初二数学期中试题
人教版八年级上册数学期中考试试题带答案
人教版八年级上册数学期中考试试卷一、单选题1.在下列以线段a 、b 、c 的长为边,能构成三角形的是()A .a =3,b =4,c =8B .a =5,b =6,c =11C .a =6,b =8,c =9D .a =7.b =17,c =252.如果三角形的一个内角等于另两个内角之差,则这个三角形为()A .锐角三角形B .钝角三角形C .直角三角形D .任意三角形3.如图,点D 是△ABC 边BC 延长线上的点,∠ACD =105°,∠A =70°,则∠B 等于A .35°B .40°C .45°D .50°4.如图,在3×3的网格中,每个小正方形的边长均为1,点A ,B ,C 都在格点上,则S △ABC 的面积为()A .52B .3C .72D .45.如图,ABC A B C ''△≌△,30BCB '∠=︒,则ACA '∠的度数为()A .30°B .45︒C .60︒D .110︒6.从十二边形的一个顶点出发,可引出对角线()条A .9条B .10条C .11条D .12条7.一个多边形的内角和等于1080°,则这个多边形的每个外角都等于()A.30°B.45°C.60°D.90°8.如图,已知∠ABC,小彬借助一把没有刻度且等宽的直尺,按如图的方法画出了∠ABC 的平分线BP.他这样做的依据是()A.在一个角的内部,且到角两边的距离相等的点在这个角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.测量垂直平分线上的点到这条线段的距离相等9.如图所示,在△ABC中P为BC上一点,PR⊥BC,垂足为R,PS⊥AC,垂足为S,AQ=PQ,PR=PS.下面三个结论:①AS=AR;②QP∥AR;③△BRP≌△CSP其中正确的是()A.①②B.②③C.①③D.①②③10.等腰三角形的一个角为50°,则这个等腰三角形的底角为()A.65°B.65°或80°C.50°或65°D.40°二、填空题11.已知三角形的两边长分别为1和4,第三边长为整数,则第三边长为______.12.一个六边形的内角和度数为_______.13.如图所示,△ABC≌△AED,∠E=55°,∠EAC=55°,∠C=45°,则∠DAC=______.14.如图,在△ABC 中,E 为AC 的中点,点D 为BC 上一点,BD :CD =2:3,AD 、BE 交于点O ,若S △AOE ﹣S △BOD =1,则△ABC 的面积为_____.15.已知:如图,Rt ABC 中,AC BC =,D 为BC 上一点,CE AD ⊥于E ,若2CE =,则BEC S =△________.16.在Rt ABC △中,90A ∠=︒,3AB =,4AC =,ABC ∠,ACB ∠的平分线交于P 点,PE BC ⊥于E 点,则PE 的长是________.17.如图,在△ABC 中,∠B =30°,∠BAC =90°,AD ⊥BC ,CD =2,则BD =_.三、解答题18.已知一个正多边形的每个外角均为45°,则这个多边形的内角和是多少度.19.如图:111A B C △的面积为a ,分别延长111A B C △的三条边11B C 、11C A 、11A B 到点2B 、2C 、2A ,使得1211C B B C =,1211A C A C =,1211B A A B =,得到222A B C △:再分别延长222A B C △的三条边22B C 、22C A 、22A B 到点3B 、3C 、3A ,使得2322C B B C =,2322A C A C =,2322B A A B =,得到333A B C △:…….按照此规律作图得到n n n A B C ,求n n n A B C 的面积.20.如图,在ABC 中,AD 是高,AE 是角平分线,50BAC ∠=︒,60B ∠=︒.求DAC ∠和BEA ∠的度数.21.如图,已知AC 平分BAD ∠,CE AB ⊥,CD AD ⊥,点E ,D 分别为垂足,CF CB =.求证:BE FD =.22.如图,△ABC为等边三角形,AE=CD,AD与BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.(1)求证:BE=AD;(2)求∠BPD的度数;(3)求AD的长.23.如图,在△ABC和△DBC中,∠ACB=∠DBC=90°,点E是BC的中点,DE⊥AB 于点F,且AB=DE.(1)求证:△ACB≌△EBD;(2)若DB=12,求AC的长.24.如图,在△ABC中,AB=AC,点D,E.,F分别在AB、BC、AC边上,且BE=CF,BD=CE(1)求证:△DEF是等腰三角形;(2)求证:∠B=∠DEF;(3)当∠A=40°时,求∠DFE的度数.25.如图,在△ABC 中,AC=BC ,点D 在边AB 上,AB=4BD ,连接CD ,点E ,F 在线段CD 上,连接BF ,AE ,∠BFC=∠AEC=180°-∠ACB .(1)①∠FBC 与∠ECA 相等吗?说明你的理由;②△FBC 与△ECA 全等吗?说明你的理由;(2)若AE =11,EF =8,则请直接写出BF 的长为;(3)若△ACE 与△BDF 的面积之和为12,则△ABC 的面积为.26.(1)模型探究:如图1所示的“镖形”图中,请探究ADB ∠与A ∠、B Ð、C ∠的数量关系并给出证明;(2)模型应用:如图2,DE 平分ADB ∠,CE 平分ACB ∠,24A ∠=︒,66B ∠=︒,请直接写出E ∠的度数.参考答案1.C2.C3.A4.C5.A6.A7.B8.A9.A10.C11.4【分析】三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,根据三边关系可得第三边的范围,从而可得答案.【详解】解:设三角形的第三边为,x则41-<x <41+,即3<x <5,第三边长为整数,4,x ∴=故答案为:4.【点睛】本题考查的是三角形的三边关系,熟悉三角形的三边关系得到第三边的取值范围是解题的关键.12.720︒【分析】根据多边形的内角和公式()2180n -⋅o,其中n 为多边形的边数,进行计算即可.【详解】解:一个六边形的内角和等于()62180720-⨯=;故答案为:720°.【点睛】本题考查了多边形的内角和公式,熟悉多边形内角和公式是解题的关键.13.25°.【解析】【分析】根据全等三角形的性质得到∠D =∠C ,根据三角形内角和定理求出∠EAD ,结合图形计算,得到答案.【详解】∵△ABC ≌△AED ,∠C =45°,∴∠D =∠C =45°,∵∠E =55°,∴∠EAD =180°﹣∠E ﹣∠D =80°,∴∠DAC =∠EAD ﹣∠EAC =80°﹣55°=25°,故答案为:25°.14.10【分析】根据E 为AC 的中点可知,S △ABE =12S △ABC ,再由BD :CD =2:3可知,S △ABD =25S △ABC ,进而可得出结论.【详解】解:∵点E 为AC 的中点,∴S △ABE =12S △ABC .∵BD :CD =2:3,∴S △ABD =25S △ABC ,∵S △AOE ﹣S △BOD =1,S △AOE ﹣S △BOD=ABE ABD S S - ,∴12S △ABC ﹣25S △ABC =1,解得S △ABC =10.故答案为:10.15.2【分析】延长CE ,过B 点作BM CE ⊥于点M ,先证明()BMC CEA AAS ≌,即可得出2BM CE ==,运用三角形面积计算公式计算即可.【详解】解:延长CE ,过B 点作BM CE ⊥于点M ,,∵90MCB ACE ACE CAD ∠+∠=∠+∠=︒,∴MCB CAD ∠=∠,∵90BMC AEC ∠=∠=︒,AC BC =,∴()BMC CEA AAS ≌,∴2BMCE ==,∴1122222BECS CE BM=⨯=⨯⨯=,故答案为:2.【点睛】本题主要考查全等三角形的判定与性质,寻找BEC△EC边上的高作辅助线证明()BMC CEA AAS≌全等是解题的关键.16.1【解析】【分析】连接AP,作PF⊥AB于F,PG⊥AC于G,根据角平分线的性质得到PE=PF=PG,根据三角形的面积公式计算即可.【详解】解:连接AP,作PF⊥AB于F,PG⊥AC于G,∵∠A=90°,AB=3,AC=4,∴BC=5,∵BP、CP是∠ABC和∠ACB的平分线,∴PE=PF=PG,∴12×BC×PE+12×AB×PF+12×AC×PG=12×AB×AC,解得,PE=1.故答案为:1.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.17.6【解析】【分析】先在Rt ACD △中,利用直角三角形的性质、勾股定理求出AD 的长,再在Rt ABD △中,利用直角三角形的性质、勾股定理即可得.【详解】解: 在ABC 中,30,90B BAC ∠=︒∠=︒,9006B C ︒-∠∴=∠=︒,AD BC ⊥ ,9030CAD C ∴∠=︒-∠=︒,在Rt ACD △中,2CD =,24,AC CD AD ∴===,则在Rt ABD △中,26ABAD BD ====,故答案为:6.18.1080︒【分析】由已知,根据正多边形的外角和为360度可以得到正多边形的边数,再由正多边形内角和的计算方法可以得解.【详解】解:由360458︒÷︒=可以得知正多边形的边数为8,∴这个正多边形的内角和为()821801080-⨯︒=︒.19.17n a-【分析】连接A 1B 2,B 1C 2,C 1A 2,C 2A 3,B 2C 3,A 2B 3,根据中线的性质求出△A 1C 1B 2的面积,再求出B 2C 2C 1的面积,同理可求出△A 1A 2C 2、△B 1B 2A 2,故可得到222A B C △的面积,进而发现规律得到n n n A B C 的面积.【详解】如图,连接A 1B 2,C 1A 2,B 1C 2,C 2A 3,B 2C 3,A 2B 3,∵1211C B B C =,∴112A C B S =111A B C △S =a∴2212B C C S a= ∵1211A C A C =,1211B A A B =同理1222A A C S a = ,1222B B A S a = ∴2222227A B C S a a a a a =+++=△=7111A B C △S ∵2322C B B C =,∴223A C B S =222A B C S △=7a ∴33214B C C S a= ∵2322A C A C =,2322B A A B =同理23314A AC S a = ,23314B B A S a= 同理可得333222749A B C A B C S S a ==△△=72a ∴1111177n n n n n A B C A B C S S a --== .【点睛】此题主要考查三角形面积的规律探索,利用了底倍长,高相等,面积加倍,解题的关键是熟知中线的性质.20.20,95DAC BEA ∠=︒∠=︒【解析】【分析】因为AD 是高,所以90ADC ∠=︒,又因为50,60BAC B ∠=︒∠=︒,根据三角形内角和定理求出70C ∠=︒,即可求出DAC ∠度数;因为50BAC ∠=︒,且AE 是角平分线,所以25BAE ∠=︒,再利用三角形内角和定理即可求解.【详解】解:AD BC⊥ 90ADC ∴∠=︒50,60BAC B ∠=︒∠=︒ ,180506070C ∴∠=︒-︒-︒=︒;在Rt ADC 中,180180907020DAC ADC C ∴∠=︒-∠-∠=︒-︒-︒=︒,50BAC ∠=︒ 且AE 是角平分线,25BAE ∴∠=︒,180180602595BEA B BAE ∴∠=︒-∠-∠=︒-︒-︒=︒,综上所述:20,95DAC BEA ∠=︒∠=︒.【点睛】本题考查了角平分线的性质、与高有关的角度计算、三角形内角和定理,解题的关键是找准角之间的等量关系,利用三角形内角和定理进行求解.21.见解析【解析】【分析】根据角平分线性质可得CD CE =,90CDF CEB ∠=∠=︒,然后证Rt CDF Rt CEB △≌△(HL )即可.【详解】证明:∵AC 平分BAD ∠,CE AB ⊥,CD AD ⊥,CD CE ∴=,90CDF CEB ∠=∠=︒,在Rt △DFC 和Rt △EBC 中,CD CE CF CB =⎧⎨=⎩,Rt CDF Rt CEB∴△≌△(HL),DF BE∴=.【点睛】本题考查角平分线的性质,三角形全等判定与性质,掌握角平分线的性质,三角形全等判定与性质,是解题关键.22.(1)详见解析;(2)60°;(3)7.【解析】【分析】(1)根据SAS证明△ABE与△CAD全等即可;(2)根据全等三角形的性质得出∠ABE=∠CAD,进而解答即可;(3)根据含30°的直角三角形的性质解答即可.【详解】(1)证明:∵△ABC为等边三角形,∴AB=AC,∠BAC=∠C=60°,又∵AE=CD,在△ABE与△CAD中,AB AC=⎧⎪⎨⎪⎩∠BAC=∠CAE=CD,∴△ABE≌△CAD(SAS),∴BE=AD;(2)解:由(1)得∠ABE=∠CAD AD=BE,∴∠BPQ=∠BAD+∠ABE=∠BAD+∠CAD=60°;(3)解:∵BQ⊥AD,∠BPQ=60°,∴∠PBQ=30°,∴BP=2PQ=6,又∵AD=BE,∴AD=BE=BP+PE=6+1=7.【点睛】本题考查全等三角形的性质及含30度角的直角三角形,解题突破口是根据全等三角形的性质得出∠ABE =∠CAD .23.(1)证明见解析;(2)6.【解析】【分析】(1)先根据垂直的定义、直角三角形的性质可得A BED ∠=∠,再根据三角形全等的判定定理即可得证;(2)先根据全等三角形的性质可得,12AC BE BC DB ===,再根据线段中点的定义可得162BE BC ==,由此即可得出答案.【详解】证明:(1)90ACB DBC ∠=∠=︒ ,DE AB ⊥,9090,BED ABC A ABC ∴∠+∠=︒∠+∠=︒,A BED ∴∠=∠,在ACB △和EBD △中,90ACB EBD A BED AB ED ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()ACB EBD AAS ≅∴ ;(2)由(1)已证:ACB EBD ≅ ,,12AC BE BC DB ∴===,点E 是BC 的中点,24.(1)证明见解析;(2)证明见解析;(3)55︒.【分析】(1)先根据等腰三角形的性质可得B C ∠=∠,再根据三角形全等的判定定理证出DBE ECF ≅△△,然后根据全等三角形的性质可得DE EF =,最后根据等腰三角形的定义即可得证;(2)先根据全等三角形的性质可得BDE CEF ∠=∠,再根据三角形的外角性质即可得证;(3)先根据三角形的内角和定理可得70B ∠=︒,从而可得70∠︒=DEF ,再根据等腰三角形的性质即可得.【详解】证明:(1)AB AC = ,B C ∴∠=∠,在DBE 和ECF △中,BE CF B C BD CE =⎧⎪∠=∠⎨⎪=⎩,()DBE ECF SAS ∴≅ ,DE EF ∴=,DEF ∴ 是等腰三角形;(2)由(1)已证:DBE ECF ≅△△,BDE CEF ∴∠=∠,DEF CEF DEC B BDE ∠+∠=∠=∠+∠ ,B DEF ∴∠=∠;(3) 在ABC 中,40,A B C ∠=︒∠=∠,()1180702B C A ∴∠=∠=︒-∠=︒,由(2)已证:B DEF ∠=∠,70DEF ∴∠=︒,由(1)已证:DEF 是等腰三角形,()1180552DFE EDF DEF ∴∠=∠=︒-∠=︒.25.(1)①见解析;②全等,理由见解析;(2)3;(3)48【分析】(1)①连接BC ,由已知及∠AEC=180°-∠AED ,可得到∠ACB=∠AED .再证明∠CAE=∠BCF ,由三角形内角和定理可得∠FBC=∠ECA ;②利用“ASA”证明△FBC ≌△ECA ;(2)由(1)中全等三角形的结论及已知可得到BF 的长;(3)由(1)中结论可得S △FBC=S △ECA ,所以S △ECA+S △BDF=12=S △FBC+S △BDF=S △DBC ,根据AB=4BD ,可得到S △DBC=14S △ABC=12,从而可得△ABC 的面积.【详解】解:(1)①∠FBC=∠ECA ,理由如下:∵∠BFC=∠AEC=180°-∠ACB ,且∠AEC=180°-∠AED ,∴∠ACB=∠AED .由外角定理可得∠AED=∠ACD+∠CAE ,又∠ACB=∠ACD+∠BCF ,∴∠CAE=∠BCF ,由三角形内角和定理可得∠FBC=∠ECA ;②△FBC 与△ECA 全等,理由如下:在△FBC 和△ECA 中,FBC ECA BC CA BCF CAE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△FBC ≌△ECA (ASA );(2)由(1)中②可知,FC=AE=11,BF=CE ,又EF=8,∴CE=FC-EF=11-8=3,∴BF=3,故答案为:3;(3)由(1)中结论可知S △FBC=S △ECA ,∴S △ECA+S △BDF=12=S △FBC+S △BDF=S △DBC ,又AB=4BD ,∴S △DBC=14S △ABC=12,∴S △ABC=48.故答案为:48.26.(1)ADB ∠=A ∠+B Ð+C ∠,理由见详解;(2)21°【分析】(1)连接CD 并延长到点E ,利用三角形的外角的性质求解即可;(2)由(1)可知:∠ADB-∠C=∠A+∠B=90°,从而得∠EDO-∠BCO=12×90°=45°,结合∠EDO+∠E=∠BCO+∠B ,即可求解.【详解】解:(1)ADB ∠=A ∠+B Ð+C ∠,理由如下:连接CD 并延长到点E ,∵∠ADE =∠ACD +∠A ,∠BDE =∠BCD +∠B ,∴∠ADE +∠BDE =∠ACD +∠A +∠BCD +∠B ,∴ADB ∠=A ∠+B Ð+ACB ∠.(2)由第(1)题可得:ADB ∠=A ∠+B Ð+ACB ∠,∴∠ADB-∠ACB=∠A+∠B=66°+24°=90°,∵DE 平分ADB ∠,CE 平分ACB ∠,∴∠EDO-∠BCO=12(∠ADB-∠C )=12×90°=45°,∵∠DOE=∠BOC ,∴∠EDO+∠E=∠BCO+∠B ,∴∠B-∠E=∠EDO-∠BCO=45°,∴∠E=∠B-45°=66°-45°=21°.。
北师大版八年级上册数学期中考试试题含答案
北师大版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列哪个点在函数112y x =+的图象上()A .(2,1)B .(2,1)-C .(2,0)-D .(2,0)2.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为()A .4B .8C .16D .643.已知点P (m+3,2m+4)在x 轴上,那么点P 的坐标为()A .(﹣1,0)B .(1,0)C .(﹣2,0)D .(2,0)4.△ABC 的三条边分别为a ,b ,c ,下列条件不能判断△ABC 是直角三角形的是()A .a 2+b 2=c 2B .a=5,b=12,c=13C .∠A=∠B+∠CD .∠A :∠B :∠C=3:4:55.下列各式的计算中,正确的是()A =B =C =D=-6.在函数y =1x -中,自变量x 的取值范围是()A .x≥1B .x≤1且x≠0C .x≥0且x≠1D .x≠0且x≠17.已知直角三角形两边的长为3和4,则此三角形的周长为()A .12B .C .12或D .以上都不对8.如图,长为8cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3cm 至D 点,则橡皮筋被拉长了()A .2cmB .3cmC .4cmD .5cm9.化简二次根式)AB C D10.如图,在正方形ABCD 纸片上有一点P ,PA =1,PD =2,PC =3,现将△PCD 剪下,并将它拼到如图所示位置(C 与A 重合,P 与G 重合,D 与D 重合),则∠APD 的度数为A .150°B .135°C .120°D .108°11|1|0-=b ,那么()2017a b +的值为()A .-1B .1C .20173D .20173-12.如图1,点G 为BC 边的中点,点H 在AF 上,动点P 以每秒2cm 的速度沿图1的边运动,运动路径为G→C→D→E→F→H ,相应的△ABP 的面积y (cm 2)关于运动时间t (s )的函数图象如图2,若AB =6cm ,则下列结论正确的个数有()①图1中BC 长4cm ;②图1中DE 的长是6cm ;③图2中点M 表示4秒时的y 值为24cm 2;④图2中的点N 表示12秒时y 值为15cm 2.A .4个B .3个C .2个D .1个二、填空题13.-27的立方根为________________,________.14.已知函数y =(a+1)x+a 2﹣1,当a_____时,它是一次函数;当a_____时,它是正比例函数.15.如图,△ABC 的边BC 在数轴上,AB ⊥BC ,且BC =3,AB =1,以C 为圆心,AC 长为半径画圆分别交数轴于点A′、点A″,那么数轴上点A′、点A″所表示的数分别是_____、_____.16.如图,在平面直角坐标系中,点A 1,A 2,A 3…都在x 轴上,点B 1,B 2,B 3…都在直线y =x 上,OA 1=1,且△B 1A 1A 2,△B 2A 2A 3,△B 3A 3A 4,…△B n A n A n +1…分别是以A 1,A 2,A 3,…A n …为直角顶点的等腰直角三角形,则△B 10A 10A 11的面积是________.三、解答题17.计算:|13|+(2019﹣20﹣(12)﹣2182818(263)(263)32)2--19.如图,在平面直角坐标系中,正方形ABCD 和正方形EFGC 面积分别为64和16.(1)请写出点A ,E ,F 的坐标;(2)求S △BDF .204792737272,请你观察上述式子规律后解决下面问题.(1)规定用符号[m]表示实数m 的整数部分,例如:[45]=0,[π]=3,填空:10+2]=;[5=.(2)如果a ,5b ,求a 2﹣b 2的值.21.如图,在长方形ABCD 中,AB =8,AD =10,点E 为BC 上一点,将△ABE 沿AE 折叠,使点B 落在长方形内点F 处,且DF =6.(1)试说明:△ADF 是直角三角形;(2)求BE 的长.22.先阅读下面的解题过程,然后再解答.我们只要找到两个数a ,b ,使a b m +=,ab n =,即22m +==0)b => .这里7m =,12n =,由于437+=,4312⨯=,所以227,+=,2+..23.(1)如图1,长方体的长为4cm,宽为3cm,高为12cm.求该长方体中能放入木棒的最大长度;(2)如图2,长方体的长为4cm,宽为3cm,高为12cm.现有一只蚂蚁从点A处沿长方体的表面爬到点G处,求它爬行的最短路程.(3)若将题中的长方体换成透明圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁且离容器上沿3cm的点A处.求蚂蚁吃到饭粒需要爬行的最短路程是多少?24.在平面直角坐标系中,已知点A(-3,-1),B(-1,0),C(-2,3),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.25.如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c)(1)用这样的两个三角形构造成如图(2)的图形,利用这个图形,证明:a2+b2=c2;(2)用这样的两个三角形构造图3的图形,你能利用这个图形证明出题(1)的结论吗?如果能,请写出证明过程;(3)当a=3,b=4时,将其中一个直角三角形放入平面直角坐标系中,使直角顶点与原点重合,两直角边a,b分别与x轴、y轴重合(如图4中Rt△AOB的位置).点C为线段OA 上一点,将△ABC沿着直线BC翻折,点A恰好落在x轴上的D处.①请写出C、D两点的坐标;②若△CMD为等腰三角形,点M在x轴上,请直接写出符合条件的所有点M的坐标.参考答案1.C【分析】分别把x=2和x=−2代入解析式求出对应的y值来判断点是否在函数图象上.【详解】解:(1)当x=2时,y=2,所以(2,1)不在函数112y x=+的图象上,(2,0)也不在函数112y x=+的图象上;(2)当x=−2时,y=0,所以(−2,1)不在函数112y x=+的图象上,(−2,0)在函数112y x=+的图象上.故选C.【点睛】本题考查的知识点是一次函数图象上点的坐标特征,即直线上的点的坐标一定适合这条直线的解析式.2.D【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR2及PQ2,又三角形PQR为直角三角形,根据勾股定理求出QR2,即为所求正方形的面积.【详解】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又∵△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选:D.【点睛】此题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.3.B【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.【详解】∵点P(m+3,2m+4)在x轴上,∴2m+4=0,解得m=−2,∴m+3=−2+3=1,∴点P的坐标为(1,0).故选B.【点睛】本题考查的知识点是点的坐标,解题关键是熟记x轴上的点纵坐标为0.4.D【分析】根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.【详解】解:A、a2+b2=c2,是直角三角形,故本选项不符合题意;B、∵52+122=132,∴此三角形是直角三角形,故本选项不符合题意;C、∵∠A+∠B+∠C=180°,∠A=∠B+∠C∴∠A=90°,∴此三角形是直角三角形,故本选项不符合题意;D、设∠A=3x,则∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴3x+4x+5x=180°,解得x=15°∴∠C=5×15°=75°,∴此三角形不是直角三角形,故本选项符号要求;故选D.【点睛】本题考查勾股定理及三角形内角和定理,熟知以上知识是解答此题的关键.5.D【分析】根据二次根式的乘法法则对A进行判断;根据二次根式的除法法则对B进行判断;根据二次根式的加减法对C、D进行判断.【详解】解:A、原式=A选项错误;B、原式==B选项错误;CC选项错误;D=-,所以D选项正确.故选:D.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6.C【分析】根据分式和二次根式有意义的条件进行计算即可.【详解】由题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故x的取值范围是x≥0且x≠1.故选C.【点睛】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.7.C【详解】设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,=,此时这个三角形的周长.故选C8.A 【分析】根据勾股定理可以得到AD 和BD 的长度,然后用AD+BD-AB 的长度即为所求.【详解】根据题意可得BC=4cm ,CD=3cm ,根据Rt △BCD 的勾股定理可得BD=5cm ,则AD=BD=5cm ,所以橡皮筋被拉长了(5+5)-8=2cm .【点睛】主要考查了勾股定理解直角三角形.9.B 【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可【详解】202a a ∴+<∴<-a a a ∴∙=--故选B【点睛】本题考查了二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.本题需要重点注意字母和式子的符号.10.B 【分析】连接PG ,由题意得出PD =GD =2,∠CDP =∠ADG ,得出∠PDG =∠ADC =90°,得出△PDG 是等腰直角三角形,由等腰直角三角形的性质得出∠GPD =45°,PGPD =,得出AP 2+PG 2=AG 2,由勾股定理的逆定理得出∠GPA =90°,即可得出答案.【详解】解:连接PG ,如图所示:∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =90°,AG =PC =3,∵PA =1,PD =2,PC =3,将△PCD 剪下,并将它拼到如图所示位置(C 与A 重合,P 与G 重合,D 与D 重合),∴PD =GD =2,∠CDP =∠ADG ,∴∠PDG =∠ADC =90°,∴△PDG 是等腰直角三角形,∴∠GPD =45°,PG PD =,∵AG =PC =3,AP =1,PG =,∴AP 2+PG 2=AG 2,∴∠GPA =90°,∴∠APD =90°+45°=135°;故选:B .【点睛】本题考查了勾股定理、勾股定理的逆定理、正方形的性质、等腰直角三角形的判定与性质等知识,熟练掌握正方形的性质和勾股定理的逆定理是解题的关键.11.A【分析】根据算术平方根和绝对值的非负性,确定a 、b 的值,再代入代数式求值即可.【详解】解:由题意得:a+2=0,b-1=0,即a=-2,b=1所以,()()()201720172017==211=1a b +-+--故答案为A.【点睛】本题主要考查了非负数的性质,利用非负数的性质确定待定的字母的值是解答的关键12.C【分析】理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.【详解】解:由图象可得:0~2秒,点P在GC上运动,则GC=2×2=4cm,∵点G是BC中点,∴BC=2GC=8cm,故①不合题意;由图象可得:2﹣4秒,点P在CD上运动,则第4秒时,y=S△ABP =12×6×8=24cm2,故③符合题意;由图象可得:4﹣7秒,点P在DE上运动,则DE=2×3=6cm,故②符合题意;由图象可得:当第12秒时,点P在H处,∵EF=AB﹣CD=6﹣4=2cm,∴t=22=1s,∴AH=8+6﹣2×(12﹣5﹣1)=6,∴y=S△ABP =12×6×6=18cm2,故④不合题意,∴正确的是②③,故选:C.【点睛】本题考查了动点问题的函数图象,关键是能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.13.-3;2 ;【分析】根据立方根、平方根的定义和倒数乘积等于1即可解题.【详解】解:(1)∵(-3)×(-3)×(-3)=-27,∴-27的立方根为-3;(24=±2;(3)∵(1⎛⨯= ⎝⎭,∴5的倒数为故答案为:-3;±2;14.≠1,=1【分析】根据一次函数的定义、正比例函数的定义,可得答案.【详解】解:已知函数y =(a+1)x+a 2﹣1,当a=-1时,a+1=0,y=a 2﹣1,∴当a≠﹣1时,它是一次函数;当a =1时,a 2﹣1=0,它是正比例函数,故答案为:≠1,=1.【点睛】本题主要考查了一次函数和正比例函数的定义,一次函数y kx b =+的定义条件是:k 、b 为常数,0k ≠,自变量次数为1,0b =是一次函数是正比例函数.15.1、1【解析】【分析】根据勾股定理求出AC ,得到OA′和OA′′的长,根据数轴的概念解答即可.【详解】由勾股定理得,AC ,则CA′=CA′′,∴OA′﹣1,OA′′+1,∴A′、点A″所表示的数分别是1故答案为:1【点睛】本题考查的是勾股定理、实数与数轴,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c,那么a2+b2=c2.16.217【解析】【分析】根据OA1=1,可得点A1的坐标为(1,0),然后根据△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,求出A1A2,B1A2,A2A3,B2A3…的长度,然后找出规律,求出点B10的坐标.结合等腰直角三角形的面积公式解答.【详解】∵OA1=1,∴点A1的坐标为(1,0).∵△OA1B1是等腰直角三角形,∴A1B1=1,∴B1(1,1).∵△B1A1A2是等腰直角三角形,∴A1A2=1,B1A2∵△B2B1A2为等腰直角三角形,∴A2A3=2,∴B2(2,2),同理可得:B3(22,22),B4(23,23),…B n(2n﹣1,2n﹣1),∴点B10的坐标是(29,29),∴△B10A10A11的面积是:12×29×29=217.故答案为:217.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线,直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了等腰直角三角形的性质.17【分析】首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.【详解】解::|1(2019﹣)0﹣(1 2)﹣21+1﹣44【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质.18.﹣3【分析】根据二次根式的混合运算顺序,先对各项利用二次根式的乘除化简,再用加减法进行计算即可.【详解】((22222⎡⎤⎡--+-⨯⎢⎥⎢⎣⎦⎣5(243)(29=+---3=.【点睛】本题考查了二次根式的混合运算、平方差公式、完全平方公式,解决本题的关键是熟练运用公式.19.(1)A (0,8),E (8,4),F (12,4);(2)S △BDF =32【分析】(1)根据正方形的面积求出两个正方形的边长,再求出OG ,然后写出各点的坐标即可;(2)根据S △BDF =S △BDC +S 梯形BCGF ﹣S △DGF 列式计算即可得解.【详解】解:(1)∵正方形ABCD 和正方形EFGC 面积分别为64和16,∴正方形ABCD 和正方形EFGC 的边长分别为8和4,∴OG =8+4=12,∴A (0,8),E (8,4),F (12,4);(2)S △BDF =S △BDC +S 梯形BCGF ﹣S △DGF ,=12×8×8+12×(4+8)×4﹣12×(8+4)×4,=32+24﹣24,=32.【点睛】本题考查了坐标与图形性质,三角形的面积,难点在于(2)列出BDF ∆的面积的表达式.20.(1)5,1;(2)a 2﹣b 2的值为7【分析】(1)根据题目中所给规律即可得结果;(2)把无理数的整数部分和小数部分分别表示出来,再代入计算即可.【详解】解:(1的整数部分为33,∴2]5+=;[51=.故答案为5、1.(2)根据题意,得34<< ,859∴<+<,583a ∴=-.152<514b ∴==-1a b ∴+=,7a b -=.22()()a b a b a b ∴-=+-7=-.∴22a b -的值为7.【点睛】本题考查了估算无理数的大小,解决本题的关键是根据无理数的整数部分确定小数部分.21.(1)见解析;(2)BE =4.【分析】(1)由折叠的性质可知AF=AB=8,然后再依据勾股定理的逆定理可证明△ADF 为直角三角形;(2)由题意可证点E 、D 、F 在一条直线上,设BE=x ,则EF=x ,DE=6+x ,EC=10-x ,在Rt △CED 中,依据勾股定理列方程求解即可.【详解】(1)将△ABE 沿AE 折叠,使点B 落在长方形内点F 处,∴AF =AB =8,∵AF 2+DF 2=62+82=100=102=AD 2,∴∠AFD =90°∴△ADF 是直角三角形(2)∵折叠∴BE =EF ,∠B =∠AFE =90°又∵∠AFD =90°∴点D ,F ,E 在一条直线上.设BE =x ,则EF =x ,DE =6+x ,EC =10-x ,在Rt △DCE 中,∠C =90°,∴CE 2+CD 2=DE 2,即(10-x )2+82=(6+x )2.∴x =4.∴BE =4.【点睛】本题主要考查的是翻折的性质、勾股定理的逆定理、勾股定理的定理,依据勾股定理列出关于x 的方程是解题的关键.22.见解析【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【详解】根据题意,可知13m =,42n =,由于7613+=,7642⨯=,所以2213+==【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.23.(1)13cm ;(2;(3)13(cm )【分析】(1)利用勾股定理直接求出木棒的最大长度即可.(2)将长方体展开,利用勾股定理解答即可;(3)将容器侧面展开,建立A 关于EF 的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求.【详解】解:(1)由题意得:如图,该长方体中能放入木棒的最大长度是:=;cm13()(2)①如图,AG,②如图,AG=,③如图,AG ,;(3) 高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm 与饭粒相对的点A 处,5A D cm ∴'=,12312BD AE cm =-+=,∴将容器侧面展开,作A 关于EF 的对称点A ',连接A B ',则A B '即为最短距离,13()A B cm '=.【点睛】本题考查了平面展开—最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.24.画图见解析.【解析】分析:首先在平面直角坐标系中描出各点,然后顺次连接得到△ABC ,找出三个顶点关于y 轴对称的点坐标,然后顺次连接,得出对称后的图形.详解:如图所示:点睛:本题主要考查的是图形的轴对称,属于基础题型.关于y 轴对称的两个点,他们的横坐标互为相反数,纵坐标相等.25.(1)见解析;(2)能,见解析;(3)①C 、D 两点的坐标为C (0,32),D (2,0);②符合条件的所有点M 的坐标为:(716,0)、(92,0);、(﹣2,0)、(﹣12,0)【分析】(1)根据梯形的面积的两种表示方法即可证明;(2)根据四边形ABCD 的面积的两种表示方法即可证明;(3)①根据翻折的性质和勾股定理即可求解;②根据等腰三角形的性质分四种情况求解即可.【详解】解:(1)∵S 梯形ABCD =211222ab c ⨯+S 梯形ABCD =()()12a b a b ++21112()()222ab c a b a b ∴⨯+=++22222ab c a ab b ∴+=++222c a b ∴=+.(2)连接BD ,如图:S 四边形ABCD =()21122c a b a +-,S 四边形ABCD =21122ab b +,∴221111()2222c a b a ab b +-=+,222c a b ∴=+.(3)①设OC a =,则4AC a =-,又5AB =,根据翻折可知:5BD AB ==,4CD AC a ==-,532OD BD OB =-=-=.在Rt COD ∆中,根据勾股定理,得22(4)4a a -=+,解得32a =.3(0,)2C ∴,(2,0)D .答:C 、D 两点的坐标为3(0,)2C ,(2,0)D .②如图:当点M 在x 轴正半轴上时,CM DM =,设CM DM x ==,则2223(2)()2x x =-+,解得2516x =,7216x ∴-=,7(16M ∴,0);CD MD =,35422=-=,59222+=,9(2M ∴,0);当点M 在x 轴负半轴上时,CM CD =,2OM OD == ,(2,0)M ∴-;DC DM =,35422=-=,51222OM ∴=-=,1(2M ∴-,0).∴符合条件的所有点M 的坐标为:7(16,0)、9(2,0)、(2,0)-、1(2-,0).【点睛】本题考查了等腰三角形的判定和性质,勾股定理,折叠的性质,是三角形的综合题,解决本题的关键是分情况讨论思想的运用.。
人教版八年级上册数学期中考试试题含答案详解
人教版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列图形中,是轴对称图形的是()A.B.C.D.2.已知等腰三角形的两边长分别为6和1,则这个等腰三角形的周长为()A.13B.8C.10D.8或133.若一个多边形的内角和为720°,则这个多边形是()A.三角形B.四边形C.五边形D.六边形4.如图,用尺规作图作已知角∠AOB的平分线OC,其根据是构造两个三角形全等,它所用到的识别方法是()A.SAS B.SSS C.ASA D.AAS5.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.50°B.60°C.85°D.80°6.如图,∠A=50°,P是等腰△ABC内一点,AB=AC,BP平分∠ABC,CP平分∠ACB,则∠BPC的度数为()A.100°B.115°C.130°D.140°7.如图,△ABC≌△DEF,若BC=12cm,BF=16cm,则下列判断错误的是()A.AB=DE B.BE=CF C.AB//DE D.EC=4cm8.如图,△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,测得BC=9,BD=5,则DE的长为()A.3B.4C.5D.69.如图,AB=AC,AD=AE,BE、CD交于点O,则图中全等的三角形共有( )A.四对B.三对C.二对D.一对10.如图,△ABC中,AB=AC,BD平分∠ABC交AC于G,DM//BC交∠ABC的外角平分线于M,交AB、AC于F、E,下列结论:①MB⊥BD;②FD=FB;③MD=2CE,其中一定正确的有()A.0个B.1个C.2个D.3个二、填空题11.已知△ABC中,AB=6,BC=4,那么边AC的长可以是(填一个满足题意的即可). 12.如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,当PC与PE的和最小时,∠CPE的度数是_____________.13.点M与点N(-2,-3)关于y轴对称,则点M的坐标为.14.如图,D是AB边上的中点,将△ABC沿过点D的直线折叠,DE为折痕,使点A 落在BC上F处,若∠B=40°,则∠EDF=_____度.15.已知△ABC中,∠A=12∠B=13∠C,则△ABC是_____三角形.16.如图,在Rt△ABC中,∠C=90°,∠BAC=30°,点D是BC边上的点,AB=18,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则BP+EP的最小值是____.三、解答题17.如图,A、F、B、D在一条直线上,AF=DB,BC=EF,AC=DE.求证:∠A=∠D.18.一个多边形,它的内角和比外角和还多180°,求这个多边形的边数.19.如图,已知△ABC,∠C=90°,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹).(2)连接AD,若∠B=35°,则∠CAD=°.20.△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于原点O对称的△A1B1C1,并写出点C1的坐标;(2)求△ABC的面积.21.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的长.22.如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于F,BE=CF.(1)求证:AD平分∠BAC;(2)连接EF ,求证:AD 垂直平分EF .23.如图,AD 为△ABC 的中线,BE 为△ABD 的中线.(1)∠ABE=15°,∠BED=55°,求∠BAD 的度数;(2)作△BED 的边BD 边上的高;(3)若△ABC 的面积为20,BD=2.5,求△BDE 中BD 边上的高.24.如图,在△ABC 中,∠BAC=120°,AB=AC=4,AD ⊥BC ,AD 到E ,使AE=2AD ,连接BE .(1)求证:△ABE 为等边三角形;(2)将一块含60°角的直角三角板PMN 如图放置,其中点P 与点E 重合,且∠NEM=60°,边NE 与AB 交于点G ,边ME 与AC 交于点F .求证:BG=AF ;(3)在(2)的条件下,求四边形AGEF 的面积.25.已知,如图,BD 是ABC ∠的平分线,AB BC =,点P 在BD 上,PM AD ⊥,PN CD ⊥,垂足分别是M 、N .试说明:PM PN =.参考答案1.B【详解】分析:根据轴对称图形的概念求解.详解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选B.点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.2.A【分析】分1是腰长和底边两种情况,利用三角形的三边关系判断,然后根据三角形的周长的定义列式计算即可得解.【详解】①1是腰长时,三角形的三边分别为1、1、6,不能组成三角形,②1是底边时,三角形的三边分别为6、6、1,能组成三角形,周长=6+6+1=13,综上所述,三角形的周长为13.故选A.【点睛】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论.3.D【分析】利用n边形的内角和可以表示成(n-2)•180°,结合方程即可求出答案.【详解】设这个多边形的边数为n,由题意,得(n-2)180°=720°,解得:n=6,则这个多边形是六边形.故选D.【点睛】本题主要考查多边形的内角和公式,比较容易,熟记n边形的内角和为(n-2)•180°是解题的关键.4.B【分析】根据作图的过程知道:OA=OB,OC=OC,AC=CB,所以由全等三角形的判定定理SSS可以证得△OAC≌△OBC.【详解】连接AC、BC,根据作图方法可得:OA=OB,AC=CB,在△OAC和△OBC中,OA OB OC OC AC CB =⎧⎪=⎨⎪=⎩,∴△OAC ≌△OBC (SSS ).故选:B .【点睛】本题考查了作图-基本作图及全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .5.C【分析】根据三角形角平分线的性质求出∠ACD ,根据三角形外角性质求出∠A 即可.【详解】∵CE 是△ABC 的外角∠ACD 的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A ,∴∠A=∠ACD-∠B=120°-35°=85°,故选C .【点睛】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.6.B【分析】根据等腰三角形两底角相等求出∠ACB ,然后求出∠PCB+∠PBC=∠ACB ,再根据三角形的内角和定理列式计算即可得解.【详解】∵∠A=50°,△ABC 是等腰三角形,∴∠ACB=12(180°-∠A )=12(180°-50)=65°,∵∠PBC=∠PCA ,∴∠PCB+∠PBC=∠PCB+∠PCA=∠ACB=65°,∴∠BPC=180°-(∠PCB+∠PBC )=180°-65°=115°.【点睛】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,准确识图并求出∠PCB+∠PBC是解题的关键.7.D【分析】根据全等三角形的性质得出AB=DE,BC=EF,∠ACB=∠F,求出AC∥DF,BE=CF,即可判断各个选项.【详解】∵△ABC≌△DEF,∴AB=DE,BC=EF,∠ACB=∠F,∴AC∥DF,BC-EC=EF-EC,∴BE=CF,∵BC=12cm,BF=16cm,∴CF=BE=4cm,∴EC=12cm-4cm=8cm,即只有选项D错误;故选D.【点睛】本题考查了全等三角形的性质,平行线的判定的应用,能正确运用性质进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.8.B【分析】先根据角平分线的性质,得出DE=DC,再根据BC=9,BD=5,得出DC=9-5=4,即可得到DE=4.【详解】∵∠C=90°,AD平分∠BAC,DE⊥AB于E,∴DE=DC,∵BC=9,BD=5,∴DC=9-5=4,故选B.【点睛】本题主要考查了角平分线的性质的运用,解题时注意:角的平分线上的点到角的两边的距离相等.9.B【分析】找出全等的三角形即可得出选项.【详解】1、因为AB=AC,AD=AE,∠A=∠A,所以△ABE≌△ACD;2、因为BD=AB-AD,CE=AC-AE,所以BD=CE,又因为AB=AC,BC=BC,所以∠B=∠C,所以△BCD≌△CBE;3、当△ABE≌△ACD时,∠ABE=∠ACD,∠OBC=∠OCB,所以OB=OC,又因为BD=CE,所以△OBD≌△OCE,所以答案选择B项.【点睛】本题考查了全等的证明,熟悉掌握SAS,SSS,ASA是解决本题的关键.10.D【分析】如图,由BD分别是∠ABC及其外角的平分线,得到∠MBD=12×180°=90°,故①成立;证明BF=CE、BF=DF,得到FD=FB,故②成立;证明BF为直角△BDM的斜边上的中线,故③成立.【详解】如图,∵BD分别是∠ABC及其外角的平分线,∴∠MBD=12×180°=90°,故MB⊥BD,①成立;∵DF∥BC,∴∠FDB=∠DBC;∵∠FBD=∠DBC,∴∠FBD=∠FDB,∴FD=BF,②成立;∵∠DBM=90°,MF=DF,∴BF=12DM,而CE=BF,∴CE=12DM,即MD=2CE,故③成立.故选D.【点睛】该题主要考查了等腰三角形的判定及其性质、直角三角形的性质等几何知识点及其应用问题;应牢固掌握等腰三角形的判定及其性质、直角三角形的性质11.3,4,···(2到10之间的任意一个数)【解析】【分析】直接利用三角形三边关系得出AC的取值范围,进而得出答案.【详解】根据三角形的三边关系可得:AB-BC<AC<AB+BC,∵AB=6,BC=4,∴6-4<AC<6+4,即2<AC<10,∴AC的长可以是3,4,•••(2到10之间的任意一个数).故答案为3,4,•••(2到10之间的任意一个数).【点睛】此题主要考查了三角形三边关系,正确得出AC的取值范围是解题关键.12.60°【分析】连接BE,则BE的长度即为PE与PC和的最小值.再利用等边三角形的性质可得∠PBC=∠PCB=30°,即可解决问题.【详解】如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵△ABC是等边三角形,∴∠BCE=60°,∵BA=BC,AE=EC,∴BE⊥AC,∴∠BEC=90°,∴∠EBC=30°,∵PB=PC,∴∠PCB=∠PBC=30°,∴∠CPE=∠PBC+∠PCB=60°.【点睛】本题考查等边三角形的性质和动点问题,解题的关键是知道当三点共线时PE+PC最小. 13.(2,-3).【分析】根据平面直角坐标系中任意一点P(x,y),关于y轴对称的点的坐标为(-x,y),将M的坐标代入从而得出答案.【详解】根据关于x轴、y轴对称的点的坐标的特点,∴点N(-2,-3)关于y轴对称的点的坐标是(2,-3).故答案为(2,-3).【点睛】本题主要考查了平面直角坐标系中关于y轴对称的点的坐标的特点,注意掌握任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),关于y轴对称的点的坐标为(-x,y),比较简单.14.40【分析】先根据图形翻折不变的性质可得AD=DF,根据等边对等角的性质可得∠B=∠BFD,再根据三角形的内角和定理列式计算可得∠BDF的解,再根据平角的定义和折叠的性质即可求解.【详解】∵△DEF是△DEA沿直线DE翻折变换而来,∴AD=DF,∵D是AB边的中点,∴AD=BD,∴BD=DF,∴∠B=∠BFD,∵∠B=50°,∴∠BDF=180°-∠B-∠BFD=180°-40°-40°=100°,∴∠EDF=(180°-∠BDF)÷2=40°.故答案为40.【点睛】本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键.15.直角【分析】设∠A=x°,则∠B=2x°,∠C=3x°,利用三角形内角和为180°求的x,进而求出∠C为90°,即可得出答案.【详解】设∠A=x°,则∠B=2x°,∠C=3x°,∵∠A+∠B+∠C=180°∴x°+2x°+3x°=180°∴x°=30°∴∠C=3x°=90°∴△ABC是直角三角形故答案为直角【点睛】本题考查三角形内角和定理的运用以及三角形形状的判定,熟练掌握三角形内角和定理是解题关键.16.9【分析】根据翻折变换的性质可得点C、E关于AD对称,再根据轴对称确定最短路线问题,BC与AD的交点D即为使PB+PE的最小值的点P的位置,然后根据直角三角形两锐角互余求出∠BAC=60°,再求出∠CAD=30°,然后解直角三角形求解即可.【详解】∵将△ACD沿直线AD翻折,点C落在AB边上的点E处,∴点C、E关于AD对称,∴点D即为使PB+PE的最小值的点P的位置,PB+PE=BC,∵∠C=90°,∠BAC=30°,∴BC=12 AB,∴BC=9.∴PB+PE的最小值为9.故答案为9.【点睛】本题考查了轴对称确定最短路线问题,翻折变换的性质,解直角三角形,难点在于判断出PB+PE取得最小值时点P与点D重合.17.详见解析.【分析】已知AF=DB,则AF+FB=DB+FB,可得AB=DF,结合已知AC=DE,BC=FE可证明△ABC≌△DFE,利用全等三角形的性质证明结论.【详解】证明:∵AF=DB,∴AF+FB=DB+FB ,即AB=DF在△ABC 和△DFE 中,AC DE BC FE AB DF =⎧⎪=⎨⎪=⎩∴△ABC ≌△DEF (SSS ),∴∠A=∠D【点睛】本题考查了全等三角形的判定与性质.关键是由已知边相等,结合公共线段求对应边相等,证明全等三角形.18.多边形的边数为5【解析】【分析】根据多边形的外角和均为360°,已知该多边形的内角和比外角和还多180°,可以得出内角和为540°,再根据计算多边形内角和的公式(n-2)×180°,即可得出该多边形的边数.【详解】设多边形的边数为n ,则(n-2)×180°=360°+180°解得n=5答:多边形的边数为5【点睛】本题主要考查多边形的内角和和多边形的外角和.19.(1)详见解析;(2)20°.【解析】【分析】(1)线段垂直平分线的尺规作图;(2)通过线段垂直平分线的性质易得AD=BD ,从而∠BAD=∠B ,再求解即可.【详解】(1)如图,点D 即为所求.(2)在Rt△ABC中,∠B=35°,∴∠CAB=55°,又∵AD=BD,∴∠BAD=∠B=35°,∴∠CAD=∠CAB-∠DAB=55°-35°=20°.【点睛】本题主要考查了尺规作图,线段垂直平分线的作法;线段垂直平分线的性质. 20.(1)(-3,2);(2)2.5【解析】试题分析:(1)根据关于与原点对称的点横、纵坐标均为相反数求解即可;(2)△ABC的面积等于矩形的面积减去三个三角形的面积.(1)如图,C1坐标为(-3,2);(2)11123212131222 ABCS=⨯-⨯⨯-⨯⨯-⨯⨯3611 2.52=---=. 21.BE=0.8cm先证明△ACD ≌△CBE ,再求出EC 的长,解决问题.【详解】解:∵BE ⊥CE 于E ,AD ⊥CE 于D∴∠E =∠ADC =90°∵∠BCE +∠ACE =∠DAC +∠ACE =90°∴∠BCE =∠DAC∵AC =BC∴△ACD ≌△CBE∴CE =AD ,BE =CD =2.5﹣1.7=0.8(cm ).【点睛】本题考查全等三角形的性质和判定,准确找到全等条件是解题的关键.22.见解析【解析】【分析】(1)由于D 是BC 的中点,那么BD =CD ,而BE =CF ,DE ⊥AB ,DF ⊥AC ,利用HL 易证Rt Rt BDE CDF ≌,,可得DE =DF ,利用角平分线的判定定理可知点点D 在∠BAC 的平分线上,即AD 平分∠BAC ;(2)根据全等三角形的性质即可得到结论.【详解】(1)∵D 是BC 的中点∴BD =CD ,又∵BE =CF ,DE ⊥AB ,DF ⊥AC ,Rt Rt BDE CDF ≌,∴DE =DF ,∴点D 在∠BAC 的平分线上,∴AD 平分∠BAC ;(2)Rt Rt BDE CDF ≌,∴∠B =∠C ,∴AB =AC ,∴AB−BE=AC−CF,∴AE=AF,∵DE=DF,∴AD垂直平分EF.【点睛】本题考查了角平分线的性质定理:角的内部到角的两边距离相等的点在角平分线上. 23.(1)∠BAD=40°;(2)详见解析;(3)BD=2.5.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;(2)根据高线的定义,过点E作BD的垂线即可得解;(3)根据三角形的中线把三角形分成的两个三角形面积相等,先求出△BDE的面积,再根据三角形的面积公式计算即可.【详解】(1)在△ABE中,∵∠ABE=15°,∠BAD=40°,∴∠BED=∠ABE+∠BAD=15°+40°=55°;(2)如图,EF为BD边上的高;(3)∵AD为△ABC的中线,BE为△ABD的中线,∴S△ABD =12S△ABC,S△BDE=12S△ABD,S△BDE=14S△ABC,∵△ABC的面积为20,BD=2.5,∴S△BDE =12BD•EF=12×5•EF=14×20,解得EF=2.【点睛】本题考查了三角形的外角性质,三角形的面积,利用三角形的中线把三角形分成两个面积相等的三角形是解题的关键.24.(1)见解析;(2)见解析;(3)【解析】【分析】(1)先证明9030ABD BAE ∠=-∠= ,,可知AB =2AD ,因为AE =2AD ,所以AB =AE ,从而可知△ABE 是等边三角形.(2)由(1)可知:60ABE AEB ∠=∠= ,AE =BE ,然后求证BEG AEF ≌,即可得出BG =AF ;(3)由于S 四边形AGEF AEG AEF AEG BEG ABE S S S S S =+=+= 故只需求出△ABE 的面积即可.【详解】(1)AB =AC ,AD ⊥BC ,160,902BAE CAE BAC ADB ∴∠=∠=∠=∠= ,9030ABD BAE ∴∠=-∠= ,∴AB =2AD ,∵AE =2AD ,∴AB =AE ,60BAE ∠= ,∴△ABE 是等边三角形.(2)∵△ABE 是等边三角形,60ABE AEB ∴∠=∠= ,AE =BE ,由(1)60,CAE ∠= ∴∠ABE =∠CAE ,60NEM BEA ∠=∠= ,∴∠NEM −∠AEN =∠BEA −∠AEN ,∴∠AEF =∠BEG ,在△BEG 与△AEF 中,,GBE FAE BE AE BEG AEF ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA).BEG AEF ∴ ≌∴BG =AF ;(3)由(2)可知:BEG AEF ≌,S BEG S AEF ∴= ,∴S 四边形AGEF AEG AEF AEG BEG ABES S S S S =+=+= ∵△ABE 是等边三角形,∴AE =AB =4,11422ABE S AE BD ∴=⋅=⨯⨯= ∴S四边形AGEF =25.见详解【分析】根据角平分线的定义可得∠ABD=∠CBD ,然后利用“边角边”证明△ABD 和△CBD 全等,根据全等三角形对应角相等可得∠ADB=∠CDB ,然后根据角平分线上的点到角的两边的距离相等证明即可.【详解】证明:∵BD 为∠ABC 的平分线,∴∠ABD=∠CBD ,在△ABD 和△CBD 中,AB BC ABD CBD BD BD ⎪∠⎪⎩∠⎧⎨===∴△ABD ≌△CBD (SAS ),∴∠ADB=∠CDB ,∵点P 在BD 上,PM ⊥AD ,PN ⊥CD ,∴PM=PN .【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB 是解题的关键.。
人教版八年级上册数学期中考试试题含答案
人教版八年级上册数学期中考试试卷一、单选题1.以下列各组线段为三角形的边,能组成三角形的是()A .1cm ,2cm ,4cmB .3cm ,3cm ,6cmC .7cm ,7cm ,12cmD .3cm ,6cm ,10cm2.点(3,2)M 关于y 轴对称的点的坐标为()A .(3,2)-B .(3,2)--C .(3,2)-D .(2,3)-3.如图,小明书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么小明画图的依据是()A .SSSB .SASC .AASD .ASA4.已知一个多边形的内角和是外角和的3倍,则这个多边形是()A .五边形B .六边形C .七边形D .八边形5.如果等腰三角形的两边长分别为2和5,则它的周长为()A .9B .7C .12D .9或126.下列运算中正确的是()A .55102a a a +=B .326326a a a ⋅=C .623a a a ÷=D .222(2)4ab a b -=7.如图,∠BAC=110°,若MP 和NQ 分别垂直平分AB 和AC ,则∠PAQ 的度数是()A .20°B .60°C .50°D .40°8.如图,折叠直角三角形纸片的直角,使点C 落在AB 上的点E 处,已知BC=24,∠B=30°,则DE 的长是()A.12B.10C.8D.69.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB.若AE=10,则DF等于()A.5B.4C.3D.2∥交ED的延长线于点10.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF ACF,若BC恰好平分∠ABF,AE=2BF,给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个二、填空题11.等腰三角形的一个角是70°,则它的底角是_____.12.(45)2015×1.252014×(﹣1)2016=_______.13.如图,点D在BC上,AB=AD,∠C=∠E,∠BAD=∠CAE,若∠1+∠2=105°,则∠ABC 的度数是_____.14.计算:﹣3x(2x2+4x﹣3)=_______.15.若29a ka ++是一个完全平方式,则k 的值是________.16.计算:()03.14π-=_____________________.17.在△ABC 中,点P 是边AB,边BC 的垂直平分线的交点,∠A=50°.则∠PBC=______.18.如图,已知点A 、C 、F 、E 在同一直线上,△ABC 是等边三角形,且CD=CE ,EF=EG ,则∠F=_____度.三、解答题19.计算题:(1)(5x+2y )(3x-2y )(2)(4x-3y+2)(4x+3y+2)(3)(12x 4y 6-8x 2y 4-16x 3y 5)÷4x 2y 3(4)19992-2000×199820.如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .求证:∠A =∠D .21.如图,在长度为1个单位长度的小正方形组成的网格图中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)三角形ABC的面积为________;(3)在直线l上找一点P,使PB+PC的长最短.22.如图,已知:△ABC中,AB=AC,D是BC上一点,且AD=DB,DC=CA,求∠BAC 的度数.23.如图,△ABC中,AD为∠BAC的平分线,且DF⊥AC于F,∠B=90°,DE=DC.求证:BE=CF.24.如图,△ABC是等边三角形,BD是中线,过点D作DE⊥AB于E交BC边延长线于F,AE=1.求BF的长.20.如图,AD⊥BC于D,AD=BD,AC=BE.(1)请说明∠1=∠C;(2)猜想并说明DE和DC有何特殊关系.26.已知△ABC是等边三角形,点D是直线BC上一点,以AD为一边在AD的右侧作等边△ADE.(1)如图①,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系;(2)如图①,求∠DCE的度数;(3)如图②,③,点D在线段BC的延长线上移动时,猜想∠DCE的大小是否发生变化.若不变请求出其大小;若变化,请说明理由,并求出∠DCE的度数.参考答案1.C【解析】【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边,逐项判断即可.【详解】解:A :1cm 2cm 4cm +<,故不能构成三角形;B :3cm 3cm 6cm +=,故不能构成三角形;C :7cm 7cm 12cm +>,故能构成三角形;D :3cm 6cm 10cm +<,故不能构成三角形.故选:C .【点睛】本题主要考查了三角形三边的关系,熟练掌握相关概念是解题关键.2.A【解析】【分析】根据关于y 轴对称的点的纵坐标相等,横坐标互为相反数进一步求解即可.【详解】∵y 轴对称的点的纵坐标相等,横坐标互为相反数,∴点(3,2)M 关于y 轴对称的点的坐标为(3,2)-,故选:A.【点睛】本题主要考查了关于y 轴对称的点的坐标的性质,熟练掌握相关概念是解题关键.3.D【解析】【分析】图中三角形没被污染的部分有两角及夹边,根据全等三角形的判定方法解答即可.【详解】解:由图可知,三角形两角及夹边可以作出,所以,依据是ASA .故选:D .【点睛】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.4.D【解析】【分析】根据多边形的外角和是360°,以及多边形的内角和定理即可求解.【详解】设多边形的边数是n ,则(n−2)⋅180=3×360,解得:n=8.故选D.【点睛】此题考查多边形内角与外角,解题关键在于掌握其定理.5.C【解析】【分析】分类讨论2是腰与底,根据三角形三边关系验证即可.【详解】解:当2为腰时,三角形的三边是2,2,5,因为2+2<5,所以不能组成三角形;当2为底时,三角形的三边是2,5,5,所以三角形的周长=12,故选C .【点睛】本题考查等腰三角形的性质、三角形的三边关系,掌握等腰三角形的性质、三角形的三边关系.6.D【解析】【分析】直接利用合并同类项法则、单项式乘单项式法则、同底数幂的乘法法则以及积的乘方法则运算即可求出答案.【详解】解:(A )5552a a a +=,故A 错误;(B )532326a a a =g ,故B 错误;(C )624a a a ÷=,故C 错误;(D )222(2)4ab a b -=,故D 正确;故选:D .【点睛】本题考查了合并同类项法则、单项式乘单项式法则、同底数幂的乘法法则以及积的乘方法则的应用,熟练运用运算法则是解决本题的关键.7.D【解析】【分析】由∠BAC 的大小可得∠B 与∠C 的和,再由线段垂直平分线,可得∠BAP =∠B ,∠QAC =∠C ,进而可得∠PAQ 的大小.【详解】∵∠BAC =110°,∴∠B+∠C =70°,又MP ,NQ 为AB ,AC 的垂直平分线,∴BP=AP ,AQ=CQ ,∴∠BAP =∠B ,∠QAC =∠C ,∴∠BAP+∠CAQ =70°,∴∠PAQ =∠BAC ﹣∠BAP ﹣∠CAQ =110°﹣70°=40°.故选D .8.C【分析】由折叠的性质可知;DC=DE ,∠DEA=∠C=90°,在Rt △BED 中,∠B=30°,故此BD=2ED ,从而得到BC=3BC ,于是可求得DE=8.【详解】解:由折叠的性质可知;DC=DE ,∠DEA=∠C=90°,∵∠BED+∠DEA=180°,∴∠BED=90°.又∵∠B=30°,∴BD=2DE .∴BC=3ED=24.∴DE=8.故答案为8.【点睛】本题考查的是翻折的性质、含30°锐角的直角三角形的性质,根据题意得出BC=3DE 是解题的关键.9.A【分析】过点D 作DG ⊥AC,由题意得出∠DEC=30°,即可得出DG=5,再证明AD 为角平分线,则DF=DG=5.【详解】过点D 作DG ⊥AC.∵15DAE ADE ∠=∠=︒,AE=10∴∠DEC=30°,DE=AE=10.∴DG=5.∵DE ∥AB,∴∠BAD=∠ADED AE AD E∠=∠∴BAD ∠=∠DAE ,即AD 为∠BAC 的角平分线.,DF AB DG AC⊥⊥ ∴DF=DG=5.故选A【点睛】本题考查角平分线的性质与判定,含30度角的直角三角形的性质,解题的关键在于利用角平分线定理作出辅助线.10.A【解析】【详解】解:∵BF AC ∥,∴∠C=∠CBF ,∵BC 平分∠ABF ,∴∠ABC=∠CBF ,∴∠C=∠ABC ,∴AB=AC ,∵AD 是△ABC 的角平分线,∴BD=CD ,AD ⊥BC ,故②,③正确,在△CDE 与△DBF 中,C CBF CD BD EDC BDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CDE ≌△DBF ,∴DE=DF ,CE=BF ,故①正确;∵AE=2BF ,∴AC=3BF ,故④正确.故选A .11.55°或70°.【解析】【分析】由等腰三角形的一个内角为70°,可分别从70°的角为底角与70°的角为顶角去分析求解,即可求得答案.【详解】∵等腰三角形的一个内角为70°,若这个角为顶角,则底角为:(180°﹣70°)÷2=55°;若这个角为底角,则另一个底角也为70°,∴它的底角为55°或70°.故答案为:55°或70°.【点睛】本题考查了等腰三角形的性质.此题比较简单,注意分类讨论思想的应用.12.45【解析】【分析】根据逆用同底数幂的乘法运算和积的乘方运算计算即可【详解】(45)2015×1.252014×(﹣1)2016201420144451554⎛⎫⎛⎫=⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭20144451554⎛⎫=⨯⨯⨯ ⎪⎝⎭45=故答案为:45【点睛】本题考查了同底数幂的乘法运算和积的乘方运算,正确的计算是解题的关键.13.75°.【解析】【分析】根据平角的定义求出∠ADE=75°,由AAS 证明△ABC ≌△ADE ,根据对应角相等得出即可.【详解】解:∵∠1+∠2=105°,∴∠ADE=75°,∵∠BAD=∠CAE ,∴∠BAC=∠DAE ,在△ABC 和△ADE 中,∵BAC DAE C E AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△ADE (AAS ),∴∠ABC=∠ADE=75°;故答案为75°.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形判定定理是解题的关键.14.326129x x x --+【解析】【分析】直接利用单项式乘以多项式的计算法则求解即可.【详解】解:()23232436129x x x x x x -+-=--+,故答案为:326129x x x --+.【点睛】本题主要考查了单项式乘以多项式,解题的关键在于能够熟练掌握单项式乘以多项式的计算法则.15.6±【解析】【分析】利用完全平方公式的结构特征判断即可确定出k 的值.【详解】解:29a ka ++是一个完全平方式,即22233a a ±⨯+是一个完全平方式,6k ∴=±故答案为:6±【点睛】本题考查了完全平方式,两数的平方和,再加上或减去他们乘积的2倍,就构成一个完全平方式,熟练掌握完全平方公式的特点是解题关键.16.1【解析】【分析】根据0指数幂的意义解答即可.【详解】解:因为 3.140π-≠,所以()03.141π-=.故答案为:1.【点睛】本题考查了0指数幂的意义,属于应知应会题型,熟知任何非零数的0次幂等于1是解题的关键.17.40︒【分析】连接,,AP BP CP ,根据三角形的内角和定理可得130ABC ACB ∠+∠=︒,根据垂直平分线的性质,等腰三角形的性质计算即可求得PBC ∠的度数.【详解】如图,连接,,AP BP CP ,180130ABC ACB BAC ∠+∠=︒-∠=︒ 点P 是边AB,边BC 的垂直平分线的交点,,PA PB PB PC∴==PA PC∴=,PAB PBA PAC PCA∴∠=∠∠=∠50PBA PCA PAB PAC BAC ∴∠+∠=∠+∠=∠=︒1305080PBC PCB ∴∠+∠=︒-︒=︒PB PC= 40PBC PCB ∴∠=∠=︒故答案为:40︒【点睛】本题考查了垂直平分线的性质、三角形的内角和定理,等边对等角,掌握垂直平分线的性质是解题的关键.18.15【解析】【详解】设∠F=x°,根据等腰三角形和外角的性质可得:∠DEC=2x°,∠ACB=4x°,根据等边三角形的性质可得:4x=60°,则x=15°,即∠F=15°.故答案为:15【点睛】考点:等腰三角形的性质19.(1)221544xxy y --;(2)22161649xx y ++-;(3)232324xy y xy --(4)1【解析】【分析】(1)根据多项式乘以多项式进行计算即可;(2)根据平方差公式、完全平方公式进行计算即可;(3)根据多项式除以单项式的运算法则进行计算即可;(4)根据平方差公式进行简便运算【详解】(1)(5x+2y )(3x-2y )22151064x xy xy y =-+-221544x xy y =--(2)(4x-3y+2)(4x+3y+2)()()423423x y x y =+-++()()22423x y =+-22161649x x y =++-(3)(12x 4y 6-8x 2y 4-16x 3y 5)÷4x 2y 3232324x y y xy =--(4)19992-2000×1998()()219991999119991=-+-()22199919991=--22199919991=-+1=【点睛】本题考查了多项式乘以多项式,多项式除以单项式,乘法公式,正确的计算是解题的关键.20.见解析【解析】【分析】由BE =CF 可得BF =CE ,再结合AB =DC ,∠B =∠C 可证得△ABF ≌△DCE ,问题得证.【详解】解∵BE =CF ,∴BE+EF =CF+EF ,即BF =CE .在△ABF 和△DCE 中,AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△DCE ,∴∠A =∠D .【点睛】本题考查了全等三角形的判定和性质,是中考中比较常见的知识点,一般难度不大,需熟练掌握全等三角形的判定和性质.21.(1)见详解;(2)3;(3)PB+PC【解析】【分析】(1)先分别作出△ABC 的对称点,然后依次连接即为所求;(2)在网格中利用割补法进行求解△ABC 的面积即可;(3)要使PB+PC 的长为最短,只需连接BC′,因为根据轴对称的性质及两点之间线段最短可得,然后利用勾股定理可求最短距离.【详解】解:(1)分别作B 、C 关于直线l的对称点,如图所示:(2)由网格图可得:111242221143222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯= ;故答案为3;(3)由(1)可得:点C 与点C '关于直线l 对称,连接PC 、BC ',如图所示:∴CP PC '=,∵BP PC BP PC BC ''+=+≥,∴要使BP+PC 为最短,则需B 、P 、C '三点共线即可,即为BC '的长,∴222313BC '=+=,即PB+PC 13【点睛】本题主要考查轴对称图形的性质、勾股定理及三角不等关系,熟练掌握轴对称图形的性质、勾股定理及三角不等关系是解题的关键.22.∠BAC=108°.【解析】【分析】由AB=AC ,DC=CA ,得到AB=AC=CD ,且AD=BD ,利用等边对等角得到∠B=∠C=∠BAD ,∠DAC=∠ADC ,设∠B=∠C=∠BAD=x°,由外角性质得到∠ADC=∠DAC=∠B+∠BAD=2x°,在三角形ABC 中,利用三角形的内角和定理列出关于x 的方程,求出方程的解得到x 的值,确定出∠DAC 与∠ADC 的度数,由∠BAD+∠DAC 即可求出∠BAC 的度数.【详解】解:∵AB=AC=DC ,AD=BD ,∴∠B=∠C=∠BAD ,∠DAC=∠ADC ,设∠B=∠C=∠BAD=x°,则∠ADC=∠DAC=∠B+∠BAD=2x°,∵∠B+∠C+∠BAC=180°,即x+x+2x+x=180,解得x=36,∴∠B=∠C=∠BAC=36°,∴∠DAC=∠ADC=72°,∴∠BAC=∠BAD+∠DAC=72°+36°=108°.【点睛】此题考查了等腰三角形的性质,三角形的外角性质,三角形内角和,解一元一次方程,掌握等腰三角形的性质,三角形的外角性质,三角形内角和,解一元一次方程,利用了方程的思想,等边对等角是解题关键.23.见解析【解析】【分析】先由角平分线的性质就可以得出DB DF =,再证明BDE FDC ∆≅∆就可以求出结论.【详解】证明:90B ∠=︒ ,BD AB ∴⊥.AD 为BAC ∠的平分线,且DF AC ⊥,DB DF ∴=.在Rt BDE 和Rt FDC 中,DE DC DB DF =⎧⎨=⎩,()Rt BDE Rt FDC HL ∴ ≌,BE CF ∴=.【点睛】本题考查了角平分线的性质的运用,全等三角形的判定与性质的运用,解题的关键是证明三角形全等.24.6【解析】【分析】根据等边三角形的性质和中线的性质解答即可.【详解】∵△ABC 是等边三角形,BD 是中线,∴∠A=∠ACB=60°,AC=BC ,AD=CD=12AC ,∵DE⊥AB于E,∴∠ADE=90°-∠A=30°,∴CD=AD=2AE=2,∴∠CDF=∠ADE=30°,∴∠F=∠ACB-∠CDF=30°,∴∠CDF=∠F,∴DC=CF,∴BF=BC+CF=2AD+AD=6.25.(1)证明见解析;(2)DE=DC,证明见解析.【解析】【分析】(1)欲证∠1=∠C,只需证明△DBE≌△DAC即可;(2)由△DBE≌△DAC,得到DE=DC.【详解】(1)∵AD⊥BC于D,∴∠BDE=∠ADC=90°.∵AD=BD,AC=BE,∴Rt△BDE≌Rt△ADC(HL),∴∠1=∠C.(2)DE=DC.理由如下:由(1)知△BDE≌△ADC,∴DE=DC.26.(1)∠BAD=∠CAE;(2)∠DCE=120°;(3)∠DCE的大小不变,∠DCE=60°.【分析】(1)由等边三角形的性质得出∠BAC=∠DAE=60°,然后利用等式性质即可得出结论;(2)由△ABC和△ADE是等边三角形可以得出AB=AC,AD=AE,∠ABC=∠ACB=∠BAC=∠DAE=60°,得出∠BAD=∠CAE,再证明△ABD≌△ACE,得出∠ABD=∠ACE=60°,然后利用∠ACD+∠ACE即可得出结论;(3)分两种情况,点D在BC延长线上,与点D在CB延长线上;点D在BC延长线上,根据等边三角形的性质得出∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,利用角的和∠BAD =∠CAE ,再证△ABD ≌△ACE(SAS),得出∠ABD =∠ACE =60°,利用∠DCE =∠ACD -∠ACE ;与点D 在CB 延长线上,根据等边三角形性质得出∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,利用角差得出∠ABD=180°-∠ABC =120°,∠BAD =∠CAE ,再证△ABD ≌△ACE(SAS),得出∠ABD =∠ACE =120°,利用∠DCE =∠ACE -∠ACB 即可得解.【详解】解:(1)△ABC 与△ADE 都是等边三角形,∴∠BAC=∠DAE=60°,∴∠BAD+∠DAC=∠DAC+∠CAE ,∴∠BAD =∠CAE ;(2)连结CE ,∵△ABC 是等边三角形,△ADE 是等边三角形,∴∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,∴∠BAC-∠CAD =∠DAE-∠CAD ,即∠BAD =∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,△ABD ≌△ACE(SAS),∴∠ABD =∠ACE =60°,∴∠DCE =∠ACD+∠ACE =60°+60°=120°;(3)∠DCE 的大小不变,∠DCE=60°,分两种情况,点D 在BC 延长线上与点D 在CB 延长线上;点D 在BC 延长线上,如图(2)∵△ABC 是等边三角形,△ADE 是等边三角形,21∴∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,∴∠ACD=180°-∠ACB =120°,∠BAC+∠CAD =∠DAE+∠CAD ,即∠BAD =∠CAE ,在△ABD 和△ACE 中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,△ABD ≌△ACE(SAS),∴∠ABD =∠ACE =60°,∴∠DCE =∠ACD -∠ACE =120°-60°=60°;点D 在CB 延长线上;如图(3)∵△ABC 是等边三角形,△ADE 是等边三角形,∴∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,∴∠ABD=180°-∠ABC =120°,∠BAC-∠BAE =∠DAE-∠BAE ,即∠BAD =∠CAE ,在△ABD 和△ACE 中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,△ABD ≌△ACE(SAS),∴∠ABD =∠ACE =120°,∴∠DCE =∠ACE -∠ACB =120°-60°=60°.综合得,∠DCE 的大小不变,∠DCE=60°.。
陕西省渭南市富平县多校2024-2025学年上学期期中八年级数学试题(无答案)
陕西省渭南市富平县多校2024-2025学年上学期期中八年级数学试题注意事项:1.本试卷共6页,满分120分,时间120分钟;2.答题前,考生需准确填写自己的姓名、准考证号,并认真核对条形码上的准考证号、姓名及考场号;3.所有题目必须使用0.5毫米黑色墨水签字笔作答,字体工整,笔迹清楚;4.请按照题目在各题目对应的答题区域作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效;5.保持卡面清洁、不得折叠、污染、破损等,考试结束,将答题卡交回.一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.的平方根是()A. B. C. D.2.下列实数中,属于无理数的是()A.1C. D.03.下列各组数中,是勾股数的一组是()A.1,2,2B.C.9,40,41D.6,6,64.已知:点与点关于轴对称,则的值为()A.0B.1C.-1D.35.下列各式计算正确的是()A. B. C. D.6.已知点都在直线上,则与的大小关系是()A.B. C. D.无法确定7.在同一平面直角坐标系中,函数与的图象大致是()A. B. C.D.141212-12±116±122223,4,5(1,3)A m-(2,1)B n-x()m n+6-===÷=()()122,,3,y y-y x b=-+1y2y12y y<12y y=12y y>y kx=12y x k=+8.如图,直线与两坐标轴分别交于A ,B 两点,点是OB 的中点,点D ,E 分别是直线AB ,y 轴上的动点,则的周长的最小值是( )二、填空题(共5小题,每小题3分,计15分)9.的一个值可以是______.10.比较大小:______4.11.如果弹簧原长为10cm ,每挂1kg 重物弹簧伸长0.5cm ,假设重物质量为m kg ,受力后的弹簧长度为,则与的函数关系式是______.12.将直线沿轴向下平移6个单位长度后得到一条新的直线,则新直线与轴的交点坐标是______.13.如图,在四边形ABCD 中,,,则______.三、解答题(共13小题,计81分.解答应写出过程)14.(8分)计算:(1)(2:(3;(4)1y x =+C CDE x cm l l m l =332y x =-+y x 45,BAD BCD AB ︒∠=∠==7,5AD CD ==AC =101(12|;2-⎛⎫+ ⎪⎝⎭21)1)-++⎛-÷ ⎝15.(5可以合并,求的值.16.(5分)如果把体积分别为的两个铁块熔化,制成一个正方体铁块,那么这个正方体铁块的棱长是多少?17.(5分)已知点在轴的负半轴上,求点的坐标.18.(5分)直线AB 与轴交于点,与轴交于点.(1)求直线AB 的表达式.(2)若直线AB 上有一动点,且,求点的坐标.19.(5分)如图,方格纸中每个小方格都是边长为1个单位长度的正方形,若游乐场的坐标为,宠物店的坐标为,解答以下问题(1)请在图中建立适当的平面直角坐标系,并写出汽车站的坐标;(2)若消防站的坐标为(3,-1),请在坐标系中标出消防站的位置.20.(5分)已知的平方根为的立方根为-4.(1)求a 、b 的值;(2)求的平方根.21.(6分)已知一次函数与正比例函数(1)在同一平面直角坐标系中画出两函数的图象;(2)设一次函数与轴交于点,两函数的图象交于点,求A 、B 两点坐标,并求的面积;x 3326cm ,38cm ()21,9P a a --x P x (1,0)A y (0,2)B -C 2BOC S = C (3,2)(1,2)--21a +3,32a b ±+-1a b --3y x =+2y x=-3y x =+x A B OAB(3)根据图象回答:当取何值时,正比例函数的函数值大于一次函数的函数值.22.(6分)如图,在平面直角坐标系中,网格上的每个小正方形的边长均为的顶点坐标分别为.(1)在图中画出关于轴对称的(点A 、B 、C 的对应点分别为);(2)在(1)的条件下写出点的坐标.23.(6分)如图,四边形ABCD 中,.(1)判断是否是直角,并说明理由.(2)求四边形ABCD 的面积.24.(7分)如图1,一条笔直的公路上有A ,B ,C 三地,甲,乙两辆汽车分别从A ,B 两地同时开出,沿公路匀速相向而行,驶往B ,A 两地,甲、乙两车到地的距离(千米)上行驶时间(时)的关系如图2所示.(1)A 、B 两地之间的距离为______千米;(2)图中点代表的实际意义是什么?x 1,ABC (1,3),(2,0),(3,1)A B C ---ABC x 111A B C 111A B C 、、111A B C 、、20,15,7,24,90AB BC CD AD B ︒====∠=D ∠C 12y y 、x M(3)分别求出甲,乙两人的速度,并求出他们的相遇点距离点多少千米.25.(8分)如图,同学们想测量旗杆的高度(米),他们发现系在旗杆顶端的绳子垂到了地面,并多出了一段,但这条绳子的长度未知.小明和小亮同学应用勾股定理分别提出解决这个问题的方案如下:小明:①测量出绳子垂直落地后还剩余1米,如图1;②把绳子拉直,绝子末端在地面上离旗杆底部的距离米,如图2.小亮:先在旗杆底端的绳子上打了一个结,然后举起绳结拉到如图3点处,作DF 垂直AC 于点.(1)请你按小明的方案求出旗杆的高度BC ;(2)在(1)的条件下,已知小亮举起绳结离旗杆的距离DE =4.5米,求此时绳结到地面的高度DF .26.(10分)如图,在平面直角坐标系中,直线AB 分别交轴,轴于两点.(1)求直线AB 的函数关系式;(2)E 的坐标为,若在轴上存在点,使得是等腰三角形,请求出点的坐标.C 4AC =D ()BD BC =,F DF EC =y x (0,3),(9,0)A B -(6,0)y F AEF F。
山东省济南市历下区2023-2024学年八年级上学期期中数学试题(含答案)
2023~2024学年第一学期八年级期中教学质量检测数学试题(2023.11)考试时间120分钟满分150分第Ⅰ卷(选择题共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在平面直角坐标系中,点在()A.第一象限B.第二象限C.第三象限D.第四象限2.下列各式中,是最简二次根式的是()ABCD3.下列关于的函数是一次函数的是()A.B.C.D.4.是下面哪个二元一次方程的解()A.B.C.D.5.下列计算正确的是()ABCD6.一次函数的图象过点,且随的增大而减小,则的值为()A.B.或2C.1D.27.将第一象限的“小旗”各点的横坐标保持不变,纵坐标分别乘以,符合上述要求的图形是()A.B.C.D.8.某校规定学生体测成绩由三部分组成:长跑占成绩的,50米跑占成绩的,立定跳远占成绩的.小明上述三项成绩依次是92分,100分,80分,则小明本次的体测成绩为()分.A.95B.93C.91D.899.一次函数与的图象如图所示,下列选项正确的是()()1,2Ax2yx=y=21y x=-52y x=-53xy=⎧⎨=⎩27x y-=2y x=-+2x y=--231x y-=-+===2+=()20y mx m m=+≠()0,4y x m2-2-1-50%25%25%1y kx b=+2y mx n=+第9题图①对于函数来说,随的增大而减小;②函数的图象不经过第一象限;③A .①②B .①③C .②③D .①②③10.两地相距240千米,早上9点,甲车从地出发去地,20分钟后,乙车从地出发去地.甲、乙两车离开各自出发地的路程(千米)与甲车出发的时间(小时)之间的关系如图所示,下列描述中不正确的有()个.第10题图①甲车的平均速度是60千米/小时;②乙车的平均速度是80千米/小时;③甲车与乙车在早上10点相遇;④两车在10:40或10:58时相距20千米.A .1B .2C .3D .4第Ⅱ卷(非选择题共110分)二、填空题(本大题共6个小题,每小题4分,共24分.)11.如图,在“笑脸”的“嘴巴”上找一格点,这一格点的坐标可以为______(写出一点即可).第11题图12.赵老师每天登录“学习强国”进行学习,在获得信息和知识的同时,还能获得“点点通”奖励.上表是王1y kx b =+s t y kx n =+22k m n b -=-AB A B B A 12s s 、t老师最近一周每日“点点通”奖励情况,这组数据的平均数是______点.星期一二三四五六日“点点通”(点)15202523211719第12题图13.列方程组解题:“今有马二、牛一,直金七两;马三、牛二,直金十二两.马、牛各直金几何?”其大意是:2匹马,1头牛,一共价值7两;3匹马,2头牛,一共价值12两,问每匹马、每头牛各价值多少两?设每匹马两,每头牛两.根据题意,可列方程组为______.14.直线与直线相交于点,则关于的方程组的解为______.15.下表列出了一项实验的统计数据(单位:):5080100150 (30)455580…它表示皮球从一定高度落下时,弹跳高度是下落高度的一次函数,那么变量与之间的关系式为______.16.如图,在平面直角坐标系中,直线表达式为,点是直线上一点,直线过点,且与直线的夹角,则直线的表达式为______.第16题图三、解答题(本大题共10个小题,共86分.请写出文字说明、证明过程或演算步骤.)17.(本小题满分6分)计算:(1);(2.18.(本小题满分6分)解方程组:(1);(2).19.(本小题满分6分)x y 1y x =+y mx n =+()1,M b ,x y 1x yy mx n+=⎧⎨-=⎩cm x yy x y x AB 13y x =()3,1M AB CD M AB 45AMC ∠=︒CD (22++127x y x y =+⎧⎨+=⎩351458x y x y -=-⎧⎨+=⎩和都是方程的解,求与的值.20.(本小题满分8分)如图,直线是一次函数的图象,且经过点和点.第20题图(1)求和的值;(2)求直线与两坐标轴所围成的三角形的面积.21.(本小题满分8分)如图,在平面直角坐标系中,.第21题图(1)作出;(2)作出关于轴的对称图形;(3)求的面积.22.(本小题满分8分)2023年中秋、国庆双节假期期间,济南趵突泉景区共纳客200多万人次,为迎接游客,甲、乙两个纪念品商店对标价都是每个10元纪念印章推出优惠活动:甲商店购买5个以上,从第6个开始按标价的9折卖:乙商店从第1个开始就按标价的9.5折卖.(1)直接写出两商店优惠后的价格(元)与购买数量(个)的关系式();(2)小明要买8个纪念印章,到哪个商店购买比较省钱,请说明理由;21x y =-⎧⎨=⎩14x y =⎧⎨=⎩ax y b -=a b l y kx b =+()0,4A ()5,2B --k b l ()()()4,1,3,3,2,2A B C ----ABC △ABC △y 111A B C △111A B C △y x 5x >(3)若纪念印章的成本为每个7元,请写出甲商店的利润(元)与卖出数量(个)的关系(卖出5个以上).23.(本小题满分10分)2023年10月1日是中华人民共和国成立74周年,学校开展了“迎国庆·弘扬中华传统文化”知识竞赛活动,学校从初中三个年级各随机抽取10人进行相关测试,获得了他们的成绩(单位:分),并对数据(成绩)进行整理、描述和分析,下面给出了相关信息:a .30名同学中华传统文化知识测试成绩的统计图如图1:图1b .30名同学中华传统文化知识测试成绩的频数分布直方图如图2(数据分成6组:,).图2c .测试成绩在这一组的是:70 72 72 74 74 74 75 77d .小明的中华传统文化知识测试成绩为77分.根据以上信息,回答下列问题:(1)测试成绩在这一组的同学成绩的众数为______分;(2)小明的测试成绩在抽取的30名同学的成绩中从高到低排名第______名;(3)抽取的30名同学的成绩的中位数为______分;(4)序号(见图1横轴)为1-10的学生是七年级的,他们成绩的方差记为;序号为11-20的学生是八年级的,他们成绩的方差记为;序号为21-30的学生是九年级的,他们成绩的方差记为.直接写出①,②,③中最小的是______(填序号);(5)成绩80分及以上记为优秀,若该校初中三个年级1800w x 4050x ≤<5060,6070,7080,8090,90100x x x x x ≤<≤<≤<≤<≤<7080x ≤<7080x ≤<21s 22s 23s 21s 22s 23s名同学都参加测试,请估计成绩优秀的同学人数.24.(本小题满分10分)根据以下素材,探索完成任务.如何设计布料剪裁方案?素材1图1中是第31届世界大学生夏季运动会吉祥物“蓉宝”玩偶,经测量,制作该款吉祥物头部所需布料尺寸为,身子布料尺寸.图2是两部分布料的尺寸示意图.图1图2素材2某工厂制作该款式吉祥物,经清点库存时发现,需在市场上购进某型号布料加工制作该款式的玩偶.已知该布料长为,宽为.(剪裁时不计损耗)我是布料剪裁师任务一拟定剪裁方案若要不造成布料浪费,请你设计出一匹该布料的所有剪裁方案:方案一:剪裁头部布料16张和身子布料0张.方案二:剪裁头部布料______张和身子布料______张.方案三:剪裁头部布料______张和身子布料______张.任务二解决实际问题工厂目前已有裁剪好的12张头部布料和4张身子布料,经商议,现需购买一批该型号布料,其中一部分按照方案二裁剪,另一部分按照方案三裁剪,一共制作700个“蓉宝”玩偶.请问:需要购买该型号布料共多少匹(恰好全部用完)?25.(本小题满分12分)为激发学生们对科技的好奇心和探索欲,培养学生的创新意识和创新精神,某学校开展了“智能小车实验探究”50cm 15cm ⨯50cm 40cm ⨯240cm 50cm活动.某小组观察探究小车运动中的函数关系,如图,在一条长为的水平直线轨道上,放置一辆长为的智能小车,开始时小车左端与处挡板重合,然后以的速度匀速向右行驶,当小车接触到处的挡板时因为要改变方向需停顿,然后以相同的速度返回,至再次与处的挡板接触时小车停止运动.在这个过程中,设小车的右端与处挡板的距离为,小车出发后的时间为,请根据所给条件解决下列问题:第25题图(1)小车运动时间为时,的值为______;(2)小车从处驶向处的过程中,求与的函数表达式;(3)当小车左端与处挡板的距离比小车右端与处挡板距离的2倍多时,请求出的值.26.(本小题满分12分)如图,直线与轴、轴分别交于点,直线与轴、轴分别交于点.第26题图第26题备用图(1)直线过定点的坐标为______(填写合适的选项);A .B .C .D .(2)若直线将的面积分为两部分,请求出的值.(3)当时,将直线沿直线作轴对称得直线,此时直线与轴平行,直接写出此时的值.初二年级期中检测数学试题参考答案(2023.11)一、选择题(本大题共10个小题,每小题4分,共40分.)50cm 4cm A 2cm /s B 1s A B ()cm s ()s t 3s s cm B A s t A B 4cmt 1:l y =+x y ,60A B BAO ∠=︒、2:l y kx k =-+x y C D、y kx k =-+M ()1,3(32⎛⎝(2,2l AOB △1:7k 0k >2l 1l 3l 3lx 2:l y kx k =-+k题号12345678910答案ACDABABCDC二、填空题(本大题共6个小题,每小题4分,共24分.)题号111213141516答案答案不唯一20三.解答题(本大题共9个小题,共78分.请写出文字说明、证明过程或演算步骤)17.(满分共6分)(1)(218.(满分共6分)(1)解:将①代入②得:,解得:将代入①得:原方程组的解为(2)解:由①+②得:,解得:将代入②得:,解得:原方程组的解为19.(满分共6分)解:将代入,得:()0,2-273212x y x y +=⎧⎨+=⎩12x y =⎧⎨=⎩152y x =+1522y x =-+()2222431+=-=-=0+=-+=127x y x y =+⎧⎨+=⎩①②127y y ++=2y =2y =213x =+=∴32x y =⎧⎨=⎩351458x y x y -=-⎧⎨+=⎩①②77x =1x =1x =458y +=45y =∴145x y =⎧⎪⎨=⎪⎩21x y =-⎧⎨=⎩ax y b -=21a b--=将代入,得:解得:20.(满分共8分)解:(1)将点和点代入得:解得:,直线的表达式为(2)点把代入,得解得:点,即点21.(满分共8分)解:(1)即为所求;(2)即为所求;(3)22.(满分共8分)解:(1)14x y =⎧⎨=⎩ax y b -=4a b -=1,3a b ==-()0,4A ()5,2B --y kx b=+452b k b =⎧⎨-+=-⎩654k b ⎧=-⎪⎨⎪=⎩6,45k b ∴==∴l 645y x =-+ ()0,4,4A OA ∴=0y =645y x =+6405x +=103x =-∴10,03C ⎛⎫- ⎪⎝⎭103OC = ()0,4,4A OA ∴=11102042233AOC S OA OC ∴=⋅=⨯⨯=△ABC △111A B C △1111117251523122222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯=△()500.910595y x x =+⨯⨯-=+甲0.95109.5y x x=⨯=乙(2)到乙商店购买较省钱把代入得:(元)把代入得:(元),到乙商店购买较省钱(3)23.(满分共10分)解:(1)74(2)11(3)73(4)③(5)(人)答:成绩优秀的同学人数为600人.24.(满分共10分)解:任务一:设一卷该布料裁切头部布料张,身子布料张,,,为非负整数,或或故答案为:8 30 6(方法二和方法三可以互换位置)任务二:设用卷该布料裁切头部布料8张,身子布料3张,用卷该布料裁切头部布料0张,身子布料6张,解得:(卷),需要购买该布料159卷.25.(满分共12分)解:(1)40(2)(秒)(3)①当小车从到运动时:解得:②当小车从到运动时:解得:或26.(满分共12分)解:(1)B8x =y 甲98577y =⨯+=甲8x =y 乙9.5876y =⨯=乙7677< ∴95725w x x x =+-=+10180060030⨯=m n 1540240m n +=4883nm -∴=,m n 160m n =⎧∴⎨=⎩83m n =⎧⎨=⎩0,6m n =⎧⎨=⎩x y 870012,367004x x y =-⎧⎨+=-⎩8673x y =⎧⎨=⎩8673159+= ∴()504223-÷= 23124∴+=()224s t ∴=⨯-248s t ∴=-A B ()224624t t =⨯-+16t =B A ()()50424822484t t ---=⨯-+31t =16t ∴=31t =(2)将代入得:将代入得:直线过定点,直线也过定点,是两直线的交点直线将的面积分为两部分,①当时,②当时,(3)0x=y =+y=(0,,B OB ∴=0y=y =+=4x ()4,0,4A OA ∴=11422AOB S OA OB ∴=⨯⨯=⨯⨯=△ 2l (M 1l (M M ∴ 2l AOB △1:70k>18BMD AOB S S ∴=⨯=△△12BMD M S BD x =⨯⨯=△BD=(0,D∴k ∴=0k<18AMC AOB S S ∴=⨯=△△12AMC M S AC y =⨯⨯= △23AC ∴=10,03C ⎛⎫∴ ⎪⎝⎭k ∴=k =。
八年级数学期中考试试卷
八年级数学期中考试试卷一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2.718B. 3.14159C. √2D. 0.33333...2. 已知一个三角形的两边长分别为3cm和4cm,第三边长x满足的条件是:A. x > 1cmB. 1cm ≤ x < 7cmC. 7cm < x < 10cmD. x = 7cm3. 函数y = 2x - 3的图象不经过第几象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 如果一个数的平方根是另一个数的立方根,那么这个数是:A. 1B. 0C. -1D. 85. 一个圆的直径是14cm,那么它的半径是:A. 7cmB. 14cmC. 28cmD. 21cm6. 已知一个正数的平方是16,那么这个数是:A. 4B. ±4C. -4D. 167. 一个长方体的长、宽、高分别是2cm、3cm和4cm,那么它的体积是:A. 24cm³B. 12cm³C. 6cm³D. 9cm³8. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 109. 一个角的余角是它的补角的一半,那么这个角的度数是:A. 30°B. 45°C. 60°D. 90°10. 一个数的绝对值是它本身,那么这个数是:A. 正数B. 负数C. 0D. 正数或0二、填空题(每题2分,共20分)11. 如果一个三角形的两边长分别是5cm和12cm,那么第三边长x的取值范围是______。
12. 函数y = 3x + 2的斜率是______。
13. 一个圆的半径是7cm,那么它的直径是______。
14. 一个数的立方根是2,那么这个数是______。
15. 一个长方体的体积是60cm³,长是5cm,宽是4cm,那么它的高是______。
阜宁初二数学期中考试试卷
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √-1C. πD. √22. 下列等式中,正确的是()A. 2a + 3b = 2(a + b)B. (a + b)^2 = a^2 + b^2C. (a - b)^2 = a^2 - b^2D. (a + b)^2 = a^2 + 2ab + b^23. 若x^2 - 5x + 6 = 0,则x的值为()A. 2 或 3B. 1 或 4C. 2 或 4D. 1 或 34. 已知a、b是方程2x^2 - 3x + 1 = 0的两个实数根,则a + b的值为()A. 2B. 3C. 1D. -25. 下列函数中,是二次函数的是()A. y = 2x^2 + 3x - 1B. y = 3x^2 - 4x + 5C. y = 2x + 3D. y = x^2 + 4x + 16. 已知函数y = -x^2 + 4x - 3,其图象的对称轴为()A. x = -1B. x = 1C. x = 2D. x = 37. 下列各数中,绝对值最小的是()A. -3B. 2C. -2D. 18. 已知平行四边形ABCD中,AB = 5,BC = 6,对角线AC的长度为()A. 7B. 8C. 9D. 109. 在直角坐标系中,点A(2,3)关于y轴的对称点为()A. (-2,3)B. (2,-3)C. (-2,-3)D. (2,3)10. 下列关于圆的命题中,正确的是()A. 圆的直径是圆的最长弦B. 圆的半径是圆的最长弦C. 圆的直径是圆的最短弦D. 圆的半径是圆的最短弦二、填空题(每题5分,共20分)11. 若a、b是方程2x^2 - 5x + 3 = 0的两个实数根,则a + b = _______,ab= _______。
12. 函数y = -2x^2 + 4x + 1的顶点坐标为 _______。
13. 在直角三角形ABC中,∠C = 90°,AB = 5,AC = 3,则BC = _______。
八年级数学期中考试试卷【含答案】
八年级数学期中考试试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 18cmC. 26cmD. 28cm2. 下列哪个数是有理数?A. √3B. -√5C. 1.1010010001D. 0.3333. 已知函数f(x) = 2x + 3,那么f(-1)的值为多少?A. -1B. 1C. -5D. 54. 在直角坐标系中,点P(2, -3)关于x轴的对称点坐标是什么?A. (2, 3)B. (-2, -3)C. (2, 3)D. (-2, 3)5. 下列哪个图形不是正多边形?A. 等边三角形B. 等腰梯形C. 正方形D. 正五边形二、判断题(每题1分,共5分)6. 任何两个奇数之和都是偶数。
()7. 在一个等差数列中,如果公差为0,则这个数列中的所有数都相等。
()8. 两个锐角互余。
()9. 任何一个正整数都可以表示为2的幂的乘积。
()10. 一元二次方程的解可以是两个相等的实数根。
()三、填空题(每题1分,共5分)11. 若一个等差数列的首项为3,公差为2,那么第10项为______。
12. 若一个正方形的边长为a,那么它的对角线长度为______。
13. 若一个圆的半径为r,那么它的面积公式为______。
14. 若一个三角形的三个内角分别为45°、45°和90°,那么这个三角形是______三角形。
15. 若一个函数f(x) = x^2 4x + 4,那么它的顶点坐标为______。
四、简答题(每题2分,共10分)16. 请简述勾股定理的内容。
17. 请简述一元二次方程的求根公式。
18. 请简述等差数列的通项公式。
19. 请简述圆的标准方程。
20. 请简述直角坐标系中两点之间的距离公式。
五、应用题(每题2分,共10分)21. 一个长方形的长是宽的两倍,且它的周长为30cm,求长方形的长和宽。
初二数学期中考试试卷(含答案)精选全文
可编辑修改精选全文完整版初二数学期中考试试卷(含答案)初二数学期中考试试卷(含答案)一、选择题:共40分1. 下列哪一个选项是正确的?()A. 三角形的内角和为90度B. 直角三角形的两条直角边的边长之和大于斜边的边长C. 平行四边形的对边垂直D. 两条相互垂直的直线一定相交于一点答案:B2. 若一个数的个位数和十位数相加等于十位数,百位数的值为3,则该数是()A. 210B. 123C. 132D. 102答案:C3. 当x取什么值时,方程2x - 5 = -7的解唯一?()A. 1B. -1C. 4D. -4答案:A4. 在一个比赛中,小明以每小时40公里的速度骑自行车行驶,他经过3小时后,还剩下120公里的路程未行驶。
这个比赛的总路程是()A. 240公里B. 320公里C. 400公里D. 480公里答案:C5. 若a:b = 3:5,b:c = 2:7,则a:c =()A. 3:5B. 6:7C. 3:35D. 6:35答案:B二、填空题:共30分1. 一个角度的补角是135°,那么这个角度的度数是_______。
答案:452. 单价为40元的商品,现在打7折,最终的价格是_______元。
答案:283. 把一个正方形的边长增加1cm,它的面积增加_________平方厘米。
答案:24. 若一个数的3/5是80,那个数是_______。
答案:1205. 若x的值满足x ÷ 2 = 5,那么x是_______。
答案:10三、解答题:共30分1. 一个三位数,个位数字是它的和的2倍,十位数字比个位数字大2,百位数字比十位数字大2,求这个三位数是多少。
答案:假设这个三位数为abc,根据题意得到以下等式:个位数字: a = 2(b + c)十位数字: b = c + 2百位数字: c = b + 2代入第二个等式得:b = (c + 2)再代入第三个等式得:c = ((c + 2) + 2),化简得:c = c + 4显然,上述等式没有解,因此这个三位数不存在。
初二数学期中试题及答案
初二数学期中试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是无理数?A. -3.14B. 0.33333(无限循环)C. πD. √22. 一个数的平方根是4,这个数是:A. 16B. -16C. 8D. -83. 如果a > b > 0,那么下列哪个不等式是正确的?A. a + b > 2bB. a + b < 2bC. a - b > 0D. a - b < 04. 一个直角三角形的两条直角边分别是3和4,那么斜边的长度是:A. 5B. 6C. 7D. 85. 函数y = 3x + 2的斜率是:A. 2B. 3C. -3D. -26. 下列哪个图形是轴对称图形?A. 圆B. 三角形C. 正方形D. 五边形7. 一个数的立方根是2,这个数是:A. 6B. 8C. -8D. 48. 一个数的倒数是1/8,这个数是:A. 8B. 1/8C. -8D. -1/89. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 100πD. 125π10. 如果x = 2是方程2x - 3 = 5的解,那么方程的解是:A. x = 1B. x = 2C. x = 3D. x = 4二、填空题(每题2分,共20分)11. 一个数的绝对值是5,这个数可能是_________。
12. 一个数的相反数是-3,这个数是_________。
13. 一个数的平方是25,这个数可能是_________。
14. 一个数的立方是-8,这个数是_________。
15. 一个数的平方根是±3,这个数是_________。
16. 一个数的倒数是2,这个数是_________。
17. 一个数的立方根是-2,这个数是_________。
18. 一个圆的直径是10,那么它的半径是_________。
19. 一个直角三角形的斜边是5,一条直角边是3,那么另一条直角边是_________。
人教版八年级上学期期中考试数学试卷及答案解析(共六套)
人教版八年级上学期期中考试数学试卷(一)一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c4.下列各式中,正确的是()A.B.C. =D.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±26.下列各分式中,最简分式是()A.B.C.D.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣18.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .12.若(x﹣2)0有意义,则x的取值范围是.13.分解因式:x2+x﹣2= .14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 cm.17.若x2+4x+1=0,则x2+= .18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= .三、解答题(本题共54分)19.(5分)请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误:;(2)从B到C是否正确,若不正确,错误的原因是;(3)请你正确解答.20.(2分)尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.21.(6分)分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.22.(7分)计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.23.(5分)先化简,再求值:,其中x=5.24.(5分)解分式方程:.25.(4分)已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.26.(4分)已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.27.(4分)在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.28.(4分)若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.29.(4分)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A 旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.30.(4分)已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.参考答案与试题解析一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°【考点】KA:全等三角形的性质.【分析】根据全等三角形对应角相等解答即可.【解答】解:∵两个三角形全等,∴α=58°.故选C.【点评】本题考查了全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理SSS,能推出两三角形全等,故本选项不符合题意;B、不符合全等三角形的判定定理,不能推出两三角形全等,故本选项符合题意;C、符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项不符合题意;D、符合全等三角形的判定定理ASA,能推出两三角形全等,故本选项不符合;故选B.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c【考点】51:因式分解的意义.【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【解答】解:A、是整式的乘法运算,故选项错误;B、结果不是积的形式,故选项错误;C、x2﹣1=(x+1)(x﹣1),正确;D、结果不是积的形式,故选项错误.故选:C.【点评】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.4.下列各式中,正确的是()A.B.C. =D.【考点】65:分式的基本性质.【分析】利用分式的基本性质对各式进行化简即可.【解答】解:A、已经是最简分式,故本选项错误;B、,故本选项错误;C、=,故本选项错误;D、利用分式的基本性质在分式的分子与分母上同时乘以x+y即可得到,故本选项正确;故选D.【点评】本题考查了分式的基本性质,解题的关键是在进行分式的运算时要同时乘除.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±2【考点】63:分式的值为零的条件.【分析】根据分式值为0的条件可得x2﹣4=0且x+2≠0,再解出x的值即可.【解答】解:由题意得:x2﹣4=0且x+2≠0,解得:x=2.故选:B.【点评】此题主要考查了分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零.6.下列各分式中,最简分式是()A.B.C.D.【考点】68:最简分式.【分析】最简分式是指分子和分母没有公因式.【解答】解:(A)原式=,故A不是最简分式;(B)原式==,故B不是最简分式;(C)原式=,故C是最简分式;(D)原式==,故D不是最简分式;故选(C)【点评】本题考查考查最简分式,要注意将分子分母先分解后,约去公因式.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣1【考点】4E:完全平方式.【分析】这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x 和4积的2倍.【解答】解:依题意,得m﹣3=±4,解得m=7或﹣1.故选D.【点评】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.8.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF【考点】KF:角平分线的性质.【分析】题目的已知条件比较充分,满足了角平分线的性质要求的条件,可直接应用性质得到结论,与各选项进行比对,得出答案.【解答】解:∵P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,∴PE=PF,又有AD=AD∴△APE≌△APF(HL∴AE=AF故选D.【点评】本题主要考查平分线的性质,由已知证明△APE≌△APF是解题的关键.9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定【考点】K6:三角形三边关系;K2:三角形的角平分线、中线和高.【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.倍长中线,构造一个新的三角形.根据三角形的三边关系就可以求解.【解答】解:7﹣3<2x<7+3,即2<x<5.故选A.【点评】本题主要考查了三角形的三边关系,注意此题构造了一条常见的辅助线:倍长中线.10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16【考点】K3:三角形的面积.【分析】利用角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=8:6=4:3,故选:B.【点评】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .【考点】6F:负整数指数幂.【分析】根据负整数指数为正整数指数的倒数计算.【解答】解:3﹣2=.故答案为.【点评】本题主要考查了负指数幂的运算,比较简单.12.若(x﹣2)0有意义,则x的取值范围是x≠2 .【考点】6E:零指数幂.【分析】根据非零的零次幂等于1,可得答案.【解答】解:由题意,得x﹣2≠0,解得x≠2,故答案为:x≠2.【点评】本题考查了零指数幂,利用非零的零次幂等于1是解题关键.13.分解因式:x2+x﹣2= (x﹣1)(x+2).【考点】57:因式分解﹣十字相乘法等.【分析】因为(﹣1)×2=﹣2,2﹣1=1,所以利用十字相乘法分解因式即可.【解答】解:∵(﹣1)×2=﹣2,2﹣1=1,∴x2+x﹣2=(x﹣1)(x+2).故答案为:(x﹣1)(x+2).【点评】本题考查的是十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是两角和它们的夹边分别相等的两个三角形全等.【考点】KE:全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出即可.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故答案为:两角和它们的夹边分别相等的两个三角形全等.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理:两角及其夹边分别对应相等的两个三角形全等是解题的关键.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是AO=DO或AB=DC或BO=CO .【考点】KB:全等三角形的判定.【分析】本题要判定△AOB≌△DOC,已知∠A=∠D,∠AOB=∠DOC,则可以添加AO=DO或AB=DC或BO=CO从而利用ASA或AAS判定其全等.【解答】解:添加AO=DO或AB=DC或BO=CO后可分别根据ASA、AAS、AAS判定△AOB≌△DOC.故填AO=DO或AB=DC或BO=CO.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 1.5 cm.【考点】KF:角平分线的性质.【分析】作出图形,过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD解答.【解答】解:如图,过点D作DE⊥AB于E,∵BC=4cm,BD:DC=5:3,∴CD=×4=1.5cm,∵AD是∠BAC的平分线,∴DE=CD=1.5cm.故答案为:1.5.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.17.若x2+4x+1=0,则x2+= 14 .【考点】4C:完全平方公式.【分析】由x2+4x+1=0可得x≠0,两边除以x可得到x+=﹣4,再两边平方,根据完全平方公式展开即可得到x2+的值.【解答】解:∵x2+4x+1=0,∴x+4+=0,即x+=﹣4,∴(x+)2=(﹣4)2,∴x2+2+=16,∴x2+=14.故答案为14.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了代数式的变形能力.18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式2n+1﹣2n=2n;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= 2 .【考点】37:规律型:数字的变化类.【分析】(1)根据等式的变化找出变化规律“第n个等式为2n+1﹣2n=2n”,此题得解;(2)根据2n=2n+1﹣2n将算式210﹣29﹣28﹣…﹣22﹣2进行拆项,合并同类项即可得出结论.【解答】解:(1)观察,发现规律:22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23,…,∴第n个等式为2n+1﹣2n=2n.故答案为:2n+1﹣2n=2n.(2)∵2n=2n+1﹣2n,∴210﹣29﹣28﹣…﹣22﹣2=210﹣210+29﹣29+28﹣28+27﹣…﹣23+22﹣2=22﹣2=2.故答案为:2.【点评】本题考查了规律型中数字的变化类,根据等式的变化找出变化规律是解题的关键.三、解答题(本题共54分)19.请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误: A ;(2)从B到C是否正确,若不正确,错误的原因是不能去分母;(3)请你正确解答.【考点】6B:分式的加减法.【分析】异分母分式相加减,先化为同分母分式,再加减.【解答】解:===,(1)故可知从A开始出现错误;(2)不正确,不能去分母;(3)===.【点评】本题考查异分母分式相加减.应先通分,化为同分母分式,再加减.本题需注意应先把能因式分解的分母因式分解,在计算过程中,分母不变,只把分子相加减.20.尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.【考点】N4:作图—应用与设计作图;KF:角平分线的性质.【分析】作出角平分线,进而截取PB=400进而得出答案.【解答】解:如图所示:P点即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质是解题关键.21.分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.【考点】55:提公因式法与公式法的综合运用.【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=(3a+1)(3a﹣1);(2)原式=p(p2﹣16p+64)=p(p﹣8)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.【考点】6B:分式的加减法;2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】(1)直接利用分式加减运算法则化简求出答案;(2)直接利用负指数幂的性质以及零指数幂的性质以及绝对值的性质分别化简求出答案.【解答】解:(1)原式===;(2)原式=2﹣1+1+3=5.【点评】此题主要考查了分式得加减运算以及实数运算,正确掌握运算法则是解题关键.23.先化简,再求值:,其中x=5.【考点】6D:分式的化简求值.【分析】把原式的第二项被除式分母及除式分母都分解因式,然后利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后,再与第一项通分,利用同分母分式的减法运算计算,可化为最简,最后把x的值代入化简的式子中即可求出值.【解答】解:==﹣=﹣===,(4分)当x=5时,原式==.(5分)【点评】此题考查了分式的化简求值,分式的化简求值时,加减的关键是通分,通分的关键是找出各分母的最简公分母,分式的乘除关键是约分,约分的关键是找出公因式,本题属于化简求值题,解答此类题要先将原式化为最简,再代值,同时注意有时计算后还能约分,比如本题倒数第二步约去公因式x+1.24.解分式方程:.【考点】B3:解分式方程;86:解一元一次方程.【分析】方程的两边都乘以5(x+1),把分式方程转化成整式方程,求出方程的解,再代入方程进行检验即可.【解答】解:方程的两边都乘以5(x+1)、去分母得:5x=2x+5x+5,移项、合并同类项得:2x=﹣5,∴系数化成1得:x=﹣,经检验x=﹣是原方程的解,∴原方程的解是x=﹣.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要检验.25.已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.【考点】KB:全等三角形的判定.【分析】首先得出∠EAC=∠BAD,进而利用全等三角形的判定方法(SAS)得出即可.【解答】证明:∵∠1=∠2,∴∠EAC=∠BAD,在△DAB和△EAC中,∴△ABD≌△ACE(SAS)【点评】此题主要考查了全等三角形的判定,正确应用全等三角形的判定方法是解题关键.26.已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.【考点】KD:全等三角形的判定与性质.【分析】(1)易证△ABD≌△CDB,根据全等三角形的对应边相等知AB=DC;(2)因为△ABD≌△CDB,所以全等三角形的对应角∠ADB=∠CBD.然后由平行线的判定定理知AD∥BC.【解答】证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,∴在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),∴AB=DC(全等三角形的对应边相等);(2)∵Rt△ABD≌Rt△CDB[由(1)知],∴∠ADB=∠CBD(全等三角形的对应角相等),∴AD∥BC(内错角相等,两直线平行).【点评】本题考查了全等三角形的判定与性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.以及三角形全等的性质:全等三角形的对应边、对应角相等.27.在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.【考点】KD:全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以(1)、(2)、(4)为条件,(3)为结论为例.【解答】解:以(1)、(2)、(4)为条件,(3)为结论.证明:∵AE=CF,∴AF=CE,∵AD∥BC,∴∠A=∠C,又AD=BC,∴△ADF≌△CBE(SAS),∴∠B=∠D.【点评】本题与命题联系在一起,归根到底主要还是考查了全等三角形的判定及性质问题,应熟练掌握.28.若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.【考点】AE:配方法的应用;1F:非负数的性质:偶次方.【分析】根据x2+y2﹣4x+2y+5=0,可以求得x、y的值,从而可以求得所求式子的值.【解答】解:∵x2+y2﹣4x+2y+5=0,∴x2﹣4x+4+y2+2y+1=0,∴(x﹣2)2+(y+1)2=0,∴x﹣2=0,y+1=0,解得,x=2,y=﹣1,∴()2010+y2010==1+1=2.【点评】本题考查配方法的应用、非负数的性质,解题的关键是明确题意,找出所求问题需要的条件.29.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;R2:旋转的性质.【分析】(1)在MB的延长线上截取BE=DN,连接AE,根据正方形性质得出AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,证△ABE≌△ADN推出AE=AN;∠EAB=∠NAD,求出∠EAM=∠MAN,根据SAS证△AEM≌△ANM,推出ME=MN即可;(2)在DN上截取DE=MB,连接AE,证△ABM≌△ADE,推出AM=AE;∠MAB=∠EAD,求出∠EAN=∠MAN,根据SAS证△AMN≌△AEN,推出MN=EN即可.【解答】解:(1)图1中的结论仍然成立,即BM+DN=MN,理由为:如图2,在MB的延长线上截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,∵在△ABE和△ADN中,∴△ABE≌△ADN(SAS).∴AE=AN;∠EAB=∠NAD,∵∠DAB=90°,∠MAN=45°,∴∠DAN+∠BAM=45°,∴∠EAM=∠BAM+∠EAB=45°=∠MAN,∵在△AEM和△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∴MN=ME=BE+BM=DN+BM,即DN+BM=MN;(2)猜想:线段BM,DN和MN之间的等量关系为:DN﹣BM=MN.证明:如图3,在DN上截取DE=MB,连接AE,∵由(1)知:AD=AB,∠D=∠ABM=90°,BM=DE,∴△ABM≌△ADE(SAS).∴AM=AE;∠MAB=∠EAD,∵∠MAN=45°=∠MAB+∠BAN,∴∠DAE+∠BAN=45°,∴∠EAN=90°﹣45°=45°=∠MAN,∵在△AMN和△AEN中,∴△AMN≌△AEN(SAS),∴MN=EN,∵DN﹣DE=EN,∴DN﹣BM=MN.【点评】本题考查了正方形性质和全等三角形的性质和判定的应用,题目具有一定的代表性,是一道比较好的题目,证明过程类似,培养了学生的猜想能力和分析归纳能力.30.已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.【考点】KD:全等三角形的判定与性质;KF:角平分线的性质.【分析】分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.利用CE是角平分线,角平分线的性质定理,得EF=EH,再证明∠ABD=∠EBF,同理可证:EF=EG,根据HL证明Rt△EDH≌Rt△EDG,根据全等三角形的性质和角的和差关系可求∠CED.【解答】解:分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.∵CE是角平分线,∴EF=EH.∠ABC=100°,∠DBC=20°,∴∠ABD=80°,又∵∠EBF=80°,∴∠ABD=∠EBF,∴EF=EG,∴EH=EG,在Rt△EDH与Rt△EDG中,,∴Rt△EDH≌Rt△EDG(HL),∴∠EDH=∠EDG,∴∠CED=∠EDH﹣∠ECD=(∠BDH﹣∠BCA)=×20°=10°.【点评】本题考查了全等三角形的判定与性质,角的平分线的性质定理和逆定理,本题的关键是作出辅助线,以及角的平分线性质定理的应用.人教版八年级上学期期中考试数学试卷(二)一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣212.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE5.在下列图案中,不是轴对称图形的是()A.B.C.D.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD7.下列等式成立的是()A.B.C.D.8.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,如果AB=6cm,BD=5cm,AD=4cm,那么BC的长是()A.4 B.5 C.6 D.无法确定9.如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角形板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是()A.16 B.12 C.8 D.410.如图,将一张正方形纸片经两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是()A.B.C.D.二.细心填一填(每小题2分,共20分)11.一种细菌的半径为0.000407m,用科学记数法表示为m.12.当x= 时,分式没有意义;当x= 时,分式的值为0.13.计算(﹣)3÷(﹣)2的结果是.14.计算+的结果是.15.若x2+mx+16是完全平方式,则m= .16.如图,在△ABC和△DEF 中,AB=DE,AC=DF.请再添加一个条件,使△ABC 和△DFE全等.添加的条件是(填写一个即可):,理由是.17.如图,把△ABC绕C点顺时针旋转30°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=80°,则∠A=°.18.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D 到线段AB的距离是cm.19.如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点.(1)若∠A=35°,则∠BPC=;(2)若AB=5cm,BC=3cm,则△PBC的周长= .20.探究:观察下列各式,,,…请你根据以上式子的规律填写: = ;= .三.精心解一解:(21,22每小题2分,23,24,25每小题2分,共16分)21.因式分解:2mx2﹣4mx+2m= .22.因式分解:x2y﹣9y= .23.化简:﹣+.24.先化简,再求值:(1﹣)÷,其中x=2.25.解分式方程:四.耐心想一想:(本小题4分)26.四川5.12特大地震受灾地区急需大量赈灾帐篷,某帐篷生产企业接到生产任务后,加大生产投入,提高生产效率,实际每天生产帐篷比原计划多200顶,已知现在生产3000顶帐篷所用的时间与原计划生产2000顶的时间相同.现在该企业每天能生产多少顶帐篷?五.精确作一作:作图题(本小题4分)27.某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)六.耐心看一看(每小题6分)28.如图,△ABC中A(﹣2,3),B(﹣31),C(﹣1,2).(1)画出△ABC关于x轴对称的△A1B1C1;并写出△A1B1C1三个顶点坐标:,,.(2)画出△ABC关于y轴对称的△A2B2C2;并写出△A2B2C2三个顶点坐标:,,.七.严密推一推(每小题4分,共20分)29.已知:如图,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.30.如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.31.已知:AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)AO=BO.32.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.33.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.八.挑战自我(选做本题4分)34.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB﹣AD 与CD﹣CB的大小关系,并证明你的结论.解:结论:证明:参考答案与试题解析一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣21【考点】负整数指数幂.【分析】根据负整数指数为正整数指数的倒数进行计算即可.【解答】解:原式=(﹣7)3=﹣343.故选:C.【点评】此题主要考查了负整数指数幂、乘方,关键是掌握负整数指数为正整数指数的倒数.2.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2 C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<【考点】负整数指数幂;有理数的乘方;零指数幂.【分析】分别根据零指数幂,负整数指数幂和平方的运法则进行计算,再比较大小即可.【解答】解:∵=6,(﹣2)0=1,(﹣3)2=9,又∵1<6<9,∴(﹣2)0<<(﹣3)2.故选A.【点评】主要考查了零指数幂,负整数指数幂和平方的运算.负整数指数幂为相应的正整数指数幂的倒数;任何非0数的0次幂等于1.3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、把一个多项式转化成几个整式积的形式,故A正确;B、每把一个多项式转化成几个整式积的形式,故B错误;C、是整式的乘法,故C错误;D、把一个多项式转化成几个整式积的形式,故D正确;故选:D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE【考点】全等三角形的判定.【分析】△ADC和△AEB中,已知的条件有AB=AC,∠A=∠A;要判定两三角形全等只需条件:一组对应角相等,或AD=AE即可.可据此进行判断,两边及一边的对角相等是不能判定两个三角形全等的.【解答】解:A、当∠B=∠C时,符合ASA的判定条件,故A正确;B、当AD=AE时,符合SAS的判定条件,故B正确;C、当∠ADC=∠AEB时,符合AAS的判定条件,故C正确;D、当DC=BE时,给出的条件是SSA,不能判定两个三角形全等,故D错误;故选:D.【点评】本题主要考查的是全等三角形的判定方法,需注意的是SSA和AAA不能作为判定两个三角形全等的依据.5.在下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、B、C都是轴对称图形,D不是轴对称图形,故选:D.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴的位置.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD【考点】角平分线的性质.。
人教版八年级上册数学期中考试试题附答案
人教版八年级上册数学期中考试试卷一、单选题1.在下列四个标志中,是轴对称图形的是()A.B.C.D.2.由下列长度的三条线段,能组成一个三角形的是()A.1,2,3B.3,3,6C.1,5,5D.4,5,103.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.4.下列设计的原理不是利用三角形的稳定性的是()A.由四边形组成的伸缩门B.自行车的三角形车架C.斜钉一根木条的长方形窗框D.照相机的三脚架5.如图,在△ABC和△DEC中,已知AB=DE,∠B=∠E,还需添加一个条件才能使△ABC≌△DEC,则不能添加的一组条件是()A.BC=EC B.∠ACD=∠BCE C.∠A=∠D D.AC=DC 6.如图,△ABC与△DEF关于直线1对称,BE交l于点O,则下列说法不一定正确的是()A.AC=DF B.BO=EOC.AB=EF D.l是线段AD的垂直平分线7.如图是用直尺和圆规作一个角等于已知角的示意图,说明O O∠'=∠的依据是()A.SAS B.SSS C.AAS D.ASA8.适合条件∠A=12∠B=13∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形9.小张在操场从原地右转40°前行至十米的地方,再右转40°前行十米处,继续此规则前行,问小张第一次回到原地时,共走了()米.A.70米B.80米C.90米D.100米10.如图,把△ABC纸片沿DE折叠,当点C落在四边形ABDE的外部时,测得∠1=108°,∠C=35°,则∠2的度数为()A.35°B.36°C.37°D.38°二、填空题11.在平面直角坐标系中,点P(1,2)关于y轴的对称点Q的坐标是________;12.若一个正多边形的一个外角等于36°,则这个正多边形的边数是______.13.若等腰三角形的一边长等于6,另一边长等于3,则它的周长等于__________.14.如果将一副三角板按如图方式叠放,那么∠1的大小为_____.15.如图,已知∠ACB =90°,OA 平分∠BAC ,OB 平分∠ABC ,则∠AOB =____°.16.如图,五边形ABCDE 中,//AE BC ,则C D E ∠+∠+∠的度数为__________.17.如图,已知AD //BC ,∠BAD 与∠ABC 的平分线相交于点P ,过点P 作EF ⊥AD ,交AD 于点E ,交BC 于点F ,EF =4cm ,AB =5cm ,则△APB 的面积为____cm 2三、解答题18.如图,AD 是△ABC 的角平分线,CE 是△ABC 的高,∠BAC =60°,∠BCE =40°,求∠ADC 的度数.19.如图,△ABC 的各顶点坐标分别为A (4,﹣4),B (1,﹣1),C (3,﹣1).(1)画出△ABC关于x轴对称的△A1B1C1;(2)求△ABC的面积.20.如图,点E、F在BC上,BE=FC,AB=DC,∠A=∠D=90°.求证:∠B=∠C.21.用一条长为20cm的细绳围成一个等腰三角形(1)如果腰长是底边长的2倍,那么各边的长是多少?(2)能围成有一边长为5cm的等腰三角形吗?如果能,请求出它的另两边.22.尺规作图,如图,已知三角形△ABC.(1)尺规作图,作BC的垂直平分线DE,分别交AB于D、交BC于E(不要求写作法,保留作图痕迹)(2)连结CD,若BE=5,△ACD的周长为12,求△ABC的周长.23.如图,AD与BC相交于点O,OA=OC,∠A=∠C.(1)求证:AB=CD;(2)若OE平分∠BOD,求证:OE垂直平分BD.24.如图1,在△ABC中,若AB=10,BC=8,求AC边上的中线BD的取值范围.(1)小聪同学是这样思考的:延长BD至E,使DE=BD,连接CE,可证得△CED≌△ABD.①请证明△CED≌△ABD;②中线BD的取值范围是.(2)问题拓展:如图2,在△ABC中,点D是AC的中点,分别以AB,BC为直角边向△ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中,AB=BM,BC=BN,∠ABM=∠NBC=∠90°,连接MN.请写出BD与MN的数量关系,并说明理由.25.如图1,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)求证:△CEB≌△ADC;(2)若AD=2.5cm,DE=1.7cm,求BE的长;(3)若将CE所在直线旋转到△ABC的外部(如图2),请你直接写出AD,DE,BE三者之间的数量关系是.参考答案1.B【解析】【分析】轴对称图形的定义:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,据此逐项判断即可.【详解】解:A中图形不是轴对称图形,不符合题意;B中图形是轴对称图形,符合题意;C中图形不是轴对称图形,不符合题意;D中图形不是轴对称图形,不符合题意,故选:B.【点睛】本题考查轴对称的定义,理解定义,找准对称轴是解答的关键.2.C【解析】【分析】三角形的任何一边大于其他两边之差,任意两边之和大于第三边,满足此关系的可组成三角形,由此判断选项.【详解】A、1+2=3,不能组成三角形,故此选项不合题意;B、3+3=6,不能组成三角形,故此选项不合题意;C、1+5>5,能组成三角形,故此选项符合题意;D、4+5<10,不能组成三角形,故此选项不合题意;故选:C.【点睛】本题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.3.A【解析】【分析】经过一个顶点作对边所在的直线的垂线段,叫做三角形的高,根据概念即可得出.【详解】根据定义可得A选项是作BC边上的高,符合题意,B选项作的不是三角形ABC的高,不符合题意,C选项是作AB边上的高,不符合题意,D选项是作AC边上的高,不符合题意.故选:A.【点睛】本题考查三角形高线的作法,熟练掌握定义是解题关键.4.A【解析】【分析】利用三角形的稳定性进行解答.【详解】解:由四边形组成的伸缩门是利用了四边形的不稳定性,故A不是利用三角形的稳定性;B、C、D都是利用三角形的稳定性;【点睛】此题主要考查了三角形的稳定性,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.5.D【解析】【分析】根据全等三角形的判定定理依次分析可得答案.【详解】解:∵在△ABC与△DEC中,AB=DE,∠B=∠E,若BC=EC,则可依据SAS证明△ABC≌△DEC,故A选项不符合题意;若∠ACD=∠BCE,可得∠ACB=∠DCE,则可依据AAS证明△ABC≌△DEC,故B选项不符合题意;若∠A=∠D,则可依据AAS证明△ABC≌△DEC,故C选项不符合题意;若AC=DC,则不能证明△ABC≌△DEC,故D选项符合题意;故选:D.【点睛】此题考查全等三角形的判定定理,熟记全等三角形的判定定理:SSS,SAS,ASA,AAS,HL,并熟练应用解决问题是解题的关键.6.C【解析】【分析】利用轴对称的性质解决问题即可.【详解】解:∵△ABC与△DEF关于直线l对称,∴△ABC≌△DEF,∴AC=DF,AB=DE,∵直线l垂直平分线段AD,直线l垂直平分线段BE,∴BO=OE,故选项A,B,D正确,【点睛】本题考查轴对称的性质及全等三角形的判定与性质,线段的垂直平分线的性质等知识,解题的关键是掌握轴对称的性质,属于中考常考题型.7.B【解析】【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D'.【详解】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',故选B.【点睛】本题主要考查了尺规作图—作已知角相等的角,解题的关键在于能够熟练掌握全等三角形的判定条件.8.B【解析】【分析】此题隐含的条件是三角形的内角和为180︒,列方程,根据题中角的关系求解,再判断三角形的形状.【详解】∵∠A=12∠B=13∠C,∴∠B=2∠A,∠C=3∠A,∵∠A+∠B+∠C=180︒,即6∠A=180︒,∴∠A=30︒,∴∠B=60︒,∠C=90︒,∴△ABC为直角三角形.故选B.【点睛】本题考查三角形内角和定理:三角形的内角和为180︒.9.C【解析】【分析】先画出图形求出转的次数,由此确定前行的次数是9次,再根据乘法计算即可。
初中数学期中试卷试题
一、选择题(每题3分,共30分)1. 已知a、b、c是三角形的三边,且a+b+c=12,a+c=10,则b的值为()A. 2B. 4C. 6D. 82. 下列各数中,是2的平方根的是()A. 1/2B. -1/2C. 2D. -23. 下列函数中,是正比例函数的是()A. y=2x+3B. y=3x^2C. y=3/xD. y=2x4. 在等腰三角形ABC中,AB=AC,∠B=40°,则∠A的度数是()A. 40°B. 80°C. 100°D. 120°5. 已知等腰三角形ABC的底边BC=6cm,腰AB=AC=8cm,则三角形ABC的周长是()A. 18cmB. 20cmC. 22cmD. 24cm6. 下列各数中,是3的立方根的是()A. 1/3B. 3/2C. 3D. -37. 下列函数中,是反比例函数的是()A. y=2x+3B. y=3x^2C. y=3/xD. y=2x8. 在直角三角形ABC中,∠C=90°,AC=3cm,BC=4cm,则AB的长度是()A. 5cmB. 6cmC. 7cmD. 8cm9. 已知一元二次方程x^2-5x+6=0,则该方程的解是()A. x=2B. x=3C. x=2或x=3D. x=1或x=410. 在平面直角坐标系中,点A(2,3)关于y轴的对称点坐标是()A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)二、填空题(每题3分,共30分)11. 已知a、b、c是三角形的三边,且a+b+c=12,a+c=10,则b=______。
12. 下列各数中,是2的平方根的是______。
13. 下列函数中,是正比例函数的是______。
14. 在等腰三角形ABC中,AB=AC,∠B=40°,则∠A的度数是______。
15. 已知等腰三角形ABC的底边BC=6cm,腰AB=AC=8cm,则三角形ABC的周长是______cm。
人教版八年级(上)数学期中试卷(含答案)
人教版八年级(上)数学期中试卷一、选择题(共10个小题,每小题3分,共30分)1.(3分)下面所给的图形中,不是轴对称图形的是()A.B.C.D.2.(3分)若一个正多边形的内角和小于外角和,则该正多边形的每个内角度数为()A.30°B.60°C.120°D.150°3.(3分)如图,在△ABC和△DEF中,已知AB=DF,BC=EF,根据(SAS)判定△ABC≌△DEF,还需的条件是()A.∠A=∠D B.∠B=∠EC.∠B=∠F D.以上三个均可以4.(3分)下列计算正确的是()A.(﹣a3)3=﹣a9B.(3x3)3=9x9C.2x3•5x3=10x3D.(2a7)÷(4a3)=2a45.(3分)如图,BC=BE,CD=ED,则△BCD≌△BED,其依据是()A.SAS B.AAS C.SSS D.ASA6.(3分)把分式中的x、y的值都扩大2倍,分式的值有什么变化()A.不变B.扩大2倍C.扩大4倍D.缩小一半7.(3分)下列关系式中,正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+b2D.(a+b)2=a2﹣2ab+b28.(3分)下列各式从左到右变形,属于因式分解的是()A.x(x+2)=x2+2x B.x2+3x+1=x(x+3)+1C.(x﹣2)(x+2)=x2﹣4D.4x2+2x=2x(2x+1)9.(3分)如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB =6cm,则△DEB的周长是()A.6cm B.4cm C.10cm D.以上都不对10.(3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4B.5C.6D.7二、填空题(共8个小题,每题2分,共16分)11.(2分)计算:(﹣3xy2)3=.12.(2分)因式分解:x2﹣4=.13.(2分)当x时,分式的值为正数.14.(2分)如图在△ABC中,∠C=90°,AB的垂直平分线MN分别交AC,AB于点D,E.若∠CBD:∠DBA=2:1,则∠A为.15.(2分)如图:DC∥AB,要证△ABD≌△CDB,根据“SAS”可知,需要添加一个条件:.16.(2分)比较大小:2.(填“>”,“<”或“=”)17.(2分)如果等腰三角形的两边长分别是4、8,那么它的周长是.18.(2分)如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.三、计算:(共5个小题,每题4分,共20分)19.(4分)(﹣1)2018+(﹣)2﹣(3.14﹣π)0.20.(4分)();21.(4分)(﹣4a3+12a3b﹣7a3b2)÷(﹣4a2).22.(4分)(x+2y)2﹣(x﹣2y)2.23.(4分)求x的值:27(8x﹣)3=216.四、解答题(24题5分,25题5分,26题7分,27题7分,28题10分,共34分)24.(5分)先化简,再求值:[(a﹣2b)2+(a﹣2b)(2b+a)﹣2a(2a﹣b)]÷2a.其中a=2,b=.25.(5分)如图:已知AD∥BC,AD⊥DF,BC⊥BE,DF=BE,求证:AE=FC.26.(7分)某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已抢修道路米;(2)求原计划每小时抢修道路多少米?27.(7分)(1)设A=(x2+ax+5)(﹣2x)2﹣4x4,化简A;(2)若A﹣6x3的结果中不含有x3项,求4a2﹣4a+1的值.28.(10分)在Rt△ABC中,BC=AC,∠ACB=90°,点D为射线AB上一点,连接CD,过点C作线段CD的垂线l,在直线l上,分别在点C的两侧截取与线段CD相等的线段CE和CF,连接AE、BF.(1)当点D在线段AB上时(点D不与点A、B重合),如图1①请你将图形补充完整;②线段BF、AD所在直线的位置关系为,线段BF、AD的数量关系为;(2)当点D在线段AB的延长线上时,如图2①请你将图形补充完整;②在(1)中②问的结论是否仍然成立?如果成立请进行证明,如果不成立,请说明理由.人教版八年级(上)数学期中试卷参考答案与试题解析一、选择题1.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.2.【解答】解:设这个正多边形为n边形,根据题意,得:(n﹣2)×180°<360°,解得n<4.所以该正多边形为等边三角形,所以该正多边形的每个内角度数为60°.故选:B.3.【解答】解:∵AB=DF,BC=EF,∴添加条件∠B=∠F,则△ABC≌△DFE(SAS),故选:C.4.【解答】解:A、原式=﹣a9,符合题意;B、原式=27x9,不符合题意;C、原式=10x6,不符合题意;D、原式=a4,不符合题意.故选:A.5.【解答】解:在△BCD和△BED中,,∴△BCD≌△BED(SSS),故选:C.6.【解答】解:分别用2x和2y去代换原分式中的x和y,====×.故选:D.7.【解答】解:A、应为(a﹣b)2=a2﹣2ab+b2,本选项错误;B、(a+b)(a﹣b)=a2﹣b2,本选项正确;C、应为(a+b)2=a2+2ab+b2,本选项错误;D、应为(a+b)2=a2+2ab+b2,本选项错误.故选:B.8.【解答】解:A.从左边到右边的变形不属于因式分解,故本选项不符合题意;B.从左边到右边的变形不属于因式分解,故本选项不符合题意;C.从左边到右边的变形不属于因式分解,故本选项不符合题意;D.从左边到右边的变形属于因式分解,故本选项符合题意;故选:D.9.【解答】解:∵∠C=90°,∴DC⊥AC,又AD平分∠CAB交BC于D,DE⊥AB,∴CD=ED,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,又AC=BC,∴AC=AE=BC,又AB=6cm,∴△DEB的周长=DB+BE+ED=DB+CD+BE=BC+BE=AE+EB=AB=6cm.故选:A.10.【解答】解:如图:故选:D.二、填空题11.【解答】解:(﹣3xy2)3=﹣27x3y6;故答案为:﹣27x3y6.12.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).13.【解答】解:分式的值为正数,则分子分母同号即同时为正或同时为负,∵x2>0,∴同时为负不可能,则同时为正即x﹣1>0,x2>0,x>1,故答案为:x>1.14.【解答】解:∵MN是AB的垂直平分线,∴AD=DB,∴∠A=∠DBA,∵∠CBD:∠DBA=2:1,∠C=90°,∴在△ABC中,∠A+∠ABC=∠A+∠A+2∠A=90°,解得∠A=22.5°.故答案为:22.5°.15.【解答】解:∵DC∥AB,∴∠ABD=∠CDB,又∵BD=DB,∴要证△ABD≌△CDB(SAS),需要添加一个条件AB=CD,故答案为:AB=CD.16.【解答】解:∵2≈2.33,≈2.45,∴2<;故答案为:<.17.【解答】解:∵等腰三角形有两边分别分别是4和8,∴此题有两种情况:①4为底边,那么8就是腰,则等腰三角形的周长为4+8+8=20,②8底边,那么4是腰,4+4=8,所以不能围成三角形应舍去.∴该等腰三角形的周长为20,故答案为:2018.【解答】解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.三、计算:19.【解答】解:原式=1+﹣1=.20.【解答】解:(1)原式=•=•=•=;21.【解答】解:原式=﹣4a3÷(﹣4a2)+12a3b÷(﹣4a2)﹣7a3b2÷(﹣4a2)=a﹣3ab+ab2.22.【解答】解:原式=(x+2y+x﹣2y)(x+2y﹣x+2y)=2x•4y=8xy.23.【解答】方程整理得:(8x﹣)3=8,开立方得:8x﹣=2,解得:x=.四、解答题24.【解答】解:原式=(a2﹣4ab+4b2+a2﹣4b2﹣4a2+2ab)÷2a=(﹣2a2﹣2ab)÷2a=﹣a﹣b,当a=2,b=时,原式=﹣2﹣=.25.【解答】证明:∵AD∥BC,∴∠A=∠C,∵AD⊥DF,BC⊥BE,∴∠D=∠B=90°,在△ADF和△CBE中,,∴△ADF≌△CBE(AAS),∴AE=FC.26.【解答】解:(1)按原计划完成总任务的时,已抢修道路3600×=1200米,故答案为:1200米;(2)设原计划每小时抢修道路x米,根据题意得:,解得:x=280,经检验:x=280是原方程的解.答:原计划每小时抢修道路280米.27.【解答】解:(1)A=(x2+ax+5)×4x2﹣4x4=4x4+4ax3+20x2﹣4x4=4ax3+20x2;(2)A﹣6x3=4ax3+20x2﹣6x3=(4a﹣6)x3+20x2.∵A﹣6x3的结果中不含有x3项,∴4a﹣6=0.∴a=.当a=时,4a2﹣4a+1=4×﹣4×+1=4.28.【解答】解:(1)①见图1所示.②证明:∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠ACB=∠DCF,∴∠ACD=∠BCF∵BC=AC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.故答案为:垂直、相等.(2)①见图2所示.②成立.理由如下:证明:∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠DCF+∠BCD=∠ACB+∠BCD,即∠ACD=∠BCF,∵BC=AC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.。
初二期中数学试题及答案
初二期中数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列哪个表达式的结果为负数?A. \(3 - (-2)\)B. \(-4 + 5\)C. \(-3 \times 2\)D. \(6 \div 2\)答案:C3. 如果 \(x = 3\),那么 \(2x - 5\) 的值是多少?A. 1B. 4C. 6D. 0答案:A4. 一个数的平方等于9,这个数是多少?A. 3B. -3C. 3或-3D. 只有3答案:C5. 以下哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 梯形D. 不规则多边形答案:B6. 以下哪个选项表示的是一次函数?A. \(y = 2x + 3\)B. \(y = x^2 + 1\)C. \(y = \frac{1}{x}\)D. \(y = 3\)答案:A7. 一个等腰三角形的两边长分别为5和8,那么它的周长是多少?A. 18B. 21C. 26D. 无法确定答案:B8. 以下哪个分数是最简分数?A. \(\frac{6}{8}\)B. \(\frac{9}{12}\)C. \(\frac{5}{7}\)D. \(\frac{10}{15}\)答案:C9. 如果一个圆的半径是3厘米,那么它的面积是多少?A. 28.26平方厘米B. 9平方厘米C. 18.84平方厘米D. 3.14平方厘米答案:C10. 下列哪个选项是不等式 \(2x - 3 > 5\) 的解?A. \(x > 4\)B. \(x < 4\)C. \(x > 2\)D. \(x < 2\)答案:A二、填空题(每题3分,共30分)11. 一个数的相反数是-5,这个数是______。
答案:512. 如果一个角的补角是120°,那么这个角的度数是______。
答案:60°13. 计算 \((-2)^3\) 的结果是______。
北京市第一零一中学2023-2024学年八年级下学期期中数学试题(解析版)
北京一零一中2023-2024学年度第二学期期中练习初二数学一、选择题(本大题共8小题,共24分)在下列各题的四个选项中,只有一个是符合题意的.1. 函数中,自变量x 的取值范围是( )A. x >5B. x <5C. x≥5D. x≤5【答案】C【解析】【详解】根据题意得x-5≥0,所以x≥5,故选C.2. 在中,,,的对边分别是a ,b ,c ,下列条件中,不能判定是直角三角形的是( )A. B. C. ,, D. ,,【答案】C【解析】【分析】本题主要考查了直角三角形的判断,分别根据有一个角是直角的三角形是直角三角形,勾股定理的逆定理判断即可.【详解】∵,∴,∴是直角三角形.则A 不符合题意;设,,,根据题意,得,解得,,即,所以是直角三角形.ABC A ∠B ∠C ∠ABC A B ∠∠=︒+90::3:2:1A B C ∠∠∠=1a =1b =1c =1a =b =2c =A B ∠∠=︒+90=90C ∠︒ABC 3A x ∠=2B x ∠=C x ∠=23180x x x ++=︒30x =︒390x =︒=90A ∠︒ABC则B 不符合题意;∵,∴是等边三角形.则C 符合题意;∵,∴是直角三角形;则D 不符合题意.故选:C .3. 将一次函数的图象沿y 轴向上平移4个单位长度,所得直线的解析式为( )A. B. C. D. 【答案】A【解析】【分析】本题考查的是一次函数图象的平移,熟练掌握“左加右减,上加下减”是解答本题的关键.根据平移的性质“左加右减,上加下减”,即可找出平移后的直线解析式.【详解】解: 一次函数的图象沿y 轴向上平移4个单位长度, 所得直线的解析式为.故选A .4. 在平行四边形中,,则的度数为( )A. B. C. D. 【答案】D【解析】【分析】本题主要考查了平行四边形的性质,熟练掌握平行四边形的性质是解题的关键.根据平行四边形的对角相等、邻角互补以及图形可知与是对角,即可求出和的度数;再根据与是邻角,即可求得.【详解】解:如图:∵四边形为平行四边形,a b c ==ABC 2224a b c +==ABC 21y x =-23y x =+25y x =-24y x =-24y x =+ 21y x =-∴21423y x x =-+=+ABCD 100A C ∠+∠=︒B ∠50︒80︒100︒130︒A ∠C ∠A ∠C ∠B ∠A ∠B ∠ABCD∴.∵,∴,∴.故选D .5. 下列各曲线中,不能表示y 是x 的函数的是( )A. B. C. D.【答案】B【解析】【分析】本题考查了函数的概念,“一般地,在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数”,熟悉函数的定义是解决问题的关键.根据定义,逐一判定是否对于的每一个确定的值,都有唯一确定的值与其对应,即可解决问题.【详解】解:A :对于x 的每一个取值,y 都有唯一确定的值与之对应,是的函数,该选项不符合题意;B :在x 正半轴一段范围,对于x 的每一个取值,y 有两个值与之对应,不是的函数,该选项符合题意;C :对于x 的每一个取值,y 都有唯一确定的值与之对应,是的函数,该选项不符合题意;D :对于x 的每一个取值,y 都有唯一确定的值与之对应,是的函数,该选项不符合题意;故选:B .6. 如图,在菱形中,对角线,相交于点O ,E 是的中点,连接,若,.则四边形的周长为( )A. 8B. C. D. 【答案】C 180A B A C ∠+∠=︒∠=∠,100A C ∠+∠=︒50A ∠=︒130B ∠=︒x y x y x y x x y y x y x y x y x ABCD AC BD ABEO OB =120BAD ∠=︒AEOD 6+8+【分析】本题考查了菱形的性质,直角三角形斜边中线等于斜边一半的性质以及勾股定理的应用,熟练掌握相关知识点是解题的关键.利用菱形的性质和勾股定理求出菱形的边长,利用直角三角形的中位线定理得出的长,即可计算出菱形的周长.【详解】解: 为菱形,,对角线,相交于点O ,,,,在中,,,,设,则,利用勾股定理得,,即,解得,(舍去), ,E 是的中点,, 四边形的周长为:.故选:C .7. 能说明命题“若x 为无理数,则也是无理数”是假命题的反例是( )A. B. C. D. 【答案】B【解析】【分析】本题考查了无理数的概念以及二次根式的运算,熟练掌握运算法则和定义是解题的关键.逐一计算每个选项的平方数,按照无理数定义验证即可解决问题.【详解】解:A :,是无理数,不符合题意;B :,不是无理数,符合题意;C :,是无理数,不符合题意;D :EO ABCD ABCD 120BAD ∠=︒AC BD ∴AC BD ⊥60BAO DAO ∠=∠= AB AD BC CD ===OB OD ==Rt AOB △ 60BAO ∠= ∴30ABO = ∠∴12AO AB =AO x =2AB x =222OB AO AB +=222((2)x x +=12x =22x =-∴4AB AD == AB ∴122AE EO AB ===∴AEOD 2248AE EO AD OD +++=+++=+2x π122πx =2212x ==221)6x =-=-225x =+=+8. 如图,某自动感应门的正上方A 处装着一个感应器,离地米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高米的学生正对门,缓慢走到离门米的地方时(米),感应门自动打开,则人头顶离感应器的距离等于( )A. 米B. 米C. 2米D. 米【答案】A【解析】【分析】本题考查了矩形的判定与性质,勾股定理.熟练掌握矩形的判定与性质,勾股定理是解题的关键.如图,作于,则四边形是矩形,,,,由勾股定理得,【详解】解:如图,作于,则四边形是矩形,∴,,∴,由勾股定理得,,故选:A .二、填空题(本大题共8小题,共24分)9. 已知点,,在一次函数的图象上,则,的大小关系是______.【答案】【解析】2.5AB =1.6CD 1.21.2BC =AD 1.5 1.8 2.4DE AB ⊥E BCDE 1.2DE BC == 1.6BE CD ==0.9AE =AD =DE AB ⊥E BCDE 1.2DE BC == 1.6BE CD ==0.9AE = 1.5AD ==()11,A y -()23,B y 2y x =-+1y 2y 12y y >【分析】本题主要考查了比较一次函数值的大小,根据解析式得到y 随x 增大而减小,再由即可得到答案.【详解】解:∵一次函数解析式为,,∴y 随x 增大而减小,∵知点,,在一次函数的图象上,且,∴,故答案为:.10. 已知x+1,则代数式x 2﹣2x +1的值为____.【答案】2【解析】【分析】利用完全平方公式将所求的代数式进行变形,然后代入求值即可.【详解】解:原式为:,将代入上式,原式故答案为:2.【点睛】此题考查了完全平方公式的计算,二次根式的性质.利用完全平方公式将所求代数式进行变形是解答此题的关键.11. 如图,在平面直角坐标系中,函数与的图象相交于点,则关于x 的不等式的解集是______.【答案】13-<2y x =-+10k =-<()11,A y -()23,B y 2y x =-+13-<12y y >12y y >221x x -+()2=1x -1x =+)22=(1)=11=2x -+-xOy 1y kx =23y ax =+()1,2A -3kx ax <+1x >-【解析】【分析】本题考查了一次函数与一元一次不等式的关系,观察图象写出直线在直线下方所对应的自变量的范围即可.【详解】解:观察图象可知,当时,直线在直线下方,故关于x 的不等式的解集是,故答案为:.12. 如图1,将长为,宽为的矩形分割成四个全等的直角三角形,拼成“赵爽弦图”(如图2),得到大小两个正方形.若图2中阴影小正方形的面积为49.则a 的值为______.【答案】4【解析】【分析】本题主要考查了正方形的性质,全等三角形的性质,根据题意可得图2中阴影小正方形的边长为,再由图2中阴影小正方形的面积为49即可求出答案.【详解】解:由题意得,图2中阴影小正方形的边长为,∵图2中阴影小正方形的面积为49,∴图2中阴影小正方形的边长为7,∴,∴,故答案为:4.13. 如图,将有一边重合两张直角三角形纸片放在数轴上,纸片上的点A 表示的数是,若以点为圆心,的长为半径画弧,与数轴交于点(点位于点右侧),则点表示的数为________.1y kx =23y ax =+1x >-1y kx =23y ax =+3kx ax <+1x >-1x >-23a +2a 233a a a +-=+233a a a +-=+37a +=4a =1AC BC BD ===2-A AD E E A E【答案】【解析】【分析】根据勾股定理可以求得和的长,再根据和,点表示的数为,即可写出点表示的数.【详解】解:,,,,,点表示的数是,点表示的数为故答案为:【点睛】本题考查勾股定理、实数与数轴,解答本题的关键是明确题意,利用数形结合的思想解答.14. 已知平面直角坐标系下,点A 、C 的坐标为,,点B 的坐标为.若的面积为5,则b 的值为______.【答案】8或【解析】【分析】本题考查了平面直角坐标系中的坐标与图形,利用横、纵坐标得到线段的长度解题的关键.根据点B 、C 的坐标三角形的底,根据点A 的坐标可知边上的高,利用三角形面积计算公式求解即可.【详解】点A 、C 的坐标为,,点B 的坐标为,的底为,高为2,的面积为5,2-+AB AD AD AE A 2-E 1AC BC BD === 90ACB ABD ∠=∠=︒AB ∴===AD ∴===AD AE = AE ∴= A 2-∴E 2-+2-()1,2A ()3,0C (),0Bb ABC 2-BC ()1,2A ()3,0C (),0B b ∴ABC 3BA b =- ABC,,或,故答案为:8或.15. 漏刻是我国古代的一种计时工具.据史书记载,西周时期就已经出现了漏刻,这是中国古代人民对函数思想的创造性应用.小明同学依据漏刻的原理制作了一个简单的漏刻计时工具模型,研究中发现水位是时间的一次函数,如表是小明记录的部分数据,则时.h 的值为______.…1235…… 2.4 2.8 3.24…【答案】3.6【解析】【分析】本题考查了待定系数法求一次函数解析式,解二元一次方程组,掌握待定系数法求一次函数解析式是解题的关键.设水位h (cm )是时间t (min )的一次函数解析式为,根据表格代入数据解方程组即可求出解析式,将代入即可求解.【详解】解:设水位h (cm )是时间t (min )的一次函数解析式为,根据表格得,解得,一次函数解析式为,当,.故答案为:3.6.16. 如图,在中,,于点E ,于点F ,、交于点H ,、的延长线交于G ,给出下列结论:①;②点D 是中点:③;④若平分,则;其中一定正确的结论有______.(填序号)1|3|252ABC S b =⨯-⨯=△∴|3|5b -=8b ∴=2b =-2-()cm h ()min t 4t =cm ()min t ()cm h h kt b =+4t =h kt b =+2.42 2.8k b k b +=⎧⎨+=⎩0.42k b =⎧⎨=⎩∴0.42h t =+4t =0.442 3.6h =⨯+=ABCD Y 45DBC∠=︒DE BC ⊥BF CD ⊥DE BF AD BF A BHE ∠=∠AG AB BH =BG DBC ∠)1BE CE =【答案】①③④【解析】【分析】本题考查了平行四边形的性质、等腰三角形的性质,全等三角形的性质和判定,①由证明即可;③先证明,从而得到,然后由平行四边形的性质可知;④连接,证是等腰直角三角形,,设,得出,进而得出.②无法证明点D 是中点.【详解】解:,,,,四边形是平行四边形,,,故①正确;和中,,,,,正确;连接,如图:平分,,在HBE CBF HEB CFB ∠=∠∠=∠,BHE DEC △≌△BH DC =AB BH =CH CEH △DH CH =EH EC a ==DH CH ===)1BE DE EC ==+AG DE BC BF CD ⊥⊥ ,90DEC HFD ∴∠=∠=︒9090DHF EDC EDC C ∴∠+∠=︒∠+∠=︒,DHF C ∴∠=∠ ABCD AB CD A C ∴=∠=∠,DHF BHE ∠=∠ A BHE∴∠=∠BHE DCE △HBE CDE BE DEBEH DEC ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA BHE DCE ∴ ≌BH DC EH EC ∴==,AB CD = AB BH ∴=,③CH BG 45DBC DBC ∠∠=︒,22.5HBE ∴∠=︒,,是等腰直角三角形,,,,设,,,,④正确∵是平行四边形,∴,∴,,又,∴三个角对应相等无法证明全等,∴无法证明,即无法证明点D 是中点,故②错误,综上①③④正确,故答案为:①③④.三、解答题:(本大题共10小题,共52分)解答应写出文字说明、演算步骤或证明过程.17. 计算:(1(2)【答案】(1)(222.5CDE ∴∠=︒90EH EC DEC =∠=︒ ,CEH ∴ 45EHC CDE HCD ∴∠=︒=∠+∠22.5HCD CDE ∴∠=︒=∠DH CH ∴=EH EC a ==DH CH ∴===)1DE DH HE a a ∴=+=+=+))11BE DE a EC ∴===ABCD AG BC DGF CBF ∠=∠GDF BCF ∠=∠90DFG CFB ∠=∠=︒DFG CFB DG CB =AG +2+4【解析】【分析】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的性质和运算法则.(1)先根据二次根式的乘除法逐项化简,再合并同类二次根式即可.(2)先将转化为再利用平方差公式,即可求解.【小问1详解】;【小问2详解】18. 如图,在平行四边形中,点E ,F 对角线上,且,连接、、、、求证:四边形是平行四边形.【答案】证明见解析【解析】【分析】根据平行四边形的性质,得到,,进而得到,即可证明四边形是平行四边形.【详解】证明:连接交于点O,2+=+4=+2=+22⎡⎤=-⎢⎥⎣⎦()32=-=ABCD AC AE CF =DE EB BF FD DEBF OA OC =OB OD =OE OF =DEBF BD AC四边形为平行四边形,,,,,四边形为平行四边形.【点睛】本题考查了平行四边形的性质与判定,熟练掌握相关性质与判定定理是解题关键.19.(1)直接写出和的值:______,______;(2)求的值.【答案】(11.(2)1.【解析】【分析】本题考查二次根式的混合运算和异分母分式的加法运算.(1)分别把,和进行计算即可;(2)先进行异分母分式的加法运算,再将和的值代入即可.【小问1详解】解:由已知,,1. ABCD OA OC ∴=OB OD =AE CF = OE OF ∴=∴DEBF a =b =a b +ab a b +=ab =1111s a b=+++a =b =a b +ab a b +ab a b +==1ab ===【小问2详解】解:.20. 如图,已知网格中有一个,顶点A 、B 、C 、D 都在格点上,要求仅利用已有的格点和无刻度直尺作图(注意:不能用圆规),找出格点P (一个即可),使平分.小明和小天分别采用了不同的方法:小明:在边上找到格点P ,连接,可知平分.小天:在边上找到某个格点E ,连接,发现线段上存在格点P ,使平分.请根据两人的思路,分别在图1和图2中完成小明和小天的图形(标出两人所说的点,画出相应的图形)【答案】见解析【解析】【分析】本题主要考查了等腰三角形的性质与判定,平行四边形的性质,根据两人的思路进行作图求解即可.【详解】解:如图1和图2所示,即为所求;图1中易证明,则,再由平行四边形的性质结合平行线的性质可得,则,则点P 即为所求;图2中,易证明,点P 为的中点,则由三线合一定理可得平分.21. 如图.在中,点D 、E 、F 分别是边、、的中点,且.求证:四边形为矩形.()()11112111111b a a b s a b a b a b ab +++++=+====+++++++ABCD Y BP ABC ∠AD BP BP ABC ∠BC AE AE BP ABC ∠AB AP =ABP APB ∠=∠APB CBP ∠=∠ABP CBP ∠=∠AB BE =AE BP ABC ∠ABC AB AC BC 2BC AF =ADFE【答案】见解析【解析】【分析】本题考查了三角形中位线的性质、矩形的判定、等腰三角形的性质以及三角形的内角和.先根据中位线的性质得到,得到四边形为平行四边形,再利用等腰三角形的性质和三角形内角和证明,则求证可证.【详解】证明:∵点D 、E 、F 分别是边、、的中点,∴,,∴四边形为平行四边形,∵F 为中点,,∴,∴,∵,∴,则,即,∴四边形为矩形.22. 探究函数性质时,我们经历了列表、描点、连线画出函数的图象,观察分析图象特征,概括函数性质的过程.小玉同学根据学习函数的经验,对函数进行了探究.下面是小玉的探究过程,请补充完整:(1)函数的自变量取值范围是全体实数;(2)绘制函数图象①列表:下表是x 与的几组对应值:x…01234…EF AB ∥DF AC ∥ADFE 90BAC ∠=︒AB AC BC EF AB ∥DF AC ∥ADFE BC 2BC AF =BF AF CF ==,B BAF FAC C ∠=∠∠=∠180B BAF FAC C ∠+∠+∠+∠=︒()2180BAF FAC ∠+∠=︒90BAF FAC ∠+∠=︒90BAC ∠=︒ADFE 112y x =-+112y x =-+1y 2-1-…543b 345…其中,______;②描点、连线:在同一平面直角坐标系中,描出上表中各组数值所对应的点,并画出函数的图象;(3)结合函数图象,探究函数性质①函数图象上的最低点坐标是______;②的数图象关于直线______对称;(4)已知函数图象和函数的图象无交点,直接写出m 的取值范围是______.【答案】(1)原说法正确,理由见详解 (2)①2,②见详解(3)①,②1. (4)【解析】【分析】本题主要考查了函数的图像和性质.(1)根据对于任意x ,是否有意义回答即可.(2)①把代入函数即可求出b的值. ②描点画出函数图像即可.(3)①根据函数图像即可得出答案,②根据函数图像即可得出答案,(4)根据可得出当时,即可求出m 取值范围.【小问1详解】解:对于任意x ,均有意义上.的1y b =xOy ()1,x y 1y 1y 1y x =22x y m =+112y x =-+()1,232m <1y 1x =1122y x =-+≥1x =122m +<1y∴函数的自变量取值范围是全体实数【小问2详解】①当时,,∴,故答案为:2.②的图象如下:【小问3详解】①函数图象上的最低点坐标是,故答案为:②函数图象关于直线对称,故答案为:1.【小问4详解】∵,且当时,,∴当时,,即,解得:,故答案为:.23. 一次函数的图像与轴交于点,且经过点.(1)当时,求一次函数的解析式及点的坐标;112y x =-+1x =1121122y x =-+=-+=2b =1y 1y ()1,2()1,21y 1x =1122y x =-+≥1x =12y =1x =22y <122m +<32m <32m <()40y kx k k =+≠x A ()2,B m =2m A(2)当时,对于的每一个值,函数的值大于一次函数的值,直接写出的取值范围.【答案】(1)y=x +,点A 的坐标为(-4,0) (2)【解析】【分析】(1)当m =2时,把点C 的坐标代入y =kx +4k (k ≠0),即可求得k 的值,得到一次函数表达式,再求出点A 的坐标即可;(2)根据图像得到不等式,解不等式即可.【小问1详解】解:∵m =2,∴将点C (2,2)代入y =kx +4k ,解得k =;∴一次函数表达式y =x +,当y =0时,x +=0,解得x =-4∵一次函数y =x +的图像与x 轴交于点A ,∴点A 的坐标为(-4,0).【小问2详解】解:如图,y =kx +4k (k ≠0)过定点,∵当时,,对于x 的每一个值,函数的值大于一次函数y =kx +4k (k ≠0)的为1x >-x =y x ()40y kx k k =+≠k 134313k ≤-13134313431343()=+4k x ()4,0-1x =-1y x ==-=y x ()=+4k x值,∴,,解得k ≤−.∴k≤−.【点睛】本题考查了待定系数法求一次函数解析式,利用函数图像解不等式,数形结合是解答本题的关键.24. 如图,一次函数的图象与x 轴交于点A ,与y 轴交于点B ,点D 为x 轴上的点(在点A 右侧),为的垂直平分线,垂足为点E,且,连接.(1)求证:四边形是菱形;(2)连接,求的长.【答案】(1)证明见解析(2)【解析】【分析】本题考查了菱形的判定和性质,勾股定理,平行四边形的判定和性质,直角三角形的性质,熟练掌握菱形的判定与性质是解题的关键;(1)根据为的垂直平分线,得E 为中点,,根据,再证,得,判定四边形是平行四边形,根据对角线互相垂直的平行四边形是菱形,即可得出结论;(2)根据一次函数与x 、y 轴交点得出,,再根据勾股定理求出,根据菱形的性质求出,再次利用勾股定理求出,依据直角三角形的性质定理即可得出.【小问1详解】为的垂直平分线,,,,,1x =-41k k -+≤-1313443y x =-+AC BD BC OD ∥CD ABCD OE OE AC BD BD 90BEC DEC DEA ∠=∠==︒BC OD ∥BEC DEA △≌△BC DA =ABCD OA OB AB AD BD OE AC BD BE DE ∴=90BEC DEC DEA ∠=∠==︒ BC OD ∥BCE DAE ∴∠=∠在和中,,,四边形是平行四边形,为的垂直平分线,四边形是菱形;【小问2详解】一次函数的图象与x 轴交于点A ,与y 轴交于点B ,点A 坐标为,点B 坐标为,,,在中,由(1)得:四边形是菱形,,E 为中点,,在中,E 为中点,连接,.25. 已知,矩形,,对角线、交于点O ,,点M 在射线上,满足,作于E ,的延长线交于F BEC DEA △BEC DEA BE DEBCE DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴BEC DEA △≌△BC DA ∴=∴ABCD AC BD ∴ABCD 443y x =-+∴()3,0()0,4∴3OA =4OB =Rt AOB△5AB ===ABCD 5AD AB ∴==BD 8OD OA AD ∴=+=Rt AOB△AB === BDOE 12OE AB ∴===ABCD AD AB >AC BD DAC α∠=BC 2DMC α∠=DE AC ⊥DE BC(1)如图1,点M 在线段上①依题意补全图形,并直接写出______(用含的式子表示)②连接,请用等式表示线段与的数量关系,并证明.(2)当时,设,,请直接写出线段的长(用含m 、n 的式子表示)【答案】(1)①画图见解析,;②,证明见解析 (2)或或【解析】【分析】(1)①根据题意先补全图形,由矩形的性质得到,再根据同角的余角相等得到;②如图所示,延长交于N ,设交于G ,由矩形的性质可得,,先证明,再证明,得到,则;再证明,得到,可得;证明,得到,即可推出;(2)分当点M 在上,且时,当点M 在上,且时,当点M 在线段延长线上时,三种情况画出对应的图形讨论求解即可.【小问1详解】解:①补全图形如下:∵四边形是矩形,∴,∴,∵,∴,∴;BC CDF ∠=αOM OM DF 30α≠︒AD m =CF n =FM α12OM DF =32n m -32m n -2m n +90ADC ∠=︒CDF DAC α==∠∠MO AD MO DF AC BD OA OB OC OD ====,90BAD ∠=︒DBC α∠=BDM DBM α∠==∠BM DM =MO BD ⊥GFM GMF GND GDN ==∠∠,∠∠GF GM GN GD ==,DF MN =()AAS AON COM ≌ON OM =12OM DF =BC FC MC >BC FC MC <BC ABCD 90ADC ∠=︒90DAC DCA ∠+∠=︒DE AC ⊥90CDF DCE ∠+∠=︒CDF DAC α==∠∠故答案为:;②,证明如下:如图所示,延长交于N ,设交于G ,∵四边形是矩形,∴,,∵,∴,∵,∴,∴,∵,∴,∴,∴,∵,∴,,∴,∴,∴,即;∵,∴,又∵,∴,∴,α12OM DF =MO AD MO DF ABCD AC BD OA OB OC OD ====,90BAD ∠=︒DAC α∠=90OAB OBA α==︒-∠∠AB CD 90OAB OBA ODC OCD α====︒-∠∠∠∠DBC α∠=2DMC DBM BDM α=+=∠∠∠BDM DBM α∠==∠BM DM =MO BD ⊥DF AC AD BC ⊥,∥90DFC ADE α==︒-∠∠90DNM NMB α==︒-∠∠GFM GMF GND GDN ==∠∠,∠∠GF GM GN GD ==,GF GD GM GN +=+DF MN =AD BC ∥OAN OCM ONA OMC ==∠∠,∠∠OA OC =()AAS AON COM ≌ON OM =∴,即;【小问2详解】解:如图所示,当点M 在上,且时,取线段的中点N ,连接,则是的中位线,∴,;由矩形的性质可得,∴,∴,由(1)得,∴,∴,∴四边形是平行四边形,∴,∴;如图所示,当点M 在上,且时,取线段的中点N ,连接,则是的中位线,∴,;由矩形的性质可得,2DF MN OM ==12OM DF =BC FC MC >DF ON CN ,ON DBF 12ON BF =ON BF ∥90BC AD m DCF ===︒,∠12CN FN DF ==90CN OM NCF NFC α===︒-,∠∠90EMF α=︒-∠EMF NCF =∠∠CN OM ∥ONCM 12CM ON BF ==()333222n m FM BC BF CM BC BF m m n -=--=-=--=BC FC MC <DF ON CN ,ON DBF 12ON BF =ON BF ∥90BC AD m DCF ===︒,∠∴,∴,由(1)得,∴,∴,∴,∴四边形是平行四边形,∴,∴;如图所示,当点M 线段延长线上时,延长交于N ,∵,∴,∴,∵,∴,∴,∵,∴,∴,∴,∴,∴,在12CN FN DF ==90CN OM NCF NFC α===︒-,∠∠OBM OM BD α=∠,⊥90OMB α=︒-∠EMF NCF =∠∠CN OM ∥ONCM 12CM ON BF ==()333222m n FM BF CM BC BF BC m n m -=+-=-=--=BC AC DM ,AD BC ∥ACB DAC α∠=∠=MCN ACB α==∠∠2DMC N MCN α=+=∠∠∠N MCN DAC α===∠∠∠CM MN DA DN m ===,90DFM α=︒-∠18090290FDM ααα=︒-︒+-=︒-∠FDM DFM ∠=∠MF DM =n CM m CM +=-2m n CM -=∴;综上所述,的长为或或.【点睛】本题主要考查了全等三角形的性质与判定,等腰三角形的性质与判定,矩形的性质,三角形中位线定理,平行四边形的性质与判定等等,利用分类讨论的思想求解是解题的关键.26. 在平面直角坐标系中,对于点和直线.作点关于的对称点,点是直线上一点,作线段满足且,如果线段与直线有交点,则称点是点关于直线和点的“垂对点”.如下图所示,点是点关于直线和点的“垂对点”.2m n MF CF CM +=+=FM 32n m -32m n -2m n +xOy M l M l M 'N l M P 'M P M N ''=90PM N '∠=︒M P 'l P M l N P M l N(1)如图1,已知点,若点,则点关于轴和点的“垂对点”的坐标为______;若点,求点关于轴和点的“垂对点”的坐标;(2)若点、点是直线上的点,点,且满足点是点关于轴和点的“垂对点”,直接写出点的坐标______;(3)已知点,,,,其中.点在四边形的边上,直线,若四边形的边上存在点是点关于直线和点的“垂对点”,请直接写出的取值范围(用含的式子表示)______.【答案】(1)①;②(2)点的坐标为:或 (3)【解析】分析】(1)①根据“垂对点”定义,结合坐标系,即可求解;②点,作关于轴的对称点,过点作轴,过点作的垂【()2,0M -①()10,2N -M y 1N ②()20,4N M y 2N P M P 2y x =--()5,0N -P M x N M (),0A a -(),0B a (),2C a a (),2D a a -0a >M ABCD :l y x t =+ABCD P M l N t a ()0,2()2,2-P ()20-,()1,3-55a t a-≤≤()20,4N ()2,0M -y ()2,0M 'M 'AB y ∥2,P N AB线段,垂足分别为,进而根据“垂对点”定义,结合坐标系,证明,得出的坐标为,即可求解;(2)当在轴上方时,过点作轴,过点作的垂线段,垂足分别为,同(1)可得,得出,根据在上,代入即可求解,当在轴下方时,同法可求;(3)当时,设正方形的中心为,得出,,将绕点逆时针旋转得到,与交于点,证明四边形是正方形,得出是等腰直角三角形,确定点的轨迹,进而根据点与点重合时为临界点,连接,进而得出,结合图形可得当时,存在点是点关于直线和点的“垂对点”,根据对称性即可得出.【小问1详解】解:①如图所示,点,则点关于轴和点的“垂对点”的坐标为如图所示,点,作关于轴的对称点,过点作轴,过点作的垂线段,垂足分别为,,B A ()2AAS AN M BM P ''≌P ()2,2-M x M 'AB x ∥,P N AB ,B A ()AAS ANM BMP ' ≌()2,27P m -+P 2y x =--M x 0t >ABCD Q ()0,Q a (),Q a t t '-M SN ' M '90︒M TP ' EN TP E M SET 'EHK P P C D E '5t a =5t a ≤P M l N 55a t a -≤≤()10,2N -M y 1N ()0,2()20,4N ()2,0M -y ()2,0M 'M 'AB y ∥2,P N AB ,B A根据新定义可得:,∴,∴,∴,∴的坐标为,∴点关于轴和点的“垂对点”的坐标为【小问2详解】解:如图所示,当在轴上方时,过点作轴,过点作的垂线段,垂足分别为,2290,N M P N M PM '''∠=︒=290AM N PM B M PB '''∠=︒-∠=∠()2AAS AN M BM P ''≌24,2AM PB AN BM ''====P ()2,2-M y 2N P ()2,2-M x M 'AB x ∥,P N AB ,B A同(1)可得,∴∵点、点是直线上的点,设,则,∵点,∴∴,即又∵在上,∴,解得:∴;当在轴下方时,如图所示,()AAS ANM BMP ' ≌,AN M B AM PB ''==M P 2y x =--(),2M m m --(),2M m m '+()5,0N -5,2AM m AN m '=+=--()()()225P m n m m +--+++,()2,27P m -+P 2y x =--2722m +=-72m =-()2,0P -M x∵点、点是直线上的点,设,则,∵点,∴∴,,∴,即又∵在上,∴,解得:∴综上所述,点的坐标为:或【小问3详解】解:如图所示,当时,M P 2y x =--(),2M m m --(),2M m m '+()5,0N -5,2AM m AN m '=+=+52AB m m =+--5BP AM m ==+()()225P m m m m +++-+,()22,3P m +-P 2y x =--()3222m -=-+-12m =-()1,3P -P ()20-,()1,3-0t >设正方形的中心为,∵点,,,,其中.∴即,∵关于直线直线的对称点为,则∴,∴,设直线与坐标轴的交点分别为则,∴,则是等腰直角三角形,则∵在直线上,设绕点逆时针旋转(根据新定义,与直线有交点)得到,∴是等腰直角三角形,∵点是点关于直线和点的“垂对点”,∴是等腰直角三角形,设与的交点为,将绕点逆时针旋转得到,与交于点,如图所示,ABCD Q (),0A a -(),0B a (),2C a a (),2D a a -0a >02,20a a a Q -++⎛⎫ ⎪⎝⎭()0,Q a Q :l y x t =+Q '90Q FQ '∠=︒FQ FQ t a '==-(),Q a t t '-:l y x t =+,F H()()0,,,0F t H t -OF OH =OFH 45HFQ ∠=︒N :l y x t =+N Q '90︒Q N ''l N 'NQN ' P M l N M NP ' MM 'FN S M SN ' M '90︒M TP ' EN TP E∴∵∴,∴四边形是矩形又∵∴四边形是正方形,∴∵设与轴的交点为,与轴的交点为点,则,,是等腰直角三角形,当在正方形的边上运动时,在正方形上运动,当点在上运动时,在直线上运动,∴当点与正方形有交点时,存在点是点关于直线和点的“垂对点”,即点与点重合时为临界点,连接,如图所示,90M SN M TP ''∠=∠=︒M S ST'⊥90M SN M SE ''∠=∠=︒M SET 'M S M T''=M SET 'TP NE⊥45FHO ∠=°TP x K y G EHK OKG EFG M ABCD M 'A B C D ''''N y x t =+P TE P ABCD P M l N P C D E '∵四边形是正方形,又∴轴,∵是等腰直角三角形,又,,则的纵坐标之差为,∴,,∵是等腰直角三角形,∴,∴∴当时,存在点是点关于直线和点的“垂对点”,根据对称性可得,故答案为:.【点睛】本题考查了坐标与图形,一次函数与坐标轴交点问题,等腰直角三角形的性质与判定,正方形的性质,全等三角形的性质与判定,轴对称的性质,熟练掌握一线三等角证明全等三角三角形确定点的坐标是解题的关键.M TES '45M ES EHK'∠=︒=∠D E x '∥EFG (),Q a t t '-Q F D E ''∥,F E a (),E a t a --2FG a =GKO 3OG OK OB BK OB BC a ==+=+=5t a=5t a ≤P M l N 55a t a -≤≤55a t a -≤≤。
初二期中考试试卷数学上册
一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -3B. 2C. 0D. -12. 若a、b是方程x²-3x+2=0的两个根,则a+b的值为()A. 1B. 2C. 3D. 43. 下列分式中有意义的是()A. 3/xB. x/0C. 0/xD. x/x4. 若x=2是方程2x²-5x+3=0的一个根,则方程的另一个根是()A. 1B. 3C. 2/3D. 1/25. 下列图形中,全等的是()A. 正方形B. 等腰三角形C. 平行四边形D. 梯形6. 在直角坐标系中,点A(-2,3)关于x轴的对称点是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(2,3)7. 若sinα=1/2,则α的度数是()A. 30°B. 45°C. 60°D. 90°8. 下列代数式中,同类项是()A. 3x²B. 2x²+5C. 4x³D. 5x²-2x9. 下列函数中,是反比例函数的是()A. y=2x+1B. y=x²C. y=1/xD. y=x³10. 若a=2,b=3,则a²+b²的值是()A. 7B. 8C. 9D. 10二、填空题(每题5分,共25分)11. 若sinα=√3/2,则α的余弦值为______。
12. 若a、b是方程x²-5x+6=0的两个根,则ab的值为______。
13. 下列数中,负整数指数幂是______。
14. 在直角坐标系中,点B(1,2)关于y轴的对称点是______。
15. 若x=5是方程2x²-8x+15=0的一个根,则方程的另一个根是______。
三、解答题(每题10分,共30分)16. 解方程:2x²-5x+3=0。
17. 已知a=3,b=-2,求a²+b²的值。
东华初二数学期中考试试卷
一、选择题(每题3分,共30分)1. 下列各数中,是负数的是()A. -5B. 0C. 5D. -3.52. 下列运算正确的是()A. -3 + 5 = 2B. -3 + 5 = -2C. -3 - 5 = -8D. -3 - 5 = 83. 如果a > b,那么下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 < b - 2C. a - 2 > b - 2D. a + 2 < b + 24. 下列各数中,是有理数的是()A. √9B. √16C. √25D. √365. 下列各式中,是同类项的是()A. 3x^2 + 4yB. 5a^3 + 2a^2C. 7x^2 + 5xD. 2y^3 + 3y^26. 下列各数中,是正数的是()A. -1/2B. 0C. 1/2D. -37. 下列各式中,是绝对值表达式的是()A. |3|B. |x|C. |-5|D. |2x|8. 下列各数中,是实数的是()A. √4B. √9C. √16D. √259. 下列各式中,是平方根表达式的是()A. √9B. √16C. √25D. √3610. 下列各数中,是整数的是()A. -1/2B. 0C. 1/2D. -3二、填空题(每题3分,共30分)11. (3分)如果a = 5,b = -3,那么a - b的值是______。
12. (3分)下列各数中,最小的数是______。
13. (3分)下列各数中,有理数的是______。
14. (3分)下列各数中,正数的是______。
15. (3分)下列各数中,负数的是______。
16. (3分)下列各数中,同类项的是______。
17. (3分)下列各数中,实数的是______。
18. (3分)下列各数中,绝对值表达式的是______。
19. (3分)下列各数中,平方根表达式的是______。
20. (3分)下列各数中,整数的是______。
2023-2024学年北京丰台区二中初二(上)期中数学试题及答案
2023北京丰台二中初二(上)期中数 学一、选择题(每题3分,共30分)1. 下列标志是轴对称图形的是( )A. B. C. D. 2. 在ABC 中作AB 边上的高,下列画法正确的是( )A. B.C. D.3. 下列长度的三条线段能组成三角形的是( )A. 2cm ,3cm ,6cmB. 5cm ,8cm ,11cmC. 3cm ,3cm ,6cmD. 4cm ,7cm ,11cm4. 若等腰三角形的两边长分别为3cm 和8cm ,则它的周长为( )A. 14cmB. 14cm 或19cmC. 19cmD. 11cm5. 若ABC ∆≌DEF ∆,则根据图中提供的信息,可得出x 的值为( )A. 30B. 27C. 35D. 406. 如图,点F ,B ,E ,C 在同一条直线上,点A ,D 在直线BE 的两侧,//AC DF ,CE FB =,添加下列哪个条件后,仍不能判定出ABC DEF ∆≅∆( )A.AB DE =B. //AB DEC. A D ∠=∠D. AC DF =7. 如图,把ABC 沿线段DE 折叠,使点A 落在点F 处,BC DE ∥;若50B ∠=︒,则BDF ∠的度数为( )A. 40︒B. 80︒C. 50︒D. 100︒8. 如图,在ABE 中,AE 的垂直平分线MN 交BE 于点C ,连接AC .若AB AC =,5CE =,6BC =,则ABC 的周长等于( )A. 16B. 17C. 18D. 209. 如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得△ABC 为等腰三角形,则点C 的个数是( )A. 6B. 7C. 8D. 910. 如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连接BF ,CE ,下列说法:①ABD △和ACD 面积相等;②BAD CAD ∠=∠;BDF CDE ≌;④BF CE ∥;⑤CE AE =.其中正确的是( )A. ①②B. ①③C. ①④⑤D. ①③④二、填空题(每题2分,共16分)11. 点()2,1A −关于x 轴对称的点的坐标是_____.12. 一个多边形的内角和是其外角和的2倍,这是一个________边形.13. 如图,把手机放在一个支架上面,就可以非常方便地使用,这是因为手机支架利用了三角形的_________性.14. 如图,在△ABC 和△DBC ,BA =BD 中,请你添加一个条件使得△ABC ≌△DBC ,这个条件可以是________(写出一个即可).15. 如图,D 在BC 边上,△ABC ≌△ADE ,∠EAC =40°,则∠B 的度数为_____.16. 如图,点P 是∠BAC 的平分线上一点,PB ⊥AB 于点B ,且PB =5cm ,AC =12cm ,则△APC 的面积是__________cm 2.17. “三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA ,OB 组成,两根棒在O 点相连并可绕O 转动,C 点固定,OC CD DE ==,点D 、E 可在槽中滑动.若75BDE ∠=︒,则CDE ∠的度数是______.18. 如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E 使2CE =,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA −−向终点A 运动,设点Р的运动时间为t 秒,当t 的值为___________秒时,ABP 和DCE △全等.三、解答题(19-20题各5分,21-25题各6分,26-27题各7分,共54分)19. 如图,已知:AO CO =,BO DO =,求证:△≌△AOB COD .20. 如图,点D 在AB 上,点E 在AC 上, AB =AC ,∠B =∠C .求证:AD =AE .21. 如图,AD ∥BC ,BD 平分∠ABC .求证:AB=AD .22. 如图,点A 、C 、B 、D 在同一条直线上,BE DF ∥,A F ∠=∠,AB FD =.(1)求证:AE FC =.(2)若25FCD ∠=︒,110A ∠=︒,求EBD ∠的度数.23. 下面是小东设计的尺规作图过程.已知:如图,在Rt ABC △中,90ABC ∠=︒.求作:点D ,使得点D 在BC 边上,且到AB 和AC 的距离相等.作法:①如图,以点A 为圆心,任意长为半径画弧,分别交AB ,AC 于点M ,N ;②分别以点M ,N 为圆心,大于12MN 为半径画弧,两弧交于点P ; ③画射线AP ,交BC 于点D .所以点D 即为所求.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:过点D 作DE AC ⊥于点E ,连接MP ,NP . 在AMP 和ANP 中,∵AM AN =,MP NP =,AP AP =.∴(SSS)AMP ANP ≌△△.∴∠ =∠ .∵90ABC ∠=︒,∴DB AB ⊥.∵DE AC ⊥,∴DB DE =( ).24. 如图,在平面直角坐标系中,ABC 的顶点()1,4A −,()2,1B −,()4,3C −.(1)ABC 的面积是 ;(2)已知ABC 与111A B C △关于y 轴对称,111A B C △与222A B C △关于x 轴对称,请在坐标系中画出111A B C △和222A B C △.25. 如图,90A D ∠=∠=︒,AB DC =,AC 与DB 交于点E ,F 是BC 中点.求证:BEF CEF ∠=∠.26. 已知:90AOB ∠=︒,OM 是∠AOB 的平分线,将三角板的直角顶点P 在射线OM 上滑动,两直角边分别与OA 、OB 交于C 、D .(1)PC 和PD 的数量关系是__________.(2)请你证明(1)得出的结论.27. 如图,在ABC 中,=110BAC ∠︒,AC AB =,射线AD ,AE 的夹角为55︒,过点B 作BF AD ⊥于点F ,直线BF 交AE 于点G ,连接CG .(1)如图1,射线AD ,AE 都在BAC ∠的内部.①设BAD ∠=α,则CAG ∠= (用含有α的式子表示);②作点B 关于直线AD 的对称点B ',则线段B G '与图1中已有线段 的长度相等;(2)如图2,射线AE 在BAC ∠的内部,射线AD 在BAC ∠的外部,其他条件不变,用等式表示线段BF ,BG ,CG 之间的数量关系,并证明.参考答案一、选择题(每题3分,共30分)1. 【答案】B【分析】如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据这个概念判断即可.【详解】由题意知,A,C,D三个选项中的图形均不是轴对称图形,只有选项B中的图形是轴对称图形.故选:B.【点睛】本题考查了轴对称图形的识别,掌握轴对称图形的概念是关键.2. 【答案】C【分析】作哪一条边上的高,即从所对的顶点向这条边或这条边的延长线作垂线段即可.三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.【详解】解:过点C作边AB的垂线段,即画AB边上的高CD,所以画法正确的是C选项故选:C.【点睛】本题考查了本题考查了三角形的高的概念,解题的关键是正确作三角形一边上的高.3. 【答案】B【分析】根据三角形三边关系进行判断即可.+<,不能组成三角形,故本选项不符合题意;【详解】解:A、236+>,能组成三角形,故本选项符合题意;B、5811+=,不能组成三角形,故本选项不符合题意;C、336+=,不能组成三角形,故本选项不符合题意;D、4711故选:B.【点睛】本题考查了三角形的三边关系:熟知:两边之和大于第三边;两边只差小于第三边;是解本题的关键.4. 【答案】C【分析】根据等腰三角形的定义及周长公式即可求解.【详解】解:当等腰三角形的腰为3cm时,+<,∴不能构成三角形,则此时等腰三角形的三边分别为:3cm,3cm,8cm,∵338当等腰三角形的腰为8cm时,+>,∴能构成三角形,则此时等腰三角形的三边长分别为:3cm,8cm,8cm,∵388++=(cm),则周长为:88319故它的周长为: 19cm,故选:C.【点睛】本题考查了等腰三角形的定义及周长,熟练掌握等腰三角形的定义是解题的关键.5. 【答案】A【分析】在△ABC 中利用三角形内角和可求得∠A=70°,则可得∠A 和∠D 对应,则EF=BC ,可得到答案.【详解】∵∠B=50°,∠C=60°,∴∠A=70°,∵△ABC ≌△DEF ,∴∠A 和∠D 对应,∴EF=BC=30,∴x=30,故选:A .【点睛】本题主要考查全等三角形的性质,掌握全等三角形的对应边、对应角相等是解题的关键. 6. 【答案】A【分析】先根据平行线的性质得到∠C =∠F ,再证明CB =FE ,然后根据全等三角形的判定方法对各选项进行判断.【详解】解://AC DF ,C F ∠=∠∴, CE FB =,CE EB FB BE ∴+=+,即CB FE =,∴当添加ABC DEF ∠=∠,即//AB DE 时,可根据“ASA ”判断ABC DEF ∆≅∆;当添加A D ∠=∠时,可根据“AAS ”判断ABC DEF ∆≅∆;当添加AC DF =时,可根据“SAS ”判断ABC DEF ∆≅∆.故选:A .【点睛】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法,选用哪一种方法,取决于题目中的已知条件.7. 【答案】B【分析】根据折叠的性质可得ADE FDE ∠=∠,再结合“两直线平行,同位角相等”可得50B ADE ∠=∠=︒,易得50ADE FDE ,然后根据180BDF ADE FDE ∠=︒−∠−∠,即可获得答案. 【详解】解:根据折叠的性质,可得ADE FDE ∠=∠,∵BC DE ∥,50B ∠=︒,∴50B ADE ∠=∠=︒,∴50ADE FDE ,∴180180505080BDF ADE FDE ∠=︒−∠−∠=︒−︒−︒=︒.故选:B .【点睛】本题主要考查了平行线的性质、折叠的性质,熟练掌握折叠的性质是解题关键.8. 【答案】A【分析】根据垂直平分线的性质可得5CA CE ==,然后结合AB AC =可得5AB =,即可获得答案.【详解】解:∵MN 是AE 的垂直平分线,5CE =,∴5CA CE ==,∵AB AC =,6BC =,∴5AB AC ==,∴ABC 的周长55616AB AC BC =++=++=.故选:A .【点睛】本题主要考查了垂直平分线的性质,熟练掌握相关知识是解题关键.9. 【答案】C【分析】当AB 为腰时,分别以点A 、点B 为圆心,AB 长为半径画圆,观察此时满足条件的格点数;当AB 为底边时,作线段AB 的垂直平分线,观察此时满足条件的格点数,由此得到答案.【详解】解:如下图:当AB 为腰时,分别以点A 、点B 为圆心,AB 长为半径画圆,观察可知满足条件的格点共4个;当AB 为底边时,作线段AB 的垂直平分线,观察可知满足条件的格点共4个,所以C 是图中的格点,且使得△ABC 为等腰三角形的点数共8个.故选C .【点睛】本题考查格点图中寻找可与已知两点构成等腰三角形的点,熟练掌握分类讨论思想是解题的关键. 10. 【答案】D【分析】根据三角形中线的定义可得BD CD =,根据等底等高的三角形的面积相等判断出①正确,然后利用“边角边”证明BDF CDE ≌,根据全等三角形对应边相等可得CE BF =;由条件不能得出CE AE =,BAD CAD ∠=∠.【详解】解:∵AD 是ABC 的中线,∴BD CD =,∴ABD △和ACD 面积相等,故①正确;在BDF 和CDE 中,BD CD BDF CDE DF DE =⎧⎪∠=∠⎨⎪=⎩,∴()SAS BDF CDE ≌,故③正确;∵BDF CDE ≌,∴BF CE =,故④正确;∵由条件不能得出CE AE =,BAD CAD ∠=∠,故②⑤错误.∴正确的结论为:①③④.故选:D .【点睛】本题主要考查了三角形中线的性质以及全等三角形的判定与性质,熟练掌握利用“边角边”判定三角形全等是解题关键.二、填空题(每题2分,共16分)11. 【答案】()2,1【分析】根据关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反,即可得到答案.【详解】解:点()2,1A −关于x 轴对称的点的坐标是()2,1,故答案为:()2,1.【点睛】本题主要考查了关于x 轴对称点的坐标特点,关键是掌握点的坐标的变化规律.12. 【答案】六【分析】设这个多边形是n 边形,根据题意列出方程求解即可.【详解】解:设这个多边形是n 边形,根据题意,得()21803602n −⨯︒=︒⨯,解得: 6n =,故答案为:六.【点睛】本题考查了多边形的内角和定理和外角和.能够根据多边形的内角和定理和外角和的特征,把求边数的问题就可以转化为解方程的问题是解题的关键.13. 【答案】稳定【分析】根据三角形具有稳定性可直接得出答案.【详解】解:把手机放在一个支架上面,就可以非常方便地使用,这是因为手机支架利用了三角形的稳定性,故答案为稳定.【点睛】本题考查了三角形的稳定性,解题的关键是了解三角形具有稳定性,属于基础题,难度不大. 14. 【答案】CA CD =(答案不唯一)【分析】由已知有BA =BD ,BC 边公共,由三角形全等的判定定理,可以添加这两边的夹角相等或第三边相等,均可使得△ABC≌△DBC.【详解】添加CA=CD,则由边边边的判定定理即可得△ABC≌△DBC故答案为:CA=CD(答案不唯一)【点睛】本题考查了全等三角形的判定,熟悉全等三角形的几个判定定理是解题的关键.15. 【答案】70°.【分析】根据全等三角形的性质得出AB=AD,∠BAC=∠DAE,求出∠BAD=∠EAC=40°,根据等腰三角形的性质得出∠B=∠ADB,即可求出答案.【详解】解:∵△ABC≌△ADE,∴AB=AD,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC,∵∠EAC=40°,∴∠BAD=40°,∵AB=AD,∴∠B=∠ADB=12(180°﹣∠BAD)=70°,故答案为:70°.【点睛】本题考查了全等三角形的性质,等腰三角形的性质和三角形内角和定理等知识点,能根据全等三角形的性质得出AB=AD和求出∠BAD=∠EAC是解此题的关键.16. 【答案】30【分析】如图,过点P作PD⊥AC于D,根据角平分线的性质可得PD=PB,利用三角形面积公式即可得答案.【详解】如图,过点P作PD⊥AC于D,∵点P是∠BAC的平分线上一点,PB⊥AB于点B,PB=5cm,∴PD=PB=5cm,∵AC=12cm,∴S△APC=12AC PD⋅=11252⨯⨯=30cm2.故答案为:30【点睛】本题考查角平分线性质和三角形的面积的应用,熟练掌握角平分线上的点到角两边的距离相等的性质是解题关键.17. 【答案】80︒【分析】根据等腰三角形等边对等角、三角形外角的性质以及三角形内角和定理进行求解即可.【详解】解:设O x ∠=︒,∵OC CD DE ==,∴O CDO x ∠=∠=︒,2DCE DEC x ∠=∠=︒,∴2375BDE O DEC x x x ∠=∠+∠=︒+︒=︒=︒,∴25x ︒=︒,∴22100DCE DEC x x ∠+∠=︒+︒=︒,∴18010080CDE ∠=︒−︒=︒,故答案为:80︒.【点睛】本题考查了等腰三角形的性质、三角形外角的性质以及三角形内角和定理等知识点,熟练掌握等腰三角形等边对等角以及三角形的一个外角等于与它不相邻的两个内角的和是解本题的关键.18. 【答案】1或7【分析】分两种情况进行讨论,根据题意得出22BP t ==和1622AP t =−=,即可求得答案.【详解】解:∵四边形ABCD 长方形,∴AB CD =,90ABP BCD BAD ∠=∠=∠=︒,∴90DCE ∠=︒,若90ABP DCE ∠=∠=︒,2BP CE ==,根据SAS 可得ABP DCE △≌△,由题意得22BP t ==,解得1t =;∵AB CD =,若90BAP DCE ∠=∠=︒,2AP CE ==,根据SAS 可得BAP DCE ≌,由题意得1622AP t =−=,解得7t =.∴当t 的值为1或7秒时,ABP 和DCE △全等.故答案为:1或7.【点睛】本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键.三、解答题(19-20题各5分,21-25题各6分,26-27题各7分,共54分)19.【答案】见详解【分析】根据“SAS ”证明两三角形全等即可.【详解】证明:在AOB 和COD △中,∵AO CO AOB COD BO DO =⎧⎪∠=∠⎨⎪∠=⎩,∴(SAS)AOB COD ≌△△.【点睛】本题主要考查了对顶角相等以及全等三角形的判定,理解并掌握全等三角形的判定条件是解题关键.20. 【答案】见解析【分析】先根据“ASA ”证明△ABE ≌△ACD ,然后根据全等三角形的性质即可得证.【详解】证明:在△ABE 和△ACD 中,B C AB AC A A ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABE ≌△ACD (ASA ),∴AD =AE .【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法是本题的关键.21. 【答案】见解析【分析】根据AD ∥BC ,可求证∠ADB=∠DBC ,利用BD 平分∠ABC 和等量代换可求证∠ABD=∠ADB ,然后即可得出结论.【详解】证明:∵AD ∥BC ,∴∠ADB=∠DBC .∵BD 平分∠ABC ,∴∠ABD=∠DBC .∴∠ABD=∠ADB .∴AB=AD .22. 【答案】(1)见解析 (2)135︒【分析】(1)根据BE DF ∥,可得ABE D ∠=∠,再证ABE 和FDC △全等即可;(2)利用全等三角形的性质,求出E ∠,根据EBD E A ∠=∠+∠即可解决问题.【小问1详解】证明:∵BE DF ∥,∴ABE D ∠=∠,在ABE 和FDC △中,ABE D AB FD A F ∠=∠=∠=∠,,∴ABE FDC ≌,∴AE FC =;【小问2详解】解:∵ABE FDC ≌, ∴25E FCD ∠=∠=︒,∴25110135EBD E A ∠=∠+∠=︒+︒=︒.【点睛】本题考查全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定和性质,属于中考常考题型.23. 【答案】(1)见详解 (2)MAP ,NAP ,角的平分线上的点到角的两边的距离相等【分析】(1)按照要求补全图形即可;(2)读懂证明中的每一个步骤及推理的依据,即可完成.【小问1详解】解:补画图形如下;【小问2详解】证明:过点D 作DE AC ⊥于点E ,连接MP ,NP ,在AMP 和ANP 中,∵AM AN =,MP NP =,AP AP =.∴(SSS)AMP ANP ≌△△.∴MAP NAP ∠=∠.∵90ABC ∠=︒,∴DB AB ⊥.∵DE AC ⊥,∴DB DE =(角的平分线上的点到角的两边的距离相等).故答案为:MAP ,NAP ,角的平分线上的点到角的两边的距离相等.【点睛】本题主要考查了用尺规作角平分线、三角形全等的判定与性质、角平分线的性质定理等知识,灵活运用相关知识是解题关键.24. 【答案】(1)4 (2)见详解【分析】(1)用矩形的面积分别减去三个直角三角形的面积去计算ABC 的面积即可;(2)利用关于y 轴对称的点的坐标特征得到111A B C 、、的坐标,再描点得到111A B C △;然后利用关于x轴对称的点的坐标特征得到222A B C 、、的坐标,再描点得到222A B C △即可.【小问1详解】 解:111332213134222ABC S =⨯−⨯⨯−⨯⨯−⨯⨯=△. 故答案为:4;【小问2详解】如下图,111A B C △和222A B C △即为所求.【点睛】本题主要考查了坐标与图形、作图-轴对称变换等知识,熟练掌握关于坐标轴对称的点的坐标特征是解决本题的关键.25. 【答案】见解析【分析】先证明Rt Rt (HL)ABC DCB ≌得出EBC ECB ∠=∠,再根据等腰三角形三线合一即可证明结论;【详解】证明:∵90A D ∠=∠=︒∴ABC 、DCB △是直角三角形在Rt ABC △和Rt DCB △中AB DC BC BC=⎧⎨=⎩ ∴Rt Rt (HL)ABC DCB ≌∴EBC ECB ∠=∠∴EB EC =∴EBC 是等腰三角形又∵F 是BC 中点∴BEF CEF ∠=∠【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质等知识点;熟练掌握等腰三角形三线合一的性质是解题的关键.26. 【答案】(1)PC PD =;(2)见解析【分析】(1)(2)过P 分别作PE ⊥OB 于E ,PF ⊥OA 于F ,由角平分线的性质易得PE =PF ,然后由同角的余角相等证明∠1=∠2,即可由ASA 证明△CFP ≌△DEP ,从而得证.【详解】解:(1)PC PD =.(2)过P 分别作PE ⊥OB 于E ,PF ⊥OA 于F ,∴90CFP DEP ∠=∠=︒,∵OM 是∠AOB 的平分线,∴PE PF =,∵190FPD ∠+∠=︒,且90AOB ∠=︒,∴90FPE ∠=︒,∴290FPD ∠+∠=︒,∴12∠=∠,在△CFP 和△DEP 中12CPF DEP PF PE∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△CFP ≌△DEP (ASA ),∴PC PD =.【点睛】此题主要考查角平分线的性质和全等三角形的判定和性质,难度中等,作辅助线很关键. 27. 【答案】(1)①55α︒−;②CG(2)2CG BG BF =+,证明见详解【分析】(1)①根据55BAD CAG ∠+∠=︒,即可获得答案;②连接AB ',证明(SAS)CAG B AG '≌,即可获得答案;(2)作点B 关于直线AD 的对称点P ,连接AP ,设BAD PAD β∠=∠=,证明(SAS)CAG PAG ≌,由全等三角形的性质可得CG PG =,即可获得结论.【小问1详解】解:①∵=110BAC ∠︒,55DAE ∠=︒,∴55BAD CAG BAC DAE ∠+∠=∠−∠=︒,∵BAD ∠=α,∴55CAG α∠=︒−;②如下图,连接AB ',由对称的性质可得AB AB '=,BAD B AD '∠=∠,∵AB AC =,∴AB AC '=,∵55DAG ∠=︒,=110BAC ∠︒,∴BAF CAG B AD GAB ''∠+∠=∠+∠,∴CAG GAB '∠=∠,在CAG 和B AG '△中,AG AG CAG B AG AC AB =⎧⎪∠=∠⎨⎪='⎩',∴(SAS)CAG B AG '≌,∴CG B G '=.故答案为:①55α︒−;②CG ;【小问2详解】2CG BG BF =+,证明如下:作点B 关于直线AD 的对称点P ,连接AP ,如下图,由对称的性质可得AB AP =,BAD PAD ∠=∠,BF PF =,∵AB AC =,∴AP AC =,设BAD PAD β∠=∠=,∵55DAG ∠=︒,∴55BAG DAG BAF β∠=∠−∠=︒−,∴55PAG PAD BAD BAG β∠=∠+∠+∠=︒+,∵=110BAC ∠︒,∴55CAG BAC BAF DAG β∠=∠+∠−∠=︒+,∴CAG PAG ∠=∠,在CAG 和PAG △中,AG AG CAG PAG AC AP =⎧⎪∠=∠⎨⎪=⎩,∴(SAS)CAG PAG ≌,∴CG PG =.∵2PG PF BF BG BF BG =++=+,∴2CG BG BF =+.【点睛】本题主要考查了轴对称的性质、全等三角形的判定与性质等知识,熟练掌握相关知识是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013—2014学年度(上)八年级数学期中测试卷
(满分:100分 时间:100分钟)
一、选择题(每题2分,共20分)
【 】1.下列各组长度的三条线段能组成三角形的是
A .3,3,3
B .3,3,6
C .3,2,5
D .3,2,6
【 】2.下列各语句中错误..
的有 ① 面积相等的两个三角形是全等三角形; ② 三个角分别相等的两个三角形是全等三角形; ③ 全等三角形的周长相等;
④ 有两边及其中一边的对角分别相等的两个三角形是全等三角形. A .1个 B .2个 C .3个 D .4个
【 】3.若△ABC ≌△DEF ,△DEF 的周长是34cm ,DE =10cm ,EF =13cm ,
则AC 的长为
A .10 cm
B .13 cm
C .11 cm
D .无法确定
【 】4.下列图形是轴对称图形的有
A .2个
B .3个
C .4个
D .5个
【 】5.等腰三角形是轴对称图形,它的对称轴是
A .过顶点的直线
B .底边上的高
C .底边的中线
D .顶角平分线所在的直线
【 】6.从内角和是540°的多边形的一个顶点出发,作多边形的对角线,一
共能作
A .1条
B .2条
C . 3条
D . 4条
【 】7.下列计算,正确的是
A .x x x =-34
B .236x x x =÷
C .43x x x =⋅
D .623)(ax ax =
【 】8.计算))((b a b a --+的结果是
B
A
(第15题图) (第16题图)
(第17题图) A .22b a - B .22b a -- C .222b ab a +- D .222b ab a ---
【 】9.如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,且CD 、
BE 交于一点P ,若∠A =50°,则∠BPC 的度数是 A .150° B .130° C .120° D .100°
【 】10.如图,在△ABC 中,∠ABC =∠ACB ,CD ⊥AB 交AB 于点D ,∠ABC
的平分线BE 交CD 于点E ,则∠BEC 的大小是
A . A ∠-︒41135
B .A ∠+︒41135
C . A ∠+︒2
190 D . A ∠-︒21180
二、填空题(每题3分,共24分)
11.如果点(3,b )和(a ,2)关于x 轴对称,则a +b = . 12.已知23=n a ,则=n a 9 .
13.三角形的重心是 的交点.
14.已知a 、b 、c 是△ABC 的三边长,化简=----+c a b c b a . 15.如图,在△ABC 和△FED , A D =FC ,AB =FE ,当添加条件 就可得到△ABC ≌△FED .(只需填写一个你认为正确的条件)
16.如图,在△ABC 中,AD 是∠BAC 的平分线,AB ∶AC =4∶3,则S △ABD ∶ S △ACD = .
17.如图,在Rt ABC △中, 90=∠B ,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知 10=∠BAE ,则C ∠的度数为 .
B
C
(第9题图)
B (第10题图)
O
18.观察一列单项式:1x ,3x 2,5x 2,7x ,9x 2,11x 2,…,则第2013个单项式是 . 三、解答题(共56分)
19.(5分)如图,∠1=∠2,∠ C =∠D ,求证:AC =AD .
20.(5分)尺规作图.在已知∠AOB 内求作一点P ,使其到∠AOB 的两边距离相等,且和已知点M 、N 的距离也相等.(保留作图痕迹,不要求写作法)
21.(8分)计算:(1)223225)2
1(6)231(n m mn n m -+⋅+-
(2))7()73521(2222334y x y x y x y x -÷+-
A
第14题
B
22.(6分)如图所示,在平面直角坐标系中,△ABC 的顶点在格点上. (1)在图形中作出△ABC 关于y 轴的对称图形△A 1B 1C 1(2)点A 的对应点A 1的坐标为 ; (3)△A 1B 1C 1 的面积为 .
23.(6分)先化简,再求值:222)())((a b a b a b a -++-+,其中3
,3-==b a .
24.(6分)如图,△ABC 中,DE 是AC 的垂直平分线,AE =4cm ,△ABD 的周长为14cm .求△ABC 的周长.
25.(6分)如图,在△ABC 中,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,BE =CF .求证:AD 是△ABC 的角平分线.
C
B
26.(6分)如图,在等边三角形ABC 中,AE =CD , AD 、BE 相交于点P ,BQ ⊥AD 与点Q .
求证:(1)△ABE ≌△CAD ; (2)BP =2PQ .
27.(8分)如图,△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于点F ,交AC 的平行线BG 于点G ,DE ⊥GF ,交AB 于点E ,连接EG 、EF . (1) 求证:BG =CF ;
(2) 请你判断BE +CF 与EF
2013—2014学年度(上)八年级数学期中测试卷
参考答案
一、 选择题
1~5题:ACCCD 6~10题:BCDBA 二、填空题
11.1 12.8 13.三角形三边中线 14.c b 22-
15. F A ∠=∠或BC =ED 或AB ∥EF 等 16.4︰3 17.40° 18.40252
x 三、解答题
19.证明:∵∠1=∠CAB +∠C ,∠2=∠DAB +∠D 又∵∠1=∠2,∠C =∠D
∴∠CAB =∠DAB ……………………… 2分 在△ABC 和△ABD 中,
∴△ABC ≌△ABD (AAS ) ……………………… 4分
∴AC =AD ……………………… 5分 20.略 21.(每小题4分)
(1)解:原式
2235x y xy y =-+-
(2)解:原式22.(1)作图略2分
(2)(—1,3)(2分)
(3)11
2
(2分) 23.解:
22
22222()()()2222a b a b a b a a b a ab b a ab +-++-=-+++-= ……………………… 4分
当31,3-==b a 时,原式=123()23
⨯⨯-=-……………………… 6分
24. 解:∵DE 是AC 的垂直平分线,AE=4cm ,
∴AD=CD ,AC=2AE=8cm ,……………………… 2分 ∵△ABD 的周长为14cm ,
∴AB+BD+AD=AB+BD+AD=AB+BC=14cm ,……………………… 4分
642
64642
1=-2124
7
124
m n mn m n
m n mn ++=-+==AB=AB
C D CAB DAB
∠∠⎧⎪∠∠⎨⎪⎩
∴△ABC 的周长为:AB+BC+AC=14+8=22(cm )……………………… 6分
25.证明:∵DE ⊥AB ,DF ⊥AC ,
∴Rt △BDE 和Rt △CDF 是直角三角形. ∵D 是BC 的中点 ∴BD CD =
在Rt △BDE 和Rt △CDF 中,
BE CF
BD CD
=⎧⎨
=⎩ ∴Rt △BDE ≌Rt △CDF (HL ), ……………………… 3分 ∴DE=DF ,
又∵DE ⊥AB ,DF ⊥AC ,
∴AD 是角平分线. ……………………… 6分 26. 证明:
(1)∵△ABC 为等边三角形, ∴∠BAC=∠C=60°,AB=CA , 在△ABE 与△CAD 中,
AB CA BAE C AE CD =⎧⎪
∠=∠⎨⎪=⎩
∴△ABE ≌△CAD ……………………… 3分 (2) ∵ △ABE ≌△CAD
∴∠ABE=∠CAD ;
∵∠BAD+∠CAD=60°,则∠ABE+∠BAD=60°,
∵∠BPQ 是△ABP 外角, ∴∠BPQ=∠ABP+∠BAP=60°,
又∵BQ ⊥AD ,
∴∠PBQ=30°,
∴BP=2PQ . ……………………… 6分 27.证明:(1)∵BG ∥AC
∴∠DBG=∠C
又∵∠BDG=∠CDF , BD=CD ∴ΔBDG ≌ΔCDF
∴BG=CF ; ……………………… 3分 (2) BE+CF >EF ……………………… 4分 理由:∵ΔBDG ≌ΔCDF。