上海傅雷中学初一新生分班(摸底)数学模拟考试(含答案)

合集下载

上海兰田中学初一新生分班(摸底)数学模拟考试(含答案)

上海兰田中学初一新生分班(摸底)数学模拟考试(含答案)

上海兰田中学初一新生分班(摸底)数学模拟考试(含答案)初一新生分班(摸底)测试卷数学班级____________ 姓名____________ 得分:____________一、注意审题,认真填写(每题2分,共20分)1. 二亿八千零四万五千三百写作________,改写成以万为单位的数是________。

小时=()分;8.05千克=()千克()克;2. 1152千米50米=()千米;30平方分米=()平方米。

3. 在8、3、0.83、8.3%、83%这四个数中,最大的数是________,最小的数是________,相等的数是________和________。

4. 甲数=233,乙数=235,甲、乙两数的最大公约数是_______,它们的最小公倍数是_______。

5. 某村的粮食丰收,收获的玉米和水稻的比是3:4,已知收获水稻20万千克,那么收获的水稻比玉米多________万千克。

6. 圆柱体体积是502.4立方厘米,它的底面半径是4厘米,则高是________厘米。

7. 在一幅比例尺是1:6000000的地图上,量得两地的图上距离是4厘米,则两地的实际距离是________千米。

8. 一筐梨连筐重54千克,倒出半筐梨后,连筐还有29千克,这筐梨重________千克,筐重________千克。

9. 10025,除数最小时,被除数是________。

10. 用4个棱长是2厘米的正方体拼成长方体,所得长方体中表面积最大是________平方厘米。

二、仔细推敲,准确判断(每题1分,共5分)11. 两个自然数相乘的积一定是合数。

()12. 某车间今天有100人出勤、5人缺勤,出勤率是95%。

()13. 两个完全一样的梯形可以拼成一个平行四边形。

()14. 圆锥的底面积一定时,那么它的体积和高成正比例。

()15. 一种商品先涨价15%,又降价15%,那么这种商品仍是按原价出售。

()三、反复比较,谨慎选择(每题2分,共10分)16. 下面的数中,既是偶数又是合数的数是()。

上海傅雷中学初一新生分班(摸底)数学模拟考试(含答案)

上海傅雷中学初一新生分班(摸底)数学模拟考试(含答案)

上海傅雷中学初一新生分班(摸底)数学模拟考试(含答案)初一新生入学摸底分班考试试卷数学班级____________ 姓名____________ 得分:____________一、填空题(每题2分,共26分)1. 有5袋糖,其中任意4袋的总和都超过80块,那么5袋糖的总和最少有()块.2. 在0,2,5,7,9五个数字中,选出四个不重复的数字组成一个能被3整除的四位数,其中最大的四位数与最小的四位数的差是().3. 三个不同的素数之积恰好等于它们和的7倍,这三个素数是(),(),().4. 把111111分解质因数是().5. 现有下列四个算式:11111111;;;1129122514191321++++,比较这四个算式的大小,用“〉”连接应为().6. 用长28米的铁丝围成一个长方形,这个长方形的最大面积是().7. 在平行四边形ABCD中,F是BC边上的中点,13AE AB=,则三角形AEF的面积是平行四边形的().8. 有含糖6%的糖水900克,要使其含糖量增加到10%,需加糖()克.9. 商店为某鞋厂代销200双鞋,代销费用为销售总额的15%,全部销售完后,商店向鞋厂交付43860元,这批鞋每双售价()元.10. 有两个爱心小队,第一小队与第二小队的人数比是5:3,从第一小队调14人到第二小队后,第一小队与第二小队的人数比为1:2,则原来第二小队有()人.11. 已知一个容器内注满水,有大、中、小三个小球,第一次把小球沉入水中,第二次取出小球再将中球沉入水中,第三次取出中球,把小球和大球一起沉入水中,现在知道第一次溢出的水是第二次的14,第三次溢出的水是第一次的2.5倍,大、中、小球的体积比是():():().12. 如右图是由许多棱长1厘米的立方体堆积而成的,它的表面积是().13. 某年级60人中有40人爱打乒乓球,45人爱踢足球,48人爱打篮球,这三项运动都爱好的有22人,这个年级最多有()人这三项运动都不爱好.二、选择题(每题2分,共18分)14. 在1-100之间,一共有()个数与24的最大公因数是8.A. 12B. 11C. 9D. 815. 一根红色电线和一根蓝色电线的长度相等,把红的剪去45,蓝的剪去45米,剩下的红色电线比蓝色电线长,原来的两根电线都()A. 比1米长B. 正好1米C. 比1米短16. 甲数比乙数少15,乙数比甲数多().A. 20%B. 25%C. 40%17. 两个因数都是一位数,如果在其中一位数的左边写上5,使它成为一个两位数,那么这两个因数的积增加了200,这个因数是().A. 40B. 4C. 20D. 1-9都可以18. 把一段圆柱形铁块切成最大的圆锥,若切下的部分重a千克,则这段铁块原来重()千克.A. 2aB. 3aC. 32a D.23a19. 有一座房子,长12米,宽8米,在房子外的一个墙角用一根长14米的绳子拴一条狗,这条狗可能活动的最大范围的面积是()平方米.A. 492.98B. 555.78C. 519.44三、计算题(每题3分,共15分)四、图形题(共5分)25. 在右图中,O是圆心,OD=4,C是OB的中点,阴影部分的面积是14π,求三角形OAB的面积.五、综合应用(每题6分,共36分)26. 玻璃公司委托运输公司送500只玻璃瓶,双方议定,每只运费1.5元,如果打破一只,不但不给运费,还要赔13.5元,结果运输公司共得到运费705元,问运送途中打破了几只玻璃瓶?27. 师徒三人合作加工一批零件5天可以完成,其中徒弟甲完成的工作是徒弟乙的12,徒弟乙完成的工作是师傅的12,如果徒弟甲一人做2天后,徒弟乙和师傅合做余下的工作,还要几天完成?28. 小超市里有相同数量的奶糖和水果糖,奶糖10元2千克,水果糖10元1千克,营业员不小心把两种糖混在一起了,按照10元1.5千克售出,当糖全部卖完后发现比分开来卖少收入60元,小超市原来有奶糖和水果糖多少千克?29.、有一个注满水的圆柱形蓄水池,底面周长为62.8米,用去部分水后,水面比注满水时下降60厘米,剩下的水正好是这个水池容积的47,这个水池的容积是多少?30. 甲、乙二人分别从AB两地同时出发,相向而行,出发时他们的速度比是3:2,第一次相遇后,甲的速度提高了15,乙的速度提高了310,这样,当甲到达B地时,乙离A地还有14千米,那么AB两地间距离为多少千米?31. 在一条公路上,甲乙两地相距600米,小明和小强进行竞走训练,小明每小时走4千米,小强每小时走5千米,8时整,他们二人同时从甲乙两地相向而行,1分钟后二人掉头反向而行,又过3分钟,二人又都掉头相向而行,依次按照1,3,5,7…(连续奇数)分钟数掉头行走,那么二人相遇时是几时几分?一、填空题1. 102块 解析 由480x >,得20x >。

XXX初一新生分班(摸底)数学模拟考试(含答案)

XXX初一新生分班(摸底)数学模拟考试(含答案)

XXX初一新生分班(摸底)数学模拟考试(含答案)XXX初一新生进行了数学分班(摸底)模拟考试,以下是试卷及答案:一、知识万花筒(共23分)1.我国第五次人口普查显示,我国人口已达到12.9533亿,这个数写作“亿”位后面的尾数约是( 3 )。

2.省略。

3.把一根9m长的钢管平均分成4段,每段占全长的( 1/4 ),每段长( 2.25 )米。

4.如果A=2×3×5,B=3×5×7,那么A、B的最大公因数是( 15 ),最小公倍数是( 210 )。

5.4:13的比值是( 4:13 ),化成最简整数比是( 4:13 )。

6.省略。

7.3/8 的分数单位是( 1/8 ),它有( 3 )个这样的分数单位,再添上( 1/4 )个这样的分数单位。

8.7 就是最小的质数。

9.24()=( 2 ):24=( 0.0833 )小数=( 8.33% )=( 1/12 )折。

10.一个棱长为a厘米的正方体,如果截成两个完全相同的长方体,每个长方体的表面积是( 2a²)平方厘米。

11.1.25小时=( 1小时15分)。

12.12米增加1后是( 13 )米,12米减少1后是( 11 )米。

13.一台拖拉机2小时耕地3公顷,照这样计算,耕1公顷要( 3.33 )小时,1小时可以耕地( 1.5 )公顷。

14.圆的周长总是它直径的(π )倍。

二、XXX官断案(共5分)12.圆的面积和半径成正比例。

( ×)13.三个连续的偶数,中间一个是a,那么这三个连续偶数的和是3a。

( ×)14.如果甲数的5等于乙数的3,那么甲数大于乙数。

(√ )15.在体质测试中,有100人及格,2人不及格,不及格率为2%。

( ×)16.圆锥的体积是圆柱的1/3.(√ )三、快乐A、B、C(共5分)17.下面图形中没有对称轴的是( D.线段)。

18.一个水瓶装纯净水600ml,600ml是这个水瓶的( B.容积)。

上海所在地区新初一分班数学试卷含答案

上海所在地区新初一分班数学试卷含答案

上海所在地区新初一分班数学试卷含答案一、选择题1.杭州到北京的距离大约是1290千米。

在一幅中国地图上,量得杭州到北京的图上距离是15厘米,那么这幅地图的比例尺是()。

A.1:86B.1:86000C.1:8600000D.86:12.小明用棱长分别为1厘米、2厘米、3厘米、5厘米的四个正方体紧贴在一起摆出了一个立体图形,这个立体图形的表面积是()平方厘米。

A.194 B.196 C.206 D.2343.某人从甲地到乙地需要14小时,他走了15小时,一共走了300米,他还有多少米没有走?正确的算式是().A.300÷15-300 B.300×15×14+300C.300÷15×14-300 D.300÷(14-15)4.用9厘米长的铁丝围成一个三角形,这个三角形三条边的长度比是7∶9∶14,这个三角形最长的边长为()厘米。

A.2 B.2.1 C.2.7 D.4.25.根据下面的线段图列出的方程,正确的是()。

A.45x+15=80 B.(1+15)x=80 C.x-15x=80 D.x-15=806.用6个同样大的正方体拼成一个物体,从前面看是,从上面看是,从右面观察拼成的物体,看到的图形是()。

A.B.C.7.便民水果店进了8千克樱桃,卖掉了45.下列说法错误的是().A.还剩15B.还剩1千克的85C.剩下的与卖掉的质量比是4:1 D.卖掉了6.4千克8.一个骰子,六个面上分别写着数字1、2、3、4、5、6。

掷出这个骰子,朝上的数字是()的可能性最小。

A.质数B.合数C.奇数D.偶数9.收录机每台原价500元,提价5%后,又降价5%,现在每台收录机的售价是( )元。

A.525 B.500 C.498.7510.把一个圆形纸片对折3次,展开后,每一份的大小是圆形纸片的()。

A.13B.16C.18D.19二、填空题11.①6.08立方米=(________)立方分米②600毫升=(________)升③4.8米=(________)米(________)厘米④2小时15分=(________)时十12.9∶()38==()2432( )÷==()%。

上海12初一新生分班(摸底)数学模拟考试(含答案)【6套试卷】

上海12初一新生分班(摸底)数学模拟考试(含答案)【6套试卷】

上海12初一新生分班(摸底)数学模拟考试(含答案)【6套试卷】初一新生(分班)摸底考试卷数学班级____________ 姓名____________ 得分:____________一、判断题(正确的打“√”,错误的打“×”,每题2分,共10分)1. 任何两个数的积都比它们的商大. ()2. 甲数比乙数少25%,则甲数和乙数的比是3:4. ()3. 圆柱体的高不变,底面积扩大2倍时,体积扩大4倍. ()4. 五年级学生中女生占48%,六年级学生中女生占46%,六年级女生人数一定比五年级女生少. ()5. 把一根长2米的木料锯成同样长的4段,每段占这根木料总长的四分之一,每锯一段用的时间是全部时间的四分之一. ()二、填空题(每空2分,共22分)6. 一个数的百万位、万位、千位上的数都是9,其余各位是0,这个数写作________________,四舍五入到万位记作________.7. 在一幅比例尺为1:5000000的地图上表示720千米的距离,地图上应画________厘米,图上的6厘米表示实际的________千米.8. 五(1)班今天有2人请假,出勤率是96%,五(1)班有学生________人.9. 现有3,0,9,1四个数字,能组成的一个最小的四位数的奇数是________.10. 甲数比乙数多20%,则乙数比甲数少________.11. 把圆柱的侧面展开得到一个长18厘米、宽12厘米的长方形,这个圆柱的体积是________立方厘米(本题中的π取近似值3).12. 有55个棱长为1分米的正方体木块,在地面按如图所示的形式摆放,要在表面涂刷油漆,如果与地面接触的面不涂油漆,干后将小木块分开,则涂油漆的表面积与未涂油漆的表面积的比是________.13、将正偶数按上表排成5列,根据这样的排列规律,2014应排在第________行、第________列. 三、选择题(每题2分,共16分)14. 用一块橡皮泥捏成不同的圆柱体,各圆柱体的底面积和高( )A. 成正比例B. 成反比例C. 不成比例15. 把3.9981保留两位小数是( )A. 3.99B. 4.0C. 4.0016. 用一张边长是4分米的正方形纸板剪一个面积尽可能大的圆,这个圆的面积是( )A. 50.24平方分米B. 12.56平方分米C. 25.12平方分米17. 下面的说法中,错误的是( )A. 能被9整除的数,也能被3整除B. 真分数的倒数大于它本身C. 周长相等的长方形和正方形,面积也相等18. 右图是在两个完全一样的长方形中画了甲、乙两个三角形(阴影),则( )A. 甲的面积大B. 乙的面积大C. 甲、乙的面积相等19. 小华双休日想帮妈妈做下面的事情,用洗衣机洗衣服要用20分钟,扫地要用6分钟,擦家具要用10分钟,洗完衣服晾衣服要用5分钟,她经过合理安排,做完这些事至少要花( ). A. 25分钟B. 26分钟C. 41分钟20. 把5件相同的礼物分给3个小朋友,使每个小朋友都分到礼物,分礼物的不同方法一共有( )种.A. 4B. 5C. 621. 已知a 、b 、c 、都是整数,则三个数2a b + ,2b c +,2c a+中,整数的个数为( ). A. 至少有一个B. 仅有一个C. 至少有两个四、解答题(每题3分,共12分)22. 用递等式计算(能简算的要简算)(1)2.5×25 -0.12÷13 (2)(45912+-718)×36(3)49×23÷[(1-49)÷38] (4)[718+(0.65+720)÷17]×4.8五、操作题(每题4分,共8分)23. 用“+”“-”“×”“÷”四种运算符号中的几种把下面算式连接起来.(可以加小括号)(1)1□2□3□4□5=10 (2)1□2□3□4□5=1024. 有一个边长为3厘米的等边三角形,现将它按下图所示滚动,请问:B点从开始到结束,经过的路线的总长度为多少厘米?六、应用题(每题8分,共32分)25. 一辆汽车运送一批物资到山区,前3小时共行驶105千米,后5小时平均每小时行驶42千米,这辆汽车平均每小时行驶多少千米?26. 一篇稿件,甲打字员单独打6小时完成,乙打字员单独打4小时完成,如果两人合打,几小时可以打完这篇稿件?27. 一间教室长8米、宽6米、高4米,现在要粉刷教室的四周和屋顶,扣除门窗面积22平方米,如果每平方米需用涂料240克,共需涂料多少千克?28. 某种商品原来定价为每件20元,甲、乙、丙、丁四个商店以不同的销售方式促销:甲店:买一送一;乙店:降低20%出售;丙店:七折出售;丁店:买够百元打四折(1)如果只买1个,到哪家店买比较便宜,单价是多少元?(2)如果买的个数超过1个,最好到哪个商店?单价是多少元?此时,至少要买几个?七、附加题(10分)如果你完成上述题目觉得正确无误后,可考虑解决以下问题,注意:本题不计入总分. 两个正方形如图放置,其中D、C、G在同一条直线上,小正方形ECGF的边长为6,连接,,AE EG AG,求图中阴影部分的面积.一、判断题1. ×解析例如1×1=1÷1,1122 11 ??2. √解析设乙数为1,则甲数是0.75,故甲:乙=3:43. ×解析V=S底•h,S底扩大2倍,高不变,故V扩大2倍.4. ×5. ×解析锯成4段只需要锯3次.二、填空题6. 9099000 910万解析考查数的读写法.7. 14.4 300 解析根据图距实距=比例尺来计算,注意单位要统一.8. 50 解析设五(一)班有x人,则(2):96:100x x-=,解得50x=.9. 1039 解析千位数和个位数不能为0,千位、百位、十位尽可能小.10. 16解析设乙数为1,则甲数为1.2,故乙数比甲数小1.2111.26-=.11. 216或324 解析圆柱体的底面周长为12或18厘米,故半径为2或3厘米,根据体积等于底面积×高可得这个圆柱的体积为216或324立方厘米.12. 17:49 解析55个正方体的表面积是55×6×1=330(平方分米).其中涂油漆的表面积是5+11+17+23+29=85(平方分米).则未涂油漆的表面积是330-85=245(平方分米),所以其比是85:245=17:49.13. 252 2 解析2014÷2=1007,2014是第1007个数;1007÷4=251…3,2014在第252行、第2列.三、选择题14. B 解析体积不变,底面积和高成反比例15. C 解析 小数点后第三位四舍五入16. B 解析 圆的直径等于正方形的边长时,圆的面积最大 17. C 解析 周长相等的长方形和正方形,正方形的面积大 18. C 解析 两个三角形的面积都等于长方形面积的一半19. A 解析 洗衣服20分钟+晾衣服5分钟=25分钟,扫地和擦家具在用洗衣机洗衣服时做.20. C 解析 有(1,1,3),(1,3,1),(1,2,2),(2,1,2),(2,2,1),(3,1,1)6种方法21. A 解析 分,,a b c 都是偶数、都是奇数、一奇两偶和一偶两奇四种情况未考虑 四、解答题五、操作题23. 分析:可以进行测验得到,答案不唯一解(1)(1+2+3-4)×5; (2)(1×2×3-4)×5.24. 分析:B 点在滚动时所经过的路线是圆心角为120°、半径长为3厘米的两段弧,根据弧长公式180n rl p =计算可求. 解 B 点经过的路线总长度是120341820p p ´?(厘米).六、应用题25. 分析 平均速度=总路程÷总时间解 这辆汽车的平均速度是105533932584=+´+(千米/时).答 这辆汽车平均每小时行驶3398千米.26. 分析:甲的工作效率是16,乙的工作效率是14,两人合作的工作效率是11()64+,把总工作量看作1解11() 2.4641?=小时答2人合作2.4小时可以完成.27. 分析:先求长方体的表面积(除去地面)解粉刷总面积是:2×4×8+2×4×6+8×6-22=138(平方米).共需涂料为138×240=33120(克)=33.12(千克).答共需涂料33.12千克28. 分析(1)考察各店买1个的情况来说明;(2)对超过1个的情况来讨论.解(1)如果只买1个到两店比较便宜,单价是14元.(2)如果买2个,最好是到甲店,单价是10元;如果买5个或5个以上最好是到丁店,单价是8元.七、附加题分析:利用面积和差的关系列式计算,设大正方形的边长为x.解S三角形AEG=S梯形ADCE+S三角形ECG-S三角形ADG=11(6)18(6)18 22x x x x++-+=初一新生(分班)摸底考试试卷数 学班级____________ 姓名____________ 得分:____________一、填空题(每题2分,共24分)1. 地球与太阳之间的距离约是149450000千米,这个数读作:( );用四舍五入法省略“亿”后面的尾数,约是( ).2. 一批货物安2:3:5分配给甲、乙、丙三个商店,( )商店分得这批货物的12,乙商店分得这批货物的( )%.3. 某公司推出了一种商务车,经试验该车行驶314 千米用汽油18升,这辆汽车平均每行驶100千米耗油( )升.4. 2.15时=( )时( )分;2吨80千克=( )吨.5. 某单位开会时出勤35人,出勤率是87.5%,后来又有1人请假离去,这时出勤率为( ).6. 一个长方体,长和宽的比是2:1,宽和高的比是3:2,长和高的比是( ).7. 在87a b?L L 中,把a 、b 同时扩大3倍,商是( ),余数是( ). 8. 一本故事书有300页,小明第一天看了这本书的20%,第二天看了余下的20%,那么小明第三天要从第( )页开始看. 9.A =2×5×C ,B =5×3×C ,若A 和B 的最小公倍数是210,则C =( ).10. 把5米长的木头平均截成6段,每段占全长的( );如果每截一段要5分钟,那么截完这根木头要( )分钟. 11. 线段比例尺千米,改写成数字比例尺是( );在这幅图上量得北京到上海距离是4.2厘米,北京到上海的实际距离是( )千米。

初一新生摸底考试数学试题及答案

初一新生摸底考试数学试题及答案

初一新生入学考试试题(全卷共4页,五个大题,满分100分,100分钟完卷)一、填空题 (每题2分,共40分)1. 比56多17,56比 多17. 2. 计算:11833÷⨯= ; 21-51= 。

3. 8、16和20的最大公约数是 , 最小公倍数是 .4. 把84分解质因数是 ; 既不是质数,又不是合数。

5. 两位数“2□”是2和3的公倍数,□里的数是 。

这个两位数与16的最大公因数是 。

6. 在一个比例中,两个内项互为倒数,其中一个外项是2.5,另一个外项是 。

7. 50a b -=,如果把b 增加10,a 不变,差是 ,如果把a 增加10,b 不变,差是 。

8. 把一根木料锯成4段要用12分钟,照这样,如果要锯成6段,一共需要分钟。

9. 如图,大长方形中的阴影部分是一个正方形,大长方形的周长是 厘米。

10. “六一”期间,中央商场搞“家电下乡”活动,农民购买家电时可享受政府补贴13%的优惠政策。

张大伯家买了一台电冰箱,只需付1392元,这台冰箱的原价是 元。

11. 如图所示,阴影部分的面积是甲圆面积的19,是乙圆面积的14,乙圆的面积是甲圆的 。

12. 如图所示,半径20厘米的圆的外面和里面各有一个正方形。

则外面正方形的面积是 平方厘米;里面正方形的面积是 平方厘米。

9题图 11题图12题图13. 在分数319的分子、分母上同时加上一个相同的自然数,得到的另一个分数与13相等,这个自然数是 。

14. 一个棱长为20厘米的正方体,削成一个最大的圆锥,这个圆锥的体积约为 。

15. 一个三位数,个位数字a ,十位数字b ,百位数字c ,这个三位数记作 。

16. 一根绳子的长度等于它的53加上53米,这根绳子长 米。

17. 下图是由两个正方形拼起来的,边长分别是7厘米和11厘米。

则阴影部分(三角形ABC )的面积是 平方厘米。

18. 一个九位数,最高位上既不是质数也不是合数,千万位上是最大的一位数,十万位上是最小的质数,千位上是最小的合数,其他数位上都是零,这个数是 ,这个数 (填“是”或“不是”)3的倍数。

XXX初一新生分班(摸底)数学模拟考试(含答案)

XXX初一新生分班(摸底)数学模拟考试(含答案)

XXX初一新生分班(摸底)数学模拟考试(含答案)Shanghai Xiyan'an Middle School First-year Student Placement (Diagnostic) Mathematics Mock Exam (with Answers)Fill-in-the-blank ns (24 points in total)1.A nine-digit number。

with the XXX。

XXX。

and the digit in the XXX。

with all other digits being the smallest natural numbers。

This number is written as ( ).2.A number that is 80% greater than 8 kilograms is ( ).3.XXX。

180 students passed and 20 students failed。

The pass rate for this math exam is ( ).4.If M = 2 × 3 × 5 × 7 and N = 2 × 5 × 7.the greatest common divisor of M and N is ( )。

and the least common multiple of M and N is ( ).5.If the first term of the。

4:7 is multiplied by 3 to keep the。

unchanged。

the second term should be increased by ( ).6.A cylinder and a cone with the same base and height have a combined volume of 48 cubic centimeters。

2020初中(初一)新生入学分班摸底数学考试测试卷及答案 共六套

2020初中(初一)新生入学分班摸底数学考试测试卷及答案 共六套
2020 初中(初一)新生入学分班摸底数学考试测试卷及答案(一) 2020 初中(初一)新生入学分班摸底数学考试测试卷及答案(二)
一、填一填(每小题 2 分,共 20 分) 填上合适的单位名称: 1.)。 青青体重 40( ) 一间教室面积是 54( ) 千克。 4.2 吨=( )公顷 0.78 平方千米=( 2.)厘 3.一个圆锥的底 面半径是 3 厘米,体积为 18.84 立方厘米,这个圆锥的高是(米。 )%,也就是今 年的 今年的小麦产量比去年的增产二成三,表示今年比去年增产( 4.)%。 产 量相当于去年的( )千克。 )千克,要榨 300 千克豆油需大豆( 一种 大豆的出油率是 10%,300 千克大豆可出油( 5. )人。 一辆公共汽车共载 客 42 人,其中一部分人在中途下车,每张票价 6 元,另一部分人到终点下车, 每张票价 9 元,售票员共收票款 318 元,中途下车的有( 6. )。 ),最大 可能是( 7.一个三位小数“四舍五入”保留两位小数是 6.80,这个小数最 小可能是( )。 50 以内 6 的倍数有( 8. )分钟。 一段木头砍成 4 段要 6 分钟,砍成 8 段要( 9.)。 10.下面的图形中圆的半径为 2 ㎝,阴影 部分的面积为(
几位小数,就从积的右边起数出几位,点上小数点;
除数是整数的小数除法:从被除数的高位除起,除数有几位,就看被除数的前几
位,如果不够除,就多看一位;除到被除数的哪一位,就把商写 在哪一位的上
面,如果不够除,就在这一位上商 0;每次除得的余数必须比除数小,并在余数
右边一位落下被除数在这一位上的数,再继续除;商的小数点和被除数的小数点
故答案为:5; 。 【分析】求一个分数的倒数,就是把这个分数的分子和分母交换位置;一个整数 的倒数就是这个整数分之一。 二、判断题。 8.【答案】 错误 【考点】真分数、假分数的含义与特征 【解析】【解答】假分数的倒数都小于或等于 1,原题说法错误。 故答案为:错误。 【分析】分子比分母大或分子和分母相等的分数叫做假分数。假分数大于 1 或等 于 1,假分数的倒数都小于或等于 1。 9.【答案】 错误

上海傅雷中学数学新初一分班试卷含答案

上海傅雷中学数学新初一分班试卷含答案

上海傅雷中学数学新初一分班试卷含答案一、选择题1.圆的半径与它的()不成比例。

A.直径B.周长C.面积2.用相同的方式包装两个大小不同的正方体礼盒(打结处不计),大礼盒的棱长是小礼盒棱长的2倍,包装大礼盒与小礼盒用去彩带的长度比、用去包装纸的面积比分别是()。

A.2∶1;8∶1 B.4∶1;6∶1 C.2∶1;4∶13.某人从甲地到乙地需要走13小时,他走了15小时,还有960米没有走,他已经走了多少米?正确的算式是().A.11960()35÷-B.11960(1)35÷-⨯C.11960()35⨯-D.111960()355÷-⨯4.用一根小棒粘住长方形一条边,旋转一周,这个长方形转动后产生的图形是()。

A.三角形B.圆形C.圆柱5.如图,从甲地到乙地有a,b两条路可走,这两条路的长度相比,结果是()。

A.路线a长B.路线b长C.同样长6.立体图形,从()看到的形状是。

A.正面B.左面C.上面D.右面7.下面说法错误的是()。

A.经过一点可以画无数个圆B.周长相等的两个圆,面积也一定相等C.圆的周长与它直径的比值是πD.直径就是两端都在圆上的线段8.圆柱的底面半径是a厘米,高是3厘米,把它平均分成三个小圆柱,三个小圆柱的表面积之和增加()平方厘米。

A.3a B.3.14a C.12.56a2D.18.84a29.一件商品原价180元,先降价110,再提价110,现价比原价()A.没变B.提高了C.降低了D.无法确定10.将一些小圆球如图摆放,第六幅图有()个小圆球.A.30 B.36 C.42二、填空题11.4时25分=(________)时;3.02平方千米=(________)公顷;3 5分米∶9厘米的比值是(________);1200∶2化成最简比是(________)。

十12.18()=四成=()∶()=()%=()折。

十13.若a÷b=7(a、b为自然数),那么a和b最大公因数是(______),最小公倍数是(______)。

上海傅雷中学七年级上册期末数学模拟试卷及答案

上海傅雷中学七年级上册期末数学模拟试卷及答案

上海傅雷中学七年级上册期末数学模拟试卷及答案一、选择题1.若34(0)x y y =≠,则( )A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 2.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是( )A .B .C .D .3.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了 12 个棋子,按这样的规律摆下去,摆成 第 20 个“H”字需要棋子( )A .97B .102C .107D .112 4.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM 的长( )A .7cmB .3cmC .3cm 或 7cmD .7cm 或 9cm 5.若21(2)0x y -++=,则2015()x y +等于( ) A .-1B .1C .20143D .20143- 6.如图,∠ABC=∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF ,以下结论:①AD ∥BC ;②∠ACB=2∠ADB ;③∠ADC+∠ABD=90°;④∠BDC=∠BAC ;其中正确的结论有( )A .1个B .2个C .3个D .4个7.﹣3的相反数是( )A .13-B .13C .3-D .38.若代数式3x ﹣9的值与﹣3互为相反数,则x 的值为( )A .2B .4C .﹣2D .﹣49.某服装店销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可款利60元.设这款服装的进价为x 元,根据题意可列方程为( )A .300-0.2x =60B .300-0.8x =60C .300×0.2-x =60D .300×0.8-x =60 10.下列计算正确的是( )A .-1+2=1B .-1-1=0C .(-1)2=-1D .-12=1二、填空题11.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________.12.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.13.如图,将一张长方形纸片分別沿着EP ,FP 对折,使点B 落在点B ,点C 落在点C ′.若点P ,B ′,C ′不在一条直线上,且两条折痕的夹角∠EPF =85°,则∠B ′PC ′=_____.14.禽流感病毒的直径约为0.00000205cm ,用科学记数法表示为_____cm ;15.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y -++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可).16.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________.17.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________.18.如果m ﹣n =5,那么﹣3m +3n ﹣5的值是_____.19.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.20.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示).三、解答题21.足球比赛的规则为:胜场得3分,平场得1分,负一场得0分,一支球队在某个赛季共需比赛14场,现已经赛了8场,输了一场,得17分,请问:(1)前8场比赛中胜了几场?(2)这支球队打满14场后最高得多少分?(3)若打14场得分不低于29分,则在后6场比赛中这个球队至少胜几场?22.古代名著《算学启蒙》中有一题:良马日行二百四十里,驽马日行一百五十里,驽马先行十二日,问良马几日追及之.若设良马x 天可追上弩马.(1)当良马追上驽马时,驽马行了 里(用x 的代数式表示). (2)求x 的值. (3)若两匹马先在A 站,再从A 站出发行往B 站,并停留在B 站,且A 、B 两站之间的路程为7500里,请问驽马出发几天后与良马相距450里?23.化简代数式,22221372422a ab b a ab b ⎛⎫⎛⎫----- ⎪ ⎪⎝⎭⎝⎭,并求当24,=3a b =-时该代数式的值.24.先化简, 再求值.已知222213,222A x xy yB x y =-+=- ()1求2A B -()2当3,1x y 时,求2A B -的值25.先化简,再求值:22111(83)3()223x xy x xy y ---+,其中2x =-,1y =. 26.解方程:131142x x x +-+=- 27.计算:(1)(﹣0.5)+(﹣32)﹣(+1) (2)2+(﹣3)2×(﹣112) (3)3825-+|﹣2|﹣(﹣1)201828.(1)如图1,∠AOB 和∠COD 都是直角,①若∠BOC=60°,则∠BOD= °,∠AOC= °;②改变∠BOC 的大小,则∠BOD 与∠AOC 相等吗?为什么?(2)如图2,∠AOB=100°,∠COD=110°,若∠AOD=∠BOC+70°,求∠AOC 的度数.29.化简求值:()()2222533x y xy xy x y --+,其中1x =,12y . 30.如图,已知数轴上点A 表示的数为﹣1,点B 表示的数为3,点P 为数轴上一动点. (1)点A 到原点O 的距离为 个单位长度;点B 到原点O 的距离为 个单位长度;线段AB 的长度为 个单位长度;(2)若点P 到点A 、点B 的距离相等,则点P 表示的数为 ;(3)数轴上是否存在点P ,使得PA +PB 的和为6个单位长度?若存在,请求出PA 的长;若不存在,请说明理由?(4)点P 从点A 出发,以每分钟1个单位长度的速度向左运动,同时点Q 从点B 出发,以每分钟2个单位长度的速度向左运动,请直接回答:几分钟后点P 与点Q 重合?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据选项进行一一排除即可得出正确答案.【详解】解:A 中、34y 0x +=,可得34y x =-,故A 错;B 中、8-6y=0x ,可得出43x y =,故B 错;C 中、3+4x y y x =+,可得出23x y =,故C 错;D 中、43x y =,交叉相乘得到34x y =,故D 对. 故答案为:D.【点睛】本题考查等式的性质及比例的性质,熟练掌握性质定理是解题的关键.2.A解析:A【解析】因为科学记数法的表达形式为:,所以9.2亿用科学记数法表示为:,故选A. 点睛:本题主要考查科学记数法的表达形式,解决本题的关键是要熟练掌握科学记数法的表达形式.3.B解析:B【解析】【分析】观察图形,正确数出个数,再进一步得出规律即可.【详解】摆成第一个“H”字需要2×3+1=7个棋子,第二个“H”字需要棋子2×5+2=12个;第三个“H”字需要2×7+3=17个棋子;第n个图中,有2×(2n+1)+n=5n+2(个).∴摆成第 20 个“H”字需要棋子的个数=5×20+2=102个.故B.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为各个图形中两竖行棋子的个数均为2n+1,横行棋子的个数为n.4.C解析:C【解析】【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在点A与B之间或点C在点B 的右侧两种情况进行分类讨论.【详解】①如图1所示,当点C在点A与B之间时,∵线段AB=10cm,BC=4cm,∴AC=10-4=6cm.∵M是线段AC的中点,∴AM=12AC=3cm,②如图2,当点C在点B的右侧时,∵BC=4cm,∴AC=14cmM是线段AC的中点,∴AM=12AC=7cm.综上所述,线段AM的长为3cm或7cm.故选C.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.5.A解析:A【解析】(y+2)2=0,列出方程x-1=0,y+2=0,求出x=1、y=-2,代入所求代数式(x+y)2015=(1﹣2)2015=﹣1.故选A6.C解析:C【解析】①∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC,∵∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,故①正确.②由(1)可知AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABC=2∠ADB,∵∠ABC=∠ACB,∴∠ACB=2∠ADB,故②正确.③在△ADC中,∠ADC+∠CAD+∠ACD=180°,∵CD平分△ABC的外角∠ACF,∴∠ACD=∠DCF,∵AD∥BC,∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°∴∠ADC=90°−∠ABD,故③正确;④∵∠BAC+∠ABC=∠ACF,∴12∠BAC+12∠ABC=12∠ACF,∵∠BDC+∠DBC=12∠ACF,∴12∠BAC+12∠ABC=∠BDC+∠DBC,∵∠DBC=12∠ABC,∴12∠BAC=∠BDC,即∠BDC=12∠BAC.故④错误.故选C.点睛:本题主要考查了三角形的内角和,平行线的判定和性质,三角形外角的性质等知识,解题的关键是正确找各角的关系.7.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.8.B解析:B【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到x的值.【详解】解:根据题意得:3x﹣9﹣3=0,解得:x=4,故选:B.【点睛】此题考查了相反数的性质及解一元一次方程,熟练掌握运算法则是解本题的关键.9.D解析:D【解析】【分析】要列方程,首先根据题意找出题中存在的等量关系:售价-进价=利润60元,此时再根据等量关系列方程【详解】解:设进价为x元,由已知得服装的实际售价是300×0.8元,然后根据利润=售价-进价,可列方程:300×0.8-x=60故选:D【点睛】本题考查了由实际问题抽象出一元一次方程,列方程的关键是正确找出题目的相等关系,此题应弄清楚两点:(1)利润、售价、进价三者之间的关系;(2)打八折的含义.10.A解析:A【解析】解:A,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A;B,同号相加,取相同的符号,并把绝对值相加,-1-1=-2;C,底数为-1,一个负数的偶次方应为正数(-1)2=1;D,底数为1,1的平方的相反数应为-1;即-12=-1,故选A.二、填空题11.两点确定一条直线.【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.故答案为两点确定一条直线.解析:两点确定一条直线.【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.故答案为两点确定一条直线.12.﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣,m=2或﹣2,当m=2时,原式=2(a+b)解析:﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣13,m=2或﹣2,当m=2时,原式=2(a+b)﹣3c+2m=1+4=5;当m=﹣2时,原式=2(a+b)﹣3c+2m=1﹣4=﹣3,综上,代数式的值为﹣3或5,故答案为:﹣3或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.13.10°.【解析】【分析】由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′P解析:10°.【解析】【分析】由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′PC′=180°计算即可.【详解】解:由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,∴2∠B′PE+2∠C′PF﹣∠B′PC′=180°,即2(∠B′PE+∠C′PF)﹣∠B′PC′=180°,又∵∠EPF=∠B′PE+∠C′PF﹣∠B′PC′=85°,∴∠B′PE+∠C′PF=∠B′PC′+85°,∴2(∠B′PC′+85°)﹣∠B′PC′=180°,解得∠B′PC′=10°.故答案为:10°.【点睛】此题考查了角的计算,以及折叠的性质,熟练掌握折叠的性质是解本题的关键.14.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:62.0510-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000205=62.0510-⨯故答案为62.0510-⨯【点睛】此题考查科学记数法,难度不大15.36684或36468或68364或68436或43668或46836等(写出一个即可)【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】=x(解析:36684或36468或68364或68436或43668或46836等(写出一个即可)【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】324x xy -=x(x+2y)(x-2y).当x=36,y=16时,x+2y=36+32=68x-2y=36-32=4.则密码是36684或36468或68364或68436或43668或46836故答案为36684或36468或68364或68436或43668或46836【点睛】此题考查因式分解的应用,解题关键在于把字母的值代入16.6×【解析】试题解析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 0解析:6×910【解析】试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 000=4.6×109.故答案为4.6×109.17.42或11【解析】【分析】由程序图可知,输出结果和x的关系:输出结果=4x-2,当输出结果是166时,可以求出x的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求解析:42或11【解析】【分析】由程序图可知,输出结果和x的关系:输出结果=4x-2,当输出结果是166时,可以求出x的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求出x的之即可.【详解】解:当4x-2=166时,解得x=42当4x-2小于149时,将4x-2作为一个整体重新输入即4(4x-2)-2=166,解得x=11故答案为42或11【点睛】本题考查了程序运算题,解决本题的关键是正确理解题意,熟练掌握一元一次方程的解法,考虑问题需全面,即当输出结果小于149时,将4x-2作为一个整体重新输入程序.18.-20.【解析】【分析】把所求代数式化成的形式,再整体代入的值进行计算便可.【详解】解:,,故答案为:.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式解析:-20.【解析】【分析】把所求代数式化成3()5m n ---的形式,再整体代入m n -的值进行计算便可.【详解】解:5m n -=,335m n ∴-+-3()5m n =---355=-⨯-155=--20=-,故答案为:20-.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式化成()m n -的代数式形式.19.6cm【解析】【分析】根据已知条件得到AM=4cm .BM=12cm ,根据线段中点的定义得到AP=AM=2cm ,AQ=AB=8cm ,从而得到答案.【详解】解:∵AB=16cm,AM :BM=1解析:6cm【解析】【分析】根据已知条件得到AM=4cm .BM=12cm ,根据线段中点的定义得到AP=12AM=2cm ,AQ=12AB=8cm ,从而得到答案. 【详解】解:∵AB=16cm ,AM :BM=1:3,∴AM=4cm .BM=12cm ,∵P ,Q 分别为AM ,AB 的中点,∴AP=12AM=2cm ,AQ=12AB=8cm , ∴PQ=AQ-AP=6cm ;故答案为:6cm .【点睛】本题考查了线段的长度计算问题,把握中点的定义,灵活运用线段的和、差、倍、分进行计算是解决本题的关键.20.(5a+10b ).【解析】【分析】由题意得等量关系:小何总花费本笔记本的花费支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:,故答案为:.【点睛】此题主要考查了列代数解析:(5a +10b ).【解析】【分析】由题意得等量关系:小何总花费5=本笔记本的花费10+支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:510a b +,故答案为:(510)a b +.【点睛】此题主要考查了列代数式,关键是正确理解题意,找出题目中的数量关系.三、解答题21.(1)前8场比赛中胜了5场;(2)这支球队打满14场后最高得35分;(3)在后6场比赛中这个球队至少胜3场.【解析】【分析】(1)设这个球队胜x 场,则平(8﹣1﹣x )场,根据题意可得等量关系:胜场得分+平场得分=17分,根据等量关系列出方程,再解即可;(2)由题意得:前8场得17分,后6场全部胜,求和即可;(3)根据题意可列出不等式进行分组讨论可解答.由已知比赛8场得分17分,可知后6场比赛得分不低于12分就可以,所以胜场≥4一定可以达标,而如果胜场是3场,平场是3场,得分3×3+3×1=12刚好也行,因此在以后的比赛中至少要胜3场.【详解】(1)设这个球队胜x 场,则平(8﹣1﹣x )场,依题意可得3x+(8﹣1﹣x )=17,解得x=5.答:这支球队共胜了5场;(2)打满14场最高得分17+(14﹣8)×3=35(分).答:最高能得35分;(3)由题意可知,在以后的6场比赛中,只要得分不低于12分即可,所以胜场不少于4场,一定可达到预定目标.而胜3场,平3场,正好也达到预定目标.因此在以后的比赛中至少要胜3场.答:至少胜3场.【点睛】本题考查了一元一次方程的应用、逻辑分析.根据题意准确的列出方程和不等关系,通过分析即可求解,要把所有的情况都考虑进去是解题的关键.22.(1)(150x+1800);(2)20;(3)驽马出发3或27或37或47天后与良马相距450里.【解析】【分析】(1)利用路程=速度×时间可用含x的代数式表示出结论;(2)利用两马行的路程相等,即可得出关于x的一元一次方程,解之即可得出结论;(3)设驽马出发y天后与良马相距450里,分良马未出发时、良马未追上驽马时、良马追上驽马时及良马到达B站时四种情况考虑,根据两马相距450里,即可得出关于y的一元一次方程,解之即可得出结论.【详解】解:(1)∵150×12=1800(里),∴当良马追上驽马时,驽马行了(150x+1800)里.故答案为:(150x+1800).(2)依题意,得:240x=150x+1800,解得:x=20.答:x的值为20.(3)设驽马出发y天后与良马相距450里.①当良马未出发时,150y=450,解得:y=3;②当良马未追上驽马时,150y﹣240(y﹣12)=450,解得:y=27;③当良马追上驽马时,240(y﹣12)﹣150y=450,解得:y=37;④当良马到达B站时,7500﹣150y=450,解得:y=47.答:驽马出发3或27或37或47天后与良马相距450里.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,利用含x 的代数式表示出驽马行的路程;(2)(3)找准等量关系,正确列出一元一次方程.23.221122a ab b -+-,值为:799- 【解析】【分析】 根据题意先进行化简,然后把24,=3a b =-分别代入化简后的式子,得出最终结果即可. 【详解】 解:22221372422a ab b a ab b ⎛⎫⎛⎫----- ⎪ ⎪⎝⎭⎝⎭ =222273222a ab b a ab b ---++ =22122a ab b -+-, 然后把24,=3a b =-代入上式得: 221122a ab b -+- 1124=16+42239⎛⎫-⨯⨯⨯-- ⎪⎝⎭ =44839--- =799-. 故答案为:221122a ab b -+-,值为:799-. 【点睛】本题考查化简求值,解题关键在于对整式加减的理解.24.(1)2264x xy y --+;(2)13.【解析】【分析】(1)将A,B 代入2A B -后化简即可;(2)将x,y 的值代入2A B -化简后的式子求值即可.【详解】解:(1)222222221223)(22)62222A B x xy y x y x xy y x y -=-+--=-+-+( 2264x xy y =--+;(2)当3,1x y 时,222-3-63(1)4(1)13A B -=⨯⨯-+⨯-=.【点睛】 本题主要考查整式的化简求值,解题的关键是利用法则化简整式.25.2x y -,3.【解析】【分析】先去括号,再根据合并同类项法则合并出最简结果,把x 、y 的值代入求值即可.【详解】 原式222334322x xy x xy y x y =--+-=- 将2x =-,1y =代入得:原式2(2)13=--=【点睛】本题考查整式的加减——化简求值,熟练掌握合并同类项法则是解题关键.26.x=-3【解析】【分析】方程去分母,去括号,移项合并,将x 系数化为1,即可求出解.【详解】去分母得,4+(1+3x )=4x-2(x-1),去括号得,4+1+3x=4x-2x+2,移项得,3x+2x-4x=2-4-1,合并同类项得,x=-3.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.27.(1)﹣3;(2)54;(3)﹣6. 【解析】【分析】(1)直接利用有理数的加减运算法则计算得出答案;(2)直接利用有理数混合运算法则计算得出答案;(3)直接利用立方根以及绝对值的性质化简各数进而得出答案.【详解】解:(1)原式=﹣0.5﹣1.5﹣1=﹣3;(2)原式=2+9×(﹣112) =2﹣34=54; (3)原式=﹣2﹣5+2﹣1=﹣6.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.28.(1)①30;30;②相等,理由详见解析;(2)∠AOC=30°.【解析】【分析】(1)①根据直角定义可得∠COD=∠AOB=90°,再利用角的和差关系可得答案;②根据条件可得∠AOB=∠COD ,再用等式的性质可得∠AOB-∠COB=∠COD-∠BOC ,进而可得结论;(2)设∠AOC=x °,则∠BOC=(100-x )°,然后再表示出∠BOD ,进而可得∠AOD=∠AOB+∠BOD=100°+10°+x°=100°-x°+70°,再解方程即可.【详解】解:(1)①∵∠COD 是直角,∴∠COD=90°,∵∠BOC=60°,∴∠BOD=30°,∵∠AOB 是直角,∴∠AOB=90°,∵∠BOC=60°,∴∠AOC=30°,故答案为30;30;②相等,∵∠AOB 和∠COD 都是直角,∴∠AOB=∠COD ,∴∠AOB ﹣∠COB=∠COD ﹣∠BOC ,即∠BOD=∠AOC ;(2)设∠AOC=x°,则∠BOC=(100﹣x )°,∵∠COD=110°,∴∠BOD=110°﹣(100﹣x )°=x°+10°,∵∠AOD=∠BOC+70°,∴∠AOD=∠AOB+∠BOD=100°+10°+x°=100°﹣x°+70°,解得:x=30,∴∠AOC=30°.【点睛】此题主要考查了角的计算,关键是理清图中角之间的和差关系.29.22126x y xy -,152-.【解析】【分析】根据整式的运算法则,将代数式进行化简,然后将字母的值代入求取结果即可.【详解】原式=222215-53x y xy xy x y --=22126x y xy -.当x =1,y =-12时, 原式=2211121--61-22⨯⨯⨯⨯()() =15-2. 【点睛】本题考查了整式的化简求值,解决本题的关键是正确理解题意,熟练掌握整式运算的法则,注意在合并同类项时找准同类项.30.(1)1,3,4;(2)1;(3)存在,PA=1;(4)经过4分钟后点P 与点Q 重合.【解析】【分析】(1)根据数轴上两点间的距离公式进行计算即可;(2)设点P 表示的数为x ,根据题意列出方程可求解;(3)设点P 表示的数为y ,分1y <-,13y -≤≤和3y >三种情况讨论,即可求解; (4)设经过t 分钟后点P 与点Q 重合,由点Q 的路程﹣点P 的路程=4,列出方程可求解.【详解】解:(1)∵点A 表示的数为﹣1,点B 表示的数为3,∴()OA=011--=,OB=303-=,()AB=314--=故答案为:1,3,4;(2)设点P 表示的数为x ,∵点P 到点A 、点B 的距离相等,∴3(1)-=--x x∴x =1,∴点P 表示的数为1,故答案为1;(3)存在,设点P 表示的数为y ,当1y <-时,∵PA +PB =136--+-=y y ,∴y =﹣2,∴PA =1(2)1---=,当13y -≤≤时,∵PA +PB =(1)36--+-=y y ,∴无解,当y >3时,∵PA +PB =(1)36--+-=y y ,∴y =4,∴PA =5;综上所述:PA =1或5.(4)设经过t 分钟后点P 与点Q 重合,2t ﹣t =4,∴t =4答:经过4分钟后点P 与点Q 重合.【点睛】本题考查数轴上两点间的距离,以及数轴上的动点问题,熟练掌握数轴上两点间的距离公式,并运用方程思想是解题的关键.。

七年级上册上海傅雷中学数学期末试卷试卷(word版含答案)

七年级上册上海傅雷中学数学期末试卷试卷(word版含答案)

七年级上册上海傅雷中学数学期末试卷试卷(word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,已知:点不在同一条直线, .(1)求证: .(2)如图②,分别为的平分线所在直线,试探究与的数量关系;(3)如图③,在(2)的前提下,且有,直线交于点,,请直接写出 ________.【答案】(1)证明:过点C作,则,∵∴∴(2)解:过点Q作,则,∵,∴∵分别为的平分线所在直线∴∴∵∴(3):1:2:2【解析】【解答】解:(3)∵∴∴∵∴∵∴∴∴∴ .故答案为: .【分析】(1)过点C作,则,再利用平行线的性质求解即可;(2)过点Q作,则,再利用平行线的性质以及角平分线的性质得出,再结合(1)的结论即可得出答案;(3)由(2)的结论可得出,又因为,因此,联立即可求出两角的度数,再结合(1)的结论可得出的度数,再求答案即可.2.已知点C在线段AB上,AC=2BC,点D、E在直线AB上,点D在点E的左侧(1)若AB=18,DE=8,线段DE在线段AB上移动①如图1,当E为BC中点时,求AD的长;②点F(异于A,B,C点)在线段AB上,AF=3AD,CE+EF=3,求AD的长;(2)若AB=2DE,线段DE在直线AB上移动,且满足关系式,则________.【答案】(1)解:①又 E为BC中点;②设,因点F(异于A、B、C点)在线段AB上,可知:,和当时,此时可画图如图2所示,代入得:解得:,即AD的长为3当时,此时可画图如图3所示,代入得:解得:,即AD的长为5综上,所求的AD的长为3或5;(2) .【解析】【解答】(2)①若DE在如图4的位置设,则又(不符题设,舍去)②如DE在如图5的位置设,则又代入得:解得:则 .【分析】(1)①根据AB的长和可求出AC和BC,根据中点的定义可得CE,再由可得CD,最后根据计算即可得;②设,因点F(异于A、B、C点)在线段AB上,可知,和,所以需分2种情况进行讨论:和,如图2、3(见解析),先根据已知条件判断点E、F位置,再将EF和CE用含x的式子表示出来,最后代入求解即可;(2)设,先判断出DE在AB上的位置,再根据得出x和y 满足的等式,然后将其代入化简即可得.3.如图,在数轴上有三个点A、B、C,完成下列问题:(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.(2)在数轴上找到点E,使点E为BA的中点(E到A、C两点的距离相等),井在数轴上标出点E表示的数,求出CE的长.(3)O为原点,取OC的中点M,分OC分为两段,记为第一次操作:取这两段OM、CM 的中点分别为了N1、N2,将OC分为4段,记为第二次操作,再取这两段的中点将OC分为8段,记为第三次操作,第六次操作后,OC之间共有多少个点?求出这些点所表示的数的和.【答案】(1)解:如图所示,(2)解:如图所示,点E表示的数为:﹣3.5,∵点C表示的数为:4,∴CE=4﹣(﹣3.5)=7.5(3)解:∵第一次操作:有3=(21+1)个点,第二次操作,有5=(22+1)个点,第三次操作,有9=(23+1)个点,∴第六次操作后,OC之间共有(26+1)=65个点;∵65个点除去0有64个数,∴这些点所表示的数的和=4×()=130.【解析】【分析】(1)根据数轴上的点移动时的大小变化规律“左减右加”即可求解;(2)根据题意和数轴上两点间的距离等于两坐标之差的绝对值即可求解;(3)由题意可得点数依次是2的指数次幂+1,再求和即可求解.4.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是点是【A,B】的好点.(1)如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D________【A,B】的好点,但点D________【B,A】的好点.(请在横线上填是或不是)知识运用:(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2.数________所表示的点是【M,N】的好点;(3)如图3,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当经过________秒时,P、A和B中恰有一个点为其余两点的好点?【答案】(1)不是;是(2)0(3)5或10【解析】【解答】解:(1)如图1,∵点D到点A的距离是1,到点B的距离是2,根据好点的定义得:DB=2DA,那么点D不是【A,B】的好点,但点D是【B,A】的好点;⑵如图2,4﹣(﹣2)=6,6÷3×2=4,即距离点M4个单位,距离点N2个单位的点就是所求的好点0;∴数0所表示的点是【M,N】的好点;⑶如图3,由题意得:PB=4t,AB=40+20=60,PA=60﹣4t,点P走完所用的时间为:60÷4=15(秒),当PB=2PA时,即4t=2(60﹣4t),t=10(秒),当PA=2PB时,即2×4t=60﹣4t,t=5(秒),∴当经过5秒或10秒时,P、A和B中恰有一个点为其余两点的好点;故答案:(1)不是,是;(2)0;(3)5或10.【分析】(1)根据定义发现:好点表示的数到【A,B】中,前面的点A是到后面的数B 的距离的2倍,从而得出结论;(2)点M到点N的距离为6,分三等分为份为2,根据定义得:好点所表示的数为0;(3)根据题意得:PB=4t,AB=40+20=60,PA=60﹣4t,由好点的定义可知:分两种情况列式:①PB=2PA;②PA=2PB;可以得出结论.5.已知∠AOB=120°,∠COD=40°,OM平分∠AOC,ON平分∠BOD(图中的角均大于0°且小于180°)(1)如图1,求∠MON的度数;(2)若OD与OB重合,OC从图2中的位置出发绕点O逆时针以每秒10°的速度旋转,同时OD从OB的位置出发绕点O顺时针以每秒5°的速度旋转,旋转时间为t秒①当时,试确定∠BOM与∠AON的数量关系;②当且时,若,则t=________.【答案】(1)解:设又 OM平分,ON平分(2)解:①由题意将t分为以下两段:当时,此时有当时,此时有综上,所求的与的数量关系为:② 或或 .【解析】【解答】(2)②根据图中的角均小于,需作以下几方面的讨论:当OC恰好转到OA的位置时,;当OC与OD恰好转到共线的位置时,,即;当OC与OD转到使OM与ON恰好共线的位置时,,即;当OC与OD恰好重合时,,即,下面据此将t的取值范围逐一分段:1)当时,代入得:解得2)当时,代入得:解得(舍)3)当时,代入得:解得(舍)或4)当时,代入得:解得(舍)5)当时,代入得:解得综上,所求的t的值为:或或 .【分析】(1)设,则可得和,根据角平分线的定义得和,再根据即可得;(2)①当时,由题意可得,可以发现当时,大于,因此需要将t分成和两段,分别计算,以保证其符合题意小于,从而确定在两段内和的数量关系;②根据图中的角均小于,首先要分OC是否转过OA;再分OC与OD是否转到共线的位置;然后分角平分线OM与ON是否共线,即是否大于;最后分OC与OD是否重合;计算各个情形的下和,代入即可计算出t的值.6.点O为直线AB上一点,过点O作射线OC,使∠AOC:∠BOC=2:1,将一直角的顶点放在点O处,∠MON=90°.(1)如图1,当∠MON的一边OM与射线OB重合时,则∠NOC=________;(2)将∠MON绕点O逆时针运动至图2时,若∠MOC=15°,则∠BOM=________;∠AON=________.(3)在上述∠MON从图1运动到图3的位置过程中,当∠MON的边OM所在直线恰好平分∠AOC时,求此时∠NOC是多少度?【答案】(1)150°(2)45°;135°(3)解:由(1)可知:∠AOC=120°,∠BOC=60°,∵OM平分∠AOC,∴∠COM= ∠AOC=60°,∵∠MON=90°,∴∠NOC=∠MON-∠COM=90°-60°=30°.【解析】【解答】(1)∵∠AOC:∠BOC=2:1,∠AOC+∠BOC=180°,∴∠AOC=180°× =120°,∠BOC=180°× =60°,∵∠MON=90°,∴∠NOC=∠BOC+∠MON=90°+60°=150°.故答案为:150°( 2 )由(1)可知:∠BOC=60°,∵∠MOC=15°,∴∠BOM=∠BOC-∠MOC=60°-15°=45°,∵∠MON=90°,∴∠BON=90°-∠BOM=45°,∴∠AON=180°-∠AON=135°,故答案为:45°,135°【分析】(1)由∠AOC:∠BOC=2:1,根据平角的定义可求出∠AOC、∠BOC的度数,根据角的和差关系即可求出∠NOC的度数;(2)根据∠BOC和∠MOC的度数可求出∠BOM 的度数,根据角的和差关系即可求出∠BOM的度数,根据∠MON=90°可求出∠NOB的度数,根据平角的定义即可求出∠AON的度数;(3)利用角平分线的定义可求出∠MOC的度数,进而可求出∠NOC的度数.7.如图,直线m与直线n互相垂直,垂足为O,A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动.(1)若∠BAO和∠ABO的平分线相交于点P,在点A、B的运动过程中,∠APB的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(2)若△ABO的两个外角的平分线AQ、BQ相交于点Q,AP的延长线交QB的延长线于点C,在点A、B的运动过程中,∠Q和∠C的大小是否会发生变化?若不发生变化,请求出∠Q和∠C的度数;若发生变化,请说明理由.【答案】(1)解:不变化.理由:∵AP和BP分别是∠BAO和∠ABO的平分线,∠AOB=90°,∴∠APB=180°(∠OAB+∠ABO)=180° ×90°=135°(2)解:都不变.理由:∵AQ和BQ分别是∠BAO的邻补角和∠ABO的邻补角的平分线,AP和BP分别是∠BAO和∠ABO的平分线,∴∠CAQ=∠QBP=90°,又∠APB=135°,∴∠Q=45°,∴∠C=45°【解析】【分析】根据角平分线定义和三角形内角和定理得到∠APB=180° −(∠OAB+∠ABO);根据邻补角的平分线互相垂直,得到∠CAQ=∠QBP=90°,由∠APB的度数,求出∠Q和∠C的度数.8.已知BM、CN分别是△的两个外角的角平分线,、分别是和的角平分线,如图①;、分别是和的三等分线(即,),如图②;依此画图,、分别是和的n等分线(即,),,且为整数.图①图②(1)若,求的度数;(2)设,请用和n的代数式表示的大小,并写出表示的过程;(3)当时,请直接写出 + 与的数量关系.【答案】(1)解:,∵、分别是和的角平分线,∴∴(2)解:在△中, + ,,(3)解:【解析】【分析】(1)先根据三角形内角和定理求出,根据角平分线求出,再根据三角形内角和定理求出即可;(2)先根据三角形内角和定理求出 + ,根据n等分线求出,再根据三角形内角和定理得出,代入求出即可.(3)本题以三角形为载体,主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质、角平分线的性质、三角形的内角和是的性质,熟记性质然灵活运用有关性质来分析、推理、解答是解题的关键.9.如图,直线l上有A、B两点,AB=24cm,点O是线段AB上的一点,OA=2OB.(1)OA=________cm,OB=________cm.(2)若点C是线段AO上一点,且满足AC=CO+CB,求CO的长.(3)若动点P、Q分别从A、B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s,设运动时间为t(s),当点P与点Q重合时,P、Q两点停止运动.①当t为何值时,2OP﹣OQ=8.②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以同样的速度向点P运动,遇到点P后立即返回,又以同样的速度向点Q 运动,如此往返,直到点P、Q停止时,点M也停止运动.在此过程中,点M行驶的总路程为________ cm.【答案】(1)16;8(2)解:设CO=x,则AC=16﹣x,BC=8+x,∵AC=CO+CB,∴16﹣x=x+8+x,∴x= ,∴CO=(3)48【解析】【解答】解:(1)∵AB=24,OA=2OB,∴20B+OB=24,∴OB=8,0A=16,故答案分别为16,8.(3)①当点P在点O左边时,2(16﹣2t)﹣(8+t)=8,t= ,当点P在点O右边时,2(2t﹣16)﹣(8+t)=8,t=16,∴t= 或16s时,2OP﹣OQ=8.②设点M运动的时间为ts,由题意:t(2﹣1)=16,t=16,∴点M运动的路程为16×3=48cm.故答案为48cm.【分析】(1)由OA=2OB,OA+OB=24即可求出OA、OB.(2)设OC=x,则AC=16﹣x,BC=8+x,根据AC=CO+CB列出方程即可解决.(3)①分两种情形①当点P在点O左边时,2(16﹣2t)﹣(8+t)=8,当点P在点O右边时,2(2t﹣16)﹣(8+x)=8,解方程即可.②点M运动的时间就是点P从点O开始到追到点Q的时间,设点M运动的时间为ts由题意得:t(2﹣1)=16由此即可解决.10.如图,点C在线段AB上,AC=8 cm,CB=6 cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?【答案】(1)MN=MC+NC= AC+ BC= (AC+BC)= ×(8+6)= ×14=7(2)MN=MC+NC= (AC+BC)= a(3)MN=MC-NC= AC- BC= (AC-BC)= b(4)如图,只要满足点C在线段AB所在直线上,点M、N分别是AC、BC的中点.那么MN就等于AB的一半.【解析】【分析】(1)根据M、N分别是AC、BC的中点,我们可得出MC、NC分别是AC、BC的一半,那么MC、CN的和就应该是AC、BC和的一半,也就是说MN是AB的一半,有了AC、CB的值,那么就有了AB的值,也就能求出MN的值了;(2)方法同(1)只不过AC、BC的值换成了AC+CB=a cm,其他步骤是一样的;(3)当C在线段AB的延长线上时,根据M、N分别是AC、BC的中点,我们可得出MC、NC分别是AC、BC的一半.于是,MC、NC的差就应该是AC、BC的差的一半,也就是说MN是AC-BC即AB的一半.有AC-BC的值,MN也就能求出来了;(4)综合上面我们可发现,无论C在线段AB 的什么位置(包括延长线),无论AC、BC的值是多少,MN都恒等于AB的一半.11.探究与发现:(1)探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.(2)探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.(3)探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.(4)探究四:若将上题中的四边形ABCD改为六边形ABCDEF(图4)呢?请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:▲ .【答案】(1)解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;(2)探究二:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC= ∠ADC,∠PCD= ∠ACD,∴∠DPC=180°-∠PDC-∠PCD,=180°- ∠ADC- ∠ACD,=180°- (∠ADC+∠ACD),=180°- (180°-∠A),=90°+ ∠A;(3)探究三:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC= ∠ADC,∠PCD= ∠BCD,∴∠DPC=180°-∠PDC-∠PCD,=180°- ∠ADC- ∠BCD,=180°- (∠ADC+∠BCD),=180°- (360°-∠A-∠B),= (∠A+∠B);(4)探究四:六边形ABCDEF的内角和为:(6-2)•180°=720°,∵DP、CP分别平分∠EDC和∠BCD,∴∠PDC= ∠EDC,∠PCD= ∠BCD,∴∠P=180°-∠PDC-∠PCD=180°- ∠EDC- ∠BCD=180°- (∠EDC+∠BCD)=180°- (720°-∠A-∠B-∠E-∠F)= (∠A+∠B+∠E+∠F)-180°,即∠P= (∠A+∠B+∠E+∠F)-180°.【解析】【分析】探究一:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,再根据三角形内角和定理整理即可得解;探究二:根据角平分线的定义可得∠PDC= ∠ADC,∠PCD= ∠ACD,然后根据三角形内角和定理列式整理即可得解;探究三:根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理探究二解答即可;探究四:根据六边形的内角和公式表示出∠EDC+∠BCD,然后同理探究二解答即可.12.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D 点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;② 的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.【答案】(1)解:由题意:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP.∴点P在线段AB上的处(2)解:如图:∵AQ-BQ=PQ,∴AQ=PQ+BQ,∵AQ=AP+PQ,∴AP=BQ,∴PQ= AB,∴(3)解:② 的值不变.理由:如图,当点C停止运动时,有CD= AB,∴CM= AB,∴PM=CM-CP= AB-5,∵PD= AB-10,∴PN= AB-10)= AB-5,∴MN=PN-PM= AB,当点C停止运动,D点继续运动时,MN的值不变,所以【解析】【分析】(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的处;(2)由题设画出图示,根据AQ-BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ与AB的关系;(3)当点C停止运动时,有CD= AB,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN的值,所以MN=PN−PM= AB.13.AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在的直线交于点E.∠ADC=70°.(1)求∠EDC 的度数;(2)若∠ABC=30°,求∠BED 的度数;(3)将线段 BC沿 DC方向移动,使得点 B在点 A的右侧,其他条件不变,若∠ABC=n°,请直接写出∠BED 的度数(用含 n的代数式表示).【答案】(1)∵平分,∴;(2)过点作,如图:∵平分,;平分,∴,∵,∴∴,∴;(3)过点E作,如图:∵DE平分,;BE平分,∴,∵,∴∴,∴.【解析】【分析】(1)根据角平分线定义即可得到答案;(2)过点作,然后根据角平分线的定义、平行线的判定和性质以及角的和差进行推导即可得解;(3)过点作,然后根据角平分线的定义、平行线的判定和性质以及角的和差进行推导即可得解.14.已知直线AB//CD,P是两条直线之间一点,且AP⊥PC于P.(1)如图1,求证:∠BAP+∠DCP=90°;(2)如图2,CQ平分∠PCG,AH平分∠BAP,直线AH、CQ交于Q,求∠AQC的度数;【答案】(1)证明:过P作PQ∥AB,∴∠BAP=∠APQ∵AB//CD∴PQ//CD∴∠DCP=∠CPQ∴∠BAP+∠DCP=∠APQ+∠CPQ=∠APC又∵AP⊥PC于P∴∠APC=90°∴∠BAP+∠DCP=90°(2)解:过Q作QM∥AB,∵CQ平分∠PCG ,AH平分∠BAP,设∠PCQ=∠QCG=a ,∠BAH=∠HAP=b,∵QM∥AB,∠BAQ=180° b∴∠BAQ=∠AQM=180°又∵AB//CD,∴MQ//CD,∴∠CQM=180° a∴∠AQC=(180° b)(180° a)=a b又∵由(1)得∴∠BAP+∠DCP=90°∵∠DCP=180° 2a ,∠BAP=2b∴2b+180° 2a=90°∴a b=45°∴∠AQC=45°【解析】【分析】(1)过P作PQ∥AB,根据平行线的判定定理得出PQ//CD,由平行线的性质,得到∠BAP=∠APQ,∠DCP=∠CPQ,结合AP⊥PC,即可得到答案;(2)过Q作QM∥AB,由平行线的性质和角平分线的性质,得到角度之间的关系,即可得到答案.15.我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离。

2020-2021上海傅雷中学初一数学上期末一模试卷(及答案)

2020-2021上海傅雷中学初一数学上期末一模试卷(及答案)

2020-2021上海傅雷中学初一数学上期末一模试卷(及答案)一、选择题1.若x 是3-的相反数,5y =,则x y +的值为( )A .8-B .2C .8或2-D .8-或2 2.将7760000用科学记数法表示为( ) A .57.7610⨯B .67.7610⨯C .677.610⨯D .77.7610⨯ 3.如果水库的水位高于正常水位5m 时,记作+5m ,那么低于正常水位3m 时,应记作( )A .+3mB .﹣3mC .+13mD .﹣5m4.如图,两个正方形的面积分别为36,25,两阴影部分的面积分别为a ,b (a >b ),则a -b 等于( )A .9B .10C .11D .125.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( ) A .(-1)n -1x 2n -1B .(-1)n x 2n -1C .(-1)n -1x 2n +1D .(-1)n x 2n +1 6.观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,….按照上述规律,第2015个单项式是( )A .2015x 2015B .4029x 2014C .4029x 2015D .4031x 20157.“校园足球”已成为灵武市第四张名片,这一新闻获得2400000的点击率,2400000这个数用科学记数法表示,结果正确的是( )A .30.2410⨯B .62.410⨯C .52.410⨯D .42410⨯ 8.用一个平面去截一个正方体,截面不可能是( )A .梯形B .五边形C .六边形D .七边形 9.4h =2小时24分.答:停电的时间为2小时24分.故选:C .【点睛】本题考查了一元一次方程的应用,把蜡烛长度看成1,得到两支蜡烛剩余长度的等量关系是解题的关键.10.关于的方程的解为正整数,则整数的值为( ) A .2 B .3 C .1或2 D .2或311.下列解方程去分母正确的是( )A .由,得2x ﹣1=3﹣3x B .由,得2x ﹣2﹣x =﹣4 C .由,得2y-15=3y D .由,得3(y+1)=2y+612.a ,b 在数轴上的位置如图所示,则下列式子正确的是( )A .a +b >0B .ab <0C .|a |>|b |D .a +b >a ﹣b二、填空题13.若关于x 的一元一次方程12018x-2=3x+k 的解为x=-5,则关于y 的一元一次方程12018(2y+1)-5=6y+k 的解y=________. 14.小颖按如图所示的程序输入一个正数x ,最后输出的结果为131.则满足条件的x 值为________.15.一根长80cm 的弹簧,一端固定.如果另一端挂上物体,那么在正常情况下物体的质量每增加1kg 可使弹簧增长2cm ,正常情况下,当挂着xkg 的物体时,弹簧的长度是____cm .(用含x 的代数式表示)16.某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高 ________.17.6年前,甲的年龄是乙的3倍,现在甲的年龄是乙的2倍,甲现在_________岁,乙现在________岁.18.计算7a 2b ﹣5ba 2=_____.19.若代数式45x -与36x -的值互为相反数,则x 的值为____________.20.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若MN=17cm ,则BD=__________cm.三、解答题21.先化简,再求值:2223()2()3x xy x y xy ---+,其中1x =-,3y =.22.计算题:(1)8+(﹣3)2×(﹣2)﹣(﹣3)(2)﹣12﹣24×(123634-+-) 23.先化简再求值:2(x 3﹣2y 2)﹣(x ﹣2y )﹣(x ﹣3y 2+2x 3),其中x=﹣3,y=﹣2.24.某工厂原计划用26小时生产一批零件,后因每小时多生产5个,用24小时不但完成了任务,而且还比原计划多生产了60个,问原计划生产多少个零件.25.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,求这个多项式【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据相反数的意义可求得x 的值,根据绝对值的意义可求得y 的值,然后再代入x+y 中进行计算即可得答案.【详解】∵x 是3-的相反数,y 5=,∴x=3,y=±5, 当x=3,y=5时,x+y=8,当x=3,y=-5时,x+y=-2,故选C.【点睛】本题考查了相反数、绝对值以及有理数的加法运算,熟练掌握相关知识并运用分类思想是解题的关键.2.B解析:B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】7760000的小数点向左移动6位得到7.76,所以7760000用科学记数法表示为7.76×106,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.B解析:B【解析】【分析】根据正数和负数表示相反意义的量,可得答案.【详解】水库的水位高于正常水位2m时,记作+2m,那么低于正常水位3m时,应记作-3m,故选B.【点睛】本题考查了正数和负数,确定相反意义的量是解题关键.4.C解析:C【解析】【分析】设白色的部分面积为x,由题意可知a=36-x,b=25-x,根据整式的运算即可求出答案.【详解】设白色部分的面积为x,∴a+x=36,b+x=25,∴a=36-x,b=25-x,∴a-b=36-x-(25-x)=11,故选:C.【点睛】本题考查整式的运算,解题的关键是熟练设白色的部分面积为x,从而列出式子,本题属于基础题型.5.C解析:C【解析】【分析】观察可知奇数项为正,偶数项为负,除符号外,底数均为x,指数比所在项序数的2倍多1,由此即可得.【详解】观察可知,奇数项系数为正,偶数项系数为负,∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负,指数为从第3开始的奇数,所以指数部分规律为21n +,∴第n 个单项式是 (-1)n -1x 2n +1 ,故选C.【点睛】本题考查了规律题——数字的变化类,正确分析出哪些不变,哪些变,是按什么规律发生变化的是解题的关键.6.C解析:C【解析】试题分析:根据这组数的系数可知它们都是连续奇数,即系数为(2n-1),而后面因式x 的指数是连续自然数,因此关于x 的单项式是2n 1n x -(),所以第2015个单项式的系数为2×2015-1=4029,因此这个单项式为20154029x .故选C考点:探索规律7.B解析:B【解析】解:将2400000用科学记数法表示为:2.4×106.故选B . 点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.8.D解析:D【解析】【分析】正方体总共六个面,截面最多为六边形。

上海数学新初一分班试卷

上海数学新初一分班试卷

上海数学新初一分班试卷一、选择题1.一种电子芯片的微型元器件,实际长度是0.2毫米,画在图纸上的长度是10厘米。

这张图纸的比例尺是( )。

A .500:1B .50:1C .1:50D .1:500 2.下面4个正方体中,( )可能是用下边的图形折成的。

A .B .C .D . 3.水结成冰后,体积要增加111,1.08立方米的冰融化成水后体积是多少?正确的算式是( )。

A .1.08÷(1-111) B .1.08÷(1+111) C .1.08×(1+111) D .1.08×(1-111) 4.一个等腰三角形的周长是70cm ,其中两条边的长度比3∶1,这个三角形腰的长度是( )cm 。

A .14B .30C .28D .14或305.一桶油,第一次倒出总质量的15,第二次倒出余下的25%,比较两次倒出的多少,结果是( ).A .第一次多B .第二次多C .一样多D .无法比较 6.如图是一个正方体纸盒的表面展开图,与数字3所在的面相对的面上的数字是( )。

A .1B .5C .67.下列说法错误的是( )。

A .如果1=a b ,那么a 一定是b 的倒数B.1千米增加15后,又减少15千米,结果还是1千米C.正方体的棱长扩大为原来的3倍,那么表面积扩大为原来的6倍,体积扩大为原来的9倍8.在观看马戏表演的时候,人们一般都会围成圆形.这是应用了圆特征中()A.圆心决定园的位置 B.半径决定圆的大小 C.同圆中的半径都相等D.同圆中直径是半径的2倍9.一种商品提价20%后,又降价20%,现在的价格()。

A.与原价相同B.比原价低C.比原价高10.观察下面的点阵图规律,第(5)个点阵图中有()个点。

A.15 B.16 C.17 D.18二、填空题11.广东省是目前全国人口最多的省份,最新人口普查显示:广东人口约为126013000人,这个数读作(______),省略“万”后面的尾数约是(______)万人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海傅雷中学初一新生分班(摸底)数学模拟考试(含答案)初一新生入学摸底分班考试试卷数学班级____________ 姓名____________ 得分:____________一、填空题(每题2分,共26分)1. 有5袋糖,其中任意4袋的总和都超过80块,那么5袋糖的总和最少有()块.2. 在0,2,5,7,9五个数字中,选出四个不重复的数字组成一个能被3整除的四位数,其中最大的四位数与最小的四位数的差是().3. 三个不同的素数之积恰好等于它们和的7倍,这三个素数是(),(),().4. 把111111分解质因数是().5. 现有下列四个算式:11111111;;;1129122514191321++++,比较这四个算式的大小,用“〉”连接应为().6. 用长28米的铁丝围成一个长方形,这个长方形的最大面积是().7. 在平行四边形ABCD中,F是BC边上的中点,13AE AB=,则三角形AEF的面积是平行四边形的().8. 有含糖6%的糖水900克,要使其含糖量增加到10%,需加糖()克.9. 商店为某鞋厂代销200双鞋,代销费用为销售总额的15%,全部销售完后,商店向鞋厂交付43860元,这批鞋每双售价()元.10. 有两个爱心小队,第一小队与第二小队的人数比是5:3,从第一小队调14人到第二小队后,第一小队与第二小队的人数比为1:2,则原来第二小队有()人.11. 已知一个容器内注满水,有大、中、小三个小球,第一次把小球沉入水中,第二次取出小球再将中球沉入水中,第三次取出中球,把小球和大球一起沉入水中,现在知道第一次溢出的水是第二次的14,第三次溢出的水是第一次的2.5倍,大、中、小球的体积比是():():().12. 如右图是由许多棱长1厘米的立方体堆积而成的,它的表面积是().13. 某年级60人中有40人爱打乒乓球,45人爱踢足球,48人爱打篮球,这三项运动都爱好的有22人,这个年级最多有()人这三项运动都不爱好.二、选择题(每题2分,共18分)14. 在1-100之间,一共有()个数与24的最大公因数是8.A. 12B. 11C. 9D. 815. 一根红色电线和一根蓝色电线的长度相等,把红的剪去45,蓝的剪去45米,剩下的红色电线比蓝色电线长,原来的两根电线都()A. 比1米长B. 正好1米C. 比1米短16. 甲数比乙数少15,乙数比甲数多().A. 20%B. 25%C. 40%17. 两个因数都是一位数,如果在其中一位数的左边写上5,使它成为一个两位数,那么这两个因数的积增加了200,这个因数是().A. 40B. 4C. 20D. 1-9都可以18. 把一段圆柱形铁块切成最大的圆锥,若切下的部分重a千克,则这段铁块原来重()千克.A. 2aB. 3aC. 32a D.23a19. 有一座房子,长12米,宽8米,在房子外的一个墙角用一根长14米的绳子拴一条狗,这条狗可能活动的最大范围的面积是()平方米.A. 492.98B. 555.78C. 519.44三、计算题(每题3分,共15分)四、图形题(共5分)25. 在右图中,O是圆心,OD=4,C是OB的中点,阴影部分的面积是14π,求三角形OAB的面积.五、综合应用(每题6分,共36分)26. 玻璃公司委托运输公司送500只玻璃瓶,双方议定,每只运费1.5元,如果打破一只,不但不给运费,还要赔13.5元,结果运输公司共得到运费705元,问运送途中打破了几只玻璃瓶?27. 师徒三人合作加工一批零件5天可以完成,其中徒弟甲完成的工作是徒弟乙的12,徒弟乙完成的工作是师傅的12,如果徒弟甲一人做2天后,徒弟乙和师傅合做余下的工作,还要几天完成?28. 小超市里有相同数量的奶糖和水果糖,奶糖10元2千克,水果糖10元1千克,营业员不小心把两种糖混在一起了,按照10元1.5千克售出,当糖全部卖完后发现比分开来卖少收入60元,小超市原来有奶糖和水果糖多少千克?29.、有一个注满水的圆柱形蓄水池,底面周长为62.8米,用去部分水后,水面比注满水时下降60厘米,剩下的水正好是这个水池容积的47,这个水池的容积是多少?30. 甲、乙二人分别从AB两地同时出发,相向而行,出发时他们的速度比是3:2,第一次相遇后,甲的速度提高了15,乙的速度提高了310,这样,当甲到达B地时,乙离A地还有14千米,那么AB两地间距离为多少千米?31. 在一条公路上,甲乙两地相距600米,小明和小强进行竞走训练,小明每小时走4千米,小强每小时走5千米,8时整,他们二人同时从甲乙两地相向而行,1分钟后二人掉头反向而行,又过3分钟,二人又都掉头相向而行,依次按照1,3,5,7…(连续奇数)分钟数掉头行走,那么二人相遇时是几时几分?一、填空题1. 102块 解析 由480x >,得20x >。

至少有2袋糖是超过20块,而大于20的最小自然数是21,所以总数为203212=102⨯+⨯(块)。

故5袋糖的总和最少为102块。

2. 7671解析 能被3整除的最大的四位数:9750,最小的四位数是:2079。

3. 3 5 7 解析 3个素数的乘积,是和的7倍,那么三个素数中有1个是7,设另两个素数分别是x 、y 。

那么()777xy x y =++,()()721x y x +=≥-,解得91x ≥>,分别代入2,3,5,7x =。

故这3个数是3,5,7。

4. 111111=37111337⨯⨯⨯⨯5.111111111129132114191225+>+>+>+6. 49平方米 解析 正方形是特殊的长方形,所以围成的长方形最大面积为228=494⎛⎫⎪⎝⎭(平方米)。

7.112 解析 设平行四边形的面积为S ,1h 、2h 分别是AB 、AE 边上的高,因为13AE AB =,12BF BC =,1S AB h =,212AEF S AE h =⨯三角形。

所以122h h =。

所以:AEF S S 三角形()2112AE h AB h ⎛⎫= ⎪⎝⎭:112=8. 40克 解析 设需加糖x 克,6%90010%900xx⨯+=+,40x =。

9. 258元 解析 设这批鞋每双售价为x 元,则()200115%43860x -=,258x =。

10. 18 解析 若设原来第二小队有3x 人,则原来第一小队有5x 人,根据题意,()()514:3141:2x x -+=,6x =,36=18⨯(人)。

11. 13:10:2 解析 若设小球体积为V ,则由题意得,第一次溢出水的体积为V ,第二次溢出水的体积为4V ,第三次溢出水的体积为2.5V ,中球体积:45V V V +=,大球体积:4 2.5 6.5V V V V V ++-=,则大、中、小三球的体积比是:6.5:5:13:10:2V V V =.12. 182cm 解析 4个立方体表面积为4×6(2cm ),重合的面积2×3(2cm ),所以表面积为24-6=18(2cm )13. 4 解析 如图: 即60人中去掉三项运动都爱好的22人剩下的38人或爱好其中两项,或只爱好其中一项,或一项也不爱好;要使三项运动都不爱好的人最多,只爱好一项运动的人数必须尽量少,从而爱好两项的人数就应当尽量多。

A :40-22-18(人),爱好乒乓球及另外一项或只爱乒乓球的人数。

B :45-22=23(人),爱好足球及另外一项或只爱好足球的人数。

C :48-22=26(人),爱好篮球及另外一项或只爱好篮球的人数。

不妨设A 数中10人同时爱好篮球,让A 类中的8人同时爱好足球。

B 类中其余15人同时也爱好篮球,这样C 类还剩下1人只爱好篮球。

用算式表示为(18+23+26)÷2=33……1,因此,38人中三项运动都不爱好的人最多为38-33-1=4(人)。

二、选择题14. D 解析 100以内8的倍数有12个:8、16、24、32、40、48、56、64、72、80、88、96。

去掉其中24的倍数(24、48、72、96)后就只剩下8个了。

15. C 解析 设原来两线长为x 米,由题意得,44155x x ⎛⎫->- ⎪⎝⎭,则1x <。

16. B 解析 设乙数为x ,甲数为45x ,则乙数比甲数多45100%25%45x xx -⨯=。

17. D 解析 设所求因数为b ,另一个因数为a ,由题意得,()50200a b ab +-=。

4a ∴=。

故b 可取1~9之间所有的数。

18. C 解析 由1=3V V 圆锥圆柱,得13132a a ⎛⎫÷-= ⎪⎝⎭(千克)。

19. A 解析 如图,(阴影部分)是这条狗的活动范围:233.1414=461.584⨯⨯(平方米);213.142=3.144⨯⨯ 3.14×26=28.26(平方米);213.142=3.144⨯⨯(平方米)。

狗运动范围的面积为:461.58+28.26+3.14=492.98(平方米)。

三、计算题20. 解 原式()=11111111=11=0--+-++-+-111111111111111111=2=2612203042562334455667781113=2=1=284.421⎛⎫⎛⎫⨯+++++⨯-+-+-+-+-+- ⎪ ⎪⎝⎭⎝⎭⎛⎫⨯-- ⎪⎝⎭解 原式 22. 解 原式252225=2=279111179⎛⎫⎛⎫⨯++÷++ ⎪ ⎪⎝⎭⎝⎭。

716775197= 3.50.96= 3.50.9610522101267221977191= 3.5=3.5=722222243.⎡⎤⎡⎤⎛⎫⎛⎫-+÷⨯-+⨯⨯⨯⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦⎛⎫-⨯⨯- ⎪⎝⎭解 原式24. 解 原式767623235353235376===111=1235353762376235376--++-+++-+。

四、图形题25. 分析 因为=4OD ,所以圆的面积为16π,扇形DOC 的面积是1614=2πππ-,根据扇形DOC 是圆的21=128ππ求得DOC ∠即45AOB ∠=︒。

又因为A ∠为直角,所以45B ∠=︒,连接AC ,则AC OB ⊥,因为45AOB ∠=︒,所以4OC AC ==,又因为C 是OB 的中点,所以8OB =,则三角形OAB 的面积为842=16⨯÷。

解 16142DOC S πππ=-=扇形,21=128ππ,所以1=360=458DOC ∠⨯︒︒。

连接AC ,则AC OB ⊥,因为45AOB ∠=︒,所以45OAC ∠=︒,所以4OC AC ==,又因为C 是OB 的中点,所以OB =8,则84216OAB S =⨯÷=三角形.五、综合应用26. 解 ()()500 1.5705 1.513.5=3⨯-÷+(只)。

相关文档
最新文档