贝雷栈桥计算方程及施工方案

合集下载

贝雷桥专项施工方案

贝雷桥专项施工方案

便桥专项方案一、工程简介因工程施工需要在蒲阳河搭设一座施工便桥,以满足施工车辆、人员及机械通行,设计通行荷载单车80吨.钢桥总长30米,共一跨,桥体宽4。

5米,因两端桥台各搭载1.5米,故最大跨径为30—1.5×2=27米。

如下图:拟采用321型贝雷片为桁架,桁架编组为30米7排单层上下加强型上承式,I20b型工字钢为横梁,桥面板为8mm花纹板,两侧以]10槽钢、ø48钢管焊立栏杆。

如下图:二、编制依据1、《装配式公路钢桥制造》(JT/T728—2008);2、《公路桥涵施工技术规范》(JTG/T F50-2011);3、《公路桥涵地基与基础设计规范》(JTG D63-2007);4、《公路工程施工安全技术规范》(JTG F90-2015);5、《装配式公路钢桥多用途手册》2004年1月,交通出版社;6、《钢结构规范》;7、《施工现场临时用电安全技术规范》;8、其他相关规范手册.三、主要材料参数1、桁架内力表2、桥梁特性表3、钢桥主要材料表取最大跨27米主材重量四、荷载计算1、贝雷梁荷载计算1.1钢桥恒载由27米跨钢桥材料表可知:钢桥上部结构共重54吨,即恒载N=54t=540kn,则钢桥每延米恒载q=N/L=540kn/27m=20kn/m。

1。

2 钢桥活载车辆通行荷载80吨,即P=80t=800kn,最大计算跨径30m。

1.3 弯矩验算弯矩最不利位置为梁的中部,弯矩值最大。

M=M恒+1。

4M活=qL2/8+1.4×pL/4=20×27²/8+1。

4×800×27/4=9382。

5(kn.m)M<[M]=1687×7=11809(kn。

m,)取值自桁架内力表—单排单层加强型弯矩容许值并乘以7排,验算通过!1.4 剪力验算剪力最不利位置为梁的端部,其剪力值最大Q=Q恒+1。

4Q活=qL/2+1.4×P=20×27/2+1.4×800=1390(kn)Q〈[Q]=245×7=1715(kn),取值自桁架内力表—单排单层加强型剪力容许值并乘以7排,验算通过!1.5挠度验算钢桥计算长度取为27米,钢桥为单层上下加强,根据桥梁特性表,故EI值为1212612.24,故钢桥挠度为:ω=(5ql4/384/EI+Fl3/48/EI)/7排=(5×20×274/384/1212612。

贝雷栈桥计算程及施工方案

贝雷栈桥计算程及施工方案

贝雷栈桥计算程及施工方案在桥梁建设领域,贝雷栈桥是一种常见的结构形式,其优美的线条和独特的设计风格受到广泛欢迎。

本文将以贝雷栈桥为研究对象,探讨其计算程及施工方案。

贝雷栈桥简介贝雷栈桥是一种特殊的悬索桥,其主要特点是悬索的两端与桥墩相连接,形成一个“V”字形的结构。

这种结构既能有效地分担桥梁荷载,又能保持桥梁的平衡和稳定。

由于其优秀的抗震性能和较小的结构自重,贝雷栈桥在跨越大尺度河流等特殊地形时得到广泛应用。

贝雷栈桥计算程在贝雷栈桥的设计过程中,计算程是一个至关重要的环节。

计算程是指将设计图纸转化为具体的计算公式和工程参数,以确保桥梁具备足够的承载能力和稳定性。

贝雷栈桥的计算程主要包括以下几个方面:1.悬索计算:根据桥梁跨度、车辆荷载和风荷载等参数,计算悬索的长度、直径和材质,以保证其承载能力满足设计要求。

2.桥墩计算:确定桥墩的高度、形状和深度,以确保其能够承受来自悬索和桥面的各种力的作用。

3.桥面计算:计算桥面板的厚度、横截面形状和钢筋配筋,以满足桥面的承载和使用要求。

4.整体稳定性分析:进行整体结构稳定性分析,考虑桥梁在各种外力作用下的变形和破坏情况,确保桥梁具备足够的安全性。

贝雷栈桥施工方案贝雷栈桥的施工是一个复杂而精密的过程,需要各种专业设备和技术。

为了确保施工的顺利进行,需要事先制定详细的施工方案,包括以下几个方面:1.桥梁构件制造:在施工前,需要生产各种桥梁构件,包括悬索、桥墩和桥面等,确保构件质量和尺寸符合设计要求。

2.悬索吊装:悬索是支撑桥梁的关键部件,其吊装需要精心组织和计划。

在吊装时,需要严格控制吊装速度和角度,以避免对悬索的损坏。

3.桥墩施工:桥墩是支撑悬索的重要支撑点,其施工需要考虑地基情况、支撑方式和混凝土浇筑工艺,以确保桥墩承载能力和稳定性。

4.桥面铺设:桥面是供车辆通行的部分,其铺设需要严格控制水平度和坡度,以确保车辆行驶的平稳性和安全性。

结语贝雷栈桥的设计和施工是一项复杂而精密的工程,需要多方面的专业知识和技术支持。

贝雷梁栈桥受力计算

贝雷梁栈桥受力计算

容易生成重复单 元。因此,建完模 型后,建议使用检
模型>检查结构数据>检查并删除重复输入的单元(删除刚才支撑架 复制重叠的单元)
查功能,删除重叠 的单元,以确保分 析的正确性。(其他
建立其余的支撑架 模型>单元>复制和移动
结构的分析也建议 在分析前执行检查 的操作)
全选
形式>复制 等间距> dx,dy,dz>(3000,0,0)mm
模型>单元>复制和移动
选择最新建立的个体
形式>复制 等间距> dx,dy,dz>(1410,0,0)mm 复制次数>(2)↵
生成斜杠 模型>单元>建立 材料>1:16Mn; 截面>2:腹杆 节点连接:依次连接节点(15,10),(10,16),(16,3),(3,15)
(16,12),(12,17),(17,5),(5,16) 生成斜杆(如图所示)
贝雷片参数:材料 16Mn; 弦杆 2I10a 槽钢(C 100x48x5.3/8.5,间 距 8cm),腹杆 I8(h=80mm,b=50mm, tf=4.5mm ,tw=6.5mm)。贝雷片 的连接为销接。
1
图表 1 贝雷片计算图示(单位:mm) 支撑架参数:材料 A3 钢,截面 L63X4。 分配横梁参数:材料 A3 钢,截面 I20a,长度 6m。 建模要点:贝雷片主梁用梁单元,销接释放绕梁单元截面 y-y 轴的旋 转自由度;支撑架用桁架单元;分配横梁用梁单元,与贝雷主梁的连 接采用节点弹性连接(仅连接平动自由度,旋转自由度不连接);车 道布置一个车道,居中布置。
添加荷载工况 ··························································································21 6、输入移动荷载分析数据·····································································22 定义横向联系梁组 ··················································································22 定义移动荷载分析数据···········································································23 输入车辆荷载 ··························································································24 移动荷载分析控制 ··················································································26 7、运行结构分析 ····················································································27 8、查看结果 ····························································································27 生成荷载组合 ··························································································27 查看位移 ··································································································27 查看轴力 ··································································································28 利用结果表格查看应力···········································································29

最新18米贝雷梁栈桥计算书

最新18米贝雷梁栈桥计算书

18米贝雷梁栈桥计算书18米贝雷梁栈桥计算书一、计算依据㈠、《建筑结构静力计算实用手册》;㈡、《xxx互通立交桥工程》施工图;㈢、《公路桥涵施工技术规范》;㈣、《公路桥涵设计规范》;㈤、《贝雷梁使用手册》;二、设计要点1、设计荷载为55吨,栈桥净宽5.0米,单跨18米,桥梁总长72米。

2、桥面以0.15m×0.15m方木并排铺设,方木下以I20工字钢为纵梁,I20工字钢下I36工字钢为横梁,架设在贝雷梁纵梁上。

3、桥梁台、墩、基础为片石混凝土。

4、用国产贝雷片支架拼装成支架纵梁,支架结构均采用简支布置。

三、施工荷载计算取值㈠、恒载1、方木自重取7.5KN/m3;2、钢构自重取78KN/m3;3、I20工字钢自重:0.28KN/m;4、I36工字钢自重:0.66KN/m;5、贝雷自重取1KN/m(包括连接器等附属物);6、片石混凝土自重取20KN㈡、荷载组合根据《建筑荷载设计规范》,均布荷载设计值=结构重要性系数×(恒载分项系数×恒载标准值)。

恒载分项系数为1.2。

㈢荷载分析混凝土罐车为三轴车,考虑自重为550kn,根据车辆的重心,前轮轴重110kn,两个后轴分别为220kn后轴间距为1.3米,轮间距为1.9米。

图2四、各构件验算(一)桥面检算栈桥桥面方木直接搁置于间距L=1米的I20工字钢, 取单位长度(2.4米)桥面宽进行计算。

假设一根后轴作用在计算部位。

桥面五跨连续梁考虑,1、荷载组合桥面: q=1.2×220/2=132kN2、截面参数及材料力学性能指标1、方木力学性能W= a3/6=1503/6=5.63×105mm3I= a4/12=1504/12=4.22×107mm42、承载力检算(按三等跨连续梁计算)方木的力学性能指标按《公路桥涵钢结构及木结构设计规范》(JTJ025-86)中的A-3类木材并按湿材乘0.9的折减系数取值,则: [σ]=12×0.9=10.8MPa,E=9×103×0.9=8.1×103MPa a强度M max=0.289Fl=0.289×132×1=38.2KNmσmax=M max /W=38.2×103×103/5.63×106=6.78MPa≤[σ0] 合格b刚度荷载:q=1.2×220/2=132knf=2.716×Fl3/(100EI)=2.716×132×10003/(100×8.1×103×4.22×107)=0.011mm≤[f0]=1000/400=2.5mm 合格(二)纵梁I20工字钢检算横梁方木搁置于间距1米的I20工字钢纵梁上, I20工字钢纵梁架设在间距2m的I36工字钢, 按最不利情况,车轴一侧的荷载都作用在一根工字钢上,纵梁五跨连续梁考虑.1、荷载组合F=1.2×220/2=132kNq=7.5×0.15×0.15×0.7×(5/0.15)/5=0.17Kn/m2、截面参数及材料力学性能指标W=2.37×105mm3I=2.37×107mm4[σ]=203MPa, E=206GPa3、承载力计算a强度M max1=0.227Fl=0.227×132×3 =90KN.mM max2=0.778q1l2=0.227×0.17×12=0.132KN.mσmax1=M max1 /W=90×106/(2×2.37×105)=189.9MPaσmax2=M max2 /W=0.132×106/(2×2.37×105)=0.27MPa σ=σmax1+σmax2=189.9+0.27=190.17≤[σ0]合格b刚度荷载:F=1.2×220=264kNq2=7.5×0.15×0.15×0.7×(5/0.15)/5=0.17Kn/mf1=1.466Fl3/(100EI)=1.466×264×30003/(100×2.06×105×2.37×107)=0.021mmf2=0.521ql4/(100EI)=0.521×0.17×30004/(100×2.06×105×2.37×107)=0.015mmf=f1+f2=0.021+0.015=0.036mm≤[f0]=3000/400=75mm 合格(三) I36工字钢横梁检算I36工字钢为每7个一组,架设在间距为3米的贝雷梁上,取不理情况两个后轴作用在一根横梁上,荷载考虑为均布荷载。

贝雷梁钢栈桥施工

贝雷梁钢栈桥施工

贝雷梁钢栈桥施工施工工艺流程栈桥设计一方案制定f设备材料进场一施工放样一钢管桩插打和桥台施工一焊接剪刀撑一横向分配梁安装f桁架拼装f吊装、拖拉、接长f主梁拖拉就位f横梁安装一纵梁安装f桥面钢板铺装钢栈桥横断面示意图施工放样根据施工图位置,依据相对的位置,计算出桥墩的钢管桩坐标,栈桥主桥两侧桥台分别设在河道、沟渠两岸,然后用全站仪确定方向,测量各桩墩距离定出各桩位,即可开始插打钢管桩。

钢栈桥立面示意图钢管桩施工由汽车吊悬挂打桩锤头,停放在岸边整平场地上或已搭设的栈桥段上,伸出吊车大臂进行钢管桩的打桩作业。

栈桥两端的钢管桩直接将打桩机停放在岸边进行打桩作业。

钢栈桥平面示意图汽车吊就位后,在全站仪引导下进行定位,利用DZ45型振动锤夹具夹紧钢管桩,起吊后放入导向架内,开启振动锤进行插打钢管桩,保持钢管桩垂直状态下,在振锤的激振力作用下振动下沉。

当桩贯入量小于5cm/min时,持荷5分钟,钢管桩无明显下沉时方可停止振动。

若钢管桩已打入预计长度,贯入度仍较大,说明该处土质较差,承载能力不满足要求,需要继续打入,直至贯入度满足要求,即实际承载能力达到要求为止。

当桩底遇到硬物时,桩位易打偏或不垂直,应及时清理后再施打。

振动锤打桩讲究一气呵成,一次性振动不能超过15分钟。

当第一节在场地上预制好钢管桩长度不够时,采用边打边接桩的方法使钢管桩的长度满足要求。

(1)振动沉桩施工要点①振动锤:选择DZ45振动锤。

钢管桩焊接时先在底节钢管上均匀焊好6片15×10×Icm规格的连接片,使钢管桩对接时比较容易。

管桩对接时要保证管口平整、密贴。

由于采用竖焊,焊完后要检查焊接的是否满足要求,对焊接不好,不牢的情况要求重新焊接。

焊条采用国产J502,要求焊缝饱满,焊接强度不小于主材强度。

钢管桩对接必须顺直,顺直度允许偏差0.5%。

②开始沉桩时宜用自重下沉,待桩身有足够稳定性后,再采用振动下沉。

③桩帽或夹桩器必须夹紧桩头,以免滑动降低沉桩效率、损坏机具。

贝雷栈桥计算方程及施工方案

贝雷栈桥计算方程及施工方案

贝雷栈桥计算方程及施工方案贝雷栈桥是一种具有独特设计风格和工程结构的桥梁,其建造需要严谨的计算方程和合理的施工方案。

在设计和建造贝雷栈桥时,工程师需要考虑诸多因素,包括桥梁的强度、稳定性、耐久性等。

本文将介绍贝雷栈桥的计算方程方法以及施工方案。

贝雷栈桥计算方程贝雷栈桥的计算方程主要包括受力分析和结构设计两个方面。

在计算贝雷栈桥的结构时,工程师需要考虑桥梁本身的荷载特点以及各个构件之间的力学关系,以确保桥梁的安全性和稳定性。

1.受力分析:在设计贝雷栈桥时,工程师需要考虑桥梁受到的静力荷载和动力荷载,包括桥面行车荷载、风荷载等。

通过受力分析,可以确定各个构件受力情况,为结构设计提供基础。

2.结构设计:贝雷栈桥的结构设计主要包括桥梁的桥面、主梁、拱肋等构件的尺寸计算和布置。

工程师需要根据受力分析的结果确定各个构件的尺寸和位置,以满足桥梁的强度和稳定性要求。

贝雷栈桥施工方案在施工贝雷栈桥时,工程师需要制定合理的施工方案,确保施工进度和质量。

贝雷栈桥的施工方案主要包括以下几个方面:1.地基处理:在施工贝雷栈桥之前,需要对桥梁的地基进行处理,包括挖土、回填、植筋等。

地基处理的质量直接影响到桥梁的稳定性和耐久性。

2.拱肋安装:贝雷栈桥的拱肋是整个桥梁结构的重要组成部分,在施工时需要精准安装,确保拱肋之间的连接紧密可靠。

3.主梁搭设:主梁是贝雷栈桥的主要承载构件,施工时需要按照设计要求精确搭设,确保主梁的质量和稳定性。

4.桥面铺设:桥面是贝雷栈桥上行车的部分,施工时需要选择合适的材料进行铺设,保证桥面的平整度和耐久性。

通过以上施工方案的制定和实施,可以确保贝雷栈桥的建造顺利进行,并达到设计要求。

总之,贝雷栈桥的建造需要严谨的计算方程和合理的施工方案,只有在设计和施工过程中的每一个细节都得到认真对待,才能建造出安全、稳定且耐久的桥梁。

愿贝雷栈桥矗立于江河之间,连接城市与城市,见证时代的变迁与发展。

321型贝雷梁钢栈桥计算书

321型贝雷梁钢栈桥计算书

钢栈桥计算书.二O一五年九月目录一、设计依据 (3)二、结构布置 (3)2.2材料特性 (5)2.3变形控制 (6)2.4有限元模型材料特性参数 (6)3、荷载计算 (7)3.1恒载计算 (7)3.2活载计算 (7)四、工况分析 (8)五、有限元计算 (9)6、结果校核 (13)6.1主要构件校核 (13)6.2结构稳定性验算 (14)6.3混凝土承台处地基承载力 (15)一、设计依据1、《苏峰山1、2号特大桥钢栈桥初步设计图》2、《港口工程荷载规范》(JTJ 215-98)3、《钢结构设计规范》(GB50017-2003)4、《建筑结构荷载规范》GB50009-20125、《混凝土结构设计规范》(GB50010-2010)6、《建筑桩基技术规范》(JGJ94-2008)7、《简明施工计算手册》8、《钢结构工程施工质量验收规范》(GB50205-2001)二、结构布置如下图所示,钢栈桥整体结构从上至下依次为28槽钢的钢面板、25工字钢做分配梁,321型贝雷梁按单层双排布置,采用90的花架,横桥向共布置6片贝雷片、主横梁为双拼56b工字钢,钢管桩型号为Φ630*8,横联及斜撑型号为Φ325*10圆钢管。

支栈桥结构形式与钢栈桥相同。

由于钢栈桥各跨之间的结构相同,因此,本次计算只选取其中的某一跨进行有限元仿真计算。

图1苏峰山1桥钢栈桥立面图图2苏峰山1桥钢栈桥平面图图3苏峰山2桥钢栈桥立面图图4苏峰山2桥钢栈桥平面图主栈桥支栈桥图5钢栈桥及支栈桥侧面图2.2材料特性1、贝雷梁特性a、贝雷结构尺寸贝雷结构尺寸如图:图6 贝雷结构尺寸图b、技术参数指标(1)桁架单元杆件性能如表:表1 桁架单元杆件性能杆件名材料桥断面型式横断面积(cm2)理论容许承载力(KN)弦杆16Mn ][10 2×12.7 560 竖杆16Mn I8 9.52 210 斜杆16Mn I8 9.52 171.5(2)桁架物理力学特性如表:表2 桁架物理力学特性表2、主要材料力学特性主要材料(贝雷如前)力学特性如下:表4主要材料力学特性表2.3变形控制主要承重构件<L/400。

某贝雷栈桥计算书及施工方案_secret

某贝雷栈桥计算书及施工方案_secret

仁家湾大桥临时栈桥施工稳定性验算一、设计说明栈桥全长约201m,为贝雷梁钢栈桥。

桥面宽度为6m;栈桥设在主桥下游,其内侧至桥梁边缘线距离为2m,共67孔,跨度采用3 m,上部采用3榀6片贝雷纵梁(非加强单层双排),2榀贝雷纵梁按中心距2.7m布置,横向每3m间距采用24号槽钢加工支撑架连成整体;桥面分配横梁采用20a型工字钢,间距为0.3m;桥面系采用10mm钢板满铺,基础采用υ600×10mm钢管桩,每排墩采用3根钢管桩;墩顶横梁采用20a型工字钢。

为加强基础的整体性,每排桥墩的钢管均采用24号槽钢连接成整体。

不考虑地方通航,水面至非通航孔的贝雷底部高度为2.5米,栈桥设计荷载采用汽-20及车队;汽车及混凝土搅拌运输车活载计算时采用荷载冲击系数1.15及偏载系数1.2。

钢管桩按摩擦桩设计。

根据现场调查及图纸资料,锦江水深约为10m。

由于桥位处土质情况复杂,土层摩擦力根据现场试验确定,为便于钢管桩稳定性计算,土层的极限摩擦力经验值均按τ=11.63kn/m2取值,埋深取3~5m。

二、贝雷纵梁验算(一)荷载布置1、上部结构恒载(1)10mm厚钢板面层:6m×0.01m×7.88×103kg/m3=4.8kn/m(2)20a型工字钢分配横梁:27.929×6×10/1000/0.3=5.6kn/m(3)“321”军用贝雷梁(不加强):270kg/片×6片/3m=5.4kn/m(4)20a型工字钢下横梁:6×27.9×10/1000=1.80 kn/根2、活载(1)汽-20级(2)人群:不计考虑栈桥实际情况,同方向车辆间距大于15m,即一跨内同方向半幅桥内最多只布置一辆重车。

(二)栈桥上部结构内力计算栈桥桥面总宽6m ,计算跨径取3m 。

栈桥结构自下而上分别为:υ600×10mm 钢管桩、20a 型工字钢下横梁、“321”军用贝雷梁、20a 型工字钢分配横梁(间距0.3m )、10mm 的钢板桥面。

贝雷钢栈桥专项施工方案

贝雷钢栈桥专项施工方案

目录一、编制依据、编制说明及工程概况-------------------------------------- 21.1编制依据---------------------------------------------------------- 2 1.2编制说明---------------------------------------------------------- 2 1.3工程概况---------------------------------------------------------- 2 1.4水文、地质资料---------------------------------------------------- 31.5设计荷载---------------------------------------------------------- 3二、准备工作---------------------------------------------------------- 3三、钢栈桥设计---------------------------------------- 错误!未定义书签。

3.1桥面高程---------------------------------------------------------- 4 3.2栈桥布置形式------------------------------------------------------ 4 3.3钢栈桥构造-------------------------------------------------------- 43.4钢栈桥受力计算---------------------------------------------------- 7四、钢栈桥施工------------------------------------------------------- 124.1钢栈桥施工工艺--------------------------------------------------- 12 4.2钢管桩施工------------------------------------------------------- 13 4.3桩顶纵横梁施工--------------------------------------------------- 14 4.4栈桥上部结构安装------------------------------------------------- 14 4.5栈桥、施工平台上拆除--------------------------------------------- 15 4.6技术保障措施----------------------------------------------------- 15 4.7安全保障措施----------------------------------------------------- 164.8栈桥施工要点----------------------------------------------------- 17五、进度计划安排----------------------------------------------------- 18六、施工管理机构及资源配置------------------------------------------- 196.1项目管理模式及组织机构------------------------------------------- 19 6.2架子队----------------------------------------------------------- 20 6.3人员、设备配备--------------------------------------------------- 226.4主要的材料计划--------------------------------------------------- 23七、安全保证措施----------------------------------------------------- 237.1安全目标--------------------------------------------------------- 237.2安全制度--------------------------------------------------------- 23八、文明、环保保证体系及措施环境保护--------------------------------- 248.1文明施工目标及技术措施------------------------------------------- 24 8.2施工环保目标及措施----------------------------------------------- 26xx市xx公路(加六线)土建Ⅱ标xx特大桥钢栈桥专项方案一、编制依据、编制说明及工程概况1.1编制依据1)xx市xx公路(加六线)两阶段施工图2)国家及交通部现行桥涵施工技术规范及劳动定额、验收标准等。

栈桥计算

栈桥计算

栈桥计算一.结构形式栈桥宽7.5 m ,墩位处宽4m,跨径12m,按最不利情况计算,跨径12m,宽7.5m,栈桥结构自下而上分别为: Ф外508×13mm 钢管桩、I63a 型工字钢下横梁、纵向贝雷梁、I25a 型工字钢横向分配梁、I14型工字钢纵向、δ=0.012m 厚防滑钢板。

二.荷载布置 1.恒载(4m )(1)δ=0.012m 厚防滑钢板及其它:0.012×4×1×10×7.85+0.35=4.12KN/m(2)I14纵向工字钢:12×1×16.89×10/1000=2.03KN/m(3)I25a 型工字钢横向分配梁:4×38.11×10/1000/1.5=1.02KN/m (4)纵向贝雷梁:300×4×10/1000/3=4KN/m(5) I63a 工字钢横向下横梁:121.41×3.7×10/1000=4.49KN/根 2.活荷载《按公路桥涵设计通用规范》(1)施工荷载及人群:4KN/m 2(2)公路—II 级标准荷载值:550KN 重车 (3)荷载分布如下图:三.上部结构内力计算1.桥面钢板内力(下层工字钢间距为0.4m,车轮总宽度0.6m ,只有当车轮边置于跨中时最不利)(1)自重均布荷载:q1=0.4×0.015×10×7.85=0.471KN/m(可不计) (2)人群:4KN/m 2(可不计) (3)动载:q2=70/0.6=116.7KN/m弯矩:Mmax=9ql 2/128=9×116.7×0.42/128=1.31KN.m W=lb 2/6=0.4×0.0122/6=9.6×10-6m 3σ=Mmax/W=1.31/(9.6×10-6)=136458KN/m 2=136.5Mpa<1.3×[σ]=1.3×145=188.5Mpa结论:安全。

贝雷梁钢栈桥设计计算书

贝雷梁钢栈桥设计计算书

1、工程概况本栈桥工程为广西北海金滩14K㎡场地施工用辅助通道。

设计宽度8米,设计长度1755.6米,跨径采用15米。

2、结构验算2.1 验算依据(1)《公路桥涵施工技术规范》(JTG/T F50-2015)(2)《公路钢结构桥梁设计规范》(JTG D64-2015)(3)《公路桥涵设计通用规范》(JTGD60-2015)(4)《公路桥涵地基与基础设计规范》(JTG D63-2007)(5)《公路桥涵钢结构设计规范》(GB50017-2003)(6)《建筑桩基技术规程》(JGJ94-2008)(7)《钢管桩施工技术规程》(YBJ233-1991)(8)《桥梁施工图设计文件》(9)《广西北海金滩14K㎡场地岩土勘察报告》2.2 荷载参数作用于栈桥的荷载分为恒荷载及可变荷载。

恒荷载主要为栈桥结构自重,可变验算荷载为设计荷载:55t渣土运输车。

2.2.1 恒载由计算程序自动考虑。

2.2.2 可变荷载(1)55 吨渣土运输车渣土运输车共3 轴,其具体尺寸如下图,前轮着地面积为0.3×0.2m,后轮着地面积为0.6×0.2m。

单轮最大设计荷载为5.5t。

55吨渣运输车轴距布置图(单位:mm)2.3 荷载工况按最不利的原则考虑以下控制工况:(1)验算控制工况考虑栈桥实际情况,单跨长度为15m,同一跨内最多布置两辆重车,贝雷梁、桥面系验算控制工况为:工况1:结构自重+55t渣土运输车荷载+55t渣土运输车荷载, 55t渣土运输车移动荷载作用于标准贝雷梁段;工况2:结构自重+55t渣土运输车荷载+55t渣土运输车荷载, 55t渣土运输车移动荷载作用于通航口加强弦杆贝雷梁段;2.4 结构材料1、钢弹性模量E=2.1×105 mpa;剪切模量G=0.81×105 mpa;密度ρ=7850 Kg/m;线膨胀系数α=1.2×10-5;泊松比μ=0.3;抗拉、抗压和抗弯强度设计值f d =190MPa;抗剪强度设计值fvd=110MPa;2、贝雷梁中各杆件理论容许应力:抗拉、抗压和抗弯强度设计值fd=200MPa;抗剪强度设计值fvd=120MPa。

贝雷梁栈桥检算书

贝雷梁栈桥检算书

贝雷梁栈桥检算书一、栈桥设计本工程处于乡村河道下游,且洪水季节量大、速度快。

因此需搭设栈桥,以方便施工机械和人员的往来。

设计栈桥桥面宽4m,长24m,净跨度22m,1跨。

本桥采用国产1500× 3000型,高度 1.5m,单片长度 3m的工具式贝雷片。

栈桥采用C30混凝土钢筋网做基础,以达到设计承载力为准。

工字钢置于贝雷梁下弦梁上,在贝雷梁上沿横桥方向排布I28a工字钢,工字钢间距为0.8m,10cm槽钢按15cm间距2块槽钢合拼布设在工字钢上作为分配梁,最上层满铺δ6mm花纹钢板,焊接形成桥面。

为提高稳定性,工字钢与贝雷梁接触部位应在前者上焊限位三角铁,以防倾覆。

在桥两侧设置1.5m高人行栏杆,并挂设安全网。

本栈桥按照单车通行60T进行设计计算,考虑车辆在制动情况下后桥最不利情况为50T,前桥为10T,桥距为5m,车宽2.5m。

本桥选用两组三排单层加强型贝雷梁。

二、栈桥的受力验算1、贝雷梁的受力分析及验算:贝雷纵梁最大跨度为22m,受力分析和验算按22m计算。

钢板:47.1kg/m2=0.471KN/m24m宽均布荷载=1.88 KN/mⅠ28a工字钢:43.47kg/m0.8m纵向间距均布荷载=0.435KN/m贝雷架自重:270kg/片,长3m均布荷载=0.9KN/m加强弦杆:80 kg/支均布荷载=0.27KN/m10cm槽钢:10 kg/m0.15m纵向间距均布荷载=0.1KN/m钢板重量:47.1×4×24=4521.6kgⅠ28工字钢重量:43.47×6×31=8128.2kg贝雷架自重:48片×270kg/片=12960kg加强弦杆自重:96片×80=7680kg贝雷梁支撑架:18片×21kg/片=378kg10cm槽钢:24×27×2×10=12960 kg恒载:T=4521.6+8128.2+12960+7680+378+12960=46627.8kg=466.278KN恒载换算为均布荷载q=T/22=21.194KN/m ,恒载跨中弯距:M1=qL2/8=21.194×222/8=1282.237KN.m梁端恒载剪力:Q=1/2×21.194×22=233.134KN活载:施工中单车通行最大荷载为60T,考虑汽车制动、冲击等因数,系数为1.2,因此,计算活载为P=60×1.2=72T。

18米贝雷梁栈桥计算书

18米贝雷梁栈桥计算书

18米贝雷梁栈桥计算书一、计算依据㈠、《建筑结构静力计算实用手册》;㈡、《xxx互通立交桥工程》施工图;㈢、《公路桥涵施工技术规范》;㈣、《公路桥涵设计规范》;㈤、《贝雷梁使用手册》;二、设计要点1、设计荷载为55吨,栈桥净宽5.0米,单跨18米,桥梁总长72米。

2、桥面以0.15m×0.15m方木并排铺设,方木下以I20工字钢为纵梁,I20工字钢下I36工字钢为横梁,架设在贝雷梁纵梁上。

3、桥梁台、墩、基础为片石混凝土。

4、用国产贝雷片支架拼装成支架纵梁,支架结构均采用简支布置。

三、施工荷载计算取值㈠、恒载1、方木自重取7.5KN/m3;2、钢构自重取78KN/m3;3、I20工字钢自重:0.28KN/m;4、I36工字钢自重:0.66KN/m;5、贝雷自重取1KN/m(包括连接器等附属物);6、片石混凝土自重取20KN㈡、荷载组合根据《建筑荷载设计规范》,均布荷载设计值=结构重要性系数×(恒载分项系数×恒载标准值)。

恒载分项系数为1.2。

㈢荷载分析混凝土罐车为三轴车,考虑自重为550kn,根据车辆的重心,前轮轴重110kn,两个后轴分别为220kn后轴间距为1.3米,轮间距为1.9米。

图2四、各构件验算(一)桥面检算栈桥桥面方木直接搁置于间距L=1米的I20工字钢, 取单位长度(2.4米)桥面宽进行计算。

假设一根后轴作用在计算部位。

桥面五跨连续梁考虑,1、荷载组合桥面: q=1.2×220/2=132kN2、截面参数及材料力学性能指标1、方木力学性能W= a3/6=1503/6=5.63×105mm3I= a4/12=1504/12=4.22×107mm42、承载力检算(按三等跨连续梁计算)方木的力学性能指标按《公路桥涵钢结构及木结构设计规范》(JTJ025-86)中的A-3类木材并按湿材乘0.9的折减系数取值,则:[σ]=12×0.9=10.8MPa,E=9×103×0.9=8.1×103MPaa强度M max=0.289Fl=0.289×132×1=38.2KNmσmax=M max /W=38.2×103×103/5.63×106=6.78MPa≤[σ0]合格b刚度荷载:q=1.2×220/2=132knf=2.716×Fl3/(100EI)=2.716×132×10003/(100×8.1×103×4.22×107)=0.011mm≤[f0]=1000/400=2.5mm 合格(二)纵梁I20工字钢检算横梁方木搁置于间距1米的I20工字钢纵梁上, I20工字钢纵梁架设在间距2m的I36工字钢, 按最不利情况,车轴一侧的荷载都作用在一根工字钢上,纵梁五跨连续梁考虑.1、荷载组合F=1.2×220/2=132kNq=7.5×0.15×0.15×0.7×(5/0.15)/5=0.17Kn/m2、截面参数及材料力学性能指标W=2.37×105mm3I=2.37×107mm4[σ]=203MPa, E=206GPa3、承载力计算a强度M max1=0.227Fl=0.227×132×3 =90KN.mM max2=0.778q1l2=0.227×0.17×12=0.132KN.mσmax1=M max1 /W=90×106/(2×2.37×105)=189.9MPaσmax2=M max2 /W=0.132×106/(2×2.37×105)=0.27MPaσ=σmax1+σmax2=189.9+0.27=190.17≤[σ0]合格b刚度荷载:F=1.2×220=264kNq2=7.5×0.15×0.15×0.7×(5/0.15)/5=0.17Kn/mf1=1.466Fl3/(100EI)=1.466×264×30003/(100×2.06×105×2.37×107)=0.021mmf2=0.521ql4/(100EI)=0.521×0.17×30004/(100×2.06×105×2.37×107)=0.015mmf=f1+f2=0.021+0.015=0.036mm≤[f0]=3000/400=75mm合格(三) I36工字钢横梁检算I36工字钢为每7个一组,架设在间距为3米的贝雷梁上,取不理情况两个后轴作用在一根横梁上,荷载考虑为均布荷载。

下承式贝雷钢栈桥设计计算书

下承式贝雷钢栈桥设计计算书
构件
牌号
σ
抗剪τ
Q235钢
Q235钢
215
125
贝雷销子
30CrMnTi
1105
208
贝雷梁
16锰钢
310
180
2作用荷载
2.1永久作用
本栈桥永久作用为材料自重恒载,型钢桥面系、贝雷梁及墩顶分配梁等结构自重,材料自重采用Midas Civil2013软件自动计入。
2.2可变作用
2.2.1混凝土罐车
工地使用的8m³混凝土罐车共3轴,空载时整机重量12.5t,为前一后二的形式,满载8m³混凝土总重量为32t,轴距为3.225+1.35,轮距1.8m,空载轴重为37.5+43.8+43.8kN,满载轴重为97+112+112kN,详见图2.2-1。
1.1.4钢管桩基础
基础采用Φ610×8mm钢管桩,每排2根,中心间距4650mm。
1.2设计主要参考资料
(1)《公路桥涵设计通用规范》(JTG D60-2004);
(2)《港口工程桩基规范》(JTS167-4-2012);
(3)《公路桥涵施工技术规范》(JTG/T F50-2011);
(4)《钢结构设计规范》(GB50017-2003)。
工22b纵梁
76.7
39.3
1.3
HN350横梁
110.8
45.1
1.3
贝雷梁
173.0
88.6
0.8
2HN450×200桩顶横梁
14.4
30.9
0.1
φ610钢管桩
25.9
1.5
0
Q345材质(贝雷):
最大正应力σmax=173.0MPa<[σw]=310MPa,满足要求。

(完整版)贝雷架栈桥施工方案

(完整版)贝雷架栈桥施工方案

⑷钢栈桥、平台施工施工便道线路范围内分布11条排洪河涌,为减少对其排洪功能的影响,拟采用贝雷钢栈桥跨越河涌的方案,基础施工采用贝雷平台辅助施工。

便道线路处在蚝田水域中,为避免栈桥施工时影响便道填筑施工而产生机械窝工的现象,划分作业面时尽量将作业面的起点或终点划分在河涌处,便道填筑施工开始或结束后施工钢栈桥,对于一些儿处在作业面中段的河涌,则采取填筑临时支便道的措施,通行50t履带吊施工跨河涌的栈桥和平台。

①栈桥施工跨河涌栈桥以9m一跨进行布置,施工采用我单位现有的50T履带吊车并配合DZ90A沉桩锤施打钢管桩完成下部结构的主体施工,上部结构在后场整跨拼装好,用平板车通过便道运至现场,利用50T履带吊整块吊装,逐孔向前推进。

以减少施工作业时间,确保工期。

a 栈桥桥台栈桥施工时利用河涌两侧的土堤作为栈桥的桥台,起点和终点的钢管桩均布设在土堤蚝田的内侧,填筑施工时利用土堤作为台背可加快填筑施工进度。

台背填石完成后,应加强碾压使其密实,并对台背锥坡进行护坡处理。

b栈桥钢管桩振沉施工测量定位:导向架和钢管桩的定位采用全站仪按极坐标法实施,放样坐标包括平面和高程坐标。

用全站仪进行沉桩平台和导向架的定位。

控制点选用离施打桩最近的测量平台、岸上控制点。

贯入度及桩顶标高可用全站仪按三角高程法进行,在条件许可时也可用水准仪按水准测量的方法进行。

上述两种放样方法的精度均可达到厘米级,施工过程中,将钢管桩平面位置误差控制在10cm以内即可。

导向装置:导向定位架由主导梁、导向框架、临时平联、前横梁、人行扶梯等几部分组成。

主导梁分段拼装而成。

前横梁由型钢组焊,框架式结构。

为了不妨碍50t履带式起重机转向及贝雷梁架设,导向定位架通过销栓或U 形螺栓固定在栈桥两侧最外一排贝雷梁外侧。

导向定位架工作时,首先解除其约束,将导向桩口精调到设计桩位并固定好,然后施工人员通过人行扶梯走到导向定位架前端,下放定位桩至水中作为导向定位架前端的支撑机构,使其形成稳定结构。

贝雷栈桥计算方程及施工方案

贝雷栈桥计算方程及施工方案

三白荡栈桥施工方案一、设计说明三白荡栈桥全长约780m,被南砌圩分为东西两座,其中南砌圩以东桥长300m,南砌圩以西桥长480m。

栈桥设在主线前进方向右侧,其内侧距桥梁中心距离为21m。

由于三白荡大桥第八联(最后一联)为变宽现浇箱梁,西侧栈桥靠终点方向80m搭设时必须注意其位置。

贝雷梁每6孔计120m为一联,联端设置伸缩缝(即该处贝雷阴阳头不进行销子连接,但阳头仍在阴头内)。

三白荡栈桥为贝雷梁钢栈桥,桥面宽度为4。

0m.为方便水上钻孔桩施工,栈桥桥面于钻孔桩平台齐平.栈桥跨度采用20m,上部采用2榀4片贝雷纵梁(非加强单层双排),2榀贝雷纵梁按间距布置,横向每3m间距采用10号槽钢加工支撑架连成整体;分配横梁采用25b型工字钢,间距为0.75m;桥面系采用22a型槽钢(卧放),横断面布置18根;基础采用φ219×8mm钢管桩,为加强基础的整体性,每排桥墩的钢管均采用10号槽钢连接成整体,每排墩采用10根钢管桩(伸缩缝处每排墩采用12根钢管桩);墩顶横梁采用28a型工字钢。

考虑地方通航,东侧、西侧栈桥各设置一孔通航孔,通航高度为3.5m。

非通航孔桥面位于贝雷梁顶部,通航孔桥面位于贝雷梁底部。

水面至非通航孔的贝雷底部高度为2.0米。

为保证施工期通航安全,在东侧便桥通航孔两侧设置4根φ600×8mm 钢管桩防撞墩,防撞墩长度为6m。

栈桥设计荷载采用汽—20级车队和8m3混凝土搅拌运输车(满载)。

汽车及混凝土搅拌运输车活载计算时采用荷载冲击系数1。

15及偏载系数1。

2。

钢管桩按摩擦桩设计。

根据现场调查及图纸资料,三白荡水深约为3。

5m,荡底淤泥厚度约0.5m。

三白荡底第一层土为淤泥质亚粘土,厚度3.0m~13。

0m;第二层土为亚粘土/亚砂土,厚度3。

0m~5.0m。

计算时,上述土层的摩擦力均按τ=25kn/m2取值。

二、贝雷纵梁验算栈桥总宽4m,计算跨径为20m.栈桥结构自下而上分别为:φ219×8mm钢管桩、28a型工字钢下横梁、“321”军用贝雷梁、25b型工字钢分配横梁(间距0。

贝雷栈桥计算程及施工方案

贝雷栈桥计算程及施工方案

杭长客专上饶信江特大桥跨信江及饶北河栈桥施工方案及检算一、概述1、设计说明杭长客专信江特大桥共设两座栈桥,分别为跨信江和饶北河,两座栈桥设置形式相同,均为单跨12m。

栈桥设在主线前进方向右侧,其内侧距桥梁中心距离为20m。

栈桥为贝雷梁钢栈桥,桥面宽度为4.0m。

为方便水上钻孔桩施工,栈桥桥面于钻孔桩平台齐平。

栈桥跨度采用9m,上部采用2榀4片贝雷纵梁(非加强单层双排)。

分配横梁采用I32a型工字钢,间距为0.75m;桥面系采用I12.6型工字钢,横断面布置17根,间距0.25m。

桥面采用10mm钢板满铺;基础采用扩大条形基础,为加强基础的整体性,每个桥墩均布置钢筋网架;2榀贝雷纵梁按间距0.45m布置,横向每3m间距采用10号槽钢加工支撑架连成整体,外侧采用槽钢斜撑与工字钢分配横梁连接,以稳定贝雷梁。

考虑地方泄洪,泄洪高度为2.5m。

桥面位于贝雷梁底部。

栈桥设计荷载9m3混凝土搅拌运输车(满载)。

混凝土搅拌运输车活载计算时采用荷载冲击系数1.15及偏载系数1.2。

2、设计依据⑴《公路桥涵设计通用规范》(JTG D60-2004)⑵《公路桥涵地基与基础设计规范》(JTJ024-85)⑶《公路桥涵钢结构及木结构设计规范》(JTJ025-86)⑷《公路桥涵施工技术规范》(JTJ041—2000)二、贝雷纵梁验算栈桥总宽4m,计算跨径为12m。

栈桥结构自下而上分别为:钢筋混凝土条形基础、“321”军用贝雷梁、I32a型工字钢分配横梁(间距0.75m)、I12.6型工字钢桥面(间距0.25m)、δ10mm钢板桥面。

单片贝雷:I=250497.2cm4,E=2.1×105Mpa,W=3578.5cm3[M]=788.2 kn·m, [Q]=245.2 KN则4EI=2104×103 KN·m2(一)荷载布置1、上部结构恒载(按4m 宽计)(1)桥面钢板:4×0.01×1×7.8×10=3.12KN/m (2)I12.6型工字钢:17×14.2×10/1000=2.414KN/m(3)32a 型工字钢分配横梁:52.7×6×10/1000/0.75=4.216KN/m (4)“321”军用贝雷梁:每片贝雷重287kg (含支撑架、销子等): 287×4×10/3/1000=3.83KN/m 2、活载(1)9m 3混凝土搅拌运输车(满载):车重20t ,8m 3混凝土21.6t (2)人群:不计考虑栈桥实际情况,同方向车辆间距大于15m ,即一跨内同方向半幅桥内最多只布置一辆重车。

【桥梁方案】铁路特大桥贝雷梁栈桥施工方案

【桥梁方案】铁路特大桥贝雷梁栈桥施工方案

XX铁路XX至XX段XX标XX特大桥栈桥施工方案XX铁路项目经理部四分部二〇XX年XX月目录1编制依据 (4)2工程简介 (4)3工程概况 (4)3.1桥址概况 (4)3.2水文 (5)3.3气象 (6)3.4地形地貌 (7)3.5工程地质 (7)4栈桥设计 (8)4.1技术标准 (8)4.2总体设计 (8)4.2.1栈桥总体设计 (8)4.2.2栈桥上部结构设计 (9)4.2.3栈桥下部结构设计 (10)4.2.4钢管桩基础设计 (10)4.2.5栈桥加宽平台设计 (10)4.2.6栈桥桥面板设计 (11)4.2.7栈桥引道设计 (12)4.2.8栈桥桥台设计 (13)4.3主要工程量 (13)4.4施工总体部署 (14)4.4.1劳动力安排 (14)4.4.2机械设备计划安排 (14)4.4.3测量仪器设备安排 (15)4.4.4队伍划分及安排 (15)4.4.5栈桥施工进度安排 (15)5、栈桥施工方案 (16)5.1栈桥及作业平台施工 (17)5.2钢管桩施工 (17)5.2.1钢管桩入土深度计算 (17)5.2.2施工方法 (18)5.3桥面系施工方案 (19)5.4栈桥的拆除方案 (20)5.5栈桥施工注意事项 (20)6、施工质量保证措施 (21)6.1、栈桥的使用和维护措施 (21)6.1.1抗冲刷措施 (22)6.1.2抗洪水、大风措施 (22)6.1.3栈桥的检查和维护修善 (22)6.2栈桥及钢平台监控 (22)6.3雨季施工防护措施 (23)7、安全保证措施 (23)7.1电焊机操作保证措施 (23)7.2气割操作保证措施 (23)7.3起重作业保证措施 (24)7.4水上作业安全保证措施 (24)8、施工期水环境保护措施 (25)附件 (26)五通岷江特大桥栈桥施工方案1编制依据⑴《公路桥涵设计通用规范》(JTG D60-2004);⑵《公路桥涵地基与基础设计规范》(JTG-D63-2007);⑶《钢结构设计规范》(GB50017-2011);⑷《路桥施工计算手册》;⑸《五通岷江特大桥相关设计图纸》。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三白荡栈桥施工方案一、设计说明三白荡栈桥全长约780m,被南砌圩分为东西两座,其中南砌圩以东桥长300m,南砌圩以西桥长480m。

栈桥设在主线前进方向右侧,其内侧距桥梁中心距离为21m。

由于三白荡大桥第八联(最后一联)为变宽现浇箱梁,西侧栈桥靠终点方向80m搭设时必须注意其位置。

贝雷梁每6孔计120m为一联,联端设置伸缩缝(即该处贝雷阴阳头不进行销子连接,但阳头仍在阴头内)。

三白荡栈桥为贝雷梁钢栈桥,桥面宽度为4.0m。

为方便水上钻孔桩施工,栈桥桥面于钻孔桩平台齐平。

栈桥跨度采用20m,上部采用2榀4片贝雷纵梁(非加强单层双排),2榀贝雷纵梁按间距布置,横向每3m间距采用10号槽钢加工支撑架连成整体;分配横梁采用25b型工字钢,间距为0.75m;桥面系采用22a型槽钢(卧放),横断面布置18根;基础采用φ219×8mm钢管桩,为加强基础的整体性,每排桥墩的钢管均采用10号槽钢连接成整体,每排墩采用10根钢管桩(伸缩缝处每排墩采用12根钢管桩);墩顶横梁采用28a型工字钢。

考虑地方通航,东侧、西侧栈桥各设置一孔通航孔,通航高度为3.5m。

非通航孔桥面位于贝雷梁顶部,通航孔桥面位于贝雷梁底部。

水面至非通航孔的贝雷底部高度为2.0米。

为保证施工期通航安全,在东侧便桥通航孔两侧设置4根φ600×8mm 钢管桩防撞墩,防撞墩长度为6m。

栈桥设计荷载采用汽-20级车队和8m3混凝土搅拌运输车(满载)。

汽车及混凝土搅拌运输车活载计算时采用荷载冲击系数1.15及偏载系数1.2。

钢管桩按摩擦桩设计。

根据现场调查及图纸资料,三白荡水深约为3.5m,荡底淤泥厚度约0.5m。

三白荡底第一层土为淤泥质亚粘土,厚度3.0m~13.0m;第二层土为亚粘土/亚砂土,厚度3.0m~5.0m。

计算时,上述土层的摩擦力均按τ=25kn/m2取值。

二、贝雷纵梁验算栈桥总宽4m,计算跨径为20m。

栈桥结构自下而上分别为:φ219×8mm钢管桩、28a型工字钢下横梁、“321”军用贝雷梁、25b型工字钢分配横梁(间距0.75m)、22a型槽钢桥面。

单片贝雷:I=250497.2cm4,E=2×105Mpa,W=3578.5cm3[M]=788.2 kn·m, [Q]=245.2 kn则4EI=2004×106 kn·m2(一)荷载布置1、上部结构恒载(按4m宽计)(1)22a型槽钢:18×24.99×10/1000=4.50kn/m(2)25b型工字钢分配横梁:42.0×6×10/1000/0.75=3.36kn/m(3)“321”军用贝雷梁:每片贝雷重287kg(含支撑架、销子等):287×4×10/3/1000=3.83kn/m(4)28a型工字钢下横梁:6×43.4×10/1000=2.60 kn/根2、活载(1)汽-20级(2)8m3混凝土搅拌运输车(满载):车重20t,8m3混凝土19.2t(3)人群:不计考虑栈桥实际情况,同方向车辆间距大于15m,即一跨内同方向半幅桥内最多只布置一辆重车。

(二)上部结构内力计算对B点取矩,由∑M=0,得b=(120×9.3+120×10.7+60×14.7)/20=164.1 kn RA=164.1×10-120×0.7-60×4.7=1275 kn·mM中查建筑结构计算手册f=pal2(3-4α2)/(24EI)1=120×1000×9.3×202(3-9.32/202)/(24EI)M中=210.1×10-166×0.7-60×4.7=1702.8 kn·mR max =2RA=420.2 kn查建筑结构计算手册22按5等跨连续梁计算,查建筑结构计算手册(第二版)。

q=4.5+3.36+3.83=11.69kn/m支点:Mmax4=-0.105ql2=-0.105×11.69×202=-490.98 kn·mRmax4=(0.606+0.526)ql=264.66kn跨中:Mmax4‘=0.078ql2=380.33kn·m(简支时:Mmax4‘=ql2/8=584.5kn·m)fmax4=0.644ql4/(100EI)=0.3cm(4)恒载+汽-20级荷载组合汽车荷载计入冲击系数级偏载系数。

Mmax=584.5+1.2×1.15×1275=2369 kn·m<[M]=3152.8 kn·m=264.66+1.2×1.15×344.5Rmax=740.1kn<[Q]=980.8kn=0.3+1.2×1.15×(1.98+0.2)fmax=3.0cm<L/250=8cm安全。

(5)恒载+8m3混凝土搅拌运输车(满载)荷载组合荷载计入冲击系数级偏载系数。

=584.5+1702.8×1.2×1.15Mmax=2934.4 kn·m<[M]=3152.8 kn·m=264.66+420.2×1.2×1.15Rmax=844.5 kn<[Q]= =980.8 kn=1.2×1.15×(2.74+0.4)+0.3fmax=4.4cm<L/250=8cm安全。

30cm计算,每对车轮的着地采用8m3混凝土搅=13.49kn·mσ= Mmax / Wmin=13.49×1000/(28.2×3×10-6)=159.4 Mpa<1.3[σ]=1.3×145=188.5 Mpa f=qcl3(8-4c2 /l2+ c3 /l3)/(384EI)=0.7mm<L/250=3mm安全。

=68.89×1000/(423×10-6)=162.9 Mpa<1.3[σ]=1.3×145=188.5 Mpaτ=Q Sx /(Ixt)=83×1000×248×10-6/(5284×10-8×0.0102)=38.2 Mpa<[τ]=85 Mpa安全。

f=pal2(3-4α2)/(24EI)=83×1000×4.162×0.83(3-4×0.832/4.132)/(24×2.0×1011×5284×10-8)=13mm<L/250=17mm3,t=8.5mmσ= Mmax / Wx=105.6×1000/(2×508×10-6)=105.31Mpa<1.3[σ]=1.3×145=188.5 Mpaτ=Q Sx /(Ixt)=105.6×1000×289.2×10-6/(7114×10-8×0.0085)=51.17Mpa<[τ]=85 Mpa安全。

f1=pl3/(48EI)=422.3×1000×13/(48×2×1011×7114×2×10-8)钢管桩入土深度:h=1.3×84.5/(0.219×3.14×25)=6.40m钢管桩总长:H=1.8+3.5+6.40=11.70m2、钢管桩稳定性检算考虑到所用钢管为旧钢管,壁厚按5mm计算。

I=3.14×0.2194(1-20.94/21.94)/64=1.924×10-5m4根据《建筑桩基技术规范》,单桩稳定长度:LP =1.0(I+h),I为地面以上桩长,取最大值5.3m,h为地面以下桩长,为6.40m,所以LP=11.7m。

钢管桩身抗弯刚度:EI=2.0×1011×1.924×10-5/1000=3848KN.m2单桩屈曲临界荷载:Pcr =π2EI/Lp2=277.2KN由以上计算可看出钢管桩满足稳定性要求。

七、栈桥施工说明1、栈桥由岸边向河中延伸,采用边打桩边架梁的方法施工。

2、施工前的准备工作(1) 栈桥钢管桩入土深度按计算原则上不得少于6.47m。

(2) 施工前,首先通过静载试验,以确定钢管桩贯入度,桩底标高和下沉量与承载力等的关系,并以此来确定打桩的依据。

3、钢管桩的插打(1) 打入钢管桩需结合桥梁的位置,对栈桥钢管桩精确定位,桩心误差不得大于5cm。

(2) 水中墩钢管桩用浮吊吊运钢管就位,并吊起DZ50A震动锤振动下沉钢管桩或采用1吨气动锤锤击下沉钢管桩,由一侧向另一侧插打。

打入钢管桩时,应严格控制桩身的垂直度,确保钢管桩合理承载。

(3) 每个墩钢管桩插打完后,用设计型钢焊成剪刀架将其连接成整体,架设横向分配梁,准备架纵梁。

4、栈桥桥面结构桩顶横梁采用28a型工字钢。

用浮吊直接吊装贝雷梁安装在墩顶横梁上并在横梁上焊角钢或槽钢限制纵梁左右位移,连接成连续梁,纵梁横向每3m用10号槽钢加工的支撑架连接成整体,非通航孔栈桥在贝雷纵梁顶面按0.75米间距布设25b型工字钢横向分配梁(通航孔栈桥在贝雷纵梁底部按0.75米间距布设25b型工字钢),横向分配梁采用Ф16“U”型卡口与贝雷梁连接,然后在横向分配梁上铺设22a型槽钢(槽口朝下卧放)作为桥面行车道板,即安成一跨的架设,依此逐跨延伸完成便桥施工。

5、载重试验每段栈桥平台施工完成后,需做设计荷载试验,确认安全后方可向前推进。

6、栈桥温度伸缩缝布置为适应栈桥钢构件温度变化,栈桥每隔120m设一道温度缝,缝宽7cm,温度缝处栈桥所有钢构件均需断开,贝雷梁的阴阳头断开,但阳头仍套在阴头内。

伸缩缝处桥墩采用12根钢管桩,横桥向按1.0m等间距布置。

4、同向车辆间距不得小于20m,车速不得超过8km/h。

5、为保证栈桥畅通,栈桥上严禁堆放货物。

九、其他1、施工工艺流程钢管桩加工测量放线锚锭系统布设打桩船定位测量控制(打桩船)气动锤锤击下沉钢管桩钢管桩桩间连接栈桥下横梁安装贝雷梁安装横分配型钢安装贝雷梁间斜撑、抗风拉杆安装桥面板铺装栏杆、防滑条、照明等附属结构安装2 主要施工方法2、便桥施工方案2.1 栈桥起始墩施工起始墩台帽砼为C30,宽度100cm厚度60cm,浇砼时,固定贝雷梁的予埋件一定要埋设准确。

2.2 钢管桩制作卷制钢桩的钢板,必须符合设计及规范要求管节拼装定位应在专门台架上进行,管节对口应保持在同一轴线上进行。

相关文档
最新文档