3.第14课时二次函数的应用
2015年浙江省杭州数学中考总复习课件第14课时:二次函数的应用
二次函数的应用
第14课时┃ 二次函数的应用
考 点 聚 焦
考点1 二次函数与几何图形的综合应用
[2014·北京] 已知点 A 为某封闭图形边界上一定点,动点 P 从点 A 出发,沿其边界顺时针匀速运动一周,设点 P 运动的时间 为 x,线段 AP 的长为 y,表示 y 与 x 的函数关系大致如图 14-1 所示,则该封闭图形可能是 ( A )
当堂检测
第14课时┃ 二次函数的应用
杭 考 探 究
探究一 用二次函数解决抛物线形实际问题
例 1 [2014·天水] 如图 14-3,排球运动员站在 O 处练习 发球,将球从点 O 正上方 2 米的点 A 处发出,把球看成点,其运 行的高度 y(米)与运行的水平距离 x(米)满足关系式 y=a(x- 2 6) +h.已知球网与点 O 的水平距离为 9 米,高度为 2.43 米,球 场的边界与点 O 的水平距离为 18 米. (1)当 h=2.6 时,求 y 与 x 的关系式;
考点聚焦
杭考探究
当堂检测
第14课时┃ 二次函数的应用
根据问题信息求出函数表达式, 并求相应的 自变量的值及函数最值.
思路点津
考点聚焦
杭考探究
当堂检测
第14课时┃ 二次函数的应用
解:(1)y= (2)设销售 A 类杨梅 x 吨,则 ①当 2≤x<8 时,w=x(-x+14)+9(20-x)-3×20-x- [12+3(20-x)]=-x2+7x+48. 当 x≥8 时,w=6x+9(20-x)-3×20-x-[12+3(20-x)] =-x+48. 所以函数表达式为 w=
考点聚焦
杭考探究
当堂检测
第14课时┃ 二次函数的应用
九年级数学下册二次函数的应用教案
课题:2.4二次函数的应用教学目标:1.经历探究长方形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学知识的应用价值.2.能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题中的最大(小)值问题.3.能够对解决问题的基本策略进行反思,形成个人解决问题的风格.进一步体会数学与人类社会的密切联系.教学重点与难点:重点:经历探究矩形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的应用价值.难点:能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题.课前准备:导学案,多媒体课件.教学过程:一、创设情境,导入新课活动内容:(利用导学案)探究活动:以小组为单位,用长1米的绳子围成不同的图形,看哪个小组围成的图形最多,并估算出所围成的这些图形中,哪个图形的面积最大?处理方式:学生先把答案写在导学案上,然后小组内交流,班级内比较的到当场合款相等时面积最大.设计意图:增加学生的动手能力和小组合作探究能力,同时也为了复习图形的面积公式,会用估算的方法比较这些图形的面积大小,探究其中的规律,为本节课学习最大面积问题做好铺垫.二、探究学习,感悟新知活动内容:(多媒体展示)问题一:探究两边在直角三角形直角边上内接矩形的最大面积 如图,在一个直角三角形的内部作一个长方形ABCD ,其中AB 和AD 分别在两直角边上.(1)设长方形的一边AB =x m ,那么AD 边的长度如何表示?(2)设长方形的面积为y m 2,当x 取何值时,y 的值最大?最大值是多少?解:(1)∵BC ∥AD , ∴△EBC ∽△EAF .∴EB BCEA AF=. 又AB =x ,BE =40-x , ∴404030x BC-=.∴BC =34(40-x ). ∴AD =BC =34(40-x )=30-34x . (2)y =AB ·AD =x (30-34x )=-34x 2+30x =-34(x 2-40x +400-400) =-34(x 2-40x +400)+300 =-34(x -20)2+300. 当x =20时,y 最大=300.即当x 取20m 时,y 的值最大,最大值是300m 2.处理方式:学生讨论交流,在导学案上完成后,学生之间互相展示结果讨论补充,教师适时点评,并在多媒体上展示正确结果.设计意图:从矩形的面积公式入手,利用相似三角形的性质表示出另外一条边,才能列出函数表达式,这一过程先由学生独立思考后,分组合作探究、交流,帮助个别存在困难的同学解决.此题的思路也是解决矩形最大面积问题最常用的方法.问题二:探究一边在直角三角形斜边上内接矩形的最大面积(多媒体展示)如图,在一个直角三角形的内部作一个矩形ABCD ,其中BC 在斜边上,,A D 在直角边上.如果设矩形的一边m AD x =,那么AB 边的长度如何表示?当x 取何值时,矩形面积y 的值最大?最大值是多少?解:设矩形的一边m AD x =,由GAD ∆GFD ∆,得AD GMEF GN=, 即5024x GM=, ∴1225GM x =.∴122425AB MN GN GM x ==-=-. 21212(24)242525ABCDS AD AB x x x x ==-=-+矩形.当24251222()25b x a =-=-=⨯-时,y 有最大值,最大值为224300124()25y -==⨯-最大值 处理方式:在有了前面解答问题的经验之后,让学生自主探究,寻求变量与不变量之间的关系,仿照第一种情况,再一次体验解决此类问题的步骤和方法,本环节相当于对问题1的巩固练习,学生在认真听讲的前提下完成应该没有问题,提醒学生计算要认真. 设计意图:在上一道题的基础上,利用相似三角形的性质表示出矩形的另一条边长,列出二次函数表达式,但此题上了难度,难度在于利用的是相似三角形对应高的比等于相似比这一性质,而且还要用到等积法求直角三角形斜边上的高.充分发挥学生的主动探究能力,并由个别程度较好的学生讲解,最后再板书进行反思总结.三、例题解析,新知应用 活动内容:(多媒体出示例题)某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m .当x 等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?解:∵7x +4y +πx =15, ∴y =1574x xπ--.设窗户的面积是S (m 2),则S =12πx 2+2xy=12πx 2+2x ·1574x x π-- =12πx 2+(157)2x x x π-- =-3.5x 2+7.5x=-3.5(x 2-157x ) =-3.5(x -1514)2+1575392. ∴当x =1514≈1.07时, S 最大=1575392≈4.02. 即当x ≈1.07m 时,S 最大≈4.02m 2,此时,窗户通过的光线最多. 答案:.02.407.12m S m x =≈最大时,处理方式:本题含有两个图形的面积计算,主要是想进一步提高学生分析问题和解决问题的能力,巩固训练列二次函数表达式和求最值的方法.让学生理解通过窗户光线多少与窗户面积大小有关.此题处理起来比较繁琐,教师要给予学生及时的指导和帮助,同时也告诉学生数学基本运算也是培养大家做事严谨、有耐心的一个很好的途径.设计意图:在学生已有的探究“面积最大值”经验获取的体会中,让学生继续沿着这条探究路线走下去,既能巩固前面的探究方法,又能让学生再次感受“数学来源于生活”.方法提炼:我们已经做了不少用二次函数知识解决实际问题的例子,现在大家能否根据前面的例子作一下总结,解决此类问题的基本思路是什么呢?与同伴进行交流.(学生讨论,教师多媒体展示)(1)理解问题;(2)分析问题中的变量和常量以及它们之间的关系; (3)用数学的方式表示它们之间的关系; (4)做函数求解;(5)检验结果的合理性,拓展等.设计意图:趁热打铁,及时进行小结,总结做题的方法及思路,抓住这种题目的本质,达到举一反三的目的和效果.四、拓展提升,学以致用一养鸡专业户计划用116m 长的竹篱笆靠墙围成一个长方形鸡舍,怎样设计才能使围成的长方形鸡舍的面积最大?最大为多少?解:设AB 长为x m ,则BC 长为(116-2x )m ,长方形面积为S m 2. 根据题意得S =x (116-2x )=-2x 2+116x=-2(x 2-58x +292-292)=-2(x -29)2+1682.当x =29时,S 有最大值1682,这时116-2x =58.即设计成长为58m ,宽为29m 的长方形时,能使围成的长方形鸡舍的面积最大,最大面积为1682m 2.处理方式:学生通过思考并交流讨论,探索出需要利用本节课学的知识解决题目,教师利用多媒体展示答案. 活动的设计意在通过问题的变式促使学生灵活运用知识,在解决实际问题中,重视知识的发展,有利于后续学习兴趣的培养.设计意图:让同学们通过刚才的学习和体验后进行练习,深入浅出地对题目进行分析和理解并解决问题,虽然并不要求他们在以后都用这样的方法解题,但对于培养他们形成良好的心理素质和培养他们分析问题、解决问题的能力是很有帮助的.五、回顾反思,提炼升华师:同学们,通过这节课的学习,你有哪些收获?那些疑惑?有何感想?学会了哪些方法?先想一想,再分享给大家.(1)通过本节课掌握了利用相似三角形的性质表示矩形的另一边,是列矩形面积函数关系式的关键.(2)图形最大面积问题,实质上是二次函数的最值问题.(3)解决此类问题,首先要理解问题,分析问题中的变量和常量,以及它们之间的关系是难点,用数学的方式表示它们间的关系是关键,化归为二次函数运用公式求解是易错点,要做对做全需要我们一定基本功扎实,养成良好的数学素养!处理方式:学生畅谈自己的收获,教师补充.设计意图:课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,进一步培养学生总结归纳的能力与合作互助的意识.六、达标检测,反馈提高师:通过本节课的学习,同学们的收获真多!收获的质量如何呢?请完成导学案中的达标检测题.(同时多媒体出示)1.如图,已知△ABC 是一等腰三角形铁板余料,其中AB=AC=20cm,BC=24cm.若在△ABC 上截出一矩形零件DEFG,使EF 在BC 上,点D 、G 分别在边AB 、AC 上.问矩形DEFG 的最大面积是多少?2.如图,△ABC 中,∠B=90°,AB=6cm,BC=12cm.点P 从点A 开始,沿AB 边向点B 以每秒1cm 的速度移动;点Q 从点B 开始,沿着BC 边向BQCAF E BG D C A点C 以每秒2cm 的速度移动.如果P,Q 同时出发,问经过几秒钟△PBQ 的面积最大?最大面积是多少?参考答案1.过A 作AM⊥BC 于M,交DG 于N,则AM=222012-=16cm. 设DE=x cm,S 矩形=y cm 2,则由△ADG∽△ABC,故AN DG AM BC =,即161624x DG-=,故DG=32(16-x ). ∴y =DG ·DE=32(16-x )x =-32(x 2-16x)=-32(x -8)2+96,从而当x =8时,y 有最大值96.即矩形DEFG 的最大面积是96cm 2.2.设第t 秒时,△PBQ 的面积为y cm 2.则∵AP=t cm,∴PB=(6-t )cm;又BQ=2t.∴y =12PB ·BQ=12(6-t )·2t =(6-t )t =-t 2+6t =-(t -3)2+9,当t =3时,y 有最大值9.故第3秒钟时△PBQ 的面积最大,最大值是9cm 2.处理方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.设计意图:学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.七、布置作业,课堂延伸必做题:课本47页,习题2.8第1、2、3题. 选做题:课本48页,习题2.8第4题. 结束语:师:同学们,本节课的学习你们给我留下了深刻的印象,同时也给了我太多的感动与惊喜,谢谢你们!就让我把这份感动与惊喜埋在心底“一生一世”,相信你们的明天会更美好!祝愿同学们:象雄鹰一样飞的更高,飞的更远!(多媒体播放歌曲“飞的更高”结束本课)2.4.1二次函数的应用一、教学目标1.掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值.2.学会分析和表示不同背景下实际问题中的变量之间的二次函数关系,并运用二次函数的知识解决实际问题.二、课时安排 1课时 三、教学重点掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值. 四、教学难点运用二次函数的知识解决实际问题. 五、教学过程 (一)导入新课引导学生把握二次函数的最值求法: (1)最大值: (2)最小值: (二)讲授新课 活动1:小组合作如图,在一个直角三角形的内部作一个矩形ABCD ,其中AB 和AD 分别在两直角边上. (1)设矩形的一边AB=xm,那么AD 边的长度如何表示?(2)设矩形的面积为ym 2,当x 取何值时,y 的值最大?最大值是多少?解:()31AD bm,b x 30.4==-+设易得 ()2332(30)3044y xb x x x x==-+=-+()2320300.4x =--+ 24:20,300.24b ac b x y a a-=-===最大值或用公式当时活动2:探究归纳先将实际问题转化为数学问题,再将所求的问题用二次函数关系式表达出来,然后利用顶点坐标公式或者配方法求出最值,有时必须考虑其自变量的取值范围,根据图象求出最值.(三)重难点精讲例题:某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m.当x 等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?解:4715.yx x ++π=由 157.4x x y --π=得2215722()242x x x x S xy x π--ππ=+=+窗户面积271522x x =-+ 2715225().21456x =--+2b 154ac b 225x 1.07,s 4.02.2a 144a 56-=-=≈==≈最大值当时即当x ≈1.07m 时,窗户通过的光线最多.此时窗户的面积为4.02m 2. (四)归纳小结“最大面积” 问题解决的基本思路: 1.阅读题目,理解问题.2.分析问题中的变量和常量,以及它们之间的关系.3.用数量的关系式表示出它们之间的关系.4.根据二次函数的最值问题求出最大值、最小值.5.检验结果的合理性.(五)随堂检测1.(包头·中考)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm2.2.(芜湖·中考)用长度为20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2x m.当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积.3.(潍坊·中考)学校计划用地面砖铺设教学楼前的矩形广场的地面ABCD,已知矩形广场地面的长为100米,宽为80米,图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都是小正方形的边长,阴影部分铺设绿色地面砖,其余部分铺设白色地面砖.(1)要使铺设白色地面砖的面积为5 200平方米,那么矩形广场四角的小正方形的边长为多少米?(2)如图铺设白色地面砖的费用为每平方米30元,铺设绿色地面砖的费用为每平方米20元,当广场四角小正方形的边长为多少米时,铺设广场地面的总费用最少?最少费用是多少?4.(南通·中考)如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B,C重合).连接DE,作EF⊥DE,EF与线段BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式.(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若12y m=,要使△DEF 为等腰三角形,m 的值应为多少?5.(河源·中考)如图,东梅中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.设矩形的宽为x ,面积为y .(1)求y 与x 的函数关系式,并求出自变量x 的取值范围. (2)生物园的面积能否达到210平方米?说明理由.【答案】 1.12.52. 2x m 矩形的一边长是2xm,其邻边长为((20422x1022x,2-+=-(121022222S x x x x ⎡⎤=•-++⎣⎦所以该金属框围成的面积302,.322x ==-+当时金属框围成的图形面积最大 )((()2x 60402m ,10221032210210m .=--⨯-=此时矩形的一边长为另一边长为()2S3002002m.=-最大3.解; (1)设矩形广场四角的小正方形的边长为x米,根据题意得:4x2+(100-2x)(80-2x)=5 200,整理得x2-45x+350=0,解得x1=35,x2=10,经检验x1=35,x2=10均适合题意,所以,要使铺设白色地面砖的面积为5 200平方米,则矩形广场四角的小正方形的边长为35米或者10米.(2)设铺设矩形广场地面的总费用为y元,广场四角的小正方形的边长为x米,则y=30[4x2+(100-2x)(80-2x)]+20[2x(100-2x)+2x(80-2x)] 即y=80x2-3 600x+240 000,配方得y=80(x-22.5)2+199 500,当x=22.5时,y的值最小,最小值为199 500,所以当矩形广场四角的小正方形的边长为22.5米时,铺设矩形广场地面的总费用最少,最少费用为199 500元.4. ⑴在矩形ABCD中,∠B=∠C=90°,∴在Rt△BFE中,∠1+∠BFE=90°,又∵EF⊥DE,∴∠1+∠2=90°,∴∠2=∠BFE,∴Rt△BFE∽Rt△CED,∴BF BECE CD=, ∴8y xx m-=即28x x ym-=⑵当m=8时,28,8x x y -=化成顶点式: ()21428y x =--+ (3)由12y m =,及28x x y m -=得关于x 的方程:28120x x -+=,得1226x x ==,∵△DEF 中∠FED 是直角,∴要使△DEF 是等腰三角形,则只能是EF=ED , 此时, Rt △BFE ≌Rt △CED ,∴当EC=2时,m=CD=BE=6;当EC=6时,m=CD=BE=2. 即△DEF 为等腰三角形,m 的值应为6或2. 5. 解:(1)依题意得:y=(40-2x)x . ∴y=-2x 2+40x .x 的取值范围是0< x <20.(2)当y=210时,由(1)可得,-2x 2+40x=210. 即x 2-20x+105=0. ∵ a=1,b=-20,c=105, ∴2(20)411050,--⨯⨯<∴此方程无实数根,即生物园的面积不能达到210平方米. 六.板书设计2.4.1二次函数的应用探究: 例题:“最大面积” 问题解决的基本思路: 1.阅读题目,理解问题.2.分析问题中的变量和常量,以及它们之间的关系.3.用数量的关系式表示出它们之间的关系.4.根据二次函数的最值问题求出最大值、最小值.5.检验结果的合理性. 七、作业布置 课本P47练习练习册相关练习八、教学反思课题:2.4.2二次函数的应用教学目标:知识与技能1.经历探索T恤衫销售中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值.2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力.过程与方法经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,发展学生运用数学知识解决实际问题的能力.情感态度与价值观1.体会数学与人类社会的密切联系,了解数学的价值。
第14讲二次函数的应用--拱桥问题课后作业课件
----拱桥问题
课后作业1:河北省赵县的赵州桥的桥
拱是近似的抛物线形,建立如图所示的平面直 角坐标系,其函数的关系式为y=﹣ x2,当水 面离桥拱顶的高度DO是4m时,这时水面宽度AB 为( )
A.﹣20m B.10m C.20m D.﹣10m
答案详解
解:根据题意B的纵坐标为﹣4,
32
解得:x1=4√2 x2=-4√2
x1-x2=8√2>4
∴这辆装有大型设备的汽车能安全通过此隧道.
x CLeabharlann 水池的半径至少是2.5米课后作业3
如图是某地区一条公路上隧道入口在平面直 角坐标系上的示意图,点A和A1,点B和B1分别关 于y轴对称.隧道拱部分BCB1为一段抛物线,最 高点C离路面AA1的距离为8m,点B离路面AA1的 距离为6m,隧道宽AA1为16m. (1)求隧道拱部分BCB1的解析式
(2)现有一大型货车,装载某大型设备后,宽为 4m,装载设备的顶部离路面均为7m,问它能否 安全通过这个隧道?并说明理由.
答案详解
(1)根据题意得: ∵AA1=16,OC=8,AB=6, ∴OA=OA1=8, ∴顶点C(0,8),点B(-8,6), 设隧道拱抛物线BCB1的函数解析式为y=ax2+8, 将点B代入得:6=64a+8,
yB
A
x
0
C
答案详解 yB
解:根据题意得:
A(0,1.25),顶点B(1,2.25)
A
设右边抛物线关系式为
y=a(x-h)2+k ∴y=a(x-1)2+2.25
0
代入A(0,1.25)得:a+2.25=1.25
∴a=-1
2020年浙江数学中考复习第三单元函数之第14课时 二次函数综合题
∴mn=x1x2(1-x1)(1-x2) ∵0<x1<x2<1,
=(x
1-x
21)(x
2-x
22)
=[-(x
1-12)2+14]·[-(x
2-12)2+14]
,
∴∵0x<1≠x-2,(x∴1-012<)2m+n14<≤11614
,0<-(x2-12 .
)2+ 1 4
≤1 4
,∴0<mn≤
1, 16
第14课时 二次函数综合题
①当-4≤- b ≤-2,即4≤b≤8时,
2 如解图①所示,x=1时,函数取最大值y=1+3b;
当x=- b时,函数取最小值y= 8b-b2,∴(1+3b)- 8b-b2=16,
2
4
4
即b2+4b-60=0.∴b1=6,b2=-10(舍去).
②当-2<- b ≤0,即0≤b<4时,如解图②所示,
2 x=-5时,函数取最大值y=25-3b;x=-
当a<0时,a(x-2)(x-1)>0,即y1>y2.
第14课时 二次函数综合题
返回目录
4. (2018杭州22题12分)设二次函数y=ax2+bx-(a+b)(a,b是常数,a≠0). (1)判断该二次函数图象与x轴交点的个数,说明理由; (1)解:该二次函数图象与x轴有1个或2个交点. 理由如下:∵a≠0,Δ=b2+4a(a+b)=(b+2a)2≥0, ∴该二次函数图象与x轴有1个或2个交点;
第14课时 二次函数综合题
返回目录
(6)已知二次函数y=mx2-2mx+3,若P(-1,y1),Q(4,y2)两点在此函数图象上, 试比较y1,y2的大小. 【思维教练】要比较函数图象上两点纵坐标的大小,只需求出抛物线的对称轴,分 m>0和m<0两种情况,根据两点到抛物线对称轴的距离即可判断.
最新中考数学初三总复习第三单元函数第14课时 二次函数的实际应用达标训练及答案(word版)
第三单元函数第十四课时二次函数的实际应用1. (8分)(2017眉山)东坡某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件,若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?2. (8分)(2017济宁)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=-x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?3. (8分)(2017成都)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫的距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站 A B C D Ex(千米) 8 9 10 11.5 13y1(分钟) 18 20 22 25 28(1)求y1关于x的函数表达式;(2)李华骑单车的时间y2(单位:分钟)也受x的影响,其关系可以用y2=12x2-11x+78来描述.请问:李华应选择在哪一站出地铁,才能使他从文化宫站回到家所需要的时间最短?并求出最短时间.4. (8分)(2017青岛)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨13.下表是去年该酒店豪华间某两天的相关记录:淡季旺季未入住房间数10 0日总收入(元) 24000 40000(1)该酒店豪华间有多少间?旺季每间价格为多少元?(2)今年旺季来临,豪华间的间数不变.经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?5. (9分)(2017河北)某厂按用户的月需求量x(件)完成一件产品的生产,其中x>0.每件的售价为18万元,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需要量x(件)成反比.经市场调研发现,月需求量x与月份n(n为整数,1≤n≤12)符合关系式x=2n2-2kn+9(k+3)(k为常数),且得到了表中的数据.月份n(月) 1 2成本y(万元/件) 11 12需求量x(件/月) 120 100(1)求y与x满足的关系式,请说明一件产品的利润能否是12万元;(2)求k,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m个月和第(m+1)个月的利润相差最大,求m.6. (9分)(2017南雅中学一模)九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下,已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).时间x(天) 1 30 60 90每天销售量p(件) 198 140 80 20(1)求出w与x的函数关系式;(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.第6题图答案1. 解:(1)当每件蛋糕利润是14元时,提高了(14-10)÷2=2个档次,∵提高2个档次,∴此批次蛋糕属第3档次产品;(2)设烘焙店生产的是第x档次的产品,则每件的利润为10+2(x-1),每天的产量为76-4(x-1),由题意可得[10+2(x-1)][76-4(x-1)]=1080,整理得8x2-128x+440=0,解得x1=5,x2=11(∵11>6,不符合题意,舍去),答:该烘焙店生产的是第5档次的产品.2. 解:(1)w=(x-30)·y=(x-30)·(-x+60)=-x2+90x-1800,∴w与x的函数关系式为w=-x2+90x-1800(30≤x≤60);(2)w=-x2+90x-1800=-(x-45)2+225,∴当x =45时,w 有最大值,w 最大值为225,答:销售单价定为45元时,每天销售利润最大,最大销售利润225元; (3)当w =200时,可列方程-(x -45)2+225=200, 解得x 1=40,x 2=50, ∵50>48,∴x 2=50(不符合题意,应舍去),答:该商店销售这种双肩包每天想要获得200元的销售利润,销售单价应定为40元.3. 解:(1)设一次函数为y 1=kx +b (k ≠0), 将x =8,y =18和x =9,y =20代入, 得⎩⎪⎨⎪⎧8k +b =189k +b =20,解得⎩⎪⎨⎪⎧k =2b =2, ∴y 1与x 的函数关系式为y 1=2x +2;(2)设李华从文化宫乘地铁和骑单车回家共需y 分钟,∵y 2=12x 2-11x +78,∴y =y 1+y 2=12x 2-9x +80=12(x -9)2+792,∵12>0, ∴当x =9时,y 最小=792(分钟),答:李华应选择在B 站出地铁,才能使他从文化宫回到家的时间最短,最短时间为792分钟.4. 解:(1)设该酒店有豪华间a 间,则:40000a =24000a -10(1+13), 解得a =50,经检验a =50是原方程的解,符合题意, ∴旺季每间=40000÷50=800(元),答:该酒店豪华间有50间,旺季每间价格为800元; (2)设该酒店豪华间上涨x 元,日总收入为w 元,则w =(x +800)(50-x 25)=-125x 2+18x +40000=-125(x -225)2+42025,∵-125<0,∴当x =225时,w 有最大值,此时w max =42025,答:当每间价格上涨225元时,日总收入最高,最高总收入为42025元.5. 解:(1)由题意,设y =a +bx,由表中数据,得⎩⎨⎧11=a +b 12012=a +b 100,解得⎩⎪⎨⎪⎧a =6b =600,∴y =6+600x,由题意,若12=18-(6+600x ),则600x =0,∵x >0,∴600x >0, ∴一件产品的利润不可能是12万元;(2)将n =1,x =120代入x =2n 2-2kn +9(k +3),得120=2-2k +9k +27, 解得k =13,将n =2,x =100代入x =2n 2-2kn +9(k +3),得100=8-4k +9(k +3), 解得k =13,由题意,得18=6+600x ,解得x =50,∴50=2n 2-26n +144,即n 2-13n +47=0, ∵b 2-4ac =(-13)2-4×1×47<0,∴方程无实根,∴不存在某个月既无盈利也不亏损;(3)∵第m 个月的利润为W m =x(18-y )=18x -x(6+600x )=12(x -50)=12(2m 2-26m +144-50)=24(m 2-13m +47),∴第(m +1)个月的利润为W m +1=24[(m +1)2-13(m +1)+47]=24(m 2-11m +35),若W m ≥W m +1,W m -W m +1=48(6-m ),m 取1时,W m -W m +1=240,利润相差最大;若W m <W m +1,W m +1-W m =48(m -6),m +1≤12,m 取11时,W m +1-W m =240,利润相差最大, ∴m =1或m =11.6. 解:(1)当1≤x ≤50时,设商品的售价y 与时间x 的函数关系式为y =kx +b (k 、b 为常数且k ≠0),∵y =kx +b 经过点(0,40)、(50,90),代入得 ∴⎩⎪⎨⎪⎧b =4050k +b =90,解得⎩⎪⎨⎪⎧k =1b =40, ∴售价y 与时间x 的函数关系式为y =x +40;当50<x ≤90时,y =90, ∴售价y 与时间x 的函数关系式为 y =⎩⎪⎨⎪⎧x +40(1≤x≤50,且x 为整数)90 (50<x≤90,且x 为整数),由数据可知每天的销售量p 与时间x 成一次函数关系,设每天的销售量p 与时间x 的函数关系式为p =mx +n (m 、n 为常数,且m ≠0), ∵p =mx +n 经过点(60,80)、(30,140),代入得, ∴⎩⎪⎨⎪⎧60m +n =8030m +n =140,解得⎩⎪⎨⎪⎧m =-2n =200, ∴p =-2x +200(1≤x ≤90,且x 为整数),当1≤x ≤50时,w =(y -30)·p=(x +40-30)(-2x +200)=-2x 2+180x +2000; 当50<x ≤90时,w =(90-30)(-2x +200)=-120x +12000, 综上所述,每天的销售利润w 与时间x 的函数关系式是w = ⎩⎪⎨⎪⎧-2x2+180x +2000(1≤x≤50,且x 为整数)-120x +12000(50<x≤90,且x 为整数); (2)当1≤x ≤50时,w =-2x 2+180x +2000=-2(x -45)2+6050, ∵a =-2<0且1≤x ≤50,∴当x =45时,w 取最大值,最大值为6050元,当50<x≤90时,w=-120x+12000,∵k=-120<0,w随x增大而减小,∴当x=50时,w取最大值,最大值为6000元,∵6050>6000,∴当x=45时,w最大,最大值为6050元,答:销售第45天时,当天获得的销售利润最大,最大利润是6050元;(3)24天.【解法提示】当1≤x≤50时,令w=-2x2+180x+2000≥5600,即-2x2+180x -3600≥0,解得30≤x≤60,∵1≤x≤50,∴30≤x≤50,∴50-30+1=21(天),当50<x≤90时,令w=-120x+12000≥5600,即-120x+6400≥0,解得x≤531 3,∵50<x≤90,x为整数,∴50<x≤53,53-50=3(天),综上可知:21+3=24(天),答:该商品在销售过程中,共有24天每天的销售利润不低于5600元.。
江苏省中考数学试题研究第一部分考点研究第三章函数第14课时二次函数的应用试题(5年真题)
江苏省中考数学试题研究第一部分考点研究第三章函数第14课时二次函数的应用试题(5年真题)函数第14课时二次函数的应用江苏近5年中考真题精选(2013~2017)命题点1二次函数的实际应用(盐城1考,淮安1考,宿迁1考)考向一最大利润问题1. (2016徐州26题8分)某宾馆拥有客房100间,经营中发现:每天入住的客房数y(间)与房价x(元)(180≤x≤300)满足一次函数关系,部分对应值如下表:(1)求y与x之间的函数表达式;(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每间空置的客房,宾馆每日需支出各种费用60元.当房价为多少元时,宾馆当日利润最大?求出最大利润.(宾馆当日利润=当日房费收入-当日支出)2. (2013盐城25题10分)水果店王阿姨到水果批发市场打算购进一种水果销售,经过还价,实际价格每千克比原来少2元,发现原来买这种水果80千克的钱,现在可买88千克.(1)现在实际购进这种水果每千克多少元?(2)王阿姨准备购进这种水果销售,若这种水果的销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系.①求y与x之间的函数关系式;②请你帮王阿姨拿个主意,将这种水果的销售单价定为多少时,能获得最大利润?最大利润是多少?(利润=销售收入-进货金额)第2题图3. (2017扬州27题12分)农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x(元/千克) 30 35 40 45 50日销售量p(千克) 600 450 300 150 0(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p 与x之间的函数表达式;(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a值.(日获利=日销售利润-日支出费用) 考向二费用问题4. (2016宿迁24题8分)某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.考向三 几何图形面积问题5. (2014淮安25题10分)用长为32 m 的篱笆围一个矩形养鸡场,设围成的矩形一边长为x m ,面积为y m 2.(1)求y 关于x 的函数关系式;(2)当x 为何值时,围成的养鸡场面积为60 m 2?(3)能否围成面积为70 m 2的养鸡场?如果能,请求出其边长;如果不能,请说明理由. 6. (2013连云港23题10分)小林准备进行如下操作实验:把一根长为40 cm 的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm 2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能...等于48 cm 2.”他的说法对吗?请说明理由.命题点2 二次函数的综合应用(盐城必考,淮安2考,宿迁必考)7. (2016淮安27题12分)如图,在平面直角坐标系中,二次函数y =-14x 2+bx +c的图象与坐标轴交于A 、B 、C 三点,其中点A 的坐标为(0,8),点B 的坐标为(-4,0).(1)求该二次函数的表达式及点C 的坐标;(2)点D 的坐标为(0,4),点F 为该二次函数在第一象限内图象上的动点,连接CD 、CF ,以CD 、CF 为邻边作平行四边形CDEF ,设平行四边形CDEF 的面积为S .①求S 的最大值;②在点F 的运动过程中,当点E 落在该二次函数图象上时,请直接写出此时S 的值.第7题图8. (2013南京26题9分)已知二次函数y=a(x-m)2-a(x-m)(a、m为常数,且a≠0).(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点;(2)设该函数的图象的顶点为C,与x轴交于A、B两点,与y轴交于点D.①当△ABC的面积等于1时,求a的值;②当△ABC的面积与△ABD的面积相等时,求m的值.9. (2016宿迁26题10分)如图,在平面直角坐标系xOy中,将二次函数y=x2-1的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.(1)求N的函数表达式;(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M 与x轴相交于两点A、B,求PA2+PB2的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.第9题图10. (2013宿迁27题12分)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx -3(a,b是常数)的图象与x轴交于点A(-3,0)和点B(1,0),与y轴交于点C.动直线y =t(t为常数)与抛物线交于不同的两点P、Q.(1)求a和b的值;(2)求t 的取值范围;(3)若∠PCQ =90°,求t 的值.第10题图 答案1. 解:(1)设y =kx +b ,将(180,100),(260,60)代入得:⎩⎨⎧=+=+60260100180b k b k , 解得⎪⎩⎪⎨⎧==19021-b k ,(2分) ∴y 与x 之间的函数表达式为y =-12x +190(180≤x ≤300);(4分)(2) 设利润为w ,w =y·x -100y -60(100-y )=x (-12x +190)-100(-12x +190)-60[100-(-12x +190)]=-12x 2+210x -13600=-12(x -210)2+8450,∵180<210<300, (6分)∴当x =210时,w 最大=8450(元),答:当房价为210元时,宾馆当日利润最大,最大利润为8450元.(8分)2. 解:(1)设现在实际购进这种水果每千克a 元,则原来购进这种水果每千克(a +2)元,根据题意,得80(a +2)=88a , 解得a =20.答:现在实际购进这种水果每千克20元; (2)①设y 与x 之间的函数关系式为y =kx +b ,将(25,165),(35,55)代入,得⎩⎨⎧=+=+553516525b k b k ,解得⎩⎨⎧==44011-b k , 故y 与x 之间的函数关系式为y =-11x +440;②设这种水果的销售单价为x 元时,所获利润为w 元, 则w =(x -20)y =(x -20)(-11x +440) =-11x 2+660x -8800 =-11(x -30)2+1100, ∵a =-11<0,∴当x =30时,w 有最大值1100.答:将这种水果的销售单价定为30元时,能获得最大利润,最大利润是1100元. 3. 解:(1)p 与x 之间满足一次函数关系p =kx +b (k ≠0),因为点(50,0),(30,600)在图象上,所以⎩⎨⎧=+=+60030050b k b k ,解得⎩⎨⎧==150030-b k , ∴p 与x 之间的函数表达式为p =-30x +1500(30≤x ≤50);(2)设日销售价格为x 元/千克,日销售利润为w 元,依题意得w =(-30x +1500)(x -30)=-30x 2+2400x -45000(30≤x ≤50), ∵a =-30<0, ∴w 有最大值,当x =-24002×(-30)=40 (元/千克)时,w 有最大值,即最大值为w 最大=4×(-30)×(-45000)-240024×(-30)=3000(元);答:销售价格为40元/千克时,日销售利润最大;(3)∵w =p (x -30-a)=-30x 2+(2400+30a )x -(1500a +45000), 对称轴为x =-2400+30a 2×(-30)=40+12a ,①若a >10,当x =45时取最大值,(45-30-a )×150=2250-150a <2430(舍去), ②若a <10,当x =40+12a 时取最大值,将x =40+12a 代入,得w =30(14a 2-10a +100),令w =2430,则30(14a 2-10a +100)=2430,解得a =2或a =38(舍去). 综上所述,a =2. 4. 解:(1)由题意得,y =⎪⎪⎪⎩⎪⎪⎪⎨⎧≤=≤<+=≤)<()()()()()()<100-150]30-120[30150--150]30-120[300(1202x m x m m x m x x x x x x x x x ;(4分) (2)由(1)知当0<x ≤30或m <x ≤100时, 函数值都是随着x 的增大而增大, 当30<x ≤m 时,y =x [120-(x -30)]=x(150-x ) =-x 2+150x=-(x 2-150x +752-752) =-(x -75)2+752,∴当30<m ≤75时,收取的总费用随着团队中人数的增加而增加.(8分)5. 解:(1)已知围成的矩形一边长为x m ,则矩形的邻边长为(32÷2-x ) m .依题意得:y =x (32÷2-x )=-x 2+16x ,∴y 关于x 的函数关系式是y =-x 2+16x ;(3分)(2)由(1)知y =-x 2+16x , 当y =60时,-x 2+16x =60,即(x -6)(x -10)=0, 解得 x 1=6,x 2=10,即当x 是6 m 或10 m 时,围成的养鸡场面积为60 m 2;(5分) (3)不能围成面积为70 m 2的养鸡场.(6分) 理由如下:由(1)知,y =-x 2+16x , 当y =70时,-x 2+16x =70, 即x 2-16x +70=0,(8分) ∵b 2-4ac =(-16)2-4×1×70 =-24<0, ∴该方程无解;即不能围成面积为70 m 2的养鸡场.(10分)6. 解:(1)设剪成的较短的一段为x cm ,较长的一段就为(40-x)cm ,由题意得:)4(x 2+(4-40x )2=58, 解得x 1=12,x 2=28,当x =12时,较长的为40-12=28 cm , 当x =28时,较长的为40-28=12<28(舍去), ∴较短的一段为12 cm ,较长的一段为28 cm ;(2)设剪成的较短的一段为m cm ,较长的一段就为(40-m)cm ,由题意得:(4m )2+(4-40m )2=48, 变形为:m 2-40m +416=0, ∵b 2-4ac =(-40)2-4×416 =-64<0,∴原方程无实数根,∴小峰的说法正确,这两个正方形的面积之和不可能等于48 cm 2. 7. 解:(1)∵二次函数y =-14x 2+bx +c 过A (0,8)、B (-4,0)两点,∴⎪⎩⎪⎨⎧==+⨯804-4-41-2c c b )(, 解得⎩⎨⎧==81c b , ∴二次函数的解析式为y =-14x 2+x +8,当y =0时,解得x 1=-4,x 2=8, ∴C 点坐标为(8,0);(2)①如解图,连接DF 、OF ,设F (m ,-14m 2+m +8),第7题解图∵S 四边形OCFD =S △CDF +S △OCD =S △ODF +S △OCF , ∴S △CDF =S △ODF +S △OCF -S △OCD ,=12×4×m +12×8×(-14m 2+m +8)-12×8×4 =2m -m 2+4m +32-16 =-m 2+6m +16=-(m -3)2+25,∴当m =3时,△CDF 的面积有最大值,最大值为25,∵四边形CDEF 为平行四边形,∴S 四边形CDEF =2S △CDF =50,∴S 的最大值为50;②18.【解法提示】∵四边形CDEF 为平行四边形,∴CD ∥EF ,CD =EF ,∵点C 向左平移8个单位,再向上平移4个单位得到点D ,∴点F 向左平移8个单位,再向上平移4个单位得到点E ,即E (m -8,-14m 2+m +12), ∵E (m -8,-14m 2+m +12)在抛物线上, ∴-14(m -8)2+(m -8)+8 =-14m 2+m +12, 解得m =7,当m =7时,S △CDF =-(7-3)2+25=9,∴此时S 四边形CDEF =2S △CDF =18.8. (1)证明:y =a (x -m )2-a (x -m )=ax 2-(2am +a )x +am 2+am .∵当a ≠0时,[-(2am +a )]2-4a (am 2+am )=a 2>0.∴方程ax 2-(2am +a )x +am 2+am =0有两个不相等的实数根,∴不论a 与m 为何值且a ≠0时,该函数的图象与x 轴总有两个公共点;(3分)(2)解:①y =a (x -m )2-a (x -m )=a (x -212+m )2-4a ,∴点C 的坐标为(212+m ,-4a).当y =0时,a (x -m )2-a (x -m )=0,解得x 1=m ,x 2=m +1,∴AB =1.当△ABC 的面积等于1时,有12×1×|-4a|=1,∴12×1×(-4a )=1,或12×1×4a=1,∴a =-8或a =8;(6分)②当x =0时,y =am 2+am ,所以点D 的坐标为(0,am 2+am ),当△ABC 的面积与△ABD 的面积相等时,12×1×|-a 4|=12×1×|am 2+am |;即|4a|=|am 2+am |,∵a ≠0,∴14=|m 2+m |,∴m 2+m =±14,即m 2+m +14=0或m 2+m -14=0,∴m =-12或m =-1-22或m =-1+22.(9分) 9. 解:(1)由题意得N 的函数表达式为y =-(x -2)2+9;(3分)(2)∵点P 的坐标为(m ,n),点A 为(-1,0),点B 为(1,0),∴PA 2+PB 2=(m +1)2+(n -0)2+(m -1)2+(n -0)2=m 2+2m +1+n 2+m 2-2m +1+n 2=2m 2+2n 2+2=2(m 2+n 2)+2=2OP 2+2,∴当PA 2+PB 2最大时,要满足OP 最大,即满足直线OP 经过点C ,(5分)又∵点P (m , n )是以点C (1,4)为圆心、1为半径的圆上一动点,∴CP =1,∵OC =12+42=17,∴OP =17+1,∴PA 2+PB 2=2OP 2+2=2(17+1)2+2=38+417;(7分) (3)由⎩⎨⎧+==92--1-22)(x y x y 得两二次函数交点坐标为(-1,0),(3,8). 两曲线围成的封闭图形如解图所示,第9题解图纵坐标的取值范围为:-1≤y ≤9,横坐标的取值范围-1≤x ≤3,∴M 与N 所围成封闭图形内(包括边界)的整点有:(-1,0),(0,-1),(0,0),(0,1),(0,2),(0,3),(0,4),(0,5),(1,0),(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,8)共25个.(10分)10. 解:(1)将点A (-3,0)、点B (1,0)坐标代入y =ax 2+bx -3中可得: ⎩⎨⎧==+03-3-903-b a b a , 解得⎩⎨⎧==21b a ;(2)由(1)知抛物线的解析式为y =x 2+2x -3,动直线y =t ,联立两个解析式可得:x 2+2x -3=t ,即x 2+2x -(3+t)=0.∵动直线y =t (t 为常数)与抛物线交于不同的两点,∴b 2-4ac =4+4(3+t )>0,解得t >-4;(3)∵y =x 2+2x -3=(x +1)2-4,∴抛物线的对称轴为直线x =-1,当x =0时,y =-3,∴C (0,-3).设点Q 的坐标为(m ,t ),则点P 的坐标为(-2-m ,t),如解图,设PQ 与y 轴交于点D ,第10题解图则CD =t +3,DQ =m ,DP =m +2,∵∠PCQ =∠PCD +∠QCD =90°,∠DPC +∠PCD =90°,∴∠QCD =∠D P C ,又∵∠PDC =∠QDC =90°,∴△QCD ∽△CPD ,∴DQ DC =DC PD , 即3+t m =23++m t ,整理得:t 2+6t +9=m 2+2m ,∵Q =(m ,t)在抛物线上,∴t =m 2+2m -3,∴m 2+2m =t +3,∴t 2+6t +9=t +3,化简得t 2+5t +6=0,解得t =-2或t =-3,当t =-3时,动直线y =t 经过点C ,故不合题意,舍去,∴t =-2.。
二次函数的实际应用
如图,有长24m的篱笆,围城中间隔有一道篱笆的长方形的花圃, 且花圃的长可接用一段墙体(墙体的最大可用长度a=10) (2)、要使围城花圃的面积最大,那么AB的长度为多少? 由(1)知y=-3x2+24x=-3(x-4)2+48 14 因为0<BC ≤10,所以0<24-3x ≤ 10, x <8 14 3 ≤ 3 当x<4,y随x的增大而增大 当x>4,y随x的增大而减小 2 14 所以,当x= 时,y有最大值,最大值为 46 x= y 3 3 14 所以,当AB= 米时,(BC=10)花圃的面积最大。
例2:(2008•安徽)杂技团进行杂技表演,演员从 跷跷板右端A处弹跳到人梯顶端椅子B处,其身体 (看成一点)的路线是抛物线y=-x2+3x+1的一部分, 如图所示. (1)求演员弹跳离地面的最大高度; (2)已知人梯高BC=3.4米,在一次表演中,人梯到 起跳点A的水平距离是4米,问这次表演是否成功? 请说明理由.
下课了!
•生活是数学的源泉. 生活是数学的源泉. 生活是数学的源泉
解:(1)y=-x2+3x+1=-(x-2.5)2+4.75 ∵-1<0,∴函数的最大值,最大值是4.75. 答:演员弹跳离地面的最大高度是4.75m. (2)当x=4时,y=-1×42+3×4+1=3.4=BC, 所以这次表演成功.
如图,有长24m的篱笆,围墙体(墙体的最 大可用长度a=10) (1)、如果所围成的花圃的面积为45m的平方,求 AB的长。 (2)、要使围城花圃的面积最大,那么AB的长度为 多少? 解:(1)设AB=xm,则BC=(24-3x)m 则花圃面积y=x(24-3x)=-3x2+24x 令y=45,得-3x2+24x=45解得x1=3,x2=5 当x=3时,BC=24-3x=15>10不合题意,舍去。 当x=5时,BC=24-3x=9<10符合题意, 故AB=5时,花圃的面积最大。
北师大版九年级数学下册:2.4《二次函数的应用》教案
北师大版九年级数学下册:2.4《二次函数的应用》教案一. 教材分析北师大版九年级数学下册第2.4节《二次函数的应用》主要介绍了二次函数在实际生活中的应用,包括二次函数图像的识别和利用二次函数解决实际问题。
这部分内容是学生在学习了二次函数的性质和图像后,对二次函数知识的进一步拓展,使学生能够将所学知识应用到实际生活中,提高解决实际问题的能力。
二. 学情分析九年级的学生已经学习了二次函数的基本知识和图像,对二次函数有一定的理解。
但学生在解决实际问题时,可能会对将理论知识和实际问题相结合感到困难。
因此,在教学过程中,教师需要引导学生将所学知识与实际问题相结合,提高学生的应用能力。
三. 教学目标1.理解二次函数在实际生活中的应用;2.学会利用二次函数解决实际问题;3.提高学生的数学应用能力。
四. 教学重难点1.二次函数在实际生活中的应用;2.利用二次函数解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题,引导学生思考;通过案例分析,使学生理解二次函数在实际生活中的应用;通过小组合作,让学生在讨论中解决问题,提高学生的合作能力和解决问题的能力。
六. 教学准备1.准备相关的案例和问题;2.准备多媒体教学设备。
七. 教学过程1.导入(5分钟)通过一个实际问题引出二次函数的应用,例如:一个农场计划种植两种作物,种植面积为固定的10亩。
如果种植苹果树,每亩收益为2000元;如果种植梨树,每亩收益为3000元。
请问如何分配种植苹果树和梨树的面积,才能使总收益最大?2.呈现(10分钟)呈现教材中的案例,让学生了解二次函数在实际生活中的应用。
例如,教材中有一个关于抛物线形跳板的问题,通过二次函数来求解跳板的长度。
3.操练(10分钟)让学生根据教材中的案例,尝试解决实际问题。
例如,教材中有一个关于二次函数图像的问题,让学生根据图像信息,求解相关参数。
4.巩固(10分钟)通过小组合作,让学生解决一些实际问题。
2023年中考数学一轮复习课件:二次函数的实际应用
一、抛物线型问题
例1 教材原题 华师九下P30第1题如图,一个运动员推铅球,铅球在 点A处出手,出手时铅球离地面的高度约为1.6 m,铅球在点B处落地. 铅球在运动员前4 m处(即OC=4)达到最高点,最高点离地面的高度为 3.2 m.已知铅球经过的路线是抛物线,试利用图示的平面直角坐标系 算出这个运动员的成绩.
线的解析式为y=ax2+c(a≠0),把点B(4,0),D(-3
,4)代入,
16a c 0 9a c 4
,
得
解得
a c
4 7
64 7
,
4
64
7
7
∴该抛物64线的解析式6为4 y=- x2+ ,∴C(0,
7
7
).∴OC= m≈9.1 m.答:这个门洞的高度约为9.1 m.
第2题解图
提分要点
=-120,∴B(-120,-90),将
点B的坐标代入y=ax2,得(-120)2a=-90,
第1题图
1502 902
第1题解图
解得a=- 1 ,∴该抛物线的表达式为y=-
160 1 160
x2(-120≤x≤0);
第1题解图
(3)若该运动员在空中共飞行了4 s,求他飞行2 s后,垂直下降了多少m?
变式题 1. 将文字型改为图象型,列关系式求最值 某工厂计划在每个生产周期内生产并销售完某型设备,设备的生产成本 为10万元/件.(1)如图,设第x(0<x≤20)个生产周期设备售价z万元/件, z与x之间的关系用图中的函数图象表示.求z关于x的函数解析式
(写出x的范围); 解:(1)由题图可知,当0<x≤12时,z=16,当12< x≤20时,z是关于x的一次函数,
2015年河北中考数学总复习课件(第14课时_二次函数)
b - 时,y 有最大值, 2a 4ac-b2 y 最大值= 4a
冀考探究
第14课时┃ 二次函数
二次项系 a的大小决定抛物线的开口大小,a越大,抛物线 数a的 a越小,抛物线的开口越大 的开口越小; 特性 常数项 c c 是抛物线与 y 轴交点的纵坐标,即 x=0 时,y=c 的意义
第14课时 二次函数
第14课时┃ 二次函数
冀 考 解 读
考点梳理 常考题型 二次函数的 选择、填空 定义 二次函数的 选择、填空、 图像与性质 解答 二次函数表 选择、填空、 达式的求法 解答 年份 2015 热度预测 ☆ 2013 2014 2013 2014 ☆☆☆☆☆ ☆☆☆☆☆
冀考解读
课前热身
冀考解读
课前热身
考点聚焦
冀考探究
第14课时┃ 二次函数
考点4 待定系数法求二次函数的表达式
适用条件及求法 若已知条件是图像上的三个点,则设所求二次函数的表 一般式 达式为 y=ax2+bx+c,将已知三个点的坐标代入,求出 a,b,c 的值 若已知二次函数图像的顶点坐标或对称轴方程与最大值 (或最小值),设所求二次函数的表达式为 y=a(x-h)2+ 顶点式 k,将已知条件代入,求出待定系数,最后将表达式化为 一般形式 若已知二次函数图像与 x 轴的两个交点的坐标为(x1, 0), (x2,0),设所求二次函数的表达式为 y=a(x-x1)(x-x2), 交点式 将第三点(m,n)(其中 m,n 为已知数)或其他已知条件代 入,求出待定系数 a,最后将表达式化为一般形式
2. [2014· 成都] 将二次函数 y=x2-2x+3 化为 y=(x-h)2 +k 的形式,结果为 ( D ) A.y=(x+1)2+4 B.y=(x+1)2+2 C.y=(x-1)2+4 D.y=(x-1)2+2 3.[2014· 兰州] 抛物线 y=(x-1)2-3 的对称轴是( C ) A.y 轴 B.直线 x=-1 C.直线 x=1 D.直线 x=-3
(呼和浩特专版)中考数学复习第三单元函数及其图象第14课时二次函数的简单综合课件
例2 [2018·北京]在平面直角坐标系xOy中,直线y=4x+4与x轴、y轴分别交于点A,B, 抛物线y=ax2+bx-3a经过点A,将点B向右平移5个单位长度,得到点C. (2)求抛物线的对称轴; (2)∵抛物线 y=ax2+bx-3a 经过点 A,
③ 没有 实数根
2.二次函数与不等式的关系 (1)ax2+bx+c>0的解集 函数y=ax2+bx+c的图象位于x轴上方的部分对应的点的横坐标的取值范围. (2)ax2+bx+c<0的解集 函数y=ax2+bx+c的图象位于④ x轴下方 的部分对应的点的横坐标的取值范围.
考点二 二次函数的综合应用
∵OC=3,OB=4,∴由勾股定理得 BC=5,PB=BC+PC=5+2=7, ∴OQ=12PB=72,故选 C.
2.[2019·凉山州]如图 14-2,正方形 ABCD 中,AB=12,AE=1AB,点 P 在 BC 上运动(不
4
与 B,C 重合),过点 P 作 PQ⊥EP,交 CD 于点 Q,则 CQ 的最大值为
第 14 课时
二次函数的简单综合
考点聚焦
考点一 二次函数与一元二次方程、不等式的关系
1.二次函数与一元二次方程的关系
抛物线y=ax2+bx+c 与x轴的交点个数
2个 1个 没有
判别式b2-4ac的正负
b2-4ac>0 b2-4ac=0 b2-4ac<0
(沪科版)中考数学总复习课件【第14讲】二次函数的实际应用
第13讲┃二次函数的图象和性质
(3) 当 0<x≤2 时,w=10x2+40x+480=10(x+2)2+ 440,此时 x =2 时,w 最大=600. 当 2<x≤4 时,w=- 10x +80x +480=-10(x-4) + 640,此时 x =4 时,w 最大=640. 当 4< x<6 时,w=-5x +30x+600=-5(x- 3) +645,此时,w <640,∴x=4 时,w 最大=640. 答:该公司每年国内的销售量为 4 千件,国外的销售量为 2 千件 时,可使公司每年的总利润最大,最大利润为 64 万元.
2
第13讲┃二次函数的图象和性质
某小商场以每件 20 元的价格购进一种服装,先试销一周, 试销期间每天的销量 t(件)与每件的销售价格 x(元)如下表所示:
x(元) 38 36 34 32 30 28 26
t(件)
4
8
12
16
20
24
28
第14讲┃二次函数的实际应用
假定试销中每天的销售量 t( 件 ) 与每件的销售价格 x(元 )
= - 9t2 +
14400+(-9t2 +360t)=- 9t2+14400(30≤t≤ 40) .
第13讲┃二次函数的图象和性质
(3) 当 W=-9t2 +480t(0≤t≤30)时, 80 ∵a=-9<0,对称轴为直线 t= , 3 ∴当 t =27 时 W 有最大值 6399 , 当 W=-9t +14400(30≤t≤40)时, ∵a=-9<0,对称轴为 y 轴, ∴t= 30 时,W 最大值 =-9×302+ 14400=6300,∴第 27 天日销售利 润最大,为 6399 万元.
江西专版中考数学第14讲二次函数的应用精练本课件
下列说法正确的是( C ) A.水流运行轨迹满足函数 y=-410 x2-x+1 B.水流喷射的最远水平距离是 40 米 C.喷射出的水流与坡面 OA 之间的最大铅直 高度是 9.1 米 D.若将喷灌架向后移动 7 米,可以避开对这 棵石榴树的喷灌
4.(2021·沈阳)某超市购进一批单价为8元的 生活用品,如果按每件9元出售,那么每天可 销售20件.经调查发现,这种生活用品的销 售单价每提高1元,其销售量相应减少4件, 那么将销售价定为__1_1__元时,才能使每天所 获销售利润最大.
②抛物线y=ax2+2ax-b的顶点坐标为(-1, -a-b),∵点(-1,-a-b)关于点(0,k+n2) 的对称点为(1,a+b+2k+2n2),∴抛物线yn 的顶点坐标An为(1,a+b+2k+2n2),同理: An+1(1,a+b+2k+2(n+1)2),∴AnAn+1=a +b+2k+2(n+1)2-(a+b+2k+2n2)=4n+2.
9.(2018·江西)小贤与小杰在探究某类二次函数 问题时,经历了如下过程: 求解体验: (1)已知抛物线y=-x2+bx-3经过点(-1,0), 则b=________,顶点坐标为________,该抛物 线关于点(0,1)成中心对称的抛物线表达式是 ______________.
抽象感悟: 我们定义:对于抛物线y=ax2+bx+c(a≠0), 以y轴上的点M(0,m)为中心,作该抛物线关 于点M中心对称的抛物线y′,则我们又称抛物线y′ 为抛物线y的“衍生抛物线”,点M为“衍生中心”. (2)已知抛物线y=-x2-2x+5关于点(0,m)的 衍生抛物线为y′,若这两条抛物线有交点,求 m的取值范围.
8.(2021·南充)超市购进某种苹果,如果进价 增加2元/千克要用300元;如果进价减少2元/千 克,同样数量的苹果只用200元. (1)求苹果的进价; (2)如果购进这种苹果不超过100千克,就按原 价购进;如果购进苹果超过100千克,超过部 分购进价格减少2元/千克,写出购进苹果的支 出y(元)与购进数量x(千克)之间的函数关系式;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:(1)∵点A(-1,0)在抛物线y= x2+bx-2上, ∴ ×(-1)2+b(-1)-2=0, 解得:b=- , ∴抛物线的解析式为 y= x2- x-2. y= (x- )2- , ∴顶点D的坐标为:( ,- );
(2)当x=0时y=-2, ∴C(0,-2),OC=2. 当y=0时, x2- x-2=0, 解得:x1=-1,x2=4, ∴B(4,0), ∴OA=1,OB=4,AB=5. ∵AB2=25,AC2=OA2+OC2=12+22=5, BC2=OC2+OB2=22+42=20. ∴AC2+BC2=AB2.
(4)设扣除捐赠后的日销售利润为w′,则 w′=- (t-30)2+2450-m(-2t+200) =- t2+(30+2m)t+2000-200m,(7分) 对称轴为t=30+2m,(8分) ∵w′随t的增大而增大, ∴30+2m≥40,解得m≥5,(9分) 即5≤m<7.(10分)
备考小贴士
本题主要是二次函数的实际应用,首先建立一次函数模型,然后建 立二次函数模型解决问题,最后重点考查了二次函数的最值.在平 时学习过程中,要真正理解函数的增减性及最值,特别是自变量取 值范围不再是一切实数时,顶点的横坐标与自变量范围的关系.当 顶点横坐标在指定范围下,则最值在顶点处取得;当顶点横坐标不 在指定范围下,则根据函数增减性,在端点处取得最值.利用图象 ,有助于理解二次函数最值问题的解决.
②当41≤t≤80时, w=(- t+46-6)(-2t+200) =(t-90)2-100, ∵1>0且对称轴为直线t=90, ∴当t=41时,最大利润w=(41-90)2-100=2301元,(4分) 综上,在第30天时有最大利润且最大利润为2450元;
(3)该养殖户有多少天日销售利润不低于2400元? 【思维教练】求出w=2400时x的值,结合函数图象即可得出答案; 自主作答:
练习3题解图
例3 在平面直角坐标系中,已知抛物线经过 A(-4,0),B(0,-4), C(2,0)三点.
例3题图
(1)求抛物线的解析式; (2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求 S关于m的函数关系式,并求出S的最大值. 自主作答:
解:(1)由于抛物线过点A(-4,0),C(2,0),则设抛物线解析式为y=a(x+4)(x-2),将 B(0,-4)代入得:-4=-8a,即a= , 则抛物线解析式为 y= (x+4)(x-2)= x2+x-4;
过点D作DQ∥y轴交BC于Q,如解图,
设D(x,- x2+ x+3),
则Q(x,- x+3),
∴△ABC是直角三角形. (3)如解图,连接AM.
点A关于对称轴的对称点为点B,BC交对称轴于点M,根据轴对称性及两点之间线段最
短可知, MC+MA的值最小,即△ACM周长最小.
设直线BC解析式为:y=kx+d, 将点C(0,-2),B(4,0)代入BC解析式中得:
解得: ,
故直线BC的解析式为:y= x-2, 当x= 时,y=- , ∴M( ,- ), △ACM最小周长是:AC+AM+MC= AC+BC= +2 =3 .
二 二次函数的综合应用(难点) 例2如图,抛物线y= x2+bx-2与x轴交于A、B两点,与y轴交于 C点,且A(-1,0).
例2题图
(1)求抛物线的解析式及顶点D的坐标; (2)判断△ABC的形状,证明你的结论; (3)点M是抛物线对称轴上的一个动点,当△ACM周长最小时,求点M的坐标 及△ACM 的最小周长. 自主作答:
3.第14课时二次函数的 应用
2020/9/12
重难点突破
考点特训营
一 二次函数的实际应用(重点)ቤተ መጻሕፍቲ ባይዱ
例1(2019荆州)荆州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6
元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为
:
p= t+16(1≤t≤40,t为整数)
∴A(-1,0), 设抛物线解析式为y=a(x+1)(x- 4), 把C(0,3)代入得 a×1×(-4)=3,解得a=- , ∴抛物线解析式为y=- (x+1)(x-4)=- x2+ x+3;
(2)设直线BC的解析式为y=mx+n,
把C(0,3),B(4,0)代入得
,
解得
,
∴直线BC的解析式为y=- x+3,
- t+46(41≤t≤80,t为整数),日销售量y(千克)与时间第t(天)之间的函数关系如
图所示.
(1)求日销售量y与时间t的函数关系式; 【思维教练】根据函数图象,利用待定系数法求解可得; 自主作答:
例1题图
解:(1)设日销售量y与时间t的函数关系式为y=kt+b,由图象可知,
,
解得
∴y=-2t+200(1≤t≤80,t为整数);(2分)
②当21≤x≤40时,y=
-525, 越大(即x越小),y的值越大,
由于21≤x≤40,所以当x=21天时,y最大=1250-525=725(元),
∵612.5<725,
∴第21天获得的利润最大,
综上所述,这40天中该网店第21天获得的利润最大,最大利润是725元.(12分)
练习2 为了节省材料,某农户利用一段足够长的墙体为一边,用总长为40 m的篱笆围 成如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.
(1)求抛物线的函数关系式; (2)连接AC,点D在线段BC上方的抛物线上,连接DC、DB,若△BCD和△ABC面积满足 S△BCD= S△ABC,求点D的坐标.
练习4题图
解:(1)∵C(0,3),
∴OC=3,
∵4CN=5ON,
∴ON= ,
∵∠OAN=∠NCM,
∴△AON∽△COB,
∴
,
即
,解得OA=1,
练习1 某大学生利用暑假40天社会实践参与了一家网店的经营,了解到一种成本为20 元/件的新型商品在第x天销售的相关信息如下表所示:
销售量p(件)
p=50-x
销售单价q(元/件) 当1≤x≤20时,q=30+ x 当21≤x≤40时,q=20+
(1)请计算第几天该商品的销售单价为35元/件? (2)求该网店第x天获得的利润y关于x的函数关系式; (3)这40天中,该网店第几天获得的利润最大?最大利润是多少?
练习2题图
(1)求AE∶EB的值; (2)设BC的长为x m,矩形区域的面积为y m2,求y与x之间的函数关系式,并注明自变 量x的取值范围; (3)在(2)的条件下,当x为何值时,y有最大值?最大值是多少?
解:(1)∵三块矩形区域的面积相等, ∴矩形AEFD面积是矩形BCFE面积的2倍, 即AE×EF=2EB×EF. ∴AE=2BE, ∴AE∶EB=2∶1;
(3)①当1≤t≤40时, ∵w=- (t-30)2+2450≥2400, ∴解得20≤t≤40, ∴此时共有40-20+1=21(天);(5分)
②当41≤t≤80时, w=(t-90)2-100≥2400, 即(t-90)2≥2500, 解得t≤40或t≥140, ∵41≤t≤80, ∴此时不存在日销售利润不低于2400的情况; ∴共有21天日利润不低于2400元;(6分)
(2)如解图,过点M作x轴的垂线,交x轴于点N, 将x=m代入抛物线得:y= m2+m-4,即M(m, m2+m-4), ∴MN=| m2+m-4|=- m2-m+4,ON=-m, ∵A(-4,0),B(0,-4), ∴OA=OB=4, ∴S△AMB=S△AMN+S梯形MNOB-S△AOB = ×(4+m)×(- m2-m+4)+ ×(-m)×(- m2-m+4+ 4)
(4)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠m(m<7)元给 村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求 m的取值范围. 【思维教练】依据(2)中相等关系列出函数解析式,确定其对称轴,由1≤t≤40且销售 利润随时间t的增大而增大,结合二次函数的性质可得答案. 自主作答:
∴抛物线的解析式为y=-x2-2x+3;
(2)∵y=-x2-2x+3=-(x+1)2+4,顶点D的坐标为(-1,4) ∴ 作B点关于直线x=1的对称点B′,解如图, 则B′(4,3),由(1)得D(-1,4), ∴直线DB′的函数关系式为y=- x+ , 当M(1,m)在直线DB′上时, MB+MD的值最小, 则m=- ×1+ = .
解:(1)①对于q=30+ x, 当q=35时,30+ x=35, 解得x=10,在1≤x≤20范围内; ②对于q=20+ , 当q=35时,20+ =35, 解得x=35,在21≤x≤40范围内. 综上所述,第10天或第35天该商品的销售单价为35元/件;(3分)
(2)①当1≤x≤20时,y=(30+ x-20)(50-x)=- x2+15x+500;(5分) ②当21≤x≤40时, y=(20+ -20)(50-x)= - 525;(6分) (3)①当1≤x≤20时,y=- x2+15x+500=- (x-15)2+612.5, 由于- <0,抛物线开口向下,且1≤x≤20, 所以当x=15时,y最大=612.5(元);(8分)
(2)由(1)知,AE=2BE, 设BE=a,则AE=2a, ∴8a+2x=40, ∴a=- x+5,3a=- x+15, ∴y=(- x+15)x=- x2+15x, ∵a=- x+5>0, ∴x<20, 则y=- x2+15x(0<x<20);
(3)∵y=- x2+15x =- (x-10)2+75(0<x<20), 且二次项系数为- <0, ∴当x=10时,y有最大值,最大值为75 m2.
例2题解图
练习3 如图,已知抛物线y=ax2+bx+c过点A(-3,0),B(-2,3),C(0,3),其顶点 为D. (1)求抛物线的解析式; (2)设点M(1,m),当MB+MD 的值最小时,求m的值.