2020年高考数学高频考点揭秘与仿真测试专题40数列数列的求和1(等差等比数列求和)文(含解析)
2020年高考理科数学《数列》题型归纳与训练及参考答案
2020年高考理科数学《数列》题型归纳与训练【题型归纳】等差数列、等比数列的基本运算题组一 等差数列基本量的计算例1 设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2−S n =36,则n = A .5 B .6 C .7 D .8【答案】D【解析】解法一:由题知()21(1)21n S na d n n n n n n ==+-=-+,S n +2=(n +2)2,由S n +2−S n =36得,(n +2)2−n 2=4n +4=36,所以n =8.解法二:S n +2−S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8.所以选D . 【易错点】对S n +2−S n =36,解析为a n +2,发生错误。
题组二 等比数列基本量的计算例2 在各项均为正数的等比数列{a n }中,若28641,2a a a a ==+,则a 6的值是________. 【答案】4【解析】设公比为q (q ≠0),∵a 2=1,则由8642a a a =+得6422q q q =+,即4220q q --=,解得q 2=2,∴4624a a q ==.【易错点】忘了条件中的正数的等比数列. 【思维点拨】等差(比)数列基本量的计算是解决等差(比)数列题型时的基础方法,在高考中常有所体现,多以选择题或填空题的形式呈现,有时也会出现在解答题的第一问中,属基础题.等差(比)数列基本运算的解题思路:(1)设基本量a 1和公差d (公比q ).(2)列、解方程组:把条件转化为关于a 1和d (q )的方程(组),然后求解,注意整体计算,以减少运算量.等差数列、等比数列的判定与证明题组一 等差数列的判定与证明例1设数列{a n }的各项都为正数,其前n 项和为S n ,已知对任意n ∈N *,S n 是a 2n 和a n 的等差中项. (1)证明:数列{a n }为等差数列;(2)若b n =−n +5,求{a n ·b n }的最大项的值并求出取最大值时n 的值. 【答案】(1)见解析;(2) 当n =2或n =3时,{a n ·b n }的最大项的值为6. 【解析】(1)由已知可得2S n =a 2n +a n ,且a n >0, 当n =1时,2a 1=a 21+a 1,解得a 1=1; 当n ≥2时,有2S n −1=a 2n -1+a n −1,所以2a n =2S n −2S n −1=a 2n −a 2n -1+a n −a n −1,所以a 2n −a 2n -1=a n +a n −1,即(a n +a n −1)(a n −a n −1)=a n +a n −1,因为a n +a n −1>0, 所以a n −a n −1=1(n ≥2).故数列{a n }是首项为1,公差为1的等差数列. (2)由(1)可知a n =n ,设c n =a n ·b n ,则c n =n (−n +5)=−n 2+5n =−⎝⎛⎭⎫n -522+254, 因为n ∈N *,所以当n =2或n =3时,{a n ·b n }的最大项的值为6.【易错点】S n 是a 2n 和a n 的等差中项,无法构建一个等式去求解出a n 。
数列的求和-高考数学一轮复习(新高考专用)
第43讲 数列的求和【基础知识回顾】 1.公式法(1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d2.推导方法:倒序相加法.(2)等比数列{a n }的前n 项和S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q ,q ≠1.推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n =n (n +1)2;②2+4+6+…+2n =n (n +1); ③1+3+5+…+(2n -1)=n 2. 2.几种数列求和的常用方法(1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 3、常见的裂项技巧①1n (n +1)=1n -1n +1.②1n (n +2)=12⎝⎛⎭⎫1n -1n +2.③1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1.④1n +n +1=n +1-n .⑤1n (n +1)(n +2)=12⎝⎛⎭⎫1n (n +1)-1(n +1)(n +2).1、数列{a n }的通项公式是a n =(-1)n (2n -1),则该数列的前100项之和为( ) A .-200 B .-100 C .200 D .100【答案】 D【解析】 S 100=(-1+3)+(-5+7)+…+(-197+199)=2×50=100. 2、数列{}n a 的前n 项和为n S ,若()11n a n n =+,则5S 等于( )A .1B .56 C .16D .130【答案】:B 【解析】:因为()11111n a n n n n ==-++,所以5111111111151122334455666S ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,故选B . 3、设11111++++2612(1)S n n =++,则S =( )A .211n n ++ B .21n n - C .1n n+ D .21n n ++ 【答案】:A 【解析】:由11111++++2612(1)S n n =++,得11111++++122334(1)S n n =+⨯⨯⨯+,111111112111++++222334111n S n n n n +=+-==+++----,故选:A.4、在数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0222 023,则项数n =________.【答案】 2 022【解析】 a n =1n (n +1)=1n -1n +1,∴S n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1=2 0222 023, ∴n =2 022.5、已知数列a n =⎩⎪⎨⎪⎧n -1,n 为奇数,n ,n 为偶数,则S 100=________.【答案】:5000【解析】:由题意得S 100=a 1+a 2+…+a 99+a 100=(a 1+a 3+a 5+…+a 99)+(a 2+a 4+…+a 100)=(0+2+4+…+98)+(2+4+6+…+100)=5000.6、 在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n 等于________. 【答案】:2n【解析】:因为数列{a n }为等比数列,则a n =2q n -1,又数列{a n +1}也是等比数列,则3,2q +1,2q 2+1成等比数列,(2q +1)2=3×(2q 2+1),即q 2-2q +1=0q =1,即a n =2,所以S n =2n .考向一 公式法例1、(2020届山东师范大学附中高三月考)设等差数列{}n a 前n 项和为n S .若210a =,540S =,则5a =________,n S 的最大值为________. 【答案】4 42【解析】∵数列{}n a 是等差数列,∵540S =,∴()1535524022a a a ⨯+⨯==,38a ∴=, 又210a ∴=,2d ∴=-,2(2)10(2)(2)142n a a n d n n ∴=+-⨯=+-⨯-=-,514254a ∴=-⨯=,()122(12142)(262)13169(13)13()22224n n n a a n n n n S n n n n n ++--====-=-+=--+, ∴当6n =或7时,n S 有最大值42. 故答案为:(1)4;(2)42.变式1、(2019镇江期末) 设S n 是等比数列{a n }的前n 项的和,若a 6a 3=-12,则S 6S 3=________.【答案】 12【解析】设等比数列{a n }的公比为q ,则q 3=a 6a 3=-12.易得S 6=S 3(1+q 3),所以S 6S 3=1+q 3=1-12=12.变式2、(2019苏锡常镇调研)已知等比数列{}n a 的前n 项和为n S ,若622a a =,则128S S = . 【答案】.37【解析】设等比数列{}n a 的公比为q ,因为622a a =,所以2422a q a =,故24=q .由于1≠q ,故.372121)(1)(1111)1(1)1(23243481281121812=--=--=--=----=q q q q qq a q q a S S 方法总结:若一个数列为等差数列或者等比数列则运用求和公式:①等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d .②等比数列的前n 项和公式(Ⅰ)当q =1时,S n =na 1;(Ⅱ)当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q.考向二 利用“分组求和法”求和例2、(2020届山东省潍坊市高三上期末)已知各项均不相等的等差数列{}n a 的前4项和为10,且124,,a a a 是等比数列{}n b 的前3项. (1)求,n n a b ; (2)设()11n n n n c b a a =++,求{}n c 的前n 项和n S .【解析】(1)设数列{}n a 的公差为d , 由题意知: ()1234114414+46102a a a a a d a d ⨯-+++==+= ① 又因为124,,a a a 成等比数列, 所以2214a a a =⋅,()()21113a d a a d +=⋅+,21d a d =,又因为0d ≠, 所以1a d =. ② 由①②得11,1a d ==, 所以n a n =,111b a ==,222b a == ,212b q b ==, 12n n b -∴= .(2)因为()111112211n n n c n n n n --⎛⎫=+=+- ⎪++⎝⎭,所以0111111122 (2)12231n n S n n -⎛⎫=++++-+-+⋅⋅⋅+- ⎪+⎝⎭1211121n n -=+--+ 121n n =-+ 所以数列{}n c 的前n 项和121nn S n =-+.变式1、求和S n =1+⎣⎡⎦⎤1+12+⎣⎡⎦⎤1+12+14+…+⎣⎡⎦⎤1+12+14+…+12n -1.【解析】 原式中通项为a n =⎣⎡⎦⎤1+12+14+ (12)-1=1-⎝⎛⎭⎫12n1-12=2⎝⎛⎭⎫1-12n ∴S n =2⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫1-122+…⎝⎛⎭⎫1-12n =2⎣⎢⎡⎦⎥⎤n -12⎝⎛⎭⎫1-12n1-12 =12n -1+2n -2. 变式2、 已知等差数列{a n }的前n 项和为S n ,且关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2).(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =a 2n +2a n -1,求数列{b n }的前n 项和T n . 【解析】(1)设等差数列{a n }的公差为d ,因为关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2), 所以S 2a 1=1+2=3.又S 2=2a 1+d ,所以a 1=d , 易知2a 1=2,所以a 1=1,d =1.所以数列{a n }的通项公式为a n =n . (2)由(1)可得,a 2n =2n ,2a n =2n .因为b n =a 2n +2a n -1,所以b n =2n -1+2n ,所以数列{b n }的前n 项和T n =(1+3+5+…+2n -1)+(2+22+23+…+2n ) =n (1+2n -1)2+2(1-2n )1-2=n 2+2n +1-2.变式3、(2021·广东高三专题练习)设数列{a n }满足a n +1=123n a +,a 1=4. (1)求证{a n ﹣3}是等比数列,并求a n ; (2)求数列{a n }的前n 项和T n . 【答案】(1)证明见解析,11()33n n a -=+;(2)31(1)323n n -+.【解析】(1)数列{a n }满足a n +1=123n a +,所以113(3)3n n a a +-=-, 故13133n n a a +-=-, 所以数列{a n }是以13431a -=-=为首项,13为公比的等比数列. 所以1131()3n n a --=⋅,则1*1()3,3n n a n N -=+∈. (2)因为11()33n n a -=+,所以011111()()()(333)333n n T -=++++++⋯+=11(1)33113n n -+-=31(1)323n n -+. 方法总结:数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差数列或等比数列或可求前n 项和的数列求和.考向三 裂项相消法求和例3、(2021·四川成都市·高三二模(文))已知数列{}n a 的前n 项和n S 满足2n S n =,记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,*n ∈N .则使得20T 的值为( )A .1939B .3839C .2041D .4041【答案】C 【解析】当1n =时,111a S ==;当2n ≥时,221(1)21n n n a S S n n n -=-=--=-;而12111a =⨯-=也符合21n a n =-,∴21n a n =-,*n N ∈.又11111()22121n n a a n n +=--+, ∴11111111(1...)(1)2335212122121n nT n n n n =⨯-+-++-=⨯-=-+++,所以202020220141T ==⨯+,故选:C.变式1、(2021·全国高三专题练习)已知在数列{}n a 中,14,0.=>n a a 前n 项和为n S ,若1,2)-+=∈≥n n n a S S n N n .(1)求数列{}n a 的通项公式; (2)若数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:132020n T <<【解析】(1)在数列{}n a 中,1(2)n n n a S S n -=-≥①∴1n n n a S S -=且0n a >,∴①式÷②11n n S S -= (2)n ≥, ∴数列{}nS 1142S a ===为首项,公差为1的等差数列,2(1)1n S n n =+-=+ ∴2(1)n S n =+当2n ≥时,221(1)21n n n a S S n n n -=-=+-=+;当1n =时,14a =,不满足上式,∴数列{}n a 的通项公式为4,121,2n n a n n =⎧=⎨+≥⎩.(2)由(1)知4,121,2n n a n n =⎧=⎨+≥⎩,,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,∴当1n =时,114520n T ==⨯, ∴当1n =时,120n T =,满足132020n T ≤<,∴12233411111n n n T a a a a a a a a +=++++1111455779(21)(2n =++++⨯⨯⨯+111111111111()()()()45257792123202523n n n ⎡⎤=+⨯-+-++-=+⨯-⎢⎥⨯+++⎣⎦ 312046n =-+ ∴在n T 中,1n ≥,n ∈+N ,∴4610n +≥,∴114610n ≤+,∴1104610n >-≥-+,∴131320204620n ≤-<+.所以132020n T << 变式2、(2021·辽宁高三二模)已知数列{}n a 的前n 项和为n S ,且满足()*2n n a S n n =+∈N .(1)求证:数列{}1n a +是等比数列;(2)记()()2221log 1log 1n n n c a a +=+⋅+,求证:数列{}n c 的前n 项和34n T <.【解析】解:(1)因为2n n a S n =+①, 所以()11212n n a S n n --=+-≥② 由①-②得,121n n a a -=+.两边同时加1得()1112221n n n a a a --+=+=+,所以1121n n a a -+=+,故数列{}1n a +是公比为2的等比数列. (2)令1n =,1121a S =+,则11a =. 由()11112n n a a -+=+⋅,得21nn a =-.因为()()()22211111log 1log 1222n n n c a a n n n n +⎛⎫===- ⎪+⋅+++⎝⎭,所以11111111121324112n T n n n n ⎛⎫=-+-+⋅⋅⋅+-+- ⎪-++⎝⎭11113111221242224n n n n ⎛⎫⎛⎫=+--=-+ ⎪ ⎪++++⎝⎭⎝⎭. 因为*11,02224n N n n ∈+>++,所以3113422244n n ⎛⎫-+< ⎪++⎝⎭所以1111311312212422244n n n n n T ⎛⎫⎛⎫=+--=-+< ⎪ ⎪++++⎝⎭⎝⎭. 方法总结:常见题型有(1)数列的通项公式形如a n =1n n +k 时,可转化为a n =1k ⎝ ⎛⎭⎪⎫1n -1n +k ,此类数列适合使用裂项相消法求和. (2)数列的通项公式形如a n =1n +k +n时,可转化为a n =1k(n +k -n ),此类数列适合使用裂项相消法求和.考向四 错位相减法求和例4、(2020届山东省烟台市高三上期末)已知数列{}n a 的前n 项和n S 满足()()21n n S n a n N*=+∈,且12a =.(1)求数列{}n a 的通项公式;(2)设()12n an n b a =-,求数列{}n b 的前n 项和n T .【解析】(1)因为2(1)n n S n a =+,n *∈N , 所以112(2)n n S n a ++=+,n *∈N ,两式相减得112(2)(1)n n n a n a n a ++=+-+, 整理得1(1)n n na n a +=+,即11n n a a n n +=+,n *∈N ,所以n a n ⎧⎫⎨⎬⎩⎭为常数列, 所以121n a a n ==, 所以2n a n =(2)由(1),(1)2=(21)4n ann n b a n =--, 所以 12314+34+54++(21)4n n T n =⨯⨯⨯-231414+34++(23)4(21)4n n n T n n +=⨯⨯-+-…两式相减得:23134+2(4+4++4)(21)4n n n T n +-=⨯--…,2+114434+2(21)414n n n T n +--=⨯---,化简得120(65)4+99n n n T +-= 变式1、(2020·全国高三专题练习(文))已知数列{}n a 是等差数列,其前n 项和为n S ,且22a =,5S 为10和20的等差中项;数列{}n b 为等比数列,且319b b -=,4218b b -=.(1)求数列{}n a ,{}n b 的通项公式; (2)求数列{}n n a b 的前n 项和n M . 【解析】(1)设等差数列{}n a 的公差为d ,因为22a =,5S 为10和20的等差中项,所以112541020522a d a d +=⎧⎪⎨⨯++=⎪⎩,解得111a d =⎧⎨=⎩,所以n a n =. 设等比数列{}n b 的公比为q ,因为319b b -=,4218b b -=,所以2121(1)9(1)18b q b q q ⎧-=⎨-=⎩,解得132b q =⎧⎨=⎩, 所以132n n b -=⋅.(2)由(1)可知132n n n a b n -⋅=⋅,所以213(122322)n n M n -=+⨯+⨯++⋅,令21122322n n P n -=+⨯+⨯++⋅ ①, 则232222322n n P n =+⨯+⨯++⋅ ②,-①②可得2112122222(1)2112nn nn n n P n n n ---=++++-⋅=-⋅=---,所以(1)21nn P n =-+,所以3(1)23n n M n =-+.变式2、(2020·湖北高三期中)在等差数列{}n a 中,已知{}35,n a a =的前六项和636S =.(1)求数列{}n a 的通项公式n a ;(2)若___________(填①或②或③中的一个),求数列{}n b 的前n 项和n T .在①12n n n b a a +=,②(1)nn n b a =-⋅,③2na n nb a =⋅,这三个条件中任选一个补充在第(2)问中,并对其求解.注:如果选择多个条件分别解答,按第一个解答计分. 【解析】(1)由题意,等差数列{}n a 中35a =且636S =,可得112561536a d a d +=⎧⎨+=⎩,解得12,1d a ==,所以1(1)221n a n n =+-⨯=-.(2)选条件①:211(2n 1)(21)2121nb n n n ==--+-+,111111111335212121n T n n n ⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭, 选条件②:由21n a n =-,可得(1)(2n 1)nn b =--,当n 为偶数时,(13)(57)[(23)(21)]22n nT n n n =-++-+++--+-=⨯=; 当n 为奇数时,1n -为偶数,(1)(21)n T n n n =---=-,(1)n n T n =-,选条件③:由21n a n =-,可得212(21)2n a n n n b a n -=⋅=-⋅, 所以135********(21)2n n T n -=⨯+⨯+⨯++-⨯,35721214123252(23)2(21)2n n n T n n -+=⨯+⨯+⨯++-⨯+-⨯,两式相减,可得:()13521213122222(21)2n n n T n -+-=⨯++++--⨯()222181222(21)214n n n -+-=+⋅--⨯-,所以2110(65)299n n n T +-=+⋅. 方法总结:主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.。
高中数学数列的求和公式及相关题目解析
高中数学数列的求和公式及相关题目解析在高中数学中,数列是一个非常重要的概念,它是数学中的一种序列,由一系列按照一定规律排列的数所组成。
数列的求和是数学中常见的问题之一,本文将介绍数列的求和公式及相关题目解析,帮助高中学生和他们的父母更好地理解和掌握这一知识点。
一、等差数列的求和公式及相关题目解析1. 等差数列的求和公式等差数列是指数列中相邻两项之差都相等的数列。
对于等差数列,我们可以使用求和公式来快速计算其前n项的和。
设等差数列的首项为a1,公差为d,前n项和为Sn,则等差数列的求和公式为:Sn = (n/2)[2a1 + (n-1)d]其中,n为项数,a1为首项,d为公差。
2. 题目解析例题1:已知等差数列的首项为3,公差为4,求前10项的和。
解析:根据等差数列的求和公式,代入a1=3,d=4,n=10,可以得到:S10 = (10/2)[2*3 + (10-1)*4] = 5[6 + 9*4] = 5[6 + 36] = 5*42 = 210因此,前10项的和为210。
例题2:已知等差数列的首项为-2,公差为5,前n项和为100,求n的值。
解析:根据等差数列的求和公式,代入a1=-2,d=5,Sn=100,可以得到:100 = (n/2)[2*(-2) + (n-1)*5] = (n/2)[-4 + 5n - 5] = (n/2)(5n - 9)化简得到5n^2 - 9n - 200 = 0,解这个二次方程可以得到n≈13.2或n≈-3.8。
由于n必须是正整数,所以n≈13.2不符合题意。
因此,n≈-3.8也不符合题意。
综上所述,n的值为13。
二、等比数列的求和公式及相关题目解析1. 等比数列的求和公式等比数列是指数列中相邻两项之比都相等的数列。
对于等比数列,我们可以使用求和公式来快速计算其前n项的和。
设等比数列的首项为a1,公比为r,前n项和为Sn,则等比数列的求和公式为:Sn = a1(1 - r^n)/(1 - r)其中,n为项数,a1为首项,r为公比。
2020版高三数学二轮复习(全国理)讲义:专题四 第一讲等差数列、等比数列
(2)求Sn.并求Sn的最小值.
[解析](1)设等差数列{an}的公差为d.由题意得3a1+3d=-15.
由a1=-7得d=2.
所以{an}的通项公式为an=2n-9.
(2)由(1)得Sn=n2-8n=(n-4)2-16.
所以当n=4时.Sn取得最小值.最小值为-16.
例1 (1)已知等比数列{an}的前n项和为Sn.a1+a3=30.S4=120.设bn=1+log3an.那么数列{bn}的前15项和为( B )
6.(20xx·全国卷Ⅰ.14)记Sn为数列 的前n项和.若Sn=2an+1.则S6=-63..
[解析]依题意. 作差得an+1=2an.
所以数列{an}是公比为2的等比数列.
又因为a1=S1=2a1+1.
所以a1=-1.所以an=-2n-1.
所以S6= =-63.
7.(20xx·全国卷Ⅱ.16)记Sn为等差数列{an}的前n项和.已知a1=-7.S3=-15.
A.1B.2
C.4D.8
[解析]设{an}的公差为d.则由
得
解得d=4.
故选C.
4.(20xx·全国卷Ⅲ.9)等差数列{an}的首项为1.公差不为0.若a2.a3.a6成等比数列.则{an}的前6项和为( A )
A.-24B.-3
C.3D.8
[解析]由已知条件可得a1=1.d≠0.
由a =a2a6可得(1+2d)2=(1+d)(1+5d).
(3)注意整体思想.如在与等比数列前n项和有关的计算中.两式相除就是常用的计算方法.整体运算可以有效简化运算.
G
1.(20xx·邵阳模拟)等比数列{an}的前n项和为Sn.已知a2a3=2a1.且a4与2a7的等差中项为 .则S5=( B )
2020年高考数学(理)总复习:等差数列与等比数列(解析版)
2020年高考数学(理)总复习:等差数列与等比数列题型一 等差、等比数列的基本运算 【题型要点】方程思想在等差(比)数列的基本运算中的运用等差(比)数列的通项公式、求和公式中一共包含a 1、d (或q )、n 、a n 与S n 这五个量,如果已知其中的三个,就可以求其余的两个.其中a 1和d (或q )是两个基本量,所以等差数列与等比数列的基本运算问题一般先设出这两个基本量,然后根据通项公式,求和公式构建这两者的方程组,通过解方程组求其值,这也是方程思想在数列问题中的体现.【例1】等比数列{a n }的前n 项和为S n ,已知a 2a 5=2a 3,且a 4与2a 7的等差中项为54,则S 5等于( )A .29B .31C .33D .36【解析】 法一:设等比数列{a n }的首项为a 1,公比为q ,由题意知⎩⎪⎨⎪⎧a 1qa 1q 4=2a 1q 2a 1q 3+2a 1q 6=2×54,解得⎩⎪⎨⎪⎧q =12a 1=16,所以S 5=a 1(1-q 5)1-q=31,故选B.法二:由a 2a 5=2a 3,得a 4=2.又a 4+2a 7=52,所以a 7=14,所以q =12,所以a 1=16,所以S 5=a 2(1-q 5)1-q=31,故选B.【答案】 B【例2】.{}a n 是公差不为0的等差数列,满足a 24+a 25=a 26+a 27,则该数列的前10项和S 10等于( )A .-10B .-5C .0D .5【解析】 由题意,得a 24-a 27=a 26-a 25,即()a 4-a 7()a 4+a 7=()a 6-a 5()a 6+a 5,即-3d ()a 4+a 7=d ()a 6+a 5,又因为d ≠0,所以a 4+a 7=a 6+a 5=0,则该数列的前10项和S 10=10(a 1+a 10)2=5()a 6+a 5=0.故选C.【答案】 C【例3】.已知递增数列{a n }对任意n ∈N *均满足a n ∈N *,aa n =3n ,记b n =a 2·3n -1(n ∈N *),则数列{b n }的前n 项和等于( )A .2n +nB .2n +1-1 C.3n +1-3n 2D.3n +1-32【解析】 因为aa n =3n ,所以a 1≤3,若a 1=1,那么a 1=aa 1=3×1=3≠1矛盾,若a 1=2,那么a 2=aa 1=3×1=3成立,若a 1=3,那么a 3=aa 1=3×1=3=a 1矛盾,所以a 2=b 1=2,当aa an =3a n =a 3n ,所以b n =a 2·3n -1=a 3·2·3n -2=3a 2·3n -2=3b n -1,即b n b n -1=3,数列{b n }是首项为2,公比为3的等比数列,所以前n 项和为b 1(1-q n )1-q =3(1-33)1-3=3n +1-32,故选D.【答案】 D题组训练一 等差、等比数列的基本运算1.设等差数列{a n }的前n 项和为S n ,若a 3+a 5=4,S 15=60则a 20等于( ) A .4 B .6 C .10 D .12 【解析】 等差数列{a n }的前n 项和为S n , ∈a 3+a 5=4,S 15=60,∈⎩⎪⎨⎪⎧a 1+2d +a 1+4d =415a 1+15×142d =60, 解得a 1=12,d =12,∈a 20=a 1+19d =12+19×12=10.故选C.【答案】 C2.在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 8+a 10)=36,则a 6等于( ) A .8 B .6 C .4D .3【解析】 由等差数列的性质可知,2(a 1+a 3+a 5)+3(a 8+a 10)=2×3a 3+3×2a 9=6(a 3+a 9)=6×2a 6=12a 6=36,∈a 6=3.故选D.【答案】 D3.已知等比数列{a n }的前n 项和为S n ,a 1+a 3=30,S 4=120,设b n =1+log 3a n ,那么数列{b n }的前15项和为( )A .152B .135C .80D .16【解析】 设等比数列{a n }的公比为q ,由a 1+a 3=30,a 2+a 4=S 4-(a 1+a 3)=90,所以公比q =a 2+a 4a 1+a 3=3,首项a 1=301+q 2=3,所以a n =3n ,b n =1+log 33n =1+n ,则数列{b n }是等差数列,前15项的和为15×(2+16)2=135,故选B. 【答案】 B题型二 等差、等比数列的性质及应用 【题型要点】(1)解决此类问题的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.(2)等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.【例4】已知数列{a n },{b n }满足b n =log 2a n ,n ∈N *,其中{b n }是等差数列,且a 8·a 2 008=14,则b 1+b 2+b 3+…+b 2 015等于( ) A .log 22 015B .2 015C .-2 015D .1 008【解析】 ∈数列{a n },{b n }满足b n =log 2a n ,n ∈N *,其中{b n }是等差数列,∈数列{a n }是等比数列,由a 8·a 2 008=14,可得a 21 008=14,即a 1 008=12,∈a 1·a 2 015=a 2·a 2 014=…=a 1 007·a 1009=a 21 008=14,∈b 1+b 2+b 3+…+b 2 015=log 2(a 1·a 2·…·a 2 015)=log 2201521⎪⎭⎫ ⎝⎛=-2 015.【答案】C2.各项均为正数的等比数列{a n }的前n 项和为S n ,若S 4=10,S 12=130,则S 8等于( ) A .-30 B .40 C .40或-30D .40或-50【解析】 ∈数列{a n }为等比数列且数列{a n }的前n 项和为S n ,∈S 4,S 8-S 4,S 12-S 8也构成等比数列.∈(S 8-S 4)2=S 4·(S 12-S 8),∈S 4=10,S 12=130,各项均为正数的等比数列{a n }, ∈(S 8-10)2=10·(130-S 8),∈S 8=40.故选B. 【答案】 B3.等比数列{a n }的首项为32,公比为-12,前n 项和为S n ,则当n ∈N *时,S n -1S n的最大值与最小值之和为( )A .-23B .-712C.14D.56【解析】 依题意得,S n =⎪⎭⎫ ⎝⎛--⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-21121123n=1-n⎪⎭⎫⎝⎛-21.当n 为奇数时,S n =1+12n 随着n 的增大而减小,1<S n =1+12n ≤S 1=32,S n-1S n 随着S n 的增大而增大,0<S n -1S n ≤56;当n 为偶数时,S n =1-12n 随着n 的增大而增大,34=S 2≤S n =1-12n <1,S n -1S n 随着S n 的增大而增大,-712≤S n -1S n <0.因此S n -1S n 的最大值与最小值分别为56、-712,其最大值与最小值之和为56-712=312=14,选C.【答案】 C题组训练二 等差、等比数列的性质及应用1.在等比数列{a n }中,a 3,a 15是方程x 2-7x +12=0的两根,则a 1a 17a 9的值为( )A .2 3B .4C .±2 2D .±4【解析】 ∈a 3,a 15是方程x 2-7x +12=0的两根,∈a 3a 15=12,a 3+a 15=7,∈{a n }为等比数列,又a 3,a 9,a 15同号,∈a 9>0,∈a 9=a 3a 15=23,∈a 1a 17a 9=a 29a 9=a 9=2 3.故选A.【答案】 A2.设公差为d 的等差数列{a n }的前n 项和为S n ,若a 1=1,-217<d <-19,则当S n 取最大值时n 的值为________.【解析】 因为等差数列{a n }的公差d 为负值,所以{a n }是递减数列.又a 1=1,所以由a n =a 1+(n -1)d >0得n <d -a 1d ,即n <1-1d ,因为-217<d <-19,所以192<1-1d <10,所以n ≤9,即当n ≤9时,a n >0,当n ≥10时,a n <0.所以当S n 取得最大值时n 的值为9.【答案】 93.若{a n }是等差数列,首项a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,则使前n 项和S n>0成立的最大正整数n 是( )A .2 016B .2 017C .4 032D .4 033【解析】 因为a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,所以d <0,a 2 016>0,a 2 017<0,所以S 4 032=4 032(a 1+a 4 032)2=4 032(a 2 016+a 2 017)2>0,S 4 033=4 033(a 1+a 4 033)2=4 033a 2017<0,所以使前n 项和S n >0成立的最大正整数n 是4 032,故选C.【答案】 C题型三 等差、等比数列的综合问题 【题型要点】关于等差、等比数列的综合问题多属于两者运算的综合题以及相互之间的转化,关键是求出两个数列的基本量:首项和公差(或公比),灵活运用性质转化条件,简化运算,准确记忆相关的公式是解决此类问题的关键.【例3】已知等差数列{a n }的公差为-1,且a 2+a 7+a 12=-6. (1)求数列{a n }的通项公式a n 与前n 项和S n ;(2)将数列{a n }的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前3项,记{b n }的前n 项和为T n ,若存在m ∈N *,使对任意n ∈N *,总有S n <T m +λ恒成立,求实数λ的取值范围.【解析】 (1)由a 2+a 7+a 12=-6,得a 7=-2,∈a 1=4, ∈a n =5-n ,从而S n =n (9-n )2.(2)由题意知b 1=4,b 2=2,b 3=1,设等比数列{b n }的公比为q ,则q =b 2b 1=12,∈T m =2112114-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-m =8⎪⎭⎫ ⎝⎛-m )21(1, ∈m⎪⎭⎫⎝⎛21随m 增加而递减, ∈{T m }为递增数列,得4≤T m <8. 又S n =n (9-n )2=-12(n 2-9n )=-12⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛-481292n ,故(S n )max =S 4=S 5=10,若存在m ∈N *,使对任意n ∈N *总有S n <T m +λ, 则10<8+λ,得λ>2.即实数λ的取值范围为(2,+∞). 题组训练三 等差、等比数列的综合问题已知数列{a n }中,a 1=1,a n ·a n +1=n⎪⎭⎫ ⎝⎛21,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n -1,n ∈N *.(1)判断数列{b n }是否为等比数列,并求出b n ; (2)求T 2n .【解析】 (1)∈a n ·a n +1=n⎪⎭⎫⎝⎛21,∈a n +1·a n +2=121+⎪⎭⎫⎝⎛n ,∈a n +2a n =12,即a n +2=12a n .∈b n =a 2n +a 2n -1,∈b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12所以{b n }是公比为12的等比数列.∈a 1=1,a 1·a 2=12,∈a 2=12∈b 1=a 1+a 2=32.∈b n =32×121-⎪⎭⎫⎝⎛n =32n . (2)由(1)可知a n +2=12a n ,所以a 1,a 3,a 5,…是以a 1=1为首项,以12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,以12为公比的等比数列. ∈T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=[]21121121211211-⎪⎭⎫ ⎝⎛-+-⎪⎭⎫⎝⎛-nn =3-32n .题型四 数列与其他知识的交汇 【题型要点】数列在中学教材中既有相对独立性,又有较强的综合性,很多数列问题一般转化,特殊数列求解,一些题目常与函数、向量、三角函数、解析几何等知识交汇结合,考查数列的基本运算与应用.【例4】 已知等差数列{a n }的前n 项和为S n ,若OB →=a 1OA →+a 2 016OC →,且A ,B ,C 三点共线(该直线不过点O ),则S 2 016等于( )A .1 007B .1 008C .2 015D .2 016 【解析】 ∈A 、B 、C 三点共线∈AB →=λAC →∈OB →-OA →=λ(OC →-OA →),OB →=(1-λ)OA →+λOC → 又∈OB →=a 1·OA →+a 2 016OC →,∈a 1=1-λ,a 2 016=λ ∈a 1+a 2 016=1∈S 2 016=2 016(a 1+a 2 016)2=1 008,∈选B.【答案】 B题组训练四 数列与其他知识的交汇1.在由正数组成的等比数列{a n }中,若a 3a 4a 5=3π,则sin(log 3a 1+log 3a 2+…+log 3a 7)的值为( )A.12B.32C .1D .-32【解析】 因为a 3a 4a 5=3π=a 34,所以a 4=3π3,即log 3a 1+log 3a 2+…+log 3a 7=log 3(a 1a 2…a 7)=log 3a 74=7log 33π3=7π3,所以sin(log 3a 1+log 3a 2+…+log 3a 7)=32. 【答案】 B2.已知各项都为正数的等比数列{a n }满足a 7=a 6+2a 5,存在两项a m ,a n 使得 a m ·a n =4a 1,则1m +4n的最小值为( )A.32B.53C.256D.43【解析】 由a 7=a 6+2a 5,得a 1q 6=a 1q 5+2a 1q 4,整理得q 2-q -2=0,解得q =2或q=-1(不合题意,舍去),又由a m ·a n =4a 1,得a m a n =16a 21,即a 212m+n -2=16a 21,即有m +n-2=4,亦即m +n =6,那么1m +4n =16(m +n )⎪⎭⎫⎝⎛+n m 41=16⎪⎪⎭⎫ ⎝⎛+⋅≥⎪⎭⎫ ⎝⎛++5426154m n n m m n n m =32,当且仅当4m n =n m ,即n =2m =4时取得最小值32.【答案】 A3.艾萨克·牛顿(1643年1月4日-1727年3月31日)英国皇家学会会长,英国著名物理学家,同时在数学上也有许多杰出贡献,牛顿用“作切线”的方法求函数f (x )的零点时给出一个数列{}x n 满足x n +1=x n -f (x n )f ′(x n ),我们把该数列称为牛顿数列.如果函数f (x )=ax 2+bx +c (a >0)有两个零点1,2,数列{}x n 为牛顿数列,设a n =ln x n -2x n -1,已知a 1=2,x n >2,则{}a n 的通项公式a n =________.【解析】 ∈ 函数f (x )=ax 2+bx +c (a >0)有两个零点1,2,∈⎩⎪⎨⎪⎧ a +b +c =0,4a +2b +c =0, 解得⎩⎪⎨⎪⎧c =2a ,b =-3a . ∈f (x )=ax 2-3ax +2a ,则f ′(x )=2ax -3a .则x n +1=x n -ax 2n -3ax n +2a 2ax n -3a =x n -x 2n -3x n +22x n -3=x 2n -22x n -3,∈x n +1-2x n +1-1=x 2n -22x n-3-2x 2n -22x n -3-1=x 2n -2-2(2x n -3)x 2n -2-(2x n -3)=212⎪⎪⎭⎫⎝⎛--n n x x , 则数列a n 是以2为公比的等比数列,又∈a 1=2 ,∈ 数列{}a n 是以2为首项,以2为公比的等比数列,则a n=2·2n-1=2n.【答案】2n【专题训练】一、选择题1.等比数列{a n}中,a4=2,a7=5,则数列{lg a n}的前10项和等于()A.2B.lg 50C.10D.5【解析】∈等比数列{a n}中,a4=2,a7=5,∈a1a10=a2a9=…=a4a7=10,∈数列{lg a n}的前10项和S=lg a1+lg a2+…+lg a10=lg a1a2…a10=lg 105=5,故选D【答案】D2.在正项等比数列{a n}中,已知a3a5=64,则a1+a7的最小值为()A.64 B.32C.16 D.8【解析】在正项等比数列{a n}中,∈a3a5=64,∈a3a5=a1a7=64,∈a1+a7≥2a1a7=264=2×8=16,当且仅当a1=a7=8时取等号,∈a1+a7的最小值为16,故选C.【答案】C3.一个等比数列的前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列的项数是()A.13 B.12C.11 D.10【解析】设等比数列为{a n},其前n项积为T n,由已知得a1a2a3=2,a n a n-1a n-2=4,可得(a1a n)3=2×4,a1a n=2,∈T n=a1a2…a n,∈T2n=(a1a2…a n)2=(a1a n)(a2a n-1)…(a n a1)=(a1a n)n =2n=642=212,∈n=12.【答案】 B4.在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n 等于( )A .n (3n -1)B.n (n +3)2C .n (n +1)D.n (3n +1)2【解析】 依题意得a n +1=a n +a 1,即有a n +1-a n =a 1=2,所以数列{a n }是以2为首项,2为公差的等差数列,a n =2+2(n -1)=2n ,S n =n (2+2n )2=n (n +1),选C.【答案】 C5.记S n 为正项等比数列{a n }的前n 项和,若S 12-S 6S 6-7·S 6-S 3S 3-8=0,且正整数m ,n满足a 1a m a 2n =2a 35,则1m +8n的最小值是( ) A.157 B.95 C.53D.75【解析】 ∈{a n }是等比数列,设{a n }的公比为q , ∈S 12-S 6S 6=q 6,S 6-S 3S 3=q 3,∈q 6-7q 3-8=0,解得q =2(负值舍去).又a 1a m a 2n =2a 35,∈a 31·2m +2n -2=2(a 124)3=a 31213,∈m +2n =15,∈1m +8n =115⎪⎭⎫⎝⎛+n m 81(m +2n )=17+2n m +8m n 15≥17+22n m ×8m n 15=53,当且仅当2n m =8mn,即m =3,n =6时等号成立,∈1m +8n 的最小值是53,故选C. 【答案】 C6.数列{}a n 是以a 为首项,b 为公比的等比数列,数列{}b n 满足b n =1+a 1+a 2+…+a n (n =1,2,…),数列{}c n 满足c n =2+b 1+b 2+…+b n (n =1,2,…),若{}c n 为等比数列,则a +b 等于( )A. 2 B .3 C. 5D .6【解析】 由题意知,当b =1时,{c n }不是等比数列,所以b ≠1.由a n =ab n -1,则b n =1+a (1-b n )1-b =1+a 1-b -ab n 1-b ,得c n =2+nb a ⎪⎭⎫ ⎝⎛-+11-a 1-b ·b (1-b n )1-b =2-ab (1-b )2+1-b +a 1-b n +abn +1(1-b )2,要使{}c n为等比数列,必有⎩⎪⎨⎪⎧2-ab(1-b )2=0,1-b +a1-b =0,得⎩⎪⎨⎪⎧a =1,b =2,a +b =3,故选B.【答案】 B 二、填空题7.数列{a n }的通项a n =n 2·⎪⎭⎫ ⎝⎛-3sin 3cos22ππn n ,其前n 项和为S n ,则S 30=________. 【解析】 由题意可知,a n =n 2·cos 2n π3,若n =3k -2,则a n =(3k -2)2·⎪⎭⎫⎝⎛-21=-9k 2+12k -42(k ∈N *);若n =3k -1,则a n =(3k -1)2·⎪⎭⎫ ⎝⎛-21=-9k 2+6k -12(k ∈N *);若n =3k ,则a n =(3k )2·1=9k 2(k ∈N *),∈a 3k -2+a 3k -1+a 3k =9k -52,k ∈N *,∈S 30=9-52+90-522×10=470.【答案】 4708.已知数列{a n }满足a 1=2,且a n =2na n -1a n -1+n -1(n ≥2,n ∈N *),则a n =________.【解析】 由a n =2na n -1a n -1+n -1,得n a n =n -12a n -1+12,于是n a n -1=12⎪⎪⎭⎫ ⎝⎛---111n a n (n ≥2,n ∈N *). 又1a 1-1=-12,∈数列⎭⎬⎫⎩⎨⎧-1nan 是以-12为首项,12为公比的等比数列,故n a n -1=-12n ,∈a n =n ·2n2n -1(n ∈N *).【答案】 n ·2n2n -19.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?( )A .8日B .9日C .12日D .16日【解析】由题可知,良马每日行程a n 构成一个首项为103,公差13的等差数列,驽马每日行程b n 构成一个首项为97,公差为-0.5的等差数列,则a n =103+13(n -1)=13n +90,b n =97-0.5(n -1)=97.5-0.5n ,则数列{a n }与数列{b n }的前n 项和为1125×2=2250,又∈数列{a n }的前n 项和为n 2×(103+13n +90),数列{b n }的前n 项和为n 2×(97+97.5-0.5n ),n 2(103+3n +90)+n2(97+97.5-0.5n )=2250,整理得:25n 2+775n -9 000=0,即n 2+31n -360=0,解得:n =9或n =-40(舍),即九日相逢.故选B.【答案】B10.数列{log k a n }是首项为4,公差为2的等差数列,其中k >0,且k ≠1.设c n =a n lg a n ,若{c n }中的每一项恒小于它后面的项,则实数k 的取值范围为________.【解析】 由题意得log k a n =2n +2,则a n =k2n +2,∈a n +1a n =k 2(n +1)+2k2n +2=k 2,即数列{a n }是以k 4为首项,k 2为公比的等比数列,c n =a n lg a n =(2n +2)·k 2n +2lg k ,要使c n <c n +1对一切n ∈N *恒成立,即(n +1)lg k <(n +2)·k 2·lg k 对一切n ∈N *恒成立;当k >1时,lg k >0,n +1<(n +2)k 2对一切n ∈N *恒成立;当0<k <1时,lg k <0,n +1>(n +2)k 2对一切n ∈N *恒成立,只需k 2<⎪⎭⎫ ⎝⎛++21n n min .∈n +1n +2=1-1n +2单调递增,∈当n =1时,n +1n +2取得最小值,即⎪⎭⎫⎝⎛++21n n min =23,∈k 2<23,且0<k <1,∈0<k <63.综上,k ∈⎪⎪⎭⎫ ⎝⎛36,0∈(1,+∞).【答案】 ⎪⎪⎭⎫⎝⎛36,0∈(1,+∞) 三、解答题11.已知数列{}a n 的前n 项和为S n ,且S n =2a n -3n (n ∈N *). (1)求a 1,a 2,a 3的值;(2)是否存在常数λ,使得数列{a n +λ}为等比数列?若存在,求出λ的值和通项公式a n ;若不存在,请说明理由.【解】 (1)当n =1时,由S 1=2a 1-3×1,得a 1=3; 当n =2时,由S 2=2a 2-3×2,可得a 2=9; 当n =3时,由S 3=2a 3-3×3,得a 3=21.(2)令(a 2+λ)2=(a 1+λ)·(a 3+λ),即(9+λ)2=(3+λ)·(21+λ),解得λ=3. 由S n =2a n -3n 及S n +1=2a n +1-3(n +1),两式相减,得a n +1=2a n +3.由以上结论得a n +1+3=(2a n +3)+3=2(a n +3),所以数列{a n +3}是首项为6,公比为2的等比数列,因此存在λ=3,使得数列{a n +3}为等比数列,所以a n +3=(a 1+3)×2n -1,a n =3(2n -1)(n ∈N *).12.已知数列{a n }的前n 项和为S n ,且S n -1=3(a n -1),n ∈N *. (1)求数列{a n }的通项公式;(2)设数列{b n }满足a n +1=⎪⎭⎫⎝⎛23a n ·b n ,若b n ≤t 对于任意正整数n 都成立,求实数t 的取值范围.【解】 (1)由已知得S n =3a n -2,令n =1,得a 1=1,又a n +1=S n +1-S n =3a n +1-3a n ∈a n+1=32a n ,所以数列{a n }是以1为首项,32为公比的等比数列,所以a n =123-⎪⎭⎫⎝⎛n .(2)由a n +1=⎪⎭⎫ ⎝⎛23a n ·b n ,得b n =1a n log 32a n +1=(23)n -1log 32(32)n =n ·123-⎪⎭⎫⎝⎛n ,所以b n +1-b n =(n +1)·n ⎪⎭⎫ ⎝⎛32-n ·132-⎪⎭⎫⎝⎛n =2n -13n (2-n ),所以(b n )max =b 2=b 3=43,所以t ≥43.。
2020年高考数学(理)总复习:数列的求和及综合应用(解析版)
2020年高考数学(理)总复习:数列的求和及综合应用题型一 数列求和 【题型要点】(1)分组求和法:分组求和法是解决通项公式可以写成c n =a n +b n 形式的数列求和问题的方法,其中{a n }与{b n }是等差(比)数列或一些可以直接求和的数列.(2)裂项相消法:将数列的通项分成两个代数式子的差,即a n =f (n +1)-f (n )的形式,然后通过累加抵消中间若干项的求和方法.形如1+n n a a c(其中{a n }是各项均不为0的等差数列,c 为常数)的数列等.(3)错位相减法:形如{a n ·b n }(其中{a n }为等差数列,{b n }为等比数列)的数列求和,一般分三步:①巧拆分;②构差式;③求和.(4)倒序求和法:距首尾两端等距离的两项和相等,可以用此法,一般步骤:①求通项公式;②定和值;③倒序相加;④求和;⑤回顾反思.(5)并项求和法:先将某些项放在一起求和,然后再求S n .(6)归纳猜想法:通过对S 1,S 2,S 3,…的计算进行归纳分析,寻求规律,猜想出S n ,然后用数学归纳法给出证明.【例1】已知各项为正数的等比数列{a n }的前n 项和为S n ,数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),若S 3=b 5+1,b 4是a 2和a 4的等比中项. (1)求数列{a n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .【反思总结】(1)错位相减法适用于求数列{a n·b n}的前n项和,其中{a n}为等差数列,{b n}为等比数列.(2)所谓“错位”,就是要找“同类项”相减.要注意的是相减后所得部分,求等比数列的和,此时一定要查清其项数.(3)为保证结果正确,可对得到的和取n=1,2进行验证.题组训练一数列求和已知等比数列{a n}的前n项和为S n,且6S n=3n+1+a(a∈N*).(1)求a的值及数列{a n}的通项公式;(2)设b n=(-1)n-1(2n2+2n+1)(log3a n+2)2(log3a n+1)2,求{b n}的前n项和T n.题型二数列与函数的综合问题【题型要点】数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.【例2】已知数列{a n}的前n项和为S n,且S n=2n2+2n.(1)求数列{a n}的通项公式;(2)若点(b n,a n)在函数y=log2x的图象上,求数列{b n}的前n项和T n.题组训练二 数列与函数的综合问题已知二次函数f (x )=ax 2+bx 的图象过点(-4n,0),且f ′(0)=2n (n ∈N *). (1)求f (x )的解析式;(2)若数列{a n }满足1a n +1=f ′⎪⎪⎭⎫ ⎝⎛na 1,且a 1=4,求数列{a n }的通项公式.题型三 数列与不等式的综合问题 【题型要点】(1)以数列为背景的不等式恒成立问题,多与数列求和相联系,最后利用数列或数列对应函数的单调性求解.(2)以数列为背景的不等式证明问题,多与数列求和有关,常利用放缩法或单调性法证明.(3)当已知数列关系时,需要知道其范围时,可借助数列的单调性,即比较相邻两项的大小即可.【例3】设f n (x )=x +x 2+…+x n -1,x ≥0,n ∈N ,n ≥2. (1)求f n ′(2);(2)证明:f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点(记为a n ),且0<a n -12<13n⎪⎭⎫ ⎝⎛32.题组训练三 数列与不等式的综合问题1.已知等比数列{a n }满足a n +1+a n =10·4n -1(n ∈N *),数列{b n }的前n 项和为S n ,且b n =log 2a n .(1)求b n ,S n ;(2)设c n =b n +12,证明:c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *).2.已知数列{a n }满足a 1=1,a n +1=a n 1+a 2n,n ∈N *,记S n ,T n 分别是数列{a n },{a 2n }的前n 项和.证明:当n ∈N *时,(1)a n +1<a n ; (2)T n =1a 2n +1-2n -1;(3)2n -1<S n <2n .【专题训练】1.已知数列{a n }的前n 项和为S n ,且a 2=8, S n =a n +12-n -1.(1)求数列{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫2×3na n a n +1的前n 项和T n .2.已知数列{a n }的前n 项和为S n ,a 1=2,a n +1=S n +2. (1)求数列{a n }的通项公式;(2)已知b n =log 2a n ,求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .3.已知正项数列{a n }的前n 项和为S n ,且a 1=2,4S n =a n ·a n +1,n ∈N *. (1)求数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a 2n 的前n 项和为T n ,求证:n 4n +4<T n <12.4.已知数列{a n}与{b n}的前n项和分别为A n和B n,且对任意n∈N*,a n+1-a n=2(b n+1-b n)恒成立.(1)若A n=n2,b1=2,求B n;(2)若对任意n∈N*,都有a n=B n及b2a1a2+b3a2a3+b4a3a4+…+b n+1a n a n+1<13成立,求正实数b1的取值范围;(3)若a1=2,b n=2n,是否存在两个互不相等的整数s,t(1<s<t),使A1B1,A sB s,A tB t成等差数列?若存在,求出s,t的值;若不存在,请说明理由.2020年高考数学(理)总复习:数列的求和及综合应用题型一 数列求和 【题型要点】(1)分组求和法:分组求和法是解决通项公式可以写成c n =a n +b n 形式的数列求和问题的方法,其中{a n }与{b n }是等差(比)数列或一些可以直接求和的数列.(2)裂项相消法:将数列的通项分成两个代数式子的差,即a n =f (n +1)-f (n )的形式,然后通过累加抵消中间若干项的求和方法.形如1+n n a a c(其中{a n }是各项均不为0的等差数列,c 为常数)的数列等.(3)错位相减法:形如{a n ·b n }(其中{a n }为等差数列,{b n }为等比数列)的数列求和,一般分三步:①巧拆分;②构差式;③求和.(4)倒序求和法:距首尾两端等距离的两项和相等,可以用此法,一般步骤:①求通项公式;②定和值;③倒序相加;④求和;⑤回顾反思.(5)并项求和法:先将某些项放在一起求和,然后再求S n .(6)归纳猜想法:通过对S 1,S 2,S 3,…的计算进行归纳分析,寻求规律,猜想出S n ,然后用数学归纳法给出证明.【例1】已知各项为正数的等比数列{a n }的前n 项和为S n ,数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),若S 3=b 5+1,b 4是a 2和a 4的等比中项. (1)求数列{a n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .【解析】 (1)∵数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),∴b 5=6,b 4=4,设各项为正数的等比数列{a n }的公比为q ,q >0, ∵S 3=b 5+1=7,∴a 1+a 1q +a 1q 2=7,① ∵b 4是a 2和a 4的等比中项,∴a 2·a 4=a 23=16,解得a 3=a 1q 2=4,②由①②得3q 2-4q -4=0,解得q =2,或q =-23(舍),∴a 1=1,a n =2n -1.(2)当n 为偶数时,T n =(1+1)·20+2·2+(3+1)·22+4·23+(5+1)·24+…+[[(n -1)+1]·2n-2+n ·2n -1=(20+2·2+3·22+4·23+…+n ·2n -1)+(20+22+…+2n -2),设H n =20+2·2+3·22+4·23+…+n ·2n -1,①2H n =2+2·22+3·23+4·24+…+n ·2n ,② ①-②,得-H n =20+2+22+23+…+2n -1-n ·2n=1-2n 1-2-n ·2n =(1-n )·2n -1,∴H n =(n -1)·2n +1,∴T n =(n -1)·2n+1+1-4·2n 1-4=⎪⎭⎫ ⎝⎛-32n ·2n +23.当n 为奇数,且n ≥3时,T n =T n -1+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-35n ·2n -1+23+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-322n ·2n -1+23,经检验,T 1=2符合上式, ∴T n =⎪⎪⎩⎪⎪⎨⎧+⋅⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛--为偶数为奇数n n n n n n ,32232,3223221【反思总结】(1)错位相减法适用于求数列{a n ·b n }的前n 项和,其中{a n }为等差数列,{b n }为等比数列. (2)所谓“错位”,就是要找“同类项”相减.要注意的是相减后所得部分,求等比数列的和,此时一定要查清其项数.(3)为保证结果正确,可对得到的和取n =1,2进行验证.题组训练一 数列求和已知等比数列{a n }的前n 项和为S n ,且6S n =3n +1+a (a ∈N *).(1)求a 的值及数列{a n }的通项公式;(2)设b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2,求{b n }的前n 项和T n .【解析】 (1)∵等比数列{a n }满足6S n =3n +1+a (a ∈N *),n =1时,6a 1=9+a ;n ≥2时,6a n =6(S n -S n -1)=3n +1+a -(3n +a )=2×3n .∴a n =3n -1,n =1时也成立,∴1×6=9+a ,解得a =-3,∴a n =3n -1.(2)b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2=(-1)n -1(2n 2+2n +1)n 2(n +1)2=(-1)n -1()⎥⎦⎤⎢⎣⎡++22111n n当n 为奇数时,T n =+⋅⋅⋅+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1+1(n +1)2; 当n 为偶数时,T n =+⋅⋅⋅+⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1-1(n +1)2. 综上,T n =1+(-1)n-11(n +1)2. 题型二 数列与函数的综合问题 【题型要点】数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题; (2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.【例2】已知数列{a n }的前n 项和为S n ,且S n =2n 2+2n . (1)求数列{a n }的通项公式;(2)若点(b n ,a n )在函数y =log 2x 的图象上,求数列{b n }的前n 项和T n . 【解】 (1)当n ≥2时,a n =S n -S n -1=2n 2+2n -[2(n -1)2+2(n -1)]=4n , 当n =1时,a 1=S 1=4=4×1, ∴数列{a n }的通项公式为a n =4n .(2)由点{b n ,a n }在函数y =log 2x 的图象上得a n =log 2b n ,且a n =4n ,∴b n =2an =24n =16n ,故数列{b n }是以16为首项,公比为16的等比数列.T n =16(1-16n )1-16=16n +1-1615.题组训练二 数列与函数的综合问题已知二次函数f (x )=ax 2+bx 的图象过点(-4n,0),且f ′(0)=2n (n ∈N *). (1)求f (x )的解析式;(2)若数列{a n }满足1a n +1=f ′⎪⎪⎭⎫ ⎝⎛na 1,且a 1=4,求数列{a n }的通项公式. 【解】 (1)由f ′(x )=2ax +b ,f ′(0)=2n ,得b =2n ,又f (x )的图象过点(-4n,0),所以16n 2a -4nb =0,解得a =12.所以f (x )=12x 2+2nx (n ∈N *).(2)由(1)知f ′(x )=x +2n (n ∈N *), 所以1a n +1=1a n +2n ,即1a n +1-1a n=2n .所以1a n -1a n -1=2(n -1), 1a n -1-1a n -2=2(n -2),…1a 2-1a 1=2,以上各式相加得1a n -14=n 2-n ,所以a n =1n 2-n +14,即a n =4(2n -1)2(n ∈N *). 题型三 数列与不等式的综合问题 【题型要点】(1)以数列为背景的不等式恒成立问题,多与数列求和相联系,最后利用数列或数列对应函数的单调性求解.(2)以数列为背景的不等式证明问题,多与数列求和有关,常利用放缩法或单调性法证明.(3)当已知数列关系时,需要知道其范围时,可借助数列的单调性,即比较相邻两项的大小即可.【例3】设f n (x )=x +x 2+…+x n -1,x ≥0,n ∈N ,n ≥2. (1)求f n ′(2);(2)证明:f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点(记为a n ),且0<a n -12<13n⎪⎭⎫ ⎝⎛32.(1)【解】 方法一 由题设f n ′(x )=1+2x +…+nx n -1,所以f n ′(2)=1+2×2+…+(n -1)2n -2+n ·2n -1,①则2f n ′(2)=2+2×22+…+(n -1)2n -1+n ·2n ,②由①-②得,-f n ′(2)=1+2+22+…+2n -1-n ·2n=1-2n1-2-n ·2n =(1-n )2n -1, 所以f n ′(2)=(n -1)2n +1.方法二 当x ≠1时,f n (x )=x -x n +11-x-1,则f n ′(x )=[1-(n +1)x n ](1-x )+(x -x n +1)(1-x )2,可得f n ′(2)=-[1-(n +1)2n ]+2-2n +1(1-2)2=(n -1)2n +1.(2)[证明] 因为f n (0)=-1<0,f n ⎪⎭⎫ ⎝⎛32=32132132-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n-1=1-2×n ⎪⎭⎫ ⎝⎛32≥1-2×232⎪⎭⎫ ⎝⎛>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内至少存在一个零点,又f ′n (x )=1+2x +…+nx n -1>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内单调递增,因此f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点a n ,由于f n (x )=x -x n +11-x -1,所以0=f n (a n )=a n -a n +1n 1-a n-1,由此可得a n =12+12a n +1n >12,故12<a n <23,所以0<a n -12=12a n+1n <12×132+⎪⎭⎫⎝⎛n =13n⎪⎭⎫⎝⎛32. 题组训练三 数列与不等式的综合问题1.已知等比数列{a n }满足a n +1+a n =10·4n -1(n ∈N *),数列{b n }的前n 项和为S n ,且b n =log 2a n .(1)求b n ,S n ;(2)设c n =b n +12,证明:c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *).【解】 (1)解 由题意知a 2+a 1=10,a 2+a 3=40,设{a n }的公比为q ,则a 2+a 3a 1+a 2=q (a 1+a 2)a 1+a 2=4,∴q =4.则a 1+a 2=a 1+4a 1=10,解得a 1=2,∴a n =2·4n -1=22n -1.∴b n =log 222n -1=2n -1.∴S n =n (b 1+b n )2=n (1+2n -1)2=n 2.(2)证明 法一∵c n =b n +12=2n -1+12=n ,∴S n +1=(n +1)2.要证明c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1,即证1×2+2×3+…+n ×(n +1)<12(n +1)2,①当n =1时,1×2<12×(1+1)2=2成立.②假设当n =k (k ∈N *)时不等式成立, 即1×2+2×3+…+k ×(k +1)<12(k +1)2,则当n =k +1(k ∈N *)时,要证1×2+2×3+…+k ×(k +1)+(k +1)(k +2)<12(k +2)2,即证(k +1)(k +2)<12(k +2)2-12(k +1)2,即(k +1)(k +2)<k +32,两边平方得k 2+3k +2<k 2+3k +94显然成立,∴当n =k +1(k ∈N *)时,不等式成立. 综上,不等式成立.法二 ∵c n =b n +12=2n -1+12=n ,S n +1=(n +1)2,由基本不等式可知n (n +1)≤n +n +12=n +12,故1×2<1+12,2×3<2+12,…,n (n +1)≤n +12,∴1×2+2×3+3×4+…+n (n +1)<(1+2+3+…+n )+n 2=n 2+2n 2<n 2+2n +12=(n +1)22,即不等式c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *)成立.2.已知数列{a n }满足a 1=1,a n +1=a n 1+a 2n,n ∈N *,记S n ,T n 分别是数列{a n },{a 2n }的前n 项和.证明:当n ∈N *时,(1)a n +1<a n ; (2)T n =1a 2n +1-2n -1;(3)2n -1<S n <2n .【证明】 (1)由a 1=1及a n +1=a n1+a 2n 知,a n >0,故a n +1-a n =a n 1+a 2n -a n =-a 3n1+a 2n <0, ∴a n +1<a n ,n ∈N *. (2)由1a n +1=1a n +a n ,得1a 2n +1=1a 2n +a 2n +2,从而1a 2n +1=1a 2n +a 2n +2=1a 2n -1+a 2n -1+a 2n +2×2=…=1a 21+a 21+a 22+…+a 2n +2n ,又∵a 1=1,∴T n =1a 2n +1-2n -1,n ∈N *. (3)由(2)知,a n +1=1T n +2n +1,由T n ≥a 21=1,得a n +1≤12n +2,∴当n ≥2时,a n ≤12n =22n <2n +n -1=2(n -n -1),由此S n <a 1+2[(2-1)+(3-2)+…+(n -n -1)]=1+2(n -1)<2n ,n ≥2,又∵a 1=1,∴S n <2n .另一方面,由a n =1a n +1-1a n ,得S n =1a n +1-1a 1≥2n +2-1>2n -1.综上,2n -1<S n <2n .【专题训练】1.已知数列{a n }的前n 项和为S n ,且a 2=8, S n =a n +12-n -1.(1)求数列{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫2×3na n a n +1的前n 项和T n .【解】 (1)因为S n =a n +12-n -1,故当n =1时,a 1=a 22-1-1=2;当n ≥2时,2S n =a n +1-2n -2,2S n -1=a n -2(n -1)-2,两式相减可得a n +1=3a n +2; 经检验,当n =1时也满足a n +1=3a n +2,故a n +1+1=3(a n +1),故数列{a n +1}是以3为首项,3为公比的等比数列,故a n +1=3n ,即a n =3n -1.(2)由(1)可知,2×3n a n a n +1=2×3n(3n -1)(3n +1-1) =13n-1-13n +1-1, 故T n =131-1-132-1+132-1-133-1+…+13n -1-13n +1-1=12-13n +1-1.2.已知数列{a n }的前n 项和为S n ,a 1=2,a n +1=S n +2. (1)求数列{a n }的通项公式;(2)已知b n =log 2a n ,求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .【解析】 (1)∵a n +1=S n +2,∴当n ≥2时,a n =S n -1+2,两式相减得,a n +1-a n =S n -S n -1=a n ,则a n +1=2a n ,所以a n +1a n =2(n ≥2),∵a 1=2,∴a 2=S 1+2=4,满足a 2a 1=2,∴数列{a n }是以2为公比、首项为2的等比数列,则a n =2·2n -1=2n ;(2)由(1)得,b n =log 2a n =log 22n =n , ∴1b n b n +1=1n (n +1)=1n -1n +1, ∴T n =⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =1-1n +1=n n +1. 3.已知正项数列{a n }的前n 项和为S n ,且a 1=2,4S n =a n ·a n +1,n ∈N *. (1)求数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a 2n 的前n 项和为T n ,求证:n 4n +4<T n <12.【解析】 (1)∵4S n =a n ·a n +1,n ∈N *, ∴4a 1=a 1·a 2,又a 1=2,∴a 2=4.当n ≥2时,4S n -1=a n -1·a n ,得4a n =a n ·a n +1-a n -1·a n .由题意知a n ≠0,∴a n +1-a n -1=4. ①当n =2k +1,k ∈N *时,a 2k +2-a 2k =4,即a 2,a 4,…,a 2k 是首项为4,公差为4的等差数列, ∴a 2k =4+(k -1)×4=4k =2×2k ; ②当n =2k ,k ∈N *时,a 2k +1-a 2k -1=4,即a 1,a 3,…,a 2k -1是首项为2,公差为4的等差数列, ∴a 2k -1=2+(k -1)×4=4k -2=2(2k -1). 综上可知,a n =2n ,n ∈N *.(2)证明:∵1a 2n =14n 2>14n (n +1)=14⎪⎭⎫ ⎝⎛+-111n n ,∴T n =1a 21+1a 22+…+1a 2n>14⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =141-1n +1=n 4n +4. 又∵1a 2n =14n 2<14n 2-1=1(2n -1)(2n +1)=12⎪⎭⎫ ⎝⎛+--121121n n ,∴T n=1a 21+1a 22+…+1a 2n<12⎪⎭⎫ ⎝⎛+--+-+-+-12112171515131311n n =12⎪⎭⎫ ⎝⎛+-1211n <12. 即得n 4n +4<T n <12.4.已知数列{a n }与{b n }的前n 项和分别为A n 和B n ,且对任意n ∈N *,a n +1-a n =2(b n +1-b n )恒成立.(1)若A n =n 2,b 1=2,求B n ;(2)若对任意n ∈N *,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1<13成立,求正实数b 1的取值范围;(3)若a 1=2,b n =2n ,是否存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A tB t成等差数列?若存在,求出s ,t 的值;若不存在,请说明理由. 【解】 (1)因为A n =n 2,所以a n =⎩⎪⎨⎪⎧1,n =1,n 2-(n -1)2,n ≥2, 即a n =2n -1,故b n +1-b n =12(a n +1-a n )=1,所以数列{b n }是以2为首项,1为公差的等差数列,所以B n =n ·2+12·n ·(n -1)·1=12n 2+32n .(2)依题意B n +1-B n =2(b n +1-b n ), 即b n +1=2(b n +1-b n ),即b n +1b n=2,所以数列{b n }是以b 1为首项,2为公比的等比数列,所以a n =B n =1-2n1-2×b 1=b 1(2n -1),所以b n +1a n a n +1=2nb 1(2n -1)·(2n +1-1), 因为b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+1211211n n所以b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+12112111n ,所以1b 1⎪⎭⎫ ⎝⎛---+12112111n <13恒成立,即b 1>3⎪⎭⎫ ⎝⎛--+12111n ,所以b 1≥3.(3)由a n +1-a n =2(b n +1-b n )得:a n +1-a n =2n +1,所以当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2n +2n -1+…+23+22+2=2n +1-2,当n =1时,上式也成立,所以A n =2n +2-4-2n ,又B n =2n +1-2,所以A n B n =2n +2-4-2n 2n +1-2=2-n2n -1,假设存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t 成等差数列,等价于121-1,s 2s -1,t2t -1成等差数列, 即2s 2s-1=121-1+t 2t -1,即2s 2s -1=1+t 2t -1,因为1+t 2t -1>1,所以2s2s -1>1,即2s<2s +1,令h (s )=2s -2s -1(s ≥2,s ∈N *),则h (s +1)-h (s )=2s -2>0所以h (s )递增, 若s ≥3,则h (s )≥h (3)=1>0,不满足2s <2s +1,所以s =2,代入2s 2s -1=121-1+t 2t -1得2t -3t -1=0(t ≥3),当t =3时,显然不符合要求;当t ≥4时,令φ(t )=2t -3t -1(t ≥4,t ∈N *),则同理可证φ(t )递增,所以φ(t )≥φ(4)=3>0,所以不符合要求.所以,不存在正整数s ,t (1<s <t ),使A 1B 1,A s B s ,A tB t成等差数列.。
高中数列求和题型归纳总结
高中数列求和题型归纳总结在高中数学学习中,数列求和是一个重要的考点。
学生们需要熟练掌握不同类型的数列求和题目,并能灵活运用各种求和公式和技巧。
下面,我将对高中数列求和题型进行归纳总结,以便同学们更好地理解和应用。
一、等差数列求和等差数列是指数列中每个相邻的两项之间的差恒定的数列。
对于等差数列,我们可以使用以下公式来求和:1. 如果已知等差数列的首项为a₁,公差为d,项数为n,则该等差数列的前n项和Sn为:Sn = n/2 * (2a₁ + (n-1)d)2. 若已知等差数列的首项为a₁,末项为an,项数为n,则该等差数列的前n项和Sn为:Sn = n/2 * (a₁ + an)二、等比数列求和等比数列是指数列中每个相邻的两项之间的比恒定的数列。
对于等比数列,我们可以使用以下公式来求和:1. 如果已知等比数列的首项为a₁,公比为q(|q|<1),项数为n,则该等比数列的前n项和Sn为:Sn = a₁ * (1 - q^n) / (1 - q)2. 如果已知等比数列的首项为a₁,末项为an,项数为n,则该等比数列的前n项和Sn为:Sn = a₁ * (1 - q^n) / (1 - q)三、特殊数列求和除了等差数列和等比数列,还有一些特殊的数列求和方法,我们来看两个常见的例子。
1. 平方和求和:求1² + 2² + 3² + ... + n²的和,可以使用以下公式进行求解: Sn = n * (n + 1) * (2n + 1) / 62. 立方和求和:求1³ + 2³ + 3³ + ... + n³的和,可以使用以下公式进行求解: Sn = [n * (n + 1) / 2]^2四、应用题型除了基本的数列求和题型,我们还要学会将数列求和运用到实际问题中。
以下是一些常见的应用题型:1. 排球比赛:有一支排球队,第一天进行了一场比赛,第二天进行了两场比赛,第三天进行了三场比赛,以此类推,第n天进行了n场比赛。
2020年山东新高考数列精选模拟试题(含解析)
专题8 数列数列是高考重点考查的内容之一,命题形式多种多样,大小均有.其中,小题重点考查等差数列、等比数列基础知识以及数列的递推关系;解答题的难度中等或稍难,将稳定在中等难度.往往在利用方程思想解决数列基本问题后,进一步数列求和,在求和后可与不等式、函数、最值等问题综合.在考查等差数列、等比数列的求和基础上,进一步考查“裂项相消法”、“错位相减法”等,与不等式结合,“放缩”思想及方法尤为重要. 预测2020年将保持稳定,注意主观题与不等式、函数等相结合.一、单选题1.(2020届山东省淄博市高三二模)“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f ,则第八个单音的频率为 ABC.D.2.(2020届山东省潍坊市高三下学期开学考试)已知数列{}n a 中,前n 项和为n S ,且23n n n S a +=,则1n n a a -的最大值为( ) A .3-B .1-C .3D .13.(2020届山东省济宁市高三3月月考)在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法错误的是( ) A .此人第二天走了九十六里路 B .此人第一天走的路程比后五天走的路程多六里.C .此人第三天走的路程占全程的18D .此人后三天共走了42里路若存在两项,m n a a32=,则14m n+的最小值为 A .34B .910C .32D .955.(2020届山东省青岛市高三上期末)已知数列{}n a 中,32a =,71a =.若1n a ⎧⎫⎨⎬⎩⎭为等差数列,则5a =( ) A .23B .32C .43D .34二、多选题6.(2020届山东省潍坊市高三模拟一)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则下列正确的是( ) A .12a =-B .12a =C .4d =D .4d =-7.(2020·山东曲阜一中高三3月月考)在《增删算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法正确的是( ) A .此人第二天走了九十六里路B .此人第三天走的路程站全程的18C .此人第一天走的路程比后五天走的路程多六里D .此人后三天共走了42里路8.(2020届山东省潍坊市高三模拟二)将n 2个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中m >0).已知a 11=2,a 13=a 61+1,记这n 2个数的和为S .下列结论正确的有( )A .m =3B .767173a =⨯C .()1313j ij a i -=-⨯D .()()131314n S n n =+- 9.(2020届山东省济宁市第一中学高三一轮检测)等差数列{}n a 是递增数列,满足753a a =,前n 项和为n S ,下列选择项正确的是( ) A . 0d >B .10a <C .当5n =时n S 最小D .0n S >时n 的最小值为810.(2020·山东滕州市第一中学高三3月模拟)已知数列{}{},n n a b 满足1111312,2ln(),0n n n n n n n a a b b a b n N a b n*+++=+=++∈+> 给出下列四个命题,其中的真命题是( ) A .数列{}n n a b -单调递增; B .数列{}n n a b + 单调递增; C .数{}n a 从某项以后单调递增; D .数列{}n b 从某项以后单调递增.三、填空题11.(2020届山东省烟台市高三模拟)已知数列{}n a 的前n 项和公式为221n S n n =-+,则数列{}n a 的通项公式为___.12.(2020届山东省潍坊市高三模拟一)九连环是我国从古至今广泛流传的一种益智游戏.在某种玩法中,用n a 表示解下()*9,n n n N≤∈个圆环所需移动的最少次数,{}na 满足11a=,且()()112122n n n a n a a n --⎧-⎪=⎨+⎪⎩为偶数为奇数,则解下5个圆环需最少移动________次.四、解答题13.(2020·山东高三模拟)已知各项均不相等的等差数列{}n a 的前4项和为414S =, 且137,,a a a 成等比数列.(1)求数列{}n a 的通项公式; (2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .14.(2020届山东省烟台市高三模拟)已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1)(2)n n n nn a c b ++=+.求数列{}n c 的前n 项和n T . 15.(2020届山东省高考模拟)已知数列{}n a 的前n 项和为n S ,且12n n S a a =-(*n N ∈),数列{}n b 满足16b =,14n n nb S a =++(*n N ∈). (Ⅰ)求数列{}n a 通项公式; (Ⅱ)记数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:12nT <. 16.(2020届山东省济宁市第一中学高三一轮检测)已知{}n a 是等差数列,{}n b 是等比数列,且23b =,39b =,11a b =,144a b =.(1)求{}n a 的通项公式;(2)设n n n c a b =+,求数列{}n c 的前n 项和.17.(2020届山东省济宁市第一中学高三二轮检测)已知数列{}n a 中,11a =,121n n a a n +=+-,n n b a n =+.(1)求证:数列{}n b 是等比数列; (2)求数列{}n a 的前n 项和n S .18.(2020·山东滕州市第一中学高三3月模拟)已知等差数列{}n a 的公差0d ≠,其前n 项和为n S ,若2822a a +=,且4712,,a a a 成等比数列.(1)求数列{}n a 的通项公式; (2)若12111n n T S S S =+++,证明:34n T <. 19.(2020届山东省泰安市肥城市一模)记n S 为公差不为零的等差数列{}n a 的前n 项和,已知2219a a =,618S =.(1)求{}n a 的通项公式;(2)求n S 的最大值及对应n 的大小.20.(2020届山东省济宁市高三3月月考)已知数列{}n a 为公差不为0的等差数列,且139a a a 、、成等比数列,246a a +=.(1)求数列{}n a 的通项n a ; (2)设()21cos3n n n a b a π+=,求数列{}nb 的前2020项的和2020S.21.(2020届山东省菏泽一中高三2月月考)设数列{}n a 的前n 项和为n S ,已知11a =,121n n S S +-=,n *∈N . (1)证明:{}1n S +为等比数列,求出{}n a 的通项公式; (2)若n nn b a =,求{}n b 的前n 项和n T ,并判断是否存在正整数n 使得1250n n T n -⋅=+成立?若存在求出所有n 值;若不存在说明理由.22.(2020届山东省潍坊市高三模拟一)已知等差数列{}n a 的前n 项和为n S ,34a =,627S =. (1)求{}n a 的通项公式;(2)设2n an b =,记n T 为数列{}n b 的前n 项和.若124m T =,求m .23.(2020届山东省潍坊市高三模拟二)已知数列{a n }的首项为a 1=1,且*12(1)()n n a a n N +=+∈.(Ⅰ)证明:数列{a n +2}是等比数列,并求数列{a n }的通项公式; (Ⅱ)设b n =log 2(a n +2)﹣log 23,求数列32n n b a ⎧⎫⎨⎬+⎩⎭的前n 项和n T .24.(2020届山东省六地市部分学校高三3月线考)数列{}n a 满足:123a a a +++()1312nn a +=- (1)求{}n a 的通项公式; (2)若数列{}n b 满足3n na b n a =,求{}n b 的前n 项和n T .25.(2020届山东省潍坊市高三下学期开学考试)已知函数()log k f x x =(k 为常数,0k >且1k ≠). (1)在下列条件中选择一个________使数列{}n a 是等比数列,说明理由; ①数列(){}n f a 是首项为2,公比为2的等比数列; ②数列(){}n f a 是首项为4,公差为2的等差数列;③数列(){}n f a 是首项为2,公差为2的等差数列的前n 项和构成的数列.(2)在(1)的条件下,当k =12241+=-n n n a b n ,求数列{}n b 的前n 项和n T . 26.(2020届山东济宁市兖州区高三网络模拟考)在①325256a a a b =+=,;②234323b a a b =+=,;③345298S a a b =+=,,这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{}n a 的公差为()1d d >,前n 项和为n S ,等比数列{}n b 的公比为q ,且11a b d q ==,,____________.(1)求数列{}n a ,{}n b 的通项公式. (2)记nn na cb =,求数列{}n c ,的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分. 27.(2020·山东高三下学期开学)已知数列{}n a 满足123123252525253n n na a a a ++++=----….(1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:11226n T ≤<. 28.(2020届山东省淄博市高三二模)已知数列{}n a 满足132a =,且()1112,22n n n a a n n *--=+≥∈N .(1)求证:数列{}2nn a 是等差数列,并求出数列{}n a 的通项公式;(2)求数列{}n a 的前n 项和n S .29.(2020届山东省淄博市部分学校高三3月检测)已知数列{}n a 满足11a =,1431n n a a n +=+-,n n b a n =+.(1)证明:数列{}n b 为等比数列; (2)求数列{}n a 的前n 项和.30.(2020·2020届山东省淄博市高三二模)(本小题满分12分)设函数()()22ln 11x f x x x =+++.(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)如果对所有的x ≥0,都有()f x ≤ax ,求a 的最小值;(Ⅲ)已知数列{}n a 中, 11a =,且()()1111n n a a +-+=,若数列{}n a 的前n 项和为n S ,求证:11ln 2n n n na S a a ++>-.一、单选题1.(2020届山东省淄博市高三二模)“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f ,则第八个单音的频率为 ABC. D.【答案】D 【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为所以1(2,)n n a n n N -+=≥∈, 又1a f =,则7781a a q f === 故选D.2.(2020届山东省潍坊市高三下学期开学考试)已知数列{}n a 中,前n 项和为n S ,且23n n n S a +=,则1n n a a -的最大值为( ) A .3- B .1-C .3D .1【答案】C 【解析】当2n ≥ 时,1121,,33n n n n n n S a S a --++== 两式作差可得:11211213311n n n n n a n n n a a a a n n --+++=-⇒==+-- , 据此可得,当2n = 时,1nn a a -的最大值为33.(2020届山东省济宁市高三3月月考)在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法错误的是( )A .此人第二天走了九十六里路B .此人第一天走的路程比后五天走的路程多六里.C .此人第三天走的路程占全程的18D .此人后三天共走了42里路【答案】C 【解析】由题意可知,每天走的路程里数构成以12为公比的等比数列,由S 6=378求得首项,再由等比数列的通项公式求第二天的,第三天的,后三天的路程,即可得到答案.4.(2020届山东省济宁市第一中学高三二轮检测)已知正项等比数列{}n a 满足:2853516,20a a a a a =+=,若存在两项,m n a a 32=,则14m n+的最小值为 A .34B .910C .32D .95【答案】A 【解析】因为数列{}n a 是正项等比数列,28516a a a ,3520a a +=,所以2285516a a a a ,516a =,34a =,所以253a a q =,2q ,451a a q ,11a =,1112n n n a a q --==,32=,所以1110222m n,12m n +=,414114112125n m mnm n mnm n431124520,0n m mnm n ,当且仅当2n m =时“=”成立, 所以14mn的最小值为34,故选A 。
高考数学专题复习《等比数列求和,裂项相消思想》知识梳理及典型例题讲解课件(含答案)
等比数列求和
——裂项相消思想
高考分析
纵观近几年高考命题,数列求和是高考中每年必考的内容之一.
全国卷经常以等差数列、等比数列为基础考查程序化计算类的数
列求和,近几年侧重于新的情境,考查内容更加灵活多变.
2020年全 2020年
2021年新 2021年全 2022年全国甲 2022年新高
卷
考Ⅰ卷
国Ⅰ卷
∙ = ∙
前面学习了等差数列的前n项和,那么
如何求等比数列的前n项和呢?
忆一忆
等比数列的前n项和公式的推导
采用了什么方法?
等比数列前n项和:Sn=a1+a2+a3+ ···+an
即:Sn=a1+a1q+a1q2+······+a1qn-2+a1qn-1
qSn= a1q+a1q2+a1q3+······+ a1qn-1+a1qn
例:数列{an }的通项公式an n2,数列{bn }的通项公式bn 2n
求数列{anbn }的前n项和
解:anbn n2.2n cn
Sn c1 c2 c3 cn
Sn 1.21 4.22 9.23 n2.2n
2S n
1.22 4.23 (n 1)2 2n n2.2n1
S n bn 1
1 qn
b1 a1 (
)
1 q
例:数列{an }的通项公式an n,数列{b n }的通项公式b n 2 n
求数列{an bn }的前n项和
解:设anbn n.2 bn 1 bn
n
高考数学冲刺复习数列求和考点速查
高考数学冲刺复习数列求和考点速查在高考数学中,数列求和是一个重要的考点,也是许多同学感到头疼的部分。
在冲刺复习阶段,对数列求和考点进行速查和梳理,能够帮助我们查漏补缺,提高解题能力,从而在高考中取得更好的成绩。
一、等差数列求和等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的数列。
对于等差数列\(\{a_n\}\),其通项公式为\(a_n =a_1 +(n 1)d\),其中\(a_1\)为首项,\(d\)为公差。
等差数列的前\(n\)项和公式为:\(S_n =\frac{n(a_1 +a_n)}{2} = na_1 +\frac{n(n 1)d}{2}\)在解题时,我们需要根据题目所给条件,灵活选择合适的求和公式。
例如,已知等差数列\(\{a_n\}\)的首项\(a_1 = 2\),公差\(d = 3\),求前\(10\)项的和\(S_{10}\)。
首先,求出第\(10\)项\(a_{10} = a_1 + 9d = 2 + 9×3 = 29\)然后,利用求和公式\(S_{10} =\frac{10×(2 + 29)}{2} =155\)二、等比数列求和等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的数列。
对于等比数列\(\{b_n\}\),其通项公式为\(b_n= b_1q^{n 1}\),其中\(b_1\)为首项,\(q\)为公比。
当公比\(q ≠ 1\)时,等比数列的前\(n\)项和公式为:\(S_n=\frac{b_1(1 q^n)}{1 q}\)当公比\(q =1\)时,等比数列的前\(n\)项和为\(S_n =nb_1\)例如,已知等比数列\(\{b_n\}\)的首项\(b_1 = 3\),公比\(q = 2\),求前\(5\)项的和\(S_{5}\)。
因为公比\(q ≠ 1\),所以\(S_{5} =\frac{3×(1 2^5)}{1 2}= 93\)三、错位相减法错位相减法主要用于求一个等差数列与一个等比数列对应项乘积构成的新数列的前\(n\)项和。
2020春高考数学冲刺《等差、等比数列与数列求和(讲)》(解析版)
专题6.4 等差、等比数列与数列求和1.熟练掌握等差、等比数列的前n 项和公式;2.掌握非等差数列、非等比数列求和的几种常见方法。
知识点一 求数列的前n 项和的方法 (1)公式法①等差数列的前n 项和公式S n =n (a 1+a n ) 2 =na 1+n (n -1)2d .②等比数列的前n 项和公式 (ⅰ)当q =1时,S n =na 1;(ⅱ)当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q .(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.(6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n = (-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 知识点二 常见的裂项公式 (1)1n (n +1)=1n -1n +1.(2)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1.(3)1n +n +1=n +1-n .考点一 分组转化求和 【典例1】(2019·天津高考)设{}n a 是等差数列,{}n b 是等比数列.已知1122334,622,24a b b a b a ===-=+,.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足111,22,1,,2,k k n k k n c c b n +⎧<<==⎨=⎩其中*k ∈N .(i )求数列(){}221nna c-的通项公式;(ii )求()2*1ni i i a c n =∈∑N . 【答案】(Ⅰ)31n a n =+;32nn b =⨯(Ⅱ)(i )()221941n n n a c -=⨯-(ii )()()2*211*12725212nn n i i i a c n n n --=∈=⨯+⨯--∈∑N N【解析】 (Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .依题意得()()262426262424124q d d q d d ⎧=+-=+⎪⎨=++=+⎪⎩,解得32d q =⎧⎨=⎩, 故4(1)331n a n n =+-⨯=+,16232n nn b -=⨯=⨯.所以,{}n a 的通项公式为31n a n =+,{}n b 的通项公式为32n n b =⨯.(Ⅱ)(i )()()()()22211321321941n n n n n n n a c a b -=-=⨯+⨯-=⨯-.所以,数列(){}221nna c -的通项公式为()221941nnn a c-=⨯-.(ii )()22111nni iiiii i a c a a c ===+-⎡⎤⎣⎦∑∑()2222111n niiii i a a c===+-∑∑()2212432n nn⎛⎫- ⎪=⨯+⨯ ⎪⎝⎭()1941n i i =+⨯-∑()()2114143252914n n n n---=⨯+⨯+⨯--()211*2725212n n n n N --=⨯+⨯--∈.【方法技巧】分组法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n,n 为偶数的数列,其中数列{b n },{c n }是等比或等差数列,可采用分组法求和.【变式1】 (河南省焦作一中2019届模拟)已知{a n }为等差数列,且a 2=3,{a n }前4项的和为16,数列{b n }满足b 1=4,b 4=88,且数列{b n -a n }为等比数列.(1)求数列{a n }和{b n -a n }的通项公式; (2)求数列{b n }的前n 项和S n . 【解析】(1)设{a n }的公差为d , 因为a 2=3,{a n }前4项的和为16, 所以⎩⎪⎨⎪⎧a 1+d =3,4a 1+4×32d =16,解得⎩⎪⎨⎪⎧a 1=1,d =2, 所以a n =1+(n -1)×2=2n -1. 设{b n -a n }的公比为q , 则b 4-a 4=(b 1-a 1)q 3, 因为b 1=4,b 4=88, 所以q 3=b 4-a 4b 1-a 1=88-74-1=27,解得q =3,所以b n -a n =(4-1)×3n -1=3n .(2)由(1)得b n =3n +2n -1,所以S n =(3+32+33+…+3n )+(1+3+5+…+2n -1) =3(1-3n )1-3+n (1+2n -1)2=32(3n -1)+n 2=3n +12+n 2-32.考点二 错位相减求和 【典例2】(2019·天津高考)设{}n a 是等差数列,{}n b 是等比数列,公比大于0,已知113a b ==,23b a = ,3243b a =+.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足21,,,n n n c bn ⎧⎪=⎨⎪⎩为奇数为偶数求()*112222n na c a c a c n N ++⋅⋅⋅+∈.【答案】(I )3n a n=,3nn b =;(II )22(21)369()2n n n n N +*-++∈【解析】(I )解:设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,依题意,得23323154q d q d =+⎧⎨=+⎩,解得33d q =⎧⎨=⎩,故33(1)3n a n n=+-=,1333n nn b -=⨯=,所以,{}n a 的通项公式为3n a n =,{}n b 的通项公式为3n n b =;(II )112222n na c a c a c ++⋅⋅⋅+135212142632()()n n n a a a a a b a b a b a b -=+++++++++⋅⋅⋅⋅⋅⋅123(1)[36](6312318363)2n n n n n -=⨯+⨯+⨯+⨯+⨯+⋅⨯⋅+⋅21236(13233)n n n ⋅=+⨯⨯+⨯++⨯⋅⋅,记 1213233nn T n ⋅=⨯+⨯++⨯⋅⋅ ①则231313233n n T n +=⨯+⨯++⨯⋅⋅⋅ ②② - ①得,231233333n n n T n +⋅=-----+⨯⋅⋅113(13)(21)333132n n n n n ++--+=-+⨯=-,所以122112222(21)3336332n n n n n a c a c a c n T n +-++++=+=+⨯⋅⋅⋅22(21)369()2n n n n N +*-++=∈.【方法技巧】(1)如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法,一般是和式两边同乘以等比数列{b n }的公比,然后作差求解.(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式.(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.同时要注意等比数列的项数是多少.【变式2】(2017·山东高考)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n .【解析】(1)设{a n }的公比为q ,由题意知a 1(1+q )=6,a 21q =a 1q 2,又a n >0,由以上两式联立方程组解得a 1=2,q =2, 所以a n =2n .(2)由题意知S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)·b n +1,又S 2n +1=b n b n +1,b n +1≠0, 所以b n =2n +1. 令c n =b na n ,则c n =2n +12n .因此T n =c 1+c 2+…+c n=32+522+723+…+2n -12n -1+2n +12n , 又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减得12T n =32+⎝⎛⎭⎫12+122+…+12n -1-2n +12n +1,所以T n =5-2n +52n 。
2020版高考数学一轮复习第六章数列第四节数列求和教案理(含解析)苏教版(2021-2022学年)
第四节数列求和1.公式法(1)等差数列{an}的前n项和S n=错误!未定义书签。
=na1+错误!。
推导方法:倒序相加法.(2)等比数列{an}的前n项和Sn=错误!未定义书签。
错误!推导方法:乘公比,错位相减法.(3)一些常见的数列的前n项和:①1+2+3+…+n=错误!未定义书签。
;②2+4+6+…+2n=n(n+1);③1+3+5+…+2n-1=错误!未定义书签。
2.几种数列求和的常用方法(1)分组求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和而后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n项和.常用的裂项公式有:①错误!未定义书签。
=错误!未定义书签。
-错误!未定义书签。
;②错误!未定义书签。
=错误!未定义书签。
错误!未定义书签。
;③错误!=错误!-错误!未定义书签。
(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n}与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法求解.[小题体验]1.等比数列1,2,4,8,…中从第5项到第10项的和为________.解析:由a1=1,a2=2,得q=2,ﻬ∴S10=错误!未定义书签。
=1 023,S4=错误!未定义书签。
=15,∴S10-S4=1008。
答案:1 0082.数列1错误!,3错误!,5错误!,7错误!未定义书签。
,…,(2n-1)+错误!,…的前n项和S n 的值等于________.答案:n2+1-错误!未定义书签。
3.已知数列错误!未定义书签。
的通项公式a n=错误!未定义书签。
,则该数列的前________项之和等于9。
解析:由题意知,a n=错误!=错误!-错误!未定义书签。
2019年高考数学高频考点揭秘与仿真测试专题40数列数列的求和1等差等比数列求和文含解析
专题40 数列 数列的求和1(等差等比数列求和)【考点讲解】一、具本目标:1.掌握等差、等比数列的求和方法; 2. 掌握等非差、等比数列求和的几种常见方法.考纲解读:会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和,非等差、等比数列的求和是高考的热点,特别是错位相减法和裂项相消法求和. 二、知识概述:求数列前n 项和的基本方法(1)直接用等差、等比数列的求和公式求和;等差:;等比:公比是字母时需要讨论.(理)无穷递缩等比数列时,qa S -=11(2)掌握一些常见的数列的前n 项和公式:;;;;(3)倒序相加法求和:如果一个数列{}na ,与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法.(4)错位相减法求和:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求.如{}n a 为等差数列,{}n b 为等比数列,求的和.(5)分组求和:有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,把数列的每一项分成若干项,使其转化为等差或等比数列,先分别求和,再合并.形如:nn b a +其中,(6)合并求和:如求的和.(7)裂项相消法求和:把数列的通项拆成两项之差,正负相消剩下首尾若干项. 常见拆项:;.【真题分析】1.【2016年北京】已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则6=S _______. 【解析】本题考点是等差数列的性质与求和.因为{}n a 是等差数列,所以,即40a =,又,所以2d =-,所以.故答案为6. A.80 B.30 C.26 D.16【解析】由2n S =与314n S =可得:当1n =时,112S a ==,314S =..由,得到,因为是正数的等比数列,所以有2q =,所以,答案选B.【答案】B11.【2016全国文Ⅱ,17】等差数列{n a }中,.(Ⅰ)求{n a }的通项公式;(Ⅱ) 设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.(Ⅱ)由(Ⅰ)知.当n =1,2,3时,;当n =4,5时,;当n =6,7,8时,;当n =9,10时,.所以数列{}n b 的前10项和为.【答案】(Ⅰ)235n n a +=;(Ⅱ)24.12.【2018全国Ⅲ理17题】等比数列{}n a 中,.(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .【解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去),2q =-或2q =.故1(2)n n a -=-或12n n a -=.(2)若1(2)n n a -=-,则.由63m S =得,此方程没有正整数解.若12n n a -=,则21nn S =-.由63m S =得264m =,解得6m =.综上,6m =.。
2020版高三数学二轮复习(全国理)讲义:专题四 第二讲 数列求和及综合应用
第二讲 数列求和及综合应用高考考点考点解读求数列的通项公式1.已知数列的递推关系式以及某些项,求数列的通项公式;已知等差(比)的某些项或前几项的和,求其通项公式2.考查等差(比)数列的概念以及通项公式、前n 项和公式等求数列的前n 项和1.以等差(比)数列为命题背景,考查等差(比)的前n 项和公式、分组求和2.以递推数列、等差(比)数列为命题背景,考查错位相减、裂项相消、倒序相加等求和方法与数列的和有关的综合应用1.等差(比)数列的求和、分组求和、错位相减求和及裂项相消求和2.常与不等式、函数、解析几何相结合考查数列求和函数、不等式的性质等备考策略本部分内容在备考时应注意以下几个方面:(1)加强对递推数列概念及解析式的理解,掌握递推数列给出数列的方法.(2)掌握等差(比)数列求和公式及方法.(3)掌握数列分组求和、裂项相消求和、错位相减求和的方法.(4)掌握与数列求和有关的综合问题的求解方法及解题策略.预测2020年命题热点为:(1)已知等差(比)数列的某些项的值或其前几项的和,求该数列的通项公式.(2)已知某数列的递推式或某项的值,求该数列的和.(3)已知某个不等式成立,求某参数的值.证明某个不等式成立.Z知识整合hi shi zheng he 1.分组求和法:分组求和法是解决通项公式可以写成c n =a n +b n 形式的数列求和问题的方法,其中{a n }与{b n }是等差(比)数列或一些可以直接求和的数列.2.裂项相消法:将数列的通项分成两个代数式子的差,即a n =f (n +1)-f (n )的形式,然后通过累加抵消中间若干项的求和方法.形如{}(其中{a n }是公差d ≠0且各项均canan +1不为0的等差数列,c 为常数)的数列等.3.错位相减法:形如{a n ·b n }(其中{a n }为等差数列,{b n }为等比数列)的数列求和,一般分三步:①巧拆分;②构差式;③求和.4.倒序求和法:距首尾两端等距离的两项和相等,可以用此法,一般步骤:①求通项公式;②定和值;③倒序相加;④求和;⑤回顾反思.附:(1)常见的拆项公式(其中n ∈N *)①=-.1n (n +1)1n 1n +1②=(-).1n (n +k )1k 1n 1n +k ③=(-).1(2n -1)(2n +1)1212n -112n +1④若等差数列{a n }的公差为d ,则=(-);=(-).1anan +11d 1an 1an +11anan +212d 1an 1an +2⑤=[-].1n (n +1)(n +2)121n (n +1)1(n +1)(n +2)⑥=-.1n +n +1n +1n ⑦=(-).1n +n +k 1k n +k n (2)公式法求和:要熟练掌握一些常见数列的前n 项和公式,如①1+2+3+…+n =;n (n +1)2②1+3+5+…+(2n -1)=n 2;③12+22+32+…+n 2=n (n +1)(2n +1).16Y易错警示i cuo jing shi 1.公比为字母的等比数列求和时,注意公比是否为1的分类讨论.2.错位相减法求和时易漏掉减数式的最后一项.3.裂项相消法求和时易认为只剩下首尾两项.4.裂项相消法求和时注意所裂式与原式的等价性.1.(2017·全国卷Ⅱ,3)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( B )A .1盏B .3盏C .5盏D .9盏[解析] 设塔的顶层的灯数为a 1,七层塔的总灯数为S 7,公比为q ,则由题意知S 7=381,q =2,∴S 7===381,解得a 1=3.a 1(1-q 7)1-qa 1(1-27)1-2故选B .2.(2017·全国卷Ⅰ,12)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依次类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( A )A .440B .330C .220D .110[解析] 设首项为第1组,接下来的两项为第2组,再接下来的三项为第3组,依此类推,则第n 组的项数为n ,前n 组的项数和为.n (1+n )2由题意知,N >100,令>100⇒n ≥14且n ∈N *,即N 出现在第13组之后.n (1+n )2第n 组的各项和为=2n -1,前n 组所有项的和为-n =2n +1-2-n .1-2n1-22(1-2n )1-2设N 是第n +1组的第k 项,若要使前N 项和为2的整数幂,则N -项的和即n (1+n )2第n +1组的前k 项的和2k -1应与-2-n 互为相反数,即2k -1=2+n (k ∈N *,n ≥14),k =log 2(n +3)⇒n 最小为29,此时k =5,则N =+5=440.29×(1+29)2故选A .3.(2018·江苏卷,14)已知集合A ={x |x =2n -1,n ∈N *},B ={x |x =2n ,n ∈N *}.将A ∪B 的所有元素从小到大依次排列构成一个数列{a n }.记S n 为数列{a n }的前n 项和,则使得S n >12a n +1成立的n 的最小值为27.[解析] B ={2,4,8,16,32,64,128…},与A 相比,元素间隔大,所以从S n 中加了几个B 中元素考虑,1个:n =1+1=2 S 2=3,12a 3=362个:n =2+2=4 S 4=10,12a 5=603个:n =4+3=7 S 7=30,12a 8=1084个:n =8+4=12 S 12=94,12a 13=2045个:n =16+5=21 S 21=318,12a 22=3966个:n =32+6=38 S 38=1 150,12a 39=780发现21≤n ≤38时S n -12a n +1与0的大小关系发生变化,以下采用二分法查找:S 30=687,12a 31=612,所以所求n 应在22~29之间,S 25=462,12a 26=492,所以所求n 应在25~29之间,S 27=546,12a 28=540,所以所求n 应在25~27之间,S 26=503,12a 27=516,因为S 27>12a 28,而S 26<12a 27,所以使得S n >12a n +1成立的n 的最小值为27.4.(2017·全国卷Ⅱ,15)等差数列{a n }的前n 项和S n ,a 3=3,S 4=10,则=.n∑k =11Sk 2nn +1[解析] 设等差数列{a n }的公差为d ,则由Error!得Error!∴S n =n ×1+×1=,n (n -1)2n (n +1)2==2(-).1Sn 2n (n +1)1n 1n +1∴=+++…+n∑k =11Sk 1S 11S 21S 31Sn=2(1-+-+-+…+-)12121313141n 1n +1=2(1-)=.1n +12nn +15.(2018·全国卷Ⅲ,17)等比数列中,a 1=1,a 5=4a 3.{an }(1)求{a n }的通项公式.(2)记S n 为{a n }的前n 项和.若S m =63,求m .[解析] (1)设{a n }的公比为q ,由题设得a n =q n -1.由已知得q 4=4q 2,解得q =0(舍去),q =-2或q =2.故a n =(-2)n -1或a n =2n -1.(2)若a n =(-2)n -1,则S n =.1-(-2)n3由S m =63得(-2)m =-188,此方程没有正整数解.若a n =2n -1,则S n =2n -1.由S m =63得2m =64,解得m =6.综上,m =6.6.(2018·北京卷,15)设{a n }是等差数列,且a 1=ln 2,a 2+a 3=5ln 2.(1)求{a n }的通项公式.(2)求e a 1+e a 2+…+e a n .[解析] (1)由已知,设{a n }的公差为d ,则a 2+a 3=a 1+d +a 1+2d =2a 1+3d =5ln 2,又a 1=ln 2,所以d =ln 2,所以{a n }的通项公式为a n =ln 2+(n -1)ln 2=n ln 2(n ∈N *).(2)由(1)及已知,e a n =e n ln 2=(e ln 2)n =2n ,所以e a 1+e a 2+…+e a n =21+22+…+2n ==2n +1-2(n ∈N *).2(1-2n )1-2命题方向1 求数列的通项公式例1 (1)已知正项数列{a n }满足a 1=1,(n +2)a -(n +1)a +a n a n +1=0,2n +12n 则它的通项公式为( B )A .a n = B .a n =1n +12n +1C .a n =D .a n =nn +12[解析] 由(n +2)a -(n +1)a +a n a n +1=0,得[(n +2)a n +1-(n +1)a n ]·(a n +1+a n )2n +12n =0,又a n >0,所以(n +2)a n +1=(n +1)a n ,即=,a n +1=·a n ,所以an +1an n +1n +2n +1n +2a n =··…·a 1=a 1(n ≥2),所以a n =(n =1适合),于是所求通项公式为n n +1n -1n 232n +12n +1a n =.2n +1(2)(2017·厦门二模)若数列{a n }的前n 项和为S n =a n +,则数列{a n }的通项公式为(2313B )A .a n =-2n -1B .a n =(-2)n -1C .a n =(-2)nD .a n =-2n[解析] 由a n =S n -S n -1(n ≥2),得a n =a n -a n -1.所以a n =-2a n -1.又可以得到2323a 1=1,所以a n =(-2)n -1(n ≥2).又a 1=(-2)1-1=1,所以a n =(-2)n -1.『规律总结』求数列通项公式的常见类型及方法(1)归纳猜想法:已知数列的前几项,求数列的通项公式,可采用归纳猜想法.(2)已知S n 与a n 的关系,利用a n =Error!求a n .(3)累加法:数列递推关系形如a n +1=a n +f (n ),其中数列{f (n )}前n 项和可求,这种类型的数列求通项公式时,常用累加法(叠加法).(4)累乘法:数列递推关系形如a n +1=g (n )a n ,其中数列{g (n )}前n 项可求积,此数列求通项公式一般采用累乘法(叠乘法).(5)构造法:①递推关系形如a n +1=pa n +q (p ,q 为常数)可化为a n +1+=p (a n +qp -1)(p ≠1)的形式,利用{a n +}是以p 为公比的等比数列求解;qp -1q p -1②递推关系形如a n +1=(p 为非零常数)可化为-=的形式.panan +p 1an +11an 1pG跟踪训练en zong xun lian 1.若数列{a n }满足a 1=0,2a n =1+a n a n -1(n ≥2,n ∈N *),则a 2019=.20182019[解析] 当n ≥2时,因为2a n =1+a n a n -1,所以(1-a n -1)-(1-a n )=1-a n -a n -1+a n a n -1,所以(1-a n -1)-(1-a n )=(1-a n )(1-a n -1),所以-=1,11-an 11-an -1因为a 1=0,所以=1,11-a 1所以{}是首项为1,公差为1的等差数列,11-an所以=1+(n -1)=n ,11-an 所以=2019,解得a 2019=.11-a 2019201820192.设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列{}前10项的和为.1an 2011[解析] 由a 1=1,且a n +1-a n =n +1(n ∈N *)得,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+2+3+…+n =,则==2(-),故数列{}前n (n +1)21an 2n (n +1)1n 1n +11an 10项的和S 10=2(1-+-+…+-)121213110111=2(1-)=.1112011命题方向2 数列求和问题(一)分组转化法求和例2设数列{a n }满足a 1=2,a 2+a 4=8,且对任意n ∈N *,函数f (x )=(a n -a n +1+a n +2)x +a n +1cos x -a n +2sin x 满足f ′()=0.π2(1)求数列{a n }的通项公式;(2)若b n =2(a n +),求数列{b n }的前n 项和S n .12an [解析] (1)由题设可得f ′(x )=a n -a n +1+a n +2-a n +1sin x -a n +2cos x .对任意n ∈N *,f ′()=a n -a n +1+a n +2-a n +1=0,π2即a n +1-a n =a n +2-a n +1,故{a n }为等差数列.由a 1=2,a 2+a 4=8,解得{a n }的公差d =1,所以a n =2+1·(n -1)=n +1.(2)因为b n =2(a n +)12an =2(n +1+)=2n ++2,12n +112n 所以S n =b 1+b 2+…+b n=(2+2+…+2)+2(1+2+…+n )+(++…+)1212212n=2n +2·+n (n +1)212[1-(12)n ]1-12=n 2+3n +1-.12n (二)裂项相消法求和例3 (2017·全国卷Ⅲ,17)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n .(1)求{a n }的通项公式;(2)求数列{}的前n 项和.an2n +1[解析] (1)因为a 1+3a 2+…+(2n -1)a n =2n ,故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1),两式相减得(2n -1)a n =2,所以a n =(n ≥2).22n -1又由题设可得a 1=2,满足上式,所以{a n }的通项公式为a n =.22n -1(2)记{}的前n 项和为S n .an2n +1由(1)知==-,an 2n +12(2n +1)(2n -1)12n -112n +1则S n =-+-+…+-1113131512n -112n +1=.2n 2n +1(三)错位相减法求和例4 (2018·郴州二模)已知等差数列{a n },满足:a n +1>a n (n ∈N *),a 1=1,该数列的前三项分别加上1,1,3后成等比数列,a n +2log 2b n =-1.(1)分别求数列{a n },{b n }的通项公式;(2)求数列{a n ·b n }的前n 项和T n .[解析] (1)设d 为等差数列{a n }的公差,且d >0,由a 1=1,a 2=1+d ,a 3=1+2d ,分别加上1,1,3后成等比数列,得(2+d )2=2(4+2d ),因为d >0,所以d =2,所以a n =1+(n -1)×2=2n -1.又因为a n =-1-2log 2b n ,所以log 2b n =-n ,即b n =.12n (2)T n =+++…+①,1213225232n -12n T n =+++…+②,121223235242n -12n +1①-②,得T n =+2×(+++…+)-.121212212312412n 2n -12n +1所以T n =1+-1-12n -11-122n -12n =3--=3-.12n -22n -12n 2n +32n (四)奇(偶)数项和问题例5 (2018·潍坊二模)设等差数列{a n }的前n 项和为S n ,且a 2=8,S 4=40;数列的前n 项和为T n ,且T n -2b n +3=0,n ∈N *.{bn }(1)求数列{a n },{b n }的通项公式.(2)设c n =Error! 求数列{c n }的前n 项和P n .[解析] (1)设等差数列{a n }的公差为d ,由题意,Error!得Error!所以a n =4n ,因为T n -2b n +3=0,所以当n =1时,b 1=3,当n ≥2时,T n -1-2b n -1+3=0,两式相减,得b n =2b n -1(n ≥2),数列为等比数列,所以b n =3·2n -1.{bn }(2)c n =Error!当n 为偶数时,P n =(a 1+a 3+…+a n -1)+(b 2+b 4+…+b n )=+=2n +1+n 2-2.(4+4n -4)·n 226(1-4n 2)1-4当n 为奇数时,方法一:n -1为偶数,P n =P n -1+c n =2(n -1)+1+(n -1)2-2+4n =2n +n 2+2n -1.方法二:P n =(a 1+a 3+…+a n -2+a n )+(b 2+b 4+…+b n -1)=+=2n +n 2+2n -1.(4+4n )·n +1226(1-4n -12)1-4所以P n =Error!『规律总结』1.分组求和的常见方法(1)根据等差、等比数列分组.(2)根据正号、负号分组,此时数列的通项式中常会有(-1)n 等特征.2.裂项相消的规律(1)裂项系数取决于前后两项分母的差.(2)裂项相消后前、后保留的项数一样多.3.错位相减法的关注点(1)适用题型:等差数列{a n }与等比数列{b n }对应项相乘{a n ·b n }型数列求和.(2)步骤:①求和时先乘以数列{b n }的公比.②把两个和的形式错位相减.③整理结果形式.4.分奇偶的求和问题如果数列的奇数项与偶数项有不同的规律,当n 为奇数或偶数时S n 的表达式不一样,因此需要分奇偶分别求S n .(1)分组直接求和:相邻的奇偶项合并为一项,组成一个新的数列b n ,用S ′n 表示其前n 项和,则S n =Error!(2)分奇偶转化求和:先令n 为偶数,求出其前n 项和S n ;当n 为奇数时,S n =S n -1+a n .G跟踪训练en zong xun lian (文)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n =.求数列{c n }的前n 项和T n .(an +1)n +1(bn +2)n [解析] (1)由题意知当n ≥2时,a n =S n -S n -1=6n +5,当n =1时,a 1=S 1=11,所以a n =6n +5.设数列{b n }的公差为d ,由Error!得Error!可解得b 1=4,d =3.所以b n =3n +1.(2)由(1)知c n ==3(n +1)·2n +1.(6n +6)n +1(3n +3)n 又T n =c 1+c 2+…+c n ,所以T n =3×[2×22+3×23+…+(n +1)×2n +1],2T n =3×[2×23+3×24+…+(n +1)×2n +2],两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×[4+-(n +1)×2n +2]=-3n ·2n +2,所以T n =3n ·2n +2.4(1-2n )1-2(理)设数列{a n }的前n 项和为S n .已知2S n =3n +3.(1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n .[解析] (1)因为2S n =3n +3,所以2a 1=3+3,故a 1=3.当n >1时,2S n -1=3n -1+3,此时2a n =2S n -2S n -1=3n -3n -1=2×3n -1,即a n =3n -1,所以a n =Error!(2)因为a n b n =log 3a n ,所以b 1=.13当n >1时,b n =31-n log 33n -1=(n -1)·31-n .所以T 1=b 1=;13当n >1时,T n =b 1+b 2+b 3+…+b n =+,13[1×3-1+2×3-2+…+(n -1)×31-n ]所以3T n =1+[1×30+2×3-1+…+(n -1)×32-n ].两式相减,得2T n =+(30+3-1+3-2+…+32-n )-(n -1)×31-n23=+-(n -1)×31-n =-,231-31-n1-3-11366n +32×3n 所以T n =-.13126n +34×3n 经检验,n =1时也适合.综上可得T n =-.13126n +34×3n 命题方向3 数列与函数、不等式的综合问题(一)数列与函数的综合例6设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-,求数列{1ln 2}的前n 项和T n .anbn [解析] (1)由已知得,b 7=2a 7,b 8=2a 8=4b 7,有2a 8=4×2a 7=2a 7+2.解得d =a 8-a 7=2.所以S n =na 1+d =-2n +n (n -1)=n 2-3n .n (n -1)2(2)f ′(x )=2x ln 2,f ′(a 2)=2a 2ln 2,故函数f (x )=2x 在(a 2,b 2)处的切线方程为y -2a 2=2a 2ln 2(x -a 2),它在x 轴上的截距为a 2-.1ln 2由题意得,a 2-=2-,1ln 21ln 2解得a 2=2.所以d =a 2-a 1=1.从而a n =n ,b n =2n .所以T n =+++…++,12222323n -12n -1n2n 2T n =+++…+.1122322n2n -1因此,2T n -T n =++…+-1212212n -1n2n=2--12n -1n2n =.2n +1-n -22n所以T n =.2n +1-n -22n (二)数列与不等式的综合例7(文)设S n 为数列{a n }的前n 项和,已知a 1=2,对任意n ∈N *,都有2S n =(n +1)a n .(1)求数列{a n }的通项公式;(2)若数列{}的前n 项和为T n ,4an (an +2)求证:≤T n <1.12[解析] (1)因为2S n =(n +1)a n ,当n ≥2时,2S n -1=na n -1,两式相减得2a n =(n +1)a n -na n -1,即(n -1)a n =na n -1,所以当n ≥2时,=,ann an -1n -1所以=.ann a 11因为a 1=2,所以a n =2n .(2)证明:因为a n =2n ,令b n ===-.42n (2n +2)1n (n +1)1n 1n +1所以T 1=b 1+b 2+…+b n =(1-)+(-)+…+(-)=1-=.1212131n 1n +11n +1nn +1因为>0,所以1-<1.1n +11n +1因为f (n )=在N *上是递减函数,1n +1所以1-在N *上是递增的,1n +1所以当n =1时,T n 取最小值.12所以≤T n <1.12(理)已知数列{a n }满足a 1=1,a n +1=3a n +1(1)证明{a n +}是等比数列,并求{a n }的通项公式;12(2)证明++…+<.1a 11a 21an 32[解析] (1)证明:由a n +1=3a 1+1,得a n +1+=3(a n +).1212又a 1+=,1232所以{a n +}是首项为,1232公比为3的等比数列.a n +=,因此{a n }的通项公式为a n =.123n 23n -12(2)由(1)知=.1an 23n -1因为当n ≥1时,3n -1≥2×3n -1,所以≤.13n -112×3n -1于是++…+≤1++…+1a 11a 21an 1313n -1=(1-)<.3213n 32所以++…+<.1a 11a 21an 32『规律总结』1.数列与函数、不等式的综合问题的常见题型(1)数列与函数的综合问题主要有以下两类:①已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题;②已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.(2)数列常与不等式结合,如比较大小、不等式恒成立、求参数范围等问题,需要熟练应用不等式知识解决数列中的相关问题.2.解决数列与函数综合问题的注意点(1)数列是一类特殊的函数,其定义域是正整数集,而不是某个区间上的连续实数,所以它的图象是一群孤立的点.(2)转化以函数为背景的条件时,应注意题中的限制条件,如函数的定义域,这往往是非常容易忽视的问题.(3)利用函数的方法研究数列中相关问题时,应准确构造函数,注意数列中相关限制条件的转化.A 组1.设{a n }的首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1=( D )A .2 B .-2 C . D .-1212[解析] 由题意知S 1=a 1,S 2=2a 1-1,S 4=4a 1-6,因为S 1,S 2,S 4成等比数列,所以S =S 1·S 4,即(2a 1-1)2=a 1(4a 1-6),2解得a 1=-.故选D .122.若数列{a n }为等比数列,且a 1=1,q =2,则T n =++…+等于(1a 1a 21a 2a 31anan +1B )A .1-B .(1-)14n 2314n C .1-D .(1-)12n 2312n [解析] 因为a n =1×2n -1=2n -1,所以a n ·a n +1=2n -1·2n =2×4n -1,所以=×()n -1,所以{}也是等比数列,1anan +112141anan +1所以T n =++…+=×=(1-),故选B .1a 1a 21a 2a 31anan +1121×(1-14n)1-142314n3.(2018·烟台模拟)已知等差数列{a n }中,a 2=6,a 5=15,若b n =a 2n ,则数列{b n }的前5项和等于( C )A .30B .45C .90D .186[解析] 设{a n }的公差为d ,首项为a 1,由题意得Error!,解得Error!所以a n =3n ,所以b n =a 2n =6n ,且b 1=6,公差为6,所以S 5=5×6+×6=90.5×424.等差数列{a n }中,a 1>0,公差d <0,S n 为其前n 项和,对任意自然数n ,若点(n ,S n )在以下4条曲线中的某一条上,则这条曲线应是( C)[解析] ∵S n =na 1+d ,∴S n =n 2+(a 1-)n ,又a 1>0,公差d <0,所以点n (n -1)2d 2d2(n ,S n )所在抛物线开口向下,对称轴在y 轴右侧.[点评] 可取特殊数列验证排除,如a n =3-n .5.定义在(-∞,0)∪(0,+∞)上的函数f (x ),如果对于任意给定的等比数列{a n },{f (a n )}仍是等比数列,则称f (x )为“保等比数列函数”.现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f (x )=x 2; ②f (x )=2x ;③f (x )=; ④f (x )=ln|x |.|x |则其中是“保等比数列函数”的f (x )的序号为( C )A .①② B .③④ C .①③D .②④[分析] 保等比数列函数指:①定义在(-∞,0)∪(0,+∞)上的函数;②若{a n }是等比数列,则{f (a n )}仍是等比数列.[解析] 解法一:设{a n }的公比为q .①f (a n )=a ,∵=()2=q 2,2n a 2n +1a 2n an +1an ∴{f (a n )}是等比数列,排除B 、D .③f (a n )=,|an |∵==,|an +1||an ||an +1an ||q |∴{f (a n )}是等比数列,排除A .解法二:不妨令a n =2n .①因为f (x )=x 2,所以f (a n )=a =4n .显然{f (a n )}是首项为4,公比为4的等比数列.2n ②因为f (x )=2x ,所以f (a 1)=f (2)=22,f (a 2)=f (4)=24,f (a 3)=f (8)=28,所以==4≠==16,f (a 2)f (a 1)2422f (a 3)f (a 2)2824所以{f (a n )}不是等比数列.③因为f (x )=,所以f (a n )==()n .|x |2n 2显然{f (a n )}是首项为,公比为的等比数列.22④因为f (x )=ln|x |,所以f (a n )=ln2n =n ln2.显然{f (a n )}是首项为ln2,公差为ln2的等差数列,故选C .6.(2018·邵阳一模)已知数列{b n }为等比数列,且b 1 009=e(e 为自然对数的底数),数列{a n }的首项为1,且a n +1=a n ·b n ,则ln a 2 018的值为2_017.[解析] 因为数列{b n }为等比数列,且b 1 009=e(e 为自然对数的底数),数列{a n }的首项为1,且a n +1=a n ·b n ,所以a 2 018=b 1·b 2·b 3·b 4·…·b 2 017=b =e 2 017,2 0171 009ln a 2 018=lne 2 017=2 017.7.已知数列{a n }是等比数列,其公比为2,设b n =log 2a n ,且数列{b n }的前10项的和为25,那么+++…+的值为.1a 11a 21a 31a 10 1 023128[解析] 数列{a n }是等比数列,其公比为2,设b n =log 2a n ,且数列{b n }的前10项的和为25,所以b 1+b 2+…+b 10=log 2(a 1·a 2·…·a 10)=log 2(a 21+2+…+9)=25,101所以a ×245=225,可得:a 1=.10114那么+++…+1a 11a 21a 31a 10=4(1+++…+)12122129=4×=.1-12101-12 1 0231288.已知等比数列{a n }的公比q >1,4是a 1和a 4的一个等比中项,a 2和a 3的等差中项2为6,若数列{b n }满足b n =log 2a n (n ∈N *).(1)求数列{a n }的通项公式;(2)求数列{a n b n }的前n 项和S n .[解析] (1)因为4是a 1和a 4的一个等比中项,2所以a 1·a 4=(4)2=32.2由题意可得Error!因为q >1,所以a 3>a 2.解得Error!所以q ==2.a 3a 2故数列{a n }的通项公式a n =2n .(2)由于b n =log 2a n (n ∈N *),所以a n b n =n ·2n ,S n =1·2+2·22+3·23+…+(n -1)·2n -1+n ·2n ,①2S n =1·22+2·23+…+(n -1)·2n +n ·2n +1.②①-②得,-S n =1·2+22+23+…+2n -n ·2n +1=-n ·2n +1.2(1-2n )1-2所以S n =2-2n +1+n ·2n +1=2+(n -1)·2n +1.9.(文)(2018·天津卷,18)设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n ∈N *).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6.(1)求S n 和T n ;(2)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值.[解析] (1)设等比数列{b n }的公比为q ,由b 1=1,b 3=b 2+2,可得q 2-q -2=0.因为q >0,可得q =2,故b n =2n -1.所以T n ==2n -1.1-2n1-2设等差数列{a n }的公差为d .由b 4=a 3+a 5,可得a 1+3d =4.由b 5=a 4+2a 6,可得3a 1+13d =16,从而a 1=1,d =1,故a n =n ,所以S n =.n (n +1)2(2)由(1),知T 1+T 2+…+T n =(21+22+…+2n )-n =2n +1-n -2.由S n +(T 1+T 2+…+T n )=a n +4b n 可得+2n +1-n -2=n +2n +1,n (n +1)2整理得n 2-3n -4=0,解得n =-1(舍),或n =4.所以n 的值为4.(理)(2018·天津卷,18)设{a n }是等比数列,公比大于0,其前n 项和为S n (n ∈N *),{b n }是等差数列. 已知a 1=1,a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6.(1)求{a n }和{b n }的通项公式.(2)设数列{S n }的前n 项和为T n (n ∈N *),①求T n ;②证明[解析] (1)设等比数列{a n }的公比为q .由a 1=1,a 3=a 2+2,可得q 2-q -2=0.因为q >0,可得q =2,故a n =2n -1.设等差数列{b n }的公差为d ,由a 4=b 3+b 5,可得b 1+3d =4.由a 5=b 4+2b 6,可得3b 1+13d =16,从而b 1=1,d =1,故b n =n .所以数列{a n }的通项公式为a n =2n -1,数列{b n }的通项公式为b n =n .(2)①由(1),有S n ==2n -1,故T n =(2k -1)=1-2n1-2n∑k =1k -n =-n =2n +1-n -2.n∑k =122×(1-2n )1-2②因为==(Tk +bk +2)bk(k +1)(k +2)(2k +1-k -2+k +2)k(k +1)(k +2)=-,k ·2k +1(k +1)(k +2)2k +2k +22k +1k +1B 组1.设S n 是公差不为0的等差数列{a n }的前n 项和,S 1,S 2,S 4成等比数列,且a 3=-,则数列{}的前n 项和T n =( C )521(2n +1)an A .-B .n2n +1n 2n +1C .-D .2n2n +12n 2n +1[解析] 本题主要考查等差、等比数列的性质以及裂项法求和.设{a n }的公差为d ,因为S 1=a 1,S 2=2a 1+d =2a 1+=a 1-,S 4=3a 3+a 1=a 1-,a 3-a 123254152因为S 1,S 2,S 4成等比数列,所以(a 1-)2=(a 1-)a 1,3254152整理得4a +12a 1+5=0,所以a 1=-或a 1=-.215212当a 1=-时,公差d =0不符合题意,舍去;52当a 1=-时,公差d ==-1,12a 3-a 12所以a n =-+(n -1)×(-1)=-n +=-(2n -1),121212所以=-=-(-),1(2n +1)an 2(2n -1)(2n +1)12n -112n +1所以其前n 项和T n =-(1-+-+…+-)13131512n -112n +1=-(1-)=-,故选C .12n +12n2n +12.(文)以S n 表示等差数列{a n }的前n 项和,若S 5>S 6,则下列不等关系不一定成立的是( D )A .2a 3>3a 4B .5a 5>a 1+6a 6C .a 5+a 4-a 3<0D .a 3+a 6+a 12<2a 7[解析] 依题意得a 6=S 6-S 5<0,2a 3-3a 4=2(a 1+2d )-3(a 1+3d )=-(a 1+5d )=-a 6>0,2a 3>3a 4;5a 5-(a 1+6a 6)=5(a 1+4d )-a 1-6(a 1+5d )=-2(a 1+5d )=-2a 6>0,5a 5>a 1+6a 6;a 5+a 4-a 3=(a 3+a 6)-a 3=a 6<0.综上所述,故选D .(理)已知a n =,数列{a n }的前n 项和为S n ,关于a n 及S n 的叙述正确的是( C )32n -11A .a n 与S n 都有最大值 B .a n 与S n 都没有最大值C .a n 与S n 都有最小值D .a n 与S n 都没有最小值[解析] 画出a n =的图象,32n -11点(n ,a n )为函数y =图象上的一群孤立点,(,0)为对称中心,S 5最小,a 5最32x -11112小,a 6最大.3.已知正数组成的等差数列{a n },前20项和为100,则a 7·a 14的最大值是( A )A .25B .50C .100D .不存在[解析] ∵S 20=×20=100,∴a 1+a 20=10.a 1+a 202∵a 1+a 20=a 7+a 14,∴a 7+a 14=10.∵a n >0,∴a 7·a 14≤()2=25.当且仅当a 7=a 14时取等号.a 7+a 1424.已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( B )A .2n -1B .()n -132C .()n -1D .2312n -1[解析] 由S n =2a n +1得S n =2(S n +1-S n ),即2S n +1=3S n ,∴=,Sn +1Sn 32∵a 1=1,S 1=2a 2,∴a 2=a 1=,∴S 2=,121232∴=,∴S n =()n -1.S 2S 132325.(2018·山东省实验中学调研)在数列{a n }中,a 1=2,a n +1=a n +ln(1+),则a n =(1n A )A .2+ln nB .2+(n -1)ln nC .2+n ln nD .1+n +ln n [解析] a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=ln n -ln(n -1)+ln(n -1)-ln(n -2)+…+ln2-ln1+2=2+ln n .6.(2018·西安一模)已知数列{a n }的通项公式a n =log 2(n ∈N *),设其前n 项和为nn +1S n ,则使S n <-4成立的最小自然数n 的值为16.[解析] 因为a n =log 2,nn +1所以S n =log 2+log 2+log 2+…+log 2122334n n +1=log 2(···…·)=log 2,122334n n +11n +1若S n <-4,则<,即n >15,1n +1116则使S n <-4成立的最小自然数n 的值为16.7.如图所示,将正整数排成三角形数阵,每排的数称为一个群,从上到下顺次为第一群,第二群,…,第n 群,…,第n 群恰好n 个数,则第n 群中n 个数的和是3·2n -2n -3.[解析] 由图规律知,第n 行第1个数为2n -1,第2个数为3·2n -2,第3个数为5·2n -3……设这n 个数的和为S则S =2n -1+3·2n -2+5×2n -3+…+(2n -3)·2+(2n -1)·20 ①2S n =2n +3·2n -1+5·2n -2+…+(2n -3)·22+(2n -1)·21 ②②-①得S n =2n +2·2n -1+2·2n -2+…+2·22+2·2-(2n -1)=2n +2n +2n -1+…+23+22-(2n -1)=2n +-(2n -1)4(1-2n -1)1-2=2n +2n +1-4-2n +1=3·2n -2n -3.8.已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.[分析] (1)利用a n +1=S n +1-S n 用配凑法可获证;(2)假设存在λ,则a 1,a 2,a 3应成等差数列求出λ的值,然后依据a n +2-a n =λ推证{a n }为等差数列.[解析] (1)由题设:a n a n +1=λS n -1,a n +1a n +2=λS n +1-1,两式相减得a n +1(a n +2-a n )=λa n +1.由于a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1.由(1)知,a 3=λ+1,令2a 2=a 1+a 3,解得λ=4.故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.9.已知数列{a n }满足a n +1=-,a 1=-.1an +212(1)求证{}是等差数列;1an +1(2)求数列{a n }的通项公式;(3)设T n =a n +a n +1+…+a 2n -1.若T n ≥p -n 对任意的n ∈N *恒成立,求p 的最大值.[解析] (1)证明:∵a n +1=-,1an +2∴a n +1+1=-+1==,1an +2an +2-1an +2an +1an +2由于a n +1≠0,∴==1+,1an +1+1an +2an +11an +1∴{}是以2为首项,1为公差的等差数列.1an +1(2)由(1)题结论知:=2+(n -1)=n +1,1an +1∴a n =-1=-(n ∈N *).1n +1nn +1(3)∵T n =a n +a n +1+…+a 2n -1≥P -n ,∴n +a n +a n +1+…+a 2n -1≥P ,即(1+a n )+(1+a n +1)+(1+a n +2)+…+(1+a 2n -1)≥p ,对任意n ∈N *恒成立,而1+a n =,1n +1设H (n )=(1+a n )+(1+a n +1)+…+(1+a 2n -1),∴H (n )=++…+,1n +11n +212nH (n +1)=++…+++,1n +21n +312n 12n +112n +2∴H (n +1)-H (n )=+-=->0,12n +112n +21n +112n +112n +2∴数列{H (n )}单调递增,∴n ∈N *时,H (n )≥H (1)=,故P ≤.1212∴P 的最大值为.12专题四 规范答题示例 例(12分)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).[思路探究] ―→―→先求某一项或找到某几项之间的关系式求通项公式求数列的前n 项和规范解答·分步得分构建答题模板 解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .由已知b 2+b 3=12,得b 1(q +q 2)=12,而b 1=2,所以q 2+q -6=0.2分又因为q >0,解得q =2,所以b n =2n .3分由b 3=a 4-a 1,可得3d -a 1=8.①由S 11=11b 4,可得a 1+5d =16.②联立①②,解得a 1=1,d =3.5分由此可得a n =3n -2.6分所以数列{a n }的通项公式a n =3n -2,数列{b n }的通项公式为b n =2n .(2)设数列{a 2n b 2n -1}的前n 项和为T n ,由a 2n =6n -2,b 2n -1=2×4n -1,得a 2n b 2n -1=(3n -1)×4n ,7分故T n =2×4+5×42+8×43+…+(3n -1) 第一步找关系:根据已知条件确定数列的项之间的关系.第二步求通项:根据等差或等比数列的通项公式或利用累加、累乘法求数列的通项公式.第三步定方法:根据数列表达式的结构特征确定求和方法(常用的有公式法、裂项相消去、错位相减法、分组法等).第四步写步骤.第五步再反思:检查求和过程中各项的符号有无错误,用特殊项估算结果.×4n ,①8分4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1,②9分①-②,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1=-4-(3n -1)×4n +112×(1-4n )1-4=-(3n -2)×4n +1-8,11分得T n =×4n +1+.3n -2383所以数列{a 2n b 2n -1}的前n 项和为×4n +1+.12分3n -2283[评分细则]①正确求出q 2+q -6=0得2分;②根据等比数列的通项公式求出通项b n =2n 得1分,通项公式使用错误不得分;③根据等差数列的通项公式求通项a n =3n -2得1分,通项公式使用错误不得分.④正确写出a 2n b 2n -1=(3n -1)×4n 得1分;⑤正确写出2×4+5×42+8×43+…+(3n -1)×4n 得1分;⑥正确写出4T n 得1分;⑦正确计算出T n =×4n +1+得3分.3n -2383G跟踪训练en zong xun lian 已知数列{a n }的前n 项和为S n ,且S n =2-2n +1,数列{b n }为等差数列,且b 2=a 1,b 8=a 3.(1)求数列{a n },{b n } 的通项公式;(2)求数列{}的前n 项和T n .bnan [解析] (1)对于数列{a n }有S n =2-2n +1,当n =1时,S 1=2-22=-2,即a 1=-2;当n ≥2时,a n =S n -S n -1=(2-2n +1)-(2-2n )=-2n ,对n =1也符合,故a n =-2n .所以数列{a n }是等比数列,公比q =2.等差数列{b n }中,b 2=a 1=-2,b 8=a 3=-8.故其公差d 满足6d =b 8-b 2=-6,所以d =-1.所以其通项b n =b 2+(n -2)d =-2+(n -2)×(-1)=-n .(2)令c n =,由(1)知,c n ==n ×.bn an bn an 12n T n =c 1+c 2+c 3+…+c n -1+c n=+2×+3×+…+(n -1)×+n ×①,1212212312n -112n T n =+2×+3×+…+(n -1)×+n ×②,1212212312412n 12n +1①-②,得T n =+++…++-=-121212212312n -112n n 2n +112[1-(12)n ]1-12n 2n +1=1--12n n2n +1所以T n =2--=2-.12n -1n 2n n +22n。
【2020年江苏省高考数学考点探究】专题44 数列的求和(解析版)
专题44 数列的求和专题知识梳理1.公式法如果通项是等差或等比数列,则直接利用公式进行求和.等差数列{a n }前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d .等比数列{a n }前n 项和公式:q =1时,S n =__na 1__;q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q.2.分组求和法如果一个数列的通项形如a n ±b n ,其中{a n }为等差数列,{b n }为等比数列,则把它们分别求和. 3.错位相减法如果一个数列的通项形如a n g b n ,其中{a n }为等差数列,{b n }为等比数列,则用两式错位相减法.其实,_等比__数列的前n 项和公式就是用此法推导的.4.裂项相消法如果一个数列的通项是分式型数列,则可把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.常见的拆项公式有:1n (n +1)=1n -1n +1,1(2n -1)(2n +1)=12(12n -1-12n +1),1n +n +1=n +1-n .5.倒序相加法如果一个数列{a n }的通项满足,与首末两端等“距离”的两项的和相等,那么求这个数列的前n 项和即可用倒序相加法.如等差数列的前n 项和公式即是用此法推导的.6.并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和,形如a n =(-1)n f (n )类型,可采用两项合并求解.例如S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5050.7.常见数列的前n 项和公式: (1)1+2+3+…+n =n (n +1)2;(2)1+3+5+…+(2n -1)=n 2;(3)12+22+32+…+n 2=n (n +1)(2n +1)6. 考点探究考向1 利用“分组求和法”求和【例】求和:(1)S n =1+⎝⎛⎭⎫1+12+⎝⎛⎭⎫1+12+14+…+⎝⎛⎭⎫1+12+14+…+12n -1. (2)1×4+2×7+3×10+…+n (3n +1).【解析】原式中通项为a n =⎝⎛⎭⎫1+12+14+…+12n -1=11()122(1)1212kk-=-- ∴ S n =2⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫1-122+…+⎝⎛⎭⎫1-12n =2⎝ ⎛⎭⎪⎫n -12⎝⎛⎭⎫1-12n1-12=12n -1+2n -2.(2)数列{a n }的通项a n =n (3n +1)=3n 2+n ,把数列分成了两个数列,分别求和.1×4+2×7+3×10+…+n (3n +1)=(3×12+1)+(3×22+2)+(3×32+3)+…+(3n 2+n ) =3(12+22+32+…+n 2)+(1+2+3+…+n ) =3·n (n +1)(2n +1)6+n (n +1)2=n (n +1)2.题组训练1.在数列{a n }中,a 1=-2101,且当2≤n ≤100时,a n +2a 102-n =3×2n 恒成立,则数列{a n }的前100项和S 100=____.【解析】∵2≤n ≤100,∴2≤102-n ≤100,将a n +2a 102-n =3×2n 中的n 换成102-n 得,a 102-n +2a n =3×2102-n,消去a 102-n 得,a n =2103-n -2n ,∴S 100=a 1+a 2+a 3+a 4+…+a 100=-2101+(2101-22)+(2100-23)+(299-24)+…+(23-2100)=-4.2.已知数列{a n }的通项公式为a n =2n -1+3n -1,则数列{a n }的前n 项和S n =___.【解析】数列{a n }的通项公式为a n =2n -1+3n -1,∴数列{a n }的前n 项和S n =a 1+a 2+…+a n =(21-1+3×1-1)+(22-1+3×2-1)+…+(2n -1+3×n -1)=(21-1+22-1+…+2n -1)+(3×1+3×2+…+3×n )+…+n ×(-1)=2n -1+3×n (n +1)2-n =2n +32n 2+12n -1.考向2 利用“裂项相消法”求和【例】设{}n a 是等比数列,公比大于0,其前n 项和为*(∈n S n N ),{}n b 是等差数列.已知:1321,2==+a a a ,435546,2=+=+a b b a b b .(I )求{}n a 和{}n b 的通项公式;(II )设数列{}n S 的前n 项和为*(∈n T n N ), (i )求n T ; (ii )证明∑(T k +b k+2)b k (k+1)(k+2)nk=1=2n+2n+2−2(n ∈N ∗).【解析】(I ) 设数列{}n a 的公比为q ,代入1321,2==+a a a ,得220,q q --=2∴=q 或1=-q (舍去)又11,=a 故1=2-n n a .设等差数列{}n b 的公差为d ,代入435546,2=+=+a b b a b b ,中,得11268,31316b d b d +=⎧⎨+=⎩,解得11,1b d =⎧⎨=⎩,∴=n b n .(II )(i )由(I )得122112-==--n n n S ,故T n =∑(2k −1)n k=1=∑2k n k=1−n =2×(1−2n )1−2−n =2n+1−n −2. (ii )因为(T k +b k+2)b k(k+1)(k+2)=(2k+1−k−2+k+2)k(k+1)(k+2)=k⋅2k+1(k+1)(k+2)=2k+2k+2−2k+1k+1, 所以∑(T k +b k+2)b k(k+1)(k+2)nk=1=(233−222)+(244−233)+⋯+(2n+2n+2−2n+1n+1)=2n+2n+2−2.题组训练1.求和:11×2+12×3+13×4+…+1n (n +1)=___.【解析】因1n (n +1)=1n -1n +1,故S n =1-12+12-111++31-+L n n =1-1n +1= n n +1.2.已知数列{}a n 的通项公式a n =1n +n +1,则该数列的前____项之和等于9.【解析】n a=12n n S a a a =+++L+L 1=9,所以解得n =993.已知数列{a n }各项均为正数,其前n 项和为S n ,且满足4S n =(a n +1)2. (1) 求{a n }的通项公式;(2) 设b n =1a n ·a n +1,求数列{b n }的前n 项和T n 及T n 的最小值.【解析】(1)∵(a n +1)2=4S n ,∴S n =(a n +1)24,S n +1=(a n +1+1)24, ∴S n +1-S n =a n +1=(a n +1+1)2-(a n +1)24,即4a n +1=a 2n +1-a 2n +2a n +1-2a n ,∴2(a n +1+a n )=(a n +1+a n )·(a n +1-a n ).∵a n +1+a n ≠0,∴a n +1-a n =2,即{a n }是公差为2的等差数列,由(a 1+1)2=4a 1,解得a 1=1,∴a n =2n -1.(2)由(1)知b n =1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1,∴T n =b 1+b 2+…+b n =12(1-13+13-15+…+12n -1)-12n +1)=12⎝⎛⎭⎫1-12n +1=12-12(2n +1)=n 2n +1.∵T n +1-T n =12-12(2n +3)-⎣⎡⎦⎤12-12(2n +1)=12(2n +1)-12(2n +3)=1(2n +1)(2n +3)>0,∴T n +1>T n ,∴数列{}T n 为递增数列,∴T n 的最小值为T 1=13.考向3 利用“倒序相加法”求和【例】已知函数f (x )=4x 4x +2,求f (12018)+f (22018)+f (32018)+…+f (20172018)的值.【解析】∵f (x )=4x 4x +2,∴f (1-x )=41-x 41-x +2=42×4x +4=24x +2,∴f (x )+f (1-x )=4x 4x +2+24x +2=1.令S =f (12018)+f (22018)+f (32018)+…+f (20172018),则S =f (20172018)+f (20162018)+f (20152018)+…+f (12018),两式相加得,2S =2017[f (12018)+f (20172018)]=2017, ∴S =20172,即f (12018)+f (22018)+f (32018)+…+f (20172018)=20172.题组训练1.求sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°的值.【解析】设S =sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°,① 将①式右边反序得S =sin 289°+sin 288°+…+sin 23°+sin 22°+sin 21°,② 又∵sin x =cos(90°-x),sin 2 x +cos 2x =1.①+②得2S =(sin 21°+cos 21°)+(sin 22°+cos 22°)+…+(sin 289°+cos 289°)=89, ∴S =44.5.考向4 利用“错位相减法”求和【例】已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =.(1)求{}n a 和{}n b 的通项公式;(2)求数列221{}n n a b -的前n 项和()n *∈N .【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由已知2312b b +=,得21()12b q q +=,而12b =,∴260q q +-=.又∵0q >,解得2q =.∴2nn b =.由3412b a a =-,可得138d a -= ①, 由114=11S b ,可得1516a d += ②,联立①②,解得11a =,3d =,由此可得32n a n =-.∴数列{}n a 的通项公式为32n a n =-,数列{}n b 的通项公式为2nn b =.(2)设数列221{}n n a b -的前n 项和为n T ,由262n a n =-,12124n n b --=⨯,有221(31)4nn n a b n -=-⨯,∴23245484(31)4nn T n =⨯+⨯+⨯++-⨯L ,23414245484(34)4(31)4n n n T n n +=⨯+⨯+⨯++-⨯+-⨯L ,上述两式相减,得231324343434(31)4n n n T n +-=⨯+⨯+⨯++⨯--⨯L1112(14)4(31)414(32)48.n n n n n ++⨯-=---⨯-=--⨯- 得1328433n n n T +-=⨯+. ∴数列221{}n n a b -的前n 项和为1328433n n +-⨯+. 题组训练1.已知{a n }为等比数列,其中a 1=1,且a 2,a 3+a 5,a 4成等差数列.(1)求数列{a n }的通项公式;(2)设b n =(2n -1)·a n ,求数列{b n }的前n 项和T n .【解析】 (1)设在等比数列{a n }中,公比为q ,∵a 1=1,且a 2,a 3+a 5,a 4成等差数列,∴2(a 3+a 5)=a 2+a 4∴2(q 2+q 4)=q +q 3,解得q =12,∴a n =(12)n -1.(2)∵a n =(12)n -1,∴b n =(2n -1)a n =(2n -1)(12)n -1,∴T n =1·1+3·12+5·(12)2+…+(2n -1)·(12)n -1,①12T n =1·12+3·(12)2+5·(12)3+…+(2n -1)·(12)n ,② ①-②,得:12T n =1+2·⎣⎡⎦⎤12+(12)2+…+(12)n -1-(2n -1)·(12)n =1+2-(2n -1)· (12)n =3-2n +32n ,∴T n =6-2n +32n -1. 2.(2018·无锡模拟)在等差数列{}n a 中,已知13240,2a a a a +=+=-,则数列12n n a -⎧⎫⎨⎬⎩⎭的前10项和为 .【解析】()()241322a a a a d +-+==-,所以d=-1,得11,2n a a n ==-,设012112311112222n n n S a a a a -⎛⎫⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L ○1,将○1两边乘以12, 得111122n S a ⎛⎫=+ ⎪⎝⎭23123111112222n nn n a a a a --⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L ○2,○1-○2得011122n S a ⎛⎫=+ ⎪⎝⎭21111222n nn d d a -⎛⎫⎛⎫⎛⎫++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L111112211212n n n a da -⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎛⎫⎝⎭=+- ⎪⎝⎭-()111222n n n -⎛⎫⎛⎫=-- ⎪⎪⎝⎭⎝⎭,112n n S n -⎛⎫= ⎪⎝⎭,所以105256S =. 3.已知首项为12的等比数列{}a n 是递减数列,其前n 项和为S n ,且S 1+a 1,S 2+a 2,S 3+a 3成等差数列.(1)求数列{}a n 的通项公式;(2)若b n =a n ·log 2a n ,数列{}b n 的前n 项和为T n ,求满足不等式T n +2n +2≥116的最大n 值.【解析】 (1)设等比数列{a n }的公比为q ,由题意知a 1=12,∵S 1+a 1,S 2+a 2,S 3+a 3成等差数列,∴2(S 2+a 2)=S 1+a 1+S 3+a 3,变形得S 2-S 1+2a 2=a 1+S 3-S 2+a 3,即得3a 2=a 1+2a 3,∴32q =12+q 2,解得q=1或q =12,又由{a n }为递减数列,于是q =12,∴a n =a 1q n -1=⎝⎛⎭⎫12n .(2)由于b n =a n log 2a n =-n ·⎝⎛⎭⎫12n ,∴T n =-12+2·⎝⎛⎭⎫122+…+n ·⎝⎛⎭⎫12n ,于是 12T n =-⎝⎛⎭⎫122+2·⎝⎛⎭⎫123+…+n ·⎝⎛⎭⎫12n+1,两式相减,得 12T n =-[12+⎝⎛⎭⎫122+…+⎝⎛⎭⎫12n -n ·⎝⎛⎭⎫12n +1]=-12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12+n ·⎝⎛⎭⎫12n +1, ∴T n =(n +2)·⎝⎛⎭⎫12n -2.∴T n +2n +2=⎝⎛⎭⎫12n ≥116,解得n ≤4,∴n 的最大值为4. 4.已知数列{}n a 的前n 项和S n =3n 2+8n ,{}n b 是等差数列,且1.n n n a b b +=+ (Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1).(2)++=+n n n nn a c b 求数列{}n c 的前n 项和T n . 【解析】(Ⅱ)由(Ⅰ)知11(66)3(1)2(33)n n n nn c n n +++==+⋅+, 又123n n T c c c c =+++⋅⋅⋅+,得23413[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,345223[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,两式作差,得234123[22222(1)2]n n n T n ++-=⨯⨯+++⋅⋅⋅+-+⨯224(21)3[4(1)2]2132n n n n n ++-=⨯+-+⨯-=-⋅所以223+⋅=n n n T .。
2020高考数学高频考点揭秘与仿真测试专题36数列等差数列1文含解析
一、具本目标:等差数列 (1) 理解等差数列的概念.(2) 掌握等差数列的通项公式与前n 项和公式.(3) 能在具体的问题情境中识别数列的等差关系关系,并能用有关知识解决相应的问题. (4) 了解等差数列与一次函数的关系. 二、知识概述: 一)等差数列的有关概念1.定义:等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.用递推公式表示为或.2.等差数列的通项公式:;.说明:等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列.3.等差中项的概念:定义:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项,其中2a bA += . a ,A ,b 成等差数列⇔2a bA +=. 4.等差数列的前n 和的求和公式:.5.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.6.注意区分等差数列定义中同一个常数与常数的区别. 二)方法规律:1.等差数列的四种判断方法 (1) 定义法:对于数列{}n a ,若()n N ∈*(常数),则数列{}n a 是等差数列;(2) 等差中项:对于数列{}n a ,若()n N ∈*,则数列{}n a 是等差数列; (3)通项公式:n a pn q =+(,p q 为常数,n N ∈*)⇔{}n a 是等差数列;(4)前n 项和公式:(,A B 为常数, n N ∈*)⇔{}n a 是等差数列;(5) {}n a 是等差数列⇔n S n ⎧⎫⎨⎬⎩⎭是等差数列.【答案】134.古代数学著作《九章算术》中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈,问日益几何?”其意为:有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织五尺,一月织了九匹三丈,问每天比前一天多织多少吃布?已知1匹=40尺,1丈=10尺,若一月按30天算,则每天织布的增加量为( ) A .尺B .尺C .尺D .尺【分析】首先判断该数列为等差数列,进一步利用等差数列的前n 项和公式求出结果.本题考查的知识要 点:等差数列的通项公式的求法及应用,等差数列的前n 项和公式的应用,主要考查学生的运算能力和转 化能力.5.在等差数列{a n }中,a 1+a 3+a 5=15,a 6=1l . (1)求数列{a n }的通项公式;(2)对任意m ∈N *,将数列{a n }中落入区间(2m +1,22m +1)内的项的个数记为{b m },记数列{b m }的前m 项和S m ,求使得S m >2018的最小整数m ; (3)若n ∈N *,使不等式a n +na 1≤(2n +1)λ≤a n +1+11+n a 成立,求实数λ的取值范围.【分析】(1)设数列{a n }的公差为d ,由等差数列的通项公式列出方程组,求出首项和公差,由此能求出数列{a n }的通项公式.(2)推导出,从而b m=22m﹣2m,m∈N*,进而S m=(22+24+26+…+22m)﹣(2+22+23+…+2m)=.令>2018,能求出最小整数m.(3),从而,记A n=,B n=,n∈N*,由A n+1﹣A n=,能求出实数λ的范围.(2)对任意m∈N*,若2m+1<2n﹣1<22m+1,则,∴b m=22m﹣2m,m∈N*,S m=(22+24+26+…+22m)﹣(2+22+23+…+2m)==.令>2018,解得m>,∴所求的最小整数m为6.(3),记A n=,B n=,n∈N*,由A n+1﹣A n=,知A1=A2,且从第二项起,{A n}递增,即A1=A2,A3<A4<…<A n,∵B n=B n=递减,∴实数λ的范围为[A1,B1],即[].。
2020新课标高考数学(文)总复习专题限时训练:等差数列、等比数列通项与求和含解析
(2)求数列{an}的通项公式an及其前n项和Sn.
解析:(1)证明:nan+1=2(n+1)an+n(n+1)⇒ = +1,得 +1= +2=2 ,即bn+1=2bn,又b1=2,所以数列{bn}是以2为首项,2为公比的等比数列.
(2)由(1)知bn=2n⇒ +1=2n⇒an=n(2n-1),
n=1时,a1=4a1-3,解得a1=1.
因为Sn=4an-3,则Sn-1=4an-1-3(n≥2),
所以当n≥2时,an=Sn-Sn-1=4an-4an-1,整理得an= an-1.
又a1=1≠0,所以{an}是首项为1,公比为 的等比数列.
(2)因为an= n-1,由bn+1=an+bn(n∈N*),
A.20xx- B.2 018+
C.6+ D.6-
解析:a1= ,an+1=[an]+ ,
∴a2=2+ =6+2 ,
a3=10+ =12+ ,
a4=14+ =18+2 ,
a5=22+ =24+ ,…….
∴a2 018=6×2 017+2 ,a2 019=6×2 018+ .
则a2 019-a2 018=6- .故选D.
则
= =9.故选D.
答案:D
9.在等差数列{an}中,a1=-2 015,其前n项和为Sn,若 - =2,则S2 016的值等于()
A.-2 015B.2 015
C.2 016D.0
解析:设数列{an}的公差为d.
S12=12a1+ d,S10=10a1+ d,
所以 = =a1+ d.
=a1+ d,所以 - =d=2,
两式相减,得
-Tn=2+22+23+…+2n-n·2n+1= -n·2n+1,
2019_2020年高考数学学业水平测试一轮复习专题十一数列第40讲数列求和课件
(2)由(1)知,an-an-1=bn-1=2n-2(n≥2), 令 n=2,…,n,赋值累加得:an-2=(22+23+… +2n)-2(n-1), 所以 an=(2+22+23+…+2n)-2n+2=2(22-n-11) -2n+2=2n+1-2n. 所以 Sn=4(11--22n)-n(2+2 2n)=2n+2-(n2+n+ 4).
3.裂项相消法求和 在数列{an}中,a1=1,当 n≥2 时,其前 n 项和
Sn 满足 S2n=anSn-12. (1)求 Sn 的表达式; (2)设 bn=2nS+n 1,求{bn}的前 n 项和 Tn. 解:(1)因为 S2n=anSn-12,an=Sn-Sn-1 (n≥2), 所以 S2n=(Sn-Sn-1)Sn-12,
2.错位相减法求和 已知数列{an}满足首项为 a1=2,an+1=2an(n∈
N*).设 bn=3log2an-2(n∈N*),数列{cn}满足 cn=anbn. (1)求证:数列{bn}为等差数列; (2)求数列{cn}的前 n 项和 Sn. (1)证明:由已知可得,an=a1qn-1=2n,bn=3log22n
D.120
答案:A 3.在等比数列{an}中,若 a1=12,a4=-4,则|a1|+|a2|
+…+|an|=( )
A.2n-1-12
B.2n-32
C.4n-1-12
D.4n-32
答案:A
4.设 f(n)=2+22+23+…+2n+1(n∈N+),则 f(n)等
于( )
A.2n-1
B.2n-2
C.2n+1-2
如:
1 n+
n+k=1k(
n+k-
n),n(n1+k)=1k(n1-n+1 k)
2020届高考数学复习备考-等差数列、等比数列
2020届高考数学复习备考-等差数列、等比数列高考真题1.记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为 ( ) A .1 B .2 C .4 D .82.等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }的前6项和为 ( ) A .-24 B .-3 C .3 D .83.已知等差数列{a n }前9项的和为27,a 10=8,则a 100= ( ) A .100 B .99 C .98 D .974.若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=______.5.等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=__________. 典型例题例1:(1)已知等比数列{a n }的前n 项和为S n ,a 1+a 3=30,S 4=120,设b n =1+log 3a n ,那么数列{b n }的前15项和为 ( )A .152B .135C .80D .16(2)设{a n }的首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1= ( )A .2B .-2C .12D .-12例2:若等比数列的各项均为正数,前4项的和为9,积为814,则前4项倒数的和为 ( )A .32B .94 C .1 D .2例3:已知数列{a n }的前n 项和S n =1+λa n .其中λ≠0.(1)证明{a n }是等比数列,并求其通项公式;(2)若S 5=3132,求λ.课后练习1.等差数列{a n }的前n 项和为S n ,若S 11=22,则a 3+a 7+a 8= ( )A .18B .12C .9D .62.设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6= ( )A .31B .32C .63D .643.已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于 ( )A .-6(1-3-10)B .19(1-3-10)C .3(1-3-10) D .3(1+3-10)4.设S n 为等比数列{a n }的前n 项和,且4a 3-a 6=0,则S 6S 3= ( )A .-5B .-3C .3D .55.已知公差不等于0的等差数列{a n }的前n 项和为S n ,如果S 3=-21,a 7是a 1与a 5的等比中项,那么在数列{na n }中,数值最小的项是 ( )A .第4项B .第3项C .第2项D .第1项6.数列{a n }的前n 项和S n =2n 2-3n (n ∈N *),若p -q =5,则a p -a q = ( )A .10B .15C .-5D .207.若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=__ __.8.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是__ __.9.设数列{a n }的前n 项和为S n ,且S n =4a n -p (n ∈N *),其中p 是不为零的常数. (1)证明:数列{a n }是等比数列;(2)当p =3时,若数列{b n }满足b n +1=a n +b n (n ∈N *),b 1=2,求数列{b n }的通项公式.10.设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,求使得|T n -1|<11 000成立的n 的最小值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题40 数列 数列的求和1(等差等比数列求和)
【考点讲解】
一、具本目标:1.掌握等差、等比数列的求和方法; 2. 掌握等非差、等比数列求和的几种常见方法.
考纲解读:会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和,非等差、等比数列的求和是高考的热点,特别是错位相减法和裂项相消法求和. 二、知识概述:
求数列前n 项和的基本方法
(1)直接用等差、等比数列的求和公式求和;
等差:;
等比:
公比是字母时需要讨论.
(理)无穷递缩等比数列时,q
a S -=
11
(2)掌握一些常见的数列的前n 项和公式:
;
;
;
;
(3)倒序相加法求和:如果一个数列
{}n
a ,与首末两端等“距离”的两项的和相等或等于同一个常数,
那么求这个数列的前n 项和即可用倒序相加法.
(4)错位相减法求和:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么
这个数列的前
n
项和即可用此法来求.如{}n a 为等差数列,{}n b 为等比数列,求
的和.
(5)分组求和:有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,把数列的每一项分成若干项,使其转化为等差或等比数列,先分别求和,再合并.
形如:
n
n b a +其中,
(6)合并求和:如求
的和.
(7)裂项相消法求和:把数列的通项拆成两项之差,正负相消剩下首尾若干项. 常见拆项:
;
.
【真题分析】
1.【2016年北京】已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则6=S _______. 【解析】本题考点是等差数列的性质与求和.因为{}n a 是等差数列,所以
,即40a =,又
,所以2d =-,所以
.故答案
为6. A.80 B.30 C.26 D.16
【解析】由2n S =与314n S =可得:当1n =时,112S a ==,314
S =..
由
,得到,因为是正数的等比数列,
所以有2q =,
所以,答案选B.
【答案】B
11.【2016全国文Ⅱ,17】等差数列{n a }中,
.
(Ⅰ)求{n a }的通项公式;
(Ⅱ) 设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.
(Ⅱ)由(Ⅰ)知.
当n =1,2,3时,;
当n =4,5时,;
当n =6,7,8时,;
当n =9,10时,
.
所以数列{}n b 的前10项和为
.
【答案】(Ⅰ)
23
5n n a +=
;(Ⅱ)24.
12.【2018全国Ⅲ理17题】等比数列{}n a 中,
.
(1)求{}n a 的通项公式;
(2)记n S 为{}n a 的前n 项和.若63m S =,求m .
【解析】(1)设{}n a 的公比为q ,由题设得1
n n a q -=.
由已知得42
4q q =,解得0q =(舍去),2q =-或2q =.
故1(2)n n a -=-或1
2n n a -=.
(2)若1
(2)n n a -=-,则.由63m S =得
,
此方程没有正整数解.
若12n n a -=,则21n
n S =-.由63m S =得264m =,解得6m =.
综上,6m =.。