2021年中考数学专题复习 专题33 中考几何折叠翻折类问题(学生版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题33 中考几何折叠翻折类问题
1.轴对称(折痕)的性质:
(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
也就是不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.对称的图形都全等.
2.折叠或者翻折试题解决哪些问题
(1)求角度大小;
(2)求线段长度;
(3)求面积;
(4)其他综合问题。
3.解决折叠问题的思维方法
(1)折叠后能够重合的线段相等,能够重合的角相等,能够重合的三角形全等,折叠前后的图形关于折痕对称,对应点到折痕的距离相等。
(2)折叠类问题中,如果翻折的直角,那么可以构造三垂直模型,利用三角形相似解决问题。
(3)折叠类问题中,如果有平行线,那么翻折后就可能有等腰三角形,或者角平分线。
这对解决问题有很大帮助。
(4)折叠类问题中,如果有新的直角三角形出现,可以设未知数,利用勾股定理构造方程解决。
(5)折叠类问题中,如果折痕经过某一个定点,往往用辅助圆解决问题。
一般试题考查点圆最值问题。
(6)折叠后的图形不明确,要分析可能出现的情况,一次分析验证可以利用纸片模型分析。
【例题1】(2020•哈尔滨)如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为( )
A.10°B.20°C.30°D.40°
【对点练习】(2019重庆)如图,在△ABC中,∠ABC=45°,AB=3,AD⊥BC于点D,BE⊥AC于点E,AE=1,连接DE,将△AED沿直线沿直线AE翻折至△ABC所在的平面内,得到△AEF,连接DF,过点D作DG⊥DE交BE于点G.则四边形DFEG的周长为( )
A.8
B.2
2
3+.
2+ D.2
4 C.4
2
【例题2】(2020贵州黔西南)如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平,再一次折叠,使点D落到EF上点G处,并使折痕经过点A,已知BC=2,则线段EG的长度为________.
【对点练习】(2019四川内江)如图,在菱形ABCD中,simB=,点E,F分别在边AD、BC上,将四边形AEFB沿EF翻折,使AB的对应线段MN经过顶点C,当MN⊥BC时,的值是.
【例题3】(2020衢州模拟)如图1,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A′处,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处.再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE 上的点H处.如图2.
(1)求证:EG=CH;
(2)已知AF=,求AD和AB的长.
【对点练习】(2019徐州)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:
(1)∠ECB=∠FCG;
(2)△EBC≌△FGC.
一、选择题
1.(2020•青岛)如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF ,EF 与AC 交于点O .若AE =5,BF =3,则AO 的长为( )
A .√5
B .32√5
C .2√5
D .4√5
2.(2020•枣庄)如图,在矩形纸片ABCD 中,AB =3,点E 在边BC 上,将△ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,若∠EAC =∠ECA ,则AC 的长是( )
A .3√3
B .4
C .5
D .6
3.(2020•广东)如图,在正方形ABCD 中,AB =3,点E ,F 分别在边AB ,CD 上,∠EFD =60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为( )
A .1
B .√2
C .√3
D .2
4.如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E的直线折叠,使点B与点A重合,折痕现交于点F.已知EF=,则BC的长是( )
A. B. C.3 D.
5.如图,已知D为△ABC边AB的中点,E在AC上,将△ABC沿着DE折叠,使A点落在BC上的F处.若∠B=65°,则∠BDF等于( )
A. 65° B. 50° C. 60° D. 57.5°
6.如图,在矩形OABC中,OA=8,OC=4,沿对角线OB折叠后,点A与点D重合,OD与BC交于点E,则点D 的坐标是( )
A. (4,8) B. (5,8) C. (,) D. (,)
7.(2019海南)如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B =60°,AB=3,则△ADE的周长为( )
A.12 B.15 C.18 D.21
8.(2019桂林)将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕,若顶点A,C,D都落在点O处,且点B,O,G在同一条直线上,同时点E,O,F在另一条直线上,则的值为( )
A.B.C.D.
二、填空题
9.(2020•襄阳)如图,矩形ABCD中,E为边AB上一点,将△ADE沿DE折叠,使点A的对应点F恰好落在
边BC上,连接AF交DE于点N,连接BN.若BF•AD=15,tan∠BNF=√5
2,则矩形ABCD的面积为.
10.(2020•牡丹江)如图,在Rt△ABC中,∠C=90°,点E在AC边上.将∠A沿直线BE翻折,点A落在点
A'处,连接A'B,交AC于点F.若A'E⊥AE,cos A=4
5,则
A′F
BF
=.
11.(2020•安徽)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点Q 处.折痕为AP ;再将△PCQ ,△ADQ 分别沿PQ ,AQ 折叠,此时点C ,D 落在AP 上的同一点R 处.请完成下列探究:
(1)∠PAQ 的大小为 °;
(2)当四边形APCD 是平行四边形时,AB QR 的值为 .
12.(2019山东滨州)如图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平,再一次折叠纸片,使点A 落在EF 上的N 点处,同时得到折痕BM ,BM 与EF 交与点H ,连接线段BN ,则EH 与HN 的比值是 .
13.〔2020上海模拟〕如图,在Rt △ABC 中,∠C=90°,∠A=30°,BC=1,点D 在AC 上,将△ADB 沿直线BD 翻折后,将点A 落在点E 处,如果AD ⊥ED ,那么线段DE 的长为________.
14.(2019内蒙古通辽)如图,在边长为3的菱形ABCD中,∠A=60°,M是AD边上的一点,且AM=AD,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C.则A′C长度的最小值是.
15.(2019辽宁抚顺)在矩形ABCD中,AB=6,AD=3,E是AB边上一点,AE=2,F是直线CD上一动点,将△AEF沿直线EF折叠,点A的对应点为点A',当点E、A'、C三点在一条直线上时,DF的长度为.
16.如图,在菱形ABCD中,tanA=,M,N分别在边AD,BC上,将四边形AMNB沿MN翻折,使AB的对应线段EF经过顶点D,当EF⊥AD时,的值为.
17.(2019•河南)如图,在矩形ABCD中,AB=1,BC=a,点E在边BC上,且BE=3
5
a.连接AE,将△ABE沿
AE折叠,若点B的对应点B′落在矩形ABCD的边上,则a的值为_______.
18.(2019江苏淮安)如图,在矩形ABCD中,AB=3,BC=2,H是AB的中点,将△CBH沿CH折叠,点B落在矩形内点P处,连接AP,则tan∠HAP=.
三、解答题
19.(2020•金华)如图,在△ABC中,AB=4√2,∠B=45°,∠C=60°.
(1)求BC边上的高线长.
(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.
①如图2,当点P落在BC上时,求∠AEP的度数.
②如图3,连结AP,当PF⊥AC时,求AP的长.
20.(2020湘潭模拟)如图所示,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.
(1)求证:△BDE∽△BAC;
(2)已知AC=6,BC=8,求线段AD的长度.
21.(2020牡丹江)如图,四边形ABCD是正方形,点E在直线BC上,连接AE.将△ABE沿AE所在直线折叠,点B的对应点是点B′,连接AB′并延长交直线DC于点F.(1)当点F与点C重合时如图(1),易证:DF+BE=AF(不需证明);
(2)当点F在DC的延长线上时如图(2),当点F在CD的延长线上时如图(3),线段DF、BE、AF有怎样的数量关系?请直接写出你的猜想,并选择一种情况给予证明.。