1【答案】C【考点】同底数幂的除法,完全平方公式及运用【解析】【解答】解:A、(a+1)2=a2+2a+1,故本选项错误;B、a2+a3≠a5,故本选项错误;C、a8÷a2=a6,故本选项正确;D、3a2﹣2a2=a2,故本选项错误;故选C.【分析】根据同底数幂的除法法则:底数不变,指数相减,及同类项的合并进行各项的判断,继而可得出答案.是一个完全平方式,则k的值为()6. ( 3分) 已知多项式x2+kx+ 14A.±1B.﹣1C.1D.±12【答案】A【考点】完全平方公式及运用是一个完全平方式,【解析】【解答】解:∵多项式x2+kx+ 14∵x2+kx+ 14=(x± 12)2,∵k=±1,故答案为:A【分析】根据完全平方公式a2±2ab+b2=(a±b)2,得到k=±1.7. ( 3分) 关于x、y的多项式x2−4xy+5y2+8y+15的最小值为()A. -1B.0C.1D.2【答案】A【考点】完全平方公式及运用,偶次幂的非负性【解析】【解答】解:原式=x2−4xy+5y2+8y+15=x2−4xy+4y2+y2+8y+16-1=(x−2y)2+(y+4)2-1∵ (x−2y)2≥0,(y+4)2≥0,∵原式≥-1,∵原式的最小值为-1,故答案为:A.【分析】利用完全平方公式对代数式变形,再运用非负性求解即可.8. ( 3分) 下列等式由左边至右边的变形中,属于因式分解的是()A.x2+5x-1=x(x+5)-1B.x2-4+3x=(x+2)(x-2)+3xC.x2-9=(x+3)(x-3)D.(x+2)(x-2)=x2-4【答案】C【考点】因式分解的定义【解析】【解答】A.右边不是积的形式,故A错误;B.右边不是积的形式,故B错误;C.x2-9=(x+3)(x-3),故C正确.D.是整式的乘法,不是因式分解选C【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解9. ( 3分) 式子(2+1)(22+1)(24+1)(28+1)⋅⋅⋅(21010+1)化简的结果为()A.21010−1B.21010+1C.22020−1D.22020+1【答案】C【考点】平方差公式及应用【解析】【解答】解:设S= (2+1)(22+1)(24+1)(28+1)⋅⋅⋅(21010+1),∵(2—1)S=(2—1)(2+1)(22+1)(24+1)(28+1)⋅⋅⋅(21010+1)∵S= (22−1)(22+1)(24+1)(28+1)⋅⋅⋅(21010+1)= (24−1)(24+1)(28+1)⋅⋅⋅(21010+1)= (21010−1)(21010+1)= 22020−1,故答案为:C.【分析】利用添项法,构造平方差公式计算即可.10. ( 3分)2×(3+1)(32+1)(34+1)(38+1)(316+1)的计算结果的个位数字是()A.8B.6C.2D.0【答案】D【考点】平方差公式及应用【解析】【解答】解:(3−1)(3+1)(32+1)(34+1)…(316+1)=(32−1)(32+1)(34+1)…(316+1)=(34−1)(34+1)…(316+1)=332−1∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…∴3n的个位是以指数1到4为一个周期,幂的个位数字重复出现,∵32÷4=8,故332与34的个位数字相同即为1,∵ 332−1的个位数字为0,∵ 2×(3+1)(32+1)(34+1)(38+1)(316+1)的个位数字是0.故答案为:D.【分析】先将2变形为(3-1),再根据平方差公式求出结果,根据规律得出答案即可.二、填空题目11. ( 4分) 若m a=2,m b=3,m c=4,则m2a+b﹣c=________.【答案】 3【考点】同底数幂的乘法,同底数幂的除法,幂的乘方【解析】【解答】解:∵m a=2,m b=3,m c=4,∵m2a+b﹣c=(m a)2•m b÷m c=4×3÷4=3.故答案为:3.【分析】根据同底数幂的乘法与除法法则则及幂的乘方与积的乘方法则进行计算即可.12. ( 4分) 比较大小: 2√2________ √7. (填“>”、“<"或“=")【答案】>【考点】实数大小的比较【解析】【解答】解:(2√2)2=8,(√7)2=7,∵8>7,∴2√2>√7.故答案为:>.【分析】首先分别求出两个数的平方的大小;然后根据:两个正实数,平方大的这个数也大,判断出两个数的大小关系即可.13. ( 4分) 若x+y=1,xy=-7,则x2y+xy2=________.【答案】-7【考点】提公因式法因式分解【解析】【解答】解:∵x+y=1,xy=-7,∵原式=xy(x+y)=-7,故答案为:-7【分析】先将多项式提取公因式xy,将多项式分解成xy(x+y),再将已知条件中的值代入计算出即可。
人教版数学八年级上册 第14章测试题含答案
人教版数学八年级上册第14章测试题含答案14.1整式的乘法一.选择题1.若a x=2,a y=3,则a2x+3y=()A.108B.54C.36D.312.下列计算正确的是()A.3=x6C.x3+x3=2x6D.x2x3=x63.若(x+2)(x﹣3)=x2+mx﹣6,则m等于()A.﹣2B.2C.﹣1D.14.若(x2+px+8)(x2﹣3x+1)乘积中不含x2项,则p的值为()A.p=0B.p=3C.p=﹣3D.p=﹣15.下列计算正确的是()A.a4 +a5 =a9 B.a2a3=a5C.3=ab66.长方形的长为3x2y,宽为2xy3,则它的面积为()A.5x3y4B.6x2y3C.6x3y4D.7.下列式子中,正确的有()①m3m5=m15;②(a3)4=a7;③(﹣a2)3=﹣(a3)2;④(3x2)2=6x6.A.0个B.1个C.2个D.3个8.下列各式中,正确的是()A.m4+m4=m8B.m5m5=2m25C.﹣(﹣m3)2(﹣m2)=m12D.以上都不正确9.关于x的代数式(3﹣ax)(3+2x)的化简结果中不含x的一次项,则a的值为()A.1B.2C.3D.410.若m=272,n=348,则m、n的大小关系正确的是()A.m>n B.m<nC.m=n D.大小关系无法确定二.填空题11.x2x5=,(103)3=.12.计算:﹣32021×(﹣)2020=.13.已知x﹣y=7,xy=5,则(2﹣x)(y+2)的值为.14.如图,现有A类、B类正方形卡片和C类长方形卡片各若干张,若要拼一个长为(3a+b),宽为(a+2b)的大长方形,则需要张C类卡片.15.将关于x的多项式x2+2x+3与2x+b相乘,若积中不出现一次项,则b=.三.解答题16.﹣15y4.17.计算下列各式(1)x(2x2y﹣3y);(2)(x+2y)(x﹣3y)+xy.18.代数计算:(1)求值:(﹣)÷(﹣)×|﹣2+(﹣3)2|;(2)化简:5x(x2+2x+1)﹣(2x+3)(x﹣5);(3)分解:(m2﹣1)2﹣6(m2﹣1)+9;(4)求解:;(5)求解:4﹣3|2x﹣1|=1;(6)求解:|x﹣|2x+1||=3.19.已知多项式x+2与另一个多项式A的乘积为多项式B.(1)若A为关于x的一次多项式x+a,B中x的一次项系数为0,直接写出a的值;(2)若B为x3+px2+qx+2,求2p﹣q的值.(3)若A为关于x的二次多项式x2+bx+c,判断B是否可能为关于x的三次二项式,如果可能,请求出b,c的值;如果不可能,请说明理由.参考答案与试题解析一.选择题1.【解答】解:∵a x=2,a y=3,∴a2x+3y=a2x a3y=(a x)2(a y)3=22×33=4×27=108,故选:A.2.【解答】解:A、(﹣2x)3=﹣8x3,故原题计算正确;B、(x3)3=x9,故原题计算错误;C、x3+x3=2x3,故原题计算错误;D、x2x3=x5,故原题计算错误;故选:A.3.【解答】解:∵(x+2)(x﹣3)=x2﹣x﹣6,又∵(x+2)(x﹣3)=x2+mx﹣6,∴x2﹣x﹣6=x2+mx﹣6.∴m=﹣1.故选:C.4.【解答】解:(x2+px+8)(x2﹣3x+1)=x4+px3+8x2﹣3x3﹣3px2﹣24x+x2+px+8=x4+(p﹣3)x3+(9﹣3p)x2+(p﹣24)x+8.∵(x2+px+8)(x2﹣3x+1)乘积中不含x2项,∴9﹣3p=0.∴p=3.故选:B.5.【解答】解:a4与a5不是同类项,不能合并,因此选项A不符合题意;a2a3=a2+3=a5,因此选项B符合题意;(﹣a3)4=a12,因此选项C不符合题意;(ab2)3=a3b6,因此选项D不符合题意;故选:B.6.【解答】解:3x2y2xy3=6x3y4,故选:C.7.【解答】解:①m3m5=m8;故①结论错误;②(a3)4=a12;故②结论错误;③(﹣a2)3=﹣(a3)2;故③结论正确;④(3x2)2=9x4;故④结论错误.所以正确的有1个.故选:B.8.【解答】解:A、m4+m4=2m4,故A错误;B、m5m5=m10,故B错误;C、﹣(﹣m3)2(﹣m2)=﹣m6(﹣m2)=m8,故C错误;故选:D.9.【解答】解:原式=9+6x﹣3ax﹣2ax2=﹣2ax2+(6﹣3a)x+9,由结果不含x的一次项,得到6﹣3a=0,解得:a=2.故选:B.10.【解答】解:m=272=(23)24=824,n=348=(32)24=924,∵8<9,∴m<n,故选:B.二.填空题(共5小题)11.【解答】解:x2x5=x2+5=x7;(103)3=103×3=109.故答案为:x7;109.12.【解答】解:﹣32021×(﹣)2020=﹣32020×3×(﹣)2020=﹣[3×(﹣)]2020×3=﹣1×3=﹣3,故答案为:﹣3.13.【解答】解:(2﹣x)(y+2)=2y+4﹣xy﹣2x=﹣xy﹣2(x﹣y)+4,把x﹣y=7,xy=5代入,原式=﹣5﹣2×7+4=﹣15.故答案为:﹣15.14.【解答】解:∵(3a+b)(a+2b)=3a2+6ab+ab+2b2=3a2+7ab+2b2,∴若要拼一个长为(3a+b),宽为(a+2b)的大长方形,则需要A类3张,B类2张,C 类7张.故答案为:7.15.【解答】解:根据题意得:(x2+2x+3)(2x+b)=2x3+(4+b)x2+(6+2b)x+3b,由积中不出现一次项,得到6+2b=0,解得:b=﹣3.故答案为:﹣3.三.解答题(共4小题)16.【解答】解:﹣15y4=4x4+20x3y+21x2y2+16x3y+80x2y2+84xy3+12x2y2+60xy3+63y4﹣15y4=4x4+36x3y+113x2y2+144xy3+48y4.17.【解答】解:(1)x(2x2y﹣3y)=x2x2y﹣x3y=x3y﹣xy;(2)(x+2y)(x﹣3y)+xy=x2﹣xy﹣6y2+xy=x2﹣6y2.18.【解答】解:(1)原式=(﹣)×(﹣6)×|﹣2+9|=1×7=7;(2)原式=5x3+10x2+5﹣2x2+10x﹣3x+15=5x3+8x2+7x+20;(3)原式=(m2﹣1﹣3)2=(m2﹣4)2=(m+2)2(m﹣2)2;(4)原方程组变形为:,②×15﹣①得﹣3y=14,解得y=﹣,把y=﹣代入②得,x=﹣,∴原方程组的解为:;(5)∵4﹣3|2x﹣1|=1,∴|2x﹣1|=1,∴2x﹣1=±1,∴2x﹣1=1或2x﹣1=﹣1,解得x=1或x=0;(6)∵|x﹣|2x+1||=3,∴x﹣|2x+1|=±3,∴|2x+1|=x﹣3,或|2x+1|=x+3,∴2x+1=±(x﹣3)或2x+1=±(x+3),解得x=﹣4或x=或x=2或x=﹣.19.【解答】解:(1)根据题意可知:B=(x+2)(x+a)=x2+(a+2)x+2a,∵B中x的一次项系数为0,∴a+2=0,解得a=﹣2.(2)设A为x2+tx+1,则(x+2)(x2+tx+1)=x3+px2+qx+2,∴,∴2p﹣q=2(t+2)﹣(2t+1)=3;(3)B可能为关于x的三次二项式,理由如下:∵A为关于x的二次多项式x2+bx+c,∴b,c不能同时为0,∵B=(x+2)(x2+bx+c)=x3+(b+2)x2+(2b+c)x+2c.当c=0时,B=x3+(b+2)x2+2bx,∵b不能为014.2乘法公式一.选择题1.如果x2+6xy+m是一个完全平方式,则m的值为()A.9y2B.3y2C.y2D.6y2 2.若M(5x﹣y2)=y4﹣25x2,那么代数式M应为()A.﹣5x﹣y2B.﹣y2+5x C.5x+y2D.5x2﹣y2 3.下列运算正确的是()A.a2+2a=3a3B.A.x3x2=x6B.x(x﹣3)=x2﹣3xC.=x2+y2D.﹣2x3y2÷xy2=2x47.下列各式中,不能用平方差公式计算的是()A.B.C.D.8.已知4﹣8x+mx2是关于x的完全平方式,则m的值为()A.2B.±2C.4D.±49.如果x2﹣6x+N是一个完全平方式,那么N是()A.11B.9C.﹣11D.﹣910.如图①,边长为a的大正方形中有四个边长均为b的小正方形,小华将阴影部分拼成一个长方形,(如图②)则这个长方形的面积为()A.B.C.D.二.填空题11.已知a+b=2,ab=1,则a2+b2=.12.已知:a+b=6,ab=﹣10,则a2+b2=.13.若x2﹣10x+m2是一个完全平方式,那么m的值为.14.若(x+y)2=11,(x﹣y)2=1,则x2﹣xy+y2的值为.15.如图1,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影部分剪拼成一个长为20,宽为10的长方形,如图2,则图2中(1)部分的面积是.三.解答题16.已知(m﹣53)(m﹣47)=12,求(m﹣53)2+(m﹣47)2的值.17.已知:x+y=5,xy=3.求:①x2+5xy+y2;②x4+y4.18.某学生化简a(a+1)﹣(a﹣2)2出现了错误,解答过程如下:解:原式=a2+a﹣(a2﹣4a+4)(第一步)=a2+a﹣a2﹣4a+4(第二步)=﹣3a+4(第三步)(1)该学生解答过程是从第步开始出错,其错误原因是;(2)请你帮助他写出正确的简化过程.19.学习整式乘法时,老师拿出三种型号的卡片,如图1:A型卡片是边长为a的正方形,B型卡片是边长为b的正方形,C型卡片是长和宽分别为a,b的长方形.(1)选取1张A型卡片,2张C型卡片,1张B型卡片,在纸上按照图2的方式拼成一个长为(a+b)的大正方形,通过不同方式表示大正方形的面积,可得到乘法公式:.(2)若用图1中的8块C型长方形卡片可以拼成如图3所示的长方形,它的宽为20cm,请你求出每块长方形的面积.(3)选取1张A型卡片,3张C型卡片按图4的方式不重叠地放在长方形DEFG框架内,已知GF的长度固定不变,DG的长度可以变化,图中两阴影部分(长方形)的面积分别表示为S1,S2,若S=S2﹣S1,则当a与b满足时,S为定值,且定值为.参考答案与试题解析一.选择题1.【解答】解:∵x2+6xy+m是一个完全平方式,∴m==9y2.故选:A.2.【解答】解:∵M(5x﹣y2)=y4﹣25x2=(y2+5x)(y2﹣5x)=(5x﹣y2)(﹣5x﹣y2),∴M=﹣5x﹣y2.故选:A.3.【解答】解:A.a2与2a不能合并,所以A选项的计算错误;B.原式=4a6,所以B选项的计算错误;C.原式=a2+a﹣2,所以C选项的计算正确;D.(a+b)2=a2+2ab+b2,所以D选项的计算错误.故选:C.4.【解答】解:A、原式=2m2,不符合题意;B、原式=m2+4m+4,不符合题意;C、原式=8m3n6,不符合题意;D、原式=m8,符合题意.故选:D.5.【解答】解:A.结果是a5,故本选项不符合题意;B.结果是﹣8a9,故本选项不符合题意;C.结果是a2,故本选项符合题意;D.结果是a2+2ab+b2,故本选项不符合题意;故选:C.6.【解答】解:A、x3x2=x5,原计算错误,故此选项不符合题意;B、x(x﹣3)=x2﹣3x,原计算正确,故此选项符合题意;C、=x2﹣y2,原计算错误,故此选项不符合题意;D、﹣2x3y2与xy2不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:B.7.【解答】解:A、=(﹣y+x)(﹣y﹣x)=(﹣y)2﹣x2=y2﹣x2,此题符合平方差公式的特征,能用平方差公式计算,故此题不符合题意;B、=﹣(x﹣y)(x﹣y)=﹣(x﹣y)2=﹣x2+2xy﹣y2,此题不符合平方差公式的特征,不能用平方差公式计算,故此选项符合题意;C、=(4x2)2﹣(y2)2=16x4﹣y4,原式能用平方差公式计算,故此选项不符合题意;D、=(3x)2﹣12=9x2﹣1,原式能用平方差公式计算,故此选项不符合题意,故选:B.8.【解答】解:∵4﹣8x+mx2是关于x的完全平方式,∴﹣8=﹣2×2,解得:m=4,故选:C.9.【解答】解:∵x2﹣6x+N=x2﹣2x3+N是一个完全平方式,∴N=32=9.故选:B.10.【解答】解:图②长方形的长为(a+2b),宽为(a﹣2b),因此阴影部分的面积为,故选:A.二.填空题11.【解答】解:∵a+b=2,ab=﹣1,∴a2+b2=(a+b)2﹣2ab=4+2=6,故答案为:6.12.【解答】解:∵a+b=6,ab=﹣10,∴a2+b2=(a+b)2﹣2ab=62﹣2×(﹣10)=56,故答案为:56.13.【解答】解:∵x2﹣10x+m2是一个完全平方式,∴m=±5,故答案为:±5.14.【解答】解:∵(x+y)2=x2+y2+2xy=11①,(x﹣y)2=x2+y2﹣2xy=1②,∴①+②得:2(x2+y2)=12,即x2+y2=6,①﹣②得:4xy=10,即xy=2.5,则原式=6﹣2.5=3.5.故答案为:3.5.15.【解答】解:根据题意得,a+b=20,a﹣b=10,解得,a=15,b=5,图2中(1)的面积为a(a﹣b)=15×10=150,故答案为:150.三.解答题16.【解答】解:(m﹣53)2+(m﹣47)2=[(m﹣53)﹣(m﹣47)]2+2(m﹣53)(m﹣47)=(﹣6)2+2×12=60.17.【解答】解:①∵x+y=5,xy=3,∴x2+5xy+y2=(x+y)2+3xy=52+3×3=34;②∵x+y=5,xy=3,∴x2+y2=(x+y)2﹣2xy=52﹣2×3=19,∴x4+y4=(x2+y2)2﹣2x2y2=192﹣2×32=333.18.【解答】解:(1)第二步在去括号时,﹣4a+4应变为4a﹣4.故错误原因为去括号时没有变号.(2)原式=a2+a﹣(a2﹣4a+4)=a2+a﹣a2+4a﹣4=5a﹣4.19.【解答】解:(1)方法1:大正方形的面积为(a+b)2,方法2:图2中四部分的面积和为:a2+2ab+b2,因此有(a+b)2=a2+2ab+b2,故答案为:(a+b)2=a2+2ab+b2.(2)设每块C型卡片的宽为xcm,长为ycm,根据题意得x+y=20,4x=20,解得x=5,y=15,所以每块长方形材料的面积是:5×15=75(cm2)14.3整式的除法一.选择题1.计算﹣2a3b4÷3a2bab3正确答案是()A.B.ab C.﹣a6b8D.a2b62.下列运算正确的是()A.3=6x6C.2x2+4x3=6x5D.x5÷x=2x43.已知a≠0,下列运算中正确的是()A.3a+2a2=5a3B.6a3÷2a2=3aC.A.x3x4=x7B.3=x6D.2x2÷x=2x5.下列计算正确的是()A.10a4b3c2÷5a3bc=ab2cB.÷3xy=3x﹣2yD.=﹣2b﹣c6.已知:(12a3﹣6a2+3a)÷3a﹣2a=0且b=2,则式子(ab2﹣2ab)ab的值为()A.﹣B.C.﹣1D.27.有两块总面积相等的场地,左边场地为正方形,由四部分构成,各部分的面积数据如图所示.右边场地为长方形,长为2(a+b),则宽为()A.B.1C.D.a+b8.如图1,将一张长方形纸板四角各切去一个同样的正方形,制成如图2的无盖纸盒,若该纸盒的容积为4a2b,则图2中纸盒底部长方形的周长为()A.4ab B.8ab C.4a+b D.8a+2b9.设a,b是实数,定义关于“*”的一种运算如下a*b=(a+b)2﹣(a﹣b)2.则下列结论:①a*b=0,则a=0或b=0;②不存在实数a,b,满足a*b=a2+4b2;③a*(b+c)=a*b+a*c;④a*b=8,则(10ab3)÷(5b2)=4其中正确的是()A.①②③B.①③④C.①②④D.②③④10.太阳到地球的距离约为1.5×108km,光的速度约为3.0×105km/s,则太阳光到达地球的时约为()A.50s B.5×102s C.5×103s D.5×104s二.填空题11.(8a3b﹣4a2b2)÷2ab=.12.计算15a5b3÷5a4b的结果等于.13.已知,一个长方形的面积为6a2﹣4ab+2a,且它的一条边长为2a,则与这条边相邻的边的长度为.14.若2m×8n=32,,则的值为.15.已知一个长方形的面积是2a2﹣8b2(a>2b),其中一边的长为a+2b,则另一边的长为.三.解答题16.计算:(5a3b2﹣6a2)÷(3a)17.(2x﹣1);(2)(15x3y5﹣10x4y4﹣20x3y2)÷(﹣5x3y2).18.计算:(1)|1﹣|+﹣;(2)÷×;(3)(2x+1)(x﹣3);(4)(4x3﹣6x2+2x)÷(﹣2x).19.已知A=(4x4﹣x2)÷x2,B=(2x+5)(2x﹣5)+1.(1)求A和B;(2)若变量y满足y﹣A=B,求y与x的关系式;(3)在(2)的条件下,当y=7时,求8x2+(8x2﹣y)2﹣30的值.参考答案与试题解析一.选择题1.【解答】解:﹣2a3b4÷3a2bab3=﹣2×(a3﹣2+1b4﹣1+3)=﹣a2b6,故选:D.2.【解答】解:A、(﹣a2n)3=﹣a6n,故此选项错误;B、(2x2)3=8x6 ,故此选项错误;C、2x2+4x3,无法合并,故此选项错误;D、x5÷x=2x4,正确.故选:D.3.【解答】解:由于a和a2不是同类项,不能合并,故选项A错误;6a3÷2a2=3a,计算正确,故选项B正确;(3a3)2=9a6≠6a6,故选项C错误;3a3÷2a2=1.5a≠5a5,故选项D错误.故选:B.4.【解答】解:(C)原式=x9,故C错误,故选:C.5.【解答】解:A、10a4b3c2÷5a3bc=2ab2c,故此选项错误;B、(a2bc)2÷abc=a4b2c2÷abc=a3bc,故此选项错误;C、(9x2y﹣6xy2)÷3xy=3x﹣2y,正确;D、=﹣2b+c,故此选项错误;故选:C.6.【解答】解:∵(12a3﹣6a2+3a)÷3a﹣2a=0,∴4a2﹣2a+1﹣2a=0,故(2a﹣1)2=0,解得:a=,(ab2﹣2ab)ab=a2b3﹣a2b2把a=,b=2代入上式得:原式=×()2×23﹣()2×22=﹣1=﹣.故选:A.7.【解答】解:左边场地面积=a2+b2+2ab,∵左边场地的面积与右边场地的面积相等,∴宽=(a2+b2+2ab)÷2(a+b)=(a+b)2÷2(a+b)=,故选:C.8.【解答】解:根据题意,得纸盒底部长方形的宽为=4a,∴纸盒底部长方形的周长为:2(4a+b)=8a+2b.故选:D.9.【解答】解:①∵a*b=0,∴(a+b)2﹣(a﹣b)2=0,a2+2ab+a2﹣a2﹣b2+2ab=0,4ab=0,∴a=0或b=0,故①正确;②∵a*b=(a+b)2﹣(a﹣b)2=4ab,又a*b=a2+4b2,∴a2+4b2=4ab,∴a2﹣4ab+4b2=(a﹣2b)2=0,∴a=2b时,满足条件,∴存在实数a,b,满足a*b=a2+4b2;故②错误,③∵a*(b+c)=(a+b+c)2﹣(a﹣b﹣c)2=4ab+4ac,又∵a*b+a*c=4ab+4ac∴a*(b+c)=a*b+a*c;故③正确.④∵a*b=8,∴4ab=8,∴ab=2,∴(10ab3)÷(5b2)=2ab=4;故④正确.故选:B.10.【解答】解:∵太阳到地球的距离约为1.5×108km,光的速度约为3.0×105km/s,∴太阳光到达地球的时约为:(1.5×108)÷(3.0×105)=5×102(s).故选:B.二.填空题11.【解答】解:(8a3b﹣4a2b2)÷2ab=8a3b÷2ab﹣4a2b2÷2ab=4a2﹣2ab.故答案为:4a2﹣2ab.12.【解答】解:15a5b3÷5a4b=3ab2.故答案为:3ab2.13.【解答】解:∵一个长方形的面积为6a2﹣4ab+2a,且它的一条边长为2a,∴与这条边相邻的边的长度为:(6a2﹣4ab+2a)÷2a=3a﹣2b+1.故答案为:3a﹣2b+1.14.【解答】解:∵2m×8n=2m×23n=2m+3n=32=25,2m÷4n=2m÷22n=2m﹣2n==2﹣4,∴m+3n=5,m﹣2n=﹣4,两式相加得:2m+n=1,则原式=(2m+n)=.故答案为:.15.【解答】解:∵一个长方形的面积是2a2﹣8b2(a>2b),其中一边的长为a+2b,∴(2a2﹣8b2)÷(a+2b)=2(a+2b)(a﹣2b)÷(a+2b)=2(a﹣2b)=2a﹣4b.故答案为:2a﹣4b.三.解答题16.【解答】解:(5a3b2﹣6a2)÷(3a)=5a3b2÷3a﹣6a2÷3a=﹣2a.17.【解答】解:(2x﹣1)=2x2﹣x+4x﹣2=2x2+3x﹣2;(2)(15x3y5﹣10x4y4﹣20x3y2)÷(﹣5x3y2)=15x3y5÷(﹣5x3y2)﹣10x4y4÷(﹣5x3y2)﹣20x3y2÷(﹣5x3y2)=﹣3y3+2xy2+4.18.【解答】解:(1)|1﹣|+﹣=﹣1+2﹣3=﹣2;(2)÷×==;(3)(2x+1)(x﹣3)=2x2﹣6x+x﹣3=2x2﹣5x﹣3;(4)(4x3﹣6x2+2x)÷(﹣2x)=4x3÷(﹣2x)﹣6x2÷(﹣2x)+2x÷(﹣2x)=﹣2x2+3x﹣1.19.【解答】解:(1)A=(4x4﹣x2)÷x2=4x2﹣1,B=(2x+5)(2x﹣5)+1=4x2﹣25+1=4x2﹣24。
人教版数学八年级上册第十四章基础测试题含答案
人教版数学八年级上册第十四章基础测试题含答案14.1整式的乘法一.选择题1.若2×22×2n=29,则n等于()A.7B.4C.2D.62.计算a3(﹣a3)2的结果是()A.a8B.﹣a8C.a9D.a123.下列计算正确的是()A.3a+2b=5ab B.3a﹣2a=1C.a6÷a2=a3D.(﹣a3b)2=a6b24.下列计算正确的是()A.a2+a4=a6B.2a•4a=8a C.(a2)3=a6D.a8÷a2=a4 5.下列运算正确是()A.b5÷b3=b2B.(b5)3=b8C.b3b4=b12D.a(a﹣2b)=a2+2ab6.若(1﹣x)1﹣3x=1,则x的取值有()个.A.0B.1C.2D.37.计算:(﹣2020)0=()A.1B.0C.2020D.﹣2020 8.计算(﹣)0=()A.B.﹣C.1D.0 9.若(x﹣1)0=1成立,则x的取值范围是()A.x=﹣1B.x=1C.x≠0D.x≠1 10.计算:20200﹣|﹣2|=()A.2022B.2018C.﹣1D.3二.填空题11.计算:x5•x3的结果等于.12.已知2a=3,2b=6,2c=12,则a+c﹣2b=.13.若a m=9,a n=3,则a m﹣n=.14.等式a0=1成立的条件是.15.计算()0的结果是.三.解答题16.计算:(﹣2)3+(π﹣3)0.17.已知3x+5y﹣1=0,求8x•32y的值.18.计算:(1)(﹣x)5•x2•(﹣x)4;(2)﹣a2•(﹣a)4•(﹣a)3;(3)﹣m4•m6•(﹣m)8;(4)﹣(﹣p)5•(﹣p)3•(﹣p)2.19.已知(a x)y=a6,(a x)2÷a y=a3(1)求xy和2x﹣y的值;(2)求4x2+y2的值.20.阅读材料:(1)1的任何次幂都为1:(2)﹣1的奇数次幂为﹣1:(3)﹣1的偶数次幂为1:(4)任何不等于零的数的零次幂为1.请问当x为何值时,代数式(2x+3)x+2020的值为1.参考答案一.选择题1.解:∵2×22×2n=21+2+n=29,∴1+2+n=9,解得n=6.故选:D.2.解:原式=a3•a6=a9,故选:C.3.解:A、3a+2b,无法计算,故此选项错误;B、3a﹣2a=a,故此选项错误;C、a6÷a2=a4,故此选项错误;D、(﹣a3b)2=a6b2,正确.故选:D.4.解:A、a2+a4无法计算,故此选项错误;B、2a•4a=8a2,故此选项错误;C、(a2)3=a6,故此选项正确;D、a8÷a2=a6,故选项错误.故选:C.5.解:A、b5÷b3=b2,故这个选项正确;B、(b5)3=b15,故这个选项错误;C、b3•b4=b7,故这个选项错误;D、a(a﹣2b)=a2﹣2ab,故这个选项错误;故选:A.6.解:∵(1﹣x)1﹣3x=1,∴当1﹣3x=0时,原式=()0=1,当x=0时,原式=11=1,故x的取值有2个.故选:C.7.解:(﹣2020)0=1,故选:A.8.解:(﹣)0=1,故选:C.9.解:由题意可知:x﹣1≠0,x≠1故选:D.10.解:20200﹣|﹣2|=1﹣2=﹣1.故选:C.二.填空题11.解:x5•x3=x5+3=x8故答案为:x8.12.解:∵2b=6,∴(2b)2=62.即22b=36.∵2a+c﹣2b=2a×2c÷22b=3×12÷36=1,∴a+c﹣2b=0.故答案为:0.13.解:∵a m=9,a n=3,∴a m﹣n=a m÷a n=9÷3=3.故答案为:3.14.解:等式a0=1成立的条件是:a≠0.故答案为:a≠0.15.解:()0=1,故答案为:1.三.解答题16.解:原式=﹣8+1=﹣7.17.解:原式=23x•25y=23x+5y,∵3x+5y﹣1=0,∴3x+5y=1,∴原式=21=2.18.解:(1)原式=(﹣x5)•x2•x4=﹣x5+2+4=﹣x11;(2)原式=﹣a2•a4•(﹣a3)=﹣(﹣a2+3+4)=﹣(﹣a9)=a9;(3)原式=﹣m4•m6•m8=﹣m4+6+8=﹣m18;(4)原式=﹣(﹣p5)•(﹣p3)•p2=﹣p5+3+2=﹣p10.19.解:(1)∵(a x)y=a6,(a x)2÷a y=a3∴a xy=a6,a2x÷a y=a2x﹣y=a3,∴xy=6,2x﹣y=3.(2)4x2+y2=(2x﹣y)2+4xy=32+4×6=9+24=33.20.解:①由2x+3=1,得x=﹣1,当x=﹣1时,代数式(2x+3)x+2020=12019=1;②由2x+3=﹣1,得x=﹣2,当x=﹣2时,代数式(2x+3)x+2020=(﹣1)2018=1;③由x+2020=0,得x=﹣2020,当x=﹣2020时,2x+3=﹣4037≠0所以(2x+3)x+2020=(﹣4037)0=1.当x=﹣2020时,代数式(2x+3)x+2020的值为1.答:当x为﹣1、﹣2、﹣2020时,代数式(2x+3)x+2020的值为1.14.2《乘法公式》一.选择题1.化简(﹣2x﹣3)(3﹣2x)的结果是()A.4x2﹣9B.9﹣4x2C.﹣4x2﹣9D.4x2﹣6x+9 2.下列各式中,能用完全平方公式计算的是()A.(x﹣y)(x+y)B.(2x﹣y)(x+y)C.(x﹣y)(2x﹣y)D.(x﹣y)(﹣x+y)3.下列计算中正确的是()A.(x+2)2=x2+2x+4B.(﹣3﹣x)(3+x)=9﹣x2C.(﹣3﹣x)(3+x)=﹣x2﹣9+6xD.(2x﹣3y)2=4x2+9y2﹣12xy4.若x2+4x+m是完全平方式,则m的值是()A.1B.2C.4D.165.要使式子25x2+9y2成为一个完全平方式,则需加上()A.15xy B.±15xy C.30xy D.±30xy 6.若m≠n,下列等式中正确的是()①(m﹣n)2=(n﹣m)2;②(m﹣n)2=﹣(n﹣m)3;③(m+n)(m﹣n)=(﹣m﹣n)(﹣m+n);④(﹣m﹣n)2=﹣(m﹣n)2.A.1个B.2个C.3个D.4个7.下列整式的运算可以运用平方差公式计算的有()①(2m+n)(n﹣2m);②(a2﹣4b)(4b﹣a2);③(x+y)(﹣x﹣y);④(3a+b)(﹣3a+b)A.1个B.2个C.3个D.4个8.如果a﹣b=2,a﹣c=,那么a2+b2+c2﹣ab﹣ac﹣bc等于()A.B.C.D.不能确定9.如图所示的四边形均为矩形或正方形,下列等式能够正确表示该图形面积关系的是()A.(a+b)2=a2+2ab+b2B.(a+b)2=a2+2ab﹣b2C.(a﹣b)2=a2﹣2ab+b2D.(a﹣b)2=a2﹣2ab﹣b210.如果1﹣+=0,那么等于()A.﹣2B.﹣1C.1D.211.如图,从边长为a+2的正方形纸片中剪去一个边长为a的小正方形,剩余部分可剪拼成一个不重叠、无缝隙的长方形,若拼成的长方形一边长为2,则它另一边的长是()A.2a﹣2B.2a C.2a+1D.2a+2二.填空题12.计算:(m﹣2n)2=.13.计算(a+b)(a﹣b)的结果等于.14.(2x+3)()=9﹣4x215.若关于x的二次三项式x2+(m﹣1)x+16是完全平方式,则m的值为.16.如果x2﹣mx+36是完全平方式,那么常数m的值是.17.计算:1992﹣198×202=.18.若a2+b2=16,a﹣b=6,则ab=.19.如图,将一个大正方形分割成两个长方形和面积分别为a2和b2的两个小正方形,则大正方形的面积是.20.如图1,将边长为a的大正方形剪去一个边长为b的小正方形,再沿图中的虚线剪开,然后按图2所示进行拼接,请根据图形的面积写出一个含字母a,b的等式.三.解答题(共6小题)21.计算:(2a﹣3b)2﹣(3a﹣2b)2.22.(a+2b)(a﹣2b)﹣(a﹣2b)2﹣4ab.23.利用乘法公式进行简算:(1)2019×2021﹣20202 (2)972+6×97+9.24.若x2+2xy+y2﹣a(x+y)+25是完全平方式,求a的值.25.如图①,是一个长为2m、宽为2n的长方形,用剪刀沿图中的虚线(对称轴)剪开,把它分成四个形状和大小都相同的小长方形,然后按图②那样拼成一个正方形(中间是空的).(1)图②中画有阴影的小正方形的边长等于多少?(2)观察图②,写出代数式(m+n)2,(m﹣n)2与mn之间的等量关系;(3)根据(2)中的等量关系解决下面的问题:若a+b=7,ab=5,求(a﹣b)2的值.26.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A.a2﹣b2=(a+b)(a﹣b)B.a2﹣2ab+b2=(a﹣b)2C.a2+ab=a(a+b)(2)若x2﹣y2=16,x+y=4,求x﹣y的值;(3)计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).参考答案一.选择题1.解:(﹣2x﹣3)(3﹣2x)=4x2﹣9,故选:A.2.解:A、原式=x2﹣y2,用了平方差公式,故此选项不符合题意;B、原式=2x2+xy﹣y2,用了多项式乘法法则,故此选项不符合题意;C、原式=2x2﹣3xy+y2,用了多项式乘法法则,故此选项不符合题意;D、原式=﹣(x﹣y)2=﹣x2+2xy﹣y2,用了完全平方公式,故此选项符合题意;故选:D.3.解:A、应为(x+2)2=x2+4x+4,故本选项错误;B、应为(﹣3﹣x)(3+x)=﹣x2﹣6x﹣9,故本选项错误;C、应为(﹣3﹣x)(3+x)=﹣x2﹣9﹣6x,故本选项错误;D、(2x﹣3y)2=4x2+9y2﹣12xy,正确.故选:D.4.解:∵x2+4x+m是完全平方式,∴m=4,故选:C.5.解:∵25x2+9y2=(5x)2+(3y)2,∴需加上的式子为±2×5x•3y=±30xy.故选:D.6.解:①(m﹣n)2=(n﹣m)2左右相等所以成立;②(m﹣n)2=﹣(n﹣m)3等号左右两边不相等,所以不成立;③(m+n)(m﹣n)=(﹣m﹣n)(﹣m+n)右边提出负号后可看出左右相等,所以成立;④(﹣m﹣n)2=﹣(m﹣n)2左右两边不相等,所以不成立.所以①③两个成立.故选:B.7.解:①一个数相同,一个数相反,可以运用平方差公式运算,②两个数相反,不可以运用平方差公式运算,③两个数相反,不可以运用平方差公式运算,④一个数相同,一个数相反,可以运用平方差公式运算.所以可以运用平方差公式计算的有2个,故选:B.8.解:a2+b2+c2﹣ab﹣ac﹣bc,=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc),=[(a2+b2﹣2ab)+(a2+c2﹣2ac)+(b2+c2﹣2bc)],=[(a﹣b)2+(a﹣c)2+(b﹣c)2],∵a﹣b=2,a﹣c=,∴b﹣c=﹣,∴原式=(4++)=.故选:A.9.解:计算大正方形的面积:方法一:(a+b)2,方法二:四部分的面积和为a2+2ab+b2,因此:(a+b)2=a2+2ab+b2,故选:A.10.解:∵1﹣+=(1﹣)2,∴(1﹣)2=0,∴1﹣=0,解得=1.故选:C.11.解:由拼图过程可得,长为(a+2)+a=2a+2,故选:D.二.填空题12.解:原式=m2﹣4mn+4n2.13.解:(a+b)(a﹣b)=a2﹣b2;故答案为:a2﹣b2.14.解:(3﹣2x)(3+2x)=9﹣4x2.所填结果是:﹣2x+3.15.解:∵关于x的二次三项式x2+(m﹣1)x+16是完全平方式,∴m﹣1=±8,解得:m=9或m=﹣7,故答案为:9或﹣7.16.解:∵(x±6)2=x2±12x+36=x2﹣mx+36,∴m=±12.故答案为:±12.17.解:原式=(200﹣1)2﹣(200﹣2)(200+2)=2002﹣2×200×1+12﹣2002+22=﹣400+1+4=﹣395.故答案为:﹣395.18.解:∵a﹣b=6,∴(a﹣b)2=36,∴a2+b2﹣2ab=36,∵a2+b2=16,∴16﹣2ab=36,∴ab=﹣10,故答案为:﹣10.19.解:∵两小正方形的面积分别是a2和b2,∴两小正方形的边长分别是a和b,∴两个长方形的长是b,宽是a,∴两个长方形的面积为2ab,∴大正方形的面积为:a2+2ab+b2=(a+b)2.故答案为:(a+b)2.20.解:图1面积为a2﹣b2,图2的面积为(a+b)(a﹣b),因此有:a2﹣b2=(a+b)(a﹣b),故答案为:a2﹣b2=(a+b)(a﹣b).三.解答题(共6小题)21.解:原式=4a2﹣12ab+9b2﹣9a2+12ab﹣4b2=﹣5a2+5b2.22.解:原式=a2﹣4b2﹣(a2﹣4ab+4b2)﹣4ab=a2﹣4b2﹣a2+4ab﹣4b2﹣4ab=﹣8b2.23.解:(1)2019×2021﹣20202=(2020﹣1)(2020+1)﹣20202=20202﹣1﹣20202=﹣1;(2)972+6×97+9=972+2×3×97+32=(97+3)2=1002=10000.24.解:原式=(x+y)2﹣a(x+y)+52,∵原式为完全平方式,∴﹣a(x+y)=±2×5•(x+y),解得a=±10.25.解:(1)图②中画有阴影的小正方形的边长(m﹣n);(2)(m+n)2=(m﹣n)2+4mn;(3)由(2)得:(a+b)2=(a﹣b)2+4ab;∵a+b=7,ab=5,∴(a﹣b)2=(a+b)2﹣4ab=49﹣20=29;答:(a﹣b)2的值为29.26.解:(1)由图可知,大正方形的面积=a2,剪掉的正方形的面积=b2,∴剩余面积=a2﹣b2,拼成长方形的长=(a+b),宽=(a﹣b),面积=(a+b)(a﹣b),∴a2﹣b2=(a+b)(a﹣b).故选:A;(2)∵x2﹣y2=(x+y)(x﹣y)=16,x+y=4,∴x﹣y=4;(3)====.4.3因式分解一.选择题1.下列因式分解正确的是()A.3ax2﹣6ax=3(ax2﹣2ax)B.x2+y2=(﹣x+y)(﹣x﹣y)C.a2+2ab﹣4b2=(a+2b)2D.﹣ax2+2ax﹣a=﹣a(x﹣1)22.下列各式从左到右的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1B.x2﹣y2=(x+y)(x﹣y)C.x2﹣2x+1=x(x﹣2)+1D.x2+y2=(x+y)23.若关于x的二次三项式x2﹣4x+b因式分解为(x﹣1)(x﹣3),则b的值为()A.4B.3C.﹣4D.﹣34.代数式x﹣2是下列哪一组的公因式()A.(x+2)2,(x﹣2)2B.x2﹣2x,4x﹣6C.3x﹣6,x2﹣2x D.x2﹣4,6x﹣185.若实数x满足x2﹣2x﹣1=0,则2x3﹣7x2+4x﹣2019的值为()A.﹣2019B.﹣2020C.﹣2022D.﹣20216.二次三项式x2﹣mx﹣12(m是整数),在整数范围内可分为两个一次因式的积,则m的所有可能值有()个.A.4B.5C.6D.87.已知△ABC三边长分别为a、b、c,(a>0,b>0,c>0),且a、b、c满足a2+b2+c2=ab+bc+ac,则△ABC的形状是()A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形8.如果多项式abc+ab2﹣a2bc的一个因式是ab,那么另一个因式是()A.c﹣b+5ac B.c+b﹣5ac C.ac D.﹣ac二.填空题9.把多项式3ax2﹣12a分解因式的结果是.10.x4﹣ax2+bx+2能被x2+2x+2整除,则a=,b=.11.因式分解:﹣3a2b+6ab2﹣3b3=.12.若关于x的多项式ax3+bx2﹣2的一个因式是x2+3x﹣1,则a+b的值为.13.已知:x2+4y2+z2=9,x﹣2y+z=2,则2xy+2yz﹣xz=.14.阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x ﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为.三.解答题15.因式分解:(1)﹣2x2﹣8y2+8xy;(2)(p+q)2﹣(p﹣q)216.如图,将几个小正方形与小长方形拼成一个边长为(a+b+c)的正方形.(1)若用不同的方法计算这个边长为(a+b+c)的正方形面积,就可以得到一个等式,这个等式可以为(只要写出一个即可);(2)请利用(1)中的等式解答下列问题:①若三个实数a,b,c满足a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;②若三个实数x,y,z满足2x×4y×8z=,x2+4y2+9z2=40,求2xy+3xz+6yz的值.17.(1)阅读下列文字与例题:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法例如:am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n);x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)=x2﹣(y+1)2=(x+y+1)(x﹣y﹣1).试用上述方法分解因式a2+2ab+ac+bc+b2=(2)利用分解因式说明:(n+5)2﹣(n﹣1)2能被12整除.18.阅读下列题目的解题过程:已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)∴c2=a2+b2(C)∴△ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为:;(3)本题正确的结论为:.参考答案一.选择题1.解:A、3ax2﹣6ax=3ax(x﹣2),故此选项错误;B、x2+y2,无法分解因式,故此选项错误;C、a2+2ab﹣4b2,无法分解因式,故此选项错误;D、﹣ax2+2ax﹣a=﹣a(x﹣1)2,正确.故选:D.2.解:A、(x+1)(x﹣1)=x2﹣1,属于整式的乘法运算,故本选项错误;B、x2﹣y2=(x+y)(x﹣y),符合因式分解的定义,故本选项正确;C、x2﹣2x+1=x(x﹣2)+1,不符合因式分解的定义,故本选项错误;D、x2+2xy+y2=(x+y)2,因式分解的过程错误,故本选项错误;故选:B.3.解:由题意得:x2﹣4x+b=(x﹣1)(x﹣3)=x2﹣4x+3,∴b=3,故选:B.4.解:A、(x+2)2与(x﹣2)2没有公因式,故本选项不符合题意.B、x2﹣2x=x(x﹣2),4x﹣6=2(2x﹣3),它们没有公因式,故本选项不符合题意.C、3x﹣6=3(x﹣2)、x2﹣2x=x(x﹣2),它们的公因式是(x﹣2),故本选项符合题意.D、x2﹣4=(x+2)(x﹣2),6x﹣18=6(x﹣3),它们没有公因式,故本选项不符合题意.故选:C.5.解:∵x2﹣2x﹣1=0∴x2﹣2x=1∴2x3﹣7x2+4x﹣2019=2x3﹣4x2﹣3x2+4x﹣2019=2x(x2﹣2x)﹣3x2+4x﹣2019=6x﹣3x2﹣2019=﹣3(x2﹣2x)﹣2019=﹣3﹣2019=﹣2022故选:C.6.解:若x2﹣mx﹣12(m为常数)可分解为两个一次因式的积,m的值可能是﹣1,1,﹣4,4,11,﹣11.共有6个.故选:C.7.解:∵a2+b2+c2=ab+bc+ac,∴a2+b2+c2﹣ab﹣bc﹣ac=0,∴2a2+2b2+2c2﹣2ab﹣2bc﹣2ac=0,∴a2﹣2ab+b2+b2﹣2bc+c2+a2﹣2ac+c2=0,即(a﹣b)2+(b﹣c)2+(c﹣a)2=0,∴a﹣b=0,b﹣c=0,c﹣a=0,∴a=b=c,∴△ABC为等边三角形.故选:A.8.解:abc+ab2﹣a2bc=ab(c+b﹣5ac),故另一个因式为(c+b﹣5ac),故选:B.二.填空题9.解:3ax2﹣12a=3a(x2﹣4)=3a(x+2)(x﹣2),故答案为:3a(x+2)(x﹣2).10.解:∵x4﹣ax2+bx+2能被x2+2x+2整除∴不妨设x4﹣ax2+bx+2=(x2+2x+2)(x2+kx+1),∴x4﹣ax2+bx+2=x4+(k+2)x3+(2k+3)x2+(2k+2)x+2,∴,解得,,故答案为:1;﹣2.11.解:原式=﹣3b(a2﹣2ab+b2)=﹣3b(a﹣b)2.故答案为:﹣3b(a﹣b)212.解:设多项式ax3+bx2﹣2另一个因式为(mx+2),∵多项式ax3+bx2﹣2的一个因式是(x2+3x﹣1),则ax3+bx2﹣2═(mx+2)(x2+3x﹣1)=mx3+(3m+2)x2+(6﹣m)x﹣2,∴a=m,b=3m+2,6﹣m=0,∴a=6,b=20,m=6,∴a+b=6+20=26.故答案为:26.13.解:∵x﹣2y+z=2x+z=2+2y(x+z)2=(2+2y)2x2+z2+2xz=4y2+4y+4x2+z2=4y2+8y﹣2xz+4…①x2+4y2+z2=9x2+z2=9﹣4y2…②∴由①、②两式得:4y2+8y﹣2xz+4=9﹣4y2化简得:4y2+4y﹣xz=,所求代数式为:2xy+2yz﹣xz=2y(x+z)﹣xz=2y(2y+2)﹣xz=,故答案为.14.解:∵x3﹣5x+2=0,∴x3﹣4x﹣x+2=0,∴x(x2﹣4)﹣(x﹣2)=0,∴x(x+2)(x﹣2)﹣(x﹣2)=0,则(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣1)=0,∴x﹣2=0或x2+2x﹣1=0,解得x=2或x=﹣1,故答案为:x=2或x=﹣1+或x=﹣1﹣.三.解答题15.解:(1)﹣2x2﹣8y2+8xy(2)(p+q)2﹣(p﹣q)216.解:(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)①∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,a+b+c=11,ab+bc+ac=38,∴a2+b2+c2=(a+b+c)2﹣(2ab+2ac+2bc)=112﹣2×38=45;②∵2x×4y×8z=,∴2x×22y×23z=,∴2x+2y+3z=2﹣4,∴x+2y+3z=﹣4,∵(x+2y+3z)2=x2+4y2+9z2+2(2xy+3xz+6yz),x2+4y2+9z2=40,∴(﹣4)2=40+2(2xy+3xz+6yz),∴2xy+3xz+6yz=﹣12.故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.17.解:(1)a2+2ab+ac+bc+b2=a2+2ab+b2+ac+bc=(a+b)2+c(a+b)=(a+b)(a+b+c);故答案为(a+b)(a+b+c);(2)(n+5)2﹣(n﹣1)2=(n+5+n﹣1)(n+5﹣n+1)=6(2n+4)=12(n+2),∵12(n+2)能被12整除,∴(n+5)2﹣(n﹣1)2能被12整除.18.解:(1)由题目中的解答步骤可得,错误步骤的代号为:C,故答案为:C;(2)错误的原因为:没有考虑a=b的情况,故答案为:没有考虑a=b的情况;(3)本题正确的结论为:△ABC是等腰三角形或直角三角形或等腰直角三角形,故答案为:△ABC是等腰三角形或直角三角形或等腰直角三角形.。
人教版八年级数学上册第十四章测试题及答案
人教版八年级数学上册第十四章测试题及答案(考试时间:120分钟满分:120分)分数:__________第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.多项式12a3b2c-6ab2-18a2b2的公因式是(C)A.6a3b2c B.6ab2cC.6ab2D.-18a3b2c2.下列运算中正确的是(D)A.m12÷m6=m2B.(m4)3=m7C.(a-b)2=a2-b2D.4x3·(-3x3)=-12x63.如果a2n-1·a n+5=a16,那么n的值为(B)A.3 B.4C.5 D.64.若4m2+amn+25n2是一个完全平方式,则a=(C)A.20 B.-20C.±20 D.±105.下列各式中,能用平方差公式计算的是(D)A.(m-n)(n-m)B.(-a+1)(a-1)C.(x+1)(-x-1)D.(a-b+c)(a+b-c)6.若m+n=-2,则5m2+5n2+10mn的值是(B)A.4 B.20C.10 D.257.要使-x3(x2+ax+1)+2x4中不含有x的四次项,则a等于(B)A.1 B.2C.3 D.48.★7张如图①的长为a,宽为b(a>b)的小长方形纸片,按图②的方式不重叠地放在长方形ABCD内,未被覆盖的部分(两个长方形)用阴影表示,设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足(B)1A .a =52bB .a =3bC .a =72bD .a =4b9.★已知a ,b ,c 为△ABC 三边,且满足ab +bc =b 2+ac ,则△ABC 是( C ) A .直角三角形 B .等边三角形 C .等腰三角形 D .不能确定10.★已知x =3y +5,且x 2-7xy +9y 2=24,则x 2y -3xy 2的值为( C ) A .0 B .1 C .5 D .12 第Ⅱ卷 (非选择题 共90分) 二、填空题(每小题3分,共24分)11.计算:8m 4·m 2-6m 9÷m 3= 2m 6 .12.分解因式:2a 3b -8ab 3= 2ab (a +2b )(a -2b ) .13.计算:⎝⎛⎭⎫1232 020×(-0.6)2 019= -53 .14.已知a m =3,a n =4,则a 3m-2n=2716. 15.已知(x 2+px +8)(x 2-3x +q)(其中p ,q 为常数)的计算结果中不含x 3和x 2项,则p 2+q 2= 10 .16.若x 2+y 2=10,xy =3,则x +y = ±4 .17.已知ab =2,a -b =3,则a 3b -2a 2b 2+ab 3= 18 . 18.★观察下列等式:39×41=402-12,48×52=502-22, 56×64=602-42,65×75=702-52, 83×97=902-72,……请你将发现的规律用含有m ,n 的式子表示出来:m·n = ⎝⎛⎭⎫m +n 22-⎝⎛⎭⎫m -n 22.三、解答题(共66分)19.(12分)计算下列各式.(1)(-3xyz)2·x 3(x 2y)2÷(3x 2y 2)2; 解:原式=9x 2y 2z 2·x 3·x 4y 2÷(9x 4y 4) =x 5z 2.(2)m 2n(mn -7)-7mn(m 2n -m);解:原式=m 3n 2-7m 2n -7m 3n 2+7m 2n =-6m 3n 2.(3)(2a +b)(2a -b)+(a +b)2-2(2a 2-ab). 解:原式=4a 2-b 2+a 2+2ab +b 2-4a 2+2ab =a 2+4ab.20.(8分)计算: (1)1213×1123;解:原式=⎝⎛⎭⎫12+13⎝⎛⎭⎫12-13 =122-⎝⎛⎭⎫132=14389.(2)7.52+2.52-5×7.5. 解:原式=(7.5-2.5)2 =52 =25.21.(12分)将下列各式分解因式. (1)a 2-b 2+9a -9b ;解:原式=(a -b )(a +b +9).(2)19x 2+y 2-23xy ; 解:原式=⎝⎛⎭⎫13x -y 2.(3)(m 2-5)2+8(5-m 2)+16. 解:原式=(m +3)2(m -3)2.22.(7分)先化简,再求值:[(3x +2y)(3x -2y)+(2y +x)(2y -3x)]÷4x ,其中x =2,y =-1. 解:原式=32x -y.当x =2,y =-1时,原式=4.23.(7分)已知多项式A =(3-2x)(1+x)+(3x 5y 2+4x 6y 2-x 4y 2)÷(x 2y)2. (1)化简多项式A ;(2)若(x +1)2=6,求A 的值.解:(1)A =(3+3x -2x -2x 2)+(3x 5y 2+4x 6y 2-x 4y 2)÷x 4y 2 =3+x -2x 2+3x +4x 2-1 =2x 2+4x +2.(2)由(x +1)2=6得x 2+2x =5, ∴2x 2+4x =10,∴A =2x 2+4x +2=10+2=12.24.(10分)探究活动:(1)如图①,可以求出阴影部分的面积是 a 2-b 2 (写成两数平方差的形式);(2)如图②,若将图①中阴影部分裁剪下来,重新拼成一个长方形,面积是 (a +b )(a -b ) (写成多项式乘法的形式);(3)比较图①,图②阴影部分的面积,可以得到公式 (a +b )(a -b )=a 2-b 2 .知识应用:运用你得到的公式解决以下问题: (1)计算:(a +b -2c)(a +b +2c);(2)若4x 2-9y 2=10,4x +6y =4,求2x -3y 的值.解:(1)(a +b -2c )(a +b +2c ) =(a +b )2-4c 2=a 2+2ab +b 2-4c 2. (2)∵4x 2-9y 2=10,∴(2x +3y )(2x -3y )=10.∵4x +6y =4,即2x +3y =2,∴2x -3y =5.25.(10分)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J .Nplcr ,1550~1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(E v lcr ,1707~1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x =N(a >0,a ≠1),那么x 叫做以a 为底N 的对数,记作:x =log a N.比如指数式24=16可以转化为4=log 216,对数式2=log 525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:log a (M·N)=log a M +log a N(a >0,a ≠1,M >0,N >0).理由如下:设log a M =m ,log a N =n ,则M =a m ,N =a n ,∴M ·N =a m ·a n =a m +n ,由对数的定义得m +n =log a (M·N). ∵m +n =log a M +log a N ,∴log a (M·N)=log a M +log a N. 解决以下问题:(1)将指数43=64转化为对数式 3=log 464 ;(2)证明:log a MN =log a M -log a N(a >0,a ≠1,M >0,N >0);(3)拓展运用:计算log 32+log 36-log 34= 1 . (2)证明:设log a M =m ,log a N =n , 则M =a m ,N =a n , ∴M N =a m an =a m -n , 由对数的定义得m -n =log a MN ,∵m -n =log a M -log a N , ∴log a MN =log a M -log a N(a >0,a ≠1,M >0,N >0).。
初二数学第十四章测试卷
一、选择题(每题5分,共50分)1. 下列各数中,属于有理数的是()A. √16B. πC. √-9D. 0.1010010001…2. 下列各数中,无理数是()A. √2B. √4C. √-1D. 0.111111…3. 已知数列 {an} 中,an = 3n - 2,则数列的第10项是()A. 28B. 27C. 26D. 254. 在等差数列 {an} 中,首项 a1 = 2,公差 d = 3,则第n项 an =()A. 3n + 1B. 3n - 1C. 3nD. 3n + 25. 已知等比数列 {an} 中,首项 a1 = 3,公比 q = 2,则第n项 an =()A. 3 × 2^(n-1)B. 3 × 2^nC. 3 × 2^(n+1)D. 3 × 2^(n-2)6. 下列数列中,不是等差数列的是()A. 1, 4, 7, 10, 13…B. 1, 3, 5, 7, 9…C. 1, 2, 4, 8, 16…D. 2, 5, 8, 11, 14…7. 已知数列 {an} 中,an = 2n - 1,则数列的前5项和 S5 =()A. 9B. 10C. 11D. 128. 在等比数列 {an} 中,首项 a1 = 1,公比 q = -2,则数列的前5项和 S5 =()A. 0B. -15C. 15D. 309. 在等差数列 {an} 中,首项 a1 = -3,公差 d = 2,则数列的第10项 an =()A. 13B. 15C. 17D. 1910. 下列数列中,不是等比数列的是()A. 1, 2, 4, 8, 16…B. 2, 4, 8, 16, 32…C. 3, 6, 12, 24, 48…D. 1, 3, 9, 27, 81…二、填空题(每题5分,共50分)11. 等差数列 {an} 中,首项 a1 = 5,公差 d = 3,则第n项 an =________。
(人教版)初中数学八年级上册第十四章综合测试02含答案解析
加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!第十四章综合测试一、选择题(每小题3分,共30分)1.下列运算正确的是( )A .236a a a ⋅=B .22423a a a +=C .()32622a a -=-D .422()a a a ÷-=2.计算10110020.5⨯的结果正确的是( )A .1B .2C .0.5D .103.若22222n n n n +++=,则n =( )A .-1B .2-C .0D .144.下列计算正确的是( )A .22(3)(3)9x y x y x y -+=-B .2(9)(9)9x x x -+=-C .22()()x y x y x y --+=-D .221124x x ⎛⎫-=- ⎪⎝⎭ 5.下列关于296的计算方法正确的是( )A .222296(1004)10049 984=-=-=B .2296(951)(951)9519 024=+-=-=C .222296(906)9068 136=+=+=D .222296(1004)1002100449 216=-=-⨯⨯+=6.下列等式从左到右的变形是因式分解的是( )A .32262(3)a b a b ab -=⋅-B .2294(32)(32)a b a b a b -=+-C .()ma mb c m a b c -+=-+D .222()2a b a ab b +=++ 7.若2()(3)x a x x x n +-=+-,则( )A .4a =-,12n =B .4a =-,12n =-C .4a =,12n =-D .4a =,12n =8.已知2210a a --=,则43221a a a --+等于( )A .0B .1C .2D .39.如图,在边长为a 的正方形中剪去一个边长为b 的小正方形(a b >),把剩下的图形拼成一个梯形,分别计算这两个图形的面积,验证了一个等式,这个等式是( )A .22()()a b a b a b -=+-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .22(2)()2a b a b a ab b +--+-10.不论x ,y 为何有理数,22246x y x y +-++的值均为( )A .正数B .零C .负数D .非负数二、填空题(每小题3分,共24分)11.如果手机通话每分钟收费m 元,那么通话a 分钟,收费__________元.12.单项式2312x y -的次数是__________. 13.因式分解:239bx y by -=__________.14.若2(3)310a b +++=,则20002019a b ⋅=__________.15.已知2a b +=,1ab =-,则33a ab b ++=,22a b +__________.16.长方形的面积为2462a ab a -+,若它的一边长为2a ,则它的周长是__________.17.若10x y +=,1xy =,则33x y xy +的值是__________.18.观察等式:①9124-=⨯,②25146-=⨯,③49168-=⨯,…,按照这种规律写出第n 个等式:__________.三、解答题(共46分)19.(6分)计算:(1)()()[]32332221x x x x x ---(2)2(23)(23)()a b a b a b +--+.20.(9分)先化简,再求值:(1)22()()a a b a b +-+,其中a =,b =(2)()[]22(2)(2)22xy xy x y xy +---÷其中10x =,125y =-.(3)已知1x y -=,2xy =,求32232x y x y xy -+的值.21.(8分)因式分解:(1)224(1)16(1)xy xy -++-;(2)()()2223231x x -+-+;(3)2318()12()b a b a b ---;(4)2221218a a a -+-.22.(5分)试说明331122(24)(42)44m n m n n n ⎛⎫⎛⎫+-+-+ ⎪⎪⎝⎭⎝⎭的值与n 无关.23.(9分)如图,张华的爸爸承包了一块宽为m 米的长方形土地,准备在这块土地上种四种不同的蔬菜,其中长为a 米的一块种香菜,长为b 米的一块种菠菜,长为c 米的一块种芹菜,余下长为d 米的种白菜。
(完整版)八年级上册数学第十四章测试题
八年级上册数学第十四章测试题(一) 姓名:____________ 班级:____________ 分数:____________1.下列多项式中,可以提取公因式的是( )A. 22y x -B. x x +2C. y x -2D. 222y xy x ++2.化简33)(x x -⋅的结果是( )A. 6x -B. 6xC. 5xD. 5x -3.下列两个多项式相乘,不能用平方差公式的是( )A. )32)(32(b a b a ++-B. )32)(32(b a b a --+-C. )32)(32(b a b a --+D. )32)(32(b a b a ---4.下列运算正确的是( )A. a b a b a 2)(222++=+B. 222)(b a b a -=-C. 6)2)(3(2+=++x x xD. 22))((n m n m n m +-=+-+5.若22y mxy x ++是完全平方式,则m =( )A. 2B. 1C. ±2D. ±16.下列四个多项式是完全平方式的是( ) A. 22y xy x ++ B. 222y xy x -- C. 22424n mn m ++ D. 2241b ab a ++7.已知a 、b 是ABC ∆的两边,且222a b ab +=,则ABC ∆的形状是( )A. 等腰三角形B. 等边三角形C. 锐角三角形D. 不确定8.()()1333--⋅+-m m 的值是( )A. 1B. -1C. 0D. ()13+-m二、填空题.(每个题3分,共24分) 9. 计算:2552()()a a -+-= ;236()y y -+= .10. 分解因式: 222x xy y -+= ,22x y -= .11. 计算:-22×(-2)2= ;22005-22004= .12. 若23x-1=1,则3x-1= ,x= .13. 若2m a =,3n a =则m n a += ;若9x =3x+3,则x = .14. 24x x -+ =(x - )215. 已知(x+y )2=9,(x-y)2=5则xy 的值为 .16. 计算:200820075)51(• = . 三、计算题.(每个4分,共16分)17. 2(63)3a a a +÷ 18. (2)(2)x y x y +-19. 22()x y -+20. 23()(2)(2)y z y z y z --+-四、分解因式.(每题4分,共16分)21. 224y x x +22. 2225b a -23. 221x x ++24. 22363ax axy ay ++五、解答下列问题.25.(7分)先化简,再求值:()(2)(2)()+--+-,其中2a b a b a b a bb=-.a=,126. (8分)已知大正方形的周长比小正方形的周长长96厘米,它们的面积相差960平方厘米,分别求出大正方形和小正方形的边长.27. (8分)已知2010==+ab b a ,,求下列式子的值:(1)22b a +,(2)22b a -.28.当a ,b 为何值时,多项式224618a b a b +-++最小有值?并求出这个最小值.(9分)29.(8分)先化简,再求值:()()()y x y x y x -+-+22322,其中21,31-==y x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学人教版八年级上学期第十四章测试卷(II )卷姓名:________ 班级:________ 成绩:________
一、单选题 (共6题;共12分)
1. (2分)(2019·张家界) 下列运算正确的是()
A .
B .
C .
D .
2. (2分) (2017七下·合浦期中) 若a+b=-1,则a2+b2+2ab的值为()
A . 1
B . -1
C . 3
D . -3
3. (2分)下列各式中能因式分解的是()
A .
B . x2﹣xy+y2
C .
D . x6﹣10x3﹣25
4. (2分) (2019八上·长春月考) 如图1,从边长为的正方形剪掉一个边长为的正方形;如图2,然后将剩余部分拼成一个长方形.上述操作能验证的等式是()
A . .
B . .
C . .
D . .
5. (2分) (2019八下·江城期末) 已知a= ,b= -2,则a,b的关系是()
A . ab=1
B . ab=-1
C . a=b
D . a+b=0
6. (2分) (2019八下·南山期中) 下列各式中,从左到右的变形是因式分解的是()
A . (x+2y)(x-2y)=x2-4y2
B . 3(a+b)=3a+3b
C . ax-ay=a(x-y)
D . 2a2-2a=2a2(1- )
二、填空题 (共2题;共3分)
7. (2分) (2018八上·蔡甸月考) 计算:a2·a5=________,(-5b)3=________,(-5a2b) (-3a)=________.
8. (1分)若a+b=﹣3,a﹣b=2,则a2﹣b2=________.
三、计算题 (共4题;共40分)
9. (10分) (2018八上·江汉期中)
(1)计算:(﹣4x)(2x2+3x﹣1)
(2)解方程:(2x﹣3)(3x﹣2)=6(x﹣2)(x+2)
10. (10分) (2019七下·天台月考) 计算:
(1)
(2)
11. (10分) (2017八上·淅川期中) 分解因式
(1)
(2)
(3)
12. (10分)用平方差公式因式分解
(1)
(2)
(3)
(4)
参考答案
一、单选题 (共6题;共12分)
1、答案:略
2、答案:略
3、答案:略
4、答案:略
5、答案:略
6、答案:略
二、填空题 (共2题;共3分)
7、答案:略
8、答案:略
三、计算题 (共4题;共40分)
9、答案:略
10、答案:略
11、答案:略
12、答案:略。