线性代数(一)(402.5)_教学课件_0700018_ch2b2010

合集下载

《线性代数讲义》课件

《线性代数讲义》课件

在工程学中,性变换也得到了广泛的应用。例如,在图像处理中,可
以通过线性变换对图像进行缩放、旋转等操作;在线性控制系统分析中
,可以通过线性变换对系统进行建模和分析。
THANKS
感谢观看
特征向量的性质
特征向量与特征值一一对应,不同的 特征值对应的特征向量线性无关。
特征值与特征向量的计算方法
01
定义法
根据特征值的定义,通过解方程 组Av=λv来计算特征值和特征向 量。
02
03
公式法
幂法
对于某些特殊的矩阵,可以利用 公式直接计算特征值和特征向量 。
通过迭代的方式,不断计算矩阵 的幂,最终得到特征值和特征向 量。
矩阵表示线性变换的方法
矩阵的定义与性质
矩阵是线性代数中一个基本概念,它可以表示线性变 换。矩阵具有一些重要的性质,如矩阵的加法、标量 乘法、乘法等都是封闭的。
矩阵表示线性变换的方法
通过将线性变换表示为矩阵,可以更方便地研究线性 变换的性质和计算。具体来说,如果一个矩阵A表示 一个线性变换L,那么对于任意向量x,有L(x)=Ax。
特征值与特征向量的应用
数值分析
在求解微分方程、积分方程等数值问题时, 可以利用特征值和特征向量的性质进行求解 。
信号处理
在信号处理中,可以利用特征值和特征向量的性质 进行信号的滤波、降噪等处理。
图像处理
在图像处理中,可以利用特征值和特征向量 的性质进行图像的压缩、识别等处理。
05
二次型与矩阵的相似性
矩阵的定义与性质
数学工具
矩阵是一个由数字组成的矩形阵列,表示为二维数组。矩阵具有行数和列数。矩阵可以进行加法、数 乘、乘法等运算,并具有相应的性质和定理。矩阵是线性代数中重要的数学工具,用于表示线性变换 、线性方程组等。

《线性代数电子教案》课件

《线性代数电子教案》课件

《线性代数电子教案》PPT课件第一章:线性代数简介1.1 线性代数的意义和应用解释线性代数的概念和重要性探讨线性代数在工程、物理、计算机科学等领域的应用1.2 向量和空间定义向量及其几何表示介绍向量的运算,如加法、减法、数乘和点积1.3 矩阵和矩阵运算介绍矩阵的定义和基本性质探讨矩阵的运算,如加法、减法、数乘和乘法第二章:线性方程组2.1 线性方程组的定义和性质解释线性方程组的含义和基本性质探讨线性方程组的解的存在性和唯一性2.2 高斯消元法介绍高斯消元法的原理和步骤演示高斯消元法的具体操作过程2.3 矩阵的逆定义矩阵的逆及其性质探讨矩阵的逆的求法和应用第三章:矩阵的特征值和特征向量3.1 特征值和特征向量的定义解释特征值和特征向量的概念探讨特征值和特征向量的性质和关系3.2 矩阵的特征值和特征向量的求法介绍求解矩阵的特征值和特征向量的方法演示求解矩阵的特征值和特征向量的具体过程3.3 矩阵的对角化定义矩阵的对角化及其条件探讨矩阵对角化的方法和应用第四章:向量空间和线性变换4.1 向量空间的概念和性质解释向量空间的概念和基本性质探讨向量空间的基、维数和维度4.2 线性变换的定义和性质定义线性变换及其性质探讨线性变换的矩阵表示和特征值4.3 线性变换的图像和应用介绍线性变换的图像和性质探讨线性变换在图像处理等领域的应用第五章:行列式和矩阵的秩5.1 行列式的定义和性质解释行列式的概念和基本性质探讨行列式的计算方法和性质5.2 矩阵的秩的定义和性质定义矩阵的秩及其性质探讨矩阵的秩的求法和应用5.3 矩阵的逆和行列式的关系探讨矩阵的逆和行列式之间的关系演示利用行列式和矩阵的秩解决实际问题的方法第六章:二次型和正定矩阵6.1 二次型的定义和性质解释二次型的概念和基本性质探讨二次型的标准形和判定方法6.2 矩阵的正定性和二次型的应用定义正定矩阵及其性质探讨正定矩阵的判定方法和应用6.3 二次型的最小二乘法介绍最小二乘法的原理和步骤演示最小二乘法在实际问题中的应用第七章:特征值和特征向量的应用7.1 特征值和特征向量在控制理论中的应用探讨特征值和特征向量在控制理论中的重要作用演示利用特征值和特征向量分析线性系统的稳定性7.2 特征值和特征向量在信号处理中的应用解释特征值和特征向量在信号处理中的重要性探讨利用特征值和特征向量进行信号降噪等处理的方法7.3 特征值和特征向量在图像处理中的应用介绍特征值和特征向量在图像处理中的作用演示利用特征值和特征向量进行图像降维和特征提取的方法第八章:向量空间的同构和商空间8.1 向量空间的同构定义向量空间的同构及其性质探讨同构的判定方法和性质8.2 向量空间的商空间解释向量空间的商空间的概念和性质探讨商空间的构造和运算规则8.3 向量空间的同构和商空间的应用探讨向量空间的同构和商空间在数学和物理学中的应用演示利用同构和商空间解决实际问题的方法第九章:线性代数在优化问题中的应用9.1 线性代数在线性规划中的应用解释线性规划问题的概念和基本性质探讨利用线性代数方法解决线性规划问题的方法9.2 线性代数在非线性优化中的应用介绍非线性优化问题的概念和基本性质探讨利用线性代数方法解决非线性优化问题的方法9.3 线性代数在机器学习中的应用解释机器学习中的线性代数方法探讨利用线性代数方法进行数据降维、特征提取和模型构建的方法第十章:总结和拓展10.1 线性代数的核心概念和定理总结线性代数的核心概念和定理强调其在数学和科学研究中的重要性10.2 线性代数的拓展学习和研究方向介绍线性代数的拓展学习和研究方向鼓励学生积极探索线性代数的应用和创新10.3 线性代数的练习和参考资源提供线性代数的练习题和解答推荐相关的参考书籍和在线资源,供学生进一步学习和参考重点和难点解析重点一:向量和空间的概念及运算向量是线性代数的基本元素,其运算包括加法、减法、数乘和点积。

《线性代数第1讲》课件

《线性代数第1讲》课件

03
线性代数是数学的一个重要分支,广泛应用于 科学、工程和经济学等领域。
线性代数的基本性质
线性代数的运算具有结合律和交换律,例如矩阵乘法满足结合律和交换律 。
线性代数中的向量和矩阵具有加法、数乘和矩阵乘法的封闭性,即这些运 算的结果仍属于向量空间或矩阵集合。
线性代数中的一些基本概念,如向量空间的基底、向量的维数、矩阵的秩 等,具有明确的数学定义和性质。
04
线性变换在几何、物理和工程等领域有广泛应性方程组的解法
1 2
3
高斯-约当消元法
通过行变换将系数矩阵化为行最简形式,从而求解线性方程 组。
克拉默法则
适用于线性方程组系数行列式不为0的情况,通过求解方程 组得到未知数的值。
矩阵分解法
将系数矩阵分解为几个简单的矩阵,简化计算过程,如LU分 解、QR分解等。
THANKS
特征值与特征向量的应用
判断矩阵的稳定性
通过计算矩阵的特征值,可以判 断矩阵的稳定性,从而了解系统 的动态行为。
信号处理
在信号处理中,可以通过特征值 和特征向量的方法进行信号的滤 波、降噪等处理。
数据压缩
在数据压缩中,可以使用特征值 和特征向量的方法进行数据的压 缩和重构,提高数据的存储和传 输效率。
03
向量与向量空间
向量的定义与性质
01
基础定义
03
向量具有加法、数乘和向量的模等基本性质。
02
向量是有大小和方向的量,通常用实数和字母 表示。
04
向量的模是衡量其大小的标准,计算公式为 $sqrt{a^2 + b^2}$。
向量空间的概念
01
抽象空间
02
向量空间是一个由向量构成的集合,满足加法和数乘封闭性、

线性代数第一章ppt

线性代数第一章ppt
线性代数第一章
目录
CONTENTS
• 绪论 • 线性方程组 • 向量与向量空间 • 矩阵 • 特征值与特征向量
01
绪论
线性代数的定义与重要性
线性代数是数学的一个重要分支,主要研究线性方程组、向量空间、矩阵 等线性结构。它在科学、工程、技术等领域有着广泛的应用。
线性代数的重要性在于其提供了一种有效的数学工具,用于解决各种实际 问题中的线性关系问题,如物理、化学、生物、经济等。
向量空间中的零向量是唯一确定的,且对于任意 向量a,存在唯一的负向量-a。
向量空间的运算与性质
向量空间中的加法满足交换律和结合 律,即对于任意向量a和b,存在唯一 的和向量a+b;且对于任意三个向量a、 b和c,(a+b)+c=a+(b+c)。
向量空间中的数乘满足结合律和分配 律,即对于任意标量k和l,任意向量a 和b,存在唯一的结果k*(l*a)=(kl)*a 和(k+l)*a=k*a+l*a。
圆等。
经济学问题
线性方程组可以用来描述经济现象和 规律,例如供需关系、生产成本、利
润最大化等。
物理问题
线性方程组可以用来描述物理现象和 规律,例如力学、电磁学、热力学等。
计算机科学
线性方程组在计算机科学中有广泛的 应用,例如机器学习、图像处理、数 据挖掘等。
03
向量与向量空间
向量的定义与性质
01 向量是具有大小和方向的量,通常用有向线 段表示。 02 向量具有模长,即从起点到终点的距离。
特征值与特征向量的计算方法
定义法
幂法
谱分解法
根据特征值和特征向量的定义, 通过解方程组Ax=λx来计算特征 值和特征向量。这种方法适用于 较小的矩阵,但对于大规模矩阵 来说效率较低。

《线性代数》课件

《线性代数》课件
《线性代数》PPT课件
通过本PPT课件,帮助您深入了解线性代数的原理和应用,从基本概念到实例 讲解,全面提升您的线性代数知识。
课程介绍
了解线性代数的重要性和应用领域,介绍课程内容和学习目标。
基本概念和定义
1 向量
2 矩阵
介绍向量的定义和性质, 包括向量的运算和几何 表示。
解释矩阵的概念、矩阵 的运算和特殊类型的矩 阵。
对角化
探索对角化矩阵的定义和性质,以及 如何对角化一个矩阵。
应用物理学等领域中的应用实例,激发学习者对线性代数的兴趣和学习 动力。
介绍高斯消元法解线性方程组 的步骤和应用。
矩阵表示
讲解线性方程组的矩阵表示和 矩阵方程的求解。
向量空间
深入研究向量空间的定义和性质,探讨基、维数和子空间的相关概念。
特征值和特征向量
1
特征向量
2
解释特征向量的概念和性质,以及特
征向量与特征值之间的关系。
3
特征值
介绍特征值的定义和求解,以及特征 值的几何意义和应用。
3 行列式
探讨行列式的计算和性 质,以及行列式在线性 代数中的应用。
矩阵运算
加法与减法
介绍矩阵的加法和减法运算, 以及相关的性质和规则。
数乘
详细讲解数乘运算的定义和 性质,以及数乘对矩阵的影 响。
乘法
解释矩阵的乘法运算,包括 矩阵乘法的定义和运算法则。
线性方程组
什么是线性方程组?
高斯消元法
解释线性方程组的概念和解法, 包括矩阵法和消元法。

线性代数说课PPT课件

线性代数说课PPT课件
说课内容
1 课程设置 2 教学设置 3 课程实施 4 课程评价
第1页/共22页
1、课程设置
1.1
1.2
1.3
1.4
课程 课程定 课
使
基本 位、性 程

信息 质与作 目




第2页/共22页
1.1课程基本信息
课程名称《线性代数》 工程测量与监理
授课对象 专业 一年级学生 学时数 32学时 学分数 2学分
线上教学
教学资源上网
多媒体教学 黑板加粉笔
第16页/共22页
3.4教学过程实施
12
3
4
5
6


概例





念题





介讲





绍解



第17页/共22页
3.4.6布置作业
作业是课堂教学中不可缺少的环节

,配合每次课的教学内容,布置相

应的作业,通过作业反馈本节课知
识掌握的情况,以便下节课查陋补
第10页/共22页
2.3教学设计
启发式
讲授法
谈话式
教学方法
演示法
ห้องสมุดไป่ตู้
练习法
实验法
第11页/共22页
2.4学法设计
学情分析:水平参差不齐
学法
学会设疑 学会发现 学会尝试 学会联想 学会总结
第12页/共22页
3、课程实施







线性代数第一章第7节PPT教学课件

线性代数第一章第7节PPT教学课件


11 1 1
12 3 4 D
1 4 9 16
1 8 27 64
(41)(42)(43)(31)(32)(21)12
1 11 1
11 11
5 23 4
D1 25
4
9
12 16
125 8 27 64
,
11 1 1
15 34
D2 1 25
48 9 16
1 125 27 64
11 1 1
12 5 4
, D3 1 4
25
72 16
1 8 125 64
12 3 5
D4 1 4 9
48 25
1 8 27 125
,
x 1 D D 1 1 , x 2 D D 2 4 , x 3 D D 3 6 , x 4 D D 4 4
三、重要定理
定理1 如果线性方程组1的系数行列式 D0, 则 1一定有解,且解是唯一的 .
“没有非零解”即“只有零解”
定理3 如果齐次线性方程组2 有非零解,则它
的系数行列式必为零.
系数行列式 D0 a11x1a12x2a1nxn0 a 2 1x1 a2 2x2 a2 nx n 0 an1x1an2x2annxn0
有非零解.
例2 问 取何值时,齐次方程组
3x1x2x3 2x2x3
思考题
当线性方程组的系数行列式为零时,能否用克拉默 法则解方程组?为什么?此时方程组的解为何?
PPT教学课件
谢谢观看
Thank You For Watching
的系数行列式不等于零,即D
a21 a22 a2n
0
an1 an2 ann
那么线性方程组1 有解,并且解是唯一的,解

线性代数第一章、矩阵PPT课件

线性代数第一章、矩阵PPT课件
矩阵的秩的计算方法
可以通过初等行变换或初等列变换将矩阵转化为行阶梯形或列阶梯形,然后数非零行的个数即为矩阵的秩。
矩阵的秩的定义
矩阵的秩是其行向量组或列向量组的一个极大线性无关组中向量的个数。
矩阵的秩
通过初等行变换将增广矩阵化为行阶梯形,然后回代求解。
高斯消元法
克拉默法则
迭代法
适用于线性方程组系数行列式不为0的情况,通过解方程组求出方程的解。
n阶方阵A的行列式记为det(A),是一个n阶的方阵,其值是一个实数。
行列式与转置矩阵的行列式相等,即det(A^T) = det(A);行列式的乘法性质,即det(kA) = k^n * det(A);行列式的初等变换性质,即行列式在初等变换下保持不变。
行列式的定义与性质
行列式的性质
行列式的定义
线性代数第一章、矩阵ppt课件
目录
CONTENTS
矩阵的定义与性质 矩阵的逆与行列式 矩阵的秩与线性方程组 矩阵的特征值与特征向量 矩阵的分解与正交矩阵 矩阵在实际问题中的应用
01
矩阵的定义与性质
CHAPTER
矩阵的定义与性质
about the subject matter here refers to the subject matter here.
相似法
如果存在可逆矩阵P,使得P^(-1)AP=B,则矩阵A的特征值和特征向量可以通过矩阵B的特征值和特征向量来求解。
特征值与特征向量的计算方法
如果矩阵A的所有特征值都是实数且没有重复,则矩阵A可以对角化。
判断矩阵是否可对角化
求解线性方程组
判断矩阵是否相似
优化问题
通过将线性方程组Ax=b转化为特征值问题,可以求解线性方程组。

线性代数总复习讲义PPT课件

线性代数总复习讲义PPT课件
在金融学中,线性代数用于描述资产价格和风险等经济量,以及计算收益 率和波动率等金融指标。
在计算机科学中的应用
01
Байду номын сангаас
02
03
04
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
100%
相似变换法
通过相似变换将矩阵对角化,从 而得到其特征值和特征向量。
80%
数值计算法
对于一些大型稀疏矩阵,可以使 用数值计算方法来计算其特征值 和特征向量。
特征值与特征向量的应用
01
在物理、工程等领域中,特征值和特征向量被广泛 应用于求解振动、波动等问题。
02
在图像处理中,特征值和特征向量被用于图像压缩 和图像识别。
二次型的应用与优化问题
总结词
了解二次型在解决优化问题中的应用
详细描述
二次型的一个重要应用是在解决优化问题中, 特别是在求解二次规划问题时。通过将问题 转化为二次型的形式,可以方便地应用各种 优化算法进行求解,如梯度下降法、牛顿法 等。此外,二次型在统计分析、机器学习等 领域也有着广泛的应用。
06
矩阵的逆与行列式的值
要点一
总结词
矩阵的逆和行列式的值是线性代数中的重要概念,它们在 解决线性方程组、向量空间和特征值等问题中有着广泛的 应用。
要点二
详细描述
矩阵的逆是矩阵运算的一个重要概念,它表示一个矩阵的 逆矩阵与其原矩阵相乘为单位矩阵。逆矩阵的存在条件是 矩阵的行列式值不为零。行列式的值是一个由n阶方阵构 成的代数式,表示n个未知数的n阶线性方程组的解的系数 。行列式的值可以用来判断线性方程组是否有解以及解的 个数。同时,行列式的值也与特征值和特征向量等问题密 切相关。

线性代数课件

线性代数课件
a11 a21 a31 a12 a22 a32 a13 a23 a33
偶排列
奇排列
1
N ( j1 j2 j3 )
a1 j1 a2 j2 a3 j3
线性代数 第一章 行列式
11
定义 设有 n 2 个数,排成 n 行 n 列的数表
a11 a12 n 称为n 阶行列式. 简记为 a ij
it 这种变换称为对换,记作( i s ,)
定理1.1 任一 排列经过一次对换后奇偶性发生改变。
定理1.2
n! n级排列共有 n! 个,其中奇、偶排列相等,各为 2
线性代数 第一章 行列式
10
2
a11 a21 a31
n 阶行列式的定义
a12 a22 a32 a13 a23 a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32 a33
主讲
田立芳
统计与数学学院
目录 线性代数 第一章 行列式 退出
1


行列式 矩阵 线性空间 线性方程组 矩阵的特征值 二次型
线性代数 第一章 主页 行列式 线性代数
退出
2
第一章 行列式
§1 n 阶行列式的定义
§2 行列式的性质 §3 行列式的计算 §4 克莱姆法则
线性代数 第一章 行列式
3
§1.1
线性代数 第一章 行列式
18
性质1 对任何行列式D,有D=DT(行列式与其转置行列式相等) 证
D
T
将DT记为
于是有 bij a ji ( i , j 1,2, , n) 按行列式的定义

j1 j2 jn

线性代数第一章第一节PPT课件

线性代数第一章第一节PPT课件

01递Biblioteka 公式法02递推公式法是根据行列式的性质和结构特点,利用递推公式来
计算行列式的方法。
递推公式法可以大大简化高阶行列式的计算过程,提高计算效
03
率。
行列式的计算方法
分块法
1
2
分块法是将高阶行列式分成若干个小块,然后利 用小块来计算整个行列式的方法。
3
分块法可以简化高阶行列式的计算过程,特别是 当行列式具有特定的结构特点时,分块法可以大 大提高计算效率。
01
向量空间
02
向量空间是线性代数中的一个重要概念,而行列式在向量 空间的定义和性质中也有着重要的应用。例如,通过行列 式可以判断一个向量集合是否构成向量空间,以及向量空 间的一些基本性质。
03
行列式在向量空间中的应用可以帮助我们更好地理解线性 代数的本质和结构特点。
05
特征值与特征向量
特征值与特征向量的定义
转置等特殊运算。
向量与矩阵的关系
关联性
04
向量可以用矩阵来表示,矩 阵中的每一行可以看作是一 个向量。
01 03
•·
02
向量和矩阵在数学中是密切 相关的概念,矩阵可以看作 是向量的扩展。
04
行列式
行列式的定义与性质
基本概念
行列式是由数字组成的方阵,按照一定的规则计 算出的一个数。
行列式具有一些基本的性质,如交换律、结合律、 分配律等。
向量可以用有向线段、坐 标系中的点或有序数对来 表示。
向量有大小和方向两个基 本属性,大小表示向量的 长度,方向表示向量的指 向。
矩阵的定义与运算
•·
02
基础运算
01
03
矩阵是一个由数字组成的矩 形阵列,表示二维数组。

《线性代数第1讲》课件

《线性代数第1讲》课件

2 应用广泛
线性代数在数学、物理、 工程和计算机科学等领域 有广泛的应用。
3 继续学习
进一步学习线性代数的高 级概念和技术。
通过实际问题,展示线性方程组求解的 应用场景。
4. 线性变换
线性变换的定义
解释线性变换的概念和性质。
线性变换的例子
举例说明线性变换在几何和物理 等领域的具体应用。
线性变换的矩阵表示
介绍线性变换与矩阵的关系,以 及矩阵表示的计算方法。
总结
1 掌握基本概念
通过学习本课程,你将对 向量、矩阵、线性方程组 和线性变换有深刻理解。
1. 向量
向量的表示
介绍向量的表示方法,如坐标表 示、列向量表示和解析表示。
向量的运算
讲解向量的加法、减法和数量乘 法运算规则以及向量点乘和叉乘 的定义和性质。
向量的应用
探索向量在几何、物理和工程等 领域的应用,如力的分解、平面 垂直和投影。
2. 矩阵
矩阵的定义
介绍矩阵的定义,以及行、列和元素的概念。
矩阵的运算
讲解矩阵的加法、减法和数量乘法运算规则,以及矩阵乘法的定义和性质。
矩阵的应用
探索矩阵在线ቤተ መጻሕፍቲ ባይዱ方程组求解、线性变换和网络模型等领域的应用。
3. 线性方程组
1
概念解释
介绍线性方程组的概念、解的概念和解
求解方法
2
集的形式。
讲解线性方程组的求解方法,包括高斯
消元法、矩阵求逆法和克拉默法则。
3
应用举例
《线性代数第1讲》PPT课件
# 线性代数第1讲 ## 简介 介绍线性代数的基本概念和相关知识点,包括向量、矩阵、线性方程组等。 ## 前置知识 1. 数学基础知识 2. 高中数学知识 ## 主要内容 1. 向量的定义和运算 2. 矩阵的定义和运算 3. 线性方程组及其求解方法 4. 线性变换 ## 目标 1. 熟练掌握向量的概念和运算 2. 熟练掌握矩阵的概念和运算 3. 能够解决线性方程组及其求解方法 4. 了解线性变换的基本概念

线性代数相关知识培训教程PPT课件( 93页)

线性代数相关知识培训教程PPT课件( 93页)
那末 A称为对称阵.
例如A162
6 8
1 0
为对称. 阵
1 0 6
说明 对称阵的元素以主对角线为对称轴对应相
等.
同型矩阵与矩阵相等
1)两个矩阵的行数相等,列数相等时,称为同型矩阵.
例如
1 5
2 6


14 8
3 4
为同型矩阵.
3 7 3 9
Aij (1)i j Mij, Aij叫做元素 aij的代数余子.式
A a i1 A i1 a i2 A i2 a iA n in ( i 1 ,2 , ,n ) A a i1 A j1 a i2 A j2 a iA n jn ( i j)
例1 3 1 1 2 5 1 3 4
p1p2pn
列取 . 和
N阶行列式是一个数,该数是n!项的代数和, 每项为取自表中不同行不同列n个元素的乘 积,符号由这n个元素列标排列的逆序数决定 (行标按自然顺序排列),奇排列带负号,偶排 列带正号.
2. 行列式的性质
1)行列式与它的转置行式列相等,即D DT. 2)互换行列式的两行 (列),行列式变号. 3)如果行列式有两行 (列)完全相同,则此行列式 等于零. 4)行列式的某一行(列)中所有的元素都乘以同 一数k,等于用数k 乘此行列式.
6)逆矩阵
伴随矩阵定义
行列式 A 的各个元素的代数余子式A ij 所
构成的如下矩阵
A11
A


A12
A1n
A21 An1 A22 An2 A2n Ann
称为矩阵 A 的伴随矩阵.
伴随矩阵性质
AA A AA E .
逆矩阵定义

线性代数说课(课堂PPT)

线性代数说课(课堂PPT)

[U0,r]=rref(U)
计算结果为
U0=
r= 1 2 4 5 7
1010000
从最简行阶梯型U0中可以看
0120030
出,R(U)=5,向量组线性
0001010
相关,一个最大无关组为
0000110
u1,u2,u4,u5,u7,
0000001
u3=u1+2u2
四个零行
u6=3u2+u4+u5 故可以配制新药
33
LO五GO 教学程序设计
【项目】药方配制问题
问题:某中药厂用9种中草药(A-I),根据不同的比例配制成了7种特效药, 各用量成分见表1(单位:克)
(1)某医院要购买这7种特效药,但药厂的第3号药和第6号药已经卖完, 请问能否用其他特效药配制出这两种脱销的药品。 (2)现在该医院想用这7种草药配制三种新的特效药,表2给出了三种新的 特效药的成分,请问能否配制?如何配制?
教材缺点: 教材内与专业相结合的应用 实例较少。
12
LO三GO 课程与行业间的契合度
线性代数
行业用
专业课程
《线性代数》作为工程数学体系和经济数学体系中的重要组成部分,是理工科学生的 一门重要基础课,与机械、电气、计算机专业有着密切联系。例如,在机械工程的绘图 中,MATLAB能提供多个函数用于绘制图形,以向量或矩阵作为输入参数,来绘制图像。
• 对策:用学生感兴趣的实际项目激发其主动性,用教师启发引导和 组织学生讨论的教学方法,使学生带着真实的任务,由浅入深,层 层递进的完成课堂学习
21
LO五GO 教学程序设计
3、教学重难点的处理
教学重点
线性组合、线性相关性、极大无关组
处理办法:借助初等几何平面直角坐标系及二维向量,帮助构建相关概念的认知
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
块矩阵 ������������������ 为������������ × ������������ 阶。
则有 ������11 ������21 ������������ = ⋮ ������������1 ������12 ������22 ⋮ ������������2 … ������1������ … ������2������ , ⋱ ⋮ … ������������������
������������(������) .
������������ +������������������
同样由列初等变换,我们得到 ������������������ , ������������(������) , ������������+������(������) 。 注 ������������������ = ������������������ , ������������(������) = ������������(������) , ������������+������(������) = ������������+������(������) .
−1 ������1
������−1
=
������−1 2
⋱ ������−1 ������
.
25 March 2010
6
例设
1 2 ������ = 0 0 0 2 0 5 0 0 −2 0 0 0 0 0 0 0 0 1 0 . −2 1 0 −2
求 ������−1 .
解 ������−1 =
(3) 对角块矩阵。������ 阶方阵 ������ 有时可分块为以下形式 ������1 ������2 ������ = , ⋱ ������������ 称为对角块矩阵,或准对角矩阵。其中 ������������ 是 ������������ 阶方 阵( ������ ������������ = ������). ������=1 (4) 准下三角形分块矩阵。
25 March 2010
5
准对角矩阵的乘积
������1 ������2 ⋱ ������������ ������1 ������2 ⋱ ������������ = ������1 ������1 ������2 ������2 ⋱ ������������ ������������
其中 ������������ , ������������ 为同阶子方阵。 准对角矩阵的行列式为 ������ = ������1 ������2 ⋯ ������������ . 由此立即推得,准对角矩阵可逆的充要条件为每一个 子矩阵可逆,且
2.4 分块矩阵
设 ������ 为 ������ × ������ 矩阵。 (1) 矩阵按行分块 ������1 ������2 ������ = ⋮ , ������������ 其中 ������������ = ������������1 , ������������2 , ⋯ , ������������������ , ������ = 1,2, ⋯ ������. (2) 矩阵按列分块 ������ = ������1 , ������2 , ⋯ ������������ ,
此形式称为矩阵的标准形。
25 March 2010
12

1 −1 0 1 ������ = 2 −2 3 −3 化 ������ 为标准形。 解 1 0 2 3 −1 −1 1 2 −2 −4 −3 −5 1 → 0 0 0
25 March 2010
−1 1 0 2 −4 1 . −4 6 −1 −5 7 −1
… ������1������ … ������2������ ⋱ ⋮ … ������������������
������1
������2 ⋮ ������������
������ 的行分法为 ������1 , ������2 , ⋯ , ������������ 子块矩阵 ������������������ 为������������ × ������������ 阶。
… ������������ ������1 … ������������ . ������2 ⋱ ⋮ … ������������ ������������
3
乘法
设 ������ 为 ������ × ������ 矩阵,������ 为 ������ × ������ 矩阵。对 ������, ������ 作分块, 使得 ������ 的列分法与 ������ 的行分法完全一致。即两种分法 均为 ������1 , ������2 , ⋯ , ������������
25 March 2010 2
分块矩阵的加法
若������ = ������������������ ������×������ , ������ = ������������������ ������×������ 为同型矩阵,并且每一对 ������������������ 和 ������������������ 也全部是同型子块矩阵,则 ������ + ������ = ������������������ + ������������������ ������×������ .
11
0
0 0 0 0
25 March 2010
行标准形指行阶梯形矩阵中非零行首个非零元为 1, 且其所在列中其他元素全部为 0。 若对行标准形继续施加列初等变换,可以把任一矩 阵化为如下最简的形式 1 ⋱ ������������ ������ 1 = . ������ ������ 0 ⋱ 0

������−1
������−1 = −������−������ ������������−1
������ . ������−������
25 March 2010
8
2.5 初等变换与初等矩阵
定义 以下三种变换称为矩阵的行初等变换。 1. 互换矩阵的第 ������ 行和第 ������ 行,记为 ������������ ↔ ������ . ������ 2. 用一个非零常数 ������ 乘矩阵的第 ������ 行,记为 ������������������ . 3. 将矩阵第 ������ 行的 ������ 倍加到第 ������ 行,记为 ������������ + ������������ . ������
其中 ������������ = ������1������ , ������2������ , ⋯ , ������������������ , ������ = 1,2, ⋯ ������.
25 March 2010 1
������
一般地,若 ������ 的行分为 ������ 块,列分为 ������ 块,就得到 ������ 的 一个 ������ × ������ 分块矩阵,记为 ������ = ������������������ ������×������ , 其中 ������������������ (������ = 1, ⋯ ������; ������ = 1, ⋯ ������) 称为 ������ 的子块(子矩 阵)。
5 −2 −2 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 − − −
2
0 0
4 1 − 2
0
8 1 − 4 1 − 2
.
25 March 2010
7
������ ������ 为 ������ 阶方阵,������ 为 ������ 阶子方阵,若 ������ ������ ������ 可逆,求 ������−������ . 例 设 ������ =
1 0 −4 1 6 −1 7 −1 0 0 1 0 0 1 0 0
������3 + −2
1 −1 1 0 2 0 0 → 0 1 1 0 0 −2 0 0 2 0 0
1 −1 ������1 0 1 ⋯→ 0 0 0 0 0 0 1 0 0 0 0 0
−1 1 0 2 −4 1 −2 4 −1 0 0 0 0 0 . 0 0
������12 ������22 ⋮ ������������2
… ������1������ … ������2������ ⋱ ⋮ … ������������������
������11 ������21 , ������ = ⋮ ������������1
������12 ������22 ⋮ ������������2
以下为行阶梯形矩阵的一般形式。非零行共 ������ 行。
0 0 a1 * a2 0 0 0 0 0 0 * ak * * * * * * * * 0 0 * *
,
������
������=1 ������������ = ������. 亦即 ������ 的
������
������ 的列分法为 ������1 , ������2 , ⋯ , ������������
25 March 2010
,
������=1 ������������ = ������. 亦即 ������ 的子
其中 ������������������ = ������ ������������������ ������������������ . 即 ������������������ 为 ������ 的第 ������ 行的 ������ 个 ������=1 子块矩阵与 ������的第 ������ 列的 ������ 个子块矩阵对应相乘后 求和。其中每一个 ������������������ ������������������ 都为 ������������ × ������������ 的矩阵。
相关文档
最新文档