【浙教版】2017年春七下数学:1.2《同位角、内错角、同旁内角》ppt课件
合集下载
1.2 同位角、内错角、同旁内角课件2(浙教版七下)
2
l3
4
7
6
3
5
1
l1
l2
8
如图:怎样描述这三条直线的位 置关系? 直线AB、CD被EF所截
截线
6.这些角还有其它的关系吗 A
C
被截直线
E
2 3
1
4
B
6
7
5
8
D
F
问题:1、观察∠1与∠5的位置关系
①在直线EF的同侧 ②在直线AB、CD的同方向
E A
2 3 6 1 4 5 8 5 7
B
1
C
D
F
还有∠2和∠6;∠3和∠7;∠4和∠8是同位角
同位角
b a
同位角
同位角
1 2 (8)
同位角
1 2 (9) 1 2 (10)
1
1 (6) 2 c 2 (7)
同位角
内错角
同旁内角
根据地图显示填空: 学校与游乐场所在的角 形成一对( 同位角 )角 学校与超市所在的角形 成一对( 同旁内角 )角 学校与飞机场所在的角 形成一对( 内错角 )角
游乐 场
挑战自我
如图,平行直线AB、CD与相交直线EF 、GH相交, 图中的同旁内角共有( )对 A 4对 B 8对
E G
C 12 对
D 16对
A C
B D
H
F
l3
2 1 3 4 6 5 7 8
同位角
“ F”
l1
l2
内错角 “ Z” 同旁内角 “n”
区别
与两直线的位 置关系 同位角
与第三条直线 的位置关系 在它的同侧
两直线同侧
两直线之间
内错角
同旁内角
1.2同位角、内错角、同旁内角 课件4(数学浙教版七年级下册)
D
∠4与∠6.
C
7
8
F
同旁内角:∠4与∠5; ∠3与∠6.
探索交流
学科网
1、图中的角是那类角? 同位角 2、他们有何共同特征? 组成∠1和∠2的边中,截线是 他们的公共边
图形结构形如字母“F”,叫作“F”型
下列各图中 1与 2 哪些是同位角?哪些不是?
1 2 ( 1 2 ( ) ( ) ( 1
七年级(下 册) 义务教育教科书
学科网
复习:1.平面上两条直线有哪两种位置关系? (平行和相交) 2.两条直线相交有几个角? (4个) 3.两条直线与第三条直线相交呢? (8个) 4.你能找出这8个角的
关系吗? ∠1与∠3,∠2与∠4, ∠5与∠7,∠6与∠8 分别是对顶角。
l3
2
1 4
3 6 7
2
) 1 2
)
探索交流
1、图中的角是那类角? 内错角 2、他们有何共同特征? 组成∠1和∠2的边中,截线 是他们的公共边
图形结构形如字母“Z”,叫作“Z”型
1
探索交流
1、图中的角是那类角? 同旁内角 2、他们有何共同特征?组成∠1和∠2的边中,截线是 他们的公共边
图形结构形如字母“U”,叫作“U”型
②在被截线AB、CD的同侧
学科网
B 图中还有其他同位角吗?
A
C
4
5 7 8
D
∠2和∠6
∠3和∠7
F ∠4和∠8
观察
问题2:观察∠3与∠5的位置关系
①在被截线 AB 、 CD 的内部 内错角: ②在截线EF的两旁
E
2 1 3 6
B
4
5 3 5
A C
7
8
∠4与∠6.
C
7
8
F
同旁内角:∠4与∠5; ∠3与∠6.
探索交流
学科网
1、图中的角是那类角? 同位角 2、他们有何共同特征? 组成∠1和∠2的边中,截线是 他们的公共边
图形结构形如字母“F”,叫作“F”型
下列各图中 1与 2 哪些是同位角?哪些不是?
1 2 ( 1 2 ( ) ( ) ( 1
七年级(下 册) 义务教育教科书
学科网
复习:1.平面上两条直线有哪两种位置关系? (平行和相交) 2.两条直线相交有几个角? (4个) 3.两条直线与第三条直线相交呢? (8个) 4.你能找出这8个角的
关系吗? ∠1与∠3,∠2与∠4, ∠5与∠7,∠6与∠8 分别是对顶角。
l3
2
1 4
3 6 7
2
) 1 2
)
探索交流
1、图中的角是那类角? 内错角 2、他们有何共同特征? 组成∠1和∠2的边中,截线 是他们的公共边
图形结构形如字母“Z”,叫作“Z”型
1
探索交流
1、图中的角是那类角? 同旁内角 2、他们有何共同特征?组成∠1和∠2的边中,截线是 他们的公共边
图形结构形如字母“U”,叫作“U”型
②在被截线AB、CD的同侧
学科网
B 图中还有其他同位角吗?
A
C
4
5 7 8
D
∠2和∠6
∠3和∠7
F ∠4和∠8
观察
问题2:观察∠3与∠5的位置关系
①在被截线 AB 、 CD 的内部 内错角: ②在截线EF的两旁
E
2 1 3 6
B
4
5 3 5
A C
7
8
【最新】浙教版七年级数学下册第一章《同位角、内错角、同旁内角》精品课件.ppt
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
1、下列各图中∠1与∠2哪些是同位角?哪些不是?
1 2
()
1
1 2
()
1
2 ()
2 ()
2、指出下列各图中所有的同位角、 内错角、同旁内角。
b
c
23 4 a 56
例1 如图,直线DE截AB,AC,构成8个角。指出
所有的同位角、内错角和同旁内角。
关键:要先分
清哪两条直线
A
被哪一条直线
所截
D
21
34
图中的同旁内角共有(
)对
A 4对 B 8对 C 12 对
D 16对
E
G
A
B
C
D
H
F
布置作业
1、作业本 2、课后练习
❖ 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2020/12/162020/12/16Wednesday, December 16, 2020
∠1与∠3,∠2与∠4,
21 34
浙教版数学七下1.2《同位角、内错角、同旁内角》ppt课件
例1.如图,直线DE截AB,AC,构成8个角, 指出所有的同位角,内错角,同旁内角。 (1)解:两条直线 A 是AB,AC,截线是 DE,所以8个角中同 位角:∠2与∠5,∠4 与∠7,∠1与∠8, ∠6 2 5 8 D E 1 和∠3内错角:∠4与 3 4 6 7 ∠5,∠1与∠6, 同旁 B 内角:∠1与∠5,∠4 C 与∠6。 三线八角中同位角有4对,内错角有2对,同旁内角有2对
∠1与∠5是一对同旁内角, ∠4与∠5是一对内错角. 直线AB,CD被直线EF所截
你能找出他们有几对同位角吗?有什么好办法吗?
课内练习
P
l
A D 5 2 3 6
2. 燕子风筝的骨架如图 所示,它是以直线 l 为 对称轴的轴对称图形。 已知∠1=∠4=45O问 ∠2为多少度? ∠5呢?你 还能说出哪些角的度数?
1
l
1 b 4 6 7 2 3
观察交流
从直线 l 来看,∠3与∠5处于哪个位置? ∠3与∠5处于直线 l 的异侧
α
5 8
从直线a、b来看,∠3与∠5又处于哪个位置? ∠1与∠5都处于直线a、b的之间
这样的一对角( ∠3与∠5 )就是内错角
图中的内错角还有哪些?
二、探索交流 变式图形:图中的∠1与∠2都是内错角
B
A
C 3
D
2
C
1与哪个角是内错角? 2、图中, 1 与哪 个角是同旁内角?它们分别是有哪两条直 线被哪一条直线截成的? A
D A E
1 B
D C A A A 1 11 EE
1
B
C
A 1
B B B
C C C
B
C
注意: 1的同旁内角有三个。
交通指南
同位角、内错角、同旁内角(课件)-七年级数学下册(浙教版)
数学(浙教版)
七年级 下册
第1章 平行线 1.2 同位角、内错角、同旁内角
学习目标
1.理解并掌握同位角、内错角和同旁内角的概念; 2.结合图形认识图形中出现的同位角、内错角和同旁内角的个 数; 3.掌握同位角、内错角和同旁内角的实际应用;
情景导入
温故知新
问题 两条直线AB和CD相交,能形成些具有什么关系的角?
点
Z
都在被截线两侧
讲授新课
典例精析
例3.如图所示,下列说法正确的是( ).
A.∠1与∠2是同位角 B.∠1与∠3是同位角 C.∠2与∠3是内错角 D.∠2与∠3是同旁内角
讲授新课
【答案】D 【分析】根据同位角、同旁内角.内错角的定义进行判断. 【详解】A.∠1与∠2不是同位角,故选项A错误; B.∠1与∠3是内错角,故该选项错误; C.∠2与∠3是同旁内角,故选项C错误,选项D正确. 故选:D.
当堂检测
2.如图,下列说法正确的有( ) ①∠1与∠2是同旁内角; ②∠1与∠ACE是内错角;③∠B与∠4是同 位角;④∠1与∠3是内错角.
A.①③④ B.③④ C.①②④ D.①②③④
当堂检测
【答案】D 【分析】根据同旁内角、内错角和同位角的定义逐一判断即 可. 【详解】解:由图可得①∠1与∠2是同旁内角,正确; ②∠1与∠ACE是内错角,正确; ③∠B与∠4是同位角,正确; ④∠1与∠3是内错角,正确. ∴①②③④正确. 故选D.
当堂检测
【详解】解:(1)∠1和∠3是直线AB和AC被直线DE所截而成 的内错角; 故答案为:AB、AC、DE、内错; (2)图中与∠3是同位角的角是∠7, 故答案为:∠7; (3)图中与∠2 是同旁内角的角有∠6、∠5、∠7,共3个, 故答案为:3.
七年级 下册
第1章 平行线 1.2 同位角、内错角、同旁内角
学习目标
1.理解并掌握同位角、内错角和同旁内角的概念; 2.结合图形认识图形中出现的同位角、内错角和同旁内角的个 数; 3.掌握同位角、内错角和同旁内角的实际应用;
情景导入
温故知新
问题 两条直线AB和CD相交,能形成些具有什么关系的角?
点
Z
都在被截线两侧
讲授新课
典例精析
例3.如图所示,下列说法正确的是( ).
A.∠1与∠2是同位角 B.∠1与∠3是同位角 C.∠2与∠3是内错角 D.∠2与∠3是同旁内角
讲授新课
【答案】D 【分析】根据同位角、同旁内角.内错角的定义进行判断. 【详解】A.∠1与∠2不是同位角,故选项A错误; B.∠1与∠3是内错角,故该选项错误; C.∠2与∠3是同旁内角,故选项C错误,选项D正确. 故选:D.
当堂检测
2.如图,下列说法正确的有( ) ①∠1与∠2是同旁内角; ②∠1与∠ACE是内错角;③∠B与∠4是同 位角;④∠1与∠3是内错角.
A.①③④ B.③④ C.①②④ D.①②③④
当堂检测
【答案】D 【分析】根据同旁内角、内错角和同位角的定义逐一判断即 可. 【详解】解:由图可得①∠1与∠2是同旁内角,正确; ②∠1与∠ACE是内错角,正确; ③∠B与∠4是同位角,正确; ④∠1与∠3是内错角,正确. ∴①②③④正确. 故选D.
当堂检测
【详解】解:(1)∠1和∠3是直线AB和AC被直线DE所截而成 的内错角; 故答案为:AB、AC、DE、内错; (2)图中与∠3是同位角的角是∠7, 故答案为:∠7; (3)图中与∠2 是同旁内角的角有∠6、∠5、∠7,共3个, 故答案为:3.
1.2 同位角、内错角、同旁内角 课件(共18张PPT) 浙教版数学七年级下册
AΒιβλιοθήκη DF4 23E
1
B
C
课内练习
1.已知直线l1, l2, l3 , l4(如图). (1)当哪条直线被哪条直线所截时, ∠1与∠3是同位角? 当哪两条直线被哪条直线所截时, ∠1与∠4是内错角?
(2)说出图中一对同位角、一对内错 角、一对同旁内角,并分别说明是 哪两条直线被哪条直线所截而成的.
l3
(1)两个同位角就是与直线的位置关系而言具有“同上、同右”、“同上、同 左”“同下、同右”或“同下、同左”的特征.
(2)内错角具有“同内、异侧”的特征.
(3)同旁内角具有“同内、同侧”的特征.
2、掌握辩别这些角的关键是看哪两条直线被哪一条直线所截、 分清哪一条直线截哪两条直线形成了哪些角,是作出正确判定的 前提,在截线的同旁找同位角,同旁内角,在截线的不同旁,找 内错角.
第一章 平行线
1.2 同位角、内错角、同旁内角
知识 目标
能力 目标
情感 目标
教学目标
1.了解同位角、内错角和同旁内角的概念,并能识别、区分. 2.会在给定某个条件下进行有关同位角、内错角、同旁内角的判定 和计算.
经历同位角、内错角和同旁内角的识别过程,提高学生的辨别 能力和想象能力.
通过了解同位角、内错角和同旁内角的意义,使学生获得学习 几何的成功体验.
E
H
拓展提高
交通指南
根据地图显示填空:
学校与游乐场所在的角 形成一( 同位角 )角; 学校与超市所在的角形 成一对( 同旁内角 )角; 学校与飞机场所在的角 形成一对( 内错角 )角.
游乐场
超市
学校
学
解放
人
民 飞机场
路
马
鞍
1
B
C
课内练习
1.已知直线l1, l2, l3 , l4(如图). (1)当哪条直线被哪条直线所截时, ∠1与∠3是同位角? 当哪两条直线被哪条直线所截时, ∠1与∠4是内错角?
(2)说出图中一对同位角、一对内错 角、一对同旁内角,并分别说明是 哪两条直线被哪条直线所截而成的.
l3
(1)两个同位角就是与直线的位置关系而言具有“同上、同右”、“同上、同 左”“同下、同右”或“同下、同左”的特征.
(2)内错角具有“同内、异侧”的特征.
(3)同旁内角具有“同内、同侧”的特征.
2、掌握辩别这些角的关键是看哪两条直线被哪一条直线所截、 分清哪一条直线截哪两条直线形成了哪些角,是作出正确判定的 前提,在截线的同旁找同位角,同旁内角,在截线的不同旁,找 内错角.
第一章 平行线
1.2 同位角、内错角、同旁内角
知识 目标
能力 目标
情感 目标
教学目标
1.了解同位角、内错角和同旁内角的概念,并能识别、区分. 2.会在给定某个条件下进行有关同位角、内错角、同旁内角的判定 和计算.
经历同位角、内错角和同旁内角的识别过程,提高学生的辨别 能力和想象能力.
通过了解同位角、内错角和同旁内角的意义,使学生获得学习 几何的成功体验.
E
H
拓展提高
交通指南
根据地图显示填空:
学校与游乐场所在的角 形成一( 同位角 )角; 学校与超市所在的角形 成一对( 同旁内角 )角; 学校与飞机场所在的角 形成一对( 内错角 )角.
游乐场
超市
学校
学
解放
人
民 飞机场
路
马
鞍
浙教版数学七年级下册1.2《同位角、内错角、同旁内角》 课件(共28张PPT)
感悟2: 解题前要先确定“哪两条直线被哪条直线所截”,
变式:已知直线l1,l2,l3,l4(如图). 你能数出这个图中的同位角,内错角,同旁内角的对 数吗?
l4
初级挑战
同位角:16对 内错角:8对 同旁内角:8对
1
l3 2 13 11 12 14 9 10 6 8 7 3 15
4 l1 16 5
l2
①在截线l3的两侧
l3
2 1 3 4 6 7 8 5
导学反馈
②在被截线l1,l2的之间
l1
l2
3 5 ∠3和∠5 ∠4和∠6
同旁内角( same-side interior angles)
①在截线l3的同侧
l3
2 1 3 4 6 7 8 5
导学反馈
②在被截线l1,l2的之间
4
5
l1
l2
∠4和∠5
∠3和∠6
例2:如图, 同旁内角互 同位角相等 补 如果∠1=∠2, 那么∠1=∠4,∠1与∠3互补. A 请说明理由.
内错角相等
高级挑战
D B
F
2 3 1
4
E C
如果内错角相等, 那么同位角相等,同旁内角互补.
变式1:如图, 同旁内角互 内错角相等 补 如果∠1=∠4, 那么∠1=∠2,∠1与∠3互补. A 请说明理由.
感悟3: 求一个图形中的三类角的对数时要利用“三线八角” 的基本图形
请找出图中所有的同位角、内错角和同旁内角.
E 同位角: ∠A和∠EDC ∠C和∠ABF
D
合作交流
A
F
C B
内错角: ∠C和∠EDC ∠A和∠ABF 同旁内角:∠A和∠ABC ∠A和∠ADC ∠C和∠ABC ∠C和∠ADC
浙教版七年级下册1.2同位角、内错角、同旁内角课件(共17张PPT)
•
13、知人者智,自知者明。胜人者有 力,自 胜者强 。21.8.721.8.720:22:4120:22:41August 7, 2021
•
14、意志坚强的人能把世界放在手中 像泥块 一样任 意揉捏 。2021年8月7日星期 六下午8时22分 41秒20:22:4121.8.7
•
15、最具挑战性的挑战莫过于提升自 我。。2021年8月下午 8时22分21.8.720:22August 7, 2021
•
16、业余生活要有意义,不要越轨。2021年8月7日 星期六8时22分 41秒20:22:417 August 2021
•
17、一个人即使已登上顶峰,也仍要 自强不 息。下 午8时22分41秒 下午8时22分de my day!
我们,还在路上……
你还能构成同位角和同旁内角吗?
例1 如图,直线DE截AB,AC,构成8个角。指出
所有的同位角、内错角和同旁内角。
(1)若DE,AC被AB所截呢?
关键: 分清截线 和被截线
D
21
34
A
58
67 E
B
C
A
(2)∠A与∠8是哪两条直线被第
3条直线所截的一对内错角? D
2 1
(AB与DE 被AC所截的内错角)
8c
内错角
b
两个角都在 被截线a、b的之间, 并且分别在截线c的两侧。
2
1( )3
6 4 5( )7 a
8 c
b
“Z”
2
1( )3 6
4 5( )7
a
8c
同旁内角
b
两个角都在 被截直线a,b的之间, 并且分别在截线c的同侧。
2
浙教版数学七年级下册同位角、内错角、同旁内角课件
l3
21 34
l1
65
l2
78
结构特征: l3
21 34
l1
65
l2
78
同位角 内错角 同旁内角
截线
同旁 两旁 同旁
被截线
同侧 之间
之间
结构特征
F Z U
辨认哪些角是同位角、内错角、同旁内角:
1
2 (1)
同位角
1
1
22
(2)
(3)
同位角
同位角
ba
1
2
c
(6)
同位角
1 2 (7)
1
2 (8)
内错角
1、两条直线l1、l2被第三条直线l3所截,
构成了几个角?
被截线
“三线八角”
l1 l2 l3
截线
2.你能找出这8个角的位置关系吗?
对顶角: ∠1与∠3,∠2与∠4, ∠5与∠7,∠6与∠8.
l3
21
34
6 7
5
8
3.这些角还有其它的关系吗
l1
l2
1、视察∠1与∠5的位置 2、视察∠3与∠5的位置 3、视察∠3与∠6的位置
12
(4)
同位角
2 1 (5)
1
1
2
2
(9)
(10)
同旁内角
1. 如果把图看成是直线AB, CD被直线EF所截, 请写出所有的同位角、内错角与同旁内角.
D
A
1
4
E5
2
3 F
B
C
2. 如果把图看成是直线AB,EF被直线CD所截, 请写出所有的同位角、内错角与同旁内角.
DA1来自4E52
3 F
浙教版七年级数学下册第一章《同位角、内错角、同旁内角》课件 (2)
(同旁内
(内错角)
角)
练一练:
DA
1 4
5
E B
23 F C
(3)哪两条直线被哪一条直线所截,∠2与∠5
是同位角? (直线AB和CD被直线EF所截)
同位角、内错角和同旁内角的结构特征:
l3
21 34
l1
65
l2
78
能力挑战: 看图填空
A
E1 3D
B2
4
F
C
(1)若ED,BF被AB所截, 则∠1与_∠__2__是同位角。
例2:如图,直线DE交∠ABC的边BA于点F。如果内
错角∠1与∠2相等,那么同位角∠1与∠4相等,同旁
内角∠1与∠3互补。请说明理由。
A
D
F4
23
E
1
B
C
巩固提升:
E
D
C
A
B
请找出图中所有的同位角、内错角和同旁内角。
体会.分享
说能出你这节课的收获和体验让大家 与你分享吗?
l3
21 34
l1
65
l2
78
同位角 内错角 同旁内角
截线 同旁 两旁 同旁
被截线 同侧 之间 之间
结构特征
F Z U
作业:作业本(1)1.1 课本第6页1——4,5选做
•1、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2022年2月15日星期二2022/2/152022/2/152022/2/15 •2、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2022年2月2022/2/152022/2/152022/2/152/15/2022 •3、提出一个问题往往比解决一个更重要。因为解决问题也许仅是一个数学上或实验上的技能而已,而提出新的问题,却需要有创造性的想像力,而且标志着 科学的真正进步。2022/2/152022/2/15February 15, 2022 •4、儿童是中心,教育的措施便围绕他们而组织起来。2022/2/152022/2/152022/2/152022/2/15
浙教版七年级数学下册第一章《同位角内错角同旁内角》优课件 (2)
l
12
4
b
3 4
5
56
α
87
(n型)
1 探索交流
变式图形:图中的∠1与∠2都是同位角。
在形如字母“F”的图形中有同位角。
1 探索交流 变式图形:图中的∠1与∠2都是内错角
图形特征:在形如“Z”的图形中有内错角。
1 探索交流 变式图形:图中的∠1与∠2都是同旁内角。
图形特征:在形如“n”的图形中有同旁内角。
1.2 同位角、内错角、同旁内 角
如果有两条直线和另一条直 线相交
zxxkw
通常说:两条直线被第三条直线所截 被截线
如: 直线a、b被直线c 所截。
a b c
截线
l3
21 34
l1
65
l2
78
同位角、内错角和同旁内角的结构特征:l 3
21 34
l1
65
l2
78
与被截直线的关系 同位角 被截直线的同一侧 内错角 被截直线之间 同旁内角 被截直线之间
D
F4
E
23
1
B
C
五、小结
(1)同位角、内错角、同旁内角都是两条直线被第 三条直线所截时产生的,我们要掌握他们的位置特征.
2、掌握辩别这些角的关键是看哪两条直线被哪一条直 线所截、分清哪一条直线截哪两条直线形成了哪些角, 是作出正确判定的前提,在截线的同旁找同位角,同旁 内角,在截线的不同旁,找内错角。
练习: 2、指出下列各图中所有的同位角、内错角、同旁内角。
E
D
C
A
B
F
1 观察交流
从直线 l 来看,∠1与∠5处于哪个位置?
∠1与∠5处于直线 l 的同一侧
12
4
b
3 4
5
56
α
87
(n型)
1 探索交流
变式图形:图中的∠1与∠2都是同位角。
在形如字母“F”的图形中有同位角。
1 探索交流 变式图形:图中的∠1与∠2都是内错角
图形特征:在形如“Z”的图形中有内错角。
1 探索交流 变式图形:图中的∠1与∠2都是同旁内角。
图形特征:在形如“n”的图形中有同旁内角。
1.2 同位角、内错角、同旁内 角
如果有两条直线和另一条直 线相交
zxxkw
通常说:两条直线被第三条直线所截 被截线
如: 直线a、b被直线c 所截。
a b c
截线
l3
21 34
l1
65
l2
78
同位角、内错角和同旁内角的结构特征:l 3
21 34
l1
65
l2
78
与被截直线的关系 同位角 被截直线的同一侧 内错角 被截直线之间 同旁内角 被截直线之间
D
F4
E
23
1
B
C
五、小结
(1)同位角、内错角、同旁内角都是两条直线被第 三条直线所截时产生的,我们要掌握他们的位置特征.
2、掌握辩别这些角的关键是看哪两条直线被哪一条直 线所截、分清哪一条直线截哪两条直线形成了哪些角, 是作出正确判定的前提,在截线的同旁找同位角,同旁 内角,在截线的不同旁,找内错角。
练习: 2、指出下列各图中所有的同位角、内错角、同旁内角。
E
D
C
A
B
F
1 观察交流
从直线 l 来看,∠1与∠5处于哪个位置?
∠1与∠5处于直线 l 的同一侧
浙教版数学七年级下1.2同位角、内错角、同旁内角(课件)
课内练习: 2.燕子风筝的骨架如图所示. (1)∠1与∠5 是一对什么角?如果∠1=∠6=45°,那么∠5等 于多少度?根据什么?∠5与∠1相等吗? 答案:内错角, ∠5=∠6=45°(对顶角相等), ∵∠1=45°, ∴∠5=∠1 . (2)∠2 与∠3 是一对什么角?如果∠2=∠4=45°,那么∠3 等于多少度?根据什么?∠2+∠3等于多少度? 答案:同旁内角, ∠3=180°-∠4=180°-45° =135°, ∠2 + ∠3=45°+135平面内的两条直线有哪些位置关系?
两种:平行和相交
如果有两条直线和一条直线相交,可以得到几个角?
三线八角
2 3 1 4 6 7 5
8
做一做: 1.在图1-6中, (1)∠4与∠8是同位角吗?还有哪几对是同位角? 答案:是.∠1与∠5,∠2与∠6,∠3与∠7. (2)∠4与∠6是内错角吗?内错角一共有几对? 答案:是.2对. (3)除∠3与∠6外,还有其他同旁内角吗? 答案:还有∠4与∠5.
2.如图,两只手的食指和拇指在同一平面内,它们构成的一对角可以看成是什么角?类似地,你还能用两 只手的手指构成同位角和同旁内角吗?
同位角 答案:内错角. 能.
同旁内角
例 如图1-7,直线DE交∠ABC的边BA于点F.如果内错角∠1与∠2相等,那么同位角∠1与∠4相等,同旁内 角∠1与∠3互补.请说明理由. 解 ∵∠2与∠4是对顶角, ∴∠2=∠4.(对顶角相等) 已知∠1=∠2, ∴∠1=∠4. ∵∠2与∠3互为补角, ∴∠2+∠3=180°, ∴ ∠1+∠3=180°. 即∠1与∠3互补.
浙教版七年级数学下册第一章《同位角、内错角、同旁内角》公开课课件
•
例1 如图,直线DE截AB,AC,构成8个角。
指出所有的同位角、内错角和同旁内角。
A
注意:
D
2 1
3
4
B
58
67 E
C
解题关键是明确哪两条直线被哪条直线所截!
变式:
A
1、如果是AB与DE 被AC所
截,请指出其中的同位角、 内错角、同旁内角?
D
2 1
3
4
B
58
67 E
C
2、∠A与∠8是哪两条直线被第3条直线所截的角?
• 10、阅读一切好书如同和过去最杰出的人谈话。2021/7/232021/7/232021/7/237/23/2021 8:05:58 PM
• 11、一个好的教师,是一个懂得心理学和教育学的人。2021/7/232021/7/232021/7/23Jul-2123-Jul-21
• 12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/7/232021/7/232021/7/23Friday, July 23, 2021
2、观察∠3与∠5的位置 两条直线l1 与l2 之间,这 样的一对角叫做内错角。
思考:图中还有其它内错角吗?
3、观察∠3与∠6的位置
思考:寻找图中其它的同旁内角?
同位角、内错l 3 角和同旁内角的结构特征:
21 34
l1
65
l2
78
同位角 内错角 同旁内角
截线 同旁 两旁 同旁
被截线 同侧 之间
之间
65 78
像∠1与∠5,它们都在第三 条直线 l3 的同旁,并且分
1、观察∠1与∠5的位置 别位于直线l1 ,l2 的相同 一侧,这样的一对角叫 做同位角。
例1 如图,直线DE截AB,AC,构成8个角。
指出所有的同位角、内错角和同旁内角。
A
注意:
D
2 1
3
4
B
58
67 E
C
解题关键是明确哪两条直线被哪条直线所截!
变式:
A
1、如果是AB与DE 被AC所
截,请指出其中的同位角、 内错角、同旁内角?
D
2 1
3
4
B
58
67 E
C
2、∠A与∠8是哪两条直线被第3条直线所截的角?
• 10、阅读一切好书如同和过去最杰出的人谈话。2021/7/232021/7/232021/7/237/23/2021 8:05:58 PM
• 11、一个好的教师,是一个懂得心理学和教育学的人。2021/7/232021/7/232021/7/23Jul-2123-Jul-21
• 12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/7/232021/7/232021/7/23Friday, July 23, 2021
2、观察∠3与∠5的位置 两条直线l1 与l2 之间,这 样的一对角叫做内错角。
思考:图中还有其它内错角吗?
3、观察∠3与∠6的位置
思考:寻找图中其它的同旁内角?
同位角、内错l 3 角和同旁内角的结构特征:
21 34
l1
65
l2
78
同位角 内错角 同旁内角
截线 同旁 两旁 同旁
被截线 同侧 之间
之间
65 78
像∠1与∠5,它们都在第三 条直线 l3 的同旁,并且分
1、观察∠1与∠5的位置 别位于直线l1 ,l2 的相同 一侧,这样的一对角叫 做同位角。
浙教版七年级数学下册第一章《 同位角、内错角、同旁内角 》公开课课件
❖
1. 如果把图看成是直线AB, CD被直线EF所截, 请写出所有的同位角、内错角与同旁内角.
D
A
1
4
E5
2
3 F
B
C
2. 如果把图看成是直线AB,EF被直线CD所截, 请写出所有的同位角、内错角与同旁内角.
D
A
1
4
E5
2
3 F
B
C
3. 如果把图看成是直线CD,EF被直线AB所截, 请写出所有的同位角、内错角与同旁内角.
D
F4
23
A E
1
B
C
体会.分享
说能出你这节课的收获和体验让大家 与你分享吗?
体会.分享
能说出你这节课的收获和体验 让大家与你分享吗?
布置作业
1、作业本 2、课后练习
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/7/302021/7/302021/7/302021/7/307/30/2021
❖ 14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年7月30日星期五2021/7/302021/7/302021/7/30
D
A
1
4
E5
2
3 F
B
C
例1 如图,直线DE截AB,AC,构成8个角。
指出所有的同位角、内错角和同旁内角。
A
注意:
D
2 134ຫໍສະໝຸດ B5867 E
C
解题关键是明确哪两条直线被哪条直线所截!
变式:
如果是AB与DE 被AC所截,请指出其中的同位角、 内错角、同旁内角?
1. 如果把图看成是直线AB, CD被直线EF所截, 请写出所有的同位角、内错角与同旁内角.
D
A
1
4
E5
2
3 F
B
C
2. 如果把图看成是直线AB,EF被直线CD所截, 请写出所有的同位角、内错角与同旁内角.
D
A
1
4
E5
2
3 F
B
C
3. 如果把图看成是直线CD,EF被直线AB所截, 请写出所有的同位角、内错角与同旁内角.
D
F4
23
A E
1
B
C
体会.分享
说能出你这节课的收获和体验让大家 与你分享吗?
体会.分享
能说出你这节课的收获和体验 让大家与你分享吗?
布置作业
1、作业本 2、课后练习
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/7/302021/7/302021/7/302021/7/307/30/2021
❖ 14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年7月30日星期五2021/7/302021/7/302021/7/30
D
A
1
4
E5
2
3 F
B
C
例1 如图,直线DE截AB,AC,构成8个角。
指出所有的同位角、内错角和同旁内角。
A
注意:
D
2 134ຫໍສະໝຸດ B5867 E
C
解题关键是明确哪两条直线被哪条直线所截!
变式:
如果是AB与DE 被AC所截,请指出其中的同位角、 内错角、同旁内角?
浙教版初中数学七年级下册+1.2+同位角、内错角、同旁内角课件+(共18张)课件
思考: 一个平面内的两条直线有几种位置关系?
相交
平行
直线 、 被直线 所截
同位角
∠1和∠5 ∠4和∠8 ∠2和∠6 ∠3和∠7
内错角
∠3和∠5 ∠4和∠6
直线 、 被直线 所截
同旁内角
∠4和∠5 ∠3和∠6
21 34
A
65 78
直线 、 被直线 所截
直线 、 被直线 所截
同位角
∠1和∠5 ∠4和∠8 ∠2和∠6 ∠3和∠7
?
角)
练一练:
(2)如果把图看成是直线CD,EF被直线AB所截,
那么∠1与∠5是一对什么角? ∠4与∠5呢?
(同旁内
(内错角)
角)
练一练:
(3)哪两条直线被哪一条直线所截,∠2与∠5 是同位角?
(直线AB和CD被直线EF所截)
同位角、内错角和同旁内角的结构特征:
能力挑战: 看图填空
(1)若ED,BF被AB所截, ห้องสมุดไป่ตู้∠1与_∠__2__是同位角。
内错角
∠3和∠5 ∠4和∠6
同旁内角
∠4和∠5 ∠3和∠6
例1:如图,直线DE截直线AB,AC,构成8个角。
指出所有的同位角、内错角和同旁内角。
被截线
截线
练一练:
(1)如果把图看成是直线AB,EF被直线CD所截, 那么∠1与∠2是一对什么角? (同位角)
∠3与∠4呢?(内错角) ∠ 2与∠4呢 (同旁内
角∠1与∠2相等,那么同位角∠1与∠4相等,同旁 内角∠1与∠3互补。请说明理由。
巩固提升:
E
D
C
A
B
F
请找出图中所有的同位角、内错角和同旁内角。
说能出你这节课的收获和体验让大家 与你分享吗?
相交
平行
直线 、 被直线 所截
同位角
∠1和∠5 ∠4和∠8 ∠2和∠6 ∠3和∠7
内错角
∠3和∠5 ∠4和∠6
直线 、 被直线 所截
同旁内角
∠4和∠5 ∠3和∠6
21 34
A
65 78
直线 、 被直线 所截
直线 、 被直线 所截
同位角
∠1和∠5 ∠4和∠8 ∠2和∠6 ∠3和∠7
?
角)
练一练:
(2)如果把图看成是直线CD,EF被直线AB所截,
那么∠1与∠5是一对什么角? ∠4与∠5呢?
(同旁内
(内错角)
角)
练一练:
(3)哪两条直线被哪一条直线所截,∠2与∠5 是同位角?
(直线AB和CD被直线EF所截)
同位角、内错角和同旁内角的结构特征:
能力挑战: 看图填空
(1)若ED,BF被AB所截, ห้องสมุดไป่ตู้∠1与_∠__2__是同位角。
内错角
∠3和∠5 ∠4和∠6
同旁内角
∠4和∠5 ∠3和∠6
例1:如图,直线DE截直线AB,AC,构成8个角。
指出所有的同位角、内错角和同旁内角。
被截线
截线
练一练:
(1)如果把图看成是直线AB,EF被直线CD所截, 那么∠1与∠2是一对什么角? (同位角)
∠3与∠4呢?(内错角) ∠ 2与∠4呢 (同旁内
角∠1与∠2相等,那么同位角∠1与∠4相等,同旁 内角∠1与∠3互补。请说明理由。
巩固提升:
E
D
C
A
B
F
请找出图中所有的同位角、内错角和同旁内角。
说能出你这节课的收获和体验让大家 与你分享吗?
浙教版七年级数学下册第一章《 同位角、内错角、同旁内角 》公开课课件
12
(4)
同位角
2 1 (5)
1
1
2
2
(9)
(10)
同旁内角
❖1、使教育过程成为一种艺术的事业。 ❖2、教师之为教,不在全盘授予,而在相机诱导。2021/10/252021/10/252021/10/2510/25/2021 5:58:02 PM ❖3、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人4、智力教育就是要扩大人的求知范围 ❖5、教育是一个逐步发现自己无知的过程。 ❖6、要经常培养开阔的胸襟,要经常培养知识上诚实的习惯,而且要经常学习向自己的思想负责任。2021年10月 2021/10/252021/10/252021/10/2510/25/2021 ❖7、风声雨声读书声,声声入耳;家事国事天下事,事事关心。2021/10/252021/10/25October 25, 2021 ❖8、先生不应该专教书,他的责任是教人做人;学生不应该专读书,他的责任是学习人生之道。2021/10/252021/10/252021/10/252021/10/25
1.2同位角、内错角、同旁内角
1、两条直线l1、l2被第三条直线l3所截,
构成了几个角?
被截线
“三线八角”
l1 l2 l3
截线
2.你能找出这8个角的位置关系吗?
对顶角: ∠1与∠3,∠2与∠4, ∠5与∠7,∠6与∠8.
l3
21 34
l1
6 7
5
8
l2
3.这些角还有其它的关系吗
1、观察∠1与∠5的位置 2、观察∠3与∠5的位置 3、观察∠3与∠6的位置
l3
21 34
l1
65
l2
78
结构特征: l 3
浙教版七年级下册1.2同位角、内错角、同旁内角(共18张PPT)
B
C
(1)如果把图看成是直线AB,EF被直线CD所截,那么∠1与∠2是一对什么角?
(同位角)
∠3与∠4呢?
(内错角)
∠ 2与∠4呢?
(同旁内角)
练一练:
DA
1 4
5
E B
23 F C
(2)如果把图看成是直线CD,EF被直线AB所截,那么∠1与∠5是一对什么角?
∠4与∠5呢?
(同旁内角)
(内错角)
练一练:
民 安 居 乐 业 、邻里 和睦互 助的正 常生活 秩序。 二 、 广 泛 开 展治安 综合治 理、安 全生产 工作宣 传教育 活动,牢 固树立 “安全 第一、 生 命 至 上 ”的 观念。 为了抓 好社区 的安全 稳定工 作,社 区坚持 以人为 本,深入 开展对 居 民 、 学 生 的法制 教育、 安全教 育、消 防教育 、戒毒 教育,提 高居民 、学生 的法律
直线 l1 、l3 被直线 l2所截
同位角
∠1和∠5 ∠4和∠8 ∠2和∠6 ∠3和∠7
内错角
∠3和∠5 ∠4和∠6
同旁内角
∠4和∠5 ∠3和∠6
例1:如图,直线DE截直线AB,AC,构成8个角。指出所有的同位角、内错角和同旁
内角。
A
D
21 34
B
被截线
58
E
67
C
截线
练一练:
DA
1 4
5
E
23 F
l3
21 34
l1
65
l2
78
同位角 内错角 同旁内角
截线
同旁 两旁 同旁
被截线
同侧 之间 之间
结构特征
F Z U
BC所截构成的______角。
【最新】浙教版七年级数学下册第一章《同位角内错角同旁内角》公开课课件 (2).ppt
• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2020/12/162020/12/16Wednesday, December 16, 2020
• 10、人的志向通常和他们的能力成正比例。2020/12/162020/12/162020/12/1612/16/2020 6:12:22 PM • 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2020/12/162020/12/162020/12/16Dec-2016-Dec-20 • 12、越是无能的人,越喜欢挑剔别人的错儿。2020/12/162020/12/162020/12/16Wednesday, December 16, 2020 • 13、志不立,天下无可成之事。2020/12/162020/12/162020/12/162020/12/1612/16/2020
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
∠4与∠6处于直线 l 的两侧
从直线a、b来看,∠4与∠6又处于哪个位置?
∠4与∠6都处于直线a、b的内部
l
12
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.如图,∠1和∠2,∠3和∠4分别是由哪两条直线被哪一条直线所 截形成的?它们各是什么角? 解:图①:∠1和∠2是由直线AB,CD被直线BD所截形成的内错角, ∠3 和∠4 是由直线 AD ,BC 被直线BD所截形成的内错角.图②:∠1 和∠ 2是由直线 AB,CD 被直线 BC 所截形成的同位角 , ∠3 和∠4 是由 直线AB,BC被直线AC所截形成的同旁内角
14.如图,把一根筷子一端放在水里,一端露出水面,筷子变弯了, 它真的弯了吗?其实没有,这是光的折射现象,光从空气中射入水中,
光的传播方向发生了改变,图中与∠1是同位角的有 ∠AOF,∠MOF,∠C,与∠2是内错角的有___________________ ∠AOE和∠MOE . _____________________
∠1和∠7,∠4和∠6,∠5和∠9,∠2和∠9 ;同旁内角一共有 别是 ________________________________________ 4 对,分别是___________________________________________ ____ . ∠1和∠6,∠1和∠9,∠4和∠7,∠6和∠9
5.如图,∠1和∠2是内错角,可看成是由直线( A.AD,BC被AC所截构成 B.AB,CD被AD所截构成 C.AB,CD被AC所截构成 D.AB,CD被BC所截构成
C
)
知识点3:同旁内角 6.如图,∠1,∠2不是同旁内角的是(
B )
7.如图,∠α的同旁内角有(
C)
A.1个
B.2个 C.3个
D.4个
18.如图,图中已标出的8个角中,同位角、内错角、同旁内角各有哪
几对? 解:同位角:∠1和∠4,∠6和∠8;内错角:∠1和∠7,∠2和∠8,
∠3和∠6,∠2和∠5;同旁内角:∠1和∠8,∠2和∠7,∠2和∠6,
∠3和∠4,∠3和∠5,∠4和∠5,∠6和∠7
12.如图,下列判断正确的是( D ) A.∠2与∠4是同位角
B.∠3与∠5是内错角
C.∠2与∠3是同旁内角 D.∠1与∠3是同位角
6 对,分别是____________________ ∠1和∠5,∠2和∠6, 13.如图,同位角一共有____
∠ 3和∠7,∠4和∠8,∠7和∠9,∠4和∠9;内错角一共有____ _____________________________________ 4 对 ,分
解:同位角:∠3与∠7,∠2与∠8,∠4与∠6;内错角:∠1与∠4,
∠3与∠5,∠2与∠6,∠4与∠8;同旁内角:∠3与∠6,∠2与∠5, ∠2与∠4,∠4与∠5
10.如图,下列说法错误的是( D ) A.∠A与∠EDC是同位角 B.∠A与∠ABF是内错角 C.∠A与∠ABC是同旁内角 D.∠A与∠C是同旁内角 11.如图,CM,CD,ON,OB被AO所截,下列说法错误的是( A ) A.∠1和∠4是同位角 B.∠2和∠4是同位角 C.∠2和∠AOB是同位角 D.∠ACD和∠4是同位角
16.如图,直线a,b被直线l所截,已知∠1=40°,试求∠2的同位角是40°
17 .如图 , B , C , D 在同一条直线上 , ∠ 1 =∠ B, ∠ 2 =∠ A , 指出 ∠1的同位角,∠2的内错角,并求出∠A+∠B+∠ACB的度数. 解:∠1的同位角是∠B,∠2的内错角是∠A,∠A+∠B+∠ACB= 180°
8.如图,∠1和∠2是哪两条直线被哪一条直线所截形成的?它们是什 么角?∠1和∠3是哪两条直线被哪一条直线所截形成的?它们是什么
角?
解:∠1和∠2是直线CD,EF被直线AB所截形成的同位角,∠1和∠3 是直线EF,CD被直线AB所截形成的内错角
9.如图,用数字标出的八个角中,同位角、内错角、同旁内角分别有 哪些?请把它们一一写出来.
第1章 平行线
1. 2 同位角、内错角、同旁内角
知识点1:同位角 1.下列各图中,∠1与∠2是同位角的B是( C )
2.下列各图中,∠1,∠2不是同位角的是( B )
3.图中,与∠1成同位角的角有( B ) A.2个
B.3个
C.4个
D.5个
知识点2:内错角 4.下列图形中,∠1和∠2不是内错角的是( C )