初中奥数讲义_由常量数学到变量数学

合集下载

9、从常量到变量数学-培优 数学张老师

9、从常量到变量数学-培优 数学张老师

9、从常量到变量数学数学漫长的发展历史大致历经四个时期:以自然数、分数体系形成的萌芽期;以代数符号体系形成的常量(constant)数学时期;以函数(function)概念产生的变量(variable)数学时期;以集合论为标志的现代数学时期.函数是数学中最重要的概念之一,它是变量数学的标志,函数是从量的侧面去描述客观世界的运动变化、相互联系,从量的侧面反映了客观世界的动态和它们的相互制约性.函数的基本知识有:与平面直角坐标系(rectangular coordinates in tWO dimen。

ions)相关的概念、函数概念、函数的表示法、函数图象(graph)概念及画法.在坐标平面内,由点的坐标找点和由点求坐标是“数”与“形”相互转换的最基本形式.点的坐标(coordinates)是解决函数问题的基础,函数解析式是解决函数问题的关键,所以,求点的坐标、探求函数解析式是研究函数的两大重要课题.。

【例l】 (1)如图l,围棋盘放置在某个平面直角坐标系内,白棋②的坐标为(一7,一4),白棋④的坐标为(一6,一8),那么,黑棋①的坐标应该是..(2005年杭州市中考题) (2)如图2,已知边长为l的正方形OABC在直角坐标系中,A、B两点在第一象限内,0A与x轴的夹角为300,那么点B的坐标是.(全国初中数学联赛题)思路点拨对于(1),由自棋②、④的坐标确定原点位置,建立直角坐标系;对于(2),过A、B分别向x 轴作垂线,将求点的坐标转化为求线段的长.【例2】某水电站的蓄水池有2个进水口,1个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示.已知某天0点到6点,进行机组试运彳亍,试机时至少打开一个水口,且该水池的蓄水量与时间的关系如图丙所示:给出以下3个判断:①0点到3点只进水,不出水;②3点到4点,不进水,只出水;③4点到6点不进水,不出水.则上述判断中一定正确的是( ).A.① B.② C.②③ D.①②③(2005年常州市中考题) 思路点拨从图象获取信息,确定该水池的蓄水量与时间的关系.【例3】如果将点P绕定点M旋转l800后与点Q重合,那么这点P与点Q关于点M对称,定点M叫做对称中心,此时,点M是线段PQ的中点.如图,在直角坐标系中,△ABO的顶点A、B、0的坐标分别为(1,0)、(0,1)、(0,0).点到P1、P2、P3、…中相邻两点都关于△AB0的一个顶点对称,点P1与点P2关于点A 对称,点P2与点P3关于点B对称,点P3与点P4关于点0对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P7关于0点对称,…对称中心分别是A,B,0,A,B,0,…且这些对称中心依次循环,已知P1的坐标是(1,1).试写出点P2、P7、P100的坐标.(2005年南京市中考题) 思路点拨通过实际操作,从寻找对称点变化规律人手.【例4】光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.观将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见下表:(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y元,求y与x间的函数关系式,并写出X的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提出一条合理建议.(2004年河北省中考题) 思路点拨对于(2),通过求不等式组的正整数解,确定分配方案,并在此基础上,研究公司获得的最大收益.【例5】如图,在直角坐标系中,已知点A(4,0)点B(0,3),若有一个直角三角形与Rt△AB0全等,且它们有一条公共边,请写出这个直角三角形未知顶点的坐标(不必写出计算过程).思路点拨因公共边未指明,又未知顶点有不同的位置,故解本例的关键是分类讨论.1.已知点A(2a+3b ,一2)和点B(8,3a+2b)关于x 轴对称,那么a+b= .(2005年四川省中考题)2.如图所示的象棋盘上,若“帅”位于点(1,一2)上,“相”位于点(3,一2)上,则“炮”位于3.如图,在直角坐标系中,已知点A(4,0)、B(4,4),∠OAB= 900,有直角三角形与Rt△AB0全等且以AB 为公共边,请写出这些直角三角 形未知顶点的坐标:4.已知函数,2213---=x y 则x 的取值范围是 ,若x 是整数,则此函数的最小值是 . (2005年厦门市中考题)5.如果代数式mn m 1+-有意义,那么直角坐标系中点P(m ,n)的位置在( ).A .第一象限B .第二象限C .第三象限D .第四象限(2005年荆门市中考题) 6.函数42113-+-=x x y 的自变量x 的取值范围是( ). A .x≥1且x≠2 B .x ≠ 2 C.x>1且x≠2 D .全体实数(2005年兰州市中考题) 7.平面直角坐标系中的点)21,2(m m P -关于x 轴的对称点在第四象限,则m 的取值范围在数轴上可表示为( ).(2005年荆州市中考题)8.图l 是水滴进玻璃容器的示意图(滴水速度不变),图2是容器中水高度随滴水时间变化的图象.给出下列对应:(1)(a)一(e);(2)(b)一(f);(3)(c)一(h);(4) (d)一(g),其中,正确的是( ). 、A .(1)和(2).B .(2)和(3)C .(1)和(3)D .(3)和(4)(2005年镇江市中考题)9.在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”.根据图形,解决下面的问题:(1)图中的格点△A B C 是由格点△ABC通过哪些变换方法得到的?(2)如果以直线a、b为坐标轴建立平面直角坐标系后,点A的坐标为(一3,4),请写出格点△DEF各顶点的坐标,并求出△DEF的面积.(2005年成都市中考题)10.煤炭是龙岩市的主要矿产资源之一,每天有大量的煤炭运往外地.某煤矿现有100吨煤炭要运往甲、乙两厂.通过了解获碍甲、乙两厂的有关信息如下表(表中运费栏“元/t·km”表示每吨煤炭运送1千米所需人民币):要把l00吨煤炭全部运出,试写出总运费y元与运往甲厂x吨煤炭之问的函数关系式;如果你是该矿的矿主,请设计出合理的运送方案,使所需的总运费最低,并求出最低的总运费.(2005年福建省龙岩市中考题)11.在平面直角坐标系中,已知点P。

数学知识点总结之常量与变量

数学知识点总结之常量与变量

数学知识点总结之常量与变量
数学知识点总结之常量与变量
关于常量与变量的数学知识点,同学们认真看看下面的讲解知识。

常量与变量:
在一个变化过程中,数值发生变化的量叫做变量;
数值始终不变的量叫做常量
通过上面对常量与变量知识点的总结学习,相信上面的`知识点能很好的帮助同学们的复习学习工作。

初中数学知识点总结:平面直角坐标系
下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

平面直角坐标系
平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

七年级下册数学变量知识点

七年级下册数学变量知识点

七年级下册数学变量知识点
一、变量和常量的概念
数学中,常量指的是数值恒定不变的量,例如π和自然对数e;变量则指数值可以变化的量,例如代数中经常出现的x和y。

在数学中,变量可以用不同的字母或符号来表示,但常量一般使用特
定的符号或名称来表示。

二、代数式的构成
代数式是由数字、变量、常量和运算符号组成的式子。

每个代
数式都可以使用运算符号进行运算。

如 a + b 、a - b、a × b 和 a ÷ b,其中a和b分别是数字或变量。

三、解方程
解方程是数学中最基本的代数技巧之一。

在解方程时,我们将
一个未知数的值查找出来,以便得到解方程的结果。

例如: 2x -
10 = 6,我们可以从中得出x=8这个结果。

四、表达式
表达式是代数式的一种特殊形式。

与代数式不同,表达式不包含等号。

表达式可以是一个或多个数字、变量、常量和运算符的组合。

例如:2x+4、y-6。

五、系数、常数和项
表达式由项组成。

项由系数、变量和常数组成。

例如,在表达式3x+2y+5中,3和2是系数,x和y是变量,5是常数。

六、字母代数式
字母代数式是由一或多个字母、数字和常数构成的代数式。

例如,2x+5y-3是一个字母代数式。

七、计算
代数式的计算可以使用基本的数学运算法则,例如对数学式进
行加减乘除计算。

另一方面,通过使用代数式特有的功能,比如
展开和因式分解,可以得到更多有用信息,从而更好地理解代数。

【初中数学课件】常量与变量ppt课件

【初中数学课件】常量与变量ppt课件
你们能预测出全班同学成人时的身高吗? 这里什么是常量?什么是变量?
注:仅供参考
2020/8/5
2020/8/5
2020/8/5
【初中数学课件】常量与变量ppt课件
你的睡眠时间充足吗?
根据科学研究表明,一个10岁至50岁的人每天所 需睡眠时间(H小时)可用公式H=(110-N)/10 计算出来,其中N代表这个人的岁数, 请赶紧算算你所需的睡眠时间吧!
会变化的量是: H和N。
不会变的量是: 110和10。
π 圆的面积公式为S= r2
2020/8/5
2020/8/5
阅读并完成下面一段叙述:
⒈某人持续以a米/分的速度经t分时间跑了s
米,其中常量是 a ,变量是 t,s .
⒉ s米的路程不同的人以不同的速度a米/分
各需跑的时间为t分,其中常量是
量是 a,t .
s ,变
根据上面的叙述,写出一句关于常量与变量 的结论 在不同的条件下,常量与变量是相对的..
2020/8/5
2005年10月17日凌晨4时33分 ,在内蒙古 四子王旗成功着陆。在着陆前的最后48分时间 内,它是在耐高温表层的保护下,以7800 米/秒的速度冲入100千米厚的地球大气层。 在空气阻力的作用下,它在距地球表面10千米 左右时,以180米/秒的速度下降 ,此时 直径20多米的降落伞自动打开。
2.直n棱柱有几个面?若用m表示直n棱 柱的面数,试写出m与n之间的关系式;
解: 直n棱柱有(n+2)个面 关系式是: m=n+2
3.指出你所写的关系式中,哪些 是常量? 2 哪些是变量? m,n
2020/8/5
若a,b分别表示父母的身高,h男,h女 分别表示儿女成人时的身高,则有关

由常量数学到变量数学

由常量数学到变量数学

第五讲由常量数学到变量数学数学漫长的发展历史大致历经四个时期:以自然数、分数体系形成的萌芽期;以代数符号体系形成的常量数学时期;以函数概念产生的变量数学时期;以集合论为标志的现代数学时期.函数是数学中最重要的概念之一,它是变量数学的标志,“函数”是从量的侧面去描述客观世界的运动变化、相互联系,从量的侧面反映了客观世界的动态和它们的相互制约性.函数的基本知识有:与平面直角坐标系相关的概念、函数概念、函数的表示法、函数图象概念及画法.在坐标平面内,由点的坐标找点和由点求坐标是“数”与“形”相互转换的最基本形式.点的坐标是解决函数问题的基础,函数解析式是解决函数问题的关键,所以,求点的坐标、探求函数解析式是研究函数的两大重要课题.【例题求解】【例1】在平面直角坐标系内,已知点A(2,2),B(2,-3),点P在y轴上,且△APB为直角三角形,则点P的个数为. (河南省竞赛题)思路点拨先在直角坐标平面内描出A、B两点,连结AB,因题设中未指明△APB的哪个角是直角,故应分别就∠A、∠B、∠C为直角来讨论,设点P(0,x),运用几何知识建立x的方程.注:点的坐标是数与形结合的桥梁,求点的坐标的基本方法有:(1)利用几何计算求;(2)通过解析式求;(3)解由解析式联立的方程组求.【例2】如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽.水槽中水面上升高度h与注水时间t之间的函数关系,大致是下列图象中的( )思路点拨向烧杯注水需要时间,并且水槽中水面上升高0h.注:实际生活中量与量之间的关系可以形象地通过图象直观地表现出来,如心电图、,股市行情走势图等,图象中包含着丰富的图象信息,要善于从图象的形状、位置、发展变化趋势等有关信息中获得启示.【例3】南方A市欲将一批容易变质的水果运往B市销售,共有飞机、火车、汽车三种运输方式,现只可选择其中的一种,这三种运输方式的主要参考数据如下表所示:若这批水果在运输(包括装卸)过程中的损耗为200元/小时,记A、B两市间的距离为x千米.(1)如果用W l、W2、W3分别表示使用飞机、火车、汽车运输时的总支出费用(包括损耗),求出W l、W2、W3与小x间的函数关系式.(2)应采用哪种运输方式,才使运输时的总支出费用最小?思路点拨每种运输工具总支出费用=途中所需费用(含装卸费用)+损耗费用;总支出费用随距离变化而变化,由W l—W2=0,W2一W3=0,先确定自变量的特定值,通过讨论选择最佳运输方式.【例4】已知在菱形ABCD中,∠BAD=60°,把它放在直角坐标系中,使AD边在y轴上,点C的坐标为(23,8). (1)画出符合题目条件的菱形与直角坐标系;(2)写出A、B两点的坐标;(3)设菱形ABCD的对角线交点为P.问:在y轴上是否存在一点F,使得点P与点F关于菱形ABCD的某条边所在的直线对称,如果存在,写出点F的坐标;如果不存在,请说明理由. (江苏省常州市中考题)思路点拨 (1)关键是探求点A是在y轴正半轴上、负半轴上还是坐标原点,只须判断∠COy与∠CAD的大小;(2)利用解直角三角形求A,B两点坐标;(3)设轴上存在点F(0,y),则P与F只可能关于直线DC对称.注:建立函数关系式,实际上都是根据具体的实际问题和一些特殊的关系、数据而抽象、归纳建立函数的模型.【例5】如图,已知在Rt△ABC中,∠B=90°,BC=4cm,AB=8cm,D、E、F分别为AB、AC、BC边上的中点,若P为AB边上的一个动点,PQ∥BC,且交AC于点Q,以PQ为一边,在点A的右侧作正方形PQMN,记PQMN与矩形EDBF的公共部分的面积为y.(1)当AP=3cm时,求的值; (2)设AP=cm时,求y与x的函数关系式;(3)当y=2cm2,试确定点P的位置.(2001年天津市中考题)思路点拨对于(2),由于点P的位置不同,y与x之间存在不同的函数关系,故需分类讨论;对于(3),由相应函数解析式求x值.注:确定几何元素间的函数关系式,首先是借助几何知识与方法把相应线段用自变量表示,再代入相应的等量关系式,需要注意的是:(1)当图形运动导致图形之间位置发生变化,需要分类讨论;(2)确定自变量的几何意义,常用到运动变化、考虑极端情形、特殊情形等思想方法.学力训练1. 如图,在直角坐标系中,已知点A(4,0)、B(4,4),∠OAB =90°,有直角三角形与Rt △ABO 全等且以AB 为公共边,请写出这些直角三角形未知顶点的坐标 .(贵州省中考题)2.在直角坐标系中有两点A(4,0),B(0,2),如果点C 在x 轴上(C 与A 不重合),当点C 的坐标为 时,使得由点B 、O 、C 组成的三角形与△AOB 相似(至少找出两个满足条件的点的坐标). (广西桂林市中考题)3.根据指令(S ≥0,0°<A<180°),机器人在平面上能完成下列动作:先原地逆时针旋转角度A ,再朝其面对的方向沿直线行走距离S .现机器人在直角坐标系的坐标原点,且面对x 轴的正方向,(1)若给机器人下了一个指令,则机器人应移动到点 ;(2)请你给机器人下一个指令 ,使其移动到点(一5,5). (浙江省杭州市中考题)4.如图,在平面直角坐标系中,直线AB 与x 轴的夹角为60°,且点A 的坐标为(一2,0),点B 在x 轴上方,设AB =a ,那么点B 的横坐标为( )A .22a -B .22a +C .22a --D .22a +- (年南昌市中考题)5.一天,小军和爸爸去登山,已知山脚到山顶的路程为300米,小军先走了一段路程,爸爸才开始出发.图中两条线段分别表示小军和爸爸离开山脚登山的路程(米)与登山所用的时间(分钟的关系)(从爸爸开始登山时计时),根据图象,下列说法错误的是( )A .爸爸登山时,小军已走了50米B .爸爸走了5分钟,小军仍在爸爸的前面C .小军比爸爸晚到山顶D .爸爸前10分钟登山的速度比小军慢,10分钟之后登山的速度比小军快(江苏省淮安市中考题)6.若函数m x x y ++=212的自变量x 的取值范围为一切实数,则m 的取值范围是( )A .m<lB .m=1C . m>lD .m ≤17.如图,在直角坐标系中,已知点A(4,0)、点B(0,3),若有一个直角三角形与Rt △ABO 全等,且它们有一条公共边,请写出这个直角三角形未知顶点的坐标(不必写出计算过程).(常州市中考题)8.如图,用同样规格黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题:(1)设铺设地面所用瓷砖的总块数为y ,请写出y 与n (n 表示第n 个图形)的函数关系式;(2)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n 的值;(3)若黑瓷砖每块4元,白瓷砖每块3元,在问题(2)中,共需花多少元钱购买瓷砖?(4)是否存在黑瓷砖与白瓷砖块数相等情形?请通过计算说明为什么?(吉林省中考题)9.如图,在平面直角坐标系中有一个正方形ABCD ,它的4个顶点为A(10,0),B (0,10),C(一10,0),D(0,一10),则该正方形内及边界上共有 个整点(即纵横坐标都是整数的点). (上海市初中数学竞赛题)10.如图,已知边长为l 的正方形OABC 在直角坐标系中,A 、B 两点在第一象限内,OA 与x 轴的夹角为30°,那么点B 的坐标是 .11.如图,一个粒子在第一象限运动,在第一分钟内它从原点运动到(1,0),而后它接着按图所示在与x 轴、y 轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在1989分钟后这个粒子所处位置为.(美国高中数学考试题)12.在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有( )A.1个 B.2个 C. 3个 D.4个 (2001年湖北赛区选拔赛题)13.已知点P的坐标是(a2),这里a、b是有理数,PA、PB分别是点P到x轴和y轴的垂线++2l,b段,且矩形OAPB的面积为2,则P点可能出现的象限有()A.1个 B.2个 C.3个 D.4个 (江苏省竞赛题)14.甲、乙二人同时从A地出发,沿同一条道路去B地,途中都使用两种不同的速度V l与V2(Vi<V2),甲用一半的路程使用速度V l、另一半的路程使用速度V2;关于甲乙二人从A地到达B地的路程与时间的函数图象及关系,有图中4个不同的图示分析.其中横轴t表示时间,纵轴s表示路程,其中正确的图示分析为( )A.图(1) B.图(1)或图(2) C.图(3) D.图(4)(河北省初中数学创新与知识应用竞赛试题)15.依法纳税是每个公民应尽的义务.《中华人民共和国个人所得税法》规定,公民每月工资、薪金收入不超过800元,不需交税;超过800元的部分为全月应纳税所得额,都应交税,且根据超过部分的多少按不同的税率交税,详细的税率如下表:(1)某公民2002年10月的总收人为1350元,问他应交税款多少元?(2)设表示每月收入(单位:元),y表示应交税款(单位:元),当1300<x≤2800时,请写出y关于x的函数关系式;(3)某企业高级职员2002年11月应交税款55元,问该月他的总收入是多少元?(四川省竞赛题)16.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D是AB上任意一点(A、B两点除外),过D作AB 垂线与△ABC的直角边相交于E,设AD=x,△ADE的面积为y,当点D在AB上移动时,求y关于x之间的函数关系式.17.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B两种不同规格的货车厢共40节,使用A型车厢每节费用6000元,使用月型车厢每节费用为8000元.(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试写出y与x之间的函数关系式;(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节月型B车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?(3)在上述方案中,哪个方案运费最高?最少运费为多少元? (广州市中考题)18.如图,梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(14,0),(14,3),(4,3).点P、Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位;点Q沿OC、CB向终点B运动,当这两点中有一点到达自己的终点时,另一点也停止运动.(1)设从出发起运动了x秒,如果点Q的速度为每秒2个单位,试分别写出这时点Q在OC上或在CB上时的坐标(用含x的代数式表示);(2)设从出发起运动了x秒,如果点P与点Q所经过的路程之和恰好为梯形OABC的周长的一半,①试用含x 的代数式表示这时点Q所经过的路程和它的速度;②试问:这时直线PQ是否可能同时把梯形OABC的面积也分成相等的两部分?如有可能,求出相应的x的值和P、Q的坐标;如不可能,请说明理由. (苏州市中考题)参考答案。

八年级数学《常量与变量》学习要点必备

八年级数学《常量与变量》学习要点必备

八年级数学《常量与变量》学习要点必备
数学学习一定要注意对基础的培养,老师也要注重同学们对基础的掌握,八年级数学常量与变量学习要点整理给大家,请老师参考并提出宝贵意见。

数学中表征事物量的一对概念。

在事物的特定运动过程中,固定保持不变,则称之为常量;反之,可以去不同数值的量则称之为变量,在生活中有广泛运用。

数学中表征事物量的一对概念。

在事物的特定运动过程中,某量若保持不变,则称之为常量;反之,则称之为变量。

变量分为自变量和因变量,亦称函数。

人们在实践活动中,为了从量的方面研究事物运动、变化的规律性,或者事物之间的数……
八年级数学常量与变量学习要点及时提供给同学们,知识点对朋友们的学习非常重要,大家一定要认真掌握,希望大家能够使用~
第 1 页共1 页。

九年级数学竞赛讲座:由常量数学到变量数学

九年级数学竞赛讲座:由常量数学到变量数学

九年级数学竞赛讲座:由常量数学到变量数学数学漫长的发展历史大致历经四个时期:以自然数、分数体系形成的萌芽期;以代数符号体系形成的常量数学时期;以函数概念产生的变量数学时期;以集合论为标志的现代数学时期.函数是数学中最重要的概念之一,它是变量数学的标志,“函数”是从量的侧面去描述客观世界的运动变化、相互联系,从量的侧面反映了客观世界的动态和它们的相互制约性.函数的基本知识有:与平面直角坐标系相关的概念、函数概念、函数的表示法、函数图象概念及画法.在坐标平面内,由点的坐标找点和由点求坐标是“数”与“形”相互转换的最基本形式.点的坐标是解决函数问题的基础,函数解析式是解决函数问题的关键,所以,求点的坐标、探求函数解析式是研究函数的两大重要课题.【例题求解】【例1】在平面直角坐标系内,已知点A(2,2),B(2,-3),点P在y轴上,且△APB为直角三角形,则点P的个数为. (河南省竞赛题)思路点拨先在直角坐标平面内描出A、B两点,连结AB,因题设中未指明△APB的哪个角是直角,故应分别就∠A、∠B、∠C为直角来讨论,设点P(0,x),运用几何知识建立x的方程.注:点的坐标是数与形结合的桥梁,求点的坐标的基本方法有:(1)利用几何计算求;(2)通过解析式求;(3)解由解析式联立的方程组求.【例2】如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽.水槽中水面上升高度h与注水时间t之间的函数关系,大致是下列图象中的( )思路点拨向烧杯注水需要时间,并且水槽中水面上升高0h.注:实际生活中量与量之间的关系可以形象地通过图象直观地表现出来,如心电图、,股市行情走势图等,图象中包含着丰富的图象信息,要善于从图象的形状、位置、发展变化趋势等有关信息中获得启示.【例3】南方A市欲将一批容易变质的水果运往B市销售,共有飞机、火车、汽车三种运输方式,现只可选择其中的一种,这三种运输方式的主要参考数据如下表所示:运输工具途中速度(千米/时)途中费用(元/千米)装卸费用(元)装卸时间(小时)飞机200 16 1000 2火车100 4 2000 4汽车50 8 1000 2x 千米.(1)如果用Wl 、W2、W3分别表示使用飞机、火车、汽车运输时的总支出费用(包括损耗),求出Wl 、W2、W3与小x间的函数关系式.(2)应采用哪种运输方式,才使运输时的总支出费用最小?(湖北省黄冈市中考题)思路点拨每种运输工具总支出费用=途中所需费用(含装卸费用)+损耗费用;总支出费用随距离变化而变化,由Wl —W2=0,W2一W3=0,先确定自变量的特定值,通过讨论选择最佳运输方式.【例4】已知在菱形ABCD中,∠BAD=60°,把它放在直角坐标系中,使AD边在y轴上,点C的坐标为(23,8).(1)画出符合题目条件的菱形与直角坐标系;(2)写出A、B两点的坐标;(3)设菱形ABCD的对角线交点为P.问:在y轴上是否存在一点F,使得点P与点F关于菱形ABCD的某条边所在的直线对称,如果存在,写出点F的坐标;如果不存在,请说明理由. (江苏省常州市中考题)思路点拨 (1)关键是探求点A是在y轴正半轴上、负半轴上还是坐标原点,只须判断∠COy 与∠CAD的大小;(2)利用解直角三角形求A,B两点坐标;(3)设轴上存在点F(0,y),则P 与F只可能关于直线DC对称.注:建立函数关系式,实际上都是根据具体的实际问题和一些特殊的关系、数据而抽象、归纳建立函数的模型.【例5】如图,已知在Rt△ABC中,∠B=90°,BC=4cm,AB=8cm,D、E、F分别为AB、AC、BC边上的中点,若P为AB边上的一个动点,PQ∥BC,且交AC于点Q,以PQ为一边,在点A 的右侧作正方形PQMN,记PQMN与矩形EDBF的公共部分的面积为y.(1)当AP=3cm时,求的值;(2)设AP=cm时,求y与x的函数关系式;(3)当y=2cm2,试确定点P的位置.(2001年天津市中考题)思路点拨对于(2),由于点P的位置不同,y与x之间存在不同的函数关系,故需分类讨论;对于(3),由相应函数解析式求x值.注:确定几何元素间的函数关系式,首先是借助几何知识与方法把相应线段用自变量表示,再代入相应的等量关系式,需要注意的是:(1)当图形运动导致图形之间位置发生变化,需要分类讨论;(2)确定自变量的几何意义,常用到运动变化、考虑极端情形、特殊情形等思想方法.学力训练1.如图,在直角坐标系中,已知点A(4,0)、B(4,4),∠OAB =90°,有直角三角形与Rt △ABO 全等且以AB 为公共边,请写出这些直角三角形未知顶点的坐标 . (贵州省中考题)2.在直角坐标系中有两点A(4,0),B(0,2),如果点C 在x 轴上(C 与A 不重合),当点C 的坐标为 时,使得由点B 、O 、C 组成的三角形与△AOB 相似(至少找出两个满足条件的点的坐标). (广西桂林市中考题)3.根据指令(S ≥0,0°<A<180°),机器人在平面上能完成下列动作:先原地逆时针旋转角度A ,再朝其面对的方向沿直线行走距离S .现机器人在直角坐标系的坐标原点,且面对x 轴的正方向,(1)若给机器人下了一个指令,则机器人应移动到点 ;(2)请你给机器人下一个指令 ,使其移动到点(一5,5).(浙江省杭州市中考题)4.如图,在平面直角坐标系中,直线AB 与x 轴的夹角为60°,且点A 的坐标为(一2,0),点B 在x 轴上方,设AB =a ,那么点B 的横坐标为( ) A .22a - B .22a + C .22a -- D .22a +-(年南昌市中考题)5.一天,小军和爸爸去登山,已知山脚到山顶的路程为300米,小军先走了一段路程,爸爸才开始出发.图中两条线段分别表示小军和爸爸离开山脚登山的路程(米)与登山所用的时间(分钟的关系)(从爸爸开始登山时计时),根据图象,下列说法错误的是( ) A .爸爸登山时,小军已走了50米 B .爸爸走了5分钟,小军仍在爸爸的前面 C .小军比爸爸晚到山顶D .爸爸前10分钟登山的速度比小军慢,10分钟之后登山的速度比小军快 (江苏省淮安市中考题) 6.若函数mx x y ++=212的自变量x 的取值范围为一切实数,则m 的取值范围是( )A .m<lB .m=1C . m>lD .m ≤17.如图,在直角坐标系中,已知点A(4,0)、点B(0,3),若有一个直角三角形与Rt △ABO 全等,且它们有一条公共边,请写出这个直角三角形未知顶点的坐标(不必写出计算过程). (常州市中考题)8.如图,用同样规格黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题: (1)设铺设地面所用瓷砖的总块数为y ,请写出y 与n (n 表示第n 个图形)的函数关系式; (2)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n 的值; (3)若黑瓷砖每块4元,白瓷砖每块3元,在问题(2)中,共需花多少元钱购买瓷砖? (4)是否存在黑瓷砖与白瓷砖块数相等情形?请通过计算说明为什么?(吉林省中考题)9.如图,在平面直角坐标系中有一个正方形ABCD ,它的4个顶点为A(10,0),B (0,10),C(一10,0),D(0,一10),则该正方形内及边界上共有 个整点(即纵横坐标都是整数的点). (上海市初中数学竞赛题)10.如图,已知边长为l的正方形OABC在直角坐标系中,A、B两点在第一象限内,OA与x轴的夹角为30°,那么点B的坐标是.11.如图,一个粒子在第一象限运动,在第一分钟内它从原点运动到(1,0),而后它接着按图所示在与x轴、y轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在1989分钟后这个粒子所处位置为.(美国高中数学考试题)12.在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有( )A.1个 B.2个 C. 3个 D.4个 (2001年湖北赛区选拔赛题)13.已知点P的坐标是(a+2l,b+2),这里a、b是有理数,PA、PB分别是点P到x轴和y 轴的垂线段,且矩形OAPB的面积为2,则P点可能出现的象限有()A.1个 B.2个 C.3个 D.4个 (江苏省竞赛题)14.甲、乙二人同时从A地出发,沿同一条道路去B地,途中都使用两种不同的速度Vl与V 2(Vi<V2),甲用一半的路程使用速度Vl、另一半的路程使用速度V2;关于甲乙二人从A地到达B地的路程与时间的函数图象及关系,有图中4个不同的图示分析.其中横轴t表示时间,纵轴s表示路程,其中正确的图示分析为( )A.图(1) B.图(1)或图(2) C.图(3) D.图(4)(河北省初中数学创新与知识应用竞赛试题)15.依法纳税是每个公民应尽的义务.《中华人民共和国个人所得税法》规定,公民每月工资、薪金收入不超过800元,不需交税;超过800元的部分为全月应纳税所得额,都应交税,且根据超过部分的多少按不同的税率交税,详细的税率如下表:级别全月应纳税所得额税率(%)1 不超过500元部分 52 超过500元至2000元部分103 超过2000元至5000元部分15……(1)(2)设表示每月收入(单位:元),y表示应交税款(单位:元),当1300<x≤2800时,请写出y 关于x的函数关系式;(3)某企业高级职员2002年11月应交税款55元,问该月他的总收入是多少元?(四川省竞赛题)16.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D是AB上任意一点(A、B两点除外),过D作AB垂线与△ABC的直角边相交于E,设AD=x,△ADE的面积为y,当点D在AB上移动时,求y关于x之间的函数关系式.17.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B两种不同规格的货车厢共40节,使用A型车厢每节费用6000元,使用月型车厢每节费用为8000元.(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试写出y与x之间的函数关系式;(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节月型B车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?(3)在上述方案中,哪个方案运费最高?最少运费为多少元? (广州市中考题)18.如图,梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(14,0),(14,3),(4,3).点P、Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位;点Q沿OC、CB向终点B运动,当这两点中有一点到达自己的终点时,另一点也停止运动.(1)设从出发起运动了x秒,如果点Q的速度为每秒2个单位,试分别写出这时点Q在OC上或在CB上时的坐标(用含x的代数式表示);(2)设从出发起运动了x秒,如果点P与点Q所经过的路程之和恰好为梯形OABC的周长的一半,①试用含x的代数式表示这时点Q所经过的路程和它的速度;②试问:这时直线PQ是否可能同时把梯形OABC的面积也分成相等的两部分?如有可能,求出相应的x的值和P、Q的坐标;如不可能,请说明理由. (苏州市中考题)参考答案。

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页初中奥数辅导讲义培优计划(星空课堂)第一讲走进追问求根公式第二讲判别式——二次方程根的检测器第三讲充满活力的韦达定理第四讲明快简捷—构造方程的妙用第五讲一元二次方程的整数整数解第六讲转化—可化为一元二次方程的方程第七讲化归—解方程组的基本思想第八讲由常量数学到变量数学第九讲坐标平面上的直线第十讲抛物线第十一讲双曲线第十二讲方程与函数第十三讲怎样求最值第十四讲图表信息问题第十五讲统计的思想方法第十六讲锐角三角函数第十七讲解直角三角形第十八讲圆的基本性质第十九讲转化灵活的圆中角2第二十讲直线与圆第二十一讲从三角形的内切圆谈起第二十二讲园幂定理第二十三讲圆与圆第二十四讲几何的定值与最值第二十五讲辅助圆第二十六讲开放性问题评说第二十七讲动态几何问题透视第二十八讲避免漏解的奥秘第二十九讲由正难则反切入第三十讲从创新构造入手3第一讲走进追问求根公式形如a某2b某c0(a0)的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。

而公式法是解一元二次方程的最普遍、最具有一般性的方法。

求根公式某1,2bb24ac内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了2a一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。

降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。

解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。

【例题求解】【例1】满足(n2n1)n21的整数n有个。

思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。

【例2】设某1、某2是二次方程某2某30的两个根,那么某134某2219的值等于()A、一4B、8C、6D、0思路点拨:求出某1、某2的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如某123某1,某223某2。

初中数学变量与常量教案

初中数学变量与常量教案

教案:初中数学——变量与常量教学目标:1. 了解常量和变量的概念,能够区分两者。

2. 能够运用常量和变量解决实际问题。

3. 理解变量在数学中的作用,培养学生的抽象思维能力。

教学内容:1. 常量与变量的定义。

2. 常量与变量的应用。

教学过程:一、导入(5分钟)1. 引入话题:在我们日常生活中,有哪些事物是经常变化的?有哪些事物是不变的?2. 学生回答,教师总结:像身高、体重、年龄等都是经常变化的事物,我们称之为变量;而像圆周率、地球的质量等都是不变的事物,我们称之为常量。

二、新课讲解(15分钟)1. 讲解常量的概念:常量是在某个过程中不变的量。

2. 讲解变量的概念:变量是在某个过程中可以取不同值的量。

3. 举例说明:如圆的周长公式C=2πr,其中r是变量,π是常量。

三、课堂练习(10分钟)1. 请学生独立完成教材P38的练习题1-3。

2. 学生互相交流答案,教师讲解正确与否。

四、应用拓展(10分钟)1. 请学生举例说明生活中常见的常量和变量。

2. 学生分组讨论,每组选出一个实际问题,用常量和变量来解决。

3. 各组汇报讨论结果,教师点评。

五、总结(5分钟)1. 回顾本节课所学内容,让学生复述常量和变量的概念。

2. 强调常量和变量在实际问题中的应用。

教学评价:1. 课后作业:请学生完成教材P39的练习题1-5。

2. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况。

教学反思:本节课通过导入、新课讲解、课堂练习、应用拓展和总结等环节,让学生掌握了常量和变量的概念及应用。

在课堂练习和应用拓展环节,学生能够主动思考、合作交流,提高了解决问题的能力。

但在教学过程中,要注意引导学生正确理解常量和变量的区别,避免混淆。

《常量和变量》课件

《常量和变量》课件

变量的取值是可以被测量或计算的。
变量的物理性质
可控制性
在物理实验中,变量的取值可以 通过人为控制来改变。
可观测性
物理中的变量通常可以通过实验 设备进行观测和测量。
因果关系Байду номын сангаас
物理中的变量之间存在因果关系 ,一个变量的变化会导致其他变
量的变化。
变量的生活应用
经济变量
在经济学中,变量如价格、产量、成本等被广泛 使用,用以描述和分析经济现象。
常量和变量在物理中的实际案例
常量在物理中的应用
在光速的定义中,光速是一个恒定的常量,约为299,792,458米/秒,是描述光波传播速度的物理量。
变量在物理中的应用
在电路中,电流、电压和电阻是变量,它们之间的关系遵循欧姆定律。通过测量这些变量的值,可以计算出电路 中的电流、电压和电阻等参数。
THANKS.
几何形状的属性
几何形状的属性,如长度、面积 、体积等,也可以视为常量,因 为它们在给定条件下是固定不变 的。
变量在数学中的应用
代数方程
代数方程中,变量表示未知数,通过解方程可以找到变量的 值。
函数
函数中,变量表示自变量,函数值会随着自变量的变化而变 化。
常量和变量在物理中的应用
物理定律中的系数
在物理定律中,常量通常用来表示某 些固定不变的数值,如万有引力常数 、光速c等。
在牛顿第二定律中,重力加速度是一个常量,它描述了物体下落的加速度,不受 物体质量的影响。
常量在化学中的应用
在化学反应中,反应物的摩尔数之比等于化学计量数之比,这是一个常量,表示 反应物之间的相对数量关系。
变量在实际案例中的应用
变量在经济学中的应用

初中数学教案变量与常量

初中数学教案变量与常量

初中数学教案变量与常量初中数学教案:变量与常量引言:数学是一门严谨而有趣的学科,而初中数学作为数学学习的基础课程,需培养学生的逻辑思维和问题解决能力。

其中,理解和掌握变量与常量的概念至关重要。

本教案旨在通过寓教于乐的方式帮助学生深入理解变量与常量的含义、作用以及它们在数学问题中的应用。

一、背景知识的概述1. 变量与常量的定义在数学中,变量是指可改变的量,常用字母表示;而常量是指固定不变的量,常用数字或字母表示。

2. 变量与常量的作用变量与常量在数学问题中起着不同的作用。

学生需要理解这两个概念的区别,以及它们在算术、代数以及其他实际问题中的应用。

二、教学目标在本课中,学生将能够:1. 定义变量与常量的概念;2. 区分变量与常量,并举例说明;3. 运用变量与常量解决实际问题。

三、教学内容和方法1. 引入利用一个有趣的情境或问题,引起学生的兴趣,并提出相关问题,如:在一次志愿者活动中,有多少人愿意为植树活动做贡献?请你们想一想,这个数字应该是一个变量还是一个常量?2. 讲解变量与常量的概念通过示意图、实例等方式,清晰地解释变量与常量的定义,并与学生进行互动讨论。

3. 变量与常量的区分通过多个实例,与学生一起分析问题,并要求他们判断出变量与常量在不同情景中的应用与区别。

4. 变量与常量的应用数学中变量与常量的应用非常广泛,可以引导学生在解决实际问题中灵活运用这两个概念。

可以设计实际问题,要求学生在解决问题时运用变量与常量,并进行解答。

5. 知识总结综合归纳变量与常量的定义及其应用,并通过提问和讨论的形式巩固学生的理解。

四、教学辅助工具和评估方式1. 辅助工具课件、黑板、粉笔、实物物品等。

2. 评估方式可以设计小组活动、个人作业或小测验等方式对学生对变量与常量的理解进行评估。

五、课堂延伸1. 拓展思维鼓励学生思考变量与常量的应用在其他学科和实际生活中的重要性,如化学中化学方程式中的变量、经济学中的变量等。

初二数学常量与变量

初二数学常量与变量

初二数学常量与变量《初二数学中的常量与变量:一场奇妙的数学之旅》在初二的数学世界里呀,有两个特别有趣的概念,那就是常量和变量。

这就好比在一个超级大的游乐场里,有些东西是固定不变的,就像那些永远在那里的游乐设施的大架子,这就是常量;而有些东西呢,是跑来跑去,变来变去的,就像是在游乐场上玩耍的小朋友们,这就是变量啦。

我记得有一次上数学课,老师拿着一根粉笔在黑板上写了好多式子。

比如说路程等于速度乘以时间,也就是\(s = vt\)。

老师就开始给我们讲了,在这个式子里面呀,速度要是固定下来,比如说一辆汽车一直保持每小时60千米的速度行驶,这个60千米每小时就是常量呢。

那时间呢?时间可是一直在变的呀,就像我们等公交车的时候,一分钟一分钟地过去,这个时间就是变量。

那路程呢?路程也会随着时间的变化而变化呀。

如果汽车开了1小时,路程就是60千米;开了2小时,路程就是120千米。

这路程也变成了变量啦。

我就举手问老师:“老师,那常量是不是就很无聊呀,一直都不变?”老师笑着说:“可不能这么想呀。

常量虽然不变,但是它很重要呢。

就像盖房子的地基,要是地基不稳,房子怎么能盖好呢?常量就像是这个地基,给变量之间的关系提供了一个稳定的基础。

”我听了之后,感觉还真是这么回事呢。

再比如说我们在做几何题的时候,三角形的内角和是180度,这个180度就是常量。

不管这个三角形是大是小,是锐角三角形、直角三角形还是钝角三角形,它的内角和永远都是180度。

可是三角形的边长呀、每个角的度数呀,这些就可以是变量。

就像我和同桌做同一道三角形的题,我们画出来的三角形形状可能不一样,边长不一样,每个角的度数也不一样,但是内角和这个常量是不变的。

有一次我和班上的数学小天才聊天,我就说:“我老是觉得变量比常量难理解呢。

”他就很惊讶地看着我说:“怎么会呢?你看啊,变量就像是一场冒险里面的宝藏,它总是藏在不同的地方,等着我们去发现它的规律。

常量就像是冒险的地图,虽然看起来很简单,但是没有它,我们就找不到宝藏啦。

初中变量和常量的概念教案

初中变量和常量的概念教案

初中变量和常量的概念教案1. 让学生理解变量和常量的概念,掌握它们之间的区别和联系。

2. 培养学生从实际问题中抽象出变量和常量的能力,感受数学与生活的紧密联系。

3. 培养学生运用变量和常量解决实际问题的能力,提高学生的数学应用意识。

二、教学内容1. 变量和常量的定义及其区别和联系。

2. 实际问题中变量和常量的应用。

三、教学重难点1. 掌握变量和常量的概念,能够从实际问题中识别变量和常量。

2. 理解变量和常量在实际问题中的作用,能够运用它们解决实际问题。

四、教学方法1. 采用情境教学法,让学生在实际问题中感受变量和常量的存在。

2. 采用合作学习法,让学生通过讨论、交流,共同探讨变量和常量的特点和应用。

3. 采用引导发现法,引导学生从实际问题中发现变量和常量,培养学生的问题意识。

五、教学过程1. 导入:通过展示一幅图,让学生观察图中的变化,引出变量和常量的概念。

2. 新课:介绍变量和常量的定义,讲解它们之间的区别和联系。

3. 实例分析:给出几个实际问题,让学生识别其中的变量和常量,并探讨它们的运用。

4. 小组讨论:让学生分组讨论,总结变量和常量的特点,以及如何运用它们解决实际问题。

5. 总结:对变量和常量的概念进行归纳总结,强调它们在数学和生活中的重要性。

6. 练习:布置一些练习题,让学生巩固所学内容,提高运用变量和常量解决实际问题的能力。

七、教学反思通过本节课的教学,学生应该能够理解变量和常量的概念,掌握它们之间的区别和联系。

在实际问题中,学生应能够识别变量和常量,并运用它们解决实际问题。

同时,学生应感受到数学与生活的紧密联系,提高数学应用意识。

在教学过程中,教师应关注学生的学习情况,及时解答学生的疑问,引导学生从实际问题中发现变量和常量。

此外,教师还应注重培养学生的合作学习能力,鼓励学生积极参与讨论,提高问题意识。

总之,本节课的教学目标是让学生掌握变量和常量的概念,培养学生运用它们解决实际问题的能力。

从常量数学到变量数学

从常量数学到变量数学

从常量数学到变量数学函数是中学数学的核心内容。

从常量数学到变量数学的转变,是从函数概念的系统学习开始的。

函数知识的学习对学生思维能力的发展具有重要意义。

从中学数学知识的组织结构看,函数是代数的“纽带”,代数式、方程、不等式、数列、排列组合、极限和微积分等都与函数知识有直接的联系。

例如:代数式2a2+3a-1,可以看成是函数y=2x2+3x-1在x=a时的值;方程f(x)=0的根可以看成是函数y=f(x)的图像与x轴交点的横坐标;不等式f(x)>0的解可以看成是函数y=f(x)的图像上位于x轴上方部分的点的横坐标集合;等比数列1,2,4,8,…是函数y=2x(x=1,2,3,…)的另一种表示;等等。

函数性质在等式或不等式的求解、证明中往往是非常有力的工具,例如证明:,只要令函数中的x=1即可。

又如:已知a>b,那么,成立的充要条件是()。

(A)a>b>0 (B)b<a<0 (C)a>0>b (D)0<b<a<1。

引进函数,此函数在区间(-∞,0)和(0,+∞)上都是减函数。

易知,当条件A、B或D之一成立时,均有,当且仅当C成立时,有。

所以选C。

另外,函数还是数学的后续发展的基础,同时在物理、化学等自然科学中有着广泛的应用,在解决生产生活中的实际问题时,也往往采用函数作为建模的基本工具。

因此,函数的学习非常重要,应当给予充分的重视。

一、函数概念学习困难的原因分析教学实践表明,函数概念是中学生感到最难学的数学概念之一。

尽管在实际教学中采取了适当渗透、螺旋上升的方法,分段而有循环地安排函数知识,但学生的函数概念水平仍然较低。

造成困难的原因主要有两个方面。

1.函数概念本身的原因。

数学发展史表明,函数概念从产生到完善,经历了漫长而曲折的过程。

这不但因为函数概念系统复杂、涉及因素众多,更重要的是伴随着函数概念的不断发展,数学思维方式也发生了重要转折:思维从静止走向了运动、从离散走向了连续、从运算转向了关系,实现了数与形的有机结合,在符号语言与图、表语言之间可以灵活转换。

初一数学常量与变量之间的关系

初一数学常量与变量之间的关系

初一数学常量与变量之间的关系易佰分教育培训学校教育从心开始一、结构梳理自变量丰富的现实情境变量因变量探索变量之间的关系变量及其关系变量之间的关系表格利用变量之间的关系解表示方法图象决问题进行预测关系式1(在某一变化过程中不断变化的数量叫,应该一个变量y随着另一个变量x 的变化而变化,那么把x叫,y叫2(在表达变量之间的关系时,、、是表达变量之间关系的重要方式( 知识点一:理解用表格来刻画变量之间的关系例1(圆周长C与圆的半径r之间的关系为C=2πr,其中变量是( ),常量是( )( 常量:在某一变化过程中,始终保持不变的量(变量:在某一变化过程中,可以取不同数值的量(包括自变量和因变量。

设在某一变化过程中有两个变量x和y,如果对于x的每一个值,y总有唯一的值与它对应,我们就说x是自变量,y是因变量。

例2 某公园决定投资开发新项目(通过考察确定有6个项目可供选择(各项目所需资金及预汁年利润如下表:所需资金(亿元) l 2 4 6 7 8预计利润(千万元) 0.2 0.35 0.55 O(7 0.9 l(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果投资一个4亿元的项目,那么其年利润预计有多少?(3)如果要预计获得O.9千万元的年利润(投资一个项目需要多少资金?(4)如果该公司可以拿出10亿元进行多个项目的投资(预计最大年利润是多少 ?变式:1. 表中反映了青春期男、女孩身高情况,从中你能获得哪些信息,年龄/岁 9 10 11 12 13 14男孩身高/厘米 126 129 134 140 145 153女孩身高/厘米 127 130 134 137 143 1522. 次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量1易佰分教育培训学校教育从心开始 x的一组对应值(所挂重量x/kg 0 1 2 3 4 5弹簧长度y/cm 18 20 22 24 26 28(1)上表反映了哪两个变量之间的关系,哪个是自变量,哪个是因变量,(2)当所挂物体重量为3kg时,弹簧多长,不挂重物呢,(3)若所挂重物为6kg时(在允许范围内),你能说出此时的弹簧长度吗,3、声音在空气中传播的速度y(米/秒)(简称音速)与气温x(?)之间的关系如下从表中可知音速y随温度x的升高而( )(在气温为20?的一天召开运动会,某人看到发令枪的烟0.2秒后,听到了枪声,则由此可知,这个人距发令地点( )米( 气温(x/?) 0 5 10 15 20音速y(米/秒) 331 334 337 340 3434、下表中的数据是根据某地区入学儿童人数编制的:年份 2005 2006 2007 2008 2009入学儿童人数 2930 2720 2520 2330 2140(1)随着年份的变化,因变量入学儿童的人数变化的趋势是什么,答:( );(2)你认为入学儿童的人数会变成零吗,答:( )5、下表所列为某商店薄利多销的情况(某商品原价为560元,随着不同幅度的降价,日销量(单位为件)发生相应的变化(如表):降价(元) 5 10 15 20 25 30 35日销量(件) 780 810 840 870 900 930 960这个表反映了( )个变量之间的关系,( )是自变量,( )是因变量(从表中可以看出每降价5元,日销量增加( )件,从而可以估计降价之前的日销量为( )件,如果售价为500元时,日销量为( )件(6、重百大楼的销售量随商品价格的高低而变化,在这个变化过程中,自变量是( ) A(销售量 B(顾客 C(商品 D(商品的价格 7(用圆的半径r来表示圆的周长C,其式子为C=2πr(则其中的常量为( )A(r B(π C(2 D(2π28(在圆面积公式S=πR,R是半径,则变量是( )A(S,π B(π,R C(S,R,π D(S,R 9(从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前速度随时间的增大而逐渐增大,这个问题中自变量是( )A(物体 B(速度 C(时间 D(空气知识点2:根据已知条件求关系式,利用关系式求值或者根据关系式做出相应的决策2易佰分教育培训学校教育从心开始 1、确定关系式的步骤:先找出题目中关于________与________的相等关系,再用________的代数式表示________2、半径为R的圆面积S=________,当R=3时,S=________例1、如图,ABC 底边BC上的高是6厘米,当三角形的顶点C沿底边所在直线向点B运动时,三角形的面积发生了变化((1)在这个变化过程中,自变量、因变量各是什么,2(2)如果三角形的底边长为(x厘米),那么三角形的面积y(厘米)可以表示为_________2 (3)当底边长从12厘米变化到3厘米时,三角形的面积从____厘米变化到____厘米2变式1、如图,已知梯形的上底为x,下底为8,高为4((1)求梯形面积y与x的关系;(2)用表格表示,当x从3到7(每次增加1)时,y的相应值;(3)当x每增加1时,y如何变化,(4)当y=50时,x为多少,(5)当x=0时,y等于多少,此时它表示的是什么,例2、将若干张长为20cm、宽为10cm的长方形白纸,按下图所示的方法粘合起来,粘合部分的宽为2cm((1)求4张白纸粘合后的总长度;(2)设x张白纸粘合后的总长度为ycm,写出y与x之间的关系式;(3)并求当x=20时,y的值。

初中数学竞赛讲义:第08讲-由常量数学到变量数学

初中数学竞赛讲义:第08讲-由常量数学到变量数学

第八讲由常量数学到变量数学数学漫长的发展历史大致历经四个时期:以自然数、分数体系形成的萌芽期;以代数符号体系形成的常量数学时期;以函数概念产生的变量数学时期;以集合论为标志的现代数学时期.函数是数学中最重要的概念之一,它是变量数学的标志,“函数”是从量的侧面去描述客观世界的运动变化、相互联系,从量的侧面反映了客观世界的动态和它们的相互制约性.函数的基本知识有:与平面直角坐标系相关的概念、函数概念、函数的表示法、函数图象概念及画法.在坐标平面内,由点的坐标找点和由点求坐标是“数”与“形”相互转换的最基本形式.点的坐标是解决函数问题的基础,函数解析式是解决函数问题的关键,所以,求点的坐标、探求函数解析式是研究函数的两大重要课题.【例题求解】【例1】在平面直角坐标系内,已知点A(2,2),B(2,-3),点P在y轴上,且△APB为直角三角形,则点P的个数为.思路点拨先在直角坐标平面内描出A、B两点,连结AB,因题设中未指明△APB的哪个角是直角,故应分别就∠A、∠B、∠C为直角来讨论,设点P(0,x),运用几何知识建立x 的方程.注:点的坐标是数与形结合的桥梁,求点的坐标的基本方法有:(1)利用几何计算求;(2)通过解析式求;(3)解由解析式联立的方程组求.【例2】如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽.水槽中水面上升高度h与注水时间t之间的函数关系,大致是下列图象中的()思路点拨向烧杯注水需要时间,并且水槽中水面上升高0h.注:实际生活中量与量之间的关系可以形象地通过图象直观地表现出来,如心电图、,股市行情走势图等,图象中包含着丰富的图象信息,要善于从图象的形状、位置、发展变化趋势等有关信息中获得启示.【例3】南方A市欲将一批容易变质的水果运往B市销售,共有飞机、火车、汽车三种运若这批水果在运输(包括装卸)过程中的损耗为200元/小时,记A、B两市间的距离为x 千米.(1)如果用W l、W2、W3分别表示使用飞机、火车、汽车运输时的总支出费用(包括损耗),求出W l、W2、W3与小x间的函数关系式.(2)应采用哪种运输方式,才使运输时的总支出费用最小?思路点拨每种运输工具总支出费用=途中所需费用(含装卸费用)+损耗费用;总支出费用随距离变化而变化,由W l—W2=0,W2一W3=0,先确定自变量的特定值,通过讨论选择最佳运输方式.【例4】已知在菱形ABCD中,∠BAD=60°,把它放在直角坐标系中,使AD边在y轴上,点C的坐标为(23,8).(1)画出符合题目条件的菱形与直角坐标系;(2)写出A、B两点的坐标;(3)设菱形ABCD的对角线交点为P.问:在y轴上是否存在一点F,使得点P与点F 关于菱形ABCD的某条边所在的直线对称,如果存在,写出点F的坐标;如果不存在,请说明理由.思路点拨(1)关键是探求点A是在y轴正半轴上、负半轴上还是坐标原点,只须判断∠COy 与∠CAD的大小;(2)利用解直角三角形求A,B两点坐标;(3)设轴上存在点F(0,y),则P 与F只可能关于直线DC对称.注:建立函数关系式,实际上都是根据具体的实际问题和一些特殊的关系、数据而抽象、归纳建立函数的模型.【例5】如图,已知在Rt△ABC中,∠B=90°,BC=4cm,AB=8cm,D、E、F分别为AB、AC、BC边上的中点,若P为AB边上的一个动点,PQ∥BC,且交AC于点Q,以PQ为一边,在点A的右侧作正方形PQMN,记PQMN与矩形EDBF的公共部分的面积为y .(1)当AP =3cm 时,求的值;(2)设AP=cm 时,求y 与x 的函数关系式;(3)当y=2cm 2,试确定点P 的位置.(2001年天津市中考题)思路点拨 对于(2),由于点P 的位置不同,y 与x 之间存在不同的函数关系,故需分类讨论;对于(3),由相应函数解析式求x 值.注:确定几何元素间的函数关系式,首先是借助几何知识与方法把相应线段用自变量表示,再代入相应的等量关系式,需要注意的是:(1)当图形运动导致图形之间位置发生变化,需要分类讨论;(2)确定自变量的几何意义,常用到运动变化、考虑极端情形、特殊情形等思想方法.学力训练1. 如图,在直角坐标系中,已知点A(4,0)、B(4,4),∠OAB =90°,有直角三角形与Rt △ABO 全等且以AB 为公共边,请写出这些直角三角形未知顶点的坐标 . 2.在直角坐标系中有两点A(4,0),B(0,2),如果点C 在x 轴上(C 与A 不重合),当点C 的坐标为 时,使得由点B 、O 、C 组成的三角形与△AOB 相似(至少找出两个满足条件的点的坐标).3.根据指令[S ,A](S ≥0,0°<A<180°),机器人在平面上能完成下列动作:先原地逆时针旋转角度A ,再朝其面对的方向沿直线行走距离S .现机器人在直角坐标系的坐标原点,且面对x 轴的正方向,(1)若给机器人下了一个指令[4,60°],则机器人应移动到点 ;(2)请你给机器人下一个指令 ,使其移动到点(一5,5).4.如图,在平面直角坐标系中,直线AB 与x 轴的夹角为60°,且点A 的坐标为(一2,0),点B 在x 轴上方,设AB =a ,那么点B 的横坐标为( ) A .22a -B .22a +C .22a --D .22a +-5.一天,小军和爸爸去登山,已知山脚到山顶的路程为300米,小军先走了一段路程,爸爸才开始出发.图中两条线段分别表示小军和爸爸离开山脚登山的路程(米)与登山所用的时间(分钟的关系)(从爸爸开始登山时计时),根据图象,下列说法错误的是( ) A .爸爸登山时,小军已走了50米B .爸爸走了5分钟,小军仍在爸爸的前面C .小军比爸爸晚到山顶D .爸爸前10分钟登山的速度比小军慢,10分钟之后登山的速度比小军快6.若函数mx x y ++=212的自变量x 的取值范围为一切实数,则m 的取值范围是( )A .m<lB .m=1C . m>lD .m ≤17.如图,在直角坐标系中,已知点A(4,0)、点B(0,3),若有一个直角三角形与Rt △ABO 全等,且它们有一条公共边,请写出这个直角三角形未知顶点的坐标(不必写出计算过程). 8.如图,用同样规格黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题: (1)设铺设地面所用瓷砖的总块数为y ,请写出y 与n (n 表示第n 个图形)的函数关系式; (2)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n 的值; (3)若黑瓷砖每块4元,白瓷砖每块3元,在问题(2)中,共需花多少元钱购买瓷砖? (4)是否存在黑瓷砖与白瓷砖块数相等情形?请通过计算说明为什么?9.如图,在平面直角坐标系中有一个正方形ABCD ,它的4个顶点为A(10,0),B (0,10),C(一10,0),D(0,一10),则该正方形内及边界上共有 个整点(即纵横坐标都是整数的点).10.如图,已知边长为l 的正方形OABC 在直角坐标系中,A 、B 两点在第一象限内,OA 与x 轴的夹角为30°,那么点B 的坐标是 .11.如图,一个粒子在第一象限运动,在第一分钟内它从原点运动到(1,0),而后它接着按图所示在与x 轴、y 轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在1989分钟后这个粒子所处位置为 .12.在直角坐标系中,已知A(1,1),在x 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )A .1个B .2个C . 3个D .4个13.已知点P 的坐标是(a +2l ,b +2),这里a 、b 是有理数,PA 、PB 分别是点P 到x 轴和y轴的垂线段,且矩形OAPB的面积为2,则P点可能出现的象限有()A.1个B.2个C.3个D.4个14.甲、乙二人同时从A地出发,沿同一条道路去B地,途中都使用两种不同的速度V l与V2(Vi<V2),甲用一半的路程使用速度V l、另一半的路程使用速度V2;关于甲乙二人从A 地到达B地的路程与时间的函数图象及关系,有图中4个不同的图示分析.其中横轴t表示时间,纵轴s表示路程,其中正确的图示分析为( )A.图(1) B.图(1)或图(2) C.图(3) D.图(4)15.依法纳税是每个公民应尽的义务.《中华人民共和国个人所得税法》规定,公民每月工资、薪金收入不超过800元,不需交税;超过800元的部分为全月应纳税所得额,都应交级别…(1)某公民2002年10月的总收人为1350元,问他应交税款多少元?(2)设表示每月收入(单位:元),y表示应交税款(单位:元),当1300<x≤2800时,请写出y 关于x的函数关系式;(3)某企业高级职员2002年11月应交税款55元,问该月他的总收入是多少元?16.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D是AB上任意一点(A、B两点除外),过D作AB垂线与△ABC的直角边相交于E,设AD=x,△ADE的面积为y,当点D在AB上移动时,求y关于x之间的函数关系式.17.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B两种不同规格的货车厢共40节,使用A型车厢每节费用6000元,使用月型车厢每节费用为8000元.(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试写出y与x之间的函数关系式;(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节月型B车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?(3)在上述方案中,哪个方案运费最高?最少运费为多少元?18.如图,梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(14,0),(14,3),(4,3).点P、Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位;点Q沿OC、CB向终点B运动,当这两点中有一点到达自己的终点时,另一点也停止运动.(1)设从出发起运动了x秒,如果点Q的速度为每秒2个单位,试分别写出这时点Q在OC 上或在CB上时的坐标(用含x的代数式表示);(2)设从出发起运动了x秒,如果点P与点Q所经过的路程之和恰好为梯形OABC的周长的一半,①试用含x的代数式表示这时点Q所经过的路程和它的速度;②试问:这时直线PQ 是否可能同时把梯形OABC的面积也分成相等的两部分?如有可能,求出相应的x的值和P、Q的坐标;如不可能,请说明理由.参考答案。

七年级数学变量常量知识点

七年级数学变量常量知识点

七年级数学变量常量知识点在数学中,变量和常量是我们经常会遇到的概念。

它们分别有什么含义,如何应用于数学问题中,下面我们将详细介绍。

一、变量的概念变量是一个数学符号,代表一个未知的数值,通常用字母表示。

在数学中,我们通常会遇到一些未知数值,比如x、y、z等,这些都是变量。

例如,我们要解方程“2x+1=9”,其中的x就是一个变量,我们需要通过运算来求出x的具体值。

变量可以在数学中起到非常重要的作用,它在表达式中可以作为数值的占位符,使得我们可以运用各种公式来求解问题。

二、常量的概念与变量相反,常量是一个已知的数值,通常用数字表示。

在数学中,常量可以用作数据的基础,并可以在计算中保持不变。

例如,圆周率π的数值就是一个常量,通常表示为3.14159……。

它在几何中的应用非常广泛,可以帮助我们计算圆的周长、面积等。

三、变量和常量的应用1.代数式在代数式中,变量可以代表一段文本或数字,例如“3x-2y”中的x和y就是变量。

常量可以代表已知的数字,例如“3x-2y=7”,其中的7就是常量。

通过代数式的运算,我们可以得出变量的值,从而可以得出问题的答案。

2.函数函数也是数学中的一个重要概念,它将一个或多个变量与一个输出关联起来。

函数通常用字母和输入的变量表示,并用等式或某种关系式定义。

函数可以帮助我们研究一些变量之间的关系,例如,y=2x+1就是一个函数,其中的x和y分别代表输入和输出,通过改变x的值,我们可以得到y的值。

3.方程方程是一种数学表达式,其中的变量和常量通过等式相连。

方程可以通过代数运算来求解其中未知变量的值,从而得到问题的答案。

例如,我们可以通过方程式“2x+3=7”来求解x的值,从而得到x=2的结果。

四、总结变量和常量是数学中基本的概念,它们可以帮助我们解决各种数学问题。

变量是未知的数值,常量是已知的数值,在数学运算中起着不同的作用。

我们需要了解它们的概念,才能更好地应用它们来解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学漫长的发展历史大致历经四个时期:以自然数、分数体系形成的萌芽期;以代数符号体系形成的常量数学时期;以函数概念产生的变量数学时期;以集合论为标志的现代数学时期.函数是数学中最重要的概念之一,它是变量数学的标志,“函数”是从量的侧面去描述客观世界的运动变化、相互联系,从量的侧面反映了客观世界的动态和它们的相互制约性.函数的基本知识有:与平面直角坐标系相关的概念、函数概念、函数的表示法、函数图象概念及画法.在坐标平面内,由点的坐标找点和由点求坐标是“数”与“形”相互转换的最基本形式.点的坐标是解决函数问题的基础,函数解析式是解决函数问题的关键,所以,求点的坐标、探求函数解析式是研究函数的两大重要课题.【例题求解】【例1】在平面直角坐标系内,已知点A(2,2),B(2,-3),点P在y轴上,且△APB为直角三角形,则点P的个数为. (河南省竞赛题)思路点拨先在直角坐标平面内描出A、B两点,连结AB,因题设中未指明△APB的哪个角是直角,故应分别就∠A、∠B、∠C为直角来讨论,设点P(0,x),运用几何知识建立x的方程.注:点的坐标是数与形结合的桥梁,求点的坐标的基本方法有:(1)利用几何计算求;(2)通过解析式求;(3)解由解析式联立的方程组求.【例2】如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽.水槽中水面上升高度h与注水时间t之间的函数关系,大致是下列图象中的( )思路点拨向烧杯注水需要时间,并且水槽中水面上升高0h.注:实际生活中量与量之间的关系可以形象地通过图象直观地表现出来,如心电图、,股市行情走势图等,图象中包含着丰富的图象信息,要善于从图象的形状、位置、发展变化趋势等有关信息中获得启示.【例3】南方A市欲将一批容易变质的水果运往B市销售,共有飞机、火车、汽车三种运输方式,现只可选择其中的一种,这三种运输方式的主要参考数据如下表所示:若这批水果在运输(包括装卸)过程中的损耗为200元/小时,记A、B两市间的距离为x千米.(1)如果用W l、W2、W3分别表示使用飞机、火车、汽车运输时的总支出费用(包括损耗),求出W l、W2、W3与小x间的函数关系式.(2)应采用哪种运输方式,才使运输时的总支出费用最小?(湖北省黄冈市中考题)思路点拨每种运输工具总支出费用=途中所需费用(含装卸费用)+损耗费用;总支出费用随距离变化而变化,由W l—W2=0,W2一W3=0,先确定自变量的特定值,通过讨论选择最佳运输方式.【例4】已知在菱形ABCD中,∠BAD=60°,把它放在直角坐标系中,使AD边在y轴上,点C的坐标为(23,8).(1)画出符合题目条件的菱形与直角坐标系;(2)写出A、B两点的坐标;(3)设菱形ABCD的对角线交点为P.问:在y轴上是否存在一点F,使得点P与点F关于菱形ABCD的某条边所在的直线对称,如果存在,写出点F的坐标;如果不存在,请说明理由. (江苏省常州市中考题)思路点拨 (1)关键是探求点A是在y轴正半轴上、负半轴上还是坐标原点,只须判断∠COy与∠CAD的大小;(2)利用解直角三角形求A,B两点坐标;(3)设轴上存在点F(0,y),则P与F只可能关于直线DC对称.注:建立函数关系式,实际上都是根据具体的实际问题和一些特殊的关系、数据而抽象、归纳建立函数的模型.【例5】如图,已知在Rt△ABC中,∠B=90°,BC=4cm,AB=8cm,D、E、F分别为AB、AC、BC边上的中点,若P为AB边上的一个动点,PQ∥BC,且交AC于点Q,以PQ为一边,在点A的右侧作正方形PQMN,记PQMN与矩形EDBF的公共部分的面积为y.(1)当AP=3cm时,求的值;(2)设AP=cm时,求y与x的函数关系式;(3)当y=2cm2,试确定点P的位置.(2001年天津市中考题)思路点拨对于(2),由于点P的位置不同,y与x之间存在不同的函数关系,故需分类讨论;对于(3),由相应函数解析式求x值.注:确定几何元素间的函数关系式,首先是借助几何知识与方法把相应线段用自变量表示,再代入相应的等量关系式,需要注意的是:(1)当图形运动导致图形之间位置发生变化,需要分类讨论;(2)确定自变量的几何意义,常用到运动变化、考虑极端情形、特殊情形等思想方法.学力训练1.如图,在直角坐标系中,已知点A(4,0)、B(4,4),∠OAB=90°,有直角三角形与Rt△ABO全等且以AB为公共边,请写出这些直角三角形未知顶点的坐标.(贵州省中考题)2.在直角坐标系中有两点A(4,0),B(0,2),如果点C 在x 轴上(C 与A 不重合),当点C 的坐标为 时,使得由点B 、O 、C 组成的三角形与△AOB 相似(至少找出两个满足条件的点的坐标). (广西桂林市中考题)3.根据指令(S ≥0,0°<A<180°),机器人在平面上能完成下列动作:先原地逆时针旋转角度A ,再朝其面对的方向沿直线行走距离S .现机器人在直角坐标系的坐标原点,且面对x 轴的正方向,(1)若给机器人下了一个指令,则机器人应移动到点 ;(2)请你给机器人下一个指令 ,使其移动到点(一5,5).(浙江省杭州市中考题)4.如图,在平面直角坐标系中,直线AB 与x 轴的夹角为60°,且点A 的坐标为(一2,0),点B 在x 轴上方,设AB =a ,那么点B 的横坐标为( ) A .22a -B .22a +C .22a --D .22a+- (年南昌市中考题)5.一天,小军和爸爸去登山,已知山脚到山顶的路程为300米,小军先走了一段路程,爸爸才开始出发.图中两条线段分别表示小军和爸爸离开山脚登山的路程(米)与登山所用的时间(分钟的关系)(从爸爸开始登山时计时),根据图象,下列说法错误的是( ) A .爸爸登山时,小军已走了50米 B .爸爸走了5分钟,小军仍在爸爸的前面 C .小军比爸爸晚到山顶D .爸爸前10分钟登山的速度比小军慢,10分钟之后登山的速度比小军快 (江苏省淮安市中考题)6.若函数mx x y ++=212的自变量x 的取值范围为一切实数,则m 的取值范围是( )A .m<lB .m=1C . m>lD .m ≤17.如图,在直角坐标系中,已知点A(4,0)、点B(0,3),若有一个直角三角形与Rt △ABO 全等,且它们有一条公共边,请写出这个直角三角形未知顶点的坐标(不必写出计算过程). (常州市中考题)8.如图,用同样规格黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题: (1)设铺设地面所用瓷砖的总块数为y ,请写出y 与n (n 表示第n 个图形)的函数关系式; (2)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n 的值; (3)若黑瓷砖每块4元,白瓷砖每块3元,在问题(2)中,共需花多少元钱购买瓷砖? (4)是否存在黑瓷砖与白瓷砖块数相等情形?请通过计算说明为什么?(吉林省中考题)9.如图,在平面直角坐标系中有一个正方形ABCD ,它的4个顶点为A(10,0),B (0,10),C(一10,0),D(0,一10),则该正方形内及边界上共有 个整点(即纵横坐标都是整数的点). (上海市初中数学竞赛题)10.如图,已知边长为l 的正方形OABC 在直角坐标系中,A 、B 两点在第一象限内,OA 与x 轴的夹角为30°,那么点B 的坐标是 .11.如图,一个粒子在第一象限运动,在第一分钟内它从原点运动到(1,0),而后它接着按图所示在与x 轴、y 轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在1989分钟后这个粒子所处位置为 .(美国高中数学考试题)12.在直角坐标系中,已知A(1,1),在x 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )A.1个 B.2个 C. 3个 D.4个 (2001年湖北赛区选拔赛题)13.已知点P的坐标是(a+2),这里a、b是有理数,PA、PB分别是点P到x轴和y轴的垂线2l,b+段,且矩形OAPB的面积为2,则P点可能出现的象限有()A.1个 B.2个 C.3个 D.4个 (江苏省竞赛题)14.甲、乙二人同时从A地出发,沿同一条道路去B地,途中都使用两种不同的速度V l与V2(Vi<V2),甲用一半的路程使用速度V l、另一半的路程使用速度V2;关于甲乙二人从A地到达B地的路程与时间的函数图象及关系,有图中4个不同的图示分析.其中横轴t表示时间,纵轴s表示路程,其中正确的图示分析为( )A.图(1) B.图(1)或图(2) C.图(3) D.图(4)(河北省初中数学创新与知识应用竞赛试题)15.依法纳税是每个公民应尽的义务.《中华人民共和国个人所得税法》规定,公民每月工资、薪金收入不超过800元,不需交税;超过800元的部分为全月应纳税所得额,都应交税,且根据超过部分的多少按不同的税率交税,详细的税率如下表:(1)某公民2002年10月的总收人为1350元,问他应交税款多少元?(2)设表示每月收入(单位:元),y表示应交税款(单位:元),当1300<x≤2800时,请写出y关于x的函数关系式;(3)某企业高级职员2002年11月应交税款55元,问该月他的总收入是多少元?(四川省竞赛题)16.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D是AB上任意一点(A、B两点除外),过D作AB垂线与△ABC的直角边相交于E,设AD=x,△ADE的面积为y,当点D在AB上移动时,求y关于x之间的函数关系式.17.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B两种不同规格的货车厢共40节,使用A型车厢每节费用6000元,使用月型车厢每节费用为8000元.(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试写出y与x之间的函数关系式;(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节月型B车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?(3)在上述方案中,哪个方案运费最高?最少运费为多少元? (广州市中考题)18.如图,梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(14,0),(14,3),(4,3).点P、Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位;点Q沿OC、CB向终点B运动,当这两点中有一点到达自己的终点时,另一点也停止运动.(1)设从出发起运动了x秒,如果点Q的速度为每秒2个单位,试分别写出这时点Q在OC上或在CB上时的坐标(用含x的代数式表示);(2)设从出发起运动了x秒,如果点P与点Q所经过的路程之和恰好为梯形OABC的周长的一半,①试用含x 的代数式表示这时点Q所经过的路程和它的速度;②试问:这时直线PQ是否可能同时把梯形OABC的面积也分成相等的两部分?如有可能,求出相应的x的值和P、Q的坐标;如不可能,请说明理由. (苏州市中考题)参考答案。

相关文档
最新文档