北师大版高一数学必修一集合、函数检测题

合集下载

新北师大版高中数学必修一第一单元《集合》检测卷(有答案解析)(3)

新北师大版高中数学必修一第一单元《集合》检测卷(有答案解析)(3)

一、选择题1.函数()log a x x f x x=(01a <<)的图象大致形状是( )A .B .C .D .2.设集合A={2,1-a ,a 2-a +2},若4∈A ,则a =( ) A .-3或-1或2 B .-3或-1 C .-3或2D .-1或23.已知集合{}2,,M m m a b a b Q ==+∈,则下列四个元素中属于M 的元素的个数是( )①12π1162+22+2323-+A .4 B .3 C .2 D .1 4.已知集合{,}P a b =,{|}Q M M P =⊆,则P 与Q 的关系为( )A .P Q ⊆B .Q P ⊆C .P Q ∈D .P Q ∉5.已知}{|21M x x =-<<,3|0x N x x ⎧-⎫=≤⎨⎬⎭⎩,则M N ⋂=( ) A .()0,1 B .[)0,1C .(]1,3D .[]0,36.已知集合{}2|230A x x x =--≤,集合{}||1|3B x x =-≤,集合4|05x C x x -⎧⎫=≤⎨⎬+⎩⎭,则集合A ,B ,C 的关系为( )A .B A ⊆B .A B =C .C B ⊆D .A C ⊆7.定义一个集合A 的所有子集组成的集合叫做A 的幂集,记为()P a ,用()n A 表示有限集A 的元素个数,给出下列命题:(1)对于任意集合A ,都有()A P A ∈;(2)存在集合A ,使得()3nP A =;(3)若AB =Φ,则()()P A P B ⋂=Φ;(4)若A B ⊆,则()()P A P B ⊆;(5)若()()1n A n B -=,则[][]()2()n P A n P B =.其中正确命题的序号为( )A .(1)(2)(5)B .(1)(3)(5)C .(1)(4)(5)D .(2)(3)(4)8.已知全集U =R ,集合91A xx ⎧⎫=>⎨⎬⎩⎭和{}44,B x x x Z =-<<∈关系的Venn 图如图所示,则阴影部分所表示集合中的元素共有( )A .3个B .4个C .5个D .无穷多个9.若集合2{||31|2},{|0},1x A x x B x x -=-≥=≤-则()R C A B =( )A .1[,2]3-B .∅C .1(,)(1,2]3-∞-⋃ D .1,1(1,2]3⎛⎫-⋃ ⎪⎝⎭10.已知集合{}2230A x x x =--≤,{}22B x m x m =-≤≤+.若R A C B A =,则实数m 的取值范围为( ) A .5m >B .3m <-C .5m >或3m <-D .35m -<<11.已知函数2()1f x x=-M ,()ln(1)g x x =+的定义域为N ,则()R MC N =( )A .{|1}<x xB .{|1}x x ≥C .φD .{|11}x x -≤<12.已知集合{}{}21239A B x x ==<,,,,则A B =( )A .{}210123--,,,,,B .{}21012--,,,,C .{}123,,D .{}12, 二、填空题13.已知集合(){|221,}A k k k Z απαπ=≤≤+∈,{|55}B a α=-≤≤,则A B ⋂=__________.14.用列举法表示集合*6,5A aN a Z a ⎧⎫=∈∈=⎨⎬-⎩⎭__________.15.已知点H 是正三角形ABC 内部一点,HAB ∆,HBC ∆,HCA ∆的面积值构成一个集合M ,若M 的子集有且只有4个,则点H 需满足的条件为________. 16.设P Q 、是两个非空集合,定义集合间的一种运算“”:{},P Q x P Q x P Q =∈∉且,如果{}24P y y x ==-,{}|4,0x Q y y x ==>,则PQ =____________.17.设a ,b ,c 为实数,()()()2f x x a x bx c =+++,()()()211g x ax cx bx =+++,记集合(){}|0,S x f x x R ==∈,(){}|0,T x g x x R ==∈,若S ,T 分别为集合S ,T 的元素个数,则下列结论可能成立的是________.①1S =,0T =;②1S =,1T =;③2S =,2T =;④2S =,3T =. 18.已知{}2|340,{|10}A x x x B x ax a =+-==-+=,且B A ⊆,则所有a 的值所构成的集合M =_________.19.已知集合{}A a =-,,2||b aB a ⎧⎫=⎨⎬⎩⎭,且A B =,则a b +=______。

最新北师大版高中数学必修一第一单元《集合》检测卷(含答案解析)

最新北师大版高中数学必修一第一单元《集合》检测卷(含答案解析)

一、选择题1.由实数x ,﹣x ,|x | ) A .2个B .3个C .4个D .5个2.定义集合运算{},,A B x x a b a A b B ⊗==⨯∈∈,设{0,1},{3,4,5}A B ==,则集合A B ⊗的真子集个数为( )A .16B .15C .14D .83.对任意x M ∈,总有2x M ∉M ,若{}0,1,2,3,4,5M ⊆,则满足条件的非空集合M 的个数是( ) A .11B .12C .15D .164.已知集合P 的元素个数为()*3n n N∈个且元素为正整数,将集合P 分成元素个数相同且两两没有公共元素的三个集合,,A B C ,即P A B C =⋃⋃,AB =∅,A C ⋂=∅,BC =∅,其中{}12,,,n A a a a =,{}12,,,n B b b b =,{}12,,,n C c c c =,若集合,,A B C 中的元素满足12n c c c <<<,k k k a b c +=,1,2,,k n =,则称集合P 为“完美集合”例如:“完美集合”{}11,2,3P =,此时{}{}{}1,2,3A B C ===.若集合{}21,,3,4,5,6P x =,为“完美集合”,则x 的所有可能取值之和为( ) A .9B .16C .18D .275.集合{}2|6,y y x x ∈=-+∈N N 的真子集的个数是( ) A .9B .8C .7D .616.已知集合{}2,xA y y x R ==∈,{}148x B x -=≤,则A B =( )A .5(,)2-∞B .5[0,]2C .7(0,]2D .5(0,]27.已知集合{}|15A x x =≤<,{}|3B x a x a =-<≤+.若B A B =,则a 的取值范围为( ) A .3,12⎛⎤-- ⎥⎝⎦B .3,2∞⎛⎤-- ⎥⎝⎦C .(],1-∞-D .3,2⎛⎫-+∞ ⎪⎝⎭8.已知()()()()22221234()4444f x x x c xx c x x c x x c =-+-+-+-+,集合{}{}127()0,,,M x f x x x x Z ===⋯⊆,且1234c c c c ≤≤≤,则41c c -不可能的值是( ) A .4B .9C .16D .649.已知集合A ,B 是实数集R 的子集,定义{},A B x x A x B -=∈∉,若集合1113A y y x x ⎧⎫==≤≤⎨⎬⎩⎭,,{}21,12B y y x x ==--≤≤,则B A -=( )A .[]1,1-B .[)1,1-C .[]0,1D .[)0,110.设{}|13A x x =≤≤,(){}|lg 321B x x =-<,则AB =( )A .3,2⎛⎫-∞ ⎪⎝⎭B .31,2⎡⎫⎪⎢⎣⎭C .31,2⎛⎫ ⎪⎝⎭D .3,32⎛⎤⎥⎝⎦11.已知集合{}1A x x =>,{}1B x x =≥,则( ) A .A ⊆BB .B ⊆AC .A∩B=φD .A ∪B=R12.集合{}{}A x||x-a|<1,x R ,|15,.A B B x x x R =∈=<<∈⋂=∅若,则实数a 的取值 范围是( ) A .{}a |0a 6≤≤ B .{}|24a a a ≤≥或C .{}|06a a a ≤≥或D .{}|24a a ≤≤二、填空题13.全集{U x x =是不大于20的素数},若{}3,5A B ⋂=,{}7,19A B ⋂=,{}2,17A B ⋃=,则集合A =___________.14.集合6|5M a a⎧=∈⎨-⎩N 且}a Z ∈,用列举法表示集合M =________. 15.已知集合2|230A x x x ,{}|0B x x a =-=,若B A ≠⊂,则实数a 的值为______.16.设集合A ,B 是R 中两个子集,对于x ∈R ,定义: 0,,0,1,,1,x A x B m n x A x B ⎧∉∉⎧==⎨⎨∈∈⎩⎩.①若A B ⊆;则对任意(),10x R m n ∈-=;②若对任意,0x R mn ∈=,则A B φ⋂=;③若对任意,1x R m n ∈+=,则A ,B 的关系为R A C B =.上述命题正确的序号是______. (请填写所有正确命题的序号)17.若集合2{320}A x ax x =++=中至多有一个元素,则a 的取值范围是__________. 18.设A 、B 是非空集合,定义:{|A B x x AB ⊗=∈且}x A B ∉,已知{|2}2xA x x =<+,{|3}B x x =>-,则A B ⊗=_________ 19.设集合1{|0}x A x x a-=≥-,集合{}21B x x =-,且B A ⊆,则实数a 的取值范围为______.20.已知集合{}1,2,3,4,5P =,若,A B 是P 的两个非空子集,则所有满足A 中的最大数小于B 中的最小数的集合对(,)A B 的个数为____.三、解答题21.已知集合{}|13A x x =-<<,集合(){}2|25250B x x k x k =+--<,k ∈R .(1)若1k =时,求B R,A B ;(2)若“x A ∈”是“x B ∈”的充分不必要条件,求实数k 的取值范围.22.已知全集为R ,函数()()lg 1f x x =-的定义域为集合A ,集合(){}16B x x x =->. (1)求AB ;(2)若{}11C x m x m =-<<+,()()R C AC B ⊆,求实数m 的取值范围.23.已知集合{()(1)0}M xx t x =-+≤∣,{|21}N x x =|-|<. (1)当2t =时,求M N ⋃; (2)若N M ⊆,求实数t 的取值范围.24.设全集U R =,集合{|2A x x =≤-或}{}5,|2x B x x ≥=≤.求(1)()UA B ⋃;(2)记(){},|23U A B D C x a x a ⋃==-≤≤-,且C D C ⋂= ,求a 的取值范围.25.已知不等式()210x a x a -++≤的解集为A ,不等式2103x x +≤-的解集为B . (1) 当3a =时,求A B ;(2)若不等式的解集A B ⊆,求实数a 的取值范围. 26.已知集合()(){}|250A x x x k =++<(1)若()53A ⊆-,,求k 的取值范围. (2)若{}2|20B x x x =-->,且{}2A B Z ⋂⋂=-(Z 为整数集合),求k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【分析】根据绝对值的定义和开平方、立方的方法,应对x 分0,0,0x x x >=<三种情况分类讨论,根据讨论结果可得答案. 【详解】当0x >时,0x x x ===-<,此时集合共有2个元素,当0x =时,0x x x ====-=,此时集合共有1个元素,当0x <时,0x x -===>,此时集合共有2个元素,综上所述,此集合最多有2个元素. 故选:A . 【点睛】本题考查了元素与集合关系的判断及根式的化简求值,其中解答本题的关键是利用分类讨论思想,对x 分三种情况进行讨论,是基础题.2.B解析:B 【分析】根据新定义得到{}{},,0,3,4,5A B x x a b a A b B ⊗==⨯∈∈=,再计算真子集个数得到答案. 【详解】{0,1},{3,4,5}A B ==,{}{},,0,3,4,5A B x x a b a A b B ⊗==⨯∈∈=其真子集个数为:42115-= 故选:B 【点睛】本题考查了集合的新定义问题,真子集问题,意在考查学生的应用能力.3.A解析:A 【分析】根据题意,0M ∉且1M ∉,且2、4不同时在集合M 中,对集合M 分两种情况讨论:①2M ∉且4M ∉;②2和4有且只有一个在集合M 中,分别列举出符合条件的集合M ,即可得出答案. 【详解】2111==,200==,由题意可知0M ∉且1M ∉,由于242=,所以,2和4不同时在集合M 中.①当2M ∉且4M ∉时,则符合条件的集合M 有:{}3、{}5、{}3,5,共3种; ②若2和4有且只有一个在集合M 中,则符合条件的集合M 有:{}2、{}2,3、{}2,5、{}2,3,5、{}4、{}3,4、{}4,5、{}3,4,5,共8种.综上所述,满足条件的非空集合M 的个数是3811+=. 故选:A. 【点睛】本题考查满足条件的集合个数的求解,列举出满足条件的集合即可,考查分类讨论思想的应用,属于中等题.解析:D 【分析】讨论集合A 与集合B ,根据完美集合的概念知集合C ,根据k k k a b c +=建立等式求x 的值. 【详解】首先当2x =时,{}21,2,3,4,5,6P =不可能是完美集合, 证明:假设{}21,2,3,4,5,6P =是完美集合, 若C 中元素最小为3,则11123a b +=+=,222456a b c +=+==不可能成立; 若C 中元素最小为4,则11134a b +=+=,222256a b c +=+==不可能成立; 若C 中元素最小为5,则11145a b +=+=,222236a b c +=+==不可能成立;故假设{}21,2,3,4,5,6P =是完美集合不成立,则{}21,2,3,4,5,6P =不可能是完美集合. 所以2x ≠;若集合{1,5},{3,6}A B ==,根据完美集合的概念知集合{}4,,5611C x x =∴=+=; 若集合{1,3},{4,6}A B ==,根据完美集合的概念知集合{}5,,369C x x =∴=+=; 若集合{1,4},{3,5}A B ==,根据完美集合的概念知集合{}6,,347C x x =∴=+=; 则x 的所有可能取值之和为791127++=, 故选:D . 【点睛】本题是新概念题,考查学生分析问题,理解问题的能力,是中档题.5.C解析:C 【分析】根据条件求解,x y 的范围,结合,x N y N ∈∈,得到集合为{2,5,6},利用集合真子集个数的公式即得解. 【详解】由于260y N y x ∈∴=-+≥x ≤≤,又,x N ∈0,1,2x ∴=6,5,2y ∴=,即集合{}2|6,{2,5,6}y y x x ∈=-+∈=N N故真子集的个数为:3217-= 故选:C 【点睛】本题考查了集合真子集的个数,考查了学生综合分析,数学运算的能力,属于中档题.解析:D 【分析】根据指数函数的值域可得集合A ,解指数函数的不等式可得集合B ,再进行交集运算即可. 【详解】∵{}()2,0,xA y y x R ==∈=+∞,由148x -≤,即22322x -≤,解得52x ≤,即5,2B ⎛⎤=-∞ ⎥⎝⎦, ∴5(0,]2A B ⋂=, 故选:D. 【点睛】本题主要考查了指数函数的值域,指数类型不等式的解法,集合间交集的运算,属于基础题.7.C解析:C 【分析】首先确定B A ⊂,分B φ=和B φ≠两种情况讨论,求a 的取值范围. 【详解】B A B =B A ∴⊂,当B φ=时,332a a a -≥+⇒≤-; 当B φ≠时,3135a a a a -<+⎧⎪-≥⎨⎪+<⎩,312a ∴-<≤- , 综上:1a ≤-, 故选C. 【点睛】本题考查根据集合的包含关系,求参数取值范围,意在考查分类讨论的思想,属于基础题型.8.A解析:A 【分析】先设,i i x y 是方程204i x x c -+=()1,2,3,4i =的根,4,i i i i i x y x y c +=⋅=,再依题意分析根均为整数,列举根的所有情况,确定44c =和1c 的可能情况,得到41c c -的最小取值和其他可能的情况,即得结果.【详解】设,i i x y 是方程204i x x c -+=()1,2,3,4i =的根,则由根和系数的关系知4,i i i i i x y x y c +=⋅=,又{}{}127()0,,,M x f x x x x Z ===⋯⊆,说明方程204i x x c -+=()1,2,3,4i =有一个方程是两个相等的根,其他三个方程是两个不同的根,由于根均为整数且和为4,则方程的根有以下这些情况:…,()()()()()()()()()6,105,9,4,8,3,7,2,6,1,5,0,4,1,3,2,2------,乘积分别为…,-60,-45,-32,-21,-12,-5,0,3,4.因为1234c c c c ≤≤≤,故44c =,123,,c c c 来自于4前面的任意可能三个不同的数字,1c 最小,故当15c =时41c c -最小,等于9,故不可能取4,能取9;当112c =-或160c =-时41c c -可以取16,64. 故选:A. 【点睛】本题解题关键是能依据题意分析方程204i x x c -+=()1,2,3,4i =的根的可能情况,既是整数又满足和为4,判断44c =,再根据1c 的可能情况,确定41c c -的可能结果,以突破难点.9.B解析:B 【分析】先根据题意得{}13A y y =≤≤,{}13B y y =-≤≤,再根据集合运算即可得答案. 【详解】解:根据题意得{}111133A y y x y y x ⎧⎫==≤≤=≤≤⎨⎬⎩⎭,, {}{}21,1213B y y x x y y ==--≤≤=-≤≤,再根据集合的运算得}{11B A y y -=-≤<. 故选:B. 【点睛】本题考查集合的运算,函数值域的求解,考查运算能力,是中档题.10.B解析:B 【分析】求出集合,A B 后可得A B .【详解】13{|}A x x =≤≤,73{|03210}{|}22B x x x x =<-<=-<<;∴31,2A B ⎡⎫⎪⎢⎣=⎭⋂,故选:B. 【点睛】本题考查一元二次不等式的解、对数不等式的解及集合的交集运算,解对数不等式时注意真数恒为正,属于中档题.11.A解析:A 【分析】根据数轴判断两集合之间包含关系. 【详解】因为{}1A x x =>,{}1B x x =≥,所以A ⊆B ,选A. 【点睛】本题考查集合之间包含关系,考查基本判断分析能力.12.C解析:C 【解析】|x-a|<1,∴a-1<x<a+1,∵A∩B=∅. ∴a-1≥5或a+1≤1,即a≤0或a≥6.故选C.二、填空题13.【分析】本题首先可根据素数的定义得出然后根据题意绘出韦恩图最后根据韦恩图即可得出结果【详解】因为全集是不大于的素数所以因为所以因为所以可绘出韦恩图如图所示:由韦恩图可知故答案为:【点睛】本题考查根据 解析:{}3,5,11,13【分析】本题首先可根据素数的定义得出{}2,3,5,7,11,13,17,19U =,然后根据题意绘出韦恩图,最后根据韦恩图即可得出结果. 【详解】因为全集{U x x =是不大于20的素数},所以{}2,3,5,7,11,13,17,19U =, 因为{}2,17A B ⋃=,所以{}3,5,7,11,13,19AB =,因为{}3,5A B ⋂=,{}7,19A B ⋂=, 所以可绘出韦恩图,如图所示:由韦恩图可知,{}3,5,11,13A =, 故答案为:{}3,5,11,13. 【点睛】本题考查根据集合运算结果求集合,考查素数的定义,素数是指在大于1的自然数中,只能被1和该数本身整除的数,考查韦恩图的应用,能否根据题意绘出韦恩图是解决本题的关键,考查数形结合思想,是中档题.14.【分析】由集合且求得得到且结合题意逐个验证即可求解【详解】由题意集合且可得则解得且当时满足题意;当时不满足题意;当时不满足题意;当时满足题意;当时满足题意;当时满足题意;综上可得集合故答案为:【点睛 解析:{1,2,3,4}-【分析】由集合6|5M a a⎧=∈⎨-⎩N 且}a Z ∈,求得056a <-≤,得到15a -≤<且a Z ∈,结合题意,逐个验证,即可求解. 【详解】由题意,集合6|5M a a ⎧=∈⎨-⎩N 且}a Z ∈,可得65a∈-N ,则056a <-≤, 解得15a -≤<且a Z ∈, 当1a =-时,615(1)=∈--N ,满足题意;当0a =时,66505=∉-N ,不满足题意; 当1a =时,66514=∉-N ,不满足题意; 当2a =时,6252=∈-N ,满足题意; 当3a =时,6353=∈-N ,满足题意; 当4a =时,6654=∈-N ,满足题意; 综上可得,集合M ={1,2,3,4}-.故答案为:{1,2,3,4}-.【点睛】本题主要考查了集合的表示方法,以及集合的元素与集合的关系,其中解答中熟记集合的表示方法,以及熟练应用元素与集合的关系,准确判定是解答的关键,着重考查了推理与运算能力,属于基础题.15.-1或3【分析】解方程用列举法表示集合AB 由即得解【详解】集合若故a=-1或3故答案为:-1或3【点睛】本题考查了集合的包含关系考查了学生概念理解数学运算能力属于基础题解析:-1或3 【分析】解方程,用列举法表示集合A ,B ,由B A ≠⊂,即得解. 【详解】 集合2|230{1,3}Ax x x ,{}|0{}B x x a a =-==若B A ≠⊂,故a =-1或3 故答案为:-1或3 【点睛】本题考查了集合的包含关系,考查了学生概念理解,数学运算能力,属于基础题.16.①②③【分析】对于①按照和两种情况讨论可得①正确;对于②根据不可能都为1可得不可能既属于又属于可得②正确;对于③根据中的一个为0另一个为1可得时必有或时必有由此可知③正确【详解】对于①因为所以当时根解析:①②③ 【分析】对于①,按照x A ∈和x A ∉两种情况讨论,可得①正确;对于②,根据,m n 不可能都为1,可得x 不可能既属于A ,又属于B 可得②正确;对于③,根据,m n 中的一个为0,另一个为1,可得x A ∈时,必有x B ∉,或x B ∈时,必有x A ∉,由此可知③正确. 【详解】对于①,因为A B ⊆,所以当x A ∉时,根据定义可得0m =,所以(1)0m n -=, 当x A ∈,则必有x B ∈,根据定义有1n =,所以(1)0m n -=, 故对于任意x ∈R ,都有(1)0m n -=,故①正确;对于②,因为对任意,0x R mn ∈=,所以,m n 中不可能都为1,即x A ∈和x B ∈不可能同时成立,所以A B φ⋂=,故②正确;对于③,因为对任意,1x R m n ∈+=,所以,m n 中的一个为0,另一个为1,即x A ∈时,必有x B ∉,或x B ∈时,必有x A ∉,所以R A C B =,故③正确.综上所述: 所有正确命题的序号为:①②③. 故答案为①②③ 【点睛】本题考查了元素与集合,集合与集合之间的关系,对新定义的理解能力,属于中档题. 17.或【分析】分情况讨论:当时和当时两种情况;当时由即可求出答案分类讨论最后把的范围合并即可【详解】若则集合符合题意;若则解得故答案为:或【点睛】本题考查集合中元素个数问题;分类讨论和两种情况是求解本题 解析:98a ≥或0a = 【分析】分情况讨论:当0a =时和当0a ≠时两种情况;当0a ≠时由0∆≤即可求出答案.分类讨论最后把a 的范围合并即可.【详解】 若0a =,则集合2{|320}3A x x ⎧⎫=+==-⎨⎬⎩⎭,符合题意; 若0a ≠,则980a ∆=-≤,解得98a ≥. 故答案为:98a ≥或0a =. 【点睛】本题考查集合中元素个数问题;分类讨论0a =和0a ≠两种情况是求解本题关键; 0a =时易忽略;属于中档题,易错题. 18.【分析】先计算集合A 再根据定义得到答案【详解】或且或故答案为:【点睛】本题考查了集合的新定义问题意在考查学生的理解能力和解决问题的能力解析:(,4)(3,2]-∞---【分析】先计算集合A ,再根据定义得到答案.【详解】{{|2}42x A x x x x =<=<-+或2}x >-,{|3}B x x =>- {|A B x x A B ⊗=∈且{}4x A B x x ∉⋂=<-或}32x -<≤-故答案为:(,4)(3,2]-∞---【点睛】本题考查了集合的新定义问题,意在考查学生的理解能力和解决问题的能力. 19.【分析】解可得集合B 对于A 先将转化为且分三种情况讨论求出集合A 判断是否成立综合可得a 的范围即可得答案【详解】或则或对于A 且时成立符合题意时或不会成立不符合题意时或要使成立必有则a 的范围是综合可得a 的 解析:[]1,3【分析】解21x ->可得集合B ,对于A ,先将1|0x x a-≥-转化为()()10x x a --≥且x a ≠,分1a =,1a >,1a <三种情况讨论,求出集合A ,判断B A ⊆是否成立,综合可得a 的范围,即可得答案【详解】211x x ->⇔<或3x >,则{|1B x x =<或3}x >,对于A ,()()1010x x x a x a-≥⇔--≥-且x a ≠, 1a =①时,{|1}A x x =≠,B A ⊆成立,符合题意,1a <②时,{|A x x a =<或1}x ≥,B A ⊆不会成立,不符合题意,1a >③时,{A x x a =或1}x ≤, 要使B A ⊆成立,必有3a ≤,则a 的范围是13a ,综合①②③可得,a 的取值范围为13a ≤≤,即[]1,3;故答案是:[]1,3.【点睛】本题考查集合之间关系的判断,涉及分式、绝对值不等式的解法,解分式不等式一般要转化为整式不等式,有参数时,一般要分类讨论.20.49【分析】分中的最大数为中的最大数为中的最大数为中的最大数为四种情况根据题意列举出满足条件的集合即可得出结果【详解】当中的最大数为即时;所以满足题意的集合对的个数为个;当中的最大数为即时;即满足题 解析:49【分析】分A 中的最大数为1,A 中的最大数为2,A 中的最大数为3,A 中的最大数为4,四种情况,根据题意列举出满足条件的集合,A B ,即可得出结果.【详解】当A 中的最大数为1,即{1}A =时,{2}B =,{3},{4},{5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5},{2,3,4},{2,3,5},{2,4,5},{3,4,5},{2,3,4,5}; 所以满足题意的集合对(,)A B 的个数为15个;当A 中的最大数为2,即{2},{1,2}A =时,{3}=B ,{4},{5},{3,4},{3,5},{4,5},{3,4,5};即满足题意的集合对(,)A B 的个数为2714⨯=个;当A 中的最大数为3,即{3},{1,3},{2,3},{1,2,3}A =时,{4},{5},{4,5}B =,即满足题意的集合对(,)A B 的个数4312⨯=个;当A 中的最大数为4,即{4},{1,4},{2,4},{3,4},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}A =时,{5}B =,即满足题意的集合对(,)A B 的个数为8个;所以总共个数为49个.【点睛】本题主要考查集合的应用,灵活运用子集的概念,用列举法表示集合即可,属于常考题型.三、解答题21.(1)[)5,1,2⎛⎤-∞-⋃+∞ ⎥⎝⎦,5,32⎛⎫- ⎪⎝⎭;(2)[)3,+∞. 【分析】(1)若1k =,化简集合B ,利用补集和并集的定义进行计算可得答案;(2)“x A ∈”是“x B ∈”的充分不必要条件,则集合A 是集合B 的真子集,分52k <-,52k =-和52k >-分别求出集合B ,列出不等式可得实数k 的取值范围. 【详解】(1)若1k =,{}25|2350|12B x x x x x ⎧⎫=+-<=-<<⎨⎬⎩⎭则R B =[)5,1,2⎛⎤-∞-⋃+∞ ⎥⎝⎦,A B =5,32⎛⎫- ⎪⎝⎭; (2)“x A ∈”是“x B ∈”的充分不必要条件,则集合A 是集合B 的真子集,(){}()(){}2|25250|250B x x k x k x x k x =+--<=-+< 当52k <-时,5,2B k ⎛⎫=- ⎪⎝⎭,不合题意; 当52k =-时,B φ=,不合题意; 当52k >-时,5,2B k ⎛⎫=- ⎪⎝⎭,只需3k ≥; 综上可得:实数k 的取值范围是[)3,+∞.【点睛】结论点睛:本题考查集合的交并补运算,考查充分不必要条件的应用,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.22.(1){|1x x <或3}x >;(2)[]1,0-.【分析】(1)化简集合A ,B ,根据并集运算即可.(2)计算()R AC B ,根据()()R C A C B ⊆,建立不等式求解即可.(1)由10x ->得,函数()()lg 1f x x =-的定义域{}1A x x =< 260x x -->,即()()320x x -+>, 解得{}32B x x x =><-或 A B ∴={|1x x <或3}x >,(2){}23R C B x x =-≤≤, (){}21R A C B x x ∴⋂=-≤<{}21C x x ⊆-≤<,则121011m m m -≥-⎧⇒-≤≤⎨+≤⎩, 故实数m 的取值范围为[]1,0-.【点睛】本题主要考查了集合的并集运算,补集、交集的运算,子集的概念,属于中档题. 23.(1)[1,3)-(2)[3,)+∞【分析】(1)可得出N ={x |1 <x <3 },t =2时求出集合M ,然后进行并集的运算即可;(2)根据N M ⊆即可得出集合M ={x |-1≤x ≤t },进而可得出t 的取值范围.【详解】(1){|21}N x x =|-|<={13}xx <<∣, 当2t =时,{(2)(1)0}(1,2)M xx x =-+≤=-∣, [)1,3M N ∴⋃=-(2)N M ⊆,∴M ={x |-1≤x ≤t },3t ∴≥,∴实数t 的取值范围[3,)+∞【点睛】本题主要考查了一元二次不等式和绝对值不等式的解法,并集的定义及运算,子集的定义,考查了计算能力,属于基础题.24.(1){}|25x x <<;(2)()1,+∞.【解析】试题分析:(1)根据题意和并集的运算求出A B ,再由补集的运算求出()U C A B ;(2)由(1)得集合D ,由CD C =得C D ⊆,根据子集的定义对C 分类讨论,分别列出不等式求出a 的范围.试题(1)由题意知,A =x |x ≤-2或x ≥5},B =x |x ≤2},则A ∪B =x |x ≤2或x ≥5},又全集U =R ,∁U (A ∪B )=x |2<x <5}.(2)由(1)得D =x |2<x <5},由C ∩D =C 得C ⊆D ,①当C =∅时,有-a <2a -3,解得a >1;②当C ≠∅时,有232325a a a a -≤-⎧⎪->⎨⎪-<⎩,解得a ∈∅. 综上,a 的取值范围为(1,+∞).25.(1){}|13A B x x ⋂=≤<(2)132a -≤< 【分析】先求解不等式,可得1|32B x x ⎧⎫=-≤<⎨⎬⎩⎭, (1)当3a =时,{}|13A x x =≤≤,再由交集的定义求解即可;(2)由A B ⊆,判断a 与集合B 的端点的位置即可.【详解】由题,因为()210x a x a -++≤,则()()10x a x --≤, 因为2103x x +≤-,即()()213030x x x ⎧+-≤⎨-≠⎩,所以132x -≤<,即集合1|32B x x ⎧⎫=-≤<⎨⎬⎩⎭, (1)当3a =时,()()310x x --≤,解得13x ≤≤,即{}|13A x x =≤≤,所以{}|13A B x x ⋂=≤<(2)由题,当1a <时,{}|1A x a x =≤≤;当1a ≥时,{}|1A x x a =≤≤,因为A B ⊆,所以132a -≤< 【点睛】本题考查集合的交集运算,考查已知集合的包含关系求参数问题,考查解一元二次不等式和分式不等式. 26.(1)[] 3,5-;(2)5 3,?2⎡⎫-⎪⎢⎣⎭.【分析】(1)对参数k 进行分类讨论,求得对应情况下不等式的解集,再根据集合之间的关系,求得k 的范围;(2)根据(1)中集合A 的解集,集合{}2A B Z ⋂⋂=-,对参数k 进行分类讨论,即可求得k 的范围.【详解】(1)对集合A :当52k =时,不等式的解集为空集,即A =∅,满足()53A ⊆-,; 当52k <时,不等式的解集为5,2A k ⎛⎫=-- ⎪⎝⎭,若满足()53A ⊆-,, 只需3k -≤,解得3k ≥-,又52k <,故53,?2k ⎡⎫∈-⎪⎢⎣⎭; 当52k >时,不等式的解集为5,2A k ⎛⎫=-- ⎪⎝⎭,若满足()53A ⊆-,, 只需5k -≥-,解得5k ≤,又52k >,故5,52k ⎛⎤∈ ⎥⎝⎦ 综上所述若满足题意,则[]3,5k ∈-. (2)对集合B :220x x -->,解得()(),12,B =-∞-⋃+∞此时B Z ⋂是小于等于2-的整数和大于等于3的整数的集合.对集合A :由(1)知: 当52k =时,A =∅,不满足{}2A B Z ⋂⋂=-,故舍去; 当52k <时,5,2A k ⎛⎫=-- ⎪⎝⎭,若满足{}2A B Z ⋂⋂=-, 只需3k -≤,解得3k ≥-,又52k <,故可得53,?2k ⎡⎫∈-⎪⎢⎣⎭; 当52k >时,5,2A k ⎛⎫=-- ⎪⎝⎭,显然不满足{}2A B Z ⋂⋂=-,故舍去. 综上所述,若满足题意,则53,?2k ⎡⎫∈-⎪⎢⎣⎭.【点睛】本题考查由集合之间的关系,求参数的范围,属中档题;本题中需要注意对参数的分类讨论,要做到不重不漏.。

新北师大版高中数学必修一第一单元《集合》检测卷(包含答案解析)(2)

新北师大版高中数学必修一第一单元《集合》检测卷(包含答案解析)(2)

一、选择题1.设集合{}20,201x M x N x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( )A .{}01x x ≤<B .{}01x x <<C .{}02x x ≤<D .{}02x x <<2.由实数x ,﹣x ,|x | ) A .2个B .3个C .4个D .5个3.若{}|28A x Z x =∈≤<,{}5|log 1B x R x =∈<,则R A C B ⋂的元素个数为( ) A .0B .1C .2D .34.若集合{}2560A x x x =+-=,{}222(1)30B x x m x m =+++-=.若{}1A B ⋂=,求实数m 的值为( ) A .0B .-2C .2D .0或-25.在整数集Z 中,被5所除得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{5|}k n k n Z =+∈,0,1,2,3,4k =;给出四个结论:(1)2015[0]∈;(2)3[3]-∈;(3)[0][1][2][3][4]Z =⋃⋃⋃⋃;(4)“整数,a b ”属于同一“类”的充要条件是“[0]a b -∈”. 其中正确结论的个数是( ) A .1个B .2个C .3个D .4个6.记有限集合M 中元素的个数为||M ,且||0∅=,对于非空有限集合A 、B ,下列结论:① 若||||A B ≤,则A B ⊆;② 若||||AB A B =,则A B =;③ 若||0A B =,则A 、B 中至少有个是空集;④ 若AB =∅,则||||||A B A B =+;其中正确结论的个数为( ) A .1B .2C .3D .47.已知集合()1lg 12A x x ⎧⎫=-<⎨⎬⎩⎭,{}22940B x x x =-+≥,则()RA B 为( )A .()1,4B .1,42⎛⎫⎪⎝⎭C .(4,1D .(1,1+8.已知集合123,,A A A 满足: {}*123|19A A A x N x =∈≤≤,且每个集合恰有3个元素,记()1,2,3i A i =中元素的最大值与最小值之和为()1,2,3i M i =,则123M M M ++的最小值为( ) A .21B .24C .27D .309.已知集合{}|10A x x =-<,{}2|20B x x x =-<,则AB =( )A .{}|0x x <B .{}|1x x <C .{}1|0x x <<D .{}|12x x <<10.已知集合{}21,A x y x y Z ==+∈,{}21,B y y x x Z ==+∈,则A 、B 的关系是( ) A .A B =B .ABC .B AD .A B =∅11.设{}|13A x x =≤≤,(){}|lg 321B x x =-<,则A B =( )A .3,2⎛⎫-∞ ⎪⎝⎭B .31,2⎡⎫⎪⎢⎣⎭C .31,2⎛⎫ ⎪⎝⎭D .3,32⎛⎤ ⎥⎝⎦12.已知集合{}2230A x x x =--≤,{}22B x m x m =-≤≤+.若R A C B A =,则实数m 的取值范围为( ) A .5m >B .3m <-C .5m >或3m <-D .35m -<<二、填空题13.已知集合{2,1}A =-,{|2,B x ax ==其中,}x a ∈R ,若A B B =,则a 的取值集合为___________.14.已知()2f x x ax b =++,集合(){}0A x f x =≤,集合(){}3B x f f x ⎡⎤=≤⎣⎦,若A B =≠∅,则实数a 的取值范围是______.15.已知常数a 是正整数,集合1{|||,}2A x x a a x Z =-<+∈,{|||2,}B x x a x Z =<∈,则集合A B 中所有元素之和为________16.已知集合A ={x |x ≥2},B ={x ||x ﹣m |≤1},若A ∩B =B ,则实数m 的取值范围是______. 17.已知全集{}1,2,3,4,5,6U =,①A U ⊆;②若x A ∈,则2x A ∉;③若Ux A ∈,则2Ux A ∉,则同时满足条件①②③的集合A 的个数为______18.已知点H 是正三角形ABC 内部一点,HAB ∆,HBC ∆,HCA ∆的面积值构成一个集合M ,若M 的子集有且只有4个,则点H 需满足的条件为________.19.若使集合{}2()(6)(4)0,A k x kx k x x Z =---≥∈中元素个数最少,则实数k 的取值范围是 ________.20.若集合{,,,}{1,2,3,4}a b c d =,且下列四个关系:(1)1a =;(2)1b ≠;(3)3c =;(4)4d ≠有且只有一个是正确的,则符合条件的有序数组(,,,)a b c d 的个数是___________.三、解答题21.已知集合{}13A x x =-<<,集合{}21B x m x m =<<-. (1)当1m =-时,求A B ;(2)若AB B =,求实数m 的取值范围.22.已知全集为R ,集合{}26A x x =≤≤, {}3782B x x x =-≥-.(1)求AB , ()RC A B ⋂;(2)若{}44M x a x a =-≤≤+,且R A C M ⊆,求a 的取值范围.23.已知集合{}43A x x =-≤≤,集合{}121B x m x m =-≤≤+.(1)若B A ⊆,求实数m 的取值范围;(2)若不存在实数x 使x A ∈,x B ∈同时成立,求实数m 的取值范围. 24.已知集合{}2210,A x ax x a R =++=∈. (1)若A 中只有一个元素,求a 的值; (2)若A 中至少有一个元素,求a 的取值范围; (3)若A 中至多有一个元素,求a 的取值范围.25.已知集合{1,2,3}A =,2{|(1)0,}B x x a x a x R =-++=∈,若A B A ⋃=,求实数a ;26.已知集合{}|2,12xA y y x ==≤≤,()(){}|20B x x a x a =---≤.(1)若3a =,求A B ;(2)若()R B C A ⊆.求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据分式不等式和一元二次不等式的解法,求得集合{01},{|02}M x x N x x =≤<=<<,再结合集合交集的运算,即可求解.【详解】由题意,集合{}20{01},20{|02}1x M xx x N x x x x x x ⎧⎫=≤=≤<=-<=<<⎨⎬-⎩⎭,所以{}01M N x x ⋂=<<. 故选:B . 【点睛】本题主要考查了集合的交集的概念及运算,其中解答中结合分式不等式和一元二次不等式的解法,准确求解集合,A B 是解答的关键,着重考查了计算能力.2.A解析:A【分析】根据绝对值的定义和开平方、立方的方法,应对x 分0,0,0x x x >=<三种情况分类讨论,根据讨论结果可得答案. 【详解】当0x >时,0x x x ===-<,此时集合共有2个元素,当0x =时,0x x x ====-=,此时集合共有1个元素,当0x <时,0x x -===>,此时集合共有2个元素,综上所述,此集合最多有2个元素. 故选:A . 【点睛】本题考查了元素与集合关系的判断及根式的化简求值,其中解答本题的关键是利用分类讨论思想,对x 分三种情况进行讨论,是基础题.3.D解析:D 【分析】化简集合A 、B ,根据补集与交集的定义写出RA B ,即可得出结论.【详解】集合{|28}{2A x Z x =∈<=,3,4,5,6,7},51{||log |1}{|5}5B x R x x R x =∈<=∈<<,1{|5R B x R x ∴=∈或5}x , {5RAB ∴=,6,7}.∴其中元素个数为3个.故选:D . 【点睛】本题考查了集合的化简与运算问题,是基础题.4.D解析:D 【分析】根据A ∩B ={1}可得出,1∈B ,从而得出1是方程x 2+2(m +1)x +m 2﹣3=0的根,1代入方程即可求出m 的值; 【详解】 A ={﹣6,1}; ∵A ∩B ={1}; ∴1∈B ;即1是方程x 2+2(m +1)x +m 2﹣3=0的根;∴1+2(m +1)+m 2﹣3=0; ∴m 2+2m =0; ∴m =0或m =﹣2;当m =0时,B ={﹣3,1},满足A ∩B ={1}; 当m =﹣2时,B ={1},满足A ∩B ={1}; ∴m =0或m =﹣2; 故选:D 【点睛】考查交集的定义及运算,元素与集合的关系,描述法、列举法的定义,一元二次方程实根的情况,是基础题.5.C解析:C 【分析】根据新定义,对每个选项逐一判断,即可得到答案. 【详解】对于(1),因为20155403÷=,余数为0,所以2015[0]∈,故(1)正确; 对于(2),因为()3512-=⨯-+,所以33[]-∉,故(2)错误; 对于(3),因为整数集中的数被5除的数可以且只可以分成五类,故[0][1][2][3][4]Z =⋃⋃⋃⋃,故(3)正确;对于(4),因为整数,a b 属于同一“类”,所以整数,a b 被5除的余数相同,从而-a b 被5除的余数为0,反之也成立,故“整数,a b ”属于同一“类”的充要条件是“[0]a b -∈”.故(4)正确.综上所述,正确的个数为:3个. 故选C . 【点睛】本题考查了集合的新定义,解题关键是理解被5所除得余数为k 的所有整数组成一个“类”,考查了分析能力和计算能力.6.B解析:B 【分析】先阅读题意,取特例{}1A = ,{}2B =,可得①③错误,由集合中元素的互异性可得②④正确. 【详解】解:对于①,取{}1A = ,{}2B =,满足||||A B ≤,但不满足A B ⊆,即①错误; 对于②,因为||||AB A B =,由集合中元素的互异性可得A B =,即②正确;对于③,取{}1A = ,{}2B =, 满足||0A B =,但不满足A 、B 中至少有个是空集,即③错误;对于④,A B =∅,则集合A B 、中无公共元素,则||||||A B A B =+,即④正确;综上可得②④正确,故选B. 【点睛】本题考查了对新定义的理解及集合元素的互异性,重点考查了集合交集、并集的运算,属中档题.7.A解析:A 【分析】解对数不等式求得集合A ,解一元二次不等式求得RB ,由此求得()RAB【详解】由于()1lg 12x -<=所以{(011,1A x x =<-<=+, 依题意{}2R2940B x x x =-+<,()()22944210x x x x -+=--<,解得142x <<,即R 1,42B ⎛⎫= ⎪⎝⎭,所以()()R1,4A B ⋂=.故选:A【点睛】本小题主要考查集合交集和补集的运算,考查对数不等式和指数不等式的解法,属于中档题.8.C解析:C 【分析】 求出{}{}*123|191,2,3,4,5,6,7,8,9A A A x N x =∈≤≤=,由题意列举出集合123,,A A A ,由此能求出123M M M ++的最小值. 【详解】 由题意可知,{}{}*123|191,2,3,4,5,6,7,8,9A A A x N x =∈≤≤=123,,A A A 各有3个元素且不重复,当{}13,4,5A =,{}22,6,7A =,{}31,8,9A =时,123M M M ++取得最小值,此时最小值为12357927+++++=,故选C【点睛】本题主要考查集合中的元素运算,解题的关键是理解题中满足的条件,属于中档题.9.C解析:C 【分析】求出A 、B 中不等式的解集确定出A 、B ,找出A 与B 的交集即可. 【详解】集合{}{}|10|1A x x x x =-<=<,集合{}{}2|20|02B x x x x x =-<=<<,所以A B ={}1|0x x <<.故选:C【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.10.C解析:C 【分析】由题意得出Z A ⊆,而集合B Z ,由此可得出A 、B 的包含关系.【详解】由题意知,对任意的x ∈Z ,21y x Z =+∈,Z A ∴⊆.{}21,B y y x x Z ==+∈,∴集合B 是正奇数集,则BZ ,因此,BA .故选:C. 【点睛】本题考查集合包含关系的判断,解题时要善于抓住代表元素,认清集合的特征,考查推理能力,属于中等题.11.B解析:B 【分析】求出集合,A B 后可得A B .【详解】13{|}A x x =≤≤,73{|03210}{|}22B x x x x =<-<=-<<; ∴31,2A B ⎡⎫⎪⎢⎣=⎭⋂,故选:B. 【点睛】本题考查一元二次不等式的解、对数不等式的解及集合的交集运算,解对数不等式时注意真数恒为正,属于中档题.12.C解析:C 【分析】首先根据题意,求得{|2R C B x x m =>+或}2x m <-,由R AC B A =可以得到R A C B ⊆,根据子集的定义求得参数所满足的条件,得到结果.【详解】{}{}2230=|13A x x x x x =--≤-≤≤,∵{}22B x m x m =-≤≤+. ∴{2R C B x x m =>+或2}x m <-, ∵R AC B A =即R A C B ⊆,∴23m ->或21m +<-.即5m >或3m <-,即实数m 的取值范围是5m >或3m <-. 故选:C. 【点睛】该题考查的是有关集合的问题,涉及到的知识点有集合的补集,根据子集求参数的取值范围,属于简单题目.二、填空题13.【分析】根据得到之间的关系由此确定出可取的的值【详解】因为所以当时;当时若则所以;若则综上可知:的取值集合为故答案为:【点睛】本题考查根据集合间的包含关系求解参数难度一般分析集合间的子集关系时注意分 解析:{}1,0,2-【分析】 根据A B B =得到,A B 之间的关系,由此确定出可取的a 的值. 【详解】因为AB B =,所以B A ⊆,当B =∅时,0a =;当B ≠∅时,若{}2B =-,则22a -=,所以1a =-;若{}1B =,则2a =. 综上可知:a 的取值集合为{}1,0,2-, 故答案为:{}1,0,2-. 【点睛】本题考查根据集合间的包含关系求解参数,难度一般.分析集合间的子集关系时,注意分析空集的存在.14.【分析】根据设则设再根据则是的解集的子集求解【详解】因为设则设的解集为:所以是方程的两个根由韦达定理得:又因为所以所以即解得故答案为:【点睛】本题主要考查一元二次不等式的解法的应用还考查了转化求解的解析:⎡⎤⎣⎦【分析】根据A ≠∅,设{}01A x x x x =≤≤,则()204a b f x -≤≤,设 ()t f x =,再根据A B =,则2,04a b ⎡⎤-⎢⎥⎣⎦是()3f t ≤的解集的子集求解. 【详解】因为A ≠∅,设{}01A x x x x =≤≤,则()204a b f x -≤≤,设 ()t f x =, ()3f t ≤的解集为:()0|0t t t ≤≤ , 所以0,0t t t ==是方程23t at b ++=的两个根, 由韦达定理得:0,3t a b =-=,又因为A B =,所以2004a tb ≤-≤,所以2304a a -≤-≤,即22124120a a a ⎧≥⎨--≤⎩,解得 6a ≤≤.故答案为:⎡⎤⎣⎦【点睛】本题主要考查一元二次不等式的解法的应用,还考查了转化求解的能力,属于中档题15.【分析】分别求出集合中的元素再求出集合的并集即可求解【详解】由题因为所以则;因为所以则因为常数是正整数所以所以所以中所有元素之和是故答案为:【点睛】本题考查集合的并集考查解含绝对值的不等式 解析:2a【分析】分别求出集合A 、B 中的元素,再求出集合A 、B 的并集,即可求解 【详解】由题,因为12x a a -<+,所以11222x a -<<+,则11|2,22A x x a x Z ⎧⎫=-<<+∈⎨⎬⎩⎭;因为2x a <,所以22a x a -<<,则{}|22,B x a x a x Z =-<<∈, 因为常数a 是正整数, 所以{}0,,,,2A a a =,{}21,,0,,21B a a =-+-,所以{}21,,0,,21,2A B a a a ⋃=-+-,所以AB 中所有元素之和是2a ,故答案为:2a 【点睛】本题考查集合的并集,考查解含绝对值的不等式16.3+∞)【分析】先求出集合再利用交集定义和不等式性质求解【详解】∵集合解得∴实数m 的取值范围是故答案为:【点睛】本题考查实数的取值范围的求法解题时要认真审题注意不等式性质的合理运用是基础题解析:[3,+∞) 【分析】先求出集合B ,再利用交集定义和不等式性质求解. 【详解】∵集合{|2}A x x =≥,{|||1}{|11}B x x m x m x m =-≤=-≤≤+,A B B =,12m ∴-≥,解得3m ≥,∴实数m 的取值范围是[)3,+∞. 故答案为:[)3,+∞. 【点睛】本题考查实数的取值范围的求法,解题时要认真审题,注意不等式性质的合理运用,是基础题.17.8【分析】由条件可得:当则即则即但元素3与集合的关系不确定3属于时6属于的补集;3属于的补集时6属于;而元素5没有限制【详解】由①;②若则;③若则当则即则即但元素3与集合的关系不确定3属于时6属于的解析:8 【分析】由条件可得:当1A ∈,则2A ∉,即2UA ∈,则4UA ∉,即4A ∈,但元素3与集合A的关系不确定,3属于A 时,6属于A 的补集;3属于A 的补集时,6属于A ;而元素5没有限制. 【详解】由①A U ⊆;②若x A ∈,则2x A ∉;③若Ux A ∈,则2Ux A ∉.当1A ∈,则2A ∉,即2UA ∈,则4UA ∉,即4A ∈,但元素3与集合A 的关系不确定,3属于A 时,6属于A 的补集;3属于A 的补集时,6属于A ; 而元素5没有限制.{1,4,6},{2,3,5},{2,3},{1,4,5,6},{1,3,4},{2,4,5},{2,A ∴=6},{1,3,4,5},同时满足条件①②③的集合A 的个数为8个.故答案为:8.【点睛】本题考查了集合的运算性质、元素与集合的关系,考查了分类讨论思想方法、推理能力与计算能力,属于中档题.18.在的三条高上且不为重心【分析】由题意知若集合的子集只有个则集合有个元素可得出三个三角形的面积有两个相等分析点的位置即可得出结论【详解】若集合的子集只有个则集合有个元素是等边内部一点三个三角形的面积值 解析:H 在ABC ∆的三条高上且H 不为ABC ∆重心【分析】由题意知,若集合M 的子集只有4个,则集合M 有2个元素,可得出HAB ∆,HBC ∆,HCA ∆三个三角形的面积有两个相等,分析点H 的位置,即可得出结论.【详解】若集合M 的子集只有4个,则集合M 有2个元素,M 是等边ABC ∆内部一点, HAB ∆,HBC ∆,HCA ∆三个三角形的面积值构成集合M ,故HAB ∆,HBC ∆,HCA ∆三个三角形的面积有且只有两个相等.若HAB ∆,HBC ∆的面积相等,则点H 在边AC 的高上且不为ABC ∆的重心; 若HBC ∆,HCA ∆的面积相等,则点H 在边AB 的高上且不为ABC ∆的重心; 若HAB ∆,HCA ∆的面积相等,则点H 在边BC 的高上且不为ABC ∆的重心. 综上所述,点H 在等边ABC ∆的三条高上且不为ABC ∆的重心.故答案为:H 在ABC ∆的三条高上且H 不为ABC ∆重心【点睛】本题考查子集的个数与元素个数之间的关系,根据已知条件得出集合元素的个数是解题的关键,考查推理能力,属于中等题.19.【分析】首先讨论的取值解不等式;再由集合的元素个数最少推出只有满足若集合的元素个数最少由集合只需求的最大值即可再由集合中只需即可求解【详解】由题知集合内的不等式为故当时可得;当时可转化为或因为所以不 解析:[]3,2--【分析】首先讨论k 的取值,解不等式;再由集合A 的元素个数最少,推出只有k 0<满足, 若集合A 的元素个数最少,由k 0<,集合A =64x Z k x k ⎧⎫∈+≤≤⎨⎬⎩⎭,只需求6k k +的最大值即可,再由集合A 中x ∈Z ,只需654k k-<+<-即可求解. 【详解】 由题知集合A 内的不等式为2(6)(4)0,kx k x x Z ---≥∈,故当0k =时,可得{}4A x Z x =∈<;当0k >时, 2(6)(4)0kx k x ---≥可转化为24060x kx k -≥⎧⎨--≥⎩ 或24060x kx k -≤⎧⎨--≤⎩,因为64k k <+, 所以不等式的解集为{4x x ≤或6x k k ⎫≥+⎬⎭,所以A ={4x Z x ∈≤或6x k k ⎫≥+⎬⎭当k 0<时,由64k k +<,所以不等式的解集为64x k x k ⎧⎫+≤≤⎨⎬⎩⎭, 所以A =64x Z k x k ⎧⎫∈+≤≤⎨⎬⎩⎭,此时集合A 的元素个数为有限个. 综上所述,当0k ≥时,集合A 的元素个数为无限个,当k 0<时,集合A 的元素个数为有限个,故当k 0<时,集合A 的元素个数最少,且当6k k+ 的值越大,集合A 的元素个数越少,令6()f k k k =+(k 0<),则26()1f k k '=-,令()0f k '= 解得k =()f k在(,-∞内单调递增,在()内单调递减,所以max ()(f k f ==-又因为x ∈Z ,54-<-<-,所以当654k k -≤+<-,即32k -≤≤-时, 集合A =64x Z k x k ⎧⎫∈+≤≤⎨⎬⎩⎭中元素的个数最少,故32k -≤≤- 故答案为:[]3,2--【点睛】本题主要考查集合的运算和解不等式,综合性比较强.20.6【分析】利用集合的相等关系结合(1);(2);(3);(4)有且只有一个是正确的通过分析推理即可得出结论【详解】若(1)正确则(2)也正确不合题意;若(2)正确则(1)(3)(4)不正确即则满足条解析:6【分析】利用集合的相等关系,结合(1)1a =;(2)1b ≠;(3)3c =;(4)4d ≠有且只有一个是正确的,通过分析推理即可得出结论.【详解】若(1)正确,则(2)也正确不合题意;若(2)正确,则(1)(3)(4)不正确,即1,1,3,4a b c d ≠≠≠=,则满足条件的有序组为: 2,3,1,4a b c d ====;或3,2,1,4a b c d ====;若(3)正确,则(1)(2)(4)不正确,即1,1,3,4a b c d ≠===,则满足条件的有序组为: 2,1,3,4a b c d ====;若(4)正确,则(1)(2)(3)不正确,即1,1,3,4a b c d ≠=≠≠,则满足条件的有序组为: 2,1,4,3a b c d ====或3,1,4,2a b c d ====或4,1,2,3a b c d ====,所以符合条件的有序数组(,,,)a b c d 的个数是6个.故答案为6【点睛】本题考查集合的相等关系,考查分类讨论思想,正确分类是关键,属于中档题.三、解答题21.(1)()2,3-;(2)1[2-,)+∞. 【分析】(1)当1m =-时,求出集合B ,再由并集的定义可得答案.(2)推导出B A ⊆,当B =∅时,21m m -,当B ≠∅时,212113m m m m <-⎧⎪-⎨⎪-⎩,由此能求出实数m 的取值范围.【详解】(1)当1m =-时,集合{|13}A x x =-<<,集合{|22}B x x .(){|2233},A B x x ∴⋃=-<-<=.(2)集合{|13}A x x =-<<,集合{|21}B x m x m =<<-. 因为A B B =,B A ∴⊆,∴当B =∅时,21m m -,解得13m , 当B ≠∅时,212113m m m m <-⎧⎪-⎨⎪-⎩,解得1123m -<. ∴实数m 的取值范围是1[2-,)+∞.【点睛】本题考查交集、并集定义、不等式的性质等基础知识,考查运算求解能力以及分类讨论思想的应用,是基础题.22.(1){}2A B x x ⋃=≥, (){}36R C A B x x x ⋂=或(2) ()(),210,-∞-⋃+∞【分析】(1)先求出集合B ,于是可得A B ⋃和A B ⋂,进而得到()R C A B ⋂;(2)先求出R C M ,再将R A C M ⊆转化为不等式求解,可得所求范围.【详解】(1)∵{}{}37823B x x x x x =-≥-=≥, ∴{}2A B x x ⋃=≥,{}36A B x x ⋂=≤≤,∴(){}3,6R C A B x x x ⋂=或. (2)由题意知M φ≠,且{}4,4R C M x x a x a =-+或. ∵{}26A x x =≤≤,R A C M ⊆,∴46a ->或42a +<,解得10a >或2a <-.故实数a 的取值范围为()(),210,-∞-⋃+∞.【点睛】本题考查集合的基本运算,解题时根据要求逐步求解即可,其中解答(2)的关键是将集合间的包含关系转化为不等式来求解,容易出现的错误是忽视不等式中的等号能否成立. 23.(1)1m ;(2)2m <-或4m >.【分析】(1)分B =∅和B ≠∅两种情况讨论,结合B A ⊆可得出关于实数m 的不等式组,由此可解得实数m 的取值范围;(2)由题意可得AB =∅,分B =∅和B ≠∅两种情况讨论,结合已知条件可得出关于实数m 的不等式组,由此可解得实数m 的取值范围.【详解】(1)当121m m ->+,即2m <-时,B A =∅⊆,故2m <-符合题意; 当B ≠∅且B A ⊆时,有12114213m m m m -≤+⎧⎪-≥-⎨⎪+≤⎩,解得21m -≤≤.综上可知,m 的取值范围是1m ;(2)因为不存在实数x 使得x A ∈且x B ∈,所以AB =∅.当B =∅时,有2m <-; 当B ≠∅且A B =∅时,有12113m m m -≤+⎧⎨->⎩或121214m m m -≤+⎧⎨+<-⎩,解得4m >. 故实数m 的取值范围是2m <-或4m >.【点睛】易错点点睛:在利用集合的包含关系以及集合运算求参数时,不能忽略对含参数的集合为空集的情况的讨论,从而导致解题不完整.24.(1)0a =或1a =;(2)1a ≤;(3)0a =或1a ≥.【分析】根据集合中元素的个数以及方程的解即可确定a 的取值范围.【详解】解:(1)若A 中只有一个元素,则当0a =时,原方程变为210x +=,此时12x =-符合题意, 当0a ≠时,方程2210ax x ++=为二元一次方程,440a ∆=-=,即1a =, 故当0a =或1a =时,原方程只有一个解;(2)A 中至少有一个元素,即A 中有一个或两个元素,由0∆>得1a <综合(1)当1a ≤时A 中至少有一个元素;(3)A 中至多有一个元素,即A 中有一个或没有元素当44a 0∆=-<,即1a >时原方程无实数解,结合(1)知当0a =或1a ≥时A 中至多有一个元素.【点睛】关键点点睛:本题解题的关键是理解集合中的元素与方程的根之间的关系.25.1a =或2或3【分析】由A B A ⋃=可得B A ⊆,分别讨论B =∅与B ≠∅的情况,进而求解即可【详解】由A B A ⋃=可得B A ⊆,若B =∅,则()2140a a ∆=+-<,解得a ∈∅;若B ≠∅,则()()10x a x --=,解得1x a =,21x =,①当1a =,则{}1B =,符合题意;②当2a =,则{}1,2B =,符合题意;③当3a =,则{}1,3B =,符合题意;综上,1a =或2或3【点睛】本题考查已知集合的包含关系求参数,考查分类讨论思想26.(1)=[3,4]A B ; (2)4a >或0a <【分析】(1)写出集合A ,B 的区间形式,代入数值计算即可; (2)写出集合R C A ,根据边界判断a 的取值范围即可.【详解】集合{}|2,12=[2,4]x A y y x ==≤≤,()(){}|20[,2]B x x a x a a a =---≤=+ (1)若3a =,[3,5]B =,则=[3,4]A B ; (2)(,2)(4,)R C A =-∞+∞,()R B C A ⊆, 因此:4a >或22a +<故:4a >或0a <【点睛】 本题考查了集合的交并补运算,考查了学生的数学运算能力,属于基础题.。

(常考题)北师大版高中数学必修一第一单元《集合》检测题(含答案解析)(3)

(常考题)北师大版高中数学必修一第一单元《集合》检测题(含答案解析)(3)

一、选择题1.已知集合{}11M x Z x =∈-≤≤,{}Z (2)0N x x x =∈-≤,则如图所示的韦恩图中的阴影部分所表示的集合为( )A .{}0,1B .{}1,2-C .{}1,0,1-D .1,0,1,22.对任意x M ∈,总有2x M ∉x M ,若{}0,1,2,3,4,5M ⊆,则满足条件的非空集合M 的个数是( ) A .11B .12C .15D .163.已知集合{}2|230A x x x =--≤,集合{}||1|3B x x =-≤,集合4|05x C x x -⎧⎫=≤⎨⎬+⎩⎭,则集合A ,B ,C 的关系为( )A .B A ⊆B .A B =C .C B ⊆D .A C ⊆4.非空集合G 关于运算⊕满足:①对任意a 、b G ∈,都有a b G ⊕∈;②存在e G ∈使对一切a G ∈都有a e e a a ⊕=⊕=,则称G 是关于运算⊕的融洽集,现有下列集合及运算中正确的说法有( )个(1)G 是非负整数集,⊕:实数的加法; (2)G 是偶数集,⊕:实数的乘法;(3)G 是所有二次三项式组成的集合,⊕多项式的乘法; (4){}|2G x x a a b Q ==+∈,,⊕:实数的乘法. A .1 B .2 C .3 D .45.已知集合123,,A A A 满足: {}*123|19A A A x N x =∈≤≤,且每个集合恰有3个元素,记()1,2,3i A i =中元素的最大值与最小值之和为()1,2,3i M i =,则123M M M ++的最小值为( ) A .21B .24C .27D .306.定义一个集合A 的所有子集组成的集合叫做A 的幂集,记为()P a ,用()n A 表示有限集A 的元素个数,给出下列命题:(1)对于任意集合A ,都有()A P A ∈;(2)存在集合A ,使得()3nP A =;(3)若AB =Φ,则()()P A P B ⋂=Φ;(4)若A B ⊆,则()()P A P B ⊆;(5)若()()1n A n B -=,则[][]()2()n P A n P B =.其中正确命题的序号为( )A .(1)(2)(5)B .(1)(3)(5)C .(1)(4)(5)D .(2)(3)(4)7.集合{}*|421A x x N =--∈,则A 的真子集个数是( )A .63B .127C .255D .5118.已知集合{}21,A x y x y Z ==+∈,{}21,B y y x x Z ==+∈,则A 、B 的关系是( ) A .A B =B .ABC .B AD .A B =∅9.设{}|13A x x =≤≤,(){}|lg 321B x x =-<,则A B =( )A .3,2⎛⎫-∞ ⎪⎝⎭B .31,2⎡⎫⎪⎢⎣⎭C .31,2⎛⎫ ⎪⎝⎭D .3,32⎛⎤⎥⎝⎦10.已知非空集合M 满足:对任意x M ∈,总有2x M ∉M ,若{}0,1,2,3,4,5M ⊆,则满足条件的M 的个数是( )A .11B .12C .15D .1611.下列结论正确的是() A .若a b <且c d <,则ac bd <B .若a b >,则22ac bc >C .若0a ≠,则12a a +≥ D .若0a b <<,集合1|A x x a ⎧⎫==⎨⎬⎩⎭,1|B x x b ⎧⎫==⎨⎬⎩⎭,则A B ⊇12.设集合{}21xA y y ==-,{}1B x x =≥,则()R AC B =( )A .(],1-∞-B .(),1-∞C .()1,1-D .[)1,+∞二、填空题13.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围为________.14.已知()2f x x ax b =++,集合(){}0A x f x =≤,集合(){}3B x f f x ⎡⎤=≤⎣⎦,若A B =≠∅,则实数a 的取值范围是______.15.对于任意集合X 与Y ,定义:①{}|X Y x x X x Y -=∈∉且,②()()X Y X Y Y X =--△∪,(X Y △称为X 与Y 的对称差).已知{}{}2|2|33A y y x x x R B y y ==-∈=-,,≤≤,则A B =△______.16.用列举法表示集合*6,5A aN a Z a ⎧⎫=∈∈=⎨⎬-⎩⎭__________.17.若规定集合{}()*12,,,n M a a a n N =⋅⋅⋅∈的子集{}()12*,,,mi i i a a a m N ⋅⋅⋅∈为M 的第k个子集,其中12111222m i i i k ---=++⋅⋅⋅+,则M 的第25个子集是______. 18.已知全集{}1,2,3,4,5,6U =,①A U ⊆;②若x A ∈,则2x A ∉;③若U x A ∈,则2Ux A ∉,则同时满足条件①②③的集合A 的个数为______19.已知集合1{}2A =-,,1{}0|B x mx =+>,若A B B ⋃=,则实数m 的取值范围是________.20.设,,x y z 都是非零实数,则可用列举法将x y z xy xyzx y z xy xyz++++的所有可能值组成的集合表示为________.三、解答题21.已知集合A ={x |3<x <7},B ={x |4<x ≤10},C ={x ||x -a |>2}. (1)求A ∪B 与RR ()()A B ⋂(2)若A ∩B ⊆C ,求a 的取值范围. 22.已知集合{}|123A x a x a =-<<+,2{|280}B x x x =--≤. (1)当a =2时,求AB ;(2)若___________,求实数a 的取值范围.在①AB A =,②()R AC B A =,③A B ⋂=∅这三个条件中任选一个,补充在(2)问中的横线上,并求解.(注:如果选择多个条件分别解答,按第一个解答计分) 23.已知全集U =R ,集合1{|28},{22x A x B x x m =<≤=<-或2}x m >+ (1)若A {}|03R B x x ⋂=≤≤,求实数m 的值; (2)若AB =B ,求实数m 的取值范围.24.已知集合{}2210,A x ax x a R =++=∈. (1)若A 中只有一个元素,求a 的值; (2)若A 中至少有一个元素,求a 的取值范围; (3)若A 中至多有一个元素,求a 的取值范围.25.设集合(){lg 1A x y x ==-,{}230B x x x a =-+=.(1)若2a =时,求A B ;(2)若A B A ⋃=,求a 的取值范围.26.已知集合{121}A xa x a =-<<+∣,{}03B x x =<≤,U =R . (1)若12a =,求A B ;()U A B ⋂. (2)若A B =∅,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【分析】阴影部分可以用集合M N 、表示为()()M N C M N ⋃⋂,故求出M N 、、M N ⋃,M N ⋂即可解决问题.【详解】解:由题意得,{}1,0,1M =-,{}0,1,2N ={}1,0,1,2M N ⋃=-,{}0,1M N ⋂=阴影部分为()(){}1,2M N C M N ⋃⋂=-故选B 【点睛】本题考查用韦恩图表示的集合的运算,解题时要能用集合的运算表示出阴影部分.2.A解析:A 【分析】根据题意,0M ∉且1M ∉,且2、4不同时在集合M 中,对集合M 分两种情况讨论:①2M ∉且4M ∉;②2和4有且只有一个在集合M 中,分别列举出符合条件的集合M ,即可得出答案. 【详解】2111==,200=,由题意可知0M ∉且1M ∉,由于242=,所以,2和4不同时在集合M 中.①当2M ∉且4M ∉时,则符合条件的集合M 有:{}3、{}5、{}3,5,共3种; ②若2和4有且只有一个在集合M 中,则符合条件的集合M 有:{}2、{}2,3、{}2,5、{}2,3,5、{}4、{}3,4、{}4,5、{}3,4,5,共8种.综上所述,满足条件的非空集合M 的个数是3811+=. 故选:A. 【点睛】本题考查满足条件的集合个数的求解,列举出满足条件的集合即可,考查分类讨论思想的应用,属于中等题.3.D解析:D 【分析】根据一元二次不等式的解法可求出集合A ,根据绝对值不等式的解法可求出集合B ,根据分式不等式的解法可求出集合C ,从而可得出集合A ,B ,C 间的关系. 【详解】解:由于{}{{}2|23013A x x x x x =--≤=-≤≤,{}{}|1324B x x x x =-≤=-≤≤,{}4|0545x C x x x x -⎧⎫=≤=-<≤⎨⎬+⎩⎭,可知,A C ⊆. 故选:D. 【点睛】本题考查一元二次不等式、绝对值不等式和分式不等式的解法,以及集合间的关系,考查计算能力.4.B解析:B 【分析】根据新定义运算⊕判断. 【详解】(1)任意两个非负整数的和仍然是非负整数,对任意a G ∈,0G ∈,00a a a +=+=,(1)正确;(2)任意两个偶数的积仍然是偶数,但不存在e G ∈,对任意a G ∈,使ae ea a ==,(2)错误;(3)21x x -+和21x x +-是两个二次三项式,它们的积2242(1)(1)21x x x x x x x -++-=-+-不是二次三项式,(3)错误;(4)设x a y c =+=+,,,a b c d Q ∈,则2(xy ac bd ad bc G =+++,而且1G ∈,11x x x ⋅=⋅=,(4)正确.∴正确的有2个. 故选:B. 【点睛】本题考查新定义,解题关键是对新定义的理解与应用.5.C解析:C 【分析】 求出{}{}*123|191,2,3,4,5,6,7,8,9A A A x N x =∈≤≤=,由题意列举出集合123,,A A A ,由此能求出123M M M ++的最小值. 【详解】 由题意可知,{}{}*123|191,2,3,4,5,6,7,8,9A A A x N x =∈≤≤=123,,A A A 各有3个元素且不重复,当{}13,4,5A =,{}22,6,7A =,{}31,8,9A =时,123M M M ++取得最小值,此时最小值为12357927+++++=,故选C 【点睛】本题主要考查集合中的元素运算,解题的关键是理解题中满足的条件,属于中档题.6.C解析:C 【分析】直接利用新定义判断五个命题的真假即可. 【详解】由P (A )的定义可知①正确,④正确, 设n (A )=n ,则n (P (A ))=2n ,∴②错误, 若A ∩B =∅,则P (A )∩P (B )={∅},③不正确; n (A )﹣n (B )=1,即A 中元素比B 中元素多1个, 则n [P (A )]=2×n [P (B )].⑤正确, 故选:C . 【点睛】本题考查集合的子集关系,集合的基本运算,新定义的理解与应用.7.B解析:B 【分析】先求得{}*|421A x x N =--∈的元素个数,再求真子集个数即可.【详解】由{}*|421A x x N =--∈,则421x --为正整数.则21x -可能的取值为0,1,2,3,故210,1,2,3x -=±±±,故x 共7个解.即{}*|421A x x N =--∈的元素个数为7故A 的真子集个数为721127-= 故选:B 【点睛】本题主要考查集合中元素个数的求解与知识点:元素个数为n 的集合的真子集有21n -个. 属于基础题型.8.C解析:C 【分析】由题意得出Z A ⊆,而集合B Z ,由此可得出A 、B 的包含关系.【详解】由题意知,对任意的x ∈Z ,21y x Z =+∈,Z A ∴⊆.{}21,B y y x x Z ==+∈,∴集合B 是正奇数集,则BZ ,因此,BA .故选:C. 【点睛】本题考查集合包含关系的判断,解题时要善于抓住代表元素,认清集合的特征,考查推理能力,属于中等题.9.B解析:B 【分析】求出集合,A B 后可得A B .【详解】13{|}A x x =≤≤,73{|03210}{|}22B x x x x =<-<=-<<; ∴31,2A B ⎡⎫⎪⎢⎣=⎭⋂,故选:B. 【点睛】本题考查一元二次不等式的解、对数不等式的解及集合的交集运算,解对数不等式时注意真数恒为正,属于中档题.10.A解析:A 【分析】可得集合M 是集合{}2,3,4,5的非空子集,且2,4不同时出现,即可得到结论. 【详解】由题意,可得集合M 是集合{}2,3,4,5的非空子集,共有42115-=个, 且2,4不能同时出现,同时出现共有4个, 所以满足题意的集合M 的个数为11个,故选A. 【点睛】本题主要考查了元素与集合的关系,以及集合的子集个数的判定及应用,着重考查了分析问题和解答问题的能力,属于中档试题.11.C解析:C 【分析】通过举例和证明的方式逐个分析选项. 【详解】A :取5,3,6,1a b c d =-==-=,则30,3ac bd ==,则ac bd >,故A 错误;B :取3,1,0a b c ===,则22ac bc =,故B 错误;C:21122a a a a ⎫+=+=+≥成立,故C 正确;D :因为0a b <<,所以11a b>,则A B ,故D 错误;故选:C. 【点睛】本题考查不等关系和等式的判断,难度一般.判断不等关系是否成立,常用的方法有:(1)直接带值验证;(2)利用不等式的性质判断;(3)采用其他证明手段.(如借助平方差、完全平方公式等).12.C解析:C 【解析】 【分析】化简集合A ,B 根据补集和交集的定义即可求出. 【详解】集合A ={y |y =2x ﹣1}=(﹣1,+∞),B ={x |x ≥1}=[1,+∞), 则∁R B =(﹣∞,1) 则A ∩(∁R B )=(﹣1,1), 故选:C . 【点睛】本题考查集合的交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答.二、填空题13.【分析】由分和两种情况分别讨论进而建立不等关系可求出答案【详解】当即时此时满足;当即时此时由可得解得综上实数的取值范围为故答案为:【点睛】本题考查根据集合的包含关系求参数的范围其中的易漏点在于漏掉考 解析:(,3]-∞【分析】由B A ⊆,分B =∅和B ≠∅两种情况分别讨论,进而建立不等关系,可求出答案. 【详解】当121m m +>-,即2m <时,此时B =∅,满足B A ⊆;当121m m +≤-,即2m ≥时,此时B ≠∅,由B A ⊆,可得12215m m +≥-⎧⎨-≤⎩,解得23m ≤≤.综上,实数m 的取值范围为(,3]-∞. 故答案为:(,3]-∞【点睛】本题考查根据集合的包含关系求参数的范围,其中的易漏点在于漏掉考虑子集为空集的情况,易错点在于弄错不等关系,结合数轴依次分类讨论即可避免此类问题.14.【分析】根据设则设再根据则是的解集的子集求解【详解】因为设则设的解集为:所以是方程的两个根由韦达定理得:又因为所以所以即解得故答案为:【点睛】本题主要考查一元二次不等式的解法的应用还考查了转化求解的解析:⎡⎤⎣⎦【分析】根据A ≠∅,设{}01A x x x x =≤≤,则()204ab f x -≤≤,设 ()t f x =,再根据A B =,则2,04a b ⎡⎤-⎢⎥⎣⎦是()3f t ≤的解集的子集求解. 【详解】因为A ≠∅,设{}01A x x x x =≤≤,则()204ab f x -≤≤,设 ()t f x =, ()3f t ≤的解集为:()0|0t t t ≤≤ , 所以0,0t t t ==是方程23t at b ++=的两个根, 由韦达定理得:0,3t a b =-=,又因为A B =,所以2004a tb ≤-≤,所以2304a a -≤-≤,即22124120a a a ⎧≥⎨--≤⎩,解得 6a ≤≤.故答案为:⎡⎤⎣⎦【点睛】本题主要考查一元二次不等式的解法的应用,还考查了转化求解的能力,属于中档题15.【分析】先求出和再计算【详解】由已知则∴故答案为:【点睛】本题考查集合的新定义解题关键是理解新定义运算把新运算转化为集合的运算 解析:[3,1)(3,)--+∞【分析】先求出A B -和B A -,再计算A B ∆ 【详解】由已知{|1}A y y =≥-,则{|3}(3,)A B y y -=>=+∞,{|31}[3,1)B A y y -=-≤<-=--,∴()()[3,1)(3,)A B A B B A ∆=--=--+∞,故答案为:[3,1)(3,)--+∞【点睛】本题考查集合的新定义,解题关键是理解新定义运算,把新运算转化为集合的运算.16.【分析】对整数取值并使为正整数这样即可找到所有满足条件的值从而用列举法表示出集合【详解】因为且所以可以取234所以故答案为:【点睛】考查描述法列举法表示集合的定义清楚表示整数集属于基础题 解析:{}1,2,3,4-【分析】对整数a 取值,并使65a-为正整数,这样即可找到所有满足条件的a 值,从而用列举法表示出集合A . 【详解】 因为a Z ∈且*65N a∈- 所以a 可以取1-,2,3,4. 所以{}1,2,3,4A =- 故答案为:{}1,2,3,4- 【点睛】考查描述法、列举法表示集合的定义,清楚Z 表示整数集,属于基础题.17.【分析】根据子集的定义将表示为求出即可求解【详解】的第25个子集是故答案为:【点睛】本题考查新定义的理解认真审题领会题意是关键属于中档题 解析:{}145,,a a a【分析】根据子集的定义将25表示为1211125222m i i i ---=++⋅⋅⋅+,求出12,m i i i ,即可求解【详解】03411415125222222---=++=++,1231,4,5i i i ===,M 的第25个子集是{}145,,a a a ,故答案为:{}145,,a a a . 【点睛】本题考查新定义的理解,认真审题,领会题意是关键,属于中档题.18.8【分析】由条件可得:当则即则即但元素3与集合的关系不确定3属于时6属于的补集;3属于的补集时6属于;而元素5没有限制【详解】由①;②若则;③若则当则即则即但元素3与集合的关系不确定3属于时6属于的解析:8 【分析】由条件可得:当1A ∈,则2A ∉,即2UA ∈,则4U A ∉,即4A ∈,但元素3与集合A的关系不确定,3属于A 时,6属于A 的补集;3属于A 的补集时,6属于A ;而元素5没有限制. 【详解】由①A U ⊆;②若x A ∈,则2x A ∉;③若Ux A ∈,则2Ux A ∉.当1A ∈,则2A ∉,即2UA ∈,则4U A ∉,即4A ∈,但元素3与集合A 的关系不确定,3属于A 时,6属于A 的补集;3属于A 的补集时,6属于A ; 而元素5没有限制.{1,4,6},{2,3,5},{2,3},{1,4,5,6},{1,3,4},{2,4,5},{2,A ∴=6},{1,3,4,5},同时满足条件①②③的集合A 的个数为8个. 故答案为:8. 【点睛】本题考查了集合的运算性质、元素与集合的关系,考查了分类讨论思想方法、推理能力与计算能力,属于中档题.19.【分析】讨论和及确定集合利用列不等式求解【详解】由题意知则当时∵∴解得当时∵∴解得当时也有综上实数m 的取值范围是故答案为:【点睛】本题考查集合的包含关系考查一次不等式解集注意m=0的讨论是易错题解析:1(,1)2-【分析】讨论0m >和0m <及0m =确定集合B ,利用A B ⊆列不等式求解 【详解】由题意知A B B ⋃=,则A B ⊆, 当0m >时,1{|}B x x m=>-, ∵1{}2A =-,, ∴11m-<- 解得01m <<, 当0m <时,1{|}B x x m=<-, ∵1{}2A =-,, ∴12m->解得102m -<<, 当0m =时也有A B ⊆. 综上,实数m 的取值范围是1(,1)2- 故答案为:1(,1)2-. 【点睛】本题考查集合的包含关系,考查一次不等式解集,注意m =0的讨论,是易错题20.【分析】由题意分类讨论实数xyz 的符号列表求解所给式子的值然后确定其值组成的集合即可【详解】分类讨论xyz 的符号列表求值如下:x y z 计算结果 大于零 大于零 大于零 1 1 1 1 解析:{}5,1,1,3--【分析】由题意分类讨论实数x ,y ,z 的符号列表求解所给式子的值,然后确定其值组成的集合即可. 【详解】分类讨论x ,y ,z 的符号列表求值如下:据此可得:x y z xy xyz++++的所有可能值组成的集合表示为{}5,1,1,3--. 故答案为:{}5,1,1,3--. 【点睛】本题主要考查分类讨论的数学思想,集合中元素的互异性等知识,意在考查学生的转化能力和计算求解能力.三、解答题21.(1){|310}A B x x ⋃=<,()(){|3R R A B x x ⋂=或10}x >;(2){|9a a 或2}a【分析】(1)直接进行并集、交集和补集的运算即可;(2)先得出{|2C x x a =<-或2}x a >+,{|47}A B x x ⋂=<<,根据A B C ⊆即可得出27a -或24a +,解出a 的范围即可. 【详解】(1)因为集合A ={x |3<x <7},B ={x |4<x ≤10}, 所以{|310}A B x x ⋃=<,{|3R A x x =或7}x , {|4RB x x =或10}x >;()(){|3RR A B x x ⋂=或10}x >;(2){|2C x x a =<-或2}x a >+,{|47}A B x x ⋂=<<; A B C ⋂⊆; 27a ∴-,或24a +;9a ∴,或2a ;a ∴的取值范围为{|9a a 或2}a .【点睛】考查描述法表示集合的定义,绝对值不等式的解法,交集、并集和补集的运算,以及子集的概念.属于中档题.22.(1){}|27A B x x ⋃=-≤<;(2)若选择①(]1,41,2⎡⎤-∞--⎢⎥⎣⎦;若选择②[)5,5,2⎛⎤-∞-+∞ ⎥⎝⎦;若选择③[)5,5,2⎛⎤-∞-+∞ ⎥⎝⎦.【分析】(1)当a =2时,得出集合A ,求得集合B ,根据集合的并集运算可得答案; (2)若选择①A B A =,则A B ⊆,分集合A 是空集和不是空集两种情况讨论得实数a的取值范围; 若选择②()R AC B A =,则A 是RB 的子集,分集合A 是空集和不是空集两种情况讨论得实数a 的取值范围; 若选择③A B =∅,分集合A 是空集和不是空集两种情况讨论得实数a 的取值范围.【详解】(1)当a =2时,集合{}|17A x x =<<,{}|24B x x =-≤≤,所以{}|27A B x x ⋃=-≤<;(2)若选择①AB A =,则A B ⊆,当123a a -≥+,即4a ≤-时,A =∅,满足题意;当4a >-时,应满足12234a a -≥-⎧⎨+≤⎩,解得112a -≤≤;综上知:实数a 的取值范围(]1,41,2⎡⎤-∞--⎢⎥⎣⎦; 若选择②()R AC B A =,则A 是RB 的子集,(,2)(4,)R B =-∞-⋃+∞,当123a a -≥+,即4a ≤-时,A =∅,满足题意; 当4a >-时,应满足4232a a >-⎧⎨+≤-⎩,或414a a >-⎧⎨-≥⎩,解得542a -<≤-或5a ≥,综上知:实数a 的取值范围[)5,5,2⎛⎤-∞-+∞ ⎥⎝⎦;若选择③AB =∅,当123a a -≥+,即4a ≤-时,A =∅,满足题意;当4a >-时,应满足4232a a >-⎧⎨+≤-⎩,或414a a >-⎧⎨-≥⎩,解得542a -<≤-或5a ≥,综上知:实数a 的取值范围[)5,5,2⎛⎤-∞-+∞ ⎥⎝⎦;【点睛】易错点睛:本题容易忽略集合A 是空集的情况,导致出错:空集是任何集合的子集,是任何非空集合的真子集.23.(1)m =2;(2){5m m >或3}m ≤-.. 【分析】(1)分别求集合A 和B R,根据运算结果,求实数m 的值;(2)根据运算结果,转化为A B ⊆,列不等式求m 的取值范围.【详解】解:(1)由已知得{}13A x x =-<≤,{}22RB x m x m =-≤≤+,∵A {}|03R B x x ⋂=≤≤, ∴2023m m -=⎧⎨+≥⎩,,即 2.1m m =⎧⎨≥⎩∴m =2. (2)AB B =,∴A B ⊆.∴23m ->或21m +≤-, ∴5m >或3m ≤-.即实数m 的取值范围为{5m m >或3}m ≤-. 【点睛】易错点点睛:1.一般涉及集合运算时,需注意端点值的开闭,以及列不等式时,需注意参数的端点值的开闭;2.根据集合交,并集的运算结果,转化为子集问题时,需注意有时有空集的情况,这点容易忽略.24.(1)0a =或1a =;(2)1a ≤;(3)0a =或1a ≥. 【分析】根据集合中元素的个数以及方程的解即可确定a 的取值范围. 【详解】解:(1)若A 中只有一个元素,则当0a =时,原方程变为210x +=,此时12x =-符合题意,当0a ≠时,方程2210ax x ++=为二元一次方程,440a ∆=-=,即1a =, 故当0a =或1a =时,原方程只有一个解; (2)A 中至少有一个元素, 即A 中有一个或两个元素,由0∆>得1a <综合(1)当1a ≤时A 中至少有一个元素; (3)A 中至多有一个元素, 即A 中有一个或没有元素 当44a 0∆=-<, 即1a >时原方程无实数解,结合(1)知当0a =或1a ≥时A 中至多有一个元素. 【点睛】关键点点睛:本题解题的关键是理解集合中的元素与方程的根之间的关系. 25.(1){}2;(2)()2,+∞ 【分析】(1)先求出A ,代入2a =,求出集合B ,然后直接求出A B ⋂即可.(2)由题意得,A B A ⋃=,可得B A ⊆,然后分类讨论:①当B =∅;②当B ≠∅;然后直接 【详解】(1)由题意得(){{}lg 11A x y x x x ==-=>, 因为a=2,所以{}{}2301,2B x x x a =-+==则{}2A B ⋂=(2)因为A B A ⋃=,所以B A ⊆ ①当B =∅时,由题意得9-4a <0.解得94a >;②当B ≠∅时,由题意得94011a ⎧⎪-≥>> 解得924a <≤. 综上,a 的取值范围为()2,+∞. 【点睛】本题考查含参集合的交集和并集运算,难点在于不要遗漏空集情况的考虑,属于难题. 26.(1)1|32x x ⎧⎫-<≤⎨⎬⎩⎭,1|02x x ⎧⎫-<≤⎨⎬⎩⎭;(2){1|2a a ≤-或}4a ≥. 【分析】(1)化简集合,利用集合的交并补运算求解即可;(2)讨论A =∅,A ≠∅两种情况,列出相应的不等式,求解即可得出答案. 【详解】 (1)若12a =时,12,{03}2A xx B x x ⎧⎫=-<<=<≤⎨⎬⎩⎭∣∣ ∴1|32A B x x ⎧⎫⋃=-<≤⎨⎬⎩⎭,由{|0UB x x =≤或3}x >所以()1|02UA B x x ⎧⎫⋂=-<≤⎨⎬⎩⎭(2)由AB =∅知当A =∅时,121,2a a a -≥+∴≤- 当A ≠∅时,21113a a a +>-⎧⎨-≥⎩或211210a a a +>-⎧⎨+≤⎩4a ∴≥或122a -<≤-综上:a 的取值范围是{1|2a a ≤-或}4a ≥. 【点睛】本题主要考查了集合的交并补混合运算以及根据交集的结果求参数的范围,属于中档题.。

最新北师大版高中数学必修一第一单元《集合》检测(有答案解析)(1)

最新北师大版高中数学必修一第一单元《集合》检测(有答案解析)(1)

一、选择题1.设集合}{2230A x x x =+->,集合}{2210,0,B x x ax a =--≤>若A B 中恰含有一个整数 ,则实数a 的取值范围是( ) A .34,43⎡⎫⎪⎢⎣⎭B .30,4⎛⎫ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .()1,+∞2.设全集U =R ,{}2560A x x x =-->,{}5B x x a =-<(a 为常数),且11B ∈,则下列成立的是( )A .U AB R =B .UA B R =C .UUAB R = D .AB R =3.设有限集合A =123{,,,}n a a a a ,则称123A n S a a a a =++++为集合A 的和.若集合M ={x ︳2,N ,6x t t t *=∈<},集合M 的所有非空子集分别记为123,,,k P P P P ,则123k P P P P S S S S ++++=( )A .540B .480C .320D .2804.对于非空集合P ,Q ,定义集合间的一种运算“★”:{P Q x x P Q =∈★∣且}x P Q ∉⋂.如果{111},{P x x Q x y =-≤-≤==∣∣,则P Q =★( )A .{12}xx ≤≤∣ B .{01xx ≤≤∣或2}x ≥ C .{01xx ≤<∣或2}x > D .{01xx ≤≤∣或2}x > 5.已知集合302x A xx ⎧⎫+⎪⎪=⎨⎬-⎪⎪⎩⎭,{}B y y m =<,若A B ⊆,则实数m 的取值范围为( )A .()2∞+,B .[)2∞+,C .()3∞-+,D .[)3∞-+,6.对于集合A 和B ,令{,,},A B x x a b a A b B +==+∈∈如果{2,},S x x k k Z ==∈{}|21,T x x k x Z ==+∈,则S T +=( )A .整数集ZB .SC .TD .{41,}x x k k Z =+∈7.已知0a b >>,全集为R ,集合}2|{ba xb x E +<<=,}|{a x ab x F <<=,}|{ab x b x M ≤<=,则有( )A . E M =(R C F )B .M =(RC E )F C .F E M =D .FE M =8.设集合{}2110P x x ax =++>,{}2220P x x ax =++>,{}210Q x x x b =++>,{}2220Q x x x b =++>,其中a ,b ∈R 下列说法正确的是( ) A .对任意a ,1P 是2P 的子集;对任意的b ,1Q 不是2Q 的子集 B .对任意a ,1P 是2P 的子集;存在b ,使得1Q 是2Q 的子集 C .存在a ,使得1P 不是2P 的子集;对任意的b ,1Q 不是2Q 的子集 D .存在a ,使得1P 不是2P 的子集;存在b ,使得1Q 是2Q 的子集9.已知集合22{|,N ,N}A t t m n m n = =+ ∈ ∈,且x A ∈,y A ,则下列结论中正确的是( ) A .x y A +∈ B .x y A -∈ C .xy A ∈D .xA y∈ 10.已知集合A ,B 是实数集R 的子集,定义{},A B x x A x B -=∈∉,若集合1113A y y x x ⎧⎫==≤≤⎨⎬⎩⎭,,{}21,12B y y x x ==--≤≤,则B A -=( )A .[]1,1-B .[)1,1-C .[]0,1D .[)0,111.已知全集U =R ,集合(){}{}20,1A x x x B x x =+<=≤,则图中阴影部分表示的集合是( )A .()2,1-B .[][)1,01,2-C .()[]2,10,1--D .0,112.如果集合{}2210A x ax x =--=只有一个元素,则a 的值是( ) A .0B .0或1C .1-D .0或1-二、填空题13.已知集合{|68}A x x =-≤≤,{|}B x x m =≤,若A B B ≠且A B ⋂≠∅,则m的取值范围是________14.已知集合(){}22112|2103x P x Q x x x m ⎧-⎫=-=-+-⎨⎬⎩⎭≤,≤,其中m >0,全集U =R .若“Ux P ∈”是“∈Ux Q ”的必要不充分条件,则实数m 的取值范围为__________.15.已知集合1{}2A =-,,1{}0|B x mx =+>,若A B B ⋃=,则实数m 的取值范围是________.16.已知有限集{}123,,,,(2)n A a a a a n =≥. 如果A 中元素(1,2,3,,)i a i n =满足1212n n a a a a a a =+++,就称A 为“复活集”,给出下列结论:①集合1122⎧---⎪⎨⎪⎪⎩⎭是“复活集”; ②若12,a a R ∈,且12{,}a a 是“复活集”,则124a a >; ③若*12,a a N ∈,则12{,}a a 不可能是“复活集”; ④若*i a N ∈,则“复活集”A 有且只有一个,且3n =.其中正确的结论是____________.(填上你认为所有正确的结论序号) 17.已知{}2|340,{|10}A x x x B x ax a =+-==-+=,且B A ⊆,则所有a 的值所构成的集合M =_________.18.若集合{}2210,A x ax x a R =++=∈至多有一个元素,则a 的取值范围是___________.19.设A 是集合{}123456S =,,,,,的非空子集,称A 中的元素之和为A 的“容量”,则S 的所有非空子集的“容量”之和是_______20.已知集合(){}21210,,A x a x x a R x R =-++=∈∈,若集合A 至多有两个子集,则a 的取值范围是__________.三、解答题21.设集合{}14A x x =-<<,352B x x ⎧⎫=-<<⎨⎬⎩⎭,{}122C x a x a =-<<. (1)若C =∅,求实数a 的取值范围;(2)若C ≠∅且()C A B ⊆⋂,求实数a 的取值范围.22.已知集合{}|13A x x =-<<,集合(){}2|25250B x x k x k =+--<,k ∈R .(1)若1k =时,求B R,A B ;(2)若“x A ∈”是“x B ∈”的充分不必要条件,求实数k 的取值范围. 23.已知集合M ={x |2x -4=0},集合N ={x |x 2-3x +m =0}. (1)当m =2时,求M ∩N ,M ∪N ; (2)当M ∩N =M 时,求实数m 的值.24.已知函数2()lg(231)f x x x =-+的定义域为集合A ,函数()2(],,2x g x x =∈-∞的值域为集合B ,集合22{|430}(0)C x x mx m m =-+≤>. (1)求A ∪B ; (2)若()C AB ⊆,求实数m 的取值范围.25.已知集合{}212520A x x x =-->,{}20B x x ax b =-+≤满足AB =∅,(]=-4,8A B ⋃,求实数a ,b 的值.26.已知集合A x y ⎧⎫⎪==⎨⎪⎩,集合1228xB x ⎧⎫=<<⎨⎬⎩⎭. (1)求AB ;(2)若集合{}21C x a x a =≤≤+,且()A B C ⋂⊇,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先化简集合A ,再根据函数y =f (x )=x 2﹣2ax ﹣1的零点分布,结合A ∩B 恰有一个整数求解. 【详解】A ={x |x <﹣3或x >1},函数y =f (x )=x 2﹣2ax ﹣1的对称轴为x =a >0, 而f (﹣3)=6a +8>0,f (﹣1)=2a >0,f (0)<0,故其中较小的零点为(-1,0)之间,另一个零点大于1,f (1)<0, 要使A ∩B 恰有一个整数, 即这个整数解为2, ∴f (2)≤0且f (3)>0,即44109610a a --≤⎧⎨-->⎩,解得:3443a a ⎧≥⎪⎪⎨⎪<⎪⎩, 即34≤a <43, 则a 的取值范围为34,43⎡⎫⎪⎢⎣⎭. 故答案为:A. 【点睛】本题主要考查集合的交集运算的应用以及二次函数的零点分布问题,还考查了转化求解问题的能力,属于中档题.2.D解析:D 【分析】求出集合A ,根据11B ∈可求得实数a 的取值范围,利用集合的基本运算可判断各选项的正误. 【详解】{}{25601A x x x x x =-->=<-或}6x >,{}5B x x a =-<,且11B ∈,则6a >,{}{}555B x x a x a x a ∴=-<=-<<+,对于A 选项,取7a =,则{}212B x x =-<<,{}16UA x x =-≤≤,所以,{}16UA B x x R ⋂=-≤≤≠,A 选项错误;对于B 选项,取7a =,则{2UB x x =≤-或}12x ≥,此时UAB A R =≠,B 选项错误;对于C 选项,取7a =,则{}16UA x x =-≤≤,{2UB x x =≤-或}12x ≥,此时,{2UU A B x x ⋃=≤-或16x -≤≤或}12x R ≥≠,C 选项错误;对于D 选项,6a >,则51a -<-,511a +>,此时A B R =,D 选项正确.故选:D. 【点睛】本题考查与集合运算正误的判断,同时也考查了一元二次不等式以及绝对值不等式的求解,考查计算能力,属于基础题.3.B解析:B 【分析】求出{2,4.6.8.10}M =后,分别求出含有2,4,6,8,10的子集个数,然后可求得结果. 【详解】{2,4.6.8.10}M =,其中含有元素2的子集共有4216=个,含有元素4的子集共有4216=个,含有元素6的子集共有4216=个,含有元素8的子集共有4216=个,含有元素10的子集共有4216=个, 所以123k P P P P S S S S ++++(246810)16480=++++⨯=.故选:B 【点睛】本题考查了对新定义的理解能力,考查了集合的子集个数的计算公式,属于基础题.4.C解析:C 【分析】先确定,P Q ,计算P Q 和P Q ,然后由新定义得结论.【详解】由题意{|02}P x x =≤≤,{|10}{|1}Q x x x x =-≥=≥, 则{|0}PQ x x =≥,{|12}P Q x x =≤≤,∴{|01P Q x x =≤<★或2}x >. 故选:C . 【点睛】本题考查集合新定义运算,解题关键是正确理解新定义,确定新定义与集合的交并补运算之间的关系.从而把新定义运算转化为集合的交并补运算.5.B解析:B 【分析】求出集合A ,由A B ⊆,结合数轴,可得实数m 的取值范围. 【详解】 解不等式302x x +≤-,得32x -≤<,[)3,2A ∴=-. A B ⊆,可得2m ≥.故选:B . 【点睛】本题考查集合间的关系,属于基础题.6.C解析:C 【分析】由题意分别找到集合S ,T 中的一个元素,然后结合题中定义的运算确定S T +的值即可. 【详解】由题意设集合S 中的元素为:2,k k Z ∈,集合T 中的元素为:21,m m Z +∈, 则S T +中的元素为:()22121k m k m ++=++, 举出可知集合S T T +=. 故选:C . 【点睛】本题主要考查集合的表示方法,集合的运算法则等知识,意在考查学生的转化能力和计算求解能力.7.A解析:A 【分析】首先分析得出2a ba b +>>>,根据集合的运算,即可求解. 【详解】由题意,因为0a b >>,结合实数的性质以及基本不等式,可得2a ba b +>>>,可得{|R C F x x =≤}x a ≥,所以(){|R E C F x b x =<≤,即()R M E C F =故选A. 【点睛】本题主要考查了集合的运算,以及基本不等式的应用,其中解答中结合实数的性质和基本不等式求得2a ba b +>>>是解答的关键,着重考查了推理与运算能力,属于基础题. 8.B解析:B 【分析】先证得1P 是2P 的子集,然后求得b 使1Q 是2Q 的子集,由此确定正确选项.【详解】对于1P 和2P ,由于210x ax ++>时222110x ax x ax ++=+++>,所以1P 的元素,一定是2P 的元素,故对任意a ,1P 是2P 的子集;对于1Q 和2Q ,根据判别式有140440b b -<⎧⎨-<⎩,即1b >时,12Q Q R ==,满足1Q 是2Q 的子集,也即存在b ,使得1Q 是2Q 的子集. 故选: B. 【点睛】方法点睛:该题主要考查子集的判断,解题方法如下:(1)利用子集的概念,可以判断出1P 的元素,一定是2P 的元素,得到对任意a ,1P 是2P 的子集;(2)利用R 是R 的子集,结合判别式的符号,存在实数1b >时,有12Q Q R ==,得到结果.9.C解析:C 【分析】 设22x m n =+,22N,N N,,,N n b b ya ma ,再利用22()()xy ma nb mb na =++-,可得解.【详解】由x A ∈,yA ,设22x m n =+,22N,N N,,,N n b b y a m a ,所以22222222222222()()()()xy m n a b m a m b n a n b ma nb mb na =++=+++=++-, 且N,N ma nb mb na +-∈∈, 所以xy A ∈, 故选:C. 【点睛】关键点点睛,本题的解题关键是2222222222()()m a m b n a n b ma nb mb na +++=++-,另外本题可以通过列举法得到集合的一些元素,进而排除选项可得解.10.B解析:B 【分析】先根据题意得{}13A y y =≤≤,{}13B y y =-≤≤,再根据集合运算即可得答案. 【详解】解:根据题意得{}111133A y y x y y x ⎧⎫==≤≤=≤≤⎨⎬⎩⎭,,{}{}21,1213B y y x x y y ==--≤≤=-≤≤,再根据集合的运算得}{11B A y y -=-≤<. 故选:B. 【点睛】本题考查集合的运算,函数值域的求解,考查运算能力,是中档题.11.C解析:C 【分析】由集合描述求集合,A B ,结合韦恩图知阴影部分为()()U C A B A B ⋂⋂⋃,分别求出()U C A B 、()A B ⋃,然后求交集即可.【详解】(){}20{|20}A x x x x x =+<=-<<,{}1{|11}B x x x x =≤=-≤≤,由图知:阴影部分为()()U C A B A B ⋂⋂⋃,而{|10}A B x x ⋂=-≤<,{|21}A B x x ⋃=-<≤,∴(){|1U C A B x x ⋂=<-或0}x ≥,即()(){|21U C A B A B x x ⋂⋂⋃=-<<-或01}x ≤≤,故选:C 【点睛】本题考查了集合的基本运算,结合韦恩图得到阴影部分的表达式,应用集合的交并补混合12.D解析:D 【分析】由题意得知关于x 的方程2210ax x --=只有一个实数解,分0a =和00a ≠⎧⎨∆=⎩两种情况讨论,可得出实数a 的值. 【详解】由题意得知关于x 的方程2210ax x --=只有一个实数解.当0a =,{}12102A x x ⎧⎫=--==-⎨⎬⎩⎭,合乎题意;当0a ≠时,则440a ∆=+=,解得1a =-. 综上所述:0a =或1-,故选D. 【点睛】本题考查集合的元素个数,本质上考查变系数的二次方程的根的个数,解题要注意对首项系数为零和非零两种情况讨论,考查分类讨论思想,属于中等题.二、填空题13.【分析】根据集合的并集和集合的交集得到关于的不等式组解出即可【详解】解:若且则解得即故答案为:【点睛】本题考查了集合的交集并集的定义属于基础题 解析:[6,8)-【分析】根据集合的并集和集合的交集得到关于m 的不等式组,解出即可. 【详解】解:{|68}A x x =-,{|}B x x m =, 若A B B ≠且A B ⋂≠∅,则68m m -⎧⎨<⎩,解得68m -≤<,即[)6,8m ∈- 故答案为:[)6,8-. 【点睛】本题考查了集合的交集、并集的定义,属于基础题.14.【分析】解出集合PQ 根据充分条件和必要条件关系得出两个集合的包含关系即可求出范围【详解】由题:是的必要不充分条件即PQ 解不等式所以0P Q 所以解得:故答案为:【点睛】此题考查根据充分条件和必要条解析:9m ≥解出集合P ,Q ,根据充分条件和必要条件关系得出两个集合的包含关系即可求出范围. 【详解】 由题:“Ux P ∈”是“∈Ux Q ”的必要不充分条件,UQUP ,即P Q ,解不等式1123x --≤,12123x --≤-≤, 646x -≤-≤,210x -≤≤所以[]1122,103x P x ⎧-⎫=-=-⎨⎬⎩⎭≤,(){}()()()(){}22|210|110Q x x x m x x m x m =-+-=-+--≤≤,m >0,P Q , 所以11012m m +≥⎧⎨-≤-⎩,解得:9m ≥.故答案为:9m ≥ 【点睛】此题考查根据充分条件和必要条件判断集合的包含关系求解参数范围,关键在于准确判断两个集合的包含关系,列出不等式组求解.15.【分析】讨论和及确定集合利用列不等式求解【详解】由题意知则当时∵∴解得当时∵∴解得当时也有综上实数m 的取值范围是故答案为:【点睛】本题考查集合的包含关系考查一次不等式解集注意m=0的讨论是易错题解析:1(,1)2-【分析】讨论0m >和0m <及0m =确定集合B ,利用A B ⊆列不等式求解 【详解】由题意知A B B ⋃=,则A B ⊆, 当0m >时,1{|}B x x m=>-, ∵1{}2A =-,, ∴11m-<- 解得01m <<, 当0m <时,1{|}B x x m=<-, ∵1{}2A =-,, ∴12m->解得102m -<<, 当0m =时也有A B ⊆. 综上,实数m 的取值范围是1(,1)2- 故答案为:1(,1)2-. 【点睛】本题考查集合的包含关系,考查一次不等式解集,注意m =0的讨论,是易错题16.①③④【分析】根据已知中复活集的定义结合韦达定理以及反证法依次判断四个结论的正误进而可得答案【详解】对于①故①正确;对于②不妨设则由韦达定理知是一元二次方程的两个根由可得或故②错;对于③不妨设中由得解析:①③④ 【分析】根据已知中“复活集”的定义,结合韦达定理以及反证法,依次判断四个结论的正误,进而可得答案. 【详解】对于①,111112222----+-⋅=+=-,故①正确; 对于②,不妨设1212a a a a t +==,则由韦达定理知12,a a 是一元二次方程20x tx t -+=的两个根, 由>0∆,可得0t <或4t >,故②错; 对于③,不妨设A 中123n a a a a <<<<,由1212n n n a a a a a a na =+++<得121n a a a n -<,当2n =时,即有12a <,∴11a =,于是221a a +=,2a 无解,即不存在满足条件的“复活集”A ,故③正确;对于④,当3n =时,123a a <,故只能11a =,22a =,求得33a =, 于是“复活集” A 只有一个,为{}1,2,3, 当4n ≥时,由()1211231n a a a n -≥⨯⨯⨯⨯-,即有()1!n n >-,也就是说“复活集”A 存在的必要条件是()1!n n >-,事实上()()()()221!1232222n n n n n n n -≥--=-+=--+>,矛盾,∴当4n ≥时不存在“复活集”A ,故④正确.故答案为:①③④【点睛】本题主要考查了集合新定义,需理解“复活集”的定义,考查了学生的知识迁移能力以及分析问题的能力,属于中档题.17.【分析】计算根据得到四种情况分别计算得到答案【详解】当时:此时;当时:解得;当时:解得;当时:无解;综上所述:故答案为:【点睛】本题考查了根据集合关系求参数忽略掉空集是容易发生的错误解析:110,,23⎧⎫-⎨⎬⎩⎭【分析】计算{}1,4A =-,根据B A ⊆得到B =∅,{}1B =,{}4B =-,{}1,4B =-四种情况,分别计算得到答案. 【详解】{}{}2|3401,4A x x x =+-==-,B A ⊆当B =∅时:{|10}B x ax a =-+==∅,此时0a =; 当{}1B =时:{}{|10}1B x ax a =-+==,解得12a =; 当{}4B =-时:{}{|10}4B x ax a =-+==-,解得13a =-; 当{}1,4B =-时:{}{|10}1,4B x ax a =-+==-,无解; 综上所述:110,,23a ⎧⎫∈-⎨⎬⎩⎭故答案为:110,,23⎧⎫-⎨⎬⎩⎭【点睛】本题考查了根据集合关系求参数,忽略掉空集是容易发生的错误.18.或【分析】根据讨论方程解的情况即得结果【详解】时满足题意;时要满足题意需综上的取值范围是或故答案为:或【点睛】本题考查根据集合元素个数求参数考查基本分析求解能力属中档题解析:{0a a =或}1a ≥ 【分析】根据a 讨论2210ax x ++=方程解的情况,即得结果 【详解】0a =时,21212102ax x x x ++=+=∴=-,12A ⎧⎫=-⎨⎬⎩⎭满足题意;0a ≠时,要满足题意,需4401a a ∆=-≤∴≥综上a 的取值范围是{0a a =或}1a ≥ 故答案为:{0a a =或}1a ≥ 【点睛】本题考查根据集合元素个数求参数,考查基本分析求解能力,属中档题.19.672【分析】在所有的子集中每个元素出现的次数都是个由此能求出结果【详解】在所有的子集中每个元素出现的次数都是个的所有非空子集的容量之和为故答案为:672【点睛】本题主要考查学生的对新定义的分析和解解析:672 【分析】在S 所有的子集中,每个元素出现的次数都是52个,由此能求出结果. 【详解】在S 所有的子集中,每个元素出现的次数都是52个,S ∴的所有非空子集的“容量”之和为5(123456)672+++++=2故答案为:672 【点睛】本题主要考查学生的对新定义的分析和解决的能力,主要考查了转化与划归的思想.20.或【分析】分集合为或有且仅有一个元素两种情况进行求解其中当集合有且仅有一个元素时注意对方程的二次项系数分和两种情况进行分别求解即可【详解】由题意可得集合为或有且仅有一个元素当时方程无实数根所以解得当解析:2a ≥或1a = 【分析】分集合A 为φ或有且仅有一个元素两种情况进行求解,其中当集合A 有且仅有一个元素时,注意对方程()21210a x x -++=的二次项系数分10a -=和10a -≠两种情况进行分别求解即可. 【详解】由题意可得,集合A 为φ或有且仅有一个元素, 当A φ=时,方程()21210a x x -++=无实数根,所以()21024110a a -≠⎧⎨∆=-⨯-⨯<⎩, 解得2a >,当集合A 有且只有一个元素时,方程()21210a x x -++=有且只有一个实数根,当10a -=,即1a =时,方程有一根12x =-符合题意;当10a -≠,即1a ≠时,判别式()224110a ∆=-⨯-⨯=,解得2a =;综上可知a 的取值范围为:2a ≥或1a =. 故答案为:2a ≥或1a = 【点睛】本题考查利用分类讨论思想求解方程根的个数问题;其中当一个方程的二次项系数含有参数,考虑其根的个数问题时,一定要注意对方程的二次项系数分为0和不为0两种情况进行讨论;属于中档题.三、解答题21.(1)14a a ⎧⎫≤⎨⎬⎩⎭;(2)1344a a ⎧⎫<≤⎨⎬⎩⎭. 【分析】(1)根据空集的概念列出关于a 的不等式,求解出a 的取值范围; (2)先根据C ≠∅求解出a 的初步范围,然后根据条件求解出A B 的结果,最后再根据子集关系求解出a 的取值范围. 【详解】解:(1)因为{}122C x a x a =-<<=∅,所以122a a -≥,所以14a ≤, 即实数a 的取值范围是14a a ⎧⎫≤⎨⎬⎩⎭.(2)因为{}122C x a x a =-<<≠∅,所以122a a -<,即14a >. 因为{}14A x x =-<<,352B x x ⎧⎫=-<<⎨⎬⎩⎭,所以312A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭, 因为()C A B ⊆⋂,所以12132214a a a ⎧⎪-≥-⎪⎪≤⎨⎪⎪>⎪⎩,解得1344a <≤,即实数a 的取值范围是1344a a ⎧⎫<≤⎨⎬⎩⎭.【点睛】易错点睛:根据集合的包含关系求解参数范围时的注意事项: (1)注意分析集合为空集的可能;(2)列关于参数的不等式时,注意等号是否能取到. 22.(1)[)5,1,2⎛⎤-∞-⋃+∞ ⎥⎝⎦,5,32⎛⎫- ⎪⎝⎭;(2)[)3,+∞.【分析】(1)若1k =,化简集合B ,利用补集和并集的定义进行计算可得答案; (2)“x A ∈”是“x B ∈”的充分不必要条件,则集合A 是集合B 的真子集,分52k <-,52k =-和52k >-分别求出集合B ,列出不等式可得实数k 的取值范围.【详解】(1)若1k =,{}25|2350|12B x x x x x ⎧⎫=+-<=-<<⎨⎬⎩⎭则R B =[)5,1,2⎛⎤-∞-⋃+∞ ⎥⎝⎦,A B =5,32⎛⎫- ⎪⎝⎭; (2)“x A ∈”是“x B ∈”的充分不必要条件,则集合A 是集合B 的真子集,(){}()(){}2|25250|250B x x k x k x x k x =+--<=-+<当52k <-时,5,2B k ⎛⎫=- ⎪⎝⎭,不合题意;当52k =-时,B φ=,不合题意; 当52k >-时,5,2B k ⎛⎫=- ⎪⎝⎭,只需3k ≥; 综上可得:实数k 的取值范围是[)3,+∞. 【点睛】结论点睛:本题考查集合的交并补运算,考查充分不必要条件的应用,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 23.(1)M ∩N ={2},M ∪N ={1,2};(2)m =2. 【分析】(1)先求出集合,M N ,再求出M ∩N ,M ∪N ; (2)分析得到2∈N ,解方程4-6+m =0即得解. 【详解】解:(1)由题意得M ={2},当m =2时,N ={x |x 2-3x +2=0}={1,2}, 则M ∩N ={2},M ∪N ={1,2}.(2)因为M ∩N =M ,所以M ⊆N ,因为M ={2},所以2∈N . 所以2是关于x 的方程x 2-3x +m =0的解, 即4-6+m =0,解得m =2. 【点睛】本题主要考查集合的运算,考查根据集合运算的结果求参数,意在考查学生对这些知识的理解掌握水平.24.(1)R (2)106m <≤或413m ≤≤【分析】(1)求出集合A ,B ,根据集合的并集运算即可; (2){|3},C x m x m =<<1{|02A B x x ⋂=<<或14}x <≤,利用()C A B ⊆,列出不等式组,求出实数m 的取值范围. 【详解】由2()lg(231)f x x x =-+可得:22310x x -+>, 所以1{|2A x x =<或1}x >, 因为()2(],,2x g x x =∈-∞, 所以{|04}B x x =<, 所以AB R =.(2){|3}C x m x m =<<,1{|02A B x x ⋂=<<或14}x <≤, 因为()C AB ⊆,所以0132mm <⎧⎪⎨≤⎪⎩或134m m ≤⎧⎨≤⎩, 解得106m <≤或413m ≤≤,故实数m 的取值范围106m <≤或413m ≤≤.【点睛】本题考查并集、交集、子集定义等基础知识,考查运算求解能力,属于中档题.25.19,122a b == 【分析】先化简集合A ,再根据A B =∅,(]=-4,8A B ⋃,确定集合B 求解.【详解】因为{}231252042A x x x x x ⎧⎫=-->=-<<⎨⎬⎩⎭,{}20B x x ax b =-+≤ 满足AB =∅,(]=-4,8A B ⋃,所以{}23082B x x ax b x x ⎧⎫=-+≤=≤≤⎨⎬⎩⎭, 所以3,82是方程20x ax b -+=的两个根, 所以382382a b ⎧+=⎪⎪⎨⎪⨯=⎪⎩ , 解得19,122a b == . 【点睛】本题主要考查了集合的基本运算,还考查了理解辨析,运算求解的能力,属于中档题. 26.(1)()3,0-;(2)312a -<<-或1a >. 【分析】(1)由已知条件分别计算出集合A 和集合B ,然后再计算出AB 的结果.(2)由已知条件()A B C ⋂⊇,则分类讨论C =∅和C ≠∅两种情况,求出实数a 的取值范围. 【详解】(1)已知集合A x y ⎧⎫⎪==⎨⎪⎩,则230x x -->,解得30x -<<,即()3,0A =-,集合1228x B x ⎧⎫=<<⎨⎬⎩⎭,解得31x -<<,即()3,1B =-,所以()3,0A B ⋂=-(2)因为集合{}21C x a x a =≤≤+,且()A B C ⋂⊇,由(1)得()3,0A B ⋂=-, 则当C =∅时,21a a >+,即1a >,当C ≠∅时,212310a a a a ≤+⎧⎪>-⎨⎪+<⎩,得312a -<<-,综上,312a -<<-或1a >.【点睛】本题考查了集合的交集运算和子集运算,在含有参量的子集题目中需要注意分类讨论,尤其不要漏掉空集情况,然后求解不等式组得到结果.本题较为基础.。

最新北师大版高中数学必修一第一单元《集合》检测题(含答案解析)(2)

最新北师大版高中数学必修一第一单元《集合》检测题(含答案解析)(2)

一、选择题1.设集合{}20,201x M x N x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( )A .{}01x x ≤<B .{}01x x <<C .{}02x x ≤<D .{}02x x <<2.设集合2{|}A x x x =<,2}6{|0B x x x =+-<,则A B =( )A .(0,1)B .()()3,01,2-⋃C .(-3,1)D .()()2,01,3-⋃ 3.设集合A={2,1-a ,a 2-a +2},若4∈A ,则a =( ) A .-3或-1或2 B .-3或-1 C .-3或2D .-1或24.已知集合A 、B 均为非空集合,定义{*|()A B x x A B =∈⋃且}()x A B ∉⋂,若{}1,0,1,2,3A =-,{}2|1,B x x t t A ==+∈,则集合*A B 的子集共( )A .64个B .63个C .32个D .31个5.已知区间1[,]3A m m =-和3[,]4B n n =+均为[]0,1的子区间,定义b a -为区间[],a b 的长度,则当A B 的长度达到最小时mn 的值为( )A .0B .112C .0或112D .0或16.已知集合{}2|230A x x x =--≤,集合{}||1|3B x x =-≤,集合4|05x C x x -⎧⎫=≤⎨⎬+⎩⎭,则集合A ,B ,C 的关系为( )A .B A ⊆B .A B =C .C B ⊆D .A C ⊆7.非空集合G 关于运算⊕满足:①对任意a 、b G ∈,都有a b G ⊕∈;②存在e G ∈使对一切a G ∈都有a e e a a ⊕=⊕=,则称G 是关于运算⊕的融洽集,现有下列集合及运算中正确的说法有( )个(1)G 是非负整数集,⊕:实数的加法; (2)G 是偶数集,⊕:实数的乘法;(3)G 是所有二次三项式组成的集合,⊕多项式的乘法;(4){}|G x x a a b Q ==+∈,,⊕:实数的乘法. A .1 B .2 C .3 D .48.对于集合A 和B ,令{,,},A B x x a b a A b B +==+∈∈如果{2,},S x x k k Z ==∈{}|21,T x x k x Z ==+∈,则S T +=( )A .整数集ZB .SC .TD .{41,}x x k k Z =+∈9.设全集为R ,集合{}2log 1A x x =<,{B x y ==,则()RAB =( )A .{}02x x <<B .{}01x x <<C .{}11x x -<<D .{}12x x -<<10.已知集合{}1A x x =>,{}1B x x =≥,则( )A .A ⊆BB .B ⊆AC .A∩B=φD .A ∪B=R11.已知函数()f x =M ,()ln(1)g x x =+的定义域为N ,则()R MC N =( )A .{|1}<x xB .{|1}x x ≥C .φD .{|11}x x -≤<12.下列结论正确的是() A .若a b <且c d <,则ac bd <B .若a b >,则22ac bc >C .若0a ≠,则12a a +≥ D .若0a b <<,集合1|A x x a ⎧⎫==⎨⎬⎩⎭,1|B x x b ⎧⎫==⎨⎬⎩⎭,则A B ⊇ 二、填空题13.已知集合:A ={x |x 2=1},B ={x |ax =1},且A ∩B =B ,则实数a 的取值集合为______. 14.已知2{|31,},x A x x -+=≥∈R 21{|1,}3x B x x R x -=≤∈+,则A ∩B =______. 15.对于任意集合X 与Y ,定义:①{}|X Y x x X x Y -=∈∉且,②()()X Y X Y Y X =--△∪,(X Y △称为X 与Y 的对称差).已知{}{}2|2|33A y y x x x R B y y ==-∈=-,,≤≤,则A B =△______.16.用列举法表示集合*6,5A aN a Z a ⎧⎫=∈∈=⎨⎬-⎩⎭__________.17.若规定{}1210E a a a =⋯,,,的子集{}12,,n k k k a a a 为E 的第k 个子集,其中12111222n k k k k ---=++⋯+,则E 的第211个子集是____________. 18.设集合A 、B 是实数集R 的子集,[2,0]AB =-R,[1,2]BA =R,()()[3,5]A B =R R ,则A =________19.已知集合{1,2,3},{1,2}A B ==,则满足A C B C ⋂=⋃的集合C 有_______个. 20.设A 、B 是非空集合,定义:{|A B x x AB ⊗=∈且}x A B ∉,已知{|2}2xA x x =<+,{|3}B x x =>-,则A B ⊗=_________ 三、解答题21.已知集合{|314}A x x =-<+,{|213}B x m x m =-<+.(1)当1m =时,求AB ;(2)若A B A ⋃=,求m 的取值范围.22.设关于x 的不等式2(21)(2)(1)0x a x a a -+++->和2()()0x a x a --<的解集分别为A 和B .(1)求集合A ;(2)是否存在实数a ,使得A B =R ?如果存在,求出a 的值,如果不存在,请说明理由;(3)若A B ⋂≠∅,求实数a 的取值范围. 23.若全集U =R ,集合{23},{27},{(4)(3)0}A x a x a B x x C x x x =-≤≤+=≤≤=-+≥.(1)当3a =时,求,()U A B A C B ;(2)若AC A =,求实数a 的取值范围.24.已知集合{}13A x x =<<,{}21B x m x m =<<-. (1)当1m =-时,求A B ;(2)若A B B ⋃=,求实数m 的取值范围;(3)若AB =∅,求实数m 的取值范围.25.已知集合{()(1)0}M xx t x =-+≤∣,{|21}N x x =|-|<. (1)当2t =时,求M N ⋃; (2)若N M ⊆,求实数t 的取值范围.26.已知集合A x y ⎧⎫⎪==⎨⎪⎩,集合1228xB x ⎧⎫=<<⎨⎬⎩⎭. (1)求AB ;(2)若集合{}21C x a x a =≤≤+,且()A B C ⋂⊇,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据分式不等式和一元二次不等式的解法,求得集合{01},{|02}M x x N x x =≤<=<<,再结合集合交集的运算,即可求解.【详解】由题意,集合{}20{01},20{|02}1x M xx x N x x x x x x ⎧⎫=≤=≤<=-<=<<⎨⎬-⎩⎭,所以{}01M N x x ⋂=<<. 故选:B . 【点睛】本题主要考查了集合的交集的概念及运算,其中解答中结合分式不等式和一元二次不等式的解法,准确求解集合,A B 是解答的关键,着重考查了计算能力.2.B解析:B 【分析】化简集合A ,B ,根据交集运算即可求值. 【详解】因为2{|}A x x x =<(,0)(1,)=-∞⋃+∞,26{|}(32)0,B x x x =+-<=-所以()()3,01,2A B ⋂=-⋃. 故选:B 【点睛】本题主要考查了一元二次不等式的解法,集合的运算,属于中档题.3.C解析:C 【解析】若1−a =4,则a =−3,∴a 2−a +2=14,∴A ={2,4,14}; 若a 2−a +2=4,则a =2或a =−1,检验集合元素的互异性: a =2时,1−a =−1,∴A ={2,−1,4}; a =−1时,1−a =2(舍), 本题选择C 选项.4.C解析:C 【分析】先求集合B ,再求并集、交集、补集,最后根据元素确定子集个数. 【详解】因为{}2|1,{1,2,5,10}B x x t t A ==+∈=, 所以{}{}1,0,1,2,3510,1,2,AB A B =-=,,*{1,0,3,5,10}A B ∴=-因此集合*A B 的子集有5232=个, 故选:C 【点睛】本题考查并集、交集、补集定义以及子集个数,考查综合本分析求解能力,属基础题.5.C解析:C 【分析】由于这两个集合都是区间[]0,1的子集,根据区间长度的定义可得当103314m n ⎧-=⎪⎪⎨⎪+=⎪⎩或10m n =⎧⎨=⎩时AB 的长度最小,解出方程组即可得结果.【详解】由于这两个集合都是区间[]0,1的子集,根据区间长度的定义可得当103314m n ⎧-=⎪⎪⎨⎪+=⎪⎩或10m n =⎧⎨=⎩时A B 的长度最小,解得1314m n ⎧=⎪⎪⎨⎪=⎪⎩或10m n =⎧⎨=⎩,即112mn =或0,故选C. 【点睛】本题主要考查集合的表示方法,两个集合的交集的定义,充分理解区间长度的定义是解题的关键,属于中档题.6.D解析:D 【分析】根据一元二次不等式的解法可求出集合A ,根据绝对值不等式的解法可求出集合B ,根据分式不等式的解法可求出集合C ,从而可得出集合A ,B ,C 间的关系. 【详解】解:由于{}{{}2|23013A x x x x x =--≤=-≤≤,{}{}|1324B x x x x =-≤=-≤≤, {}4|0545x C x x x x -⎧⎫=≤=-<≤⎨⎬+⎩⎭,可知,A C ⊆. 故选:D. 【点睛】本题考查一元二次不等式、绝对值不等式和分式不等式的解法,以及集合间的关系,考查计算能力.7.B解析:B 【分析】根据新定义运算⊕判断. 【详解】(1)任意两个非负整数的和仍然是非负整数,对任意a G ∈,0G ∈,00a a a +=+=,(1)正确;(2)任意两个偶数的积仍然是偶数,但不存在e G ∈,对任意a G ∈,使ae ea a ==,(2)错误;(3)21x x -+和21x x +-是两个二次三项式,它们的积2242(1)(1)21x x x x x x x -++-=-+-不是二次三项式,(3)错误;(4)设x a y c =+=+,,,a b c d Q ∈,则2(xy ac bd ad bc G =+++,而且1G ∈,11x x x ⋅=⋅=,(4)正确.∴正确的有2个. 故选:B. 【点睛】本题考查新定义,解题关键是对新定义的理解与应用.8.C解析:C 【分析】由题意分别找到集合S ,T 中的一个元素,然后结合题中定义的运算确定S T +的值即可. 【详解】由题意设集合S 中的元素为:2,k k Z ∈,集合T 中的元素为:21,m m Z +∈, 则S T +中的元素为:()22121k m k m ++=++, 举出可知集合S T T +=. 故选:C . 【点睛】本题主要考查集合的表示方法,集合的运算法则等知识,意在考查学生的转化能力和计算求解能力.9.B解析:B 【解析】 【分析】解出集合A 、B ,再利用补集和交集的定义可得出集合()RA B .【详解】由2log 1x <,02x <<,{}02A x x ∴=<<.由210x -≥,得1x ≤-或1x ≥,则{}11B x x x =≤-≥或,{}11R B x x ∴=-<<, 因此,(){}01A B x x ⋂=<<R ,故选:B. 【点睛】本题考查交集和补集的混合运算,同时也考查了对数不等式以及函数定义域的求解,考查计算能力,属于中等题.10.A解析:A 【分析】根据数轴判断两集合之间包含关系. 【详解】因为{}1A x x =>,{}1B x x =≥,所以A ⊆B ,选A. 【点睛】本题考查集合之间包含关系,考查基本判断分析能力.11.A解析:A 【解析】 【分析】根据函数定义域的求法求得,M N ,再求得()R M C N .【详解】由210x ->解得11x -<<,由10x +>解得1x >-.所以{}|1R C N x x =≤-,故()R MC N ={|1}<x x ,故选A.【点睛】本小题主要考查函数定义域的求法,考查集合补集和并集的运算,属于基础题.12.C解析:C 【分析】通过举例和证明的方式逐个分析选项. 【详解】A :取5,3,6,1a b c d =-==-=,则30,3ac bd ==,则ac bd >,故A 错误;B :取3,1,0a b c ===,则22ac bc =,故B 错误;C:21122a a a a ⎫+=+=+≥成立,故C 正确;D :因为0a b <<,所以11a b>,则A B ,故D 错误;故选:C. 【点睛】本题考查不等关系和等式的判断,难度一般.判断不等关系是否成立,常用的方法有:(1)直接带值验证;(2)利用不等式的性质判断;(3)采用其他证明手段.(如借助平方差、完全平方公式等).二、填空题13.{-101}【分析】由已知得B ⊆A 从而B=∅或B={-1}或B={1}进而或=-1或由此能求出实数a 的取值集合【详解】∵A={x|x2=1}={-11}A∩B=B ∴B ⊆A ∴B=∅或B={-1}或B=解析:{-1,0,1} 【分析】由已知得B ⊆A ,从而B=∅或B={-1},或B={1},进而0a =,或1a =-1或11a=,由此能求出实数a 的取值集合. 【详解】∵A={x|x 2=1}={-1,1}, A∩B=B ,∴B ⊆A , ∴B=∅或B={-1},或B={1}, ∴0a =,或1a =-1或11a=, 解得a=0或a=-1或a=1. ∴实数a 的取值集合为{-1,0,1}. 故答案为:{-1,0,1}. 【点睛】本题考查集合的求法,是基础题,解题时要认真审题,注意交集的性质的合理运用.14.【分析】根据指数函数的单调性解不等式化简集合A 解分式不等式化简集合B 求交集即可【详解】由得:解得故由得:解得故所以A∩B=【点睛】本题主要考查了指数不等式分式不等式集合的交集运算属于中档题 解析:(]3,2-【分析】根据指数函数的单调性解不等式化简集合A ,解分式不等式化简集合B ,求交集即可. 【详解】由231x -+≥得:20x -+≥, 解得2x ≤, 故{|2}A x x =≤,由2113x x -≤+得:403x x -≤+, 解得34x , 故{|34}B x x =-<≤, 所以A ∩B = (]3,2- 【点睛】本题主要考查了指数不等式,分式不等式,集合的交集运算,属于中档题.15.【分析】先求出和再计算【详解】由已知则∴故答案为:【点睛】本题考查集合的新定义解题关键是理解新定义运算把新运算转化为集合的运算 解析:[3,1)(3,)--+∞【分析】先求出A B -和B A -,再计算A B ∆ 【详解】由已知{|1}A y y =≥-,则{|3}(3,)A B y y -=>=+∞,{|31}[3,1)B A y y -=-≤<-=--,∴()()[3,1)(3,)A B A B B A ∆=--=--+∞, 故答案为:[3,1)(3,)--+∞【点睛】本题考查集合的新定义,解题关键是理解新定义运算,把新运算转化为集合的运算.16.【分析】对整数取值并使为正整数这样即可找到所有满足条件的值从而用列举法表示出集合【详解】因为且所以可以取234所以故答案为:【点睛】考查描述法列举法表示集合的定义清楚表示整数集属于基础题 解析:{}1,2,3,4-【分析】对整数a 取值,并使65a-为正整数,这样即可找到所有满足条件的a 值,从而用列举法表示出集合A . 【详解】 因为a Z ∈且*65N a∈- 所以a 可以取1-,2,3,4. 所以{}1,2,3,4A =- 故答案为:{}1,2,3,4- 【点睛】考查描述法、列举法表示集合的定义,清楚Z 表示整数集,属于基础题.17.【分析】根据题意分别讨论的取值通过讨论计算的可能取值即可得出答案【详解】而的第个子集包含此时的第个子集包含此时的第个子集包含此时的第个子集包含此时的第个子集包含的第个子集是故答案为:【点睛】本题主要 解析:{}12578,,,,a a a a a【分析】根据题意,分别讨论2n 的取值,通过讨论计算n 的可能取值,即可得出答案. 【详解】72128211=<,而82256211=>,E ∴的第211个子集包含8a ,此时21112883-=,626483=<,7212883=>,E ∴的第211个子集包含7a ,此时836419-=,421619=<,523219=>,E ∴的第211个子集包含5a ,此时19163-=,1223=<,2243=>,E ∴的第211个子集包含2a ,此时321-=,021=E ∴的第211个子集包含1a ,E ∴的第211个子集是{}12578,,,,a a a a a .故答案为:{}12578,,,,a a a a a 【点睛】本题主要考查了与集合有关的信息题,理解条件的定义是解决本题的关键.18.【分析】根据条件可得结合的意义可得集合【详解】因为集合是实数集的子集若则但不满足所以因为所以所以有又因为表示集合的元素去掉集合中的元素表示A 集合和B 集合中的所有元素所以把中的元素去掉中元素即为所求的 解析:(,1)(2,3)(5,)-∞+∞【分析】 根据条件()()[3,5]A B =R R 可得()(),35,AB =-∞+∞,结合[1,2]BA =R的意义,可得集合A . 【详解】因为集合A 、B 是实数集R 的子集,若AB =∅,则[2,0]AB A =-=R,[1,2]BA B ==R,但不满足()()[3,5]A B =R R ,所以A B ⋂≠∅. 因为()()[3,5]A B =R R ,所以()()()[3,5]AB A B ==R RR,所以有()(),35,A B =-∞+∞.又因为[1,2]B A =R 表示集合B 的元素去掉集合A 中的元素,()(),35,A B =-∞+∞表示A 集合和B 集合中的所有元素,所以把()(),35,A B =-∞+∞中的元素去掉[1,2]B A =R 中元素,即为所求的集合A ,所以(,1)(2,3)(5,)A =-∞+∞.故答案为(,1)(2,3)(5,)-∞+∞.【点睛】 本题主要考查集合的运算,根据集合的运算性质可求也可借助数轴或者韦恩图求解,侧重考查逻辑推理的核心素养.19.2【分析】由题意首先确定集合ABC 的关系然后结合子集个数公式即可确定集合C 的个数【详解】由条件可知:则符合条件的集合C 的个数即为集合{3}的子集的个数共个事实上满足题意的集合C 为:或故答案为2【点睛 解析:2【分析】由题意首先确定集合ABC 的关系,然后结合子集个数公式即可确定集合C 的个数.【详解】由条件A C B C ⋂=⋃可知:()()()()B B C A C C B C A C A ⊆⋃=⋂⊆⊆⋃=⋂⊆,则符合条件的集合C 的个数即为集合{3}的子集的个数,共122=个.事实上,满足题意的集合C 为:{}1,2C =或{}1,2,3C =.故答案为2.【点睛】本题主要考查集合的包含关系,子集个数公式及其应用等知识,意在考查学生的转化能力和计算求解能力.20.【分析】先计算集合A 再根据定义得到答案【详解】或且或故答案为:【点睛】本题考查了集合的新定义问题意在考查学生的理解能力和解决问题的能力解析:(,4)(3,2]-∞---【分析】先计算集合A ,再根据定义得到答案.【详解】{{|2}42x A x x x x =<=<-+或2}x >-,{|3}B x x =>- {|A B x x A B ⊗=∈且{}4x A B x x ∉⋂=<-或}32x -<≤-故答案为:(,4)(3,2]-∞---【点睛】本题考查了集合的新定义问题,意在考查学生的理解能力和解决问题的能力.三、解答题21.(1){|13}A B x x ⋂=;(2)3(2-,0][4⋃,)+∞. 【分析】(1)当1m =时,求出集合B ,A ,由此能求出A B .(2)由A B A ⋃=,得B A ⊆,当B =∅时,213m m -+,当B ≠∅时,21321433m m m m -<+⎧⎪->-⎨⎪+⎩,由此能求出m 的取值范围.【详解】解:(1)当1m =时,{|14}B x x =<,{|314}{|43}A x x x x =-<+=-<,{|13}A B x x ∴⋂=.(2)A B A =,B A ∴⊆,当B =∅时,213m m -+,解得4m ,当B ≠∅时,21321433m m m m -<+⎧⎪->-⎨⎪+⎩,解得302m -<, 综上,m 的取值范围为3(2-,0][4⋃,)+∞. 【点睛】结论点睛:本题考查交集、实数的取值范围的求法,并集、交集的结论与集合包含之间的关系:A B A B A =⇔⊆,A B A A B ⋂=⇔⊆.22.(1){|2A x x a =>+或1}x a <-;(2)不存在;理由见解析;(3)01a <<.【分析】(1)解一元二次不等式能求出集合A .(2)由A B R =,根据2{|}B a a x a =<<和2{|}B a a x a =<<分类讨论,得到不存在实数a ,使得AB R =. (3)由A B ≠∅,根据2{|}B a a x a =<<和2{|}B a a x a =<<分类讨论,能求出实数a 的取值范围.【详解】解:(1)不等式2(21)(2)(1)0x a x a a -+++->可化为[(2)][(1)]0x a x a -+-->, 解得1x a <-或2x a >+,所以不等式的解集为{|1A x x a =<-或2}x a >+; (2)当0a =时,不等式2()()0x a x a --<化为20x <,此时不等式无解,当0a <时,2a a >,不等式2()()0x a x a --<的解集为2{|}x a x a <<,当01a <<时,2a a <,不等式2()()0x a x a --<的解集为2{|}x a x a <<,当1a =时,2a a =,不等式2()()0x a x a --<化为2(10)x -<,此时不等式无解, 当1a >时,2a a >,不等式2()()0x a x a --<的解集为2{|}x a x a <<,综上所述:当0a =或1a =时,B =∅,当0a <或1a >时,2{|}B x a x a =<<,当01a <<时,2{|}B x a x a =<<,要使A B R =, 当2{|}B a a x a =<<时,2a a >,2a x a <<,1a a - 或22a a +,无解,当2{|}B a a x a =<<时,2a a <,2a x a <<,2a a +,21a a =-,无解,故不存在实数a ,使得AB R =. (3)A B ≠∅,∴当2{|}B a a x a =<<时,1a a -<,或22a a +>,即220a a --<,解得10a -<< 或12a <<,此时实数a 的取值范围是(1-,0)(1⋃,2),当2{|}B a a x a =<<时,21a a -<或2a a +>,即210a a -+>,解得01a <<,此时,实数a 的取值范围是(0,1).【点睛】本题考查含参一元二次不等式的解法,解含参一元二次不等式需分类讨论,首先判断二次项系数是否为零,再对所对应的一元二次方程的根进行分类讨论;23.(1)[2,6],()(,6](7,)U AB AC B ==-∞+∞;(2)(,6][6,)a ∈-∞-+∞. 【分析】(1)由集合的交、并、补的运算即可得解;(2)由集合的包含关系可得:因为AC A =,所以A C ⊆,再列不等式33a +≤-或24a -≥,求解即可. 【详解】解:(1)因为3a =,所以[1,6],A =又因为[2,7],B =所以(,2)(7,)U C B =-∞+∞, 故[2,6]A B =,()(,6](7,)U A C B =-∞+∞;(2)因为A C A =,所以A C ⊆,{}(4)(3)0(,3][4,)C x x x =-+≥=-∞-⋃+∞又 又集合{}23[2,3],A x a x a a a =-≤≤+=-+所以33a +≤-或24a -≥,即6a ≤-或6,a ≥故实数a 的取值范围为(,6][6,)-∞-+∞.【点睛】本题考查了集合的交、并、补的运算,重点考查了集合的包含关系,属基础题. 24.(1){}23A B x x ⋃=-<<;(2){}2m m ≤-;(3){}0m m ≥.【分析】(1)当1m =-时,求出集合B ,利用并集的定义可求得集合A B ;(2)由A B B ⋃=可得出A B ⊆,进而可得出关于实数m 的不等式组,由此可解得实数m 的取值范围;(3)分B =∅和B ≠∅两种情况讨论,结合AB =∅可得出关于实数m 的不等式组,由此可解得实数m 的取值范围.【详解】(1)当1m =-时,{}22B x x =-<<,则{}23A B x x ⋃=-<<;(2)由A B B ⋃=,可得A B ⊆,所以,2113m m ≤⎧⎨-≥⎩,解得2m ≤-. 因此,实数m 的取值范围是{}2m m ≤-;(3)A B =∅,分以下两种情况讨论:①若21m m 时,即当13m ≥时,B =∅,符合题意; ②若21m m 时,即当13m <时,则11m -≤或23m ≥,解得0m ≥,此时103m ≤<. 综上所述,0m ≥.即实数m 的取值范围为{}0m m ≥.【点睛】本题考查并集的计算,同时也考查了利用交集和并集的运算求参数的取值范围,考查计算能力,属于中等题.25.(1)[1,3)-(2)[3,)+∞【分析】(1)可得出N ={x |1 <x <3 },t =2时求出集合M ,然后进行并集的运算即可;(2)根据N M ⊆即可得出集合M ={x |-1≤x ≤t },进而可得出t 的取值范围.【详解】 (1){|21}N x x =|-|<={13}xx <<∣, 当2t =时,{(2)(1)0}(1,2)M xx x =-+≤=-∣, [)1,3M N ∴⋃=-(2)N M ⊆,∴M ={x |-1≤x ≤t },3t ∴≥,∴实数t 的取值范围[3,)+∞【点睛】本题主要考查了一元二次不等式和绝对值不等式的解法,并集的定义及运算,子集的定义,考查了计算能力,属于基础题.26.(1)()3,0-;(2)312a -<<-或1a >. 【分析】(1)由已知条件分别计算出集合A 和集合B ,然后再计算出A B 的结果.(2)由已知条件()A B C ⋂⊇,则分类讨论C =∅和C ≠∅两种情况,求出实数a 的取值范围.【详解】(1)已知集合A x y ⎧⎫⎪==⎨⎪⎩,则230x x -->,解得30x -<<,即()3,0A =-,集合1228x B x ⎧⎫=<<⎨⎬⎩⎭,解得31x -<<,即()3,1B =-,所以()3,0A B ⋂=- (2)因为集合{}21C x a x a =≤≤+,且()A B C ⋂⊇,由(1)得()3,0A B ⋂=-,则当C =∅时,21a a >+,即1a >, 当C ≠∅时,212310a a a a ≤+⎧⎪>-⎨⎪+<⎩,得312a -<<-,综上,312a -<<-或1a >. 【点睛】本题考查了集合的交集运算和子集运算,在含有参量的子集题目中需要注意分类讨论,尤其不要漏掉空集情况,然后求解不等式组得到结果.本题较为基础.。

新北师大版高中数学必修一第一单元《集合》检测卷(包含答案解析)

新北师大版高中数学必修一第一单元《集合》检测卷(包含答案解析)

一、选择题1.已知集合{|0}M y y =≥,2{|1}N y y x ==-+,则MN =( )A .()0,1B .[]0,1C .[)0,+∞D .[)1,+∞2.已知集合{}2230A x x x =--=,{}10B x ax =-=,若B A ⊆,则实数a 的值构成的集合是( ) A .11,03⎧⎫-⎨⎬⎩⎭, B .{}1,0-C .11,3⎧⎫-⎨⎬⎩⎭D .103⎧⎫⎨⎬⎩⎭,3.设集合{}20,201x M x N x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( )A .{}01x x ≤<B .{}01x x <<C .{}02x x ≤<D .{}02x x <<4.已知x ,y 都是非零实数,||||||x y xyz x y xy =++可能的取值组成的集合为A ,则下列判断正确的是( ) A .3A ∈,1A -∉B .3A ∈,1A -∈C .3A ∉,1A -∈D .3A ∉,1A -∉5.对任意x M ∈,总有2x M ∉M ,若{}0,1,2,3,4,5M ⊆,则满足条件的非空集合M 的个数是( ) A .11B .12C .15D .166.已知集合{}4A x a x =<<,{}2|560B x x x =-+>,若{|34}A B x x ⋂=<<,则a 的值不可能为( )A B C D .37.对于非空实数集A ,定义{|A z *=对任意},x A z x ∈≥.设非空实数集(],1C D ≠⊆⊂-∞.现给出以下命题:(1)对于任意给定符合题设条件的集合C ,D ,必有D C **⊆;(2)对于任意给定符合题设条件的集合C ,D ,必有C D *≠∅;(3)对于任意给定符合题设条件的集合C ,D ,必有CD *=∅;(4)对于任意给定符合题设条件的集合C ,D ,必存在常数a ,使得对任意的b C *∈,恒有a b D *+∈.以上命题正确的个数是( ) A .1B .2C .3D .48.设集合1{|0}x A x x a-=≥-,集合{}21B x x =->,且B A ⊆,则实数a 的取值范围是 () A .1a ≤B .3a ≤C .13a ≤≤D .3a ≥9.已知集合{}2,xA y y x R ==∈,{}148x B x -=≤,则A B =( )A .5(,)2-∞ B .5[0,]2C .7(0,]2D .5(0,]210.若x A ∈,则1A x ∈,就称A 是和美集合,集合111,0,,,1,323M ⎧⎫⎨=⎩-⎬⎭的所有非空子集中是和美集合的个数为( ) A .4B .5C .6D .711.已知集合{}{}21239A B x x ==<,,,,则A B =( )A .{}210123--,,,,,B .{}21012--,,,,C .{}123,, D .{}12, 12.设{}2|8150A x x x =-+=,{}|10B x ax =-=,若AB B =,求实数a 组成的集合的子集个数有 A .2B .3C .4D .8二、填空题13.已知集合:A ={x |x 2=1},B ={x |ax =1},且A ∩B =B ,则实数a 的取值集合为______. 14.已知集合(){}22112|2103x P x Q x x x m ⎧-⎫=-=-+-⎨⎬⎩⎭≤,≤,其中m >0,全集U =R .若“Ux P ∈”是“∈Ux Q ”的必要不充分条件,则实数m 的取值范围为__________.15.已知有限集{}123,,,,(2)n A a a a a n =≥. 如果A 中元素(1,2,3,,)i a i n =满足1212n n a a a a a a =+++,就称A 为“复活集”,给出下列结论:①集合1122⎧---⎪⎨⎪⎪⎩⎭是“复活集”; ②若12,a a R ∈,且12{,}a a 是“复活集”,则124a a >; ③若*12,a a N ∈,则12{,}a a 不可能是“复活集”; ④若*i a N ∈,则“复活集”A 有且只有一个,且3n =.其中正确的结论是____________.(填上你认为所有正确的结论序号)16.已知集合M ={x ∈N |1≤x ≤15},集合A 1,A 2,A 3满足①每个集合都恰有5个元素; ②A 1∪A 2∪A 3=M .集合A i 中元素的最大值与最小值之和称为集合A i 的特征数,记为X i (i =1,2,3),则X 1+X 2+X 3的最大值与最小值的和为_____.17.已知集合{}10,A x ax x R =+=∈,集合{}2280B x x x =--=,若A B ⊆,则a 所有可能取值构成的集合为______________18.若集合{,,,}{1,2,3,4}a b c d =,且下列四个关系:(1)1a =;(2)1b ≠;(3)3c =;(4)4d ≠有且只有一个是正确的,则符合条件的有序数组(,,,)a b c d 的个数是___________.19.已知集合{}{}2430,21xA x x xB x =++≥<,则AB =____________20.已知集合{|||1,}A x x a x R =-<∈,2{|1,}1x aB x x R x -=<∈+,且A B =∅,则实数a 的取值范围是________.三、解答题21.已知集{}28A x x =≤≤,{}26B x x m =≤≤-,{}112C x m x m =-≤≤+,U =R .(1)若()UA B =∅,求m 的取值范围; (2)若BC ≠∅,求m 的取值范围.22.设全集U R =,集合{|2A x x =≤-或}{}5,|2x B x x ≥=≤.求(1)()UA B ⋃;(2)记(){},|23U A B D C x a x a ⋃==-≤≤-,且C D C ⋂= ,求a 的取值范围.23.设集合{}{}2|223|650A x a x a x R B x x x =-+∈=-+≤≤,,≤. (1)若A B B =,求实数a 的取值范围;(2)若UAB =∅,求实数a 的取值范围.24.已知集合{}212520A x x x =-->,{}20B x x ax b =-+≤满足AB =∅,(]=-4,8A B ⋃,求实数a ,b 的值.25.设集合{}|36A x x =≤<,集合{}|19B x x =<≤. 求:(1)AB ;(2)()R C A B ⋃.26.已知集合A x y ⎧⎫⎪==⎨⎪⎩,集合1228xB x ⎧⎫=<<⎨⎬⎩⎭. (1)求AB ;(2)若集合{}21C x a x a =≤≤+,且()A B C ⋂⊇,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】∵集合{}2{|1}1N y y x y y ==-+=≤,{|0}M y y =≥,∴[]0,1M N ⋂=,故选B.2.A解析:A 【分析】解方程求得集合A ,分别在B =∅和B ≠∅两种情况下,根据包含关系构造方程求得结果. 【详解】由2230x x --=得:1x =-或3x =,即{}1,3A =-; ①当0a =时,B =∅,满足B A ⊆,符合题意; ②当0a ≠时,{}110B x ax a ⎧⎫=-==⎨⎬⎩⎭,B A ⊆,11a ∴=-或13a =,解得:1a =-或13a =;综上所述:实数a 的值构成的集合是11,0,3⎧⎫-⎨⎬⎩⎭. 故选:A . 【点睛】本题考查根据集合的包含关系求解参数值的问题,易错点是忽略子集为空集的情况,造成求解错误.3.B解析:B 【分析】根据分式不等式和一元二次不等式的解法,求得集合{01},{|02}M x x N x x =≤<=<<,再结合集合交集的运算,即可求解.【详解】由题意,集合{}20{01},20{|02}1x M xx x N x x x x x x ⎧⎫=≤=≤<=-<=<<⎨⎬-⎩⎭,所以{}01M N x x ⋂=<<. 故选:B . 【点睛】本题主要考查了集合的交集的概念及运算,其中解答中结合分式不等式和一元二次不等式的解法,准确求解集合,A B 是解答的关键,着重考查了计算能力.4.B解析:B 【分析】分别讨论,x y 的符号,然后对||||||x y xyz x y xy =++进行化简,进而求出集合A ,最后根据集合元素的确定性即可得出答案.【详解】当0x >,0y >时,1113z =++=; 当0x >,0y <时,1111z =--=-; 当0x <,0y >时,1111z =-+-=-; 当0x <,0y <时,1111z =--+=-. 所以3A ∈,1A -∈. 故选:B. 【点睛】本题考查了对含有绝对值符号的式子的化简,考查了集合元素的特点,考查了分类讨论思想,属于一般难度的题.5.A解析:A 【分析】根据题意,0M ∉且1M ∉,且2、4不同时在集合M 中,对集合M 分两种情况讨论:①2M ∉且4M ∉;②2和4有且只有一个在集合M 中,分别列举出符合条件的集合M ,即可得出答案. 【详解】2111==,200==,由题意可知0M ∉且1M ∉,由于242=,所以,2和4不同时在集合M 中.①当2M ∉且4M ∉时,则符合条件的集合M 有:{}3、{}5、{}3,5,共3种; ②若2和4有且只有一个在集合M 中,则符合条件的集合M 有:{}2、{}2,3、{}2,5、{}2,3,5、{}4、{}3,4、{}4,5、{}3,4,5,共8种.综上所述,满足条件的非空集合M 的个数是3811+=. 故选:A. 【点睛】本题考查满足条件的集合个数的求解,列举出满足条件的集合即可,考查分类讨论思想的应用,属于中等题.6.A解析:A 【分析】求出{2B x x =<或}3x >,利用{|34}A B x x ⋂=<<,得23a ≤≤. 【详解】集合{}4A x a x =<<,{}{25602B x x x x x =-+=<或}3x >,{|34}A B x x ⋂=<<, ∴23a ≤≤,∴a故选:A. 【点睛】本题考查了根据集合间的基本关系求解参数范围的问题,属于中档题.解决此类问题,一般要把参与运算的集合化为最简形式,借助数轴求解参数的范围.7.B解析:B 【分析】根据题干新定义{|A z *=对任意},x A z x ∈≥,通过分析举例即可判断。

北师大版高中数学必修一第一单元《集合》测试卷(包含答案解析)

北师大版高中数学必修一第一单元《集合》测试卷(包含答案解析)

一、选择题1.已知集合{}11M x Z x =∈-≤≤,{}Z (2)0N x x x =∈-≤,则如图所示的韦恩图中的阴影部分所表示的集合为( )A .{}0,1B .{}1,2-C .{}1,0,1-D .1,0,1,22.函数()log a x x f x x=(01a <<)的图象大致形状是( )A .B .C .D .3.定义集合运算{},,A B x x a b a A b B ⊗==⨯∈∈,设{0,1},{3,4,5}A B ==,则集合A B ⊗的真子集个数为( )A .16B .15C .14D .84.已知x ,y 都是非零实数,||||||x y xyz x y xy =++可能的取值组成的集合为A ,则下列判断正确的是( ) A .3A ∈,1A -∉B .3A ∈,1A -∈C .3A ∉,1A -∈D .3A ∉,1A -∉5.已知{}lg M y y x ==,{}xN y y a ==,则MN =( )A .0,B .RC .∅D .,06.已知集合()1lg 12A x x ⎧⎫=-<⎨⎬⎩⎭,{}22940B x x x =-+≥,则()RA B 为( )A .()1,4B .1,42⎛⎫⎪⎝⎭C .(4,110D .(1,110+7.已知全集U =R ,集合91A xx ⎧⎫=>⎨⎬⎩⎭和{}44,B x x x Z =-<<∈关系的Venn 图如图所示,则阴影部分所表示集合中的元素共有( )A .3个B .4个C .5个D .无穷多个8.设全集为R ,集合{}2log 1A x x =<,{}21B x y x ==-,则()RAB =( )A .{}02x x <<B .{}01x x <<C .{}11x x -<<D .{}12x x -<<9.设集合{}2110P x x ax =++>,{}2220P x x ax =++>,{}210Q x x x b =++>,{}2220Q x x x b =++>,其中a ,b ∈R 下列说法正确的是( ) A .对任意a ,1P 是2P 的子集;对任意的b ,1Q 不是2Q 的子集 B .对任意a ,1P 是2P 的子集;存在b ,使得1Q 是2Q 的子集 C .存在a ,使得1P 不是2P 的子集;对任意的b ,1Q 不是2Q 的子集 D .存在a ,使得1P 不是2P 的子集;存在b ,使得1Q 是2Q 的子集10.已知集合A ,B 是实数集R 的子集,定义{},A B x x A x B -=∈∉,若集合1113A y y x x ⎧⎫==≤≤⎨⎬⎩⎭,,{}21,12B y y x x ==--≤≤,则B A -=( )A .[]1,1-B .[)1,1-C .[]0,1D .[)0,111.已知集合{}11A x x =-≤≤,{}220B x x x =-≤,则AB =( )A .{}12x x -≤≤B .{}10x x -≤≤C .{}12x x ≤≤D .{}01x x ≤≤12.设{}2|8150A x x x =-+=,{}|10B x ax =-=,若AB B =,求实数a 组成的集合的子集个数有 A .2B .3C .4D .8二、填空题13.已知集合{|M m Z =∈关于x 的方程2420x mx +-=有整数解},集合A 满足条件:①A 是非空集合且A M ⊆;②若a A ∈,则a A -∈.则所有这样的集合A 的个数为______.14.已知集合{|68}A x x =-≤≤,{|}B x x m =≤,若A B B ≠且A B ⋂≠∅,则m的取值范围是________ 15.用列举法表示集合*6,5A aN a Z a ⎧⎫=∈∈=⎨⎬-⎩⎭__________.16.已知点H 是正三角形ABC 内部一点,HAB ∆,HBC ∆,HCA ∆的面积值构成一个集合M ,若M 的子集有且只有4个,则点H 需满足的条件为________.17.若规定{}1210E a a a =⋯,,,的子集{}12,,n k k k a a a 为E 的第k 个子集,其中12111222n k k k k ---=++⋯+,则E 的第211个子集是____________. 18.已知集合()(){}250M x x x =+->,集合()(){}10N x x a x a =---<,若M N N =,则实数a 的取值范围是_____________19.已知集合{}{}2|21,|20xA y yB x x x ==+=--<,则()R C A B =__________.20.设a 、b R ∈,集合{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -=__________. 三、解答题21.在①{}23B x x =-<<,②{}35R B x x =-<<,③{}26B x x a =≥+且{}A B x x a ⋃=>这三个条件中任选一个,补充在下面的问题中,并解答该问题.问题:已知非空集合{}8A x a x a =<<-,______,若A B =∅,求a 的取值集合.22.已知集合{}{}27,32A x x B x a x a =-<<=≤≤-. (1)若4a =,求AB 、()RC A B ;(2)若A B A ⋃=,求实数a 的取值范围.23.已知集合{()(1)0}M xx t x =-+≤∣,{|21}N x x =|-|<. (1)当2t =时,求M N ⋃; (2)若N M ⊆,求实数t 的取值范围.24.已知p :x ∈A={x|x 2﹣2x ﹣3≤0,x ∈R},q :x ∈B={x|x 2﹣2mx+m 2﹣9≤0,x ∈R ,m ∈R}. (1)若A∩B=[1,3],求实数m 的值;(2)若p 是¬q 的充分条件,求实数m 的取值范围.25.已知集合|1|{|28}x A x -=<,2{|log (51)2}B x x =->,求A B .26.已知不等式3514x x -≤-的解集是A ,不等式1||2x m x ->的解集是B . (1)当4m =时,求A B ;(2)如果A B ⊆,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B解析:B 【分析】阴影部分可以用集合M N 、表示为()()M N C M N ⋃⋂,故求出M N 、、M N ⋃,M N ⋂即可解决问题. 【详解】解:由题意得,{}1,0,1M =-,{}0,1,2N ={}1,0,1,2M N ⋃=-,{}0,1M N ⋂=阴影部分为()(){}1,2M N C M N ⋃⋂=-故选B 【点睛】本题考查用韦恩图表示的集合的运算,解题时要能用集合的运算表示出阴影部分.2.C解析:C 【分析】确定函数是奇函数,图象关于原点对称,x >0时,f (x )=log a x (0<a <1)是单调减函数,即可得出结论. 【详解】由题意,f (﹣x )=﹣f (x ),所以函数是奇函数,图象关于原点对称,排除B 、D ; x >0时,f (x )=log a x (0<a <1)是单调减函数,排除A . 故选C . 【点睛】本题考查函数的图象,考查函数的奇偶性、单调性,正确分析函数的性质是关键.3.B解析:B 【分析】根据新定义得到{}{},,0,3,4,5A B x x a b a A b B ⊗==⨯∈∈=,再计算真子集个数得到答案. 【详解】{0,1},{3,4,5}A B ==,{}{},,0,3,4,5A B x x a b a A b B ⊗==⨯∈∈=其真子集个数为:42115-= 故选:B 【点睛】本题考查了集合的新定义问题,真子集问题,意在考查学生的应用能力.4.B解析:B 【分析】分别讨论,x y 的符号,然后对||||||x y xy z x y xy =++进行化简,进而求出集合A ,最后根据集合元素的确定性即可得出答案. 【详解】当0x >,0y >时,1113z =++=; 当0x >,0y <时,1111z =--=-; 当0x <,0y >时,1111z =-+-=-; 当0x <,0y <时,1111z =--+=-. 所以3A ∈,1A -∈. 故选:B. 【点睛】本题考查了对含有绝对值符号的式子的化简,考查了集合元素的特点,考查了分类讨论思想,属于一般难度的题.5.A解析:A 【解析】 【分析】先化简集合M ,N ,再计算M ∩N 即可. 【详解】由已知易得M =R ,N ={y ∈R|y >0},∴M ∩N =(0,+∞). 故选A . 【点睛】本题主要考查了集合的交运算,化简计算即可,比较简单.6.A解析:A 【分析】解对数不等式求得集合A ,解一元二次不等式求得RB ,由此求得()RAB【详解】由于()1lg 12x -<=所以{(011,1A x x =<-<=+, 依题意{}2R2940B x x x =-+<,()()22944210x x x x -+=--<,解得142x <<,即R 1,42B ⎛⎫= ⎪⎝⎭,所以()()R1,4A B ⋂=.故选:A【点睛】本小题主要考查集合交集和补集的运算,考查对数不等式和指数不等式的解法,属于中档题.7.B解析:B 【分析】先解分式不等式得集合A ,再化简B ,最后根据交集与补集定义得结果. 【详解】 因为91(0,9)A xx ⎧⎫=>=⎨⎬⎩⎭,{}{}44,3,2,1,0,1,2,3B x x x Z =-<<∈=---, 所以阴影部分所表示集合为(){0,1,2,3}U C A B =---,元素共有4个,故选B 【点睛】本题考查分式不等式以及交集与补集定义,考查基本分析求解能力,属基础题.8.B解析:B 【解析】 【分析】解出集合A 、B ,再利用补集和交集的定义可得出集合()RA B .【详解】由2log 1x <,02x <<,{}02A x x ∴=<<.由210x -≥,得1x ≤-或1x ≥,则{}11B x x x =≤-≥或,{}11R B x x ∴=-<<, 因此,(){}01A B x x ⋂=<<R ,故选:B. 【点睛】本题考查交集和补集的混合运算,同时也考查了对数不等式以及函数定义域的求解,考查计算能力,属于中等题.9.B解析:B 【分析】先证得1P 是2P 的子集,然后求得b 使1Q 是2Q 的子集,由此确定正确选项.【详解】对于1P 和2P ,由于210x ax ++>时222110x ax x ax ++=+++>,所以1P 的元素,一定是2P 的元素,故对任意a ,1P 是2P 的子集;对于1Q 和2Q ,根据判别式有140440b b -<⎧⎨-<⎩,即1b >时,12Q Q R ==,满足1Q 是2Q 的子集,也即存在b ,使得1Q 是2Q 的子集. 故选: B. 【点睛】方法点睛:该题主要考查子集的判断,解题方法如下:(1)利用子集的概念,可以判断出1P 的元素,一定是2P 的元素,得到对任意a ,1P 是2P 的子集;(2)利用R 是R 的子集,结合判别式的符号,存在实数1b >时,有12Q Q R ==,得到结果.10.B解析:B 【分析】先根据题意得{}13A y y =≤≤,{}13B y y =-≤≤,再根据集合运算即可得答案. 【详解】解:根据题意得{}111133A y y x y y x ⎧⎫==≤≤=≤≤⎨⎬⎩⎭,, {}{}21,1213B y y x x y y ==--≤≤=-≤≤,再根据集合的运算得}{11B A y y -=-≤<. 故选:B. 【点睛】本题考查集合的运算,函数值域的求解,考查运算能力,是中档题.11.D解析:D 【解析】B ={x ∣x 2−2x ⩽0}={x |0⩽x ⩽2}, 则A ∩B ={x |0⩽x ⩽1}, 本题选择D 选项.12.D解析:D 【分析】先解方程得集合A ,再根据A B B =得B A ⊂,最后根据包含关系求实数a ,即得结果.【详解】{}2|8150{3,5}A x x x =-+==,因为AB B =,所以B A ⊂,因此,{3},{5}B =∅,对应实数a 的值为110,,35,其组成的集合的子集个数有328=,选D. 【点睛】本题考查集合包含关系以及集合子集,考查基本分析求解能力,属中档题.二、填空题13.15【分析】先依题意化简集合M 再根据条件确定集合A 是由互为相反数的四组数字构成的非空集合即得这样的集合的个数【详解】设为方程的两个根则当时;当时;当时;当时;由条件①知且又由条件②知A 是有一些成对的解析:15 【分析】先依题意化简集合M ,再根据条件确定集合A 是由互为相反数的四组数字构成的非空集合,即得这样的集合的个数. 【详解】设a ,b 为方程2420x mx +-=的两个根,则a b m +=-,42ab =-, 当1=a ,42b =时,41m =±; 当2=a ,21b =时,19m =±; 当3a =,14b =时,11m =±; 当6a =,7b =时,1m =±;{}{}{}{}{}1,111,1119,1941,411,1,11,11,19,19,41,41M =-⋃-⋃-⋃-=----,由条件①知A ≠∅且A M ⊆,又由条件②知A 是有一些成对的相反数组成的集合. 所以M 的4对相反数共能组成42115-=个不同的非空集合A . 故答案为:15. 【点睛】 关键点点睛:本题解题关键在于明确题中条件要求集合A 是由互为相反数的四组数字构成的非空集合,即计算集合个数突破难点.14.【分析】根据集合的并集和集合的交集得到关于的不等式组解出即可【详解】解:若且则解得即故答案为:【点睛】本题考查了集合的交集并集的定义属于基础题 解析:[6,8)-【分析】根据集合的并集和集合的交集得到关于m 的不等式组,解出即可. 【详解】解:{|68}A x x =-,{|}B x x m =, 若AB B ≠且A B ⋂≠∅,则68m m -⎧⎨<⎩,解得68m -≤<,即[)6,8m ∈- 故答案为:[)6,8-. 【点睛】本题考查了集合的交集、并集的定义,属于基础题.15.【分析】对整数取值并使为正整数这样即可找到所有满足条件的值从而用列举法表示出集合【详解】因为且所以可以取234所以故答案为:【点睛】考查描述法列举法表示集合的定义清楚表示整数集属于基础题 解析:{}1,2,3,4-【分析】对整数a 取值,并使65a-为正整数,这样即可找到所有满足条件的a 值,从而用列举法表示出集合A . 【详解】 因为a Z ∈且*65N a∈- 所以a 可以取1-,2,3,4. 所以{}1,2,3,4A =- 故答案为:{}1,2,3,4- 【点睛】考查描述法、列举法表示集合的定义,清楚Z 表示整数集,属于基础题.16.在的三条高上且不为重心【分析】由题意知若集合的子集只有个则集合有个元素可得出三个三角形的面积有两个相等分析点的位置即可得出结论【详解】若集合的子集只有个则集合有个元素是等边内部一点三个三角形的面积值解析:H 在ABC ∆的三条高上且H 不为ABC ∆重心 【分析】由题意知,若集合M 的子集只有4个,则集合M 有2个元素,可得出HAB ∆,HBC ∆,HCA ∆三个三角形的面积有两个相等,分析点H 的位置,即可得出结论. 【详解】若集合M 的子集只有4个,则集合M 有2个元素,M 是等边ABC ∆内部一点, HAB ∆,HBC ∆,HCA ∆三个三角形的面积值构成集合M , 故HAB ∆,HBC ∆,HCA ∆三个三角形的面积有且只有两个相等.若HAB ∆,HBC ∆的面积相等,则点H 在边AC 的高上且不为ABC ∆的重心; 若HBC ∆,HCA ∆的面积相等,则点H 在边AB 的高上且不为ABC ∆的重心;若HAB ∆,HCA ∆的面积相等,则点H 在边BC 的高上且不为ABC ∆的重心. 综上所述,点H 在等边ABC ∆的三条高上且不为ABC ∆的重心. 故答案为:H 在ABC ∆的三条高上且H 不为ABC ∆重心 【点睛】本题考查子集的个数与元素个数之间的关系,根据已知条件得出集合元素的个数是解题的关键,考查推理能力,属于中等题.17.【分析】根据题意分别讨论的取值通过讨论计算的可能取值即可得出答案【详解】而的第个子集包含此时的第个子集包含此时的第个子集包含此时的第个子集包含此时的第个子集包含的第个子集是故答案为:【点睛】本题主要 解析:{}12578,,,,a a a a a【分析】根据题意,分别讨论2n 的取值,通过讨论计算n 的可能取值,即可得出答案. 【详解】72128211=<,而82256211=>,E ∴的第211个子集包含8a ,此时21112883-=,626483=<,7212883=>,E ∴的第211个子集包含7a ,此时836419-=,421619=<,523219=>,E ∴的第211个子集包含5a ,此时19163-=,1223=<,2243=>,E ∴的第211个子集包含2a ,此时321-=,021=E ∴的第211个子集包含1a ,E ∴的第211个子集是{}12578,,,,a a a a a .故答案为:{}12578,,,,a a a a a 【点睛】本题主要考查了与集合有关的信息题,理解条件的定义是解决本题的关键.18.【分析】解一元二次不等式求得集合根据列不等式组解不等式求得的取值范围【详解】由解得或由解得由于所以或即或故答案为:【点睛】本小题主要考查一元二次不等式的解法考查根据集合交集的结果求参数的取值范围属于解析:(][)35-∞-⋃+∞,, 【分析】解一元二次不等式求得集合,M N ,根据MN N =列不等式组,解不等式求得a 的取值范围.【详解】 由()()250x x +->解得2x <-或5x >.由()()10x a x a ---<解得1a x a <<+.由于M N N =,所以12a +≤-或5a ≥,即3a ≤-或5a ≥.故答案为:(][)35-∞-⋃+∞,, 【点睛】本小题主要考查一元二次不等式的解法,考查根据集合交集的结果求参数的取值范围,属于基础题. 19.【分析】求函数的值域求得集合解一元二次不等式求得集合由此求得【详解】根据指数函数的性质可知所以有解得即所以故答案为【点睛】本小题主要考查集合交集补集的运算考查指数型函数值域的求法考查一元二次不等式的 解析:(]1,1-【分析】求函数的值域求得集合A ,解一元二次不等式求得集合B ,由此求得()R C A B ⋂.【详解】根据指数函数的性质可知,211xy =+>,所以()1,A =+∞,有()()22210x x x x --=-+<解得12x -<<,即()1,2B =-,所以()R C A B =(]1,1-. 故答案为(]1,1-.【点睛】本小题主要考查集合交集、补集的运算,考查指数型函数值域的求法,考查一元二次不等式的解法,属于基础题.20.【分析】根据题意得出则则有可得出由此得出然后求出实数的值于是可得出的值【详解】由于有意义则则有所以根据题意有解得因此故答案为【点睛】本题考查利用集合相等求参数的值解题的关键就是根据题意列出方程组求解 解析:2【分析】根据题意得出0a ≠,则a b b +≠,则有0a b +=,可得出1b a=-,由此得出10b a b b a a ⎧⎪=⎪+=⎨⎪⎪=⎩,然后求出实数a 、b 的值,于是可得出b a -的值.【详解】{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,由于b a -有意义,则0a ≠,则有0a b +=,所以,1b a -=-. 根据题意有10b a b b a a ⎧⎪=⎪+=⎨⎪⎪=⎩,解得11a b =-⎧⎨=⎩,因此,()112b a -=--=. 故答案为2.【点睛】本题考查利用集合相等求参数的值,解题的关键就是根据题意列出方程组求解,考查运算求解能力,属于中等题.三、解答题21.答案见解析.【分析】选①:本题首先可根据A 是非空集合得出4a <,然后根据A B =∅得出3a ≥或82a -≤-,最后通过计算即可得出结果. 选②:本题首先可以根据A 是非空集合得出4a <,然后根据{}R 35B x x =-<<求出集合B ,最后根据A B =∅列出不等式组,通过计算即可得出结果.选③:本题首先可以根据A 是非空集合得出4a <,然后根据题意得出268a a +=-,最后通过计算即可得出结果.【详解】选①:因为A 是非空集合,所以8a a ->,解得4a <,因为{}23B x x =-<<,A B =∅,所以3a ≥或82a -≤-,解得3a ≥或10a ≥,综上所述,a 的取值集合是{}34a a ≤<.选②:因为A 是非空集合,所以8a a ->,解得4a <,因为{}R 35B x x =-<<,所以{3B x x =≤-或}5x ≥,因为A B =∅,所以3854a a a ≥-⎧⎪-≤⎨⎪<⎩,解得34a ≤<,故a 的取值集合是{}34a a ≤<.选③:因为A 是非空集合,所以8a a ->,解得4a <,因为A B =∅,{}26B x x a =≥+,{}A B x x a ⋃=>,所以268a a +=-,解得2a =-或1,故a 的取值集合是{}2,1-.【点睛】关键点点睛:本题考查根据集合的运算结果求参数的取值范围,若两个集合的交集为空集,则这两个集合没有相同的元素,考查集合的混合运算,考查计算能力,是中档题. 22.(1)(]2,10AB =-;[]()7,10R A B =;(2)3a <. 【分析】(1)直接按集合并集的概念进行运算,先求出A R 再与集合B 取交集;(2)根据并集的结果可得B A ⊆,分B =∅、B ≠∅两种情况进行讨论求解a 的取值范围.【详解】(1)4a =,[](]4,10,(2,7)2,10B A A B ==-⇒=-, (][)[],27,+()7,10R R A A B =-∞-∞⇒=(2)A B A B A ⋃=⇒⊆,①若321B a a a =∅⇒>-⇒<;②若32122133273a a a B a a a a a ≤-≥⎧⎧⎪⎪≠∅⇒>-⇒>-⇒≤<⎨⎨⎪⎪-<<⎩⎩. 综上所述,3a <.【点睛】本题考查集合的基本运算、根据两集合并集的结果求参数的范围,属于中档题. 23.(1)[1,3)-(2)[3,)+∞【分析】(1)可得出N ={x |1 <x <3 },t =2时求出集合M ,然后进行并集的运算即可;(2)根据N M ⊆即可得出集合M ={x |-1≤x ≤t },进而可得出t 的取值范围.【详解】(1){|21}N x x =|-|<={13}xx <<∣, 当2t =时,{(2)(1)0}(1,2)M xx x =-+≤=-∣, [)1,3M N ∴⋃=-(2)N M ⊆,∴M ={x |-1≤x ≤t },3t ∴≥,∴实数t 的取值范围[3,)+∞【点睛】本题主要考查了一元二次不等式和绝对值不等式的解法,并集的定义及运算,子集的定义,考查了计算能力,属于基础题.24.(1)m=4;(2) m >6,或m <﹣4.【解析】试题分析:(1)化简A=x|﹣1≤x≤3},B=x|m ﹣3≤x≤m+3},由A∩B=[1,3],得到:m=4;(2)若p 是¬q 的充分条件,即A ⊆C R B ,易得:m >6,或m <﹣4. 试题由已知得:A=x|﹣1≤x≤3},B=x|m ﹣3≤x≤m+3}.(1)∵A∩B=[1,3] ∴ ∴, ∴m=4;(2)∵p 是¬q 的充分条件,∴A ⊆C R B ,而C R B=x|x <m ﹣3,或x >m+3}∴m ﹣3>3,或m+3<﹣1,∴m >6,或m <﹣4.25.{|14}A B x x ⋂=<<.【分析】根据题意,先求出集合A 与集合B ,再利用交集的定义即可.【详解】 由题意,集合{}{}{}{}113|28|22|13|24x x A x x x x x x --=<=<=-<=-<<, 集合(){}(){}{}{}222|log 512|log 51log 4|514|1B x x x x x x x x =->=->=->=>, 所以,{}|14AB x x =<<. 【点睛】本题考查绝对值不等式,对数不等式的解法,考查交集的定义,属于基础题.26.(1) 831|2x x ⎧<⎫≤⎨⎬⎩⎭;(2) 6m ≥或14m < 【分析】(1)根据分值不等式的求解方法求解集合,A B ,再求交集即可.(2) 先求解1||2x m x ->,再分m 的正负进行讨论,再利用A B ⊆列出区间端点满足的表达式求解即可.【详解】 3535211100444x x x x x x ---≤⇒-≤⇒≤---即()()214040x x x ⎧--≤⎨-≠⎩.解得142x ≤<. (1) 当4m =时, 求解1|4|2x x ->, 当4x <时有18423x x x ->⇒<. 当4x ≥时1482x x x ->⇒>.综上有83x <或8x >.此时A B =831|2x x ⎧<⎫≤⎨⎬⎩⎭(2)先求解集合:B 1||2x m x ->当x m <时, 1223m x x x m ->⇒<;当x m ≥时, 122x m x x m ->⇒>. 故当0m <时,集合B R =,此时A B ⊆恒成立.当0m ≥,因为A B ⊆,且1:|42A x x ⎧⎫≤<⎨⎬⎩⎭,3:2|2x m x x m B ⎧>⎭<⎫⎨⎬⎩或. 此时243m ≤或122m >,解得6m ≥或14m <,即6m ≥或104m ≤< 综上所述, 6m ≥或14m < 【点睛】本题主要考查了分式不等式与绝对值不等式的求解以及根据不等式的解集求解参数范围的问题,需要根据题意分情况讨论求解含参的不等式,再根据集合的基本关系列出区间端点满足的关系式进行求解.属于中档题.。

最新北师大版高中数学必修一第一单元《集合》检测题(答案解析)

最新北师大版高中数学必修一第一单元《集合》检测题(答案解析)

一、选择题1.设集合}{2230A x x x =+->,集合}{2210,0,B x x ax a =--≤>若A B 中恰含有一个整数 ,则实数a 的取值范围是( ) A .34,43⎡⎫⎪⎢⎣⎭B .30,4⎛⎫ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .()1,+∞2.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =,则实数a 的取值范围是( )A .(,2]-∞-B .[2,)+∞C .(,2]-∞D .[2,)-+∞3.已知集合{},M m m a a b Q ==+∈,则下列四个元素中属于M 的元素的个数是( )①1A .4B .3C .2D .14.对任意x M ∈,总有2x M ∉M ,若{}0,1,2,3,4,5M ⊆,则满足条件的非空集合M 的个数是( ) A .11B .12C .15D .165.已知区间1[,]3A m m =-和3[,]4B n n =+均为[]0,1的子区间,定义b a -为区间[],a b 的长度,则当A B 的长度达到最小时mn 的值为( )A .0B .112C .0或112D .0或16.已知集合{}2|230A x x x =--≤,集合{}||1|3B x x =-≤,集合4|05x C x x -⎧⎫=≤⎨⎬+⎩⎭,则集合A ,B ,C 的关系为( )A .B A ⊆B .A B =C .C B ⊆D .A C ⊆7.下列各式中,正确的是( )A .{}22x x ⊆≤B .{32x x ∈>且}1x <C .{}{}41,21,x x k k Z x x k k Z =±∈≠=+∈D .{}{}31,32,x x k k Z x x k k Z =+∈==-∈8.已知集合{}|02A x x =<<,集合{}|11B x x =-<<,集合{}|10C x mx =+>,若()A B C ⊆,则实数m 的取值范围为( )A .{}|21m m -≤≤B .1|12m m ⎧⎫-≤≤⎨⎬⎩⎭C .1|12m m ⎧⎫-≤≤⎨⎬⎩⎭ D .11|24m m ⎧⎫-≤≤⎨⎬⎩⎭9.已知集合{}21,A x y x y Z ==+∈,{}21,B y y x x Z ==+∈,则A 、B 的关系是( ) A .A B =B .ABC .B AD .A B =∅10.对于下列结论:①已知∅ 2{|40}x x x a ++=,则实数a 的取值范围是(],4-∞; ②若函数()1y f x =+的定义域为[)2,1-,则()y f x =的定义域为[)3,0-;③函数2y =(],1-∞;④定义:设集合A 是一个非空集合,若任意x A ∈,总有a x A -∈,就称集合A 为a 的“闭集”,已知集合{}1,2,3,4,5,6A ⊆,且A 为6的“闭集”,则这样的集合A 共有7个. 其中结论正确的个数是( ) A .0B .1C .2D .311.下列结论正确的是() A .若a b <且c d <,则ac bd <B .若a b >,则22ac bc >C .若0a ≠,则12a a +≥ D .若0a b <<,集合1|A x x a ⎧⎫==⎨⎬⎩⎭,1|B x x b ⎧⎫==⎨⎬⎩⎭,则A B ⊇12.已知集合{}11A x x =-≤≤,{}220B x x x =-≤,则AB =( )A .{}12x x -≤≤B .{}10x x -≤≤C .{}12x x ≤≤D .{}01x x ≤≤二、填空题13.已知集合{|M m Z =∈关于x 的方程2420x mx +-=有整数解},集合A 满足条件:①A 是非空集合且A M ⊆;②若a A ∈,则a A -∈.则所有这样的集合A 的个数为______.14.对非空有限数集12{,,,}n A a a a =定义运算“min”:min A 表示集合A 中的最小元素.现给定两个非空有限数集A ,B ,定义集合{|,,}M x x a b a A b B ==-∈∈,我们称min M 为集合A ,B 之间的“距离”,记为AB d .现有如下四个命题:①若min min A B =,则0AB d =;②若min min A B >,则0AB d >;③若0AB d =,则A B ⋂≠∅;④对任意有限集合A ,B ,C ,均有AB BC AC d d d +. 其中所有真命题的序号为__________. 15.用列举法表示集合*6,5A aN a Z a ⎧⎫=∈∈=⎨⎬-⎩⎭__________.16.已知集合(){}22112|2103x P x Q x x x m ⎧-⎫=-=-+-⎨⎬⎩⎭≤,≤,其中m >0,全集U =R .若“Ux P ∈”是“∈Ux Q ”的必要不充分条件,则实数m 的取值范围为__________.17.已知全集{}1,2,3,4,5,6U =,①A U ⊆;②若x A ∈,则2x A ∉;③若Ux A ∈,则2Ux A ∉,则同时满足条件①②③的集合A 的个数为______18.已知集合()(){}250M x x x =+->,集合()(){}10N x x a x a =---<,若M N N =,则实数a 的取值范围是_____________19.已知集合{|11},{|01}A x a x a B x x =-<<+=<<若A B φ⋂=,实数a 的取值范围是______. 20.设集合1{|0}x A x x a-=≥-,集合{}21B x x =-,且B A ⊆,则实数a 的取值范围为______.三、解答题21.已知集合{|14}A x x =<<,集合{|21}B x m x m =<<- (1)当1m =-时,求A B ,()R A B ⋂;(2)若AB =∅,求实数m 的取值范围.22.已知集{}28A x x =≤≤,{}26B x x m =≤≤-,{}112C x m x m =-≤≤+,U =R .(1)若()UA B =∅,求m 的取值范围; (2)若BC ≠∅,求m 的取值范围.23.设集合(){lg 1A x y x ==-,{}230B x x x a =-+=.(1)若2a =时,求AB ;(2)若A B A ⋃=,求a 的取值范围.24.已知集合{121}A xa x a =-<<+∣,{}03B x x =<≤,U =R . (1)若12a =,求A B ;()U A B ⋂. (2)若A B =∅,求实数a 的取值范围.25.已知全集为实数集R ,集合2{|},{|log 1}A x y y R B x x =∈=>.(1)求A B ;(2)设1a >,集合{|1},()R C x x a D C B A =<<=,若C D ⊆,求a 的取值范围.26.已知0a ≠,集合{}2|60A x x x =--<,{}2|280B x x x =+-≥,{}22|430C x x ax a =-+<,且()RC A B ⊆.求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先化简集合A ,再根据函数y =f (x )=x 2﹣2ax ﹣1的零点分布,结合A ∩B 恰有一个整数求解. 【详解】A ={x |x <﹣3或x >1},函数y =f (x )=x 2﹣2ax ﹣1的对称轴为x =a >0, 而f (﹣3)=6a +8>0,f (﹣1)=2a >0,f (0)<0,故其中较小的零点为(-1,0)之间,另一个零点大于1,f (1)<0, 要使A ∩B 恰有一个整数, 即这个整数解为2, ∴f (2)≤0且f (3)>0,即44109610a a --≤⎧⎨-->⎩,解得:3443a a ⎧≥⎪⎪⎨⎪<⎪⎩, 即34≤a <43, 则a 的取值范围为34,43⎡⎫⎪⎢⎣⎭. 故答案为:A. 【点睛】本题主要考查集合的交集运算的应用以及二次函数的零点分布问题,还考查了转化求解问题的能力,属于中档题.2.B解析:B 【解析】由题意可得{}|2A x x =<,结合交集的定义可得实数a 的取值范围是[)2,+∞ 本题选择B 选项.3.C解析:C 【分析】①②③都可以写成m a =+,a b 是否是有理数,④计算.【详解】①当1a +=+时,可得1,a b π==,这与,a b Q ∈矛盾,3==3a ∴+=,可得3,1a b == ,都是有理数,所以正确,2122==-,1a ∴+=,可得11,2a b ==-,都是有理数,所以正确,④2426=+=而(22222a a b +=++,,a b Q ∈,(2a ∴+是无理数,不是集合M 中的元素,只有②③是集合M 的元素. 故选:C 【点睛】本题考查元素与集合的关系,意在考查转化与化归的思想,计算能力,属于基础题型.4.A解析:A 【分析】根据题意,0M ∉且1M ∉,且2、4不同时在集合M 中,对集合M 分两种情况讨论:①2M ∉且4M ∉;②2和4有且只有一个在集合M 中,分别列举出符合条件的集合M ,即可得出答案.【详解】2111==,200==,由题意可知0M ∉且1M ∉,由于242=,所以,2和4不同时在集合M 中.①当2M ∉且4M ∉时,则符合条件的集合M 有:{}3、{}5、{}3,5,共3种; ②若2和4有且只有一个在集合M 中,则符合条件的集合M 有:{}2、{}2,3、{}2,5、{}2,3,5、{}4、{}3,4、{}4,5、{}3,4,5,共8种.综上所述,满足条件的非空集合M 的个数是3811+=. 故选:A. 【点睛】本题考查满足条件的集合个数的求解,列举出满足条件的集合即可,考查分类讨论思想的应用,属于中等题.5.C解析:C 【分析】由于这两个集合都是区间[]0,1的子集,根据区间长度的定义可得当103314m n ⎧-=⎪⎪⎨⎪+=⎪⎩或10m n =⎧⎨=⎩时AB 的长度最小,解出方程组即可得结果.【详解】由于这两个集合都是区间[]0,1的子集,根据区间长度的定义可得当103314m n ⎧-=⎪⎪⎨⎪+=⎪⎩或10m n =⎧⎨=⎩时A B 的长度最小,解得1314m n ⎧=⎪⎪⎨⎪=⎪⎩或10m n =⎧⎨=⎩,即112mn =或0,故选C. 【点睛】本题主要考查集合的表示方法,两个集合的交集的定义,充分理解区间长度的定义是解题的关键,属于中档题.6.D解析:D 【分析】根据一元二次不等式的解法可求出集合A ,根据绝对值不等式的解法可求出集合B ,根据分式不等式的解法可求出集合C ,从而可得出集合A ,B ,C 间的关系. 【详解】解:由于{}{{}2|23013A x x x x x =--≤=-≤≤,{}{}|1324B x x x x =-≤=-≤≤, {}4|0545x C x x x x -⎧⎫=≤=-<≤⎨⎬+⎩⎭,可知,A C ⊆. 故选:D. 【点睛】本题考查一元二次不等式、绝对值不等式和分式不等式的解法,以及集合间的关系,考查计算能力.7.D解析:D 【分析】根据元素与集合的关系,集合与集合的关系即可求解. 【详解】因为2与集合{}2x x ≤的关系是属于或者不属于,故A 选项错误; 因为{2x x >且}1x <是空集,3不是集合中的元素,故B 选项错误;因为集合{}{}41,,21,x x k k Z x x k k Z =±∈=+∈都表示奇数构成的集合,相等,故C 选项错误;因为集合{}{}31,,32,x x k k Z x x k k Z =+∈=-∈都表示被3整数余1的整数构成的集合,故D 选项正确. 【点睛】本题主要考查了集合的描述法,元素与集合的关系,集合与集合的关系,属于中档题.8.B解析:B 【分析】求出A ∪B ={x |﹣1<x <2},利用集合C ={x |mx +1>0},(A ∪B )⊆C ,分类讨论,可得结论. 【详解】由题意,A ∪B ={x |﹣1<x <2}, ∵集合C ={x |mx +1>0},(A ∪B )⊆C ,①m <0,x 1m -<,∴1m -≥2,∴m 12≥-,∴12-≤m <0; ②m =0时,C =R,成立;③m >0,x 1m ->,∴1m-≤-1,∴m ≤1,∴0<m ≤1, 综上所述,12-≤m ≤1, 故选:B . 【点睛】此题考查了并集及其运算,以及集合间的包含关系,考查分类讨论的数学思想,属于中档题.9.C解析:C 【分析】由题意得出Z A ⊆,而集合B Z ,由此可得出A 、B 的包含关系.【详解】由题意知,对任意的x ∈Z ,21y x Z =+∈,Z A ∴⊆.{}21,B y y x x Z ==+∈,∴集合B 是正奇数集,则BZ ,因此,BA .故选:C. 【点睛】本题考查集合包含关系的判断,解题时要善于抓住代表元素,认清集合的特征,考查推理能力,属于中等题.10.D解析:D 【分析】A .考虑方程有解的情况;B .根据抽象函数定义域求解方法进行分析;C .根据二次函数的取值情况分析函数值域;D .根据定义采用列举法进行分析. 【详解】①由∅ 2{|40}x x x a ++=可得²40x x a ++=有解,即2440a ∆=-,解得4a ≤,故①正确;②函数()1y f x =+的定义域为[)2,1-,则21x ,故112x -≤+<,故()y f x =的定义域为[)1,2-,故②错误;③函数21y ==[)1,+∞,故(]2,1y =-∞,故③正确;④集合{}1,2,3,4,5,6A ⊆且A 为6的“闭集”,则这样的集合A 共有{}3,{}1,5,{}2,4,{}1,3,5,{}2,4,6,{}1,2,4,5,{}1,2,3,4,5共7个,故④正确.故正确的有①③④. 故选:D .【点睛】本题考查命题真假的判定,考查集合之间的包含关系,考查函数的定义域与值域,考查集合的新定义,属于中档题.11.C解析:C 【分析】通过举例和证明的方式逐个分析选项. 【详解】A :取5,3,6,1a b c d =-==-=,则30,3ac bd ==,则ac bd >,故A 错误;B :取3,1,0a b c ===,则22ac bc =,故B 错误;C:21122a a a a ⎫+=+=+≥⎝成立,故C 正确;D :因为0a b <<,所以11a b>,则A B ,故D 错误;故选:C. 【点睛】本题考查不等关系和等式的判断,难度一般.判断不等关系是否成立,常用的方法有:(1)直接带值验证;(2)利用不等式的性质判断;(3)采用其他证明手段.(如借助平方差、完全平方公式等).12.D解析:D 【解析】B ={x ∣x 2−2x ⩽0}={x |0⩽x ⩽2}, 则A ∩B ={x |0⩽x ⩽1}, 本题选择D 选项.二、填空题13.15【分析】先依题意化简集合M 再根据条件确定集合A 是由互为相反数的四组数字构成的非空集合即得这样的集合的个数【详解】设为方程的两个根则当时;当时;当时;当时;由条件①知且又由条件②知A 是有一些成对的解析:15 【分析】先依题意化简集合M ,再根据条件确定集合A 是由互为相反数的四组数字构成的非空集合,即得这样的集合的个数. 【详解】设a ,b 为方程2420x mx +-=的两个根,则a b m +=-,42ab =-,当1=a ,42b =时,41m =±; 当2=a ,21b =时,19m =±; 当3a =,14b =时,11m =±; 当6a =,7b =时,1m =±;{}{}{}{}{}1,111,1119,1941,411,1,11,11,19,19,41,41M =-⋃-⋃-⋃-=----,由条件①知A ≠∅且A M ⊆,又由条件②知A 是有一些成对的相反数组成的集合. 所以M 的4对相反数共能组成42115-=个不同的非空集合A . 故答案为:15. 【点睛】 关键点点睛:本题解题关键在于明确题中条件要求集合A 是由互为相反数的四组数字构成的非空集合,即计算集合个数突破难点.14.①③【分析】根据题意可得①③正确通过举反例可得②④错误【详解】对于结论①若则中最小的元素相同故①正确;对于结论②取集合满足但故②错误;对于结论③若则中存在相同的元素则交集非空故③正确;对于结论④取集解析:①③ 【分析】根据题意可得①③正确,通过举反例可得②④错误. 【详解】对于结论①,若min min A B =,则A ,B 中最小的元素相同,故①正确;对于结论②,取集合{}1,2A =,{}0,2B =,满足min min A B >,但0AB d =,故②错误;对于结论③,若0AB d =,则,A B 中存在相同的元素,则交集非空,故③正确; 对于结论④,取集合{}1,2A =,{}2,3B =,{}3,4C =,可知0AB d =,0BC d =,1AC d =,则AB BC AC d d d +≥不成立,故④错误. 故答案为:①③.15.【分析】对整数取值并使为正整数这样即可找到所有满足条件的值从而用列举法表示出集合【详解】因为且所以可以取234所以故答案为:【点睛】考查描述法列举法表示集合的定义清楚表示整数集属于基础题 解析:{}1,2,3,4-【分析】对整数a 取值,并使65a-为正整数,这样即可找到所有满足条件的a 值,从而用列举法表示出集合A .【详解】因为a Z ∈且*65N a∈- 所以a 可以取1-,2,3,4.所以{}1,2,3,4A =-故答案为:{}1,2,3,4-【点睛】考查描述法、列举法表示集合的定义,清楚Z 表示整数集,属于基础题.16.【分析】解出集合PQ 根据充分条件和必要条件关系得出两个集合的包含关系即可求出范围【详解】由题:是的必要不充分条件即P Q 解不等式所以0PQ 所以解得:故答案为:【点睛】此题考查根据充分条件和必要条 解析:9m ≥【分析】解出集合P ,Q ,根据充分条件和必要条件关系得出两个集合的包含关系即可求出范围.【详解】由题:“U x P ∈”是“∈U x Q ”的必要不充分条件, U Q U P ,即P Q ,解不等式1123x --≤,12123x --≤-≤, 646x -≤-≤,210x -≤≤所以[]1122,103x P x ⎧-⎫=-=-⎨⎬⎩⎭≤, (){}()()()(){}22|210|110Q x x x m x x m x m =-+-=-+--≤≤,m >0,P Q ,所以11012m m +≥⎧⎨-≤-⎩,解得:9m ≥. 故答案为:9m ≥【点睛】此题考查根据充分条件和必要条件判断集合的包含关系求解参数范围,关键在于准确判断两个集合的包含关系,列出不等式组求解.17.8【分析】由条件可得:当则即则即但元素3与集合的关系不确定3属于时6属于的补集;3属于的补集时6属于;而元素5没有限制【详解】由①;②若则;③若则当则即则即但元素3与集合的关系不确定3属于时6属于的 解析:8【分析】由条件可得:当1A ∈,则2A ∉,即2U A ∈,则4U A ∉,即4A ∈,但元素3与集合A的关系不确定,3属于A 时,6属于A 的补集;3属于A 的补集时,6属于A ;而元素5没有限制.【详解】由①A U ⊆;②若x A ∈,则2x A ∉;③若U x A ∈,则2U x A ∉. 当1A ∈,则2A ∉,即2U A ∈,则4U A ∉,即4A ∈,但元素3与集合A 的关系不确定,3属于A 时,6属于A 的补集;3属于A 的补集时,6属于A ;而元素5没有限制. {1,4,6},{2,3,5},{2,3},{1,4,5,6},{1,3,4},{2,4,5},{2,A ∴=6},{1,3,4,5},同时满足条件①②③的集合A 的个数为8个.故答案为:8.【点睛】本题考查了集合的运算性质、元素与集合的关系,考查了分类讨论思想方法、推理能力与计算能力,属于中档题.18.【分析】解一元二次不等式求得集合根据列不等式组解不等式求得的取值范围【详解】由解得或由解得由于所以或即或故答案为:【点睛】本小题主要考查一元二次不等式的解法考查根据集合交集的结果求参数的取值范围属于解析:(][)35-∞-⋃+∞,, 【分析】解一元二次不等式求得集合,M N ,根据MN N =列不等式组,解不等式求得a 的取值范围.【详解】由()()250x x +->解得2x <-或5x >.由()()10x a x a ---<解得1a x a <<+.由于M N N =,所以12a +≤-或5a ≥,即3a ≤-或5a ≥.故答案为:(][)35-∞-⋃+∞,, 【点睛】本小题主要考查一元二次不等式的解法,考查根据集合交集的结果求参数的取值范围,属于基础题. 19.【分析】由根据集合的交集的运算得到或即可求解【详解】由题意集合因为则满足或解得或即实数的取值范围是故答案为:【点睛】本题主要考查了集合的运算以及利用集合的交集求参数其中解答中熟记集合交集运算列出相应 解析:(][),12,-∞-⋃+∞【分析】由A B φ⋂=,根据集合的交集的运算,得到11a -≥或10a +≤,即可求解.【详解】由题意,集合{|11},{|01}A x a x a B x x =-<<+=<<,因为A B φ⋂=,则满足11a -≥或10a +≤,解得2a ≥或1a ≤-,即实数a 的取值范围是(][),12,-∞-⋃+∞.故答案为:(][),12,-∞-⋃+∞.【点睛】本题主要考查了集合的运算,以及利用集合的交集求参数,其中解答中熟记集合交集运算,列出相应的不等式是解答的关键,着重考查了推理与运算能力,属于基础题. 20.【分析】解可得集合B 对于A 先将转化为且分三种情况讨论求出集合A 判断是否成立综合可得a 的范围即可得答案【详解】或则或对于A 且时成立符合题意时或不会成立不符合题意时或要使成立必有则a 的范围是综合可得a 的 解析:[]1,3【分析】 解21x ->可得集合B ,对于A ,先将1|0x x a-≥-转化为()()10x x a --≥且x a ≠,分1a =,1a >,1a <三种情况讨论,求出集合A ,判断B A ⊆是否成立,综合可得a 的范围,即可得答案【详解】211x x ->⇔<或3x >,则{|1B x x =<或3}x >,对于A ,()()1010x x x a x a-≥⇔--≥-且x a ≠, 1a =①时,{|1}A x x =≠,B A ⊆成立,符合题意,1a <②时,{|A x x a =<或1}x ≥,B A ⊆不会成立,不符合题意,1a >③时,{A x x a =或1}x ≤, 要使B A ⊆成立,必有3a ≤,则a 的范围是13a ,综合①②③可得,a 的取值范围为13a ≤≤,即[]1,3;故答案是:[]1,3.【点睛】本题考查集合之间关系的判断,涉及分式、绝对值不等式的解法,解分式不等式一般要转化为整式不等式,有参数时,一般要分类讨论.三、解答题21.(1){|24}A B x x ⋃=-<<,()=R A B {|21}x x -<≤;(2)0m ≥. 【分析】(1)当1m =-时,求集合B ,再求集合的交并补集;(2)讨论B =∅ 和B ≠∅两种情况讨论当AB =∅时,求参数的取值范围.【详解】(1)1m =-时,{|22}Bx x ,{|24}A B x x ⋃=-<<, {1R A x x =≤或4}x ≥,{|21}R A B x x ⋂=-<≤() (2)由A B =∅,当B =∅时,21m m ,解得:13m ≥ 当B ≠∅时,2111m m m <-⎧⎨-≤⎩,解得:103m ≤< 或2124m m m <-⎧⎨≥⎩,无解 综上可得:0m ≥【点睛】易错点睛:根据集合的运算结果求参数或是根据集合的包含关系求参数时,容易忽略空集的情况,这一点需注意.22.(1)2m ≥-;(2)1722m m ⎧⎫≤≤⎨⎬⎩⎭. 【分析】(1)当()U A B =∅,在B A ⊆,然后针对B =∅与B ≠∅分类讨论求解; (2)若B C ≠∅,则B ≠∅,C ≠∅,若B C ≠∅,则只需1612m m m -≤-≤+或2126m m ≤+≤-,然后解出m 的取值范围.【详解】 解:(1)∵{}28A x x =≤≤,∴{U |2A x x =<或}8x >, ∵()U A B =∅,则B A ⊆,当B =∅时,62m -<,即4m >,当B ≠∅时,62m -≥,68m -≤,解得24m -≤≤.综上所述:2m ≥-.(2)由题可知,B ≠∅,C ≠∅,62,121,m m m -≥⎧⎨+≥-⎩解得24m -≤≤. 若BC ≠∅时,则只需:1612m m m -≤-≤+或2126m m ≤+≤-, 解得:1722m ≤≤. ∴ 当BC ≠∅,m 的取值范围为1722m m ⎧⎫≤≤⎨⎬⎩⎭. 【点睛】 本题考查集合的运算结果求参数的取值范围问题,难度一般,解答时,因为空集是任何集合的子集,所以解答时注意空集的特殊性.23.(1){}2;(2)()2,+∞【分析】(1)先求出A ,代入2a =,求出集合B ,然后直接求出A B ⋂即可.(2)由题意得,A B A ⋃=,可得B A ⊆,然后分类讨论:①当B =∅;②当B ≠∅;然后直接【详解】(1)由题意得(){{}lg 11A x y x x x ==--=>,因为a=2,所以{}{}2301,2B x x x a =-+== 则{}2A B ⋂=(2)因为A B A ⋃=,所以B A ⊆①当B =∅时,由题意得9-4a <0.解得94a >; ②当B ≠∅时,由题意得9401312a ⎧⎪-≥>⎪⎪+>⎪⎩解得924a <≤. 综上,a 的取值范围为()2,+∞.【点睛】本题考查含参集合的交集和并集运算,难点在于不要遗漏空集情况的考虑,属于难题. 24.(1)1|32x x ⎧⎫-<≤⎨⎬⎩⎭,1|02x x ⎧⎫-<≤⎨⎬⎩⎭;(2){1|2a a ≤-或}4a ≥. 【分析】(1)化简集合,利用集合的交并补运算求解即可;(2)讨论A =∅,A ≠∅两种情况,列出相应的不等式,求解即可得出答案.【详解】(1)若12a =时,12,{03}2A x x B x x ⎧⎫=-<<=<≤⎨⎬⎩⎭∣∣ ∴1|32A B x x ⎧⎫⋃=-<≤⎨⎬⎩⎭,由{|0U B x x =≤或3}x > 所以()1|02U A B x x ⎧⎫⋂=-<≤⎨⎬⎩⎭(2)由A B =∅知当A =∅时,121,2a a a -≥+∴≤-当A ≠∅时,21113a a a +>-⎧⎨-≥⎩或211210a a a +>-⎧⎨+≤⎩4a ∴≥或122a -<≤- 综上:a 的取值范围是{1|2a a ≤-或}4a ≥. 【点睛】本题主要考查了集合的交并补混合运算以及根据交集的结果求参数的范围,属于中档题. 25.(1){|23}x x <≤; (2)(1,3].【分析】(1)可求出13{|}A x x =≤≤,{|2}Bx x ,进行交集的运算,即可求解; (2)进行并集、并集的运算求出集合D ,根据C D ⊆,且{|1}C x x a =<<,即可求得实数a 的取值范围.【详解】 (1)由1030x x -≥⎧⎨-≥⎩,解得13x ≤≤,即集合13{|}A x x =≤≤, 集合2{|log 1}{|2}B x x x x =>=>,所以{|23}A B x x ⋂=<≤.(2)由(1)可得{|2}R C B x x =≤,所以(){|3}R D C B A x x ==≤, 因为C D ⊆,且{|1},1C x x a a =<<>,所以13a,所以实数a 的取值范围是(1,3]. 【点睛】本题主要考查了集合的标志,对数函数的单调性,以及集合的交集、并集和补集的运算等知识点的综合应用,着重考查推理与运算能力.26.22,00,33a ⎡⎫⎛⎤∈-⎪ ⎢⎥⎣⎭⎝⎦. 【分析】先化简集合,A B ,求出R AB ,再对a 分类讨论,根据()RC A B ⊆得解.【详解】 {}{}2|60|23A x x x x x =--<=-<<,{}{2|2804B x x x x =+-≥=≤-或}2x ≥,∴{}|42R B x x =-<<,则(){}|22R A B x x =-<<,又∵{}()(){}22|430|30C x x ax a x x a x a =-+<=--<, ∵0a ≠,∴当0a >时,{}|3C x a x a =<<,当0a <时,{}|3C x a x a =<<.∵()RC A B⊆,∴232aaa>⎧⎪≥-⎨⎪≤⎩或322aaa<⎧⎪≥-⎨⎪≤⎩,解得23a<≤或23a-≤<.所以实数a的取值范围是22,00,33 a⎡⎫⎛⎤∈-⎪⎢⎥⎣⎭⎝⎦.【点睛】本题主要考查一元二次不等式的解法,考查集合的关系和运算,意在考查学生对这些知识的理解掌握水平.。

北师大版高中数学必修一高一数学集合与函数概念测试题(1).docx

北师大版高中数学必修一高一数学集合与函数概念测试题(1).docx

高中数学学习材料唐玲出品一、选择题1.已知全集U ={0,1,2}且U A ={2},则集合A 的真子集共有( ). A .3个B .4个C .5个D .6个2.设集合A ={x |1<x ≤2},B ={ x |x <a },若A ⊆B ,则a 的取值范围是( ). A .{a |a ≥1}B .{a |a ≤1}C .{a |a ≥2}D .{a |a >2}3.A ={x |x 2+x -6=0},B ={x |mx +1=0},且A B A =,则m 的取值集合是( ). A .⎭⎬⎫⎩⎨⎧21- ,31B .⎭⎬⎫⎩⎨⎧21- ,31- ,0C .⎭⎬⎫⎩⎨⎧21- ,31 ,0 D .⎭⎬⎫⎩⎨⎧21 ,31 4.设I 为全集,集合M ,N ,P 都是其子集,则图中的阴影部分表示的集合为( ). A .M ∩(N ∪P )B .M ∩(P ∩I N )C .P ∩(I N ∩I M )D .(M ∩N )∪(M ∩P )5.设全集U ={(x ,y )| x ∈R ,y ∈R },集合M =⎭⎬⎫⎩⎨⎧1=2-3-,x y y x |)(, P ={(x ,y )|y ≠x +1},那么U (M ∪P )等于( ).A .∅B .{(2,3)}C .(2,3)D .{(x ,y )| y =x +1}6.下列四组中的f (x ),g (x ),表示同一个函数的是( ). A .f (x )=1,g (x )=x 0B .f (x )=x -1,g (x )=xx 2-1(第4题)C .f (x )=x 2,g (x )=(x )4D .f (x )=x 3,g (x )=39x7.函数f (x )=x 1-x 的图象关于( ). A .y 轴对称B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称8.函数f (x )=11+x 2(x ∈R )的值域是( ).A .(0,1)B .(0,1]C .[0,1)D .[0,1]9.已知f (x )在R 上是奇函数,f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=( ).A .-2B .2C .-98D .9810.定义在区间(-∞,+∞)的奇函数f (x )为增函数;偶函数g (x )在区间[0,+∞)的图象与f (x )的图象重合.设a >b >0,给出下列不等式:①f (b )-f (-a )>g (a )-g (-b );②f (b )-f (-a )<g (a )-g (-b ); ③f (a )-f (-b )>g (b )-g (-a );④f (a )-f (-b )<g (b )-g (-a ). 其中成立的是( ).A .①与④B .②与③C .①与③D .②与④二、填空题11.函数x x y +-=1的定义域是 .12.若f (x )=ax +b (a >0),且f (f (x ))=4x +1,则f (3)= .13.已知函数f (x )=ax +2a -1在区间[0,1]上的值恒正,则实数a 的取值范围是 .14.已知I ={不大于15的正奇数},集合M ∩N ={5,15},(I M )∩(I N )={3,13},M ∩(I N )={1,7},则M = ,N = .15.已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1}且B ≠∅,若A ∪B =A ,则m 的取值范围是_________.16.设f (x )是R 上的奇函数,且当x ∈[0,+∞)时,f (x )=x (1+x 3),那么当x ∈(-∞,0]时,f (x )= .三、解答题17.已知A ={x |x 2-ax +a 2-19=0},B ={ x |x 2-5x +6=0},C ={x |x 2+2x -8=0},且∅(A ∩B ),A ∩C =∅,求a 的值.18.设A 是实数集,满足若a ∈A ,则a-11∈A ,a ≠1且1A . (1)若2∈A ,则A 中至少还有几个元素?求出这几个元素. (2)A 能否为单元素集合?请说明理由. (3)若a ∈A ,证明:1-a1∈A .∈。

新北师大版高中数学必修一第一单元《集合》检测卷(有答案解析)

新北师大版高中数学必修一第一单元《集合》检测卷(有答案解析)

一、选择题1.设集合}{2230A x x x =+->,集合}{2210,0,B x x ax a =--≤>若A B 中恰含有一个整数 ,则实数a 的取值范围是( ) A .34,43⎡⎫⎪⎢⎣⎭B .30,4⎛⎫ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .()1,+∞2.若{}|28A x Z x =∈≤<,{}5|log 1B x R x =∈<,则R A C B ⋂的元素个数为( ) A .0B .1C .2D .33.已知x ,y 都是非零实数,||||||x y xy z x y xy =++可能的取值组成的集合为A ,则下列判断正确的是( ) A .3A ∈,1A -∉B .3A ∈,1A -∈C .3A ∉,1A -∈D .3A ∉,1A -∉4.设集合{,}A a b =,{}220,,B a b =-,若A B ⊆,则⋅=a b ( )A .-1B .1C .-1或1D .05.已知全集U =R ,集合{|23}M x x =-≤≤,{|24}N x x x =<->或,那么集合()()C C U U M N ⋂等于( )A .{|34}x x <≤B .{|34}x x x ≤≥或C .{|34}x x ≤<D .{|13}x x -≤≤6.设集合1{|0}x A x x a-=≥-,集合{}21B x x =->,且B A ⊆,则实数a 的取值范围是 () A .1a ≤B .3a ≤C .13a ≤≤D .3a ≥7.对于下列结论:①已知∅ 2{|40}x x x a ++=,则实数a 的取值范围是(],4-∞; ②若函数()1y f x =+的定义域为[)2,1-,则()y f x =的定义域为[)3,0-;③函数2y =(],1-∞;④定义:设集合A 是一个非空集合,若任意x A ∈,总有a x A -∈,就称集合A 为a 的“闭集”,已知集合{}1,2,3,4,5,6A ⊆,且A 为6的“闭集”,则这样的集合A 共有7个. 其中结论正确的个数是( ) A .0B .1C .2D .38.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围是( ) A .3m <B .23m ≤≤C .3m ≤D .23m <<9.已知全集U =R ,集合(){}{}20,1A x x x B x x =+<=≤,则图中阴影部分表示的集合是( )A .()2,1-B .[][)1,01,2-C .()[]2,10,1--D .0,110.如果集合{}2210A x ax x =--=只有一个元素,则a 的值是( ) A .0B .0或1C .1-D .0或1-11.已知集合{}11A x x =-≤≤,{}220B x x x =-≤,则AB =( )A .{}12x x -≤≤B .{}10x x -≤≤C .{}12x x ≤≤D .{}01x x ≤≤12.设{}2|8150A x x x =-+=,{}|10B x ax =-=,若AB B =,求实数a 组成的集合的子集个数有 A .2B .3C .4D .8二、填空题13.集合6|5M a a⎧=∈⎨-⎩N 且}a Z ∈,用列举法表示集合M =________. 14.集合{(,)|||,}A x y y a x x R ==∈,{(,)|,}B x y y x a x R ==+∈,已知集合A B中有且仅有一个元素,则常数a 的取值范围是________ 15.已知常数a 是正整数,集合1{|||,}2A x x a a x Z =-<+∈,{|||2,}B x x a x Z =<∈,则集合A B 中所有元素之和为________16.已知非空集合{}|121A x m x m =+≤≤-,集合{}2|1030B x x x =+-≥,若A B =Φ,则实数m 的取值范围为__________17.对于任意集合X 与Y ,定义:①{|X Y x x X -=∈且}x Y ∉;②()X Y X Y ∆=-()Y X -,(X Y ∆称为X 与Y 的对称差).已知{}{}221,R =90A y y x x B x x ==-∈-≤,,则A B ∆=_________.18.设全集{|35}U x x =-≤≤,集合1{|||1},{|0}2A x xB x x =≤=>+,则()UC A B ⋂=_____________.19.已知集合{|||1,}A x x a x R =-<∈,2{|1,}1x aB x x R x -=<∈+,且A B =∅,则实数a 的取值范围是________.20.已知集合{}A a =-,,2||b aB a ⎧⎫=⎨⎬⎩⎭,且A B =,则a b +=______。

新北师大版高中数学必修一第一单元《集合》检测卷(有答案解析)(1)

新北师大版高中数学必修一第一单元《集合》检测卷(有答案解析)(1)

一、选择题1.对任意x M ∈,总有2x M ∉M ,若{}0,1,2,3,4,5M ⊆,则满足条件的非空集合M 的个数是( ) A .11B .12C .15D .162.若集合{}2560A x x x =+-=,{}222(1)30B x x m x m =+++-=.若{}1A B ⋂=,求实数m 的值为( ) A .0B .-2C .2D .0或-23.设集合{}21|10P x x ax =++>,{}22|20P x x ax =++>,{}21|0Q x x x b =++>,{}22|20Q x xx b =++>,其中,a b ∈R ,下列说法正确的是( )A .对任意a ,1P 是2P 的子集;对任意的b ,1Q 不是2Q 的子集B .对任意a ,1P 是2P 的子集;存在b ,使得1Q 是2Q 的子集C .存在a ,使得1P 不是2P 的子集;对任意的b ,1Q 不是2Q 的子集D .存在a ,使得1P 不是2P 的子集;存在b ,使得1Q 是2Q 的子集4.已知集合{}1,2,3,4,5,6U =,集合A 、B 是U 的子集,且A B U ⋃=,A B ⋂≠∅.若{}3,4=UAB ,则满足条件的集合A 的个数为( )A .7个B .8个C .15个D .16个 5.已知集合{,}P a b =,{|}Q M M P =⊆,则P 与Q 的关系为( )A .P Q ⊆B .Q P ⊆C .P Q ∈D .P Q ∉6.已知集合123,,A A A 满足: {}*123|19A A A x N x =∈≤≤,且每个集合恰有3个元素,记()1,2,3i A i =中元素的最大值与最小值之和为()1,2,3i M i =,则123M M M ++的最小值为( ) A .21B .24C .27D .307.设集合1{|0}x A x x a-=≥-,集合{}21B x x =->,且B A ⊆,则实数a 的取值范围是 () A .1a ≤B .3a ≤C .13a ≤≤D .3a ≥8.已知0a b >>,全集为R ,集合}2|{ba xb x E +<<=,}|{a x ab x F <<=,}|{ab x b x M ≤<=,则有( )A . E M =(R C F )B .M =(RC E )F C .F E M =D .FE M =9.设集合{}2110P x x ax =++>,{}2220P x x ax =++>,{}210Q x x x b =++>,{}2220Q x x x b =++>,其中a ,b ∈R 下列说法正确的是( ) A .对任意a ,1P 是2P 的子集;对任意的b ,1Q 不是2Q 的子集 B .对任意a ,1P 是2P 的子集;存在b ,使得1Q 是2Q 的子集 C .存在a ,使得1P 不是2P 的子集;对任意的b ,1Q 不是2Q 的子集 D .存在a ,使得1P 不是2P 的子集;存在b ,使得1Q 是2Q 的子集10.已知集合A ,B 是实数集R 的子集,定义{},A B x x A x B -=∈∉,若集合1113A y y x x ⎧⎫==≤≤⎨⎬⎩⎭,,{}21,12B y y x x ==--≤≤,则B A -=( )A .[]1,1-B .[)1,1-C .[]0,1D .[)0,111.已知集合{}11A x x =-≤≤,{}220B x x x =-≤,则AB =( )A .{}12x x -≤≤B .{}10x x -≤≤C .{}12x x ≤≤D .{}01x x ≤≤12.设{}2|8150A x x x =-+=,{}|10B x ax =-=,若AB B =,求实数a 组成的集合的子集个数有 A .2B .3C .4D .8二、填空题13.全集{U x x =是不大于20的素数},若{}3,5A B ⋂=,{}7,19A B ⋂=,{}2,17A B ⋃=,则集合A =___________.14.已知常数a 是正整数,集合1{|||,}2A x x a a x Z =-<+∈,{|||2,}B x x a x Z =<∈,则集合A B 中所有元素之和为________15.设不等式20x ax b ++≤的解集为[]A m n =,,不等式()()2101x x x ++>-的解集为B ,若()(]213A B A B =-+∞=,,,∪∩,则m n +=__________. 16.设集合{}24,,3A m m m =+中实数m 的取值集合为M ,则R C M =_____.17.已知集合1{}2A =-,,1{}0|B x mx =+>,若A B B ⋃=,则实数m 的取值范围是________.18.设A 、B 是非空集合,定义:{|A B x x AB ⊗=∈且}x A B ∉,已知{|2}2xA x x =<+,{|3}B x x =>-,则A B ⊗=_________19.记[]x 为不大于x 的最大整数,设有集合[]{}{}2|2=|2A x x x B x x =-=<,,则A B =_____.20.若关于x 的不等式2054x ax ≤++≤的解集为A ,且A 只有二个子集,则实数a 的值为_____.三、解答题21.设全集U =R ,集合A ={x |-1<x -m <5},集合1{|24}.2x B x =<< (1)当m =-1时,求();UA B ⋂(2)若A ∪B =A ,求实数m 的取值范围.22.已知集{}28A x x =≤≤,{}26B x x m =≤≤-,{}112C x m x m =-≤≤+,U =R .(1)若()UA B =∅,求m 的取值范围; (2)若BC ≠∅,求m 的取值范围.23.已知集合{()(1)0}M xx t x =-+≤∣,{|21}N x x =|-|<. (1)当2t =时,求M N ⋃; (2)若N M ⊆,求实数t 的取值范围.24.已知全集U =R ,集合{|4A x x =<-或1}x >,{}312B x x =-≤-≤, (1)求AB 、()()U UA B ;(2)若集合{}2121M x k x k =-≤≤+是集合A 的子集,求实数k 的取值范围.25.已知全集为实数集R ,集合2{|},{|log 1}A x y y R B x x =∈=>.(1)求AB ;(2)设1a >,集合{|1},()R C x x a D C B A =<<=,若C D ⊆,求a 的取值范围.26.已知不等式()210x a x a -++≤的解集为A . (1)若2a =,求集合A ;(2)若集合A 是集合{}4|2x x -≤≤的真子集,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据题意,0M ∉且1M ∉,且2、4不同时在集合M 中,对集合M 分两种情况讨论:①2M ∉且4M ∉;②2和4有且只有一个在集合M 中,分别列举出符合条件的集合M ,即可得出答案. 【详解】2111==,200==,由题意可知0M ∉且1M ∉,由于242=,所以,2和4不同时在集合M 中.①当2M ∉且4M ∉时,则符合条件的集合M 有:{}3、{}5、{}3,5,共3种; ②若2和4有且只有一个在集合M 中,则符合条件的集合M 有:{}2、{}2,3、{}2,5、{}2,3,5、{}4、{}3,4、{}4,5、{}3,4,5,共8种.综上所述,满足条件的非空集合M 的个数是3811+=. 故选:A. 【点睛】本题考查满足条件的集合个数的求解,列举出满足条件的集合即可,考查分类讨论思想的应用,属于中等题.2.D解析:D 【分析】根据A ∩B ={1}可得出,1∈B ,从而得出1是方程x 2+2(m +1)x +m 2﹣3=0的根,1代入方程即可求出m 的值; 【详解】 A ={﹣6,1}; ∵A ∩B ={1}; ∴1∈B ;即1是方程x 2+2(m +1)x +m 2﹣3=0的根; ∴1+2(m +1)+m 2﹣3=0; ∴m 2+2m =0; ∴m =0或m =﹣2;当m =0时,B ={﹣3,1},满足A ∩B ={1}; 当m =﹣2时,B ={1},满足A ∩B ={1}; ∴m =0或m =﹣2; 故选:D 【点睛】考查交集的定义及运算,元素与集合的关系,描述法、列举法的定义,一元二次方程实根的情况,是基础题.3.B解析:B 【分析】先证得1P 是2P 的子集,然后求得b 使1Q 是2Q 的子集,由此确定正确选项.【详解】对于1P 和2P ,由于210x ax ++>时222110x ax x ax ++=+++>,所以1P 的元素,一定是2P 的元素,故对任意a ,1P 是2P 的子集. 对于1Q 和2Q ,根据判别式有140440b b -<⎧⎨-<⎩,即1b >时,12Q Q R ==,满足1Q 是2Q 的子集,也即存在b ,使得1Q 是2Q 的子集. 故选B. 【点睛】本小题主要考查子集的判断,考查恒成立问题和存在性问题的求解策略,属于基础题.4.C解析:C 【分析】由题意知3、4B ∉,则集合A 的个数等于{}1,2,5,6非空子集的个数,然后利用公式计算出集合{}1,2,5,6非空子集的个数,即可得出结果. 【详解】由题意知3、4B ∉,且集合A 、B 是U 的子集,且A B U ⋃=,A B ⋂≠∅, 则AB 为集合{}1,2,5,6的非空子集,因此,满足条件的集合A 的个数为42115-=.故选C. 【点睛】本题考查集合个数的计算,一般利用列举法将符合条件的集合列举出来,也可以转化为集合子集个数来进行计算,考查化归与转化思想的应用,属于中等题.5.C解析:C 【分析】用列举法表示集合Q ,这样就可以选出正确答案. 【详解】{}M P M a ⊆⇒=或{}b 或{},a b 或∅.因此{}{}{}{}{|},,,,Q M M P a b a b =⊆=∅,所以P Q ∈.故选:C 【点睛】本题考查了集合与集合之间的关系,理解本题中集合Q 元素的属性特征是解题的关键.6.C解析:C 【分析】求出{}{}*123|191,2,3,4,5,6,7,8,9A A A x N x =∈≤≤=,由题意列举出集合123,,A A A ,由此能求出123M M M ++的最小值. 【详解】 由题意可知,{}{}*123|191,2,3,4,5,6,7,8,9A A A x N x =∈≤≤=123,,A A A 各有3个元素且不重复,当{}13,4,5A =,{}22,6,7A =,{}31,8,9A =时,123M M M ++取得最小值,此时最小值为12357927+++++=,故选C 【点睛】本题主要考查集合中的元素运算,解题的关键是理解题中满足的条件,属于中档题.7.C解析:C 【解析】 【分析】先求出集合B ,比较a 与1的大小关系,结合B A ⊆,可求出实数a 的取值范围. 【详解】解不等式21x ->,即21x -<-或21x ->,解得1x <或3x >,{1B x x ∴=<或}3x >.①当1a =时,{}1A x x =≠,则B A ⊆成立,符合题意; ②当1a <时,{A x x a =<或}1x ≥,B A ⊄,不符合题意;③当1a >时,{1A x x =≤或}x a >,由B A ⊆,可得出3a ≤,此时13a .综上所述,实数a 的取值范围是13a ≤≤. 故选:C. 【点睛】本题考查集合之间关系的判断,涉及分式、绝对值不等式的解法,解分式不等式一般要转化为整式不等式,有参数时,一般要分类讨论.8.A解析:A 【分析】首先分析得出2a ba b +>>>,根据集合的运算,即可求解. 【详解】由题意,因为0a b >>,结合实数的性质以及基本不等式,可得2a ba b +>>>,可得{|R C F x x =≤}x a ≥,所以(){|R E C F x b x =<≤,即()R M E C F =故选A. 【点睛】本题主要考查了集合的运算,以及基本不等式的应用,其中解答中结合实数的性质和基本不等式求得2a ba b +>>>是解答的关键,着重考查了推理与运算能力,属于基础题. 9.B解析:B 【分析】先证得1P 是2P 的子集,然后求得b 使1Q 是2Q 的子集,由此确定正确选项.【详解】对于1P 和2P ,由于210x ax ++>时222110x ax x ax ++=+++>,所以1P 的元素,一定是2P 的元素,故对任意a ,1P 是2P 的子集;对于1Q 和2Q ,根据判别式有140440b b -<⎧⎨-<⎩,即1b >时,12Q Q R ==,满足1Q 是2Q 的子集,也即存在b ,使得1Q 是2Q 的子集. 故选: B. 【点睛】方法点睛:该题主要考查子集的判断,解题方法如下:(1)利用子集的概念,可以判断出1P 的元素,一定是2P 的元素,得到对任意a ,1P 是2P 的子集;(2)利用R 是R 的子集,结合判别式的符号,存在实数1b >时,有12Q Q R ==,得到结果.10.B解析:B 【分析】先根据题意得{}13A y y =≤≤,{}13B y y =-≤≤,再根据集合运算即可得答案. 【详解】解:根据题意得{}111133A y y x y y x ⎧⎫==≤≤=≤≤⎨⎬⎩⎭,, {}{}21,1213B y y x x y y ==--≤≤=-≤≤,再根据集合的运算得}{11B A y y -=-≤<.故选:B. 【点睛】本题考查集合的运算,函数值域的求解,考查运算能力,是中档题.11.D解析:D 【解析】B ={x ∣x 2−2x ⩽0}={x |0⩽x ⩽2}, 则A ∩B ={x |0⩽x ⩽1}, 本题选择D 选项.12.D解析:D 【分析】先解方程得集合A ,再根据A B B =得B A ⊂,最后根据包含关系求实数a ,即得结果.【详解】{}2|8150{3,5}A x x x =-+==,因为AB B =,所以B A ⊂,因此,{3},{5}B =∅,对应实数a 的值为110,,35,其组成的集合的子集个数有328=,选D. 【点睛】本题考查集合包含关系以及集合子集,考查基本分析求解能力,属中档题.二、填空题13.【分析】本题首先可根据素数的定义得出然后根据题意绘出韦恩图最后根据韦恩图即可得出结果【详解】因为全集是不大于的素数所以因为所以因为所以可绘出韦恩图如图所示:由韦恩图可知故答案为:【点睛】本题考查根据 解析:{}3,5,11,13【分析】本题首先可根据素数的定义得出{}2,3,5,7,11,13,17,19U =,然后根据题意绘出韦恩图,最后根据韦恩图即可得出结果. 【详解】因为全集{U x x =是不大于20的素数},所以{}2,3,5,7,11,13,17,19U =, 因为{}2,17A B ⋃=,所以{}3,5,7,11,13,19AB =,因为{}3,5A B ⋂=,{}7,19A B ⋂=, 所以可绘出韦恩图,如图所示:由韦恩图可知,{}3,5,11,13A =, 故答案为:{}3,5,11,13. 【点睛】本题考查根据集合运算结果求集合,考查素数的定义,素数是指在大于1的自然数中,只能被1和该数本身整除的数,考查韦恩图的应用,能否根据题意绘出韦恩图是解决本题的关键,考查数形结合思想,是中档题.14.【分析】分别求出集合中的元素再求出集合的并集即可求解【详解】由题因为所以则;因为所以则因为常数是正整数所以所以所以中所有元素之和是故答案为:【点睛】本题考查集合的并集考查解含绝对值的不等式 解析:2a【分析】分别求出集合A 、B 中的元素,再求出集合A 、B 的并集,即可求解 【详解】由题,因为12x a a -<+,所以11222x a -<<+,则11|2,22A x x a x Z ⎧⎫=-<<+∈⎨⎬⎩⎭;因为2x a <,所以22a x a -<<,则{}|22,B x a x a x Z =-<<∈, 因为常数a 是正整数, 所以{}0,,,,2A a a =,{}21,,0,,21B a a =-+-,所以{}21,,0,,21,2A B a a a ⋃=-+-,所以AB 中所有元素之和是2a ,故答案为:2a 【点睛】本题考查集合的并集,考查解含绝对值的不等式15.【分析】计算得到根据得到得到答案【详解】则或即故故故答案为:【点睛】本题考查了不等式的解集根据集合的运算结果求参数意在考查学生的综合应用能力 解析:2【分析】计算得到()()2,11,B =--+∞,根据()(]213A B A B =-+∞=,,,∪∩得到[]1,3A =-,得到答案.【详解】()()2101x x x ++>-,则1x >或21x -<<-,即()()2,11,B =--+∞.()(]213A B A B =-+∞=,,,∪∩,故[]1,3A =-,故2m n +=. 故答案为:2. 【点睛】本题考查了不等式的解集,根据集合的运算结果求参数,意在考查学生的综合应用能力.16.【分析】根据集合中的元素的互异性列出不等式组求解【详解】由题:集合则化简得:解得:即所以故答案为:【点睛】此题考查根据集合中元素的互异性求参数的取值范围需要注意不重不漏 解析:{}4,2,0,1,4--【分析】根据集合中的元素的互异性,列出不等式组求解. 【详解】由题:集合{}24,,3A m m m =+,则224343m m m m m m ≠⎧⎪+≠⎨⎪+≠⎩,化简得:()()()441020m m m m m ⎧≠⎪+-≠⎨⎪+≠⎩, 解得:()()()()()(),44,22,00,11,44,m ∈-∞----+∞, 即()()()()()(),44,22,00,11,44,M =-∞----+∞, 所以{}4,2,0,1,4R C M =--. 故答案为:{}4,2,0,1,4--【点睛】此题考查根据集合中元素的互异性求参数的取值范围,需要注意不重不漏.17.【分析】讨论和及确定集合利用列不等式求解【详解】由题意知则当时∵∴解得当时∵∴解得当时也有综上实数m 的取值范围是故答案为:【点睛】本题考查集合的包含关系考查一次不等式解集注意m=0的讨论是易错题解析:1(,1)2- 【分析】讨论0m >和0m <及0m =确定集合B ,利用A B ⊆列不等式求解 【详解】由题意知A B B ⋃=,则A B ⊆, 当0m >时,1{|}B x x m=>-,∵1{}2A =-,, ∴11m-<- 解得01m <<,当0m <时,1{|}B x x m=<-, ∵1{}2A =-,, ∴12m-> 解得102m -<<, 当0m =时也有A B ⊆.综上,实数m 的取值范围是1(,1)2-故答案为:1(,1)2-. 【点睛】本题考查集合的包含关系,考查一次不等式解集,注意m =0的讨论,是易错题 18.【分析】先计算集合A 再根据定义得到答案【详解】或且或故答案为:【点睛】本题考查了集合的新定义问题意在考查学生的理解能力和解决问题的能力解析:(,4)(3,2]-∞---【分析】先计算集合A ,再根据定义得到答案.【详解】{{|2}42x A x x x x =<=<-+或2}x >-,{|3}B x x =>- {|A B x x A B ⊗=∈且{}4x A B x x ∉⋂=<-或}32x -<≤-故答案为:(,4)(3,2]-∞--- 【点睛】本题考查了集合的新定义问题,意在考查学生的理解能力和解决问题的能力. 19.【分析】求即需同时满足A 集合和B 集合的x 的取值范围先根据比较容易得出解集再将B 集合的解集代入A 集合中判断出可以成立的值即可得【详解】当时当时不满足;当时满足;当时不满足;当时满足;即同时满足和的值有解析:{-【分析】求A B 即需同时满足A 集合和B 集合的x 的取值范围,先根据{}{}=|2=|22B x x x x <-<<,比较容易得出解集, 再将B 集合的解集代入A 集合中,判断出可以成立的值,即可得A B【详解】 {}{}=|2=|22B x x x x <-<<当22x -<<时,[]2,1,0,1x =--,当[]2x =-时,[]2200x x x +==⇒=,不满足[]2x =-; 当[]1x =-时,[]2211x x x +==⇒=±,1x =-满足[]1x =-; 当[]0x =时,[]222x x x +==⇒=,不满足[]0x =; 当[]1x =时,[]223x x x +==⇒=x []1x =; 即同时满足[]22x x -=和2x <的x 值有则A B={-故答案为:{- 【点睛】本题考查了集合的计算,和取整函数的理解,针对两个集合求交集的情况,可先对较简单的或者不含参数的集合求解,再代入较复杂的或含参数的集合中去计算.本题属于中等题. 20.【分析】由题得集合A 里只有一个元素所以只有一个解令得到再检验得解【详解】因为集合只有二个子集所以集合A 里只有一个元素由题得只有一个解令令当时不等式(1)的解为不等式(2)解为不等式组的解集为不满足题 解析:2±【分析】由题得集合A 里只有一个元素.所以22+501102x ax x ax ⎧+≥⎨++≤⎩()()只有一个解,令12=00∆∆=,得到2a a =±=±,再检验得解.【详解】因为集合A 只有二个子集,所以集合A 里只有一个元素.由题得22+501102x ax x ax ⎧+≥⎨++≤⎩()()只有一个解,令21=200,a a ∆-=∴=±令22=40,2a a ∆-=∴=±.当a =1)的解为R ,不等式(2)解为22x -≤≤组的解集为{|22x x --≤≤,不满足题意;当a =-1)的解为R ,不等式(2)解为x -≤,不等式组的解集为{|x x -≤≤,不满足题意;当2a =时,不等式(1)的解集为R ,不等式(2)的解为1x =-,不等式组的解集为{|1}x x =-,满足题意;当2a =-时,不等式(1)的解集为R ,不等式(2)的解为1x =,不等式组的解集为{|1}x x =,满足题意.故答案为2a =±.【点睛】本题主要考查集合的子集的个数,考查一元二次不等式的解集,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题21.(1)(){|21U AB x x =-<≤-或24}x ≤<;(2)30m -≤≤. 【分析】(1)求出集合B ,再根据集合的运算法则计算.由A B A ⋃=得B A ⊆,根据集合的包含关系得出不等式式,从而可求解.【详解】(1)1m =-时,{|115}{|24}A x x x x =-<+<=-<<,{|12}B x x =-<<, {|1U B x x =≤-或2}x ≥,∴(){|21U AB x x =-<≤-或24}x ≤<; (2)∵A B A ⋃=,∴B A ⊆,又{|15}A x m x m =-<<+,∴1152m m -≤-⎧⎨+≥⎩,解得30m -≤≤. 【点睛】本题考查集合的综合运算,考查集合的包含关系,考查指数函数的性质.解题时注意集合的运算与包含关系:A B A B A =⇔⊆,A B A A B ⋂=⇔⊆.22.(1)2m ≥-;(2)1722m m ⎧⎫≤≤⎨⎬⎩⎭. 【分析】(1)当()U A B =∅,在B A ⊆,然后针对B =∅与B ≠∅分类讨论求解; (2)若B C ≠∅,则B ≠∅,C ≠∅,若B C ≠∅,则只需1612m m m -≤-≤+或2126m m ≤+≤-,然后解出m 的取值范围.【详解】解:(1)∵{}28A x x =≤≤,∴{U |2A x x =<或}8x >, ∵()U A B =∅,则B A ⊆,当B =∅时,62m -<,即4m >,当B ≠∅时,62m -≥,68m -≤,解得24m -≤≤.综上所述:2m ≥-.(2)由题可知,B ≠∅,C ≠∅,62,121,m m m -≥⎧⎨+≥-⎩解得24m -≤≤. 若BC ≠∅时,则只需:1612m m m -≤-≤+或2126m m ≤+≤-, 解得:1722m ≤≤. ∴ 当BC ≠∅,m 的取值范围为1722m m ⎧⎫≤≤⎨⎬⎩⎭. 【点睛】 本题考查集合的运算结果求参数的取值范围问题,难度一般,解答时,因为空集是任何集合的子集,所以解答时注意空集的特殊性.23.(1)[1,3)-(2)[3,)+∞【分析】(1)可得出N ={x |1 <x <3 },t =2时求出集合M ,然后进行并集的运算即可;(2)根据N M ⊆即可得出集合M ={x |-1≤x ≤t },进而可得出t 的取值范围.【详解】(1){|21}N x x =|-|<={13}xx <<∣, 当2t =时,{(2)(1)0}(1,2)M xx x =-+≤=-∣, [)1,3M N ∴⋃=-(2)N M ⊆,∴M ={x |-1≤x ≤t },3t ∴≥,∴实数t 的取值范围[3,)+∞【点睛】本题主要考查了一元二次不等式和绝对值不等式的解法,并集的定义及运算,子集的定义,考查了计算能力,属于基础题.24.(1){}13A B x x ⋂=<≤,()(){1U U A B x x ⋃=≤或3}x >;(2)52k <-或1k >.【分析】(1)先求出B ,U A ,U B ,再求A B ,()()U U A B 即可;(2)先分类讨论①当M φ=时,k 不存在;②当M φ≠时,解得52k <-或1k >,最后写出实数k 的取值范围即可.【详解】解:(1)因为全集U =R ,集合{|4A x x =<-或1}x >,{}312B x x =-≤-≤, 所以{}23B x x =-≤≤,{|41}U x x A =-≤≤,{2U B x x =<-或3}x >,所以{}13A B x x ⋂=<≤,()(){1U U A B x x ⋃=≤或3}x >,(2)因为集合{}2121M x k x k =-≤≤+是集合A 的子集, 所以①当M φ=时,2121k k ,k 不存在;②当M φ≠时,214k +<-或211k ->,解得:52k <-或1k >, 综上所述:实数k 的取值范围是52k <-或1k >. 【点睛】 本题考查集合的运算、根据集合的基本关系求参数范围,是基础题.25.(1){|23}x x <≤; (2)(1,3].【分析】(1)可求出13{|}A x x =≤≤,{|2}Bx x ,进行交集的运算,即可求解; (2)进行并集、并集的运算求出集合D ,根据C D ⊆,且{|1}C x x a =<<,即可求得实数a 的取值范围.【详解】 (1)由1030x x -≥⎧⎨-≥⎩,解得13x ≤≤,即集合13{|}A x x =≤≤, 集合2{|log 1}{|2}B x x x x =>=>,所以{|23}A B x x ⋂=<≤.(2)由(1)可得{|2}R C B x x =≤,所以(){|3}R D C B A x x ==≤, 因为C D ⊆,且{|1},1C x x a a =<<>,所以13a,所以实数a 的取值范围是(1,3].【点睛】本题主要考查了集合的标志,对数函数的单调性,以及集合的交集、并集和补集的运算等知识点的综合应用,着重考查推理与运算能力.26.(1){}|12x x ≤≤;(2)[]4,2.【分析】(1)当2a =时,不等式化为2320x x -+≤,结合一元二次不等式的解法,即可求解; (2)把不等式化为()()10x x a --≤,分类讨论,结合集合的包含关系,即可求解.【详解】(1)由题意,当2a =时,不等式()210x a x a -++≤,即2320x x -+≤, 即()()120x x --≤,解得12x ≤≤,所以集合{}|12A x x =≤≤.(2)由()210x a x a -++≤,可得()()10x x a --≤,当1a <时,不等式()()10x x a --≤的解集为{}|1x a x ≤≤.由集合A 是集合{}4|2x x -≤≤的真子集可得4a ≥-,所以41a -≤<,当1a =时,不等式()()10x x a --≤的解集为{}|1x x =满足题意;当1a >时,不等式()()10x x a --≤的解集为{}|1x x a ≤≤,由集合A 是集合{}4|2x x -≤≤的真子集,可得2a ≤,所以11a <≤,综上可得:42x -≤≤,即实数a 的取值范围为[]4,2-.【点睛】本题主要考查了一元二次不等式的求解及其应用,其中解答中熟记一元二次不等式的解法,结合集合的关系求解是解答的关键,着重考查了推理与运算能力,属于中档试题.。

(常考题)北师大版高中数学必修一第一单元《集合》测试题(包含答案解析)(1)

(常考题)北师大版高中数学必修一第一单元《集合》测试题(包含答案解析)(1)

一、选择题1.若{}|28A x Z x =∈≤<,{}5|log 1B x R x =∈<,则R A C B ⋂的元素个数为( ) A .0B .1C .2D .32.定义集合运算{},,A B x x a b a A b B ⊗==⨯∈∈,设{0,1},{3,4,5}A B ==,则集合A B ⊗的真子集个数为( )A .16B .15C .14D .83.已知集合{}2,,M m m a b a b Q ==+∈,则下列四个元素中属于M 的元素的个数是( )①12π+;②1162+;③22+;④2323-++ A .4B .3C .2D .14.对于非空集合A ,B ,定义运算:{},A B x x A B x A B ⊕=∈⋃∉⋂且,已知{}M x a x b =<<,{}N x c x d =<<,其中a 、b 、c 、d 满足a b c d +=+,0ab cd <<,则M N ⊕=( )A .()(),,a d b c B .()(),,c a b d C .(][),,a c d b D .()(),,c a d b5.如图所示的韦恩图中,A 、B 是非空集合,定义*A B 表示阴影部分的集合,若x ,y ∈R ,2{|4}{|3,0}x A x y x x B y y x ==-==>,则A *B 为( )A .{|04}x x <≤B .{|01x x ≤≤或4}x >C .{|01x x ≤≤或2}x ≥D .{|01x x ≤≤或2}x >6.已知集合{}4A x a x =<<,{}2|560B x x x =-+>,若{|34}A B x x ⋂=<<,则a 的值不可能为( ) A 2B 5C 6D .37.非空集合G 关于运算⊕满足:①对任意a 、b G ∈,都有a b G ⊕∈;②存在e G ∈使对一切a G ∈都有a e e a a ⊕=⊕=,则称G 是关于运算⊕的融洽集,现有下列集合及运算中正确的说法有( )个(1)G 是非负整数集,⊕:实数的加法; (2)G 是偶数集,⊕:实数的乘法;(3)G 是所有二次三项式组成的集合,⊕多项式的乘法;(4){}|2G x x a b a b Q ==+∈,,,⊕:实数的乘法. A .1 B .2 C .3 D .48.已知全集U =R ,集合91A x x ⎧⎫=>⎨⎬⎩⎭和{}44,B x x x Z =-<<∈关系的Venn 图如图所示,则阴影部分所表示集合中的元素共有( )A .3个B .4个C .5个D .无穷多个9.已知集合{}21,A x y x y Z ==+∈,{}21,B y y x x Z ==+∈,则A 、B 的关系是( ) A .A B =B .ABC .B AD .A B =∅10.设全集为R ,集合{}2log 1A x x =<,{}21B x y x ==-,则()RAB =( )A .{}02x x <<B .{}01x x <<C .{}11x x -<<D .{}12x x -<<11.已知集合{}2230A x x x =--≤,{}22B x m x m =-≤≤+.若R A C B A =,则实数m 的取值范围为( ) A .5m >B .3m <-C .5m >或3m <-D .35m -<<12.若{}{}0,1,2,3,|3,A B x x a a A ===∈,则A B 的子集个数是()A .6B .8C .4D .2二、填空题13.集合6|5M a a⎧=∈⎨-⎩N 且}a Z ∈,用列举法表示集合M =________. 14.已知集合2|05x A x x -⎧⎫=<⎨⎬+⎩⎭,{}2230,B x x x x R =--≥∈,则A B =_________. 15.已知2{|31,},x A x x -+=≥∈R 21{|1,}3x B x x R x -=≤∈+,则A ∩B =______. 16.已知常数a 是正整数,集合1{|||,}2A x x a a x Z =-<+∈,{|||2,}B x x a x Z =<∈,则集合A B 中所有元素之和为________17.若规定{}1210E a a a =⋯,,,的子集{}12,,n k k k a a a 为E 的第k 个子集,其中12111222n k k k k ---=++⋯+,则E 的第211个子集是____________. 18.若关于x 的方程2210ax x ++=的解集有唯一子集 ,则实数a 的取值范围是_____.19.已知集合{|11},{|01}A x a x a B x x =-<<+=<<若A B φ⋂=,实数a 的取值范围是______.20.任意两个正整数x 、y ,定义某种运算⊗:()()x y x y x y x y x y +⎧⊗=⎨⨯⎩与奇偶相同与奇偶不同,则集合{(,)|6,,}M x y x y x y =⊗=∈*N 中元素的个数是________三、解答题21.已知集合4231a A a a ⎧⎫-=≤⎨⎬+⎩⎭,{}12B a a =+≤,{3}C x m x m =-<≤+(1)求AB ;(2)若()C AC ⊆,求m 的取值范围.22.设集合{}14A x x =-<<,352B x x ⎧⎫=-<<⎨⎬⎩⎭,{}122C x a x a =-<<. (1)若C =∅,求实数a 的取值范围;(2)若C ≠∅且()C A B ⊆⋂,求实数a 的取值范围. 23.若全集U =R ,集合{23},{27},{(4)(3)0}A x a x a B x x C x x x =-≤≤+=≤≤=-+≥.(1)当3a =时,求,()U A B A C B ;(2)若AC A =,求实数a 的取值范围.24.已知全集U =R ,集合{|4A x x =<-或1}x >,{}312B x x =-≤-≤, (1)求AB 、()()U UA B ;(2)若集合{}2121M x k x k =-≤≤+是集合A 的子集,求实数k 的取值范围. 25.集合[]34,2,4x A y y x x ⎧⎫-==∈⎨⎬⎩⎭,{}|1B x x m =+≥. (1)若A B ⊆,求m 的取值范围;(2)设命题p :a A ∈,命题q :函数()241f x x ax =-+在[]3,5上为减函数.若p q ∧为真,求a 的取值范围.26.已知集合{}25A x x =-≤≤,集合{}121B x p x p =+≤≤-,若A B B =,求实数p 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【分析】化简集合A 、B ,根据补集与交集的定义写出RA B ,即可得出结论.【详解】集合{|28}{2A x Z x =∈<=,3,4,5,6,7},51{||log |1}{|5}5B x R x x R x =∈<=∈<<,1{|5R B x R x ∴=∈或5}x , {5RAB ∴=,6,7}.∴其中元素个数为3个.故选:D . 【点睛】本题考查了集合的化简与运算问题,是基础题.2.B解析:B 【分析】根据新定义得到{}{},,0,3,4,5A B x x a b a A b B ⊗==⨯∈∈=,再计算真子集个数得到答案. 【详解】{0,1},{3,4,5}A B ==,{}{},,0,3,4,5A B x x a b a A b B ⊗==⨯∈∈=其真子集个数为:42115-= 故选:B 【点睛】本题考查了集合的新定义问题,真子集问题,意在考查学生的应用能力.3.C解析:C 【分析】①②③都可以写成m a =+,a b 是否是有理数,④计算.【详解】①当1a +=+时,可得1,a b π==,这与,a b Q ∈矛盾,3==3a ∴+=,可得3,1a b == ,都是有理数,所以正确,2122==-,12a ∴+=-,可得11,2a b ==-,都是有理数,所以正确,④2426=+=而(22222a a b +=++,,a b Q ∈,(2a ∴+是无理数,不是集合M 中的元素,只有②③是集合M 的元素. 故选:C 【点睛】本题考查元素与集合的关系,意在考查转化与化归的思想,计算能力,属于基础题型.4.C解析:C 【分析】先判断0a c d b <<<<,再计算(,),(,)M N a b M N c d ⋃=⋂=,得到答案. 【详解】根据a b c d +=+,0ab cd <<得到:0a c d b <<<<{}M x a x b =<<,{}N x c x d =<<故(,),(,)M N a b M N c d ⋃=⋂=(][),,M N a c d b ⊕=故选:C 【点睛】本题考查了集合的新定义问题,确定0a c d b <<<<是解题的关键.5.B解析:B 【分析】弄清新定义的集合与我们所学知识的联系:所求的集合是指将A B ⋃除去A B ⋂后剩余的元素所构成的集合.再利用函数的定义域、值域的思想确定出集合A ,B ,代入可得答案. 【详解】依据定义,*A B 就是指将A B ⋃除去A B ⋂后剩余的元素所构成的集合;对于集合A ,求的是函数y 解得:{|04}A x x =≤≤;对于集合B ,求的是函数3(0)xy x =>的值域,解得{}1B y y =;依据定义,借助数轴得:*{|01A B x x =≤≤或4}x >. 故选:B . 【点睛】本小题考查数形结合的思想,考查集合交并运算的知识,借助数轴保证集合运算的准确性,属于中档题.6.A解析:A 【分析】求出{2B x x =<或}3x >,利用{|34}A B x x ⋂=<<,得23a ≤≤. 【详解】集合{}4A x a x =<<,{}{25602B x x x x x =-+=<或}3x >,{|34}A B x x ⋂=<<, ∴23a ≤≤, ∴a故选:A. 【点睛】本题考查了根据集合间的基本关系求解参数范围的问题,属于中档题.解决此类问题,一般要把参与运算的集合化为最简形式,借助数轴求解参数的范围.7.B解析:B 【分析】根据新定义运算⊕判断. 【详解】(1)任意两个非负整数的和仍然是非负整数,对任意a G ∈,0G ∈,00a a a +=+=,(1)正确;(2)任意两个偶数的积仍然是偶数,但不存在e G ∈,对任意a G ∈,使ae ea a ==,(2)错误;(3)21x x -+和21x x +-是两个二次三项式,它们的积2242(1)(1)21x x x x x x x -++-=-+-不是二次三项式,(3)错误;(4)设x a y c =+=+,,,a b c d Q ∈,则2(xy ac bd ad bc G =+++,而且1G ∈,11x x x ⋅=⋅=,(4)正确.∴正确的有2个. 故选:B. 【点睛】本题考查新定义,解题关键是对新定义的理解与应用.8.B解析:B 【分析】先解分式不等式得集合A ,再化简B ,最后根据交集与补集定义得结果. 【详解】 因为91(0,9)A xx ⎧⎫=>=⎨⎬⎩⎭,{}{}44,3,2,1,0,1,2,3B x x x Z =-<<∈=---, 所以阴影部分所表示集合为(){0,1,2,3}U C A B =---,元素共有4个,故选B 【点睛】本题考查分式不等式以及交集与补集定义,考查基本分析求解能力,属基础题.9.C解析:C 【分析】由题意得出Z A ⊆,而集合B Z ,由此可得出A 、B 的包含关系.【详解】由题意知,对任意的x ∈Z ,21y x Z =+∈,Z A ∴⊆.{}21,B y y x x Z ==+∈,∴集合B 是正奇数集,则BZ ,因此,BA .故选:C. 【点睛】本题考查集合包含关系的判断,解题时要善于抓住代表元素,认清集合的特征,考查推理能力,属于中等题.10.B解析:B 【解析】 【分析】解出集合A 、B ,再利用补集和交集的定义可得出集合()RA B .【详解】由2log 1x <,02x <<,{}02A x x ∴=<<.由210x -≥,得1x ≤-或1x ≥,则{}11B x x x =≤-≥或,{}11R B x x ∴=-<<, 因此,(){}01A B x x ⋂=<<R ,故选:B. 【点睛】本题考查交集和补集的混合运算,同时也考查了对数不等式以及函数定义域的求解,考查计算能力,属于中等题.11.C解析:C 【分析】首先根据题意,求得{|2R C B x x m =>+或}2x m <-,由R AC B A =可以得到R A C B ⊆,根据子集的定义求得参数所满足的条件,得到结果.【详解】{}{}2230=|13A x x x x x =--≤-≤≤,∵{}22B x m x m =-≤≤+. ∴{2R C B x x m =>+或2}x m <-, ∵R AC B A =即R A C B ⊆,∴23m ->或21m +<-.即5m >或3m <-,即实数m 的取值范围是5m >或3m <-. 故选:C. 【点睛】该题考查的是有关集合的问题,涉及到的知识点有集合的补集,根据子集求参数的取值范围,属于简单题目.12.C解析:C 【分析】先求得B 的具体元素,然后求A B ,进而确定子集的个数.【详解】依题意{}0,3,6,9B =,所以{}0,3A B ⋂=,其子集个数为224=,故选C. 【点睛】本小题主要考查集合元素的识别,考查两个集合的交集,考查集合子集的个数计算,属于基础题.二、填空题13.【分析】由集合且求得得到且结合题意逐个验证即可求解【详解】由题意集合且可得则解得且当时满足题意;当时不满足题意;当时不满足题意;当时满足题意;当时满足题意;当时满足题意;综上可得集合故答案为:【点睛 解析:{1,2,3,4}-【分析】 由集合6|5M a a⎧=∈⎨-⎩N 且}a Z ∈,求得056a <-≤,得到15a -≤<且a Z ∈,结合题意,逐个验证,即可求解. 【详解】由题意,集合6|5M a a ⎧=∈⎨-⎩N 且}a Z ∈,可得65a∈-N ,则056a <-≤, 解得15a -≤<且a Z ∈, 当1a =-时,615(1)=∈--N ,满足题意;当0a =时,66505=∉-N ,不满足题意; 当1a =时,66514=∉-N ,不满足题意; 当2a =时,6252=∈-N ,满足题意; 当3a =时,6353=∈-N ,满足题意; 当4a =时,6654=∈-N ,满足题意; 综上可得,集合M ={1,2,3,4}-.故答案为:{1,2,3,4}-. 【点睛】本题主要考查了集合的表示方法,以及集合的元素与集合的关系,其中解答中熟记集合的表示方法,以及熟练应用元素与集合的关系,准确判定是解答的关键,着重考查了推理与运算能力,属于基础题.14.【分析】分别根据分式不等式和一元二次不等式的解法求出集合和再根据交集的定义求出【详解】∵集合∴故答案为【点睛】本题考查集合的交集的运算解题时要认真审题注意分式不等式和一元二次不等式的合理运用是基础题解析:(]5,1--. 【分析】分别根据分式不等式和一元二次不等式的解法求出集合A 和B ,再根据交集的定义求出A B ⋂.【详解】 ∵集合2{|0}{|52}5x A x x x x -=<=-<<+, 2{|230}{|13}B x x x x R x x x =--≥∈=≤-≥,或,∴{|51}A B x x ⋂=-<≤-,故答案为(]5,1--. 【点睛】本题考查集合的交集的运算,解题时要认真审题,注意分式不等式和一元二次不等式的合理运用,是基础题.15.【分析】根据指数函数的单调性解不等式化简集合A 解分式不等式化简集合B 求交集即可【详解】由得:解得故由得:解得故所以A∩B=【点睛】本题主要考查了指数不等式分式不等式集合的交集运算属于中档题 解析:(]3,2-【分析】根据指数函数的单调性解不等式化简集合A ,解分式不等式化简集合B ,求交集即可. 【详解】由231x -+≥得:20x -+≥, 解得2x ≤, 故{|2}A x x =≤, 由2113x x -≤+得:403x x -≤+, 解得34x , 故{|34}B x x =-<≤, 所以A ∩B = (]3,2- 【点睛】本题主要考查了指数不等式,分式不等式,集合的交集运算,属于中档题.16.【分析】分别求出集合中的元素再求出集合的并集即可求解【详解】由题因为所以则;因为所以则因为常数是正整数所以所以所以中所有元素之和是故答案为:【点睛】本题考查集合的并集考查解含绝对值的不等式 解析:2a【分析】分别求出集合A 、B 中的元素,再求出集合A 、B 的并集,即可求解 【详解】由题,因为12x a a -<+,所以11222x a -<<+,则11|2,22A x x a x Z ⎧⎫=-<<+∈⎨⎬⎩⎭; 因为2x a <,所以22a x a -<<,则{}|22,B x a x a x Z =-<<∈, 因为常数a 是正整数, 所以{}0,,,,2A a a =,{}21,,0,,21B a a =-+-,所以{}21,,0,,21,2A B a a a ⋃=-+-,所以AB 中所有元素之和是2a ,故答案为:2a 【点睛】本题考查集合的并集,考查解含绝对值的不等式17.【分析】根据题意分别讨论的取值通过讨论计算的可能取值即可得出答案【详解】而的第个子集包含此时的第个子集包含此时的第个子集包含此时的第个子集包含此时的第个子集包含的第个子集是故答案为:【点睛】本题主要 解析:{}12578,,,,a a a a a【分析】根据题意,分别讨论2n 的取值,通过讨论计算n 的可能取值,即可得出答案. 【详解】72128211=<,而82256211=>,E ∴的第211个子集包含8a ,此时21112883-=,626483=<,7212883=>,E ∴的第211个子集包含7a ,此时836419-=,421619=<,523219=>,E ∴的第211个子集包含5a ,此时19163-=,1223=<,2243=>,E ∴的第211个子集包含2a ,此时321-=,021=E ∴的第211个子集包含1a ,E ∴的第211个子集是{}12578,,,,a a a a a .故答案为:{}12578,,,,a a a a a 【点睛】本题主要考查了与集合有关的信息题,理解条件的定义是解决本题的关键.18.【分析】由题意知关于的方程无实数解可得出由此可解出实数的取值范围【详解】由题意知关于的方程无实数解当时原方程为解得不合乎题意;当时则有解得综上所述实数的取值范围是故答案为:【点睛】本题考查利用集合的 解析:()1,+∞【分析】由题意知,关于x 的方程2210ax x ++=无实数解,可得出0a ≠⎧⎨∆<⎩,由此可解出实数a 的取值范围. 【详解】由题意知,关于x 的方程2210ax x ++=无实数解.当0a =时,原方程为210x +=,解得12x =-,不合乎题意;当0a ≠时,则有440a ∆=-<,解得1a >.综上所述,实数a 的取值范围是()1,+∞. 故答案为:()1,+∞. 【点睛】本题考查利用集合的子集个数求参数,将问题转化为方程无实解是解题的关键,考查分类讨论思想的应用,属于中等题.19.【分析】由根据集合的交集的运算得到或即可求解【详解】由题意集合因为则满足或解得或即实数的取值范围是故答案为:【点睛】本题主要考查了集合的运算以及利用集合的交集求参数其中解答中熟记集合交集运算列出相应 解析:(][),12,-∞-⋃+∞【分析】由A B φ⋂=,根据集合的交集的运算,得到11a -≥或10a +≤,即可求解. 【详解】由题意,集合{|11},{|01}A x a x a B x x =-<<+=<<, 因为A B φ⋂=,则满足11a -≥或10a +≤,解得2a ≥或1a ≤-, 即实数a 的取值范围是(][),12,-∞-⋃+∞. 故答案为:(][),12,-∞-⋃+∞. 【点睛】本题主要考查了集合的运算,以及利用集合的交集求参数,其中解答中熟记集合交集运算,列出相应的不等式是解答的关键,着重考查了推理与运算能力,属于基础题.20.【分析】根据正整数的奇偶讨论的不同取值情况:若一奇一偶则取;若都是奇数或都是偶数则取列举出所有可能即可【详解】集合若一奇一偶则取此时所有个数为此时共有4个;若都是偶数则取此时所有个数为此时共有2个; 解析:9【分析】根据正整数的奇偶,讨论x y 、的不同取值情况:若一奇一偶,则取6xy =;若都是奇数或都是偶数,则取6x y +=,列举出所有可能即可. 【详解】集合{(,)|6,,}M x y x y x y =⊗=∈*N 若x y 、一奇一偶,则取6xy =,此时所有个数为16x y =⎧⎨=⎩,23x y =⎧⎨=⎩,32x y =⎧⎨=⎩,61x y =⎧⎨=⎩,此时(),x y 共有4个;若x y 、都是偶数,则取6x y +=,此时所有个数为24x y =⎧⎨=⎩,42x y =⎧⎨=⎩,此时共(),x y 有2个; 若x y 、都是奇数,则取6x y +=,此时所有个数为15x y =⎧⎨=⎩,33x y =⎧⎨=⎩, 51x y =⎧⎨=⎩此时(),x y 共有3个;综上可知,满足条件的元素共有9个. 故答案为:9 【点睛】本题考查了新定义运算与集合的综合应用,注意分析题意并正确理解新定义是解决此类问题的关键,属于中档题.三、解答题21.(1)(1,1]A B ⋂=-;(2)1m . 【分析】(1)先利用分式不等式的解法和绝对值不等式的解法化简集合A ,B ,再利用交集运算求解.(2)根据()C A C ⊆,得到C A ⊆,然后分C =∅和C ≠∅两种情况讨论求解.【详解】(1)因为集合423(1,5]1a A a a ⎧⎫-=≤=-⎨⎬+⎩⎭,{}12[3,1]B a a =+≤=-,所以(1,1]A B ⋂=-. (2)因为()C AC ⊆,所以C A ⊆,①当3m m -≥+即32m ≤-时,C =∅,符合题意, ②当3m m -<+即32m >-时,则135m m -≥-⎧⎨+≤⎩,解得132m -<≤, 综上:1m 【点睛】本题主要考查集合的基本运算和集合的基本关系的应用以及分式不等式和绝对值不等式的解法,还考查了分类讨论思想和运算求解的能力,属于中档题. 22.(1)14a a ⎧⎫≤⎨⎬⎩⎭;(2)1344a a ⎧⎫<≤⎨⎬⎩⎭.【分析】(1)根据空集的概念列出关于a 的不等式,求解出a 的取值范围; (2)先根据C ≠∅求解出a 的初步范围,然后根据条件求解出A B 的结果,最后再根据子集关系求解出a 的取值范围. 【详解】解:(1)因为{}122C x a x a =-<<=∅,所以122a a -≥,所以14a ≤,即实数a 的取值范围是14a a ⎧⎫≤⎨⎬⎩⎭. (2)因为{}122C x a x a =-<<≠∅,所以122a a -<,即14a >. 因为{}14A x x =-<<,352B x x ⎧⎫=-<<⎨⎬⎩⎭,所以312A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭, 因为()C A B ⊆⋂,所以12132214a a a ⎧⎪-≥-⎪⎪≤⎨⎪⎪>⎪⎩,解得1344a <≤,即实数a 的取值范围是1344a a ⎧⎫<≤⎨⎬⎩⎭.【点睛】易错点睛:根据集合的包含关系求解参数范围时的注意事项: (1)注意分析集合为空集的可能;(2)列关于参数的不等式时,注意等号是否能取到. 23.(1)[2,6],()(,6](7,)U A B AC B ==-∞+∞;(2)(,6][6,)a ∈-∞-+∞.【分析】(1)由集合的交、并、补的运算即可得解; (2)由集合的包含关系可得:因为A C A =,所以A C ⊆,再列不等式33a +≤-或24a -≥,求解即可.【详解】解:(1)因为3a =,所以[1,6],A =又因为[2,7],B =所以(,2)(7,)U C B =-∞+∞, 故[2,6]A B =,()(,6](7,)U A C B =-∞+∞; (2)因为AC A =,所以A C ⊆,{}(4)(3)0(,3][4,)C x x x =-+≥=-∞-⋃+∞又又集合{}23[2,3],A x a x a a a =-≤≤+=-+ 所以33a +≤-或24a -≥, 即6a ≤-或6,a ≥故实数a 的取值范围为(,6][6,)-∞-+∞. 【点睛】本题考查了集合的交、并、补的运算,重点考查了集合的包含关系,属基础题. 24.(1){}13A B x x ⋂=<≤,()(){1U U A B x x ⋃=≤或3}x >;(2)52k <-或1k >.(1)先求出B ,UA ,UB ,再求A B ,()()U UA B 即可;(2)先分类讨论①当M φ=时,k 不存在;②当M φ≠时,解得52k <-或1k >,最后写出实数k 的取值范围即可. 【详解】解:(1)因为全集U =R ,集合{|4A x x =<-或1}x >,{}312B x x =-≤-≤, 所以{}23B x x =-≤≤,{|41}Ux x A =-≤≤,{2UB x x =<-或3}x >,所以{}13A B x x ⋂=<≤,()(){1U U A B x x ⋃=≤或3}x >,(2)因为集合{}2121M x k x k =-≤≤+是集合A 的子集,所以①当M φ=时,2121kk ,k 不存在;②当M φ≠时,214k +<-或211k ->,解得:52k <-或1k >, 综上所述:实数k 的取值范围是52k <-或1k >. 【点睛】本题考查集合的运算、根据集合的基本关系求参数范围,是基础题. 25.(1)0m ≥;(2)∅. 【分析】(1)由于A B ⊆,根据子集的定义,即可求出m 的取值范围;(2)根据p q ∧为真,得出p 真且q 真,分别求出命题p 和命题q 对应的a 的范围,取交集后,即可得出a 的取值范围. 【详解】解:由题意得,集合[]1,2A =,{}|1B x x m =≥-, (1)∵A B ⊆,∴11m -≤,则0m ≥;(2)由题可知,∵p q ∧为真,∴p 真且q 真, 命题p :[]1,2a ∈,命题q :函数()241f x x ax =-+在[]3,5上为减函数,则抛物线对称轴大于等于5,即:5252a a ≥⇒≥, 则1252a a ≤≤⎧⎪⎨≥⎪⎩,解得:a ∈∅.所以a 的取值范围为∅.本题考查根据集合间的关系求参数范围,以及根据复合命题的真假性判断命题真假,进而求参数范围.26.3p ≤【分析】根据题意,由集合的性质,可得若满足AB B =,则B A ⊆,进而分:①121p p +>-,②121p p +=-,③121p p +<-,三种情况讨论,讨论时,先求出p 的取值范围,进而可得B ,讨论集合B 与A 的关系可得这种情况下p 的取值范围,对三种情况下求得的p 的范围求并集可得答案. 【详解】解:根据题意,若A B B =,则B A ⊆;分情况讨论:①当121p p +>-时,即2p <时,B =∅, 此时B A ⊆,则AB B =,则2p <时,符合题意;②当121p p +=-时,即2p =时,{}{}333B x x =≤≤=, 此时B A ⊆,则AB B =,则2p =时,符合题意;③当121p p +<-时,即2p >时,{}121B x p x p =+≤≤-,若B A ⊆,则有21512p p -≤⎧⎨+≥-⎩,解可得33p -≤≤,又由2p >,则当23p <≤时,符合题意; 综上所述,满足A B B =成立的p 的取值范围为3p ≤.【点睛】本题考查根据集合的包含关系求参数的取值范围,易错点为遗漏B =∅的情况,考查了分类讨论的思想,属于中档题.。

北师大版高中数学必修一第一单元《集合》检测卷(有答案解析)(1)

北师大版高中数学必修一第一单元《集合》检测卷(有答案解析)(1)

一、选择题1.设集合{}20,201x M x N x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( )A .{}01x x ≤<B .{}01x x <<C .{}02x x ≤<D .{}02x x <<2.由实数x ,﹣x ,|x | ) A .2个 B .3个C .4个D .5个3.设集合A={2,1-a ,a 2-a +2},若4∈A ,则a =( )A .-3或-1或2B .-3或-1C .-3或2D .-1或24.已知集合{},M m m a a b Q ==+∈,则下列四个元素中属于M 的元素的个数是( )①1A .4B .3C .2D .15.已知全集U =R ,集合{|23}M x x =-≤≤,{|24}N x x x =<->或,那么集合()()C C U U M N ⋂等于( )A .{|34}x x <≤B .{|34}x x x ≤≥或C .{|34}x x ≤<D .{|13}x x -≤≤6.对于非空集合A ,B ,定义运算:{},A B x x A B x A B ⊕=∈⋃∉⋂且,已知{}M x a x b =<<,{}N x c x d =<<,其中a 、b 、c 、d 满足a b c d +=+,0ab cd <<,则M N ⊕=( )A .()(),,a d b c B .()(),,c a b d C .(][),,a c d b D .()(),,c a d b7.设全集{}1,2,3,4,5U =,{}13,5A =,,{}2,5B =,则()U AC B ⋂等于( ) A .{}2B .{}2,3C .{}3D .{}1,38.若集合{}2|560A x x x =-->,{}|21xB x =>,则()R C A B =( )A .{}|10x x -≤<B .{}|06x x <≤C .{}|20x x -≤<D .{}|03x x <≤9.设全集为R ,集合{}2log 1A x x =<,{B x y ==,则()RAB =( )A .{}02x x << B .{}01x x <<C .{}11x x -<<D .{}12x x -<<10.已知函数()f x =M ,()ln(1)g x x =+的定义域为N ,则()R MC N =( )A .{|1}<x xB .{|1}x x ≥C .φD .{|11}x x -≤<11.集合{}{}A x||x-a|<1,x R ,|15,.A B B x x x R =∈=<<∈⋂=∅若,则实数a 的取值 范围是( ) A .{}a |0a 6≤≤ B .{}|24a a a ≤≥或C .{}|06a a a ≤≥或D .{}|24a a ≤≤12.设集合{}21xA y y ==-,{}1B x x =≥,则()R A C B =( )A .(],1-∞-B .(),1-∞C .()1,1-D .[)1,+∞二、填空题13.设P 为非空实数集满足:对任意给定的x y P ∈、(x y 、可以相同),都有x y P +∈,x y P -∈,xy P ∈,则称P 为幸运集.①集合{2,1,0,1,2}P =--为幸运集;②集合{|2,}P x x n n ==∈Z 为幸运集; ③若集合1P 、2P 为幸运集,则12PP 为幸运集;④若集合P 为幸运集,则一定有0P ∈;其中正确结论的序号是________14.若集合A 具有以下两条性质,则称集合A 为一个“好集合”. (1)0A ∈且1A ∈;(2)若x 、y A ,则x y A -∈,且当0x ≠时,有1A x∈.给出以下命题:①集合{}2,1,0,1,2P =--是“好集合”; ②Z 是“好集合”; ③Q 是“好集合”; ④R 是“好集合”;⑤设集合A 是“好集合”,若x 、y A ,则x y A +∈;其中真命题的序号是________.15.已知点H 是正三角形ABC 内部一点,HAB ∆,HBC ∆,HCA ∆的面积值构成一个集合M ,若M 的子集有且只有4个,则点H 需满足的条件为________.16.已知集合M ={x ∈N |1≤x ≤15},集合A 1,A 2,A 3满足①每个集合都恰有5个元素; ②A 1∪A 2∪A 3=M .集合A i 中元素的最大值与最小值之和称为集合A i 的特征数,记为X i (i =1,2,3),则X 1+X 2+X 3的最大值与最小值的和为_____.17.已知集合(){}21210,,A x a x x a R x R =-++=∈∈,若集合A 至多有两个子集,则a 的取值范围是__________.18.若{}|224xA x ≤≤,1|1x B x a x -⎧⎫=<⎨⎬+⎩⎭,若A B =∅,则实数a 的取值范围为_________;19.已知集合{}2A ,,4a a =-,33,,2||b a B a a ⎧⎫=-⎨⎬⎩⎭,且A B =,则a b +=______。

北师大版高一数学必修一集合、函数检测题

北师大版高一数学必修一集合、函数检测题

北师大版高一数学必修一集合、函数检测题(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--北师大版高一数学集合、函数检测题一、选择题(每题5分,共50分)1.集合},{b a 的子集有 ( ) A .2个B .3个C .4个D .5个设集合{}|43A x x =-<<,{}|2B x x =≤(4,3)-(4,2]-(,2]-∞(,3)-∞()5412-+=-x x x f ()x f x x 62+782++x x 322-+x x 1062-+x x {1,4,9},{3,2,1,1,2,3},A B ==---f x x →,,A R B R ==f x x →,,A R B R ==f 22x x →-{}{}1,0,1,1,0,1,A B f =-=-A A B 3y x =-211y x =+2210y x x =+-(0)1(0)x x y x x⎧-≤⎪=⎨->⎪⎩ 其中值域为R 的函数有 ( )A .1个B .2个C .3个D .4个6.已知函数212x y x⎧+=⎨-⎩ (0)(0)x x ≤>,使函数值为5的x 的值是( )A .-2B .2或52-C . 2或-2D .2或-2或52- 7.下列函数中,定义域为[0,∞)的函数是 ( )A .x y =B .22x y -=C .13+=x yD .2)1(-=x y 8.若R y x ∈,,且)()()(y f x f y x f +=+,则 ( )A . 0)0(=f 且)(x f 为奇函数B .0)0(=f 且)(x f 为偶函数C .)(x f 为增函数且为奇函数D .)(x f 为增函数且为偶函数 9.下列图像中表示函数图像的是 ( )(A ) (B) (C ) (D)10.二次函数y =x 2+b x +c 的图像的对称轴是x =2,则有( ). A .f (1)<f (2)<f (4) B .f (2)<f (1)<f (4) C .f (2)<f (4)<f (1)D .f (4)<f (2)<f (1)二、填空题(每题5分,共25分)11.若{}{}0,1,2,3,|3,A B x x a a A ===∈,则A ∪B = .12.若集合A ={x | x 2+(a -1)x +b =0}中,仅有一个元素a ,则a =___,b =___.13.函数()1,3,x f x x +⎧=⎨-+⎩1,1,x x ≤>则()()4f f = .14.y =(2a -1)x +5是减函数,求a 的取值范围 . 15.已知f (x +1)=x 2-2x ,则f (x )= ;f (x -2)= .三、解答题16.(12分) 已知集合A={}71<≤x x ,B={x |2<x <10},C={x |x <a },全集为实数集R . (1)求A ∪B ,(C R A)∩B ;(2)如果A ∩C ≠φ,求a 的取值范围.17.(12分)已知集合A ={x ∈R | ax 2-3x +2=0},其中a 为常数,且a ∈R . (1)若A 是空集,求a 的范围; (2)若A 中只有一个元素,求a 的值;(3)若A 中至多只有一个元素,求a 的范围.18.(12分)已知方程02=++q px x 的两个不相等实根为βα,.集合},{βα=A ,=B {2,4,5,6},=C {1,2,3,4},A ∩C =A ,A ∩B =φ,求q p ,的值.19.(12分)已知二次函数)(x f 满足x x f x f 2)(-)1(=+,且)0(f =1,求)(x f 的解析式.20.(13分)已知函数)(x f =222+-ax x ,∈x [-1,1],求函数)(x f 的最小值.21.(14分)已知函数2()21f x x =-. (1)用定义证明()f x 在(,0]-∞上是减函数; (2)用定义证明()f x 是偶函数;(3)作出函数()f x 的图像,并写出函数()f x 当[1,2]x ∈-时的最大值与最小值.高一数学测试题(二)参考答案一、 选择题 CBACB AAACB 二、填空题11.{0,1,2,3,6,9} 12. a =31,b =91 13. 0 14. (-∞,21) 15. f (x )=x 2-4x +3,f (x -2)=x 2-8x +15. 三、解答题16.解:(1)A ∪B={ x |1≤x <10}(C R A)∩B={ x | x <1或x ≥7}∩{ x |2< x <10} ={ x |7≤x <10} (2)当a >1时满足A ∩C ≠φ 17.解:(1)∵A 是空集,∴方程ax 2-3x +2=0无实数根. ∴⎩⎨⎧∆,a a 08-9=,0 解得a >89.(2)∵A 中只有一个元素,∴方程ax 2-3x +2=0只有一个实数根.当a =0时,方程化为-3x +2=0,只有一个实数根x =32;当a ≠0时,令Δ=9-8a =0,得a =89,这时一元二次方程ax 2-3x +2=0有两个相等的实数根,即A 中只有一个元素.由以上可知a =0,或a =89时,A 中只有一个元素.(3)若A 中至多只有一个元素,则包括两种情形:A 中有且仅有一个元素;A 是空集.由①②的结果可得a =0,或a ≥89. 18.解:由A ∩C=A 知A ⊆C又},{βα=A ,则C ∈α,C ∈β. 而A ∩B =φ,故B ∉α,B ∉β显然即属于C 又不属于B 的元素只有1和3. 所以对于方程02=++q px x的两根βα,≠ <用韦达定理可得3,4=-=q p .19.f (x) = 2x —x +120.解:min )(x f =⎪⎩⎪⎨⎧≤≤)<-(+)(--)>(-1231121232a a a a a a21.证明:(1)在区间(,0]-∞上任取12,x x ,且12x x <,则有22221212121212()()(21)(21)2()2()()f x f x x x x x x x x x -=---=-=-⋅+,∵12,(,0]x x ∈-∞,12x x <,∴12120,x x x x -<0,+<即1212()()0x x x x -⋅+>∴12()()0f x f x ->,即()f x 在(,0]-∞上是减函数. (2)证明:函数()f x 的定义域为R ,对于任意的x R ∈,都有22()2()121()f x x x f x -=--=-=,∴()f x 是偶函数. (3)解:最大值为(2)7f =,最小值为(0)1f =-.。

北师大版高中数学必修一第一单元《集合》检测题(答案解析)

北师大版高中数学必修一第一单元《集合》检测题(答案解析)

一、选择题1.由实数x ,﹣x ,|x |,2x ,33x -组成的集合中,元素最多有( ) A .2个B .3个C .4个D .5个2.设全集U =R ,{}2560A x x x =-->,{}5B x x a =-<(a 为常数),且11B ∈,则下列成立的是( )A .U AB R =B .UA B R =C .UUAB R = D .AB R =3.下图中的阴影部分,可用集合符号表示为( )A .()()U U A B ⋂ B .()()U UA BC .()UA BD .()UA B ⋂4.若{}|28A x Z x =∈≤<,{}5|log 1B x R x =∈<,则R A C B ⋂的元素个数为( ) A .0B .1C .2D .35.若集合{}2560A x x x =+-=,{}222(1)30B x x m x m =+++-=.若{}1A B ⋂=,求实数m 的值为( ) A .0B .-2C .2D .0或-26.对于非空集合P ,Q ,定义集合间的一种运算“★”:{P Q x x P Q =∈★∣且}x P Q ∉⋂.如果{111},{1}P x x Q x y x =-≤-≤==-∣∣,则P Q =★( )A .{12}xx ≤≤∣ B .{01xx ≤≤∣或2}x ≥ C .{01xx ≤<∣或2}x > D .{01xx ≤≤∣或2}x > 7.已知集合{}2|230A x x x =--<,集合{}1|21x B x +=>,则C B A =( )A .[3,)+∞B .(3,)+∞C .(,1][3,)-∞-⋃+∞D .(,1)(3,)-∞-+∞8.已知集合{}|10A x x =-<,{}2|20B x x x =-<,则AB =( )A .{}|0x x <B .{}|1x x <C .{}1|0x x <<D .{}|12x x <<9.对于集合A 和B ,令{,,},A B x x a b a A b B +==+∈∈如果{2,},S x x k k Z ==∈{}|21,T x x k x Z ==+∈,则S T +=( )A .整数集ZB .SC .TD .{41,}x x k k Z =+∈10.已知集合{}1A x x =>,{}1B x x =≥,则( ) A .A ⊆BB .B ⊆AC .A∩B=φD .A ∪B=R11.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围是( ) A .3m <B .23m ≤≤C .3m ≤D .23m <<12.设{}2|8150A x x x =-+=,{}|10B x ax =-=,若AB B =,求实数a 组成的集合的子集个数有 A .2B .3C .4D .8二、填空题13.已知2{|31,},x A x x -+=≥∈R 21{|1,}3x B x x R x -=≤∈+,则A ∩B =______. 14.已知集合{}2|20A x x x x R =--<∈,,集合{}|21B x x x R =-∈≥,,则A B =________.15.已知有限集{}123,,,,(2)n A a a a a n =≥. 如果A 中元素(1,2,3,,)i a i n =满足1212n n a a a a a a =+++,就称A 为“复活集”,给出下列结论:①集合1122⎧---⎪⎨⎪⎪⎩⎭是“复活集”; ②若12,a a R ∈,且12{,}a a 是“复活集”,则124a a >; ③若*12,a a N ∈,则12{,}a a 不可能是“复活集”; ④若*i a N ∈,则“复活集”A 有且只有一个,且3n =.其中正确的结论是____________.(填上你认为所有正确的结论序号)16.若规定{}1210E a a a =⋯,,,的子集{}12,,n k k k a a a 为E 的第k 个子集,其中12111222n k k k k ---=++⋯+,则E 的第211个子集是____________. 17.对任意两个集合X 与Y ,定义①{X Y x x X -=∈且}x Y ∉,②()()X Y X Y Y X ∆=--,已知{}2,A yy x x R ==∈,{}22B y y =-≤≤,则A B ∆=_________.18.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k ],即[k ]={5n +k | n ∈Z},k =0,1,2,3,4.给出如下四个结论:①2 014∈[4]; ②-3∈[3]; ③Z =[0]∪[1]∪[2]∪[3]∪[4];④整数a ,b 属于同一“类”的充要条件是“a -b ∈[0]”.其中,正确的结论是________.19.设集合1{|0}x A x x a-=≥-,集合{}21B x x =-,且B A ⊆,则实数a 的取值范围为______.20.设集合{}1,2,3A =,若B ≠∅,且B A ⊆,记G(B)为B 中元素的最大值和最小值之和,则对所有的B ,G(B)的平均值是_______.三、解答题21.已知全集{}|0U x x =>,集合{}|37A x x =≤<,{}|210B x x =<<,{}|5C x a x a =-<<. (1)求()U AB A B ,;(2)若()C A B ⊆⋃,求实数a 的取值范围.22.已知集合A ={x |a -1≤x ≤2a +3},B ={x |-2≤x ≤4},全集U =R . (1)当a =2时,求A ∪B 和(∁R A )∩B ; (2)若A ∩B =A ,求实数a 的取值范围. 23.设集合1|2432x A x -⎧⎫=≤≤⎨⎬⎩⎭,{}22|3210B x x mx m m =-+--<. (1)当x ∈Z 时,求A 的非空真子集的个数; (2)若B =∅,求m 的取值范围; (3)若A B ⊇,求m 的取值范围.24.已知集合{}2|280A x x x =+-≤,[)1,B =-+∞,设全集为U =R .(1)求()UA B ∩;(2)设集合(1,1)C a a =-+,若C A B ⊆⋃,求实数a 的取值范围.25.设集合{}{}2|223|650A x a x a x R B x x x =-+∈=-+≤≤,,≤. (1)若A B B =,求实数a 的取值范围;(2)若UAB =∅,求实数a 的取值范围.26.已知集合{}|2,12xA y y x ==≤≤,()(){}|20B x x a x a =---≤.(1)若3a =,求A B ;(2)若()R B C A ⊆.求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A【分析】根据绝对值的定义和开平方、立方的方法,应对x 分0,0,0x x x >=<三种情况分类讨论,根据讨论结果可得答案. 【详解】当0x >时,0x x x ===-<,此时集合共有2个元素,当0x =时,0x x x ====-=,此时集合共有1个元素,当0x <时,0x x -===>,此时集合共有2个元素,综上所述,此集合最多有2个元素. 故选:A . 【点睛】本题考查了元素与集合关系的判断及根式的化简求值,其中解答本题的关键是利用分类讨论思想,对x 分三种情况进行讨论,是基础题.2.D解析:D 【分析】求出集合A ,根据11B ∈可求得实数a 的取值范围,利用集合的基本运算可判断各选项的正误. 【详解】{}{25601A x x x x x =-->=<-或}6x >,{}5B x x a =-<,且11B ∈,则6a >,{}{}555B x x a x a x a ∴=-<=-<<+,对于A 选项,取7a =,则{}212B x x =-<<,{}16UA x x =-≤≤,所以,{}16UA B x x R ⋂=-≤≤≠,A 选项错误;对于B 选项,取7a =,则{2UB x x =≤-或}12x ≥,此时UAB A R =≠,B 选项错误;对于C 选项,取7a =,则{}16UA x x =-≤≤,{2UB x x =≤-或}12x ≥,此时,{2UU A B x x ⋃=≤-或16x -≤≤或}12x R ≥≠,C 选项错误;对于D 选项,6a >,则51a -<-,511a +>,此时A B R =,D 选项正确.故选:D. 【点睛】本题考查与集合运算正误的判断,同时也考查了一元二次不等式以及绝对值不等式的求解,考查计算能力,属于基础题.3.C解析:C图中阴影部分是集合A 与集合B 的补集的交集. 【详解】图中阴影部分是集合A 与集合B 的补集的交集,所以图中阴影部分,可以用()UA B 表示. 【点睛】本题考查了用韦恩图表示集合间的关系,考查了学生概念理解,数形结合的能力,属于基础题.4.D解析:D 【分析】化简集合A 、B ,根据补集与交集的定义写出RA B ,即可得出结论.【详解】集合{|28}{2A x Z x =∈<=,3,4,5,6,7},51{||log |1}{|5}5B x R x x R x =∈<=∈<<,1{|5R B x R x ∴=∈或5}x , {5RAB ∴=,6,7}.∴其中元素个数为3个.故选:D . 【点睛】本题考查了集合的化简与运算问题,是基础题.5.D解析:D 【分析】根据A ∩B ={1}可得出,1∈B ,从而得出1是方程x 2+2(m +1)x +m 2﹣3=0的根,1代入方程即可求出m 的值; 【详解】 A ={﹣6,1}; ∵A ∩B ={1}; ∴1∈B ;即1是方程x 2+2(m +1)x +m 2﹣3=0的根; ∴1+2(m +1)+m 2﹣3=0; ∴m 2+2m =0; ∴m =0或m =﹣2;当m =0时,B ={﹣3,1},满足A ∩B ={1}; 当m =﹣2时,B ={1},满足A ∩B ={1};∴m =0或m =﹣2; 故选:D 【点睛】考查交集的定义及运算,元素与集合的关系,描述法、列举法的定义,一元二次方程实根的情况,是基础题.6.C解析:C 【分析】先确定,P Q ,计算P Q 和P Q ,然后由新定义得结论.【详解】由题意{|02}P x x =≤≤,{|10}{|1}Q x x x x =-≥=≥, 则{|0}PQ x x =≥,{|12}P Q x x =≤≤,∴{|01P Q x x =≤<★或2}x >. 故选:C . 【点睛】本题考查集合新定义运算,解题关键是正确理解新定义,确定新定义与集合的交并补运算之间的关系.从而把新定义运算转化为集合的交并补运算.7.A解析:A 【分析】首先解得集合A ,B ,再根据补集的定义求解即可. 【详解】 解:{}2|230{|13}A x x x x x =--<=-<<,{}1|21{|1}x B x x x +=>=>-,{}C |3[3,)B A x x ∴=≥=+∞,故选A .【点睛】本题考查一元二次不等式的解法,指数不等式的解法以及补集的运算,属于基础题.8.C解析:C 【分析】求出A 、B 中不等式的解集确定出A 、B ,找出A 与B 的交集即可. 【详解】集合{}{}|10|1A x x x x =-<=<,集合{}{}2|20|02B x x x x x =-<=<<,所以A B ={}1|0x x <<.故选:C【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.9.C解析:C 【分析】由题意分别找到集合S ,T 中的一个元素,然后结合题中定义的运算确定S T +的值即可. 【详解】由题意设集合S 中的元素为:2,k k Z ∈,集合T 中的元素为:21,m m Z +∈, 则S T +中的元素为:()22121k m k m ++=++, 举出可知集合S T T +=. 故选:C . 【点睛】本题主要考查集合的表示方法,集合的运算法则等知识,意在考查学生的转化能力和计算求解能力.10.A解析:A 【分析】根据数轴判断两集合之间包含关系. 【详解】因为{}1A x x =>,{}1B x x =≥,所以A ⊆B ,选A. 【点睛】本题考查集合之间包含关系,考查基本判断分析能力.11.C解析:C 【分析】由B A ⊆,分B =∅和B ≠∅两种情况讨论,利用相应的不等式(组),即可求解. 【详解】由题意,集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,因为B A ⊆, (1)当B =∅时,可得121m m +>-,即2m <,此时B A ⊆,符合题意;(2)当B ≠∅时,由B A ⊆,则满足12121215m m m m +≤-⎧⎪-≤+⎨⎪-≤⎩,解得23m ≤≤,综上所述,实数m 的取值范围是3m ≤. 故选:C. 【点睛】本题主要考查了了集合的包含关系求解参数的取值范围问题,其中解答中熟记集合件的基本关系,合理分类讨论列出方程组是解答的根据,着重考查分类讨论思想,以及运算能力.12.D解析:D【分析】先解方程得集合A ,再根据A B B =得B A ⊂,最后根据包含关系求实数a ,即得结果.【详解】{}2|8150{3,5}A x x x =-+==,因为AB B =,所以B A ⊂,因此,{3},{5}B =∅,对应实数a 的值为110,,35,其组成的集合的子集个数有328=,选D. 【点睛】本题考查集合包含关系以及集合子集,考查基本分析求解能力,属中档题.二、填空题13.【分析】根据指数函数的单调性解不等式化简集合A 解分式不等式化简集合B 求交集即可【详解】由得:解得故由得:解得故所以A∩B=【点睛】本题主要考查了指数不等式分式不等式集合的交集运算属于中档题 解析:(]3,2-【分析】根据指数函数的单调性解不等式化简集合A ,解分式不等式化简集合B ,求交集即可. 【详解】由231x -+≥得:20x -+≥, 解得2x ≤, 故{|2}A x x =≤, 由2113x x -≤+得:403x x -≤+, 解得34x , 故{|34}B x x =-<≤, 所以A ∩B = (]3,2- 【点睛】本题主要考查了指数不等式,分式不等式,集合的交集运算,属于中档题.14.【分析】先解一元二次不等式得集合A 再解含绝对值不等式得集合B 最后求交集得结果【详解】因为所以故答案为:【点睛】本题考查解一元二次不等式解含绝对值不等式以及集合交集考查基本分析求解能力属基础题 解析:(]1,1-【分析】先解一元二次不等式得集合A ,再解含绝对值不等式得集合B,最后求交集得结果. 【详解】因为{}2|20(1,2)A x x x x R =--<∈=-,,{}|21(,1][3,)B x x x R =-∈=-∞+∞≥,, 所以A B =(]1,1-故答案为:(]1,1- 【点睛】本题考查解一元二次不等式、解含绝对值不等式以及集合交集,考查基本分析求解能力,属基础题.15.①③④【分析】根据已知中复活集的定义结合韦达定理以及反证法依次判断四个结论的正误进而可得答案【详解】对于①故①正确;对于②不妨设则由韦达定理知是一元二次方程的两个根由可得或故②错;对于③不妨设中由得解析:①③④ 【分析】根据已知中“复活集”的定义,结合韦达定理以及反证法,依次判断四个结论的正误,进而可得答案. 【详解】对于①,1==-,故①正确; 对于②,不妨设1212a a a a t +==,则由韦达定理知12,a a 是一元二次方程20x tx t -+=的两个根, 由>0∆,可得0t <或4t >,故②错; 对于③,不妨设A 中123n a a a a <<<<,由1212n n n a a a a a a na =+++<得121n a a a n -<,当2n =时,即有12a <,∴11a =,于是221a a +=,2a 无解,即不存在满足条件的“复活集”A ,故③正确;对于④,当3n =时,123a a <,故只能11a =,22a =,求得33a =, 于是“复活集” A 只有一个,为{}1,2,3, 当4n ≥时,由()1211231n a a a n -≥⨯⨯⨯⨯-,即有()1!n n >-,也就是说“复活集”A 存在的必要条件是()1!n n >-,事实上()()()()221!1232222n n n n n n n -≥--=-+=--+>,矛盾,∴当4n ≥时不存在“复活集”A ,故④正确.故答案为:①③④ 【点睛】本题主要考查了集合新定义,需理解“复活集”的定义,考查了学生的知识迁移能力以及分析问题的能力,属于中档题.16.【分析】根据题意分别讨论的取值通过讨论计算的可能取值即可得出答案【详解】而的第个子集包含此时的第个子集包含此时的第个子集包含此时的第个子集包含此时的第个子集包含的第个子集是故答案为:【点睛】本题主要 解析:{}12578,,,,a a a a a【分析】根据题意,分别讨论2n 的取值,通过讨论计算n 的可能取值,即可得出答案. 【详解】72128211=<,而82256211=>,E ∴的第211个子集包含8a ,此时21112883-=,626483=<,7212883=>,E ∴的第211个子集包含7a ,此时836419-=,421619=<,523219=>,E ∴的第211个子集包含5a ,此时19163-=,1223=<,2243=>,E ∴的第211个子集包含2a ,此时321-=,021=E ∴的第211个子集包含1a ,E ∴的第211个子集是{}12578,,,,a a a a a .故答案为:{}12578,,,,a a a a a 【点睛】本题主要考查了与集合有关的信息题,理解条件的定义是解决本题的关键.17.【分析】由A ={y|y =x2x ∈R}={y|y≥0}B ={y|﹣2≤y≤2}先求出A ﹣B ={y|y >2}B ﹣A ={y|﹣2≤y <0}再求A △B 的值【详解】∵A ={y|y =x2x ∈R}={y|y≥0} 解析:[)()2,02-+∞,【分析】由A ={y |y =x 2,x ∈R}={y |y ≥0},B ={y |﹣2≤y ≤2},先求出A ﹣B ={y |y >2},B ﹣A ={y |﹣2≤y <0},再求A △B 的值. 【详解】∵A ={y |y =x 2,x ∈R}={y |y ≥0}, B ={y |﹣2≤y ≤2}, ∴A ﹣B ={y |y >2},B ﹣A ={y |﹣2≤y <0},∴A △B ={y |y >2}∪{y |﹣2≤y <0},故答案为:[﹣2,0)∪(2,+∞).【点睛】本题考查集合的交、并、补集的运算,解题时要认真审题,仔细解答,注意正确理解X ﹣Y ={x |x ∈X 且x ∉Y }、X △Y =(X ﹣Y )∪(Y ﹣X ).18.①③④【分析】对各个选项分别进行分析利用类的定义直接求解【详解】在①中∵2014÷5=402…4∴2014∈4故①正确;在②中∵﹣3=5×(﹣1)+2∴﹣3∉3故②错误;在③中∵整数集中的数被5除的解析:①③④【分析】对各个选项分别进行分析,利用类的定义直接求解.【详解】在①中,∵2014÷5=402…4,∴2014∈[4],故①正确;在②中,∵﹣3=5×(﹣1)+2,∴﹣3∉[3],故②错误;在③中,∵整数集中的数被5除的数可以且只可以分成五类,∴Z =[0]∪[1]∪[2]∪[3]∪[4],故③正确;在④中,∵2015÷5=403,2010÷5=402,∴2015与2010属于同一个“类”[0],故④正确.故答案为①③④.【点睛】本题为同余的性质的考查,具有一定的创新,关键是对题中“类”的题解,属基础题. 19.【分析】解可得集合B 对于A 先将转化为且分三种情况讨论求出集合A 判断是否成立综合可得a 的范围即可得答案【详解】或则或对于A 且时成立符合题意时或不会成立不符合题意时或要使成立必有则a 的范围是综合可得a 的 解析:[]1,3【分析】 解21x ->可得集合B ,对于A ,先将1|0x x a-≥-转化为()()10x x a --≥且x a ≠,分1a =,1a >,1a <三种情况讨论,求出集合A ,判断B A ⊆是否成立,综合可得a 的范围,即可得答案【详解】211x x ->⇔<或3x >,则{|1B x x =<或3}x >,对于A ,()()1010x x x a x a-≥⇔--≥-且x a ≠, 1a =①时,{|1}A x x =≠,B A ⊆成立,符合题意,1a <②时,{|A x x a =<或1}x ≥,B A ⊆不会成立,不符合题意,1a >③时,{A x x a =或1}x ≤,要使B A ⊆成立,必有3a ≤,则a 的范围是13a ,综合①②③可得,a 的取值范围为13a ≤≤,即[]1,3;故答案是:[]1,3.【点睛】本题考查集合之间关系的判断,涉及分式、绝对值不等式的解法,解分式不等式一般要转化为整式不等式,有参数时,一般要分类讨论.20.4【分析】根据题意列出所有可能的集合B 求出相应的求出平均数即可【详解】因为集合若且所以集合B 为:当时当时当时当时当时当时当时则G(B)的平均值是故答案为:【点睛】本题主要考查了集合间的包含关系考查学 解析:4【分析】根据题意列出所有可能的集合B ,求出相应的()G B ,求出平均数即可.【详解】因为集合{}1,2,3A =,若B ≠∅,且B A ⊆所以集合B 为:{}{}{}{}{}{}{}1231,21,32,31,2,3,,,,,,当{}1B =时,()112G B =+=当{}2B =时,()224G B =+=当{}3B =时,()336G B =+=当{}1,2B =时,()123G B =+=当{}1,3B =时,()134G B =+=当{}2,3B =时,()235G B =+=当{}1,2,3B =时,()134G B =+=则G(B)的平均值是246345447++++++= 故答案为:4【点睛】本题主要考查了集合间的包含关系,考查学生分析问题和解决问题的能力,属于中档题. 三、解答题21.(1){|210}A B x x ⋃=<<,(){|23U A B x x =<<或710}x ≤<;(2)(,3]-∞.【分析】(1)根据集合的运算法则计算;(2)由子集的定义求解.【详解】(1)∵{}|37A x x =≤<,{}|210B x x =<<,{}|0U x x =>,{|210}A B x x ⋃=<<,{|03U A x x =<<或7}x ≥,则(){|23U A B x x =<<或710}x ≤<;(2)∵{}|5C x a x a =-<<,()C A B ⊆⋃,若5a a ≤-,即52a ≤,则B =∅,满足题意; 若52a >,则2510a a ≤-⎧⎨≤⎩,解得3a ≤,∴532a <≤, 综上,a 的范围是(,3]-∞.【点睛】本题考查集合的综合运算,考查由包含关系确定参数范围,解题时要注意空集是任何集合的子集,这类问题一般要分类讨论.22.(1)A ∪B ={x |-2≤x ≤7};(∁R A )∩B ={x |-2≤x <1};(2){4a a <-或11}2a -≤≤.【分析】(1)由a =2,得到A ={x |1≤x ≤7},然后利用集合的基本运算求解.(2)由A ∩B =A ,得到A ⊆B .然后分A =∅,A ≠∅两种情况讨论求解. 【详解】(1)当a =2时,A ={x |1≤x ≤7},则A ∪B ={x |-2≤x ≤7},∁R A ={x |x <1或x >7},(∁R A )∩B ={x |-2≤x <1}.(2)∵A ∩B =A ,∴A ⊆B .若A =∅,则a -1>2a +3,解得a <-4; 若A ≠∅,由A ⊆B ,得12312234a a a a -≤+⎧⎪-≥-⎨⎪+≤⎩,解得-1≤a ≤12综上,a 的取值范围是{4a a <-或 11}2a -≤≤.【点睛】本题主要考查集合的基本要和基本运算,还考查了分类讨论的思想和运算求解的能力,属于中档题.23.(1)254个;(2)2m =-;(3)2m =-或12m -【分析】(1)利用指数函数的性质化简集合A ,再利用子集个数公式求解即可;(2)由由B =∅,223210x mx m m -+--<无解,则其对应的方程的0∆≤ (3)讨论三种情况,分别化简集合B ,利用包含关系列不等式求出m 的范围,综合三种情况可得结果.【详解】解:化简集合{|25}A x x =-≤≤,集合{}|(1)(21)0B x x m x m =-+--<. (1){},2,1,0,1,2,3,4,5x Z A ∈∴=--,即A 中含有8个元素,故A 的非空真子集数为822254-=个.(2)由B =∅,则22(3)4(21)0m m m ∆=----≤,得2(2)0m +≤,得2m =-.(3)①2m =-时,B A =∅⊆;②当2m <-时,()()21120m m m +--=+<,所以()21,1B m m =+-,因此,要B A ⊆,则只要21236152m m m +≥-⎧⇒-≤≤⎨-≤⎩,所以m 的值不存在; ③当2m >- 时,()1,21B m m =-+ ,因此,要B A ⊆,则只要1212215m m m -≥-⎧⇒-≤≤⎨+≤⎩. 综上所述,知m 的取值范围是2m =-或12m -≤≤.【点睛】本题考查集合的真子集个数的求数,考查满足条件的实数的取值范围的求法,考查了分类讨论思想的应用,属于中档题.24.(1)()[)4,1U AB =--(2)[)3,-+∞ 【分析】(1)先化简集合A ,再求()U A B ∩;(2)先求出[)4,A B =-+∞,得14a -≥-,解不等式即得解.【详解】(1)由题得[]4,2A =-,[)1,B =-+∞,(,1)U B =-∞-, 所以()[)4,1U A B =--;(2)由题得[)4,AB =-+∞,若C A B ⊆⋃,则14a -≥-,所以3a ≥-. 所以a 的取值范围是[)3,-+∞.【点睛】本题主要考查集合的运算和关系,意在考查学生对这些知识的理解掌握水平.25.(1)13a ≤≤(2)5a <-【分析】(1)先解不等式得集合B,再根据条件得集合包含关系,列出不等式,解得结果; (2)先求U B ,再根据集合A 是否为空集分类讨论,最后结合数轴列不等式解得结果. 【详解】(1){}2|650[1,5]B x x x =-+=≤ 2113235a A B B B A a a -≤⎧⋂=∴⊆∴∴≤≤⎨+≥⎩; (2)(,1)(5,)U B =-∞+∞当A =∅时,满足U A B =∅,此时2235a a a ->+∴<-;当A ≠∅时,要U A B =∅,则22321235a a a a a -≤+⎧⎪-≥∴∈∅⎨⎪+≤⎩综上:5a <-【点睛】本题考查根据交集结果求参数取值范围,考查分类讨论思想方法以及基本分析求解能力,属中档题.26.(1)=[3,4]A B ; (2)4a >或0a < 【分析】(1)写出集合A ,B 的区间形式,代入数值计算即可;(2)写出集合R C A ,根据边界判断a 的取值范围即可.【详解】集合{}|2,12=[2,4]x A y y x ==≤≤,()(){}|20[,2]B x x a x a a a =---≤=+ (1)若3a =,[3,5]B =,则=[3,4]A B ; (2)(,2)(4,)R C A =-∞+∞,()R B C A ⊆, 因此:4a >或22a +<故:4a >或0a <【点睛】 本题考查了集合的交并补运算,考查了学生的数学运算能力,属于基础题.。

新北师大版高中数学必修一第一单元《集合》检测卷(答案解析)

新北师大版高中数学必修一第一单元《集合》检测卷(答案解析)

一、选择题1.若集合{}2560A x x x =+-=,{}222(1)30B x x m x m =+++-=.若{}1A B ⋂=,求实数m 的值为( ) A .0B .-2C .2D .0或-22.设集合{,}A a b =,{}220,,B a b =-,若A B ⊆,则⋅=a b ( )A .-1B .1C .-1或1D .03.设集合{}21|10P x x ax =++>,{}22|20P x x ax =++>,{}21|0Q x x x b =++>,{}22|20Q x xx b =++>,其中,a b ∈R ,下列说法正确的是( )A .对任意a ,1P 是2P 的子集;对任意的b ,1Q 不是2Q 的子集B .对任意a ,1P 是2P 的子集;存在b ,使得1Q 是2Q 的子集C .存在a ,使得1P 不是2P 的子集;对任意的b ,1Q 不是2Q 的子集D .存在a ,使得1P 不是2P 的子集;存在b ,使得1Q 是2Q 的子集4.已知集合{}21,A x y x y Z ==+∈,{}21,B y y x x Z ==+∈,则A 、B 的关系是( ) A .A B =B .ABC .B AD .A B =∅5.若集合{}2|560A x x x =-->,{}|21xB x =>,则()R C A B =( )A .{}|10x x -≤<B .{}|06x x <≤C .{}|20x x -≤<D .{}|03x x <≤6.设全集为R ,集合{}2log 1A x x =<,{B x y ==,则()RAB =( )A .{}02x x <<B .{}01x x <<C .{}11x x -<<D .{}12x x -<<7.已知集合{}|15A x x =≤<,{}|3B x a x a =-<≤+.若B A B =,则a 的取值范围为( ) A .3,12⎛⎤-- ⎥⎝⎦B .3,2∞⎛⎤-- ⎥⎝⎦C .(],1-∞-D .3,2⎛⎫-+∞ ⎪⎝⎭8.若集合2{||31|2},{|0},1x A x x B x x -=-≥=≤-则()R C A B =( )A .1[,2]3-B .∅C .1(,)(1,2]3-∞-⋃ D .1,1(1,2]3⎛⎫-⋃ ⎪⎝⎭9.已知集合A ={}{}3(,),(,)x y y x B x y y x ===,则A ∩B 的元素个数是( )A .4B .3C .2D .110.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围是( ) A .3m <B .23m ≤≤C .3m ≤D .23m <<11.如果集合{}2210A x ax x =--=只有一个元素,则a 的值是( ) A .0B .0或1C .1-D .0或1-12.设{}2|8150A x x x =-+=,{}|10B x ax =-=,若AB B =,求实数a 组成的集合的子集个数有 A .2B .3C .4D .8二、填空题13.集合6|5M a a⎧=∈⎨-⎩N 且}a Z ∈,用列举法表示集合M =________. 14.非空集合G 关于运算*满足:① 对任意,a b G ∈,都有a b G *∈;② 存在e G ∈使对一切a G ∈都有a e e a a *=*=,则称G 是关于运算*的融洽集,现有下列集合及运算:①G 是非负整数集,*运算:实数的加法; ②G 是偶数集,*运算:实数的乘法;③G 是所有二次三项式组成的集合,*运算:多项式的乘法;④{|,}G x x a a b Q ==+∈,*运算:实数的乘法; 其中为融洽集的是________15.已知集合{}2|20A x x x x R =--<∈,,集合{}|21B x x x R =-∈≥,,则A B =________.16.已知集合{|68}A x x =-≤≤,{|}B x x m =≤,若A B B ≠且A B ⋂≠∅,则m的取值范围是________17.若集合{}2210,A x ax x a R =++=∈至多有一个元素,则a 的取值范围是___________.18.设A 是集合{}123456S =,,,,,的非空子集,称A 中的元素之和为A 的“容量”,则S 的所有非空子集的“容量”之和是_______19.设,,x y z 都是非零实数,则可用列举法将x y z xy xyz x y z xy xyz++++的所有可能值组成的集合表示为________.20.设a 、b R ∈,集合{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -=__________.三、解答题21.设集合{}|34A x x =-≤≤,{|132}B x m x m =-≤≤- (1)若x A ∈是x B ∈的充分不必要条件,求实数m 的取值范围; (2)若AB B =,求实数m 的取值范围.22.已知集合2212x A x x ⎧+⎫=<⎨⎬-⎩⎭,{}254B x x x =>-,{}1,C x x m m =-<∈R ,(1)求AB ;(2)若()A B C ⋂⊆,求m 的取值范围.23.已知集合{}|123A x a x a =-<<+,2{|280}B x x x =--≤. (1)当a =2时,求AB ;(2)若___________,求实数a 的取值范围.在①AB A =,②()R AC B A =,③A B ⋂=∅这三个条件中任选一个,补充在(2)问中的横线上,并求解.(注:如果选择多个条件分别解答,按第一个解答计分)24.已知集合{}|13A x x =-<<,集合(){}2|25250B x x k x k =+--<,k ∈R .(1)若1k =时,求B R,A B ;(2)若“x A ∈”是“x B ∈”的充分不必要条件,求实数k 的取值范围.25.设关于x 的不等式2(21)(2)(1)0x a x a a -+++->和2()()0x a x a --<的解集分别为A 和B .(1)求集合A ;(2)是否存在实数a ,使得A B =R ?如果存在,求出a 的值,如果不存在,请说明理由;(3)若A B ⋂≠∅,求实数a 的取值范围.26.已知集合A ={x|2a +1≤x≤3a -5},B ={x|x <-1,或x >16},分别根据下列条件求实数a 的取值范围.(1)A∩B =∅;(2)A ⊆(A∩B ).【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据A ∩B ={1}可得出,1∈B ,从而得出1是方程x 2+2(m +1)x +m 2﹣3=0的根,1代入方程即可求出m 的值;【详解】 A ={﹣6,1}; ∵A ∩B ={1}; ∴1∈B ;即1是方程x 2+2(m +1)x +m 2﹣3=0的根; ∴1+2(m +1)+m 2﹣3=0; ∴m 2+2m =0; ∴m =0或m =﹣2;当m =0时,B ={﹣3,1},满足A ∩B ={1}; 当m =﹣2时,B ={1},满足A ∩B ={1}; ∴m =0或m =﹣2; 故选:D 【点睛】考查交集的定义及运算,元素与集合的关系,描述法、列举法的定义,一元二次方程实根的情况,是基础题.2.A解析:A 【分析】由集合的包含关系得,a b 的方程组,求解即可 【详解】A B ⊆,由集合元素互异性得0,0,a b a b ≠≠≠ 则22a a b b ⎧=⎨=-⎩ 或22b a a b ⎧=⎨=-⎩解得11a b =⎧⎨=-⎩或11b a =⎧⎨=-⎩故选: A 【点睛】本题考查集合的包含关系,考查元素的互异性,是基础题3.B解析:B 【分析】先证得1P 是2P 的子集,然后求得b 使1Q 是2Q 的子集,由此确定正确选项.【详解】对于1P 和2P ,由于210x ax ++>时222110x ax x ax ++=+++>,所以1P 的元素,一定是2P 的元素,故对任意a ,1P 是2P 的子集.对于1Q 和2Q ,根据判别式有140440b b -<⎧⎨-<⎩,即1b >时,12Q Q R ==,满足1Q 是2Q 的子集,也即存在b ,使得1Q 是2Q 的子集. 故选B. 【点睛】本小题主要考查子集的判断,考查恒成立问题和存在性问题的求解策略,属于基础题.4.C解析:C 【分析】由题意得出Z A ⊆,而集合B Z ,由此可得出A 、B 的包含关系.【详解】由题意知,对任意的x ∈Z ,21y x Z =+∈,Z A ∴⊆.{}21,B y y x x Z ==+∈,∴集合B 是正奇数集,则BZ ,因此,BA .故选:C. 【点睛】本题考查集合包含关系的判断,解题时要善于抓住代表元素,认清集合的特征,考查推理能力,属于中等题.5.B解析:B 【解析】 【分析】求得集合{|1A x x =<-或6}x >,{}|0B x x =>,根据集合运算,即可求解,得到答案. 【详解】由题意,集合{}2|560{|1A x x x x x =-->=<-或6}x >,{}{}|21|0x B x x x =>=>,则{}|16R C A x x =-≤≤,所以(){}|06R C A B x x =<≤.故选B . 【点睛】本题主要考查了集合的混合运算,其中解答中正确求解集合,A B ,结合集合的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.6.B解析:B 【解析】 【分析】解出集合A 、B ,再利用补集和交集的定义可得出集合()RA B .【详解】由2log 1x <,02x <<,{}02A x x ∴=<<.由210x -≥,得1x ≤-或1x ≥,则{}11B x x x =≤-≥或,{}11R B x x ∴=-<<, 因此,(){}01A B x x ⋂=<<R ,故选:B. 【点睛】本题考查交集和补集的混合运算,同时也考查了对数不等式以及函数定义域的求解,考查计算能力,属于中等题.7.C解析:C 【分析】首先确定B A ⊂,分B φ=和B φ≠两种情况讨论,求a 的取值范围. 【详解】B A B =B A ∴⊂,当B φ=时,332a a a -≥+⇒≤-; 当B φ≠时,3135a a a a -<+⎧⎪-≥⎨⎪+<⎩,312a ∴-<≤- , 综上:1a ≤-, 故选C. 【点睛】本题考查根据集合的包含关系,求参数取值范围,意在考查分类讨论的思想,属于基础题型.8.D解析:D 【分析】解绝对值不等式求得集合A ,解分式不等式求得集合B ,求得集合A 的补集,然后求此补集和集合B 的并集,由此得出正确选项. 【详解】由|31|2x -≥得312x -≤-或312x -≥,解得13x ≤-或1x ≥,故1,13R C A ⎛⎫=- ⎪⎝⎭.由201x x -≤-得()()12010x x x ⎧--≤⎨-≠⎩,解得12x <≤,所以()R C A B =1,1(1,2]3⎛⎫-⋃ ⎪⎝⎭.故选:D. 【点睛】本小题主要考查绝对值不等式的解法,考查分式不等式的解法,考查集合补集、并集的计算,属于基础题.9.B解析:B 【解析】 【分析】首先求解方程组3y x y x⎧=⎨=⎩,得到两曲线的交点坐标,进而可得答案.【详解】联立3y x y x⎧=⎨=⎩,解得1,0,1x =-即3y x =和y x =的图象有3个交点()11--,,()0,0,(11),, ∴集合A B 有3个元素,故选B.【点睛】本题考查了交集及其运算,考查了方程组的解法,是基础题.10.C解析:C 【分析】由B A ⊆,分B =∅和B ≠∅两种情况讨论,利用相应的不等式(组),即可求解. 【详解】由题意,集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,因为B A ⊆, (1)当B =∅时,可得121m m +>-,即2m <,此时B A ⊆,符合题意;(2)当B ≠∅时,由B A ⊆,则满足12121215m m m m +≤-⎧⎪-≤+⎨⎪-≤⎩,解得23m ≤≤,综上所述,实数m 的取值范围是3m ≤.故选:C. 【点睛】本题主要考查了了集合的包含关系求解参数的取值范围问题,其中解答中熟记集合件的基本关系,合理分类讨论列出方程组是解答的根据,着重考查分类讨论思想,以及运算能力.11.D解析:D 【分析】由题意得知关于x 的方程2210ax x --=只有一个实数解,分0a =和00a ≠⎧⎨∆=⎩两种情况讨论,可得出实数a 的值. 【详解】由题意得知关于x 的方程2210ax x --=只有一个实数解. 当0a =,{}12102A x x ⎧⎫=--==-⎨⎬⎩⎭,合乎题意; 当0a ≠时,则440a ∆=+=,解得1a =-. 综上所述:0a =或1-,故选D. 【点睛】本题考查集合的元素个数,本质上考查变系数的二次方程的根的个数,解题要注意对首项系数为零和非零两种情况讨论,考查分类讨论思想,属于中等题.12.D解析:D 【分析】先解方程得集合A ,再根据A B B =得B A ⊂,最后根据包含关系求实数a ,即得结果.【详解】{}2|8150{3,5}A x x x =-+==,因为AB B =,所以B A ⊂,因此,{3},{5}B =∅,对应实数a 的值为110,,35,其组成的集合的子集个数有328=,选D. 【点睛】本题考查集合包含关系以及集合子集,考查基本分析求解能力,属中档题.二、填空题13.【分析】由集合且求得得到且结合题意逐个验证即可求解【详解】由题意集合且可得则解得且当时满足题意;当时不满足题意;当时不满足题意;当时满足题意;当时满足题意;当时满足题意;综上可得集合故答案为:【点睛 解析:{1,2,3,4}-【分析】 由集合6|5M a a⎧=∈⎨-⎩N 且}a Z ∈,求得056a <-≤,得到15a -≤<且a Z ∈,结合题意,逐个验证,即可求解. 【详解】由题意,集合6|5M a a ⎧=∈⎨-⎩N 且}a Z ∈,可得65a∈-N ,则056a <-≤, 解得15a -≤<且a Z ∈, 当1a =-时,615(1)=∈--N ,满足题意;当0a =时,66505=∉-N ,不满足题意; 当1a =时,66514=∉-N ,不满足题意; 当2a =时,6252=∈-N ,满足题意; 当3a =时,6353=∈-N ,满足题意; 当4a =时,6654=∈-N ,满足题意; 综上可得,集合M ={1,2,3,4}-.故答案为:{1,2,3,4}-. 【点睛】本题主要考查了集合的表示方法,以及集合的元素与集合的关系,其中解答中熟记集合的表示方法,以及熟练应用元素与集合的关系,准确判定是解答的关键,着重考查了推理与运算能力,属于基础题.14.①④【分析】逐一验证几个选项是否分别满足融洽集的两个条件若两个条件都满足是融洽集有一个不满足则不是融洽集【详解】①对于任意非负整数则仍为非负整数即;取则故①符合题意;②对于任意偶数则仍为偶数即;但是解析:①④ 【分析】逐一验证几个选项是否分别满足“融洽集”的两个条件,若两个条件都满足,是“融洽集”,有一个不满足,则不是“融洽集” 【详解】①对于任意非负整数,a b ,则+a b 仍为非负整数,即a b G +∈;取0e =,则00a a a +=+=,故①符合题意;②对于任意偶数,a b ,则ab 仍为偶数,即ab G ∈;但是不存在e G ∈,使对一切a G ∈都有ae ea a ==,故②不符合题意;③对于G 是所有二次三项式组成的集合,若,a b G ∈,ab 不再是二次三项式,故③不符合题意;④对于{|,}G x x a a b Q ==+∈,设1x a =+2x c =+,则()(122x x ac bd ad bc ⋅=+++,即12x x G ⋅∈;取1e =,则11a a a ⨯=⨯=,故④符合题意,故答案为:①④ 【点睛】本题考查对新定义“融洽集”的理解,考查理解分析能力15.【分析】先解一元二次不等式得集合A 再解含绝对值不等式得集合B 最后求交集得结果【详解】因为所以故答案为:【点睛】本题考查解一元二次不等式解含绝对值不等式以及集合交集考查基本分析求解能力属基础题 解析:(]1,1-【分析】先解一元二次不等式得集合A ,再解含绝对值不等式得集合B,最后求交集得结果. 【详解】因为{}2|20(1,2)A x x x x R =--<∈=-,,{}|21(,1][3,)B x x x R =-∈=-∞+∞≥,, 所以A B =(]1,1-故答案为:(]1,1- 【点睛】本题考查解一元二次不等式、解含绝对值不等式以及集合交集,考查基本分析求解能力,属基础题.16.【分析】根据集合的并集和集合的交集得到关于的不等式组解出即可【详解】解:若且则解得即故答案为:【点睛】本题考查了集合的交集并集的定义属于基础题 解析:[6,8)-【分析】根据集合的并集和集合的交集得到关于m 的不等式组,解出即可. 【详解】解:{|68}A x x =-,{|}B x x m =, 若AB B ≠且A B ⋂≠∅,则68m m -⎧⎨<⎩,解得68m -≤<,即[)6,8m ∈- 故答案为:[)6,8-. 【点睛】本题考查了集合的交集、并集的定义,属于基础题.17.或【分析】根据讨论方程解的情况即得结果【详解】时满足题意;时要满足题意需综上的取值范围是或故答案为:或【点睛】本题考查根据集合元素个数求参数考查基本分析求解能力属中档题解析:{0a a =或}1a ≥ 【分析】根据a 讨论2210ax x ++=方程解的情况,即得结果 【详解】0a =时,21212102ax x x x ++=+=∴=-,12A ⎧⎫=-⎨⎬⎩⎭满足题意;0a ≠时,要满足题意,需4401a a ∆=-≤∴≥综上a 的取值范围是{0a a =或}1a ≥ 故答案为:{0a a =或}1a ≥ 【点睛】本题考查根据集合元素个数求参数,考查基本分析求解能力,属中档题.18.672【分析】在所有的子集中每个元素出现的次数都是个由此能求出结果【详解】在所有的子集中每个元素出现的次数都是个的所有非空子集的容量之和为故答案为:672【点睛】本题主要考查学生的对新定义的分析和解解析:672 【分析】在S 所有的子集中,每个元素出现的次数都是52个,由此能求出结果. 【详解】在S 所有的子集中,每个元素出现的次数都是52个,S ∴的所有非空子集的“容量”之和为5(123456)672+++++=2故答案为:672 【点睛】本题主要考查学生的对新定义的分析和解决的能力,主要考查了转化与划归的思想.19.【分析】由题意分类讨论实数xyz 的符号列表求解所给式子的值然后确定其值组成的集合即可【详解】分类讨论xyz 的符号列表求值如下:x y z 计算结果 大于零 大于零 大于零 1 1 1 1 解析:{}5,1,1,3--【分析】由题意分类讨论实数x ,y ,z 的符号列表求解所给式子的值,然后确定其值组成的集合即可. 【详解】分类讨论x ,y ,z 的符号列表求值如下:据此可得:x y z xy xyz++++的所有可能值组成的集合表示为{}5,1,1,3--. 故答案为:{}5,1,1,3--. 【点睛】本题主要考查分类讨论的数学思想,集合中元素的互异性等知识,意在考查学生的转化能力和计算求解能力.20.【分析】根据题意得出则则有可得出由此得出然后求出实数的值于是可得出的值【详解】由于有意义则则有所以根据题意有解得因此故答案为【点睛】本题考查利用集合相等求参数的值解题的关键就是根据题意列出方程组求解 解析:2【分析】根据题意得出0a ≠,则a b b +≠,则有0a b +=,可得出1ba=-,由此得出10b a b b a a ⎧⎪=⎪+=⎨⎪⎪=⎩,然后求出实数a 、b 的值,于是可得出b a -的值. 【详解】{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,由于b a -有意义,则0a ≠,则有0a b +=,所以,1ba -=-.根据题意有10b a b ba a ⎧⎪=⎪+=⎨⎪⎪=⎩,解得11a b =-⎧⎨=⎩,因此,()112b a -=--=.故答案为2. 【点睛】本题考查利用集合相等求参数的值,解题的关键就是根据题意列出方程组求解,考查运算求解能力,属于中等题.三、解答题21.(1)4m ≥;(2)2m ≤. 【分析】(1)根据已知条件得集合A 是B 的真子集,由此可得答案;(2)由于A B B =,故B 是A 的子集,分两种情况,分别列不等式求得m 的取值范围.【详解】(1) 由x A ∈是x B ∈的充分不必要条件,所以AB ,13324m m -≤-⎧⎨-≥⎩等号不同时成立得4m ≥ ∴实数m 的取值范围为4m ≥ (2)由题意知B A ⊆ 当B =∅,3132,4m m m ->-<当B ≠∅,13324132m m m m -≥-⎧⎪-≤⎨⎪-≤-⎩,324m ≤≤综上所述:实数m 的取值范围为2m ≤. 【点睛】本题主要考查集合的运算,根据包含关系求参数的取值范围,属于基础题. 22.(1){}12x x <<;(2)12m ≤≤ 【分析】(1)解不等式,可求出集合,A B ,进而求出二者的交集即可;(2)结合(1),由()A B C ⋂⊆,可得{}12x x <<⊆{}11x m x m -<<+,进而可列出不等关系,求解即可. 【详解】 (1)由2212x x +<-,得402x x +<-,等价于()()420x x +-<,解得42x -<<, 所以集合{}42A x x =-<<,由254x x >-,解得1x >或5x <-,所以{1B x x =>或}5x <-,所以AB ={}42x x -<<{1x x >或}5x <-{}12x x =<<.(2)因为()A B C ⋂⊆,所以{}12x x <<⊆{}1,x x m m -<∈R , 即{}12x x <<⊆{}11x m x m -<<+,所以1112m m -≤⎧⎨+≥⎩,解得12m ≤≤.综上所述,实数m 的取值范围是12m ≤≤.【点睛】本题考查分式不等式、一元二次不等式的解法,考查集合的交集,考查根据集合的包含关系求参数,考查学生的推理能力与计算求解能力,属于中档题.23.(1){}|27A B x x ⋃=-≤<;(2)若选择①(]1,41,2⎡⎤-∞--⎢⎥⎣⎦;若选择②[)5,5,2⎛⎤-∞-+∞ ⎥⎝⎦;若选择③[)5,5,2⎛⎤-∞-+∞ ⎥⎝⎦.【分析】(1)当a =2时,得出集合A ,求得集合B ,根据集合的并集运算可得答案; (2)若选择①A B A =,则A B ⊆,分集合A 是空集和不是空集两种情况讨论得实数a的取值范围; 若选择②()R AC B A =,则A 是RB 的子集,分集合A 是空集和不是空集两种情况讨论得实数a 的取值范围; 若选择③A B =∅,分集合A 是空集和不是空集两种情况讨论得实数a 的取值范围.【详解】(1)当a =2时,集合{}|17A x x =<<,{}|24B x x =-≤≤,所以{}|27A B x x ⋃=-≤<;(2)若选择①A B A =,则A B ⊆,当123a a -≥+,即4a ≤-时,A =∅,满足题意;当4a >-时,应满足12234a a -≥-⎧⎨+≤⎩,解得112a -≤≤;综上知:实数a 的取值范围(]1,41,2⎡⎤-∞--⎢⎥⎣⎦; 若选择②()R AC B A =,则A 是RB 的子集,(,2)(4,)R B =-∞-⋃+∞,当123a a -≥+,即4a ≤-时,A =∅,满足题意;当4a >-时,应满足4232a a >-⎧⎨+≤-⎩,或414a a >-⎧⎨-≥⎩,解得542a -<≤-或5a ≥,综上知:实数a 的取值范围[)5,5,2⎛⎤-∞-+∞ ⎥⎝⎦;若选择③A B =∅,当123a a -≥+,即4a ≤-时,A =∅,满足题意;当4a >-时,应满足4232a a >-⎧⎨+≤-⎩,或414a a >-⎧⎨-≥⎩,解得542a -<≤-或5a ≥,综上知:实数a 的取值范围[)5,5,2⎛⎤-∞-+∞ ⎥⎝⎦;【点睛】易错点睛:本题容易忽略集合A 是空集的情况,导致出错:空集是任何集合的子集,是任何非空集合的真子集.24.(1)[)5,1,2⎛⎤-∞-⋃+∞ ⎥⎝⎦,5,32⎛⎫- ⎪⎝⎭;(2)[)3,+∞.【分析】(1)若1k =,化简集合B ,利用补集和并集的定义进行计算可得答案; (2)“x A ∈”是“x B ∈”的充分不必要条件,则集合A 是集合B 的真子集,分52k <-,52k =-和52k >-分别求出集合B ,列出不等式可得实数k 的取值范围.【详解】(1)若1k =,{}25|2350|12B x x x x x ⎧⎫=+-<=-<<⎨⎬⎩⎭则R B =[)5,1,2⎛⎤-∞-⋃+∞ ⎥⎝⎦,A B =5,32⎛⎫- ⎪⎝⎭; (2)“x A ∈”是“x B ∈”的充分不必要条件,则集合A 是集合B 的真子集,(){}()(){}2|25250|250B x x k x k x x k x =+--<=-+<当52k <-时,5,2B k ⎛⎫=- ⎪⎝⎭,不合题意;当52k =-时,B φ=,不合题意; 当52k >-时,5,2B k ⎛⎫=- ⎪⎝⎭,只需3k ≥; 综上可得:实数k 的取值范围是[)3,+∞. 【点睛】结论点睛:本题考查集合的交并补运算,考查充分不必要条件的应用,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 25.(1){|2A x x a =>+或1}x a <-;(2)不存在;理由见解析;(3)01a <<. 【分析】(1)解一元二次不等式能求出集合A . (2)由AB R =,根据2{|}B a a x a =<<和2{|}B a a x a =<<分类讨论,得到不存在实数a ,使得A B R =.(3)由AB ≠∅,根据2{|}B a a x a =<<和2{|}B a a x a =<<分类讨论,能求出实数a的取值范围. 【详解】解:(1)不等式2(21)(2)(1)0x a x a a -+++->可化为[(2)][(1)]0x a x a -+-->,解得1x a <-或2x a >+,所以不等式的解集为{|1A x x a =<-或2}x a >+; (2)当0a =时,不等式2()()0x a x a --<化为20x <,此时不等式无解, 当0a <时,2a a >,不等式2()()0x a x a --<的解集为2{|}x a x a <<, 当01a <<时,2a a <,不等式2()()0x a x a --<的解集为2{|}x a x a <<, 当1a =时,2a a =,不等式2()()0x a x a --<化为2(10)x -<,此时不等式无解, 当1a >时,2a a >,不等式2()()0x a x a --<的解集为2{|}x a x a <<, 综上所述:当0a =或1a =时,B =∅, 当0a <或1a >时,2{|}B x a x a =<<, 当01a <<时,2{|}B x a x a =<<, 要使AB R =,当2{|}B a a x a =<<时,2a a >,2a x a <<,1a a - 或22a a +,无解, 当2{|}B a a x a =<<时,2a a <,2a x a <<,2a a +,21a a =-,无解, 故不存在实数a ,使得A B R =.(3)AB ≠∅,∴当2{|}B a a x a =<<时,1a a -<,或22a a +>,即220a a --<,解得10a -<< 或12a <<,此时实数a 的取值范围是(1-,0)(1⋃,2),当2{|}B a a x a =<<时,21a a -<或2a a +>,即210a a -+>, 解得01a <<,此时,实数a 的取值范围是(0,1). 【点睛】本题考查含参一元二次不等式的解法,解含参一元二次不等式需分类讨论,首先判断二次项系数是否为零,再对所对应的一元二次方程的根进行分类讨论; 26.(1){a|a≤7};(2){a|a <6或a >152} 【分析】(1)根据A∩B=∅,可得-1≤2a+1≤x≤3a -5≤16,解不等式可得a 的取值范围;(2)由A ⊆(A∩B )得A ⊆B ,分类讨论,A =∅与A≠∅,分别建立不等式,即可求实数a 的取值范围 【详解】(1)若A =∅,则A∩B =∅成立. 此时2a +1>3a -5, 即a <6.若A≠∅,则2135{2113516a aaa+≤-+≥--≤解得6≤a≤7.综上,满足条件A∩B=∅的实数a的取值范围是{a|a≤7}.(2)因为A⊆(A∩B),且(A∩B)⊆A,所以A∩B=A,即A⊆B.显然A=∅满足条件,此时a<6.若A≠∅,则2135{351a aa+≤--<-或2135{2116a aa+≤-+>由2135{351a aa+≤--<-解得a∈∅;由2135{2116a aa+≤-+>解得a>152.综上,满足条件A⊆(A∩B)的实数a的取值范围是{a|a<6或a>152}.考点:1.集合关系中的参数取值问题;2.集合的包含关系判断及应用。

最新北师大版高中数学必修一第一单元《集合》检测题(含答案解析)

最新北师大版高中数学必修一第一单元《集合》检测题(含答案解析)

一、选择题1.已知集合{}2230A x x x =--=,{}10B x ax =-=,若B A ⊆,则实数a 的值构成的集合是( ) A .11,03⎧⎫-⎨⎬⎩⎭,B .{}1,0-C .11,3⎧⎫-⎨⎬⎩⎭D .103⎧⎫⎨⎬⎩⎭,2.设全集U =R ,{}2560A x x x =-->,{}5B x x a =-<(a 为常数),且11B ∈,则下列成立的是( )A .U AB R =B .UA B R =C .UUAB R = D .AB R =3.设集合{,}A a b =,{}220,,B a b =-,若A B ⊆,则⋅=a b ( )A .-1B .1C .-1或1D .04.已知}{|21M x x =-<<,3|0x N x x ⎧-⎫=≤⎨⎬⎭⎩,则M N ⋂=( ) A .()0,1 B .[)0,1C .(]1,3D .[]0,35.已知集合302x A xx ⎧⎫+⎪⎪=⎨⎬-⎪⎪⎩⎭,{}B y y m =<,若A B ⊆,则实数m 的取值范围为( ) A .()2∞+,B .[)2∞+,C .()3∞-+,D .[)3∞-+,6.集合{}2|6,y y x x ∈=-+∈N N 的真子集的个数是( ) A .9B .8C .7D .617.集合{}*|421A x x N =--∈,则A 的真子集个数是( ) A .63B .127C .255D .5118.对于非空实数集A ,定义{|A z *=对任意},x A z x ∈≥.设非空实数集(],1C D ≠⊆⊂-∞.现给出以下命题:(1)对于任意给定符合题设条件的集合C ,D ,必有D C **⊆;(2)对于任意给定符合题设条件的集合C ,D ,必有C D *≠∅;(3)对于任意给定符合题设条件的集合C ,D ,必有CD *=∅;(4)对于任意给定符合题设条件的集合C ,D ,必存在常数a ,使得对任意的b C *∈,恒有a b D *+∈.以上命题正确的个数是( ) A .1B .2C .3D .49.若集合{}2|560A x x x =-->,{}|21xB x =>,则()R C A B =( )A .{}|10x x -≤<B .{}|06x x <≤C .{}|20x x -≤<D .{}|03x x <≤10.若x A ∈,则1A x ∈,就称A 是和美集合,集合111,0,,,1,323M ⎧⎫⎨=⎩-⎬⎭的所有非空子集中是和美集合的个数为( ) A .4 B .5C .6D .711.已知R 为实数集,集合{|lg(3)}A x y x ==+,{|2}B x x =≥,则()R C A B ⋃=( ) A .{|3}x x >-B .{3}x x |<-C .{|3}x x ≤-D .{|23}x x ≤<12.设{}2|8150A x x x =-+=,{}|10B x ax =-=,若A B B =,求实数a 组成的集合的子集个数有 A .2B .3C .4D .8二、填空题13.集合1{}2|Ax x ≤=<,{|}B x x a =<,若A B B ⋃=,则a 的取值范围是_______.14.已知非空集合{}|121A x m x m =+≤≤-,集合{}2|1030B x x x =+-≥,若A B =Φ,则实数m 的取值范围为__________15.已知{}2|340,{|10}A x x x B x ax a =+-==-+=,且B A ⊆,则所有a 的值所构成的集合M =_________. 16.若{}|224xA x ≤≤,1|1xB x a x -⎧⎫=<⎨⎬+⎩⎭,若A B =∅,则实数a 的取值范围为_________;17.若集合{}2|20N x x x a =-+=,{}1M =,且N M ⊆,则实数a 的取值范围是_________ 18.设全集{|35}Ux x =-≤≤,集合1{|||1},{|0}2A x xB x x =≤=>+,则()UC A B ⋂=_____________.19.若集合{}|121A x m x m =+<≤-,{}|25B x x =-≤<,若()()R R C A C B ⊇,则m 的取值范围是_____________.20.若不等式34x b -<的解集中的整数有且仅有5,6,则b 的取值范围是______.三、解答题21.若全集U =R ,集合{23},{27},{(4)(3)0}A x a x a B x x C x x x =-≤≤+=≤≤=-+≥.(1)当3a =时,求,()U AB AC B ;(2)若A C A =,求实数a 的取值范围.22.设集合{}240A x x =-=,(){}222150B x x a x a =+++-=.(1)若{}2AB =-,求实数a 的值;(2)若A B A ⋃=,求实数a 的取值范围.23.设全集U R =,集合{|2A x x =≤-或}{}5,|2x B x x ≥=≤.求(1)()UA B ⋃;(2)记(){},|23U A B D C x a x a ⋃==-≤≤-,且C D C ⋂= ,求a 的取值范围.24.已知集合2{|320}A x ax x =-+=,其中a 为常数,且a R ∈. (1)若A 中至少有一个元素,求a 的取值范围; (2)若A 中至多有一个元素,求a 的取值范围.25.已知集合{}2|280A x x x =+-≤,[)1,B =-+∞,设全集为U =R .(1)求()UA B ∩;(2)设集合(1,1)C a a =-+,若C A B ⊆⋃,求实数a 的取值范围. 26.已知不等式()210x a x a -++≤的解集为A ,不等式2103x x +≤-的解集为B . (1) 当3a =时,求A B ;(2)若不等式的解集A B ⊆,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】解方程求得集合A ,分别在B =∅和B ≠∅两种情况下,根据包含关系构造方程求得结果. 【详解】由2230x x --=得:1x =-或3x =,即{}1,3A =-; ①当0a =时,B =∅,满足B A ⊆,符合题意; ②当0a ≠时,{}110B x ax a ⎧⎫=-==⎨⎬⎩⎭,B A ⊆,11a ∴=-或13a =,解得:1a =-或13a =;综上所述:实数a 的值构成的集合是11,0,3⎧⎫-⎨⎬⎩⎭.故选:A . 【点睛】本题考查根据集合的包含关系求解参数值的问题,易错点是忽略子集为空集的情况,造成求解错误.2.D解析:D 【分析】求出集合A ,根据11B ∈可求得实数a 的取值范围,利用集合的基本运算可判断各选项的正误. 【详解】{}{25601A x x x x x =-->=<-或}6x >,{}5B x x a =-<,且11B ∈,则6a >,{}{}555B x x a x a x a ∴=-<=-<<+,对于A 选项,取7a =,则{}212B x x =-<<,{}16UA x x =-≤≤,所以,{}16UA B x x R ⋂=-≤≤≠,A 选项错误;对于B 选项,取7a =,则{2UB x x =≤-或}12x ≥,此时UAB A R =≠,B 选项错误;对于C 选项,取7a =,则{}16UA x x =-≤≤,{2UB x x =≤-或}12x ≥,此时,{2UU A B x x ⋃=≤-或16x -≤≤或}12x R ≥≠,C 选项错误;对于D 选项,6a >,则51a -<-,511a +>,此时A B R =,D 选项正确.故选:D. 【点睛】本题考查与集合运算正误的判断,同时也考查了一元二次不等式以及绝对值不等式的求解,考查计算能力,属于基础题.3.A解析:A 【分析】由集合的包含关系得,a b 的方程组,求解即可 【详解】A B ⊆,由集合元素互异性得0,0,a b a b ≠≠≠ 则22a a b b ⎧=⎨=-⎩ 或22b a a b ⎧=⎨=-⎩解得11a b =⎧⎨=-⎩或11b a =⎧⎨=-⎩故选: A 【点睛】本题考查集合的包含关系,考查元素的互异性,是基础题4.A解析:A 【分析】根据分式不等式的解法,求得{}03N x x =<≤,再结合集合的交集的运算,即可求解. 【详解】由题意,集合{}3|003x N x x x x ⎧-⎫=≤=<≤⎨⎬⎭⎩, 又由}{|21M x x =-<<,所以{}()010,1M N x x ⋂=<<=. 故选:A. 【点睛】本题主要考查了集合交集的概念及运算,以及分式不等式的求解,其中解答中正确求解集合N 是解答的关键,着重考查运算与求解能力.5.B解析:B 【分析】求出集合A ,由A B ⊆,结合数轴,可得实数m 的取值范围. 【详解】解不等式302x x +≤-,得32x -≤<,[)3,2A ∴=-. A B ⊆,可得2m ≥.故选:B . 【点睛】本题考查集合间的关系,属于基础题.6.C解析:C 【分析】根据条件求解,x y 的范围,结合,x N y N ∈∈,得到集合为{2,5,6},利用集合真子集个数的公式即得解. 【详解】由于260y N y x ∈∴=-+≥x ≤≤,又,x N ∈0,1,2x ∴=6,5,2y ∴=,即集合{}2|6,{2,5,6}y y x x ∈=-+∈=N N故真子集的个数为:3217-= 故选:C 【点睛】本题考查了集合真子集的个数,考查了学生综合分析,数学运算的能力,属于中档题.7.B解析:B 【分析】先求得{}*|421A x x N =--∈的元素个数,再求真子集个数即可.【详解】由{}*|421A x x N=--∈,则421x --为正整数.则21x -可能的取值为0,1,2,3,故210,1,2,3x -=±±±,故x 共7个解.即{}*|421A x x N =--∈的元素个数为7故A 的真子集个数为721127-= 故选:B 【点睛】本题主要考查集合中元素个数的求解与知识点:元素个数为n 的集合的真子集有21n -个. 属于基础题型.8.B解析:B 【分析】根据题干新定义{|A z *=对任意},x A z x ∈≥,通过分析举例即可判断。

最新北师大版高中数学必修一第一单元《集合》检测(有答案解析)

最新北师大版高中数学必修一第一单元《集合》检测(有答案解析)

一、选择题1.下列表示正确的个数是( ) (1){}{}2100;(2)1,2;(3){(,)}3,435x y x y x y +=⎧∉∅∅⊆=⎨-=⎩;(4)若A B ⊆则A B A =A .0B .1C .2D .32.已知集合{}11M x Z x =∈-≤≤,{}Z (2)0N x x x =∈-≤,则如图所示的韦恩图中的阴影部分所表示的集合为( )A .{}0,1B .{}1,2-C .{}1,0,1-D .1,0,1,23.若{}|28A x Z x =∈≤<,{}5|log 1B x R x =∈<,则R A C B ⋂的元素个数为( ) A .0B .1C .2D .34.已知集合{}2,,M m m a b a b Q ==+∈,则下列四个元素中属于M 的元素的个数是( )①12π1162+22+2323-+A .4B .3C .2D .15.集合{}2|6,y y x x ∈=-+∈N N 的真子集的个数是( ) A .9B .8C .7D .616.设U 为全集,()UB A B =,则A B 为( )A .AB .BC .UB D .∅7.已知集合22{|,N ,N}A t t m n m n = =+ ∈ ∈,且x A ∈,y A ,则下列结论中正确的是( ) A .x y A +∈ B .x y A -∈ C .xy A ∈D .xA y∈ 8.已知集合{}1A x x =>,{}1B x x =≥,则( ) A .A ⊆BB .B ⊆AC .A∩B=φD .A ∪B=R9.已知函数()f x =M ,()ln(1)g x x =+的定义域为N ,则()R MC N =( )A .{|1}<x xB .{|1}x x ≥C .φD .{|11}x x -≤<10.已知非空集合M 满足:对任意x M ∈,总有2x M ∉M ,若{}0,1,2,3,4,5M ⊆,则满足条件的M 的个数是( )A .11B .12C .15D .1611.若{}{}0,1,2,3,|3,A B x x a a A ===∈,则A B 的子集个数是()A .6B .8C .4D .212.从含有3个元素的集合{},,a b c 的所有子集中任取一个,所取得子集是含有2个元素的集合的概率( ) A .310B .112C .4564D .38二、填空题13.已知集合{2,1}A =-,{|2,B x ax ==其中,}x a ∈R ,若A B B =,则a 的取值集合为___________.14.集合{(,)|||,}A x y y a x x R ==∈,{(,)|,}B x y y x a x R ==+∈,已知集合A B中有且仅有一个元素,则常数a 的取值范围是________15.已知集合1{}2A =-,,1{}0|B x mx =+>,若A B B ⋃=,则实数m 的取值范围是________.16.若{}|224xA x ≤≤,1|1xB x a x -⎧⎫=<⎨⎬+⎩⎭,若A B =∅,则实数a 的取值范围为_________;17.已知集合(){}22330,,A x x a x a a R x R =+--=∈∈,集合(){}22330,,B x x a x a a a R x R =+-+-=∈∈,若,A B A B ≠⋂≠∅,则A B =_______18.已知集合2{1,9,},{1,}A x B x ==,若A B A ⋃=,则x 的值为_________. 19.设全集{|35}Ux x =-≤≤,集合1{|||1},{|0}2A x xB x x =≤=>+,则()UC A B ⋂=_____________.20.设集合{}1,2,3A =,若B ≠∅,且B A ⊆,记G(B)为B 中元素的最大值和最小值之和,则对所有的B ,G(B)的平均值是_______.三、解答题21.已知全集U =R ,集合1{|28},{22x A x B x x m =<≤=<-或2}x m >+ (1)若A {}|03R B x x ⋂=≤≤,求实数m 的值; (2)若AB =B ,求实数m 的取值范围.22.已知集合{}|2A x x a =-≤≤,{}|23,B y y x x A ==+∈,{}2|,C z z x x A ==∈,且C B ⊆,求a 的取值范围.23.已知全集U =R ,集合{|4A x x =<-或1}x >,{}312B x x =-≤-≤, (1)求AB 、()()U UA B ;(2)若集合{}2121M x k x k =-≤≤+是集合A 的子集,求实数k 的取值范围. 24.已知全集为R ,函数()()lg 1f x x =-的定义域为集合A ,集合(){}|16B x x x =->.(1)求AB ;(2)若{}|11C x m x m =-<<+,()()RC A B ⊆,求实数m 的取值范围.25.已知集合()(){}|250A x x x k =++<(1)若()53A ⊆-,,求k 的取值范围. (2)若{}2|20B x x x =-->,且{}2A B Z ⋂⋂=-(Z 为整数集合),求k 的取值范围.26.已知集合{}|2,12xA y y x ==≤≤,()(){}|20B x x a x a =---≤.(1)若3a =,求A B ;(2)若()R B C A ⊆.求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】选项(1)中元素与空集的关系是不属于,正确;(2)空集是非空集的子集正确;(3)集合前后不相等,一个是方程的根构成的集合,有一个元素,一个是两个实数构成的集合,故不正确;(4)根据集合子集的意义知若A B ⊆则AB A =正确.2.B解析:B【分析】阴影部分可以用集合M N 、表示为()()M N C M N ⋃⋂,故求出M N 、、M N ⋃,M N ⋂即可解决问题. 【详解】解:由题意得,{}1,0,1M =-,{}0,1,2N ={}1,0,1,2M N ⋃=-,{}0,1M N ⋂=阴影部分为()(){}1,2M N C M N ⋃⋂=-故选B 【点睛】本题考查用韦恩图表示的集合的运算,解题时要能用集合的运算表示出阴影部分.3.D解析:D 【分析】化简集合A 、B ,根据补集与交集的定义写出RA B ,即可得出结论.【详解】集合{|28}{2A x Z x =∈<=,3,4,5,6,7},51{||log |1}{|5}5B x R x x R x =∈<=∈<<,1{|5R B x R x ∴=∈或5}x , {5RAB ∴=,6,7}.∴其中元素个数为3个.故选:D . 【点睛】本题考查了集合的化简与运算问题,是基础题.4.C解析:C 【分析】①②③都可以写成m a =+,a b 是否是有理数,④计算.【详解】①当1a +=+时,可得1,a b π==,这与,a b Q ∈矛盾,3==3a ∴+=,可得3,1a b == ,都是有理数,所以正确,2122==-,12a ∴+=-,可得11,2a b ==-,都是有理数,所以正确,④2426=+=而(22222a a b +=++,,a b Q ∈,(2a ∴+是无理数,不是集合M 中的元素,只有②③是集合M 的元素. 故选:C 【点睛】本题考查元素与集合的关系,意在考查转化与化归的思想,计算能力,属于基础题型.5.C解析:C 【分析】根据条件求解,x y 的范围,结合,x N y N ∈∈,得到集合为{2,5,6},利用集合真子集个数的公式即得解. 【详解】由于260y N y x ∈∴=-+≥x ≤≤,又,x N ∈0,1,2x ∴=6,5,2y ∴=,即集合{}2|6,{2,5,6}y y x x ∈=-+∈=N N故真子集的个数为:3217-= 故选:C 【点睛】本题考查了集合真子集的个数,考查了学生综合分析,数学运算的能力,属于中档题.6.D解析:D 【分析】根据题意作出“韦恩图”,得出集合A 与集合B 没有公共元素,即可求解. 【详解】由题意,集合U 为全集,()UBA B =,如图所示,可得集合A 与集合B 没有公共元素,即A B =∅,故选D.【点睛】本题主要考查了集合的运算及应用,其中解答中根据题设条件,作出韦恩图确定两集合的关系是解答的关键,着重考查了推理与论证能力,属于基础题.7.C解析:C 【分析】 设22x m n =+,22N,N N,,,N n b b ya ma ,再利用22()()xy ma nb mb na =++-,可得解.【详解】 由x A ∈,yA ,设22x m n =+,22N,N N,,,N n b b y a m a ,所以22222222222222()()()()xy m n a b m a m b n a n b ma nb mb na =++=+++=++-, 且N,N ma nb mb na +-∈∈, 所以xy A ∈, 故选:C. 【点睛】关键点点睛,本题的解题关键是2222222222()()m a m b n a n b ma nb mb na +++=++-,另外本题可以通过列举法得到集合的一些元素,进而排除选项可得解.8.A解析:A 【分析】根据数轴判断两集合之间包含关系. 【详解】因为{}1A x x =>,{}1B x x =≥,所以A ⊆B ,选A. 【点睛】本题考查集合之间包含关系,考查基本判断分析能力.9.A解析:A 【解析】 【分析】根据函数定义域的求法求得,M N ,再求得()R M C N .【详解】由210x ->解得11x -<<,由10x +>解得1x >-.所以{}|1R C N x x =≤-,故()R MC N ={|1}<x x ,故选A.【点睛】本小题主要考查函数定义域的求法,考查集合补集和并集的运算,属于基础题.10.A解析:A 【分析】可得集合M 是集合{}2,3,4,5的非空子集,且2,4不同时出现,即可得到结论. 【详解】由题意,可得集合M 是集合{}2,3,4,5的非空子集,共有42115-=个, 且2,4不能同时出现,同时出现共有4个, 所以满足题意的集合M 的个数为11个,故选A. 【点睛】本题主要考查了元素与集合的关系,以及集合的子集个数的判定及应用,着重考查了分析问题和解答问题的能力,属于中档试题.11.C解析:C 【分析】先求得B 的具体元素,然后求A B ,进而确定子集的个数.【详解】依题意{}0,3,6,9B =,所以{}0,3A B ⋂=,其子集个数为224=,故选C. 【点睛】本小题主要考查集合元素的识别,考查两个集合的交集,考查集合子集的个数计算,属于基础题.12.D解析:D 【分析】含有3个元素的集合{},,a b c 共有子集个数328=,含有2个元素的子集有3个,根据古典概型即可计算. 【详解】因为含有3个元素的集合{},,a b c 共有子集个数328=,含有2个元素的子集有3个, 所以38P =,故选D. 【点睛】本题主要考查了集合子集的概念,古典概型,属于中档题.二、填空题13.【分析】根据得到之间的关系由此确定出可取的的值【详解】因为所以当时;当时若则所以;若则综上可知:的取值集合为故答案为:【点睛】本题考查根据集合间的包含关系求解参数难度一般分析集合间的子集关系时注意分 解析:{}1,0,2-【分析】 根据A B B =得到,A B 之间的关系,由此确定出可取的a 的值. 【详解】因为AB B =,所以B A ⊆,当B =∅时,0a =;当B ≠∅时,若{}2B =-,则22a -=,所以1a =-;若{}1B =,则2a =. 综上可知:a 的取值集合为{}1,0,2-, 故答案为:{}1,0,2-. 【点睛】本题考查根据集合间的包含关系求解参数,难度一般.分析集合间的子集关系时,注意分析空集的存在.14.【分析】若中有且仅有一个元素则方程有且仅有一个解进而求解即可【详解】由题因为中有且仅有一个元素则方程有且仅有一个解当时则当时则由已知得或或或解得故答案为:【点睛】本题考查由交集结果求参数范围考查分类 解析:[1,1]-【分析】 若AB 中有且仅有一个元素,则方程a x x a =+有且仅有一个解,进而求解即可【详解】 由题,因为AB 中有且仅有一个元素,则方程a x x a =+有且仅有一个解,当0x ≥时,ax x a =+,则1a x a =-, 当0x <时,ax x a -=+,则1a x a =-+, 由已知得0101a a a a ⎧≥⎪⎪-⎨⎪-≥⎪+⎩或0101aa a a ⎧<⎪⎪-⎨⎪-<⎪+⎩或101a aa =⎧⎪⎨-<⎪+⎩或011a a a ⎧≥⎪-⎨⎪=-⎩, 解得11a -≤≤, 故答案为:[]1,1-【点睛】本题考查由交集结果求参数范围,考查分类讨论思想和转化思想15.【分析】讨论和及确定集合利用列不等式求解【详解】由题意知则当时∵∴解得当时∵∴解得当时也有综上实数m 的取值范围是故答案为:【点睛】本题考查集合的包含关系考查一次不等式解集注意m=0的讨论是易错题解析:1(,1)2-【分析】讨论0m >和0m <及0m =确定集合B ,利用A B ⊆列不等式求解 【详解】由题意知A B B ⋃=,则A B ⊆, 当0m >时,1{|}B x x m=>-, ∵1{}2A =-,, ∴11m-<- 解得01m <<, 当0m <时,1{|}B x x m=<-, ∵1{}2A =-,, ∴12m -> 解得102m -<<,当0m =时也有A B ⊆.综上,实数m 的取值范围是1(,1)2- 故答案为:1(,1)2-. 【点睛】本题考查集合的包含关系,考查一次不等式解集,注意m =0的讨论,是易错题16.【分析】计算集合等价于在上恒成立计算的最小值得到答案【详解】等价于在上恒成立即设易知函数在单调递减故故答案为:【点睛】本题考查了集合的关系求参数将等价于在上恒成立是解题的关键解析:13a ≤-【分析】计算集合{}12A x x =≤≤,AB =∅等价于在[]1,2上11xa x -≥+恒成立,计算 21()1x f x -++=的最小值得到答案. 【详解】{}{}|22412x A x x x =≤≤=≤≤,11x B x a x ⎧⎫-=<⎨⎬+⎩⎭A B =∅,等价于在[]1,2上11x a x -≥+恒成立,即122111x x x a --+=-+++≤ 设21()1x f x -++= 易知函数在[]1,2单调递减,min 1()(2)3f x f ==-,故13a ≤- 故答案为:13a ≤- 【点睛】本题考查了集合的关系求参数,将A B =∅等价于在[]1,2上11xa x -≥+恒成立是解题的关键.17.【分析】设公共根是代入两方程作差可得即公共根就是进一步代入原方程求解两集合即可得出答案【详解】两个方程有公共根设公共根为两式相减得:即①若则两个方程都是与矛盾;②则公共根为代入得:即解得:(舍)故答 解析:{2,3,1}--【分析】设公共根是b ,代入两方程,作差可得b a =,即公共根就是a ,进一步代入原方程求解两集合,即可得出答案. 【详解】A B ⋂≠∅∴两个方程有公共根设公共根为b∴2(23)30b a b a +--=,22(3)30b a b a a +-+-=两式相减得:20ab a -=,即()0a b a -=.①若0a =,则两个方程都是230x x -=,与A B ≠矛盾; ②0,a ≠则b a =,∴公共根为a ,代入2(23)30x a x a +--=得:2(23)30a a a a +--= 即220a a -=,解得:0a =(舍),2a ={}2|60{3,2}A x x x ∴=+-==- 2|20{1,2}Bx x x{2,3,1}A B ∴⋃=--故答案为:{2,3,1}--【点睛】本题考查了集合并集运算,能够通过,A B A B ≠⋂≠∅解读出两个集合中的方程有公共根,是解题的关键.18.或0【分析】由题意利用集合的包含关系和集合运算的互异性即可确定x的值【详解】由可知B ⊆A 则或解得:或或当时满足题意;当时满足题意;当时满足题意;当时不满足集合元素的互异性舍去综上可得:x 的值为或0故 解析:3,3-或0【分析】由题意利用集合的包含关系和集合运算的互异性即可确定x 的值.【详解】由A B A ⋃=可知B ⊆A ,则29x =或2x x =, 解得:3x =±或0x =或1x =,当3x =时,{}{}1,9,3,1,9A B ==,满足题意;当3x =-时,{}{}1,9,3,1,9A B =-=,满足题意;当0x =时,{}{}1,9,0,1,0A B ==,满足题意;当1x =时,不满足集合元素的互异性,舍去.综上可得:x 的值为3,3-或0.故答案为:3,3-或0.【点睛】本题主要考查并集的定义,集合中元素的互异性,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.19.【分析】解绝对值不等式求得集合然后求得其补集解分式不等式求得集合由此求得【详解】由解得所以由解得所以故填:【点睛】本小题主要考查集合交集和补集的概念和运算考查绝对值不等式和分式不等式的解法属于基础题 解析:(2,1)(1,5]--【分析】解绝对值不等式求得集合A ,然后求得其补集.解分式不等式求得集合B ,由此求得()U C A B ⋂.【详解】 由1x ≤解得11x -≤≤,所以[)(]3,11,5U C A =--⋃.由102x >+解得2x >-,所以()U C A B ⋂(2,1)(1,5]=--.故填:(2,1)(1,5]--.【点睛】本小题主要考查集合交集和补集的概念和运算,考查绝对值不等式和分式不等式的解法,属于基础题.20.4【分析】根据题意列出所有可能的集合B 求出相应的求出平均数即可【详解】因为集合若且所以集合B 为:当时当时当时当时当时当时当时则G(B)的平均值是故答案为:【点睛】本题主要考查了集合间的包含关系考查学 解析:4【分析】根据题意列出所有可能的集合B ,求出相应的()G B ,求出平均数即可.【详解】因为集合{}1,2,3A =,若B ≠∅,且B A ⊆所以集合B 为:{}{}{}{}{}{}{}1231,21,32,31,2,3,,,,,,当{}1B =时,()112G B =+=当{}2B =时,()224G B =+=当{}3B =时,()336G B =+=当{}1,2B =时,()123G B =+=当{}1,3B =时,()134G B =+=当{}2,3B =时,()235G B =+=当{}1,2,3B =时,()134G B =+=则G(B)的平均值是246345447++++++= 故答案为:4【点睛】本题主要考查了集合间的包含关系,考查学生分析问题和解决问题的能力,属于中档题. 三、解答题21.(1)m =2;(2){5m m >或3}m ≤-..【分析】(1)分别求集合A 和B R ,根据运算结果,求实数m 的值;(2)根据运算结果,转化为A B ⊆,列不等式求m 的取值范围. 【详解】解:(1)由已知得{}13A x x =-<≤,{}22R B x m x m =-≤≤+,∵A {}|03R B x x ⋂=≤≤,∴2023m m -=⎧⎨+≥⎩,,即 2.1m m =⎧⎨≥⎩∴m =2.(2)A B B =,∴A B ⊆.∴23m ->或21m +≤-,∴5m >或3m ≤-.即实数m 的取值范围为{5m m >或3}m ≤-.【点睛】易错点点睛:1.一般涉及集合运算时,需注意端点值的开闭,以及列不等式时,需注意参数的端点值的开闭;2.根据集合交,并集的运算结果,转化为子集问题时,需注意有时有空集的情况,这点容易忽略.22.()1,2,32⎡⎤-∞-⋃⎢⎥⎣⎦【分析】先分类讨论A 是否是空集,再当A 不是空集时,分-2≤a <0,0≤a≤2,a >2三种情况分析a 的取值范围,综合讨论结果,即可得到a 的取值范围【详解】若A=∅,则a <-2,故B=C=∅,满足C ⊆B ;若A ≠∅,即a ≥-2,由23y x =+在[]2,a -上是增函数,得123y a -≤≤+,即{}123B y y a =-≤≤+ ①当20a -≤≤时,函数2z x =在[]2,a -上单调递减,则24a z ≤≤,即{}24C z a z =≤≤,要使C B ⊆,必须且只需234a +≥,解得12a ≥,这与20a -≤<矛盾; ②当02a ≤≤时,函数2z x =在[]2,0-上单调递减,在[]0,a 上单调递增,则04z ≤≤,即{}04C z z =≤≤,要使C B ⊆,必须且只需23402a a +≥⎧⎨≤≤⎩,解得122a ≤≤; ③当2a >时,函数2z x =在[]2,0-上单调递减,在[]0,a 上单调递增,则20z a ≤≤,即{}20C z z a =≤≤,要使C B ⊆,必须且只需2232a a a ⎧≤+⎨>⎩,解得23a <≤; 综上所述,a 的取值范围是()1,2,32⎡⎤-∞-⋃⎢⎥⎣⎦.【点睛】本题考查了通过集合之间的关系求参数问题,考查了分类讨论的数学思想,要明确集合中的元素,对集合是否为空集进行分类讨论,做到不漏解.23.(1){}13A B x x ⋂=<≤,()(){1U U A B x x ⋃=≤或3}x >;(2)52k <-或1k >.【分析】(1)先求出B ,U A ,U B ,再求A B ,()()U U A B 即可;(2)先分类讨论①当M φ=时,k 不存在;②当M φ≠时,解得52k <-或1k >,最后写出实数k 的取值范围即可.【详解】 解:(1)因为全集U =R ,集合{|4A x x =<-或1}x >,{}312B x x =-≤-≤, 所以{}23B x x =-≤≤,{|41}U x x A =-≤≤,{2U B x x =<-或3}x >,所以{}13A B x x ⋂=<≤,()(){1U U A B x x ⋃=≤或3}x >,(2)因为集合{}2121M x k x k =-≤≤+是集合A 的子集, 所以①当M φ=时,2121k k ,k 不存在;②当M φ≠时,214k +<-或211k ->,解得:52k <-或1k >, 综上所述:实数k 的取值范围是52k <-或1k >. 【点睛】 本题考查集合的运算、根据集合的基本关系求参数范围,是基础题.24.(1){}|13AB x x x =<>或(2)[]1,0- 【分析】(1)解不等式得到集合A ,B ,利用并集定义求解AB ; (2)先求解,R B 再求解()R A B ,利用()()R C A B ⊆,列出不等关系,求解即可. 【详解】(1)由10x ->得,函数()()lg 1f x x =-的定义域{}|1A x x =<, 260x x -->,()()320x x -+>,得{}|32B x x x =><-或,∴{}|13AB x x x =<>或. (2){}|23R B x x =-≤≤,∴(){}|21R A B x x =-≤<,{}|21C x x ⊆-≤<,则121011m m m -≥-⎧⇒-≤≤⎨+≤⎩, 故实数m 的取值范围为[]1,0-.【点睛】本题考查了集合运算综合,考查了学生综合分析,数学运算能力,属于中档题.25.(1)[] 3,5-;(2)5 3,?2⎡⎫-⎪⎢⎣⎭.【分析】(1)对参数k 进行分类讨论,求得对应情况下不等式的解集,再根据集合之间的关系,求得k 的范围;(2)根据(1)中集合A 的解集,集合{}2A B Z ⋂⋂=-,对参数k 进行分类讨论,即可求得k 的范围.【详解】(1)对集合A : 当52k =时,不等式的解集为空集,即A =∅,满足()53A ⊆-,; 当52k <时,不等式的解集为5,2A k ⎛⎫=-- ⎪⎝⎭,若满足()53A ⊆-,, 只需3k -≤,解得3k ≥-,又52k <,故53,?2k ⎡⎫∈-⎪⎢⎣⎭; 当52k >时,不等式的解集为5,2A k ⎛⎫=-- ⎪⎝⎭,若满足()53A ⊆-,, 只需5k -≥-,解得5k ≤,又52k >,故5,52k ⎛⎤∈ ⎥⎝⎦ 综上所述若满足题意,则[]3,5k ∈-. (2)对集合B :220x x -->,解得()(),12,B =-∞-⋃+∞此时B Z ⋂是小于等于2-的整数和大于等于3的整数的集合.对集合A :由(1)知: 当52k =时,A =∅,不满足{}2A B Z ⋂⋂=-,故舍去; 当52k <时,5,2A k ⎛⎫=-- ⎪⎝⎭,若满足{}2A B Z ⋂⋂=-, 只需3k -≤,解得3k ≥-,又52k <,故可得53,?2k ⎡⎫∈-⎪⎢⎣⎭; 当52k >时,5,2A k ⎛⎫=-- ⎪⎝⎭,显然不满足{}2A B Z ⋂⋂=-,故舍去. 综上所述,若满足题意,则53,?2k ⎡⎫∈-⎪⎢⎣⎭. 【点睛】本题考查由集合之间的关系,求参数的范围,属中档题;本题中需要注意对参数的分类讨论,要做到不重不漏.26.(1)=[3,4]A B ; (2)4a >或0a < 【分析】(1)写出集合A ,B 的区间形式,代入数值计算即可; (2)写出集合R C A ,根据边界判断a 的取值范围即可.【详解】集合{}|2,12=[2,4]x A y y x ==≤≤,()(){}|20[,2]B x x a x a a a =---≤=+ (1)若3a =,[3,5]B =,则=[3,4]A B ; (2)(,2)(4,)R C A =-∞+∞,()R B C A ⊆, 因此:4a >或22a +<故:4a >或0a <【点睛】 本题考查了集合的交并补运算,考查了学生的数学运算能力,属于基础题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版高一数学集合、函数检测题
一、选择题(每题5分,共50分)
1.集合},{b a 的子集有 ( )
A .2个
B .3个
C .4个
D .5个
2. 设集合{}|43A x x =-<<,//{}|2B x x =≤,则A ∪B =( )
A .(4,3)-
B .(4,2]-
C .(,2]-∞
D .(,3)-∞
3.已知()5412
-+=-x x x f ,则()x f 的表达式是( ) A .x x 62+ B .782++x x C .322-+x x D .1062-+x x
4.下列对应关系:( )
①{1,4,9},{3,2,1,1,2,3},A B ==---f :x x →的平方根
②,,A R B R ==f :x x →的倒数
③,,A R B R ==f :22x x →-
④{}{}1,0,1,1,0,1,A B f =-=-:A 中的数平方
其中是A 到B 的映射的是( )
A .①③
B .②④
C .③④
D .②③
5.下列四个函数:①3y x =-;②211y x =+;③2210y x x =+-;④(0)1(0)x x y x x
⎧-≤⎪=⎨->⎪⎩. 其中值域为R 的函数有 ( )
A .1个
B .2个
C .3个
D .4个
6. 已知函数212x y x ⎧+=⎨-⎩ (0)(0)
x x ≤>,使函数值为5的x 的值是( )
A .-2
B .2或52-
C . 2或-2
D .2或-2或52
- 7.下列函数中,定义域为[0,∞)的函数是 ( )
A .x y =
B .22x y -=
C .13+=x y
D .2)1(-=x y
8.若R y x ∈,,且)()()(y f x f y x f +=+,则 ( )
A . 0)0(=f 且)(x f 为奇函数
B .0)0(=f 且)(x f 为偶函数
C .)(x f 为增函数且为奇函数
D .)(x f 为增函数且为偶函数
9.下列图像中表示函数图像的是 ( )
(A ) (B) (C ) (D)
10.二次函数y =x 2+b x +c 的图像的对称轴是x =2,则有( ).
A .f (1)<f (2)<f (4)
B .f (2)<f (1)<f (4)
C .f (2)<f (4)<f (1)
D .f (4)<f (2)<f (1)
二、填空题(每题5分,共25分)
11.若{}{}0,1,2,3,|3,A B x x a a A ===∈,则A ∪B = .
12.若集合A ={x | x 2+(a -1)x +b =0}中,仅有一个元素a ,则a =___,b =___.
13.函数()1,3,x f x x +⎧=⎨-+⎩
1,1,x x ≤>则()()4f f = . 14.y =(2a -1)x +5是减函数,求a 的取值范围 .
15.已知f (x +1)=x 2-2x ,则f (x )= ;f (x -2)= .
三、解答题
16.(12分) 已知集合A={}
71<≤x x ,B={x |2<x <10},C={x |x <a },全集为实数集R .
(1)求A ∪B ,(C R A)∩B ;
(2)如果A ∩C ≠φ,求a 的取值范围.
17.(12分)已知集合A ={x ∈R | ax 2-3x +2=0},其中a 为常数,且a ∈R .
(1)若A 是空集,求a 的范围;
(2)若A 中只有一个元素,求a 的值;
(3)若A 中至多只有一个元素,求a 的范围.
18.(12分)已知方程02
=++q px x 的两个不相等实根为βα,.集合},{βα=A , =B {2,4,5,6},=C {1,2,3,4},A ∩C =A ,A ∩B =φ,求q p ,的值.
19.(12分)已知二次函数)(x f 满足
x x f x f 2)(-)1(=+,且)0(f =1,求)(x f 的解析式.
20.(13分)已知函数)(x f =222
+-ax x ,∈x [-1,1],求函数)(x f 的最小值.
21.(14分)已知函数2()21f x x =-.
(1)用定义证明()f x 在(,0]-∞上是减函数;
(2)用定义证明()f x 是偶函数;
(3)作出函数()f x 的图像,并写出函数()f x 当[1,2]x ∈-时的最大值与最小值.
高一数学测试题(二)参考答案
一、 选择题
CBACB AAACB
二、填空题
11.{0,1,2,3,6,9} 12. a =31,b =91 13. 0 14. (-∞,2
1) 15. f (x )=x 2-4x +3,f (x -2)=x 2-8x +15. 三、解答题
16.解:(1)A ∪B={ x |1≤x <10}
(C R A)∩B={ x | x <1或x ≥7}∩{ x |2< x <10}
={ x |7≤x <10}
(2)当a >1时满足A ∩C ≠φ
17.解:(1)∵A 是空集,
∴方程ax 2-3x +2=0无实数根.
∴⎩⎨⎧∆,a a 08-9=,0 解得a >89. (2)∵A 中只有一个元素,
∴方程ax 2-3x +2=0只有一个实数根.
当a =0时,方程化为-3x +2=0,只有一个实数根x =
32; 当a ≠0时,令Δ=9-8a =0,得a =
89,这时一元二次方程ax 2-3x +2=0有两个相等的实数根,即A 中只有一个元素.
由以上可知a =0,或a =8
9时,A 中只有一个元素. (3)若A 中至多只有一个元素,则包括两种情形:A 中有且仅有一个元素;A 是空集.由①②的结果可得a =0,或a ≥8
9. 18.解:由A ∩C=A 知A ⊆C
又},{βα=A ,则C ∈α,C ∈β. 而A ∩B =φ,故B ∉α,B ∉β
显然即属于C 又不属于B 的元素只有1和3.
所以对于方程02=++q px x 的两根βα,
用韦达定理可得3,4=-=q p .
≠ <
19.f (x) = 2
x —x +1 20.解:min )(x f =⎪⎩⎪⎨⎧≤≤)<-
(+)
(--)>(-1231121
232a a a a a a
21.证明:(1)在区间(,0]-∞上任取12,x x ,且12x x <,则有
22221212121212()()(21)(21)2()2()()f x f x x x x x x x x x -=---=-=-⋅+, ∵12,(,0]x x ∈-∞,12x x <,∴12120,x x x x -<0,+<
即1212()()0x x x x -⋅+>∴12()()0f x f x ->,即()f x 在(,0]-∞上是减函数.
(2)证明:函数()f x 的定义域为R ,对于任意的x R ∈,都有
22()2()121()f x x x f x -=--=-=,∴()f x 是偶函数.
(3)解:最大值为(2)7f =,最小值为(0)1f =-.。

相关文档
最新文档