2016年秋北师大版八年级上2.3立方根教案
北师大版八年级数学上册:2.3《立方根》教学设计2
北师大版八年级数学上册:2.3《立方根》教学设计2一. 教材分析《立方根》是北师大版八年级数学上册第二章第三节的内容。
本节内容是在学生已经掌握了有理数的乘方、平方根和算术平方根的基础上进行学习的,是进一步深化学生对数的概念的理解,也是进一步培养学生的抽象思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的乘方、平方根和算术平方根的概念和性质,能够进行相关的运算。
但是,对于立方根的概念和性质的理解可能还存在一定的困难。
因此,在教学过程中,需要引导学生通过实际操作和思考,来理解和掌握立方根的概念和性质。
三. 教学目标1.知识与技能:使学生理解立方根的概念,掌握立方根的性质,能够进行立方根的运算。
2.过程与方法:通过实际操作和思考,培养学生的抽象思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的探索精神。
四. 教学重难点1.重点:立方根的概念和性质。
2.难点:立方根的运算。
五. 教学方法采用问题驱动法,通过引导学生思考和探索,让学生在实际操作中理解和掌握立方根的概念和性质。
六. 教学准备1.准备一些立方体的教具,用于引导学生直观地理解立方根的概念。
2.准备一些有关立方根的练习题,用于巩固学生的学习成果。
七. 教学过程1.导入(5分钟)通过向学生展示一些立方体的教具,引导学生直观地感受立方体的形状,从而引出立方根的概念。
2.呈现(10分钟)向学生介绍立方根的概念,并引导学生通过实际操作,理解立方根的性质。
3.操练(10分钟)让学生通过实际的计算,来理解和掌握立方根的运算方法。
4.巩固(10分钟)让学生通过做一些有关立方根的练习题,来巩固所学的知识。
5.拓展(10分钟)引导学生思考:除了立方根,还有哪些其他的根呢?它们的性质又是怎样的呢?6.小结(5分钟)让学生总结一下,今天学到了什么,有哪些收获。
7.家庭作业(5分钟)布置一些有关立方根的家庭作业,让学生在家里进行练习。
8.板书(5分钟)在黑板上写出立方根的概念和性质,以及立方根的运算方法。
北师大版八年级数学上册:2.3《立方根》教学设计1
北师大版八年级数学上册:2.3《立方根》教学设计1一. 教材分析《立方根》是北师大版八年级数学上册第二章第三节的内容。
本节主要让学生掌握立方根的概念,学会求一个数的立方根,以及理解立方根的性质。
教材通过引入立方根的概念,让学生通过观察、操作、思考、交流等活动,体会数学知识之间的联系,提高学生分析问题、解决问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了有理数的乘方、实数等知识,具备了一定的观察、操作、思考能力。
但部分学生对抽象的数学概念理解仍有困难,因此,在教学过程中,要关注学生的个体差异,引导他们积极参与课堂活动,提高他们的数学素养。
三. 教学目标1.理解立方根的概念,掌握求一个数的立方根的方法。
2.会运用立方根解决实际问题,提高解决问题的能力。
3.培养学生的观察、操作、思考能力,提高学生的数学素养。
四. 教学重难点1.重点:立方根的概念,求一个数的立方根的方法。
2.难点:理解立方根的性质,运用立方根解决实际问题。
五. 教学方法1.引导法:教师引导学生观察、操作、思考,让学生在活动中体验数学知识。
2.交流法:教师学生进行小组讨论,分享学习心得,提高学生的沟通能力。
3.实践法:教师设计具有实践性的数学问题,让学生在实践中掌握数学知识。
六. 教学准备1.教学课件:制作与本节内容相关的课件,辅助教学。
2.教学素材:准备一些实际问题,供学生练习。
3.学生活动材料:为学生提供观察、操作、思考的材料。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节内容,引导学生思考:如何求一个数的立方根?2.呈现(10分钟)教师展示立方根的定义,让学生观察、思考,引导学生发现立方根的性质。
3.操练(10分钟)教师设计一些练习题,让学生求一个数的立方根,巩固所学知识。
4.巩固(5分钟)教师学生进行小组讨论,分享解题心得,提高学生的沟通能力。
5.拓展(5分钟)教师提出一些具有挑战性的问题,引导学生进行思考,提高学生的分析问题、解决问题的能力。
北师大版数学八年级上册教案 2.3 立方根
课题:2.3平方根课型:新授课年级:八年级教学目标:1.经历立方根的探究过程,了解立方根的概念,会用根号表示一个数的立方根.2.了解开立方与立方互为逆运算.3.应用立方运算求一个数的立方根.4.了解立方根的性质,区分立方根与平方根的不同.教学重点与难点:重点:立方根的概念及计算.难点:立方根的求法;立方根与平方根的联系及区别.课前准备:教师准备:制作导学案和多媒体课件.学生准备:学生课前进行预习.教学过程:一、复旧导新,情境引入活动1:复习旧知活动内容:回答下列问题.问题1:平方根的定义:若,则x叫a的平方根,即x= .问题2:求一个数a的平方根的运算,叫做,a叫做 .问题3:平方根的性质:一个正数有个平方根且它们互为;0的平方根为;没有平方根.处理方式:由学生代表回答,教师强调.设计意图:本环节进一步增强了学生对平方根的印象,并通过学生复习过程的表现,间接了解学生对知识的掌握程度.活动2:创境导入师:羊村慢羊羊村长中秋节想送一些月饼给包包大人和附近的邻居,让小羊们制作一种体积为27cm3的正方体包装礼盒,它的棱长要取多少?你能帮助小羊们吗?你是怎么知道的?处理方式:引导学生阅读思考问题,很快将问题归结为如何确定一个数,它的立方等于27,学生回答:33=27,教师进一步提出:对比平方根的定义,猜测3叫27的什么呢?你能给这种运算下个定义吗?从而教师引入新课.设计意图:贴近学生的生活,利用学生感兴趣的动画事物引入立方根概念,学习立方根的意义,培养学生的学习兴趣,激发学生的求知欲,让学生在不知不觉中感受学习数学的乐趣,同时也为概念引入作准备并渗透从个别到一般的规律.二、探究学习,感悟新知活动1:立方根的定义一般地,如果一个数x的立方等于a,即x3=a,则x叫a的.因为33=27,所以是27的立方根;23-是827-的.处理方式:学生很自然的确定立方根的定义,并举多例,如4是64的立方根等.老师强调立方根也叫三次方根.活动2:开立方的定义问题1:什么叫开平方?问题2:类似开平方的运算,你能定义出开立方运算吗?处理方式:学生回答后教师强调:求一个数a的平方根的运算,叫做开平方,则求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数.活动3:立方根的性质问题1:2的立方等于多少?是否有其他的数,它的立方也是8?问题2:-3的立方等于多少?是否有其他的数,它的立方也是-27?问题3:0的立方等于多少?0有几个立方根?问题4:归纳:正数有几个立方根?0有几个立方根?负数有几个立方根?处理方式:学生独立思考后小组内进行讨论,对比归纳得出立方根的性质:正数有一个立方根,负数有一个立方根,0的立方根是0.教师强调:正数有一个正的立方根,负数有一个负的立方根,0的立方根是0.活动4:立方根的表示若一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(cube root;也叫三次方根)记为x=3a,读作x等于三次根号a.处理方式:类比平方根的表示方法学习立方根,学生更容易接受.(多媒体出示例1)求下列各数的立方根.-27,8125,0.216,-5。
北师大版八年级数学上册:2.3 立方根 教案
2.3 立方根教学目标:(一)教学知识点1.了解立方根的概念,会用三次根号表示一个数的立方根。
2.能用立方运算求某些数的立方根,了解开立方与立方互为逆运算。
3.了解立方根的性质。
4.区分立方根与平方根的不同点与相同点。
(二)能力训练要求1.在学了平方根的基础上,要求学生能用类比的方法学习立方根的有关知识,领会类比思想。
2.发展学生的求同求异思维,使他们能在复杂环境中明辨是非。
3.培养学生发现问题和解决问题的能力,以及“会学”知识的能力。
(三)情感与价值观要求本节课重点训练学生的类比思想,引导学生积极参加数学活动,对数学有好奇心和求知欲,对学好数学充满信心,形成严谨求实的科学态度。
教学重点:立方根的概念、性质以及求法。
教学难点:1.正确理解立方根的概念.2.会求一个数的立方根.3.区分立方根与平方根的不同之处.教学方法:类比学习法.教学过程:(一)新课引入引例:(1)某化工厂使用半径为1米的一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果要求它的体积必须是原来体积的8倍,那么它的半径应是原来储气罐半径的多少倍?首先,让学生凭感觉猜测答案,培养学生的数感;再通过计算记性验证。
(2)如果新储气罐的体积是原来的4倍呢?找不到一个整数或分数的立方等于4,所以Rr是一个无理数。
提出问题:这样的无理数该如何表示?从而引出本节课课题。
(二)立方根的概念及表示方法由平方根的概念“一个数x的平方等于a,即x 2=a ,那么这个数x 就叫做a 的平方根”,引导学生用类比的方法自己说出立方根的概念:一个数x 的立方等于a ,即x 3=a ,那么这个数x 就叫做a 的立方根。
解:设原储气罐的半径为r ,新储气罐的半径为R 。
依题意,得:328答:新储气罐的半径是原储气罐半径的2倍。
如果新储气罐的体积是原来的4倍,则举例:例如:因为23=8,所以2是8的立方根; 因为328()327,所以23是 827的立方根;因为03=0,所以0是0的立方根。
北师版八年级上册第二章2.3立方根(教案)
一、教学内容
本节课选自北师版八年级上册第二章2.3节,主要内容包括:
1.立方根的定义:理解立方根的概念,掌握立方根的表示方法。
2.立方根的性质:探讨立方根的性质,如正数的立方根为正数,负数的立方根为负数,0的立方根为0。
3.立方根的计算:学会计算简单数的立方根,掌握利用立方根的性质求解问题。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解立方根的基本概念。立方根是指一个数乘以自身三次后得到另一个数的运算。它是解决与体积、密度等实际问题的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。假设我们要求解一个立方体的体积,这个案例将展示立方根在实际中的应用,以及它如何帮助我们解决问题。
举例解释:在讲解立方根的定义时,通过具体的数值例子让学生理解立方根的含义;在性质方面,强调正负数的立方根性质,使学生能够熟练判断;计算方法上,通过例题让学生掌握立方根的计算步骤;在实际应用中,结合生活场景,如计算一个立方体的体积,让学生明白立方根的实际意义。
2.教学难点
-立方根的概念理解:对于立方根的抽象概念,学生可能难以理解。
三、教学难点与重点
1.教学重点
-立方根的定义:理解立方根的概念,掌握立方根的表示方法,如√[3]{27}=3。
-立方根的性质:记忆正数、负数算简单数的立方根,如√[3]{8}=2,√[3]{-27}=-3。
-立方根的实际应用:解决如体积、密度等实际问题。
3.增强学生的数学建模意识:结合实际问题,让学生运用立方根知识建立数学模型,提高解决实际问题的能力。
4.培养学生的数学运算能力:使学生掌握立方根的计算方法,提高数学运算速度和准确性。
5.激发学生的数学探究精神:鼓励学生主动探索立方根的性质和规律,培养其发现问题和解决问题的能力。
北师大版数学八上2.3《立方根》教案 (2)
求关于立方根和平方根的小故事数学家--毕达哥拉斯认为:世界上只存在整数和分数,除此以外,没有别的什么数了.可是不久就出现了一个问题:当一个正方形的边长是1的时候,对角线的长m等于多少?是整数呢,还是分数?毕达哥拉斯和他的门徒费了九牛二虎之力,也不知道这个m究竟是什么数.世界上除了整数和分数以外还有没有别的数?这个问题引起了学派成员希伯斯的兴趣,他花费了很多的时间去钻研,最终希伯斯断言:m既不是整数也不是分数,是当时人们还没有认识的新数. 从希伯斯的发现中,人们知道了除了整数和分数以外,还存在着一种新数,就是一个新数.给新发现的数起个什么名字呢?当时人们觉得,整数和分数是容易理解的,就把整数和分数合称“有理数”,而希伯斯发现的这种新数不好理解,就取名为“无理数”. 希伯斯的发现,推翻了毕达哥拉斯学派的理论,动摇了这个学派的基础,为此引起了他们的恐慌.为了维护学派的威信,他们严密封锁希伯斯的发现,如果有人胆敢泄露出去,就处以极刑--活埋.然而真理是封锁不住的,尽管毕达哥拉斯学派规矩森严,希伯斯的发现还是被许多人知道了.他们追查泄密的人,追查的结果,发现泄密的不是别人,正是希伯斯本人!这还了得!希伯斯竟背叛老师,背叛自己的学派.毕达哥拉斯学派按着规矩,要活埋希伯斯.希伯斯听到风声逃跑了. 希伯斯在国外流浪了好几年,由于思念家乡,他偷偷地返回希腊.在地中海的一条海船上,毕达哥拉斯的忠实门徒发现了希伯斯,他们残忍地将希伯斯扔进地中海.之后它被称为无理数之父,为无理数的一切奠定了基础.倍立方问题很久很久以前,在古希腊的某个地方发生大旱,地里的庄稼都干死了,人们找不到水喝,于是大家一起到神庙里祈求.神说,我之所以不给你们降水,因为你们给我做的正方体祭坛太小了,如果你们做一个比它大1倍的祭坛放在我面前,我就给你们降下雨水.大家觉得这好办,很快做好一个祭坛送到神那儿,新祭坛的边长是原祭坛边长的2倍,于是神更加发火,他说,你们竟敢愚弄我!这个祭坛的体积根本不是原来祭坛的2倍,我要进一步惩罚你们!请你想一想,要做一个体积是原来祭坛的2倍的新祭坛,它的边长应是原来的多少倍?实际上,这就要求作出一个正方体,使它是已知正方体体积的2倍,或者说作出一条边是已知边长的32倍,这就是数学史上有名的倍立方问题.许多数学家试图用尺规作图作出它,均告失败,最后才发现这是一尺规作图不能成功的问题.。
八年级数学上册2.3立方根教学设计 (新版北师大版)
八年级数学上册2.3立方根教学设计(新版北师大版)一. 教材分析《八年级数学上册2.3立方根教学设计》是人教版初中数学八年级上册的一部分。
这部分内容主要介绍了立方根的概念、性质和运算方法。
教材通过丰富的实例和练习,使学生掌握立方根的知识,并能够运用到实际问题中。
本节课的内容对于学生来说是比较抽象的,需要通过实例和练习来理解和掌握。
二. 学情分析学生在学习本节课之前,已经学习了平方根的知识,对根的概念有一定的了解。
但是,立方根的概念和平方根有所不同,需要学生通过实例和练习来理解和掌握。
此外,学生对于实数的运算也有一定的了解,但还需要进一步的学习和巩固。
三. 教学目标1.知识与技能目标:使学生理解立方根的概念,掌握立方根的性质和运算方法,能够运用立方根解决实际问题。
2.过程与方法目标:通过实例和练习,培养学生的观察能力、思考能力和运算能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的耐心和细心,使学生感受到数学在生活中的应用。
四. 教学重难点1.教学重点:立方根的概念、性质和运算方法。
2.教学难点:立方根的概念和运算方法的理解和应用。
五. 教学方法1.实例教学法:通过丰富的实例,使学生理解和掌握立方根的概念和运算方法。
2.练习法:通过大量的练习,巩固学生的知识,提高学生的运算能力。
3.小组合作学习法:学生分组讨论和解决问题,培养学生的合作意识和沟通能力。
六. 教学准备1.教材和教辅:准备教材和相关的教辅资料,以便于学生学习和练习。
2.多媒体教学设备:准备多媒体教学设备,以便于展示实例和练习。
七. 教学过程1.导入(5分钟)通过一个实例,引出立方根的概念。
例如,展示一个正方体,让学生计算其体积,进而引出立方根的概念。
2.呈现(10分钟)介绍立方根的性质和运算方法,通过多媒体展示,使学生理解和掌握。
同时,引导学生与平方根进行对比,加深对立方根的理解。
3.操练(10分钟)让学生进行大量的练习,巩固立方根的知识。
北师大版八年级上册3立方根第二章:2.3立方根教学设计
北师大版八年级上册3立方根第二章:2.3立方根教学设计一、教学目标1.知识目标:学生能够掌握求解立方根的方法,了解立方根的性质和应用场景。
2.能力目标:通过课上的学习和练习,学生能够掌握立方根的基本概念、相应的计算方法和应用技巧。
3.情感目标:引导学生发现数学的美和魅力,激发学生的兴趣,增强他们的自信心,培养他们探究问题的能力。
二、教学内容1.立方根的定义和性质;2.求解立方根的方法;3.立方根的应用实例。
三、教学重难点1.教学重点(1)理解立方根的概念和性质;(2)掌握求解立方根的方法;(3)看懂并解决简单的立方根问题。
2.教学难点(1)对复杂的立方根计算方法的理解和掌握;(2)应用立方根解决实际问题的技巧。
四、教学过程1.导入环节(5分钟)通过发放问题卡引导学生思考,进入本课学习的氛围。
问题卡:一个数字去掉其中的一位数,就不是原来的三倍了,这个数字是多少?2.知识传递(25分钟)1.讲解立方根的定义和性质(10分钟)学生通过听讲和互动讨论,了解立方根的定义、性质和公式:•定义:若a3=b,则a叫做b的立方根。
•性质:正数有一个正立方根和两个负立方根。
2.简单实例演示(10分钟)通过简单的实例,演示求解立方根的方法。
例如:求−216的立方根。
由于(−6)3=−216,所以−6是−216的一个负立方根。
3.学生探究(5分钟)学生尝试自主发现立方根计算的方法并用简单实例验证。
3.巩固提高(30分钟)1.以班级比赛的形式进行练习(10分钟)随机抽出10个立方根求解题目,每10秒钟抽一个题目,每个小组派一名参赛者上台解答,答对可获得3分,答错或不及时作答扣1分,最终确定比赛胜出的组别。
2.做题讲评(10分钟)教师指导学生完成3道立方根应用题的讨论和解答。
例如:一个边长为a的正立方体的体积为V,求V的立方根。
3.探究应用(10分钟)教师引导学生思考、讨论构建立方根的实际应用场景,如体积、长度、面积等方面。
八年级数学北师大版上册 第2章《2.3立方根》教学设计 教案(1)
《2.3立方根》一、教材分析《立方根》是义务教育课程标准实验教科书北师大版八年级(上)第二章《实数》第三节.本节内容安排了1个学时完成.主要是通过对立方根与平方根的比较与归类,探索立方根的概念、计算和简单性质.因此,除了具体的知识技能(如知道一个数的立方根的意义,会用根号表示一个数的立方根,掌握立方根运算,掌握求一个数的立方根的方法和技巧)外,还需要让学生感受类比的思想方法,为今后的学习打下基础.二、学情分析在学习了平方根概念的基础上学习立方根的概念,学生比较容易接受,因此教学重点放在立方根具有唯一性(实数范围内)的讨论上.在学生对数的立方根概念及个数的唯一性有了一定理解的基础上,再提出数的立方根与数的平方根有什么区别,学生就容易解决问题.三、目标分析教学目标●知识与技能目标1.了解立方根的概念,会用根号表示一个数的立方根.2.会用立方运算求一个数的立方根,了解开立方与立方互为逆运算.3.了解立方根的性质.4.区分立方根与平方根的不同.●过程与方法目标1.经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略.2.在学习了平方根的基础上,学生经历用类比的方法学习立方根的有关知识,领会类比思想.3.通过对立方根性质的探究,在探究中培养学生的逆向思维能力和分类讨论的意识.●情感与态度目标:1.在立方根概念、符号、运算及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神.2.学生通过对实际问题的解决,体会数学的实用价值.●教学重点:立方根的概念及计算.●教学难点:立方根的求法,立方根与平方根的联系及区别.四、教法学法:类比法.五、教学过程第一环节:创设问题情境:复习:1、平方根的定义( 填空:(1)16的平方根是______2、2)6(2)的平方根是;(3)若a的平方根只有一个,那么a = ;(4)若数b的一个平方根是 1.2,那么b的另一个平方根是;3.要做一个体积为27cm3的正方体模型(如图),它的棱长要取多少?你是怎么知道的?思考:如果问题中正方体的体积为5cm3,正方体的棱长又该是多少?意图:通过实际情境引入,让学生感受新知学习的必要性,激发学生的求知欲望.效果:在思考问题的同时,学生既感受了数学的应用价值,激发了学生的学习热情,有很快将问题归结为如何确定一个数,从而顺利引入新课。
北师大版-数学-八年级上册-第二章第三节立方根教案-.
《八年级上第二章第三节立方根》教案第1课时 2.3立方根【教学课型】:新课◆课程目标导航:【教学目标】:(一)教学知识点1.了解立方根的概念,会用根号表示一个数的立方根.2.能用立方运算求某些数的立方根,了解开立方与立方互为逆运算.3.了解立方根的性质.4.区分立方根与平方根的不同.(二)能力训练要求1.在学了平方根的基础上,要求学生能用类比的方法学习立方根的有关知识,领会类比思想.2.发展学生的求同求异思维,使他们能在复杂环境中明辨是非.(三)情感与价值观要求当今社会是科学飞速发展、信息千变万化的时代,每一个人都不可能把一生中要接触的知识全部学会,因此让他们会学知识比学会知识更重要,这就要从小培养良好的学习习惯,能自己解决的问题就自己解决,其中类比的学习方法就是一种重要的学习方法,本节课重点训练学生的类比思想的养成.【教学重点】1.正确理解立方根的概念.2.会求一个数的立方根.3.区分立方根与平方根的不同之处.【教学难点】:立方根的概念【教学工具】:小黑板◆教学情景导入上节课我们学习了平方根的定义,若x2=a,则x叫a的平方根,即x=±a.若正方体的棱长为a,体积为8,根据正方体体积的公式得a3=8,那a叫8的什么呢?本节课请大家根据上节课的内容自己来类推出结论,若x3=a,则x叫a的什么呢?◆教学过程设计1.请大家先回忆平方根的定义.下面大家能不能再根据平方根的写法来类推立方根的记法呢?若x的平方等于a,则x叫a的平方根,记作x=±2a,读作x等于正、负二次根号a,简称为x等于正,负根号a.若x的立方等于a,则x叫a的立方根,记作x=±3a,读作x等于正、负三次根号a,简称x等于正、负根号a.[师]请大家对这位同学的回答展开讨论,小组总结后选代表发言.[生甲]我认为这位同学回答得不对.如果x2=a,则x=±a,x3=a时,x=±a也成立的话,那如何区分平方根与立方根呢?[生乙]因为乘方与开方是互为逆运算,求立方根可通过逆运算立方来求,如x3=8,因为23=8,所以x=2,只有一个根而不是±2,所以立方根的个数不正确.[师]大家的分析非常有道理,请认真看书第13、14页可知,若一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(cube root;也叫三次方根)如2是8的立方根,记为x=3a,读作x等于三次根号a.开立方的定义[师]大家先回忆开平方的定义,再类推开立方的定义.[生]求一个数a的平方根的运算,叫做开平方,则求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数.(2)立方根的性质[师]2的立方等于多少?是否有其他的数,它的立方也是8?[生]2的立方等于8,(-2)3=-8,所以没有其他的数的立方等于8.[师]-3的立方等于多少?是否有其他的数,它的立方也是-27?[生]-3的立方等于-27,33=27,所以没有其他的数的立方等于-27.[师]0的立方等于多少?0有几个立方根?[生]0的立方等于0,0有1个立方根是0.[师]从刚才的讨论中,大家总结一下正数有几个立方根?0有几个立方根?负数有几个立方根?[生]正数有一个立方根,0有一个立方根是0,负数有一个立方根.[师]对.正数有一个正的立方根、负数有一个负的立方根,0的立方根有一个,是0.(3)平方根与立方根的区别与联系.[师]我们已经学习了平方根与立方根的定义,并会求某些数的平方根和立方根,下面请大家说说它们的联系与区别.[生]从定义来看,若一个数x的平方等于a,即x2=a,则x叫a的平方根;若一个数x的立方等于a,即x3=a,则x叫a的立方根,都是一个数x的乘方等于a,但一个是平方,另一个是立方.[生]一个正数的平方根有两个,一个负数没有平方根,零的平方根有一个是零;一个正数的立方根有一个,并且是正数,一个负数有一个负的立方根,零的立方根有一个是零.[生]它们的表示方法和读法不同,一个正数a的平方根表示为±a,立方根表示为3a.2.例题讲解[例1]求下列各数的立方根:(1)-27;(2)1258;(3)0.216;(4)-5. [师]请大家思考下列问题.3a 表示a 的立方根,则(3a )3等于什么?33a 等于什么?大家可以先举例后找规律.: (3a )3=a .又∵a 3是a 的立方,所以a 3的立方根就是a ,所以33a =a .下面就这两个式子进行练习.[例2]求下列各式的值: (1)38-;(2)3064.0;(3)-31258;(4)(39)3 Ⅲ.课堂练习(一)随堂练习1.求下列各式的值:333333)16(;5;64;125.0-.2.一个正方体,它的体积是棱长为3厘米的正方体体积的8倍,这个正方体的棱长是多少?解:设正方体的棱长是x 厘米,得(二)补充练习1.求下列各数的立方根:0,1,-8127,6,-1000125,0.001 2.求下列各式的值:3233333333)278(;)2(;)2(;16463;1251;1;027.0------ 3.下列说法对不对? -4没有立方根;1的立方根是±1;361的立方根是61;-5的立方根是-35;64的算术平方根是 Ⅳ.议一议1.某化工厂使用一种球形储气罐储藏气体.现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐半径的多少倍?2.一个正方体的体积变为原来的n 倍,它的棱长变为原来的多少倍?解:设原正方体的棱长为a ,后来的正方体的棱长为b ,得na 3=b 3∴3333n a b =∴b =a n n a 333=. 即后来的棱长变为原来的3n 倍.Ⅴ.课时小结1.立方根的定义.2.立方根的性质.3.开立方的定义.4.平方根与立方根的区别与联系.5.会求一个数的立方根.Ⅵ.课后作业习题2.5.Ⅶ.活动与探究1.求下列各式中的x.(1)8x3+27=0;(2)(x-1)3-0.343=0;(3)81(x+1)4=16;◆课堂板书设计§2.3 立方根一、(1)立方根开立方的定义(2)立方根的性质(3)立方根与平方根的联系与区别二、例题讲解(求立方根)三、练习四、议一议五、小结六、作业。
【教案】2.3立方根北师大版八年级数学上册
3 立方根教学目标【知识与技能】掌握立方根的定义以及正数、负数、0 的立方根的特点.【过程与方法】正确理解立方根的定义.【情感、态度与价值观】体验数学在实际生活中的作用.教学重难点【重点】掌握立方根的定义.【难点】运用所学知识解决问题.教学过程一、创设情境,引入新课师:请同学们观看大屏幕: 多媒体展示问题:要制作一种容积为27 m3的正方体形状的包装箱,这种包装箱的边长应该是多少?师:设这种包装箱的边长为x m,则X3=27,这就是要求一个数,使它的立方等于27. •••33=27,「.X=3.即这种包装箱的边长为3 m.师:一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根•即:如果x3=a,即么X叫做a的立方根.比如:•,33=27,A3是27的立方根. 师:什么是开立方?生:求一个数的立方根的运算,叫做开立方.师:正如开平方与平方互为逆运算一样,开立方与立方也互为逆运算,据此我们可以求一个数的立方根.师: 请看大屏幕.根据立方根的意义填空,看看正数、0 和负数的立方根各有什么特点?因为23=8,所以8 的立方根是( );因为( )3=0.125,所以0. 125 的立方根是( );因为()3=0所以0的立方根是();因为()3=-8所以-8的立方根是();因为()3=-所以-的立方根是().•.23=8, -^8的立方根是2;•••(0. 5)3=0. 125,「O 125 的立方根是0. 5;•.•(0)3=0,「0的立方根是0;•.•(_2)3=_8, .•- 8 的立方根是-2;•.•(_)3=-,.•.-的立方根是-.师生共同归纳:正数的立方根是正数.负数的立方根是负数.0的立方根是0.师:你能说说数的平方根与数的立方根有什么不同吗?生:每一个数均有一个立方根,而负数没有平方根.师:一个数a的立方根的表示方法:3,读作“三次根号a” .其中a是被开方数,3是根指数.如3表示8的立方根,即3=2.3表示-8的立方根,即3=-2.3中的根指数3不能省略.注:算术平方根的符号,实际上省略了2中的根指数2,因此也可读作“二次根号a”师:请同学们填空:-3= -3=• _______ ,_________ ■・3_ 3-• 33・3_ 3-・3 3一般地,3 _______ -3.师:请同学们做题:求下列各式的值:(1)3;(2)3;(3)(3)3.学生尝试独立完成,一学生上黑板板演•教师巡视、指导•师生共同完成:解:(1)3=4; (2)3=-5;(3)(3)3=()3=.通过计算可知(3)3=a,3=a.注:其实,很多有理数的立方根是无限不循环小数.如3、3等都是无限不循环小数,可以用有理数、近似数表示它们、例题讲解【例1】求下列各数的立方根:(1) 27;(2)-27;(3); (4)-0. 064;(5)0.【答案】(1) -.33=27. /-27的立方根是3,即3=3;(2) 3)3=- 27,/-27 的立方根是-3,即3=- 3;⑶T()3=. /•的立方根是,即3=;(4) v(-0. 4)3=-0. 064. ./-0. 064 的立方根是-0. 4,即3=-0. 4;(5) v03=0. /.0的立方根是0,即3=0.【例2】求下列各式的值:(1)3;(2)3;(3)-3;(4)(3)3.【答案】( 1)3=3;(2)3=3=0. 4;(3)- 3=- 3=(4)(3)3=9.三、课堂小结师:通过本节课的学习,你有哪些收获?请与同桌交流学生发言,教师点评.。
北师大版八年级数学上册:2.3《立方根》教案2
北师大版八年级数学上册:2.3《立方根》教案2一. 教材分析《立方根》是北师大版八年级数学上册第二章第三节的内容。
本节内容是在学生已经掌握了有理数的乘方、实数的概念等知识的基础上进行学习的。
通过本节课的学习,使学生理解立方根的概念,会正确地计算立方根,培养学生的逻辑思维能力。
二. 学情分析学生在七年级时已经学习过平方根的概念,对于算术平方根、平方根等概念有一定的了解。
但是,对于立方根的概念和计算方法还不够熟悉。
因此,在教学过程中,教师需要通过实例和练习,帮助学生理解和掌握立方根的概念和计算方法。
三. 教学目标1.知识与技能:使学生理解立方根的概念,会正确地计算立方根。
2.过程与方法:通过实例和练习,培养学生的逻辑思维能力。
3.情感态度价值观:激发学生学习数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:立方根的概念和计算方法。
2.难点:立方根的计算方法。
五. 教学方法采用问题驱动法、实例教学法、合作学习法等教学方法,引导学生通过自主学习、合作交流,掌握立方根的概念和计算方法。
六. 教学准备1.教学课件:制作教学课件,包括立方根的定义、计算方法、实例等。
2.练习题:准备一些关于立方根的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT展示一个正方体,引导学生思考正方体的体积是多少。
通过这个实例,激发学生的学习兴趣,引出立方根的概念。
2.呈现(15分钟)介绍立方根的定义,展示立方根的计算方法。
通过PPT和实物模型的展示,使学生直观地理解立方根的概念和计算方法。
3.操练(10分钟)让学生独立完成一些关于立方根的计算题。
教师在旁边辅导,解答学生的疑问。
4.巩固(10分钟)让学生分组讨论,总结立方根的计算方法。
教师选取一些学生的总结,进行点评和讲解。
5.拓展(10分钟)引导学生思考:立方根有哪些性质?如何判断一个数是否有立方根?通过这些问题,拓展学生的知识面。
6.小结(5分钟)对本节课的内容进行总结,强调立方根的概念和计算方法。
2.3立方根数学教案
2.3立方根数学教案
标题:2.3 立方根
一、课程目标:
1. 让学生理解立方根的概念
2. 学会求立方根的基本方法
3. 能够运用立方根解决实际问题
二、教学内容:
1. 定义:立方根是使某个数变为另一个数的立方的数。
2. 性质:立方根有三个性质:唯一性、存在性和运算规则。
三、教学过程:
1. 导入新课:通过实例引入立方根的概念,如立方体的体积计算等。
2. 新课讲解:
a) 概念介绍:用通俗易懂的语言解释立方根的概念,让学生明白什么是立方根。
b) 性质介绍:讲解立方根的唯一性、存在性和运算规则,通过实例帮助学生理解和掌握这些性质。
3. 练习与讨论:
a) 提供一些简单的立方根计算题目,让学生进行练习,然后在全班进行讨论和解答。
b) 引导学生尝试自己总结求立方根的方法,鼓励他们提出自己的想法。
4. 课堂小结:对本节课的内容进行总结,强调重点和难点。
四、作业布置:
设计一些立方根的计算题和应用题,让学生在课后进行练习。
五、教学反思:
对本节课的教学效果进行反思,思考哪些地方做得好,哪些地方需要改进。
六、拓展活动:
组织一些与立方根相关的课外活动,如立方体模型制作、立方根游戏等,以增强学生的兴趣和动手能力。
以上只是一个大纲,你可以根据实际情况进行详细编写。
在教学过程中,要注意引导学生积极参与,让他们主动思考和解决问题,这样才能真正提高他们的数学能力。
八年级数学上册 2.3立方根教案设计 北师大版
§教案设计每个数都有一个立方根。
正数的立方根是正数,0的立方根是0,负数的立方根是负数。
1、立方根的表示:(1) 3a 读作“三次根号a ”,例如,8的立方根是 2,表示为38=2; 7的立方根表示为37。
你能举出几个数的立方根并用符号表示出来吗?3、 开立方:(类比开平方,给开立方下一个定义)求一个数立方根的运算叫做开立方。
其中a 叫做被开方数。
(1) 你能谈谈你对开立方的认识吗?①它是一种运算,而不是结果;②它与立方互为逆运算。
例1 求下列各数的立方根:(1)-27;(2)1258;(3)0.216;(4)-5解:①∵()33-=-27,∴-27的立方根是-3,即:327-=-3;②∵352⎪⎭⎫ ⎝⎛ =1258,∴1258的立方根是52,即:31258=52;③∵3∴0.216的立方根是0.6,即:3216.0=0.6;④-5的立方根是35-。
随堂练习: 1想一想:1.3a 表示a 的立方根,那么(3a )3=?3a 3呢?解:∵3a 表示a 的立方根,∴(3a )3=a∵表示数a 3的立方根,而数a 3的立方根是a ,且一个数的立方根只有一个∴=a2.根据()33a =a ;33a =a 这两个公式做例2。
例2:求下列各式的值① 38-②3064.0③-3125/8④(39)3板书回忆“开方”的定义黑板板书设计板书内容例题讲解小练习第三节立方根1、定义:如果一个数x的立方等于a,即x3=a,那么,这个数x就叫做a的立方根。
2、表示方法:3a3、性质:①每个数都有一个立方根;②正数的立方根是正数;③0的立方根是0;④负数的立方根是负数。
4、开立方:求一个数立方根的运算叫做开立方。
其中a叫被开方数。
例1:求下列各数的立方根:(1)-27;(2)1258;(3)0.216;(4)-5解:略例2:求下列各式的值①38-②3064.0②-3125/8④()339练习:3330.8540.94888.54 2.04485.4 4.404==,,,求下列各式中x的值.(1)30.00000854x=-(2)385400000x=--(3394.88x=;(43222.44x=.解:(1)333628.54 2.0440.000008548.5410 2.044100.02044x--=∴=--⨯=-⨯=-,.(2)3336285.4 4.4048540000085.410 4.40410440.4x=∴=--=⨯=⨯=,(3)33260.8540.948894.8809488100.85410854000x x==⨯∴=⨯=,.,.(4)38.54 2.044=3222.44x=33222.4420.44x x==,得,38.54108540x∴=⨯=.分析:在正数开立方运算中,被开方数扩大或缩小1000倍,立方根相应地扩大或缩小10倍.(1)、(2)的误解中六、教学反思注意公式()33a=a;33a=a 的理解及应用要牢固。
北师大版八年级数学上册:2.3《立方根》说课稿
北师大版八年级数学上册:2.3《立方根》说课稿一. 教材分析《立方根》是北师大版八年级数学上册第二章第三节的内容。
本节课的主要内容是让学生理解立方根的概念,掌握求立方根的方法,并能运用立方根解决一些实际问题。
教材通过引入立方根的概念,让学生通过观察、思考、探究、归纳等活动,培养学生的逻辑思维能力和空间想象力。
二. 学情分析八年级的学生已经学习了有理数、无理数等基础知识,对数学概念有一定的理解能力。
但是,学生对立方根的概念和求法还比较陌生,需要通过具体的事物和实例来帮助学生理解和掌握。
此外,学生的空间想象力有待提高,需要通过大量的练习和操作活动来培养。
三. 说教学目标1.知识与技能目标:让学生理解立方根的概念,掌握求立方根的方法,能够运用立方根解决一些实际问题。
2.过程与方法目标:通过观察、思考、探究、归纳等活动,培养学生的逻辑思维能力和空间想象力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的自主学习能力和团队合作精神。
四. 说教学重难点1.教学重点:立方根的概念和求法。
2.教学难点:立方根的应用和空间想象力的培养。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。
2.教学手段:多媒体课件、实物模型、练习题等。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考并引入立方根的概念。
2.新课导入:讲解立方根的概念,通过实例让学生理解和掌握立方根的求法。
3.课堂讲解:通过讲解和示范,让学生了解立方根的性质和应用。
4.练习与讨论:学生进行练习,老师进行个别辅导和解答疑问。
5.课堂小结:总结本节课的主要内容和知识点。
6.布置作业:布置一些有关立方根的练习题,巩固所学知识。
七. 说板书设计板书设计要清晰、简洁,能够突出本节课的主要内容和知识点。
可以采用流程图、等形式,帮助学生理解和记忆。
八. 说教学评价教学评价可以通过课堂观察、练习题、小组讨论等方式进行。
主要评价学生的知识掌握程度、思维能力、空间想象力等。
北师大版八年级上册2.3立方根优秀教学案例
3.引导学生运用立方根解决实际问题,培养学生的数学应用能力和创新思维。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和自信心,让学生感受到数学的实用性和魅力。
2.培养学生的团队合作意识,让学生在探究活动中互相学习、互相帮助。
(四)总结归纳
1.引导学生对所学内容进行总结和归纳,让学生明确立方根的概念、性质和应用,建立完整的知识体系。
2.通过总结归纳,帮助学生梳理学习思路,提高学生的概括和表达能力。
3.引导学生发现学习中存在的问题和不足,激发学生的自我改进和自我提高的意识。
(五)作业小结
1.布置相关的作业,让学生在课后巩固所学知识,提高学生的应用能力。
3.创设具有挑战性和探究性的问题情境,如立方根的谜题、立方根的魔术等,激发学生的探究欲望。
(二)讲授新知
1.通过讲解和示例,引导学生理解立方根的概念,明确立方根的性质和求法。
2.利用数学实验、探究活动等方法,让学生亲身体验和发现立方根的性质,加深学生对立方根的理解。
3.引导学生通过观察、实验、归纳等方法,探索立方根的性质和规律,培养学生的探究能力。
2.问题导向:设计了一系列由浅入深的问题,引导学生主动思考和探究立方根的概念和性质,使学生在解决问题的过程中自然地掌握立方根的知识,提高了学生的思维能力和问题解决能力。
3.小组合作:组织学生进行小组讨论和合作探究,让学生在互动中交流思想、分享成果,培养了学生的团队合作能力和协作精神,提高了学生的学习效果。
二、教学掌握立方根的性质,能够正确求一个数的立方根。
2.能够区分立方根与平方根、四次方根等其它根的概念,明确它们之间的联系与区别。
2.3 立方根北师大版八年级上册数学 2.3 立方根教案1
2.3 立方根1.了解立方根的概念及性质,会用根号表示一个数的立方根;(重点)2.了解开立方与立方是互逆运算,会用开立方运算求一个数的立方根.(难点)一、情境导入 填空并回答问题:(1)( )3=0.001;(2)( )3=0; (3)若正方体的棱长为a ,体积为8,根据正方体的体积公式得a 3=8,那么a 叫做8的什么呢?二、合作探究探究点一:立方根的概念及性质 【类型一】立方根的概念及性质立方根等于本身的数有________个.解析:在正数中,31=1,在负数中,3-1=-1,又30=0,∴立方根等于本身的数有1,-1,0.故填3.方法总结:不论正数、负数还是零,都有立方根.【类型二】立方根与平方根的综合问题已知x -2的平方根是±2,2x +y +7的立方根是3,求x 2+y 2的算术平方根.解析:根据平方根、立方根的定义和已知条件可知x -2=4,2x +y +7=27,从而解出x ,y ,最后代入x 2+y 2求其算术平方根即可.解:∵x-2的平方根是±2,∴x -2=4.∴x =6.∵2x+y +7的立方根是3,∴2x +y +7=27,把x =6代入解得y =8,∴x 2+y 2=62+82=100.∴x 2+y 2的算术平方根为10.方法总结:本题先根据平方根和立方根的定义,运用方程思想列方程求出x ,y 的值,再根据算术平方根的定义求出x 2+y 2的算术平方根.【类型三】立方根的实际应用 已知球的体积公式是V =43πr 3(r 为球的半径,π取3.14),现已知一个小皮球的体积是113.04cm 3,求这个小皮球的半径r.解析:将公式变形为r 3=3V4π,从而求r. 解:由V =43πr 3,得r 3=3V 4π,∴r =33V 4π.∵V =113.04cm 3,π取 3.14,∴r ≈33×113.044×3.14=327=3(cm).故这个小皮球的半径r 约为3cm.方法总结:解此题的关键是灵活应用球的体积公式,并将公式适当变形.探究点二:开立方运算求下列各式的值.(1)-3343;(2)31027-5;(3)-3-8÷214+(-1)100. 解:(1)-3343=-7; (2)31027-5=3-12527=-53;(3)-3-8÷214+(-1)100=2÷94+1=2÷32+1=2×23+1=73.方法总结:做开平方或开立方运算时,一般都是利用它们的定义去掉根号;当被开方数不是单独一个数时,则需先将它们进行化简,再进行开方运算.三、板书设计1.每个数a都只有一个立方根,记为“3a”,读作“三次根号a”.2.正数的立方根是正数;0的立方根是0;负数的立方根是负数.3.求一个数a的立方根的运算叫做开立方,其中a叫做被开方数.开立方与立方互为逆运算.本节课让学生应用类比法学习立方根的概念、性质和运算.学生在以后的数学学习中,要注意渗透类比的思维方式,让学生在学习新知识的同时巩固已学的知识,并通过新旧对比更好地掌握知识.。
北师大版八年级数学上册:2.3 立方根 教案1
立方根【教学目标】1.在一定的情境只,理解立方根的概念,使学生不断获得解决问题的经验,提高思维水平,学习中要注意感悟“类比”在知识产生和发展过程中的作用。2.了解立方根的概念,会用根号表示一个数的立方根,了解开立方与立方互为逆运算,能用立方运算求一些数的立方根3.能用立方根解决一些简单的实际问题。【教学重难点】正确地理解立方根的概念及符号表示能熟练应用【教学方法】观察、比较、合作、交流、探索。【教学过程】一、创设情境,感悟新知情境一体积为1的正方体,棱长为多少?体积增加1,棱长为多少? 情境二做一个正方体纸盒,使它的容积为64cm 3,正方体纸盒的棱长是多少?如果要使正方体纸盒容积为25cm 3,它的棱长是多少?二、引入课题 立方根从实际问题的计算,感受学习立方根的必要性,教学中引导学生借助平方根的定义,平方根的符号表示,开平方运算,自己给立方根下定义,给出立方根的符号表示和什么叫开立方运算三、探索活动问题一根据立方根的定义,你能举出某个数的立方根吗?你能用符号表示吗?例题求下列各数的立方根 (1)-64 (2)-1258 (3)9 (4)0 问题一 根据计算结果,与平方根作比较有什么不同?与同学交流巩固练习:1.下列说法正确的是( )A.任意数a 的平方根有2个,它们互为相反数B.任意数a 的立方根有1个C.-3是27的负的立方根D. (-1)2的立方根是-12.下列判断正确的是( )A.64的立方根是±4B.(-1)1-的立方根是1C.64的立方根是2D.如果3a =a,则a=03.求下列各式中的Xx 3+729=0 (x-3)3=64思维拓展,运用新知1.讨论(38-)3等于多少?(32)3等于多少? 33)8(-等于多少?332等于多少?四、课堂小结,内化新知立方根和平方根有何异同? 利用立方根概念进行有关计算作业布置一、填空题1.(-1)2005的立方根是 ,—0.0027的立方根是2.已知x 2=64,则3x =3.38515-= , 312)1(--n = 4.a 为何值时,则a , a 2,3a ,a 中,必是非负数的有 二、选择题1.-6的立方根用符号表示,正确的是( ) A 36- B -36 C -36- D ±36-三、求下列各式中的x1.27x ³-512=0 2.(2-x)3+1=64四、如果一个正方体的体积增大为原来的27倍,那么它的棱长增大为原来的多少倍?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3立方根
教学目标
知识与技能
1.使学生了解一个数的立方根概念,并会用根号表示一个数的立方根;
2.理解开立方的概念;
3.明确立方根个数的性质,分清一个数的立方根与平方根的区别.
过程与方法
1、创设情境,激发学生的求知欲。
2、鼓励学生积极思维,体会类比的数学方法。
情感与价值观
培养学生团结协作的团队精神。
教学重点和难点
重点:立方根的概念及求法.
难点:立方根与平方根的区别.
教学过程设计
一、复习:请同学回答下列问题:
(1)什么叫一个数a 的平方根?如何用符号表示数a(≥0)的平方根?
(2)正数有几个平方根?它们之间的关系是什么?负数有没有平方根?0平方根是什么?
(3)当a≥0时,式子a ,-a ,±a,的意义各是什么?
答:(1)如果一个数x 的平方等于a ,即x2=a ,那么x 叫做a 的平方根,表示为x=±a.
(2)正数有两个平方根,它们互为相反数,负数没有平方根,0的平方根是0.
(3)a≥0,a 表示a 的算术平方根,-a 表示a 的负平方根,±a 表示a 的平方根.
二、引入新课
1.计算下列各题:
(1) 31.0; (2) 33)2(-; (3) 30.
答:(1) 31.0=0.001; (2) 33)2(-=-827; (3) 30=0.
指出:上面各题是已知底数和乘方指数求三次幂的运算,也叫乘方运算.
怎样求下列括号内的数?各题中已知什么?求什么?
(1)( )3=18; (2)( )3=-27 125; (3)( )3=0. 答:已知乘方指数和3次幂,求底数,也就是“已知某数的立方,求某数”.
设某数为x ,则(1)式为3x =18,求x ; (2)式为3x =-27125,求x ;(3)式为x3=0求x 。
2.立方根的概念.
一般地,如果一个数的立方等于a ,这个数就叫做a 的立方根(也叫做三次方根).
用式子表示,就是,如果3x =a ,那么x 叫做a 的立方根.数a 的立方根用符号“3a ”表示,读作“三次根号a ,其中a 是被开方数,3是根指数.(注意:根指数3不能省略).
3.开立方.
求一个数的立方根的运算,叫做开立方.开立方与立方也是互为逆运算,因此求一个数的立方根可以通过立方运算来求.
做一做
(1)2的立方是多少?是否还有其它的数它的立方也是8?
(2)-3的立方等于多少?是否还有其它的数它的立方也是-27?
正数的立方根是正数;0的立方根是0;负数的立方是负数。
三、讲解例题:
例1 求下列各数的立方根:
(1)-27; (2)125
8; (3)0.216; (4)-5;
分析:求一个数的立方根,我们可以通过立方运算来求.
解 (1)因为3)3(-=-27,所以-27的立方根是-3,即327-=-3.
问:除-3以外,还有什么数的立方等于-27?也就是说,负数-27还有别的立方根吗? 答:除-3以外,没有其它的数的立方等于-27,也就是说,-27的立方根只有一个.
(2)因为3)
52(=1258,所以1258的立方根是52即3125
8 =52
(3)因为36.0=0.216,所以0.216的立方根是0.6,即3216.0=0.6.
(4)-5的立方根是35-.
问:一个正数有几个立方根?一个负数有几个立方根?零的立方根是什么?
答:正数有一个正的立方根;负数有一个负的立方根;零的立方根仍旧是零.
指出:立方根的个数的性质可以概括为立方根的唯一性,即一个数的立方根是唯一的. 例2 求下列各式的值: (1) 38-; (2) 3064.0-; (3) 3125
8-
.(4)33)9( 解 (1) 38- =-2;(2) 3064.0-=-0.4; (3) 31258-=-52- (4)33)9(=9 四、随堂练习
1.判断题:
(1)4的平方根是2;( ) (2)8的立方根是2;( )
(3)-0.064的立方根是-0.4;( ) (4)127的立方根是±13( )
(5)-
161的平方根是±4;( ); (6)-12是144的平方根.( )
2.选择题:
(1)数0.000125的立方根是( ).
A.0.5
B.±0.5
C.0.05
D.0.005
(2)下列判断中错误的是( )
A.一个数的立方根与这个数的乘积为非负数
B.一个数的两个平方根之积负数
C.一个数的立方根未必小于这个数
D.零的平方根等于零的立方根
3.求下列各数的立方根:
(1)27; (2)-38; (3)1; (4)0. 4.求下列各式的值:
(1)100; (2) 31000; (3) 37291000; (4) 364
125-;(5) 31; 五、小结
请思考下面的问题:
1.什么叫一个数的立方根?怎样用符号表示数a 的立方根?a 的取值范围是什么?
2.数的立方根与数的平方根有什么区别?
答:1.如果一个数的立方等于a ,这个数就叫做a 的立方根,用符号3a 表示,a 为任意数.
2.正数只有一个正的立方根,但有两个互为相反数的平方根;负数有一个负的立 方根,但没有平方根.
3.求一个数的立方根,可以通过立方运算来求.
六、作业:习题2.5 1、2。