二次函数的应用3
九年级数学北师大版初三下册--第二单元2.4《二次函数的应用(第三课时)》课件
知2-讲
导引: 由题意知今年这种玩具每件的成本是去年的(1+0.7x) 倍,每件的出厂价是去年每件的出厂价的 (1+0.5x) 倍,今年的年销售量是去年年销售量的 (1+x)倍.
解:(1)(10+7x);(12+6x) (2)y=(12+6x)-(10+7x)=2-x, 即y与x的函数关系式为y=2-x. (3)W=2(1+x)(2-x)=-2x2+2x+4=-2(x-5)2+4.5, ∵0<x≤1,∴当x=0.5时,W有最大值. W最大值=4.5. 答:当x=0.5时,今年的年销售利润最大,最大年销 售利润为4.5万元.
知1-练
3 心理学家发现:学生对概念的接受能力y与提出概念 的时间x(min)之间是二次函数关系,当提出概念13 min时,学生对概念的接受能力最大,为59.9;当提 出概念30 min时,学生对概念的接受能力就剩下31, 则y与x满足的二次函数表达式为( D ) A.y=-(x-13)2+59.9 B.y=-0.1x2+2.6x+31 C.y=0.1x2-2.6x+76.8 D.y=-0.1x2+2.6x+43
(来自《教材》)
知2-练
2 某旅行社在五一期间接团去外地旅游,经计算,收益
y(元)与旅行团人数x(人)满足表达式y=-x2+100x+
28 400,要使收益最大,则此旅行团应有( C )
A.30人
B.40人
C.50人
D.55人
知2-练
3 (2016·咸宁)某网店销售某款童装,每件售价60元,每星 期可卖300件,为了促销,该网店决定降价销售.市场 调查反映:每降价1元,每星期可多卖30件.已知该款 童装每件成本价40元,设该款童装每件售价x元,每星 期的销售量为y件. (1)求y与x之间的函数表达式. (2)当每件售价定为多少元时,每星期的销售利润最大, 最大利润是多少元? (3)若该网店每星期想要获得不低于6 480元的利润,每 星期至少要销售该款童装多少件?
二次函数的应用问题
二次函数的应用问题二次函数是一种常见的代数函数,它的一般形式为f(x) = ax² + bx + c,其中a、b、c都是实数且a ≠ 0。
由于二次函数具有抛物线的形状,因此在各种实际问题中都能够找到应用。
本文将介绍二次函数在现实生活中的一些典型应用问题,并通过具体案例来解析解决方法。
问题一:飞行物体高度计算假设有一架飞机以初速度v₀从地面起飞,以固定的加速度a直线上升,问它在时间t后的高度h为多少?解决方法:根据牛顿第二定律,加速运动下飞机在t时刻的速度v可以表示为v = v₀ + at,高度h可以表示为h = v₀t + 1/2at²。
将其中的v带入,得到h = v₀t + 1/2a(v - v₀),代入飞机起飞时速度为0的条件,可得到简化的高度公式h = 1/2at²。
这就是一个二次函数,其中a为加速度,t为时间。
问题二:物体抛射问题假设有一个人以速度v₀把一个物体从一定高度h₀抛出,考察物体的运动轨迹。
解决方法:物体的垂直位移可以通过二次函数来表示。
首先,垂直方向上的受力只有重力,因此物体在下落过程中的运动可以描述为s = -1/2gt² +v₀t + h₀,其中s为垂直位移,g为重力加速度。
而在水平方向上,物体保持匀速运动,所以可以通过s = v₀x来描述其水平位移,其中x为时间。
问题三:最优化问题对于一个二次函数f(x) = ax² + bx + c,如何确定其在定义域内的最大值或最小值。
解决方法:对于给定的二次函数f(x),可以通过求取其导数f'(x)来确定最大值或最小值的位置。
当f'(x) = 0时,函数取得极值。
根据二次函数的性质,若a > 0,f(x)开口向上,则该极值为最小值;若a < 0,f(x)开口向下,则该极值为最大值。
问题四:实际应用问题二次函数还有很多其他实际应用,比如经济学中的成本、利润和产量问题,物理学中的速度、加速度和位移问题,以及几何学中的抛物线问题等等。
二次函数的应用
二次函数的应用二次函数是数学中非常重要的一个概念,它在各个领域中都有广泛的应用。
本文将介绍二次函数在几个常见领域的具体应用,包括物理学、经济学和工程学等。
一、物理学中的应用1. 自由落体运动在物理学中,二次函数被广泛应用于自由落体运动的描述中。
自由落体运动是指在只受重力作用下的物体运动。
根据质点在自由落体运动中的运动方程可知,物体的落地时间t与物体下落高度h之间存在二次函数的关系。
这种关系可以用二次函数公式f(t) = -gt^2 + h 来表示,其中g为重力加速度。
2. 弹性力学在弹性力学中,二次函数常被用来描述弹性体的变形情况。
例如,当一个弹簧受力拉伸或压缩时,其长度与施加在它上面的力之间存在二次函数的关系。
这种关系可以用二次函数公式f(x) = kx^2 来表示,其中k为弹簧的弹性系数。
二、经济学中的应用1. 成本和产量关系在经济学中,二次函数被广泛应用于成本和产量之间的关系模型中。
例如,在某产品的生产过程中,成本通常与产量呈二次函数的关系。
随着产量的增加,成本会逐渐增加,但增速逐渐减缓。
这种关系可以用二次函数公式f(x) = ax^2 + bx + c 来表示,其中a、b和c为常数。
2. 市场需求二次函数在经济学中还常被用来描述市场需求的变化情况。
例如,对于某个产品的需求量与其价格之间一般存在倒U型的关系,即需求量随着价格的升高或降低逐渐减少。
这种关系可以用二次函数公式f(x) = ax^2 + bx + c 来表示,其中a、b和c为常数。
三、工程学中的应用1. 抛物线型拱桥在工程学中,二次函数被广泛应用于抛物线型拱桥的设计与建造中。
抛物线型拱桥由一段段的抛物线组成,而抛物线正是二次函数的图像。
通过使用二次函数来描述拱桥的形状,工程师可以更好地控制拱桥的承重和稳定性。
2. 圆环轨道设计二次函数还可以用来设计圆环轨道。
例如,在某高速铁路项目中,为了确保列车的平稳运行和最佳速度分布,工程师使用了二次函数来设计轨道的曲率。
二次函数的应用案例总结
二次函数的应用案例总结二次函数是一种常见的数学函数形式,它的形式为:y = ax^2 + bx + c。
在现实生活中,二次函数可以用于解决各种问题,包括物理、经济、工程等领域。
本文将总结几个常见的二次函数应用案例,以展示二次函数的实际应用。
案例一:物体自由落体的高度模型假设一个物体从高处自由落体,忽略空气阻力,我们可以用二次函数来表示物体的高度与时间之间的关系。
设物体初始高度为H,加速度为g,时间为t。
根据物理定律,物体的高度可以表示为:h(t) = -0.5gt^2 + H。
这个二次函数模型可以帮助我们计算物体在任意时间点的高度,并可以用于预测物体何时落地。
案例二:销售收入和定价策略假设一个公司生产和销售某种产品,销售价格为p(单位:元),销售量为q(单位:件)。
二次函数可以用于建立销售收入与定价策略之间的模型。
设定售价的二次函数为:R(p) = -ap^2 + bp + c,其中a、b、c为常数。
我们可以通过分析二次函数的图像、求解极值等方法,确定最佳售价,以使得销售收入最大化。
案例三:桥梁设计中的弧线形状在桥梁设计中,常常需要确定桥梁的弧线形状,以使得车辆在桥上行驶时感到平稳。
二次函数可以用来描述桥梁的曲线形状。
设桥梁的弧线形状为y = ax^2 + bx,其中x表示桥梁长度的一半,y表示桥梁的高度。
通过调整参数a和b,可以得到不同形状的弧线,以满足设计要求。
案例四:市场需求和价格关系分析在经济学中,二次函数可以用于建立市场需求与价格之间的关系模型。
设市场需求量为D,价格为p。
根据经济理论,市场需求可以表示为:D(p) = ap^2 + bp + c,其中a、b、c为常数。
通过分析二次函数的图像、求解极值等方法,可以研究市场需求和价格之间的关系,得出不同价格下的市场需求量。
综上所述,二次函数在物理、经济、工程等领域中具有广泛的应用。
通过建立二次函数模型,我们可以更好地理解和解决各种实际问题。
二次函数的引入与应用
二次函数的引入与应用二次函数是高中数学中的重要概念之一,在实际生活中有着广泛的应用。
本文将从二次函数的引入开始,探讨其在实际问题中的应用。
一、引入在代数学中,二次函数的一般形式为:y = ax^2 + bx + c其中,a、b、c为常数,且a≠0。
二次函数图像为抛物线,具有开口方向、顶点、对称轴等性质。
二、二次函数的应用1. 物体的抛体运动二次函数可以用于描述物体的抛体运动。
当物体受到初速度和重力影响时,其运动轨迹可以通过二次函数来表示。
由于重力的作用,物体的竖直方向运动会产生加速度,从而使得抛体运动可以用二次函数来描述。
2. 汽车制动距离在汽车行驶过程中,制动距离是一个非常重要的概念,涉及到行车安全。
根据物理学原理,汽车在制动过程中所需的距离与制动的时间和初始速度有关。
通过二次函数的模型可以有效地计算汽车制动距离,从而为驾驶员提供准确的参考。
3. 成本与收益在经济学中,企业的成本与收益关系是一个重要的经营指标。
通过二次函数的模型,可以对企业的成本和收益进行建模分析。
这有助于企业在制定经营策略时,做出科学的决策,以最大化利润。
4. 最优化问题二次函数也广泛应用于最优化问题中。
例如,生产车间的生产效率与生产成本之间存在着一定的关系。
通过建立二次函数模型,可以找到能够使得生产效率最大化或者生产成本最小化的最佳方案。
5. 能量分配问题在工程学中,能量的分配是一个常见的问题。
通过二次函数的模型,可以合理地分配能量,以满足各种需求。
例如,太阳能板的能量分配问题,可以利用二次函数模型来优化能量的利用效率。
综上所述,二次函数作为数学中的重要概念,在实际生活和各个学科领域中有着广泛的应用。
从物理运动到经济决策,从最优化问题到能量分配,二次函数的引入和应用为我们提供了更加科学的分析工具,帮助我们更好地理解和解决实际问题。
无论在哪个领域,了解和掌握二次函数的应用都将为我们的学习和工作带来更大的便利和效益。
二次函数在生活中的应用
二次函数在生活中的应用
二次函数是一种常见的数学函数,它在我们的生活和工作中有许多应用。
以下是二次函数在生活中的几个应用:
1. 抛物线运动
当一个物体以一定的初速度开始运动,并且受到重力的影响而向下运动时,它的运动轨迹就是一条抛物线。
这个运动过程可以用二次函数来描述。
例如,当你抛出一颗球时,它的高度会随着时间的推移而不断降低,形成一条抛物线。
2. 建筑设计
在建筑设计中,二次函数可以用来描述建筑物的结构和形状。
例如,在建造一座拱形桥时,设计师需要使用二次函数来确定桥的最高点和曲线的形状。
3. 经济学
在经济学中,二次函数可以用来描述成本和收益之间的关系。
例如,当一家企业决定生产某种产品时,它需要考虑生产成本和销售收益之间的平衡点,这个平衡点可以用二次函数来计算。
4. 电子技术
在电子技术中,二次函数可以用来描述电路中的电压和电流之间的关系。
例如,在设计一条放大电路时,工程师需要使用二次函数来确定电路的增益和频率响应。
总之,二次函数在我们的生活和工作中有许多应用,这些应用涉及到不同的领域,包括物理学、工程学、经济学和电子技术等。
熟练
掌握二次函数的概念和应用可以帮助我们更好地理解和解决实际问题。
二次函数的应用
二次函数的应用二次函数是数学中一种常见的函数形式,其方程可以表示为:y = ax^2 + bx + c其中,a、b、c为常数,且a ≠ 0。
二次函数在许多实际问题中都有广泛的应用,本文将介绍二次函数在几个不同领域的具体应用案例。
一、物理学领域中的应用1. 自由落体问题当物体在重力作用下自由落体时,其高度与时间之间的关系可以用二次函数来描述。
假设物体从初始高度h0下落,时间t与高度h之间的关系可以表示为:h = -gt^2 + h0其中g为重力加速度,取9.8m/s^2。
通过解二次方程可以求解物体落地的时间以及落地时的位置。
2. 弹射物体的运动考虑一个弹射物体,如抛射出的炮弹或投射物,其路径可以用一个抛物线来表示。
弹射物体的运动轨迹可以通过二次函数得到,可以利用二次函数的顶点坐标来确定最远射程或最高点。
二、经济学领域中的应用1. 成本和收入关系在经济学中,企业的成本和收入通常与产量相关。
通常情况下,成本和收入之间存在二次函数关系。
通过分析二次函数的图像,可以确定最大利润产量或最低成本产量。
2. 售价和需求关系在市场经济中,产品的售价通常与需求量相关。
通常情况下,售价和需求量之间存在二次函数关系。
通过分析二次函数的图像,可以找到最佳定价,以达到利润最大化。
三、工程学领域中的应用1. 抛物线拱桥在建筑和结构工程中,抛物线是通常用来设计拱桥的形状。
由于抛物线具有均匀承重特性,因此可以最大程度地减少桥墩的数量,提高桥梁的承载能力。
2. 抛物面反射器在光学和声学工程中,抛物面被广泛应用于反射器的设计。
由于抛物面具有焦点特性,因此可以实现光或声波的聚焦效果,提高反射效率。
四、生物学领域中的应用1. 生长模型植物和动物的生长通常可以使用二次函数模型来描述。
二次函数可以帮助分析生物在不同生长阶段的生长速率,并预测未来的生长趋势。
2. 群体增长生态学中,群体增长通常可以使用二次函数模型来描述。
例如,一种昆虫群体的数量随时间的变化可以通过二次函数来表示,通过分析二次函数的图像,可以预测种群数量的变化趋势。
二次函数在生活中的应用
二次函数在生活中的应用二次函数在生活中的应用二次函数是高中数学中的一大重点,是研究量与量之间的关系的一种数学工具。
在生活中,二次函数的应用非常广泛,与我们的日常生活息息相关。
本文将从多个方面介绍二次函数在生活中的应用。
1. 物理学中的应用在物理学中,二次函数是研究运动的重要工具。
当物体处于自由落体状态,其下落距离随时间的变化关系就可以用二次函数来表示,这个函数就是常见的自由落体公式:y = -1/2 g t² + v₀t + y₀其中,y 表示下落距离,g 表示重力加速度,t 表示时间,v₀表示物体的初速度,y₀表示物体的初始高度。
二次函数还可以用来描述物体的抛物线运动。
例如,一个抛出的物体的高度与水平距离之间的关系就是一个二次函数。
这个函数被称为抛物线,可以用以下形式表示:y = ax² + bx + c其中,a 表示抛物线的形状,b 表示抛物线的位置,c 表示抛物线的高度。
2. 经济学中的应用在经济学中,二次函数也被广泛应用。
例如,一家公司的成本与生产量之间的关系可以用一个二次函数来表示。
成本由固定成本和可变成本组成,其中固定成本不随生产量变化,可变成本与生产量成二次函数关系。
其函数关系式为:C = a + bx + cx²其中,C 表示总成本,x 表示生产量,a 表示固定成本,b 和 c 是常数。
二次函数还可以应用在市场调研中。
例如,研究一个新产品的销售量与价格之间的关系,就可以用一个二次函数来表示:y = -ax² + bx + c其中,y 表示销售量,x 表示价格,a、b、c 为常数。
这个函数就是常见的需求函数,有助于制定合理的价格策略。
3. 工程中的应用在工程中,二次函数也有很多应用。
例如,一个建筑物的荷载与塔高之间的关系就可以用二次函数来表示,这个函数被称为荷载曲线。
荷载曲线可以用以下形式表示:y = ax² + bx + c其中,y 表示荷载,x 表示塔高,a 表示荷载的变化率,b 和 c 是常数。
1.4二次函数的应用(3)
1.求出下列二次函数和坐标轴的交点坐标: y=2x² -4x+8
y (0,c)
2.对于二次函数y=ax2+bx+c,请回 答下列问题: 如何求函数的图象与坐标轴的交 点的坐标?
x o
2.对于二次函数y=ax2+bx+c,请回答下列问题: (1)如何求函数的图象与坐标轴的交点的坐标? ①图象与y轴的坐标: 设 x=0,得 y=c. ∴图象与y轴的交点的坐标是(0,c). ②图象与x轴的交点的坐标: 设y=0,得 0=ax2+bx+c. 解这个一元二次方程 (ⅰ).设b2-4ac>0,得
o
B
练习:如图,足球场上守门员甲在点O处开出一高球,球从离地1m的点A(A在y 轴上)处飞出,运动员乙在距O点6m的B点处发现足球在自己的正上方达到最高 点M,距地面约4m高,足球落地后又一次弹起.已知足球在草坪上弹起后的抛物 线与原来的抛物线形状相同,但最大高度减少到原来的最大高度的一半. (1)求足球开始飞出到第一次落地时,该抛物线的函数解析式; (2)足球第一次落地点C距离守门员多少m(取 3 = 7 )? 4 (3)运动员乙如果要抢到第二个落地点D,他应该再向前跑多少m( 6 = 5 )?
x1,2
b b -b ± b2 - 4ac = = - . ∴图象与x轴的交点坐标是( - ,0). 2a 2a 2a
例1 利用二次函数的图象求方程x2+x-1=0的根的近似 值. 画出抛物线y=x2+x-1的图象(如图). y ∵图中的抛物线与 x轴交点A、B的坐标分别 y=x2+x-1 3 约(-1.6,0)和(0.6,0), 2 2 ∴一元二次方程x +x-1=0 (-2,1) 1 (1,1) A B 的实数根分别为x1≈-1.6, -4 -3 -2 -1 o 1 2 3 (0,-1) (-1,-1) x2≈-0.6. (-0.5,-1.25)
日常生活中的二次函数应用
日常生活中的二次函数应用日常生活中,我们处处都能看到二次函数的应用。
无论是建筑、经济、物理,还是人们的日常活动,都离不开二次函数。
本文将从不同的角度介绍二次函数在日常生活中的应用,展示二次函数的重要性和广泛性。
一、建筑中的二次函数应用建筑领域是二次函数应用最为广泛的领域之一。
首先,建筑中的拱门常常采用二次函数的形状。
通过调整二次函数的参数,可以得到不同形状的拱门,满足不同建筑需求。
其次,建筑结构中的抛物线也是二次函数的典型应用。
比如,大型体育馆的屋顶通常采用抛物线形状,以便更好地分散荷载。
此外,二次函数还被广泛应用于建筑的设计过程中,比如地基的折线设计以及楼梯的设计等。
二、经济中的二次函数应用经济学中,二次函数被广泛用于描述成本、收益、销量等与价格、产量相关的指标。
例如,企业的成本函数通常是一个二次函数,可以帮助企业预测生产成本与产量之间的关系,从而作出合理的经营决策。
此外,二次函数还可以描述市场需求和供给的关系,帮助经济学家和企业家预测市场的变化趋势,制定相应的市场策略。
三、物理中的二次函数应用在物理学中,二次函数被广泛用于描述各种运动过程。
例如,自由落体运动的位移与时间之间的关系可以用二次函数表示。
当物体受到重力加速度的作用时,其高度与时间的关系可以用二次函数方程描述。
此外,抛体运动中的轨迹也是二次函数的典型应用。
通过分析二次函数的参数,可以预测抛体的飞行轨迹和最高点等相关信息。
四、日常生活中的其他二次函数应用除了建筑、经济和物理以外,日常生活中还有许多其他领域也离不开二次函数的应用。
比如,音乐中的音高与音量之间的关系可以用二次函数描述,帮助音乐家调整音乐的表现力。
此外,二次函数还可以被应用于旅行路径的优化,比如飞机、汽车等交通工具的飞行/行驶路径规划,帮助人们更快、更省时地到达目的地。
结语总之,二次函数在日常生活中具有广泛的应用。
不论是建筑、经济、物理还是日常活动,都离不开二次函数的帮助。
1.4.3二次函数的应用(3)
解方程得t1=0.5;t2=1.5
答:球从弹起至回到地面需要时间为2(s); 经过圆心的0.5s或1.5s球的高度达到3.75m。
课内练习:
1、一球从地面抛出的运动路线呈抛物线,如图, 当球离抛出地的水平距离为 30m 时,达到最 大高10m。
⑴ 求球运动路线的函数解析式和自变量的取值范围;
⑵ 求球被抛出多远; ⑶ 当球的高度为5m时,球离抛出地面的水平距离
例4:
一个球从地面上竖直向上弹起时的速度为10m/s, 经过t(s)时球的高度为h(m)。已知物体竖直上抛运动 中,h=v0t- ½ gt²(v0表示物体运动上弹开始时的速 度,g表示重力系数,取g=10m/s²)。问球从弹起至回到 地面需要多少时间?经多少时间球的高度达到3.75m?
h(m)
6
5
4
3
2
1
-2
-1
0
1
2 t(s)
例4:
h(m)
6
5
解:由题意,得h关于t的二次函数
4
解析式为h=10t-5t²
3
取h=0,得一元二次方程
2
10t-5t²=0
1
解方程得t1=0;t2=2
-2
-1
0到地面需要时间为t2-t1=2(s)
取h=3.75,得一元二次方程10t-5t²=3.75
课内练习
3.利用函数图象判断下列方程有没有解,有几个 解。若有解,求出它们的解(精确到0.1)。
① 2x²-x+1=0 ② 2x²-4x-1=0
y=2x²-x+1
无解
新课标教学网()-海量教学资源欢迎下载!
② 2x²-4x-1=0
y=2x²-4x-1
二次函数的实际应用总结
二次函数的实际应用总结二次函数是高中数学中重要的一类函数。
它具有形如y=ax^2+bx+c的特点,其中a、b、c是实数且a不等于0。
二次函数有许多实际应用,涉及到物理、经济和生活中的各种问题。
本文将总结几个二次函数的实际应用。
一、物体自由落体物体自由落体是一个常见的物理问题,可以用二次函数来描述。
当一物体从高处自由落下时,它的高度与时间之间的关系可以由二次函数表示。
设物体自由落下的高度为H(米),时间为t(秒),重力加速度为g(9.8米/秒²),则有公式H = -gt²/2。
其中负号表示高度的减小,因为物体向下运动。
通过这个二次函数,我们可以计算物体在不同时间下的高度,进而研究物体的运动规律。
例如,我们可以计算物体自由落地所需的时间,或者计算物体在某个时间点的高度。
这在工程设计和物理实验中具有重要意义,帮助我们预测和控制物体的运动。
二、开口向上/向下的抛物线二次函数的图像通常是一个抛物线,其开口的方向由二次项系数a的正负决定。
当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。
对于开口向上的抛物线,我们可以将其应用到生活中的一些情景。
比如,一个喷泉的水柱,水流高度与时间之间的变化可以用开口向上的二次函数来描述。
同样,开口向下的抛物线也有实际应用。
例如,一个弹簧的变形量与受力之间的关系常常是开口向下的二次函数。
通过了解抛物线的性质和方程,我们可以更好地理解和解决与之相关的问题。
三、经济学中的应用二次函数在经济学中也有广泛的应用。
例如,成本函数和收入函数常常是二次函数。
企业的成本与产量之间的关系可以用二次函数来刻画。
同样,市场需求和供给也可以用二次函数来表达。
在经济学中,研究成本、收入、需求和供给的函数对于决策和市场分析至关重要。
通过对二次函数的运用,我们可以计算某一产量下的成本和收入,并了解市场价格的影响因素。
这有助于企业决策和经济政策的制定。
四、其他实际应用除了以上提到的应用,二次函数还可以用于建模和预测其他实际问题。
二次函数的应用
二次函数的应用二次函数是一种常见的数学函数,它的一般形式为 y = ax^2 + bx + c,其中 a、b、c 是实数且a ≠ 0。
二次函数在各个领域都有广泛的应用,下面将介绍几个常见的二次函数应用场景。
1. 物理学中的自由落体运动自由落体是物理学中常见的运动形式,它的运动规律可以用二次函数来描述。
当一个物体在重力作用下自由下落时,其位移和时间的关系可以通过二次函数来表示。
假设物体的下落轨迹为 y = -4.9t^2 + v0t + h0,其中 t 表示时间,v0 表示初始速度,h0 表示初始高度。
通过二次函数的图像,我们可以计算物体的落地时间、最大高度等物理量,进一步分析自由落体运动的特性。
2. 金融学中的收益率曲线在金融学中,收益率曲线常用来描述不同期限的债券收益率之间的关系。
假设某个债券的收益率与到期期限的关系可以用二次函数表示,那么我们可以通过该二次函数的图像来预测不同期限的债券的收益率。
另外,通过对收益率曲线进行分析,可以评估利率的变动趋势、市场风险等重要的金融指标。
3. 经济学中的成本函数在经济学中,成本函数是描述企业生产成本与产量之间关系的数学函数。
对于某些生产过程,成本函数常常具有二次函数的形式。
例如,某企业的总成本可以表示为 C(q) = aq^2 + bq + c,其中 q 表示产量,a、b、c 是常数。
通过分析该二次函数,可以找到最小成本对应的产量,从而在生产决策中进行合理的成本控制。
4. 工程学中的抛物线天桥设计在工程设计中,抛物线天桥是一种常见的设计形式。
抛物线为二次函数的图像,因此可以通过二次函数来描述天桥的形状和结构。
工程师可以利用二次函数的性质来计算天桥的高度、跨度等参数,确保天桥的结构稳定性和安全性。
总结起来,二次函数的应用十分广泛,涵盖了物理学、金融学、经济学、工程学等多个领域。
通过对二次函数图像的分析和计算,我们可以探索和解决实际问题,提高问题的解决效率和准确性。
22.3.3二次函数的应用(3)(实物抛物线)详解
y 1
面下降1m,水面宽度增加多少?当 y 1 时, x 6 2
所以,水面下降1m,水面的
宽度为2 6 m.
∴水面的宽度增加了 2 6 4 m
探究3: y
(0,2)
●
(-2,0)
●
0
(2,0)
●
解:设这条抛物线表示的二次函数为
y ax2 2
由抛物线经过点(2,0),可得
a1 2
所以,这条抛物线的二次函数为:
●
0
(2,0)
●
解:设这条抛物线表示的二次函数为
y a(x 2)(x 2)
由抛物线经过点(0,2),可得
a1 2
所以,这条抛物线的二次函数为:
x
y 1 (x 2() x 2)
2
当水面下降1m时,水面的纵坐标为
抛物线形拱桥,当水面在 l时,
y1
拱顶离水面2m,水面宽度4m,水 当 y 1 时,x 6
将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下
垂呈抛物线状。一身高0.7米的小孩站在离立柱0.4米处,
其头部刚好触上绳子,求绳子最低点到地面的距离。
解 此:抛建物立线如解图析所式示为的y坐标a系x,2 设bx(0c,2.A2) y
(1.6,2.2)
1.6
B
(0.4,0.7) 2.2
F
0.7
E
0C
0.4
x
y 1 x2 2
2
当水面下降1m时,水面的纵坐标为
抛物线形拱桥,当水面在 l时,
y1
拱顶离水面2m,水面宽度4m,水 当 y 1 时,x 6
面下降1m,水面宽度增加多少? 所以,水面下降1m,水面的宽
度为 2 6m.
二次函数在生活中的运用
二次函数在生活中的运用二次函数是一个具有形式为y=ax^2+bx+c的二次多项式函数,其中a、b、c是实数且a≠0。
它是数学中一个重要的函数类型,其在现实生活中有许多广泛的应用。
下面将介绍一些二次函数在生活中的运用。
1.物体的自由落体运动:当物体从静止的位置开始自由下落时,其高度与时间的关系可以用二次函数来描述。
根据物体下落的加速度和初速度,我们可以建立二次函数模型来预测物体的高度随时间的变化。
2.弹性力的计算:弹性力是恢复力的一种,其大小与物体偏离平衡位置的距离成正比。
当物体被施加一个力使其偏离平衡位置时,恢复力的大小可以用二次函数描述。
3.抛物线的建模:抛物线是二次函数的图像,它在很多领域中都有应用。
例如,在建筑设计中,抛物线形状的屋顶可以提供更好的排水系统。
在桥梁设计中,抛物线形状的拱桥可以提供更好的结构稳定性。
4.投射物体的路径预测:当一个物体以一定的初速度和角度被抛出时,它的轨迹可以用二次函数模型来预测。
例如,在棒球运动中,球员可以通过分析投球的初速度和角度来预测球的落点。
5.音乐乐器的调音:乐器的音高可以通过改变乐器弦的张力来调节。
根据弦的拉紧程度,可以建立一个二次函数模型来描述音高与弦长的关系。
这使得乐器演奏者能够根据需要调整乐器的音高。
6.经济中的成本与产出关系:在经济学中,成本与产出的关系经常可以用二次函数来描述。
例如,生产一定数量的商品所需的成本与产出之间可能存在一个最优点,通过求二次函数的极值,可以确定最大化利润的产量。
7.变量与值的关系:二次函数可以用来描述两个变量之间的关系。
例如,员工的工资与工作经验之间可能存在一个二次函数模型,随着工作经验的增加,工资可能会呈现先上升后下降的趋势。
8.交通流量的模拟:交通流量的变化可以用二次函数来建模。
例如,小时交通流量随时间的变化可能呈现一个钟形曲线,交通高峰期的交通流量较大,而其他时间段的交通流量相对较小。
以上仅列举了二次函数在生活中的一些应用,其中还有许多其他的应用。
二次函数的日常应用实例
二次函数的日常应用实例二次函数作为高中数学中的一个重要概念,具有广泛的应用领域。
本文将介绍二次函数在现实生活中的几个常见应用实例,以帮助读者更好地理解和应用这一数学知识。
1. 物体运动的轨迹分析二次函数可以描述物体在空间中的运动轨迹。
例如,当一个投掷物体从地面上抛出时,它的运动轨迹可以用二次函数来描述。
假设一个物体从地面上以初始速度v向上抛出,重力加速度为g。
物体的高度h 可以用二次函数h(t) = -0.5gt^2 + vt + h_0来表示,其中t表示时间,h_0表示初始高度。
通过解析二次函数,可以分析物体的运动轨迹、最大高度、飞行时间等参数。
2. 抛物线形状的建筑设计在建筑设计中,抛物线形状经常被应用于拱门、扶手、悬臂等结构中。
这些结构的形状可以用二次函数来描述。
通过对二次函数进行合适的平移、缩放和旋转,可以根据设计要求来创建出各种形态的抛物线结构。
抛物线结构不仅具有美观的外观,还具有稳定性和均衡负荷的优势。
3. 经济学中的消费模型在经济学中,二次函数常常被用来建立消费模型,帮助研究者了解人们的消费行为。
例如,假设一个人的收入为x,他的消费支出为y。
那么,他的消费行为可以用二次函数y = ax^2 + bx + c来模拟。
通过研究二次函数的系数a、b、c,可以分析消费者的倾向、边际消费率以及其对价格变化的敏感度等信息,为企业和政府制定经济政策提供指导。
4. 高精度测量中的误差修正在科学实验和测量中,我们经常需要对测量误差进行修正。
二次函数被广泛应用于误差修正的算法中。
假设我们进行一次测量,得到的结果为y,而真实值为x。
我们可以构建一个二次函数y = ax^2 + bx + c 来表示测量值与真实值之间的关系。
通过测量多组数据并利用最小二乘法求解系数a、b、c,我们可以对测量结果进行校正,提高测量精度。
5. 经典力学中的力学模型二次函数在经典力学中也有重要的应用。
例如,胡克定律描述了弹簧的弹性变形与施加力之间的关系。
二次函数在生活中的应用案例
二次函数在生活中的应用案例1. 游艺项目中的过山车设计过山车是一个经典的游艺项目,其设计中应用了二次函数的概念。
在过山车的设计中,设计师需要考虑到乘客的体验和安全。
二次函数可以描述过山车的轨道曲线,使乘客在高速行驶和兴奋的同时,保持相对平稳和安全的感觉。
通过调整二次函数的参数,如抛物线的开口方向、高度、曲率等,设计师可以创造出令人惊险刺激又相对安全的过山车体验。
2. 投掷运动中的球的抛物线轨迹在投掷运动中,例如投掷物体或运动员抛投物体,物体在空中的轨迹可以被二次函数描述。
球类运动如篮球、足球、棒球等的投掷和弹射过程,都可以用二次函数模型来描述球的运动轨迹。
运动员和教练可以利用二次函数模型来预测球的飞行轨迹和最佳投掷角度,从而提高命中率和战术效果。
3. 桥梁和建筑物设计在桥梁和建筑物的设计过程中,对于拱形和弧形结构的设计,也是利用了二次函数的概念。
二次函数可以描述建筑物和桥梁的曲线形状,使得结构既具有美观性,又具备一定的坚固和稳定性。
例如,拱桥和拱门的设计中,二次函数模型可以帮助工程师确定合适的拱形曲线,以及正确的弧度和支撑结构,从而确保桥梁的结构稳定和承载能力。
4. 金融领域的货币供给和通货膨胀模型二次函数在金融领域中也有广泛的应用。
例如,货币供给和通货膨胀模型可以使用二次函数来描述。
在经济学中,通过调整二次函数的参数,如货币供应量和通货膨胀率之间的关系,可以预测未来经济的走势和市场表现。
政府和央行可以据此采取相应的货币政策,以维持经济的稳定和平衡。
5. 自然界中的抛物线曲线在自然界中,许多自然现象的运动轨迹也可以用二次函数来描述。
例如,抛物线轨迹可以在大多数情况下模拟自然界中物体的运动。
比如,自由落体下的物体、喷泉中水的喷射、炮弹的轨迹等都可以使用二次函数模型来描述其运动状态。
通过利用二次函数,我们可以更好地理解和解释自然界中的规律和现象。
总结:二次函数在生活中的应用案例非常广泛。
从游艺项目的过山车设计到金融领域的经济模型,从投掷运动的球的抛物线轨迹到桥梁和建筑物的设计,二次函数都发挥着重要的作用。
第44课时:二次函数的应用(3)表格、图象信息题
第44课时:二次函数的应用(3)——表格、图象信息题班级姓名学号【学习目标】1、经历探索问题的过程,进一步获得用数学模型解决实际问题的经验,提高数学的应用意识;2、能从表示实际问题的图表中分析变量之间的二次函数关系,并能运用二次函数的知识求出实际问题的最大值和最小值.【典型例题】活动一、某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax²+bx-75其图象如图所示.(1)由图像你可以得到哪些信息?(2)通过这些信息,你能解决哪些问题?活动二、“绿色出行,低碳健身”已成为广大市民的共识.某旅游景点新增了一个公共自行车停车场,6:00至18:00市民可在此借用自行车,也可将在各停车场借用的自行车还于此地.林华同学统计了周六该停车场各时段的借、还自行车数,以及停车场整点时刻的自行车总数(称为存量)情况,表格中x=1时的y值表示7:00时的存量,x=2时的y值表示8:00时的存量…依此类推.他发现存量y(辆)与x(x为整数)满足如图所示的一个二次函数关系.时段x 还车数(辆)借车数(辆)存量y(辆)6:00-7:00 1 45 5 1007:00-8:00 2 43 11 n……………根据所给图表信息,解决下列问题:(1)m=,解释m的实际意义:;(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;(3)已知9:00~10:00这个时段的还车数比借车数的3倍少4,求此时段的借车数.活动三、某水果店新进一种水果,进价为20元/盒,为了摸清行情,决定试营销10天,商家通过这10天的市场调查发现:①销售价y(元/盒)与销售天数x(天)满足以下关系:天数1≤x≤56≤x≤10销售价格y2421x30②每天的销售量p(盒数)与销售天数x关系如图所示.(1)试求每天的销售量p(盒数)与销售天数x之间函数关系式;(2)设水果店的销售利润为s(元),求销售利润s(元)与销售天数x(天)之间的函数关系式,并求出试营销期间一天的最大利润.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数的应用
1. 心理学家发现,学生对概念的接受能力y 和提出概念所用的时间x (单位:分)之间
大体满足函数关系式:436.21.02++-=x x y (0≤x ≤30)。
y 的值越大,表示接受能力越强。
试根据关系式回答:
(1) 若提出概念用10分钟,学生的接受能力是多少? (2) 概念提出多少时间时?学生的接受能力达到最强?
2. 某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA ,O 恰在水
面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA 的任一平面上,抛物线形状如图(1)所示。
图(2)建立直角坐标系,水流喷出的高度y (米)与水平距离x (米)之间的关系
是4
522
+
+-=x x y 。
请回答下列问题:
(1) 柱子OA 的高度是多少米?
(2) 喷出的水流距水平面的最大高度是多少米?
(3) 若不计其他因素,水池的半径至少要多少米才能使喷出的水
流不至于落在池外?
3. 体育测试时,初三一名高个学生推铅球,已知铅球所经过的路线为抛物线
212
12
++-
=x x y 的一部分,根据关系式回答:
(1) 该同学的出手最大高度是多少?
(2) 铅球在运行过程中离地面的最大高度是多少? (3) 该同学的成绩是多少? 4. 如图,正方形EFGH 的顶点在边长为a 的正方形ABCD 的边上,
若AE=x ,正方形EFGH 的面积为y 。
(1) 求出y 与x 之间的函数关系式; (2) 正方形EFGH 有没有最大面积?若有,试确定E 点位置;若没有,
说明理由。
5、在一场足球赛中,一球员从球门正前方10米处将球踢起射向球门,
当球飞行的水平距离为6米时,球到达最高点,此时球高3米,已知球门高为2.44米,问能否射中球门?
6、已知某绿色蔬菜生产基地收获的大蒜,从四月一日起开始上市的30天内,大蒜每10千克的批发价y
(元)是上市时间
(1) 求y 与x
(2) 大蒜每10千克的批发价为10.8元时,问此时是在上市的多少天? 7、某工厂的大门是一抛物线型水泥建筑物,大门的地面宽度为8米,两侧
距地面3米
高处各有一个壁灯,两壁灯之间的水平距离为6米,试求厂门的高度。
8、数学活动小组接受学校的一项任务:在紧靠围墙的空地上,利用围墙及一段长为60米的木栅栏围成一块生物园地,请设计一个方案使生物园的面积可能大。
(1)活动小组提交如图的方案。
设靠墙的一边长为 x 米,则不靠墙的一边长为(60-2x)
米,面积y= (60-2x) x 米2.当x=15时,y 最大值 =450米2。
(2)机灵的小明想:如果改变生物园的形状,围成的面积会更大吗?请你帮小明设计两个方案,要求画出图形,算出面积大小;并找出面积最大的方案.
9、抛物线经过A 、B 、C 三点,顶点为D ,且与x 轴的另一个交点为E 。
(1) 求该抛物线的解析式; (2) 求四边形ABDE 的面积; (3) 求证:△AOB ∽△BDE 。
10、已知抛物线y=(1-m)x 2
+4x-3开口向下,与x 轴交于A(x 1,0)和B(x 2,0)两点,其中x l <x 2. (1)求m 的取值范围;
(2)若x 12+ x 22
=10,求抛物线的解析式,并在给出的直角坐标系中画出这条抛物线; 11、如图,等腰梯形ABCD 的边BC 在x 轴上,点A 在y 轴的正方向上,A ( 0,6 ), D ( 4,6),且AB=2
(1)求点B 的坐标;(2)求经过A 、B 、D 三点的抛物线的解析式;
(3)在(2)中所求的抛物线上是否存在一点P ,使得S △PBD =S 梯形ABCD 。
若存在,请求出该点坐标,若不存在,请说明理由.
12、已知:以直线1=x 为对称轴的抛物线与x 轴交于A 、B 两点(点A 在点B 的左边),且经过点⎪⎭⎫ ⎝⎛
45,
4 和⎪⎭
⎫ ⎝⎛
-43,0. 点()y x P ,在抛物线的顶点M 的右侧的半支上
(包括顶点M ),在x 轴上有一点C 使OPC ∆是等腰三角形,PC OP =.
(1)若OPC ∠是直角,求点P 的坐标;
(2)当点P 移动时,过点C 作x 轴的垂线,交直线AM 于点Q ,设AQC ∆的面积为S ,
求S 关于x 的函数解析式和自变量x 的取值范围,并画出它的图象.
13、(2007四川成都)在平面直角坐标系xO y 中,已知二次函数2
(0)y ax bx c a =++≠的图象与x 轴交于A B ,两点(点A 在点B 的左边),与y 轴交于点C ,其顶点的横坐标
为1,且过点(23),
和(312)--,. (1)求此二次函数的表达式;
(2)若直线:(0)l y kx k =≠与线段BC 交于点D (不与点B C ,重合),则是否存在这样的直线l , 使得以B O D ,,为顶点的三角形与BAC △相似? 若存在,求出该直线的函数表达式及点D 的坐标; 若不存在,请说明理由;
(3)若点P 是位于该二次函数对称轴右边图象上 不与顶点重合的任意一点,试比较锐
角PCO ∠与ACO ∠ 的大小(不必证明), 并写出此时点P 的横坐标p x 的取值范围.
.
14、如图,已知二次函数图象顶点为C (1,0),直线m x y +=与该二次函数交于A ,B
两点,其中A 点(3,4),B 点在y 轴上,(1)求m 值及这个二次函数关系式;(2)
P 为线段AB 上一动点(P 不与A ,B 重合),过P 做x 轴垂线与二次函数交于点E ,设线段PE 长为h ,点P 横坐标为x ,求h 与x 之间的函数关系式,并写出自变量x 取值范围;(3)D 为AB 线段与二次函数对称轴的的交点,在AB 上是否存在一点P ,使四边形DCEP 为平行四边形?若存在,请求出P 点坐标;若不存在,请说明理由。
14.如图,抛物线y =-
12
x 2+
52
x -2与x 轴相交于点A 、B ,与y 轴相交于点C .
(1)求证:△AOC ∽△COB ; (2)过点C 作CD ∥x 轴交抛物线于点D .若点P 在线段AB 上以每秒1个单位的速度由A 向B 运动,同时点Q 在线段CD 上也以每秒1个单位的速度由D 向C 运动,则经过
几秒后,PQ =AC .
15.将一矩形纸片OABC 放在直角坐标系中,O 为原点,C 在x 轴上,OA =6,OC =10.
⑴如图⑴,在OA 上取一点E ,将△EOC 沿EC 折叠,使O 点落在AB 边上的D 点,求E
点的坐标;
⑵如图⑵,在OA 、OC 边上选取适当的点E ′、F ,将△E ′OF 沿E ′F 折叠,使O 点落在AB 边上的D ′点,过D ′作D ′G ∥A ′O 交E ′F 于T 点,交OC ′于G 点,求证:TG=A ′E ′
⑶在⑵的条件下,设T (x ,y )①探求:y 与x 之间的函数关系式.②指出变量x 的取值范围.
17、(2007山东威海)如图①,在平面直角坐标系中,点A 的坐标为(12),
,点B 的坐标为(31),
,二次函数2
y x =的图象记为抛物线1l . (1)平移抛物线1l ,使平移后的抛物线过点A ,但不过点B ,写出平移后的一个抛物线的函数表达式: (任写一个即可).
(2)平移抛物线1l ,使平移后的抛物线过A B ,两点,记为抛物线2l ,如图②,求抛物线
2l 的函数表达式.
(3)设抛物线2l 的顶点为C ,K 为y 轴上一点.若ABK ABC S S =△△,求点K 的坐标. (4)请在图③上用尺规作图的方式探究抛物线2l 上是否存在点P ,使ABP △为等腰三角
形.若存在,请判断点P 共有几个可能的位置(保留作图痕迹);若不存在,请说明师.
x
图①
x
图②
x
图③。