第2课时 椭圆方程及性质的应用
椭圆的标准方程及性质
椭圆的标准方程及性质
椭圆是平面上一个动点到两个定点的距离之和等于常数的点的轨迹。
在直角坐
标系中,椭圆的标准方程为:
\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]
其中a和b分别为椭圆的长半轴和短半轴。
下面我们将详细介绍椭圆的标准方
程及其性质。
首先,我们来看椭圆的标准方程。
椭圆的标准方程是一个二次方程,其中x和
y的平方项系数分别为a的平方和b的平方。
通过这个方程,我们可以轻松地确定
椭圆的长短半轴,进而画出椭圆的图形。
其次,让我们来了解一下椭圆的性质。
椭圆有许多独特的性质,这些性质在数
学和实际应用中都有着重要的作用。
首先,椭圆上任意一点到两个焦点的距离之和等于常数,这个性质被称为椭圆的定义性质。
其次,椭圆的长半轴和短半轴的长度决定了椭圆的形状,长短半轴之比称为离心率,离心率越接近于零,椭圆形状越接近于圆。
另外,椭圆还有对称性,关于x轴、y轴和原点对称的性质。
除此之外,
椭圆还有着许多其他有趣的性质,如切线与法线的性质、椭圆的焦点和直径等。
总之,椭圆的标准方程及性质是数学中一个重要的概念,它不仅有着丰富的数
学内涵,而且在物理、工程等领域都有着广泛的应用。
通过学习椭圆的标准方程及性质,我们可以更好地理解椭圆的几何特征,为解决实际问题提供数学工具和思路。
希望本文对您有所帮助,谢谢阅读!。
3.1.2.2《椭圆方程及性质的应用》课件(北师大版选修2-1)
【解析】由椭圆的对称性知 |P1F1|=|P7F2|,|P2F1|=|P6F2|, |P3F1|=|P5F2|,且|P4F1|=5, ∴|P1F1|+|P2F1|+|P3F1|+…+|P7F1| =(|P1F1|+|P7F1|)+(|P2F1|+|P6F1|)+(|P3F1|+|P5F1|) +|P4F1|
x 2 2 有两个不同的交点, 2.(5分)已知直线y=kx+2与椭圆 +y =1 2
则斜率k的范围是_______.
【解题提示】联立方程组,消去y,由Δ>0求k的范围.
【解析】
答案:
x 2 y2 3.(5分)如图,把椭圆 + =1的长轴AB分成8等份,过每 25 16
个分点作x轴的垂线交椭圆的上半部分于P1、P2、…、P7七个点, F是椭圆的一个焦点,则|P1F|+|P2F|+…+|P7F|=_______.
一、选择题(每题5分,共15分)
x 2 y2 1.(2010·太原高二检测)已知F1、F2是椭圆 + =1 的两焦 16 9
点,经点F2的直线交椭圆于点A、B,若|AB|=5,则 |AF1|+|BF1|等于( (A)11 (B)10 ) (C)9 (D)16
(1)求动点M的轨迹方程; (2)若过点N( 1 ,1)的直线l交动点M的轨迹于C、D两点,且N
2
为线段CD的中点,求直线l的方程. 【解析】(1)设M(x,y),因为kAM·kBM=-2,所以
y y =-2(x≠〒1). x+1 x-1
化简得:2x2+y2=2(x≠〒1).
x 2 y 2 (a>b>0),以其左焦点F (-c,0) 1.(5分)已知椭圆E: + =1 1 2 2 a b
椭圆的简单性质(第2课时)课件(北师大选修1-1)
工具
第二章 圆锥曲线与方程
解析: (1)由题意知 m=2,椭圆方程为x42+y2=1,c=
4-1= 3,
∴左、右焦点坐标分别为(- 3,0),( 3,0).
工具
第二章 圆锥曲线与方程
1.求适合下列条件的椭圆的标准方程. (1)长轴长是短轴长的 2 倍,且过点(2,-6); (2)短轴的一个端点与两焦点组成一个正三角形,且焦点 到同侧顶点的距离为 3; (3)与椭圆x42+y32=1 有相同离心率且经过点(2,- 3).
工具
第二章 圆锥曲线与方程
解析: (1)∵2a=2×2b, ∴a=2b,当焦点在 x 轴时,方程为4xb22+by22=1,
b2=a2-c2=(a+c)(a-c)=44 163 691.
第2课时 椭圆方程及性质的应用
工具
第二章 圆锥曲线与方程
1.会应用椭圆的简单几何性质解决与椭圆相关的问题. 2.会应用椭圆的简单几何性质解决相关的实际问题. 3.会判断直线与椭圆的位置关系.
工具
第二章 圆锥曲线与方程
1.椭圆中与焦点相关的三角形问题.(重点) 2.与航天器运行轨道相关的应用问题.(难点) 3.直线与椭圆的交点问题.(易混点)
工具
第二章 圆锥曲线与方程
(1)求飞船飞行的椭圆轨道的方程; (2)飞船绕地球飞行了十四圈后,于16日5时59分返回舱与推 进舱分离,结束巡天飞行,飞船共巡天飞行了约6×105 km,问 飞船巡天飞行的平均速度是多少?(结果精确到1 km/s)
本题主要考查椭圆的基础知识及应用,明确近地点、远地 点是解题的关键.
椭圆方程及几何性质
参数θ表示椭圆上的点与椭圆中心的角度,通过改变θ的值,可以描述椭圆上点的运动 轨迹。
参数方程的应用和几何意义
应用
参数方程在数学、物理、工程等多个领 域都有广泛应用,特别是在处理复杂的 几何形状和运动轨迹时,参数方程能够 提供更直观和简洁的表示方法。
VS
几何意义
参数方程的几何意义在于将曲线上点的坐 标表示为参数的变化,从而将曲线的几何 性质转化为参数的变化性质,有助于深入 理解曲线的几何特性。
椭圆的顶点和焦点
定义
椭圆的顶点是椭圆与坐标 轴的交点,焦点是用于确 定椭圆位置的两个点。
解释
顶点位于边界线上,而焦 点位于椭圆内部。
应用
利用椭圆的顶点和焦点可 以确定椭圆的位置和大小。
03
椭圆的几何性质
椭圆的直径和弦
直径
连接椭圆上任意两点的线段被称为直 径,其长度等于椭圆的长轴或短轴。
弦
通过椭圆中心的线段与椭圆的交点形 成的线段被称为弦。
04
椭圆的极坐标表示
极坐标与直角坐标的转换
极坐标与直角坐标的转换公式:$x = rhocostheta, y = rhosintheta$,其 中$rho$为极径,$theta$为极角。
通过转换公式,可以将椭圆的直角坐 标方程转化为极坐标方程,便于理解 和分析。
椭圆的极坐标方程
椭圆的极坐标方程为 $frac{rho^2cos^2theta}{a^2} + frac{rho^2sin^2theta}{b^2} = 1$, 其中$a$和$b$分别为椭圆的长半轴和 短半轴。
椭圆的焦点到椭圆上任意一点的距离之和等于常数,这个常 数等于两个半轴长度之和,即 $a + b$。
椭圆的简单几何性质(第2课时)高中数学获奖教案
3.1.2椭圆的简单几何性质(第二课时)(人教A版选择性必修数学第一册第三章圆锥曲线的方程)一、教学目标1.掌握椭圆的第二定义;2.能够自主探究椭圆的简单几何性质.二、教学重难点1.推导椭圆的第二定义和焦半径公式;2.研究椭圆几何性质的思路与方法.三、教学过程1.复习巩固活动:完成下表【活动预设】由学生完成上表【设计意图】带领学生复习上节课学习的椭圆的简单几何性质. 2.课堂探究 2.1 探究1活动:已知椭圆E:x 216+y 212=1,F 1、F 2分别为椭圆E 的左、右焦点. P 为椭圆E 上一动点,O 为坐标原点.探究:当P 在何位置时,|OP|最小?P 又在何位置时,|OP|最大?【活动预设】由学生自主完成问题1:如果椭圆方程变为一般方程:x 2a 2+y 2b 2=1(a >b >0),结论又会如何呢? 【预设的答案】当P 在短轴顶点时,|OP|min =b ;当P 在长轴顶点时,|OP|max =a . 【设计意图】渗透从特殊到一般的思想 2.2 探究2活动:已知椭圆E:x 216+y 212=1,F 1、F 2分别为椭圆E 的左、右焦点. P 为椭圆E 上一动点. 探究:当P 在何位置时,|PF 1|最小?P 又在何位置时,|PF 1|最大?【活动预设】由学生自主完成问题2:上述|PF 1|=12|x 0+8|,|x 0+8|有什么几何意义?【预设的答案】代表P(x 0,y 0)到直线x =−8的距离 【设计意图】渗透数形结合的思想问题3:也就是说|PF 1|=12|PM|,椭圆上任意一点P(x 0,y 0),它到左焦点的距离和它到直线x =−8的距离之比为常数12,那么对于一般的椭圆是否有类似的性质呢?我们考虑下面的一般情况:已知椭圆E:x 2a 2+y 2b 2=1(a >b >0),F 1、F 2分别为椭圆E 的左、右焦点. P 为椭圆E 上一动点. 探究:当P 在何位置时,|PF 1|最小?P 又在何位置时,|PF 1|最大?【预设的答案】设P(x 0,y 0),则PF 12=(x 0+c)2+y 02 因为y 02=b 2(1−x 02a 2) 所以PF 12=(x 0+c)2+b 2(1−x 02a 2)=(a 2−b 2)x 02a2+2cx 0+b 2+c 2=c 2a 2 x 02+2cx 0+a 2=c 2a 2(x 0+a 2c )2即|PF 1|=ca |x 0+a 2c |设直线l 1:x =−a 2c ,P 到直线l 1的距离为PM ,则|PF 1|=ca |PM|,|PF 1||PM|=ca =e 【设计意图】渗透从特殊到一般的思想. 2.3 概念形成椭圆E:x 2a 2+y 2b 2=1(a >b >0),F 1、F 2分别为椭圆E 的左、右焦点,P(x 0,y 0)为椭圆E 上一动点.左准线l 1:x =−a 2c ,右准线l 2:x =a 2c 椭圆第二定义:P 到左焦点的距离|PF 1|与它到左准线l 1:x =−a 2c 的距离|PM 1|的比为离心率e ,即|PF 1||PM 1|=e =ca ; P 到右焦点的距离|PF 2|与它到右准线l 2:x =a 2c 的距离|PM 2|的比为离心率e ,即|PF 2||PM 2|=e =ca .焦半径公式:|PF 1|=c a (a 2c +x 0)= a +ex 0,|PF 2|=c a (a 2c −x 0)= a−ex 0|PF 1|min =a−c , |PF 1|max =a +c .3.课堂巩固例:动点M(x,y)与定点F(4,0)的距离和M 到定直线l:x =254的距离的比是常数45,求动点M 的轨迹.(x−4)2+y 2|x−254|=45所以25[(x−4)2+y 2]=16(x−254)2化简得:9x 2+25y 2=225 所以x 225+y 29=1【设计意图】引出椭圆第二定义拓展:动点M 到定点F 的距离与到定直线l 的距离之比是一个常数,动点M 的轨迹是否也是椭圆呢?【设计意图】留给学生课后自主研究 4.课后探究探究1:已知椭圆E:x 2a 2+y 2b 2=1(a >b >0),F 1、F 2分别为椭圆E 的左、右焦点. P 为椭圆E 上一动点. 探究:当P 在何位置时,∠F 1PF 2最大?P 又在何位置时,∠F 1PF 2最小?探究2:已知椭圆E:x 2a 2+y 2b 2=1(a >b >0),A 1、A 2分别为椭圆E 的左、右顶点. P 为椭圆E 上一动点. 探究:当P 在何位置时,∠A 1PA 2最大?P 又在何位置时,∠A 1PA 2最小?【设计意图】鼓励学生利用课余时间自主探究 5.课堂小结思考:这节课我们主要学习了什么内容?体现了哪些数学思想方法?【设计意图】梳理本节课所学内容,总结数学思想方法.。
椭圆方程及其应用
椭圆方程及其应用概述椭圆方程是描述平面上椭圆的几何性质的方程。
它是一种二次方程,通常形式为 Ax² + Bxy + Cy² + Dx + Ey + F = 0。
本文将介绍椭圆方程的基本定义、性质,以及它在不同领域的应用。
基本定义与性质椭圆方程的一般形式为 Ax² + Bxy + Cy² + Dx + Ey + F = 0。
其中 A、B、C、D、E 和 F 是实数系数,且 A 和 C 不同时为零。
通过对齐次化和变换,椭圆方程可以转化为标准形式:(x - h)²/a² + (y - k)²/b² = 1其中 (h, k) 是椭圆的中心坐标,a 和 b 分别是椭圆在 x 和 y 方向上的半长轴长度。
椭圆的离心率定义为 c/a,其中 c 是椭圆的焦点之间的距离。
椭圆方程具有如下性质:1. 椭圆是一个封闭的曲线,其形状类似于圆,但更加拉长。
2. 所有椭圆的焦点到椭圆上任意一点的距离之和是常数。
3. 椭圆的直径是椭圆上两个离焦点最远的点之间的距离。
4. 椭圆的离心率决定了椭圆的形状,当离心率接近于 0 时,椭圆接近于圆;当离心率大于 0 但小于 1 时,椭圆呈现出拉长的形状。
应用领域椭圆方程在许多领域中有广泛的应用,以下介绍其中几个典型的应用:1. 天体力学椭圆方程在描述行星、卫星和彗星的轨道时起着重要作用。
行星的轨道通常是近似椭圆的,通过求解椭圆方程可以精确描述行星在椭圆轨道上的运动,从而预测它们的位置和速度。
2. 信号处理在信号处理领域,椭圆滤波器是一种常用的数字滤波器。
椭圆滤波器的频率响应可以用椭圆方程来描述,它具有可调节的通带和阻带波纹特性,能够实现比其他常见滤波器更陡峭的过渡带和更小的波纹。
3. 地理学在地理学中,椭圆方程被广泛用于描述地球的形状。
根据地球的形状和椭圆方程的参数,可以计算出地球的椭球体参数,如长半轴、短半轴和离心率,从而精确地描述地球的地理特征。
椭圆的标准方程及性质的应用新教材选择性必修人教版选择性必修第一册
第2课时 椭圆的标准方程及性质的应用学 习 任 务 核 心 素 养1.进一步掌握椭圆的方程及其性质的应用,会判断直线与椭圆的位置关系.(重点)2.能运用直线与椭圆的位置关系解决相关的弦长、中点弦问题.(难点)1.通过直线与椭圆位置关系的判断,培养逻辑推理素养. 2.通过弦长、中点弦问题及椭圆综合问题的学习,提升逻辑推理、直观想象及数学运算素养.类比点与圆的位置关系,点P (x 0,y 0)与椭圆x 2a 2+y 2b 2=1(a >b >0)有怎样的位置关系?知识点1 点与椭圆的位置关系点P (x 0,y 0)与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系: 点P 在椭圆上⇔x 20a 2+y 20b 2=1; 点P 在椭圆内部⇔x 20a 2+y 20b 2<1; 点P 在椭圆外部⇔x 20a 2+y 20b 2>1.1.(1)点P (2,1)与椭圆x 24+y 29=1的位置关系是________. (2)若点A (a ,1)在椭圆x 24+y 22=1的内部,则a 的取值范围是________. (1)点P 在椭圆外部 (2)(-2,2) [(1)由224+129>1知,点P (2,1)在椭圆的外部.(2)∵点A 在椭圆内部, ∴a 24+12<1,∴a 2<2,∴-2<a < 2.]类比直线与圆的位置关系及判断方法,直线与椭圆有哪几种位置关系?如何判断?知识点2 直线与椭圆的位置关系 (1)判断直线和椭圆位置关系的方法直线y =kx +m 与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系的判断方法:联立⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y 2b 2=1,消去y ,得关于x 的一元二次方程.当Δ>0时,方程有两个不同解,直线与椭圆相交; 当Δ=0时,方程有两个相同解,直线与椭圆相切; 当Δ<0时,方程无解,直线与椭圆相离. (2)弦长公式设直线方程为y =kx +m (k ≠0),椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b >0),直线与椭圆的两个交点为A (x 1,y 1),B (x 2,y 2),则|AB |=(x 1-x 2)2+(y 1-y 2)2, 所以|AB |=(x 1-x 2)2+(kx 1-kx 2)2 =1+k 2(x 1-x 2)2=1+k 2·(x 1+x 2)2-4x 1x 2, 或|AB |=⎝ ⎛⎭⎪⎫1k y 1-1k y 22+(y 1-y 2)2 =1+1k 2(y 1-y 2)2=1+1k 2·(y 1+y 2)2-4y 1y 2,其中,x 1+x 2,x 1x 2或y 1+y 2,y 1y 2的值,可通过由直线方程与椭圆方程联立消去y (或x )后得到关于x (或y )的一元二次方程,利用根与系数的关系求得.2.思考辨析(正确的打“√”,错误的打“×”)(1)若直线的斜率一定,则当直线过椭圆的中心时,弦长最大. ( )(2)已知椭圆x 2a 2+y 2b 2=1(a >b >0)与点P (b ,0),过点P 可作出该椭圆的一条切线.( ) (3)直线y =k (x -a )(k ≠0)与椭圆x 2a 2+y 2b 2=1的位置关系是相交.( )[提示] (1)√ 根据椭圆的对称性可知,直线过椭圆的中心时,弦长最大. (2)× 因为P (b ,0)在椭圆内部,过点P 作不出椭圆的切线.(3)√ 直线y =k (x -a )(k ≠0)过点(a ,0)且斜率存在,所以直线y =k (x -a )与椭圆x 2a 2+y 2b 2=1的位置关系是相交.类型1 直线与椭圆的位置关系【例1】 已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个公共点; (2)有且只有一个公共点; (3)没有公共点.[解]直线l 的方程与椭圆C 的方程联立,得方程组⎩⎨⎧y =2x +m ,x 24+y 22=1,消去y ,得9x 2+8mx +2m 2-4=0. ①方程①的判别式Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144.(1)当Δ>0,即-32<m <32时,方程①有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个公共点.(2)当Δ=0,即m =±32时,方程①有两个相同的实数解,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有且只有一个公共点.(3)当Δ<0,即m <-32或m >32时,方程①没有实数解,可知原方程组没有实数解.这时直线l 与椭圆C 没有公共点.直线与椭圆位置关系的判断方法[跟进训练]1.在平面直角坐标系Oxy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q ,求k 的取值范围.[解] 由已知条件知直线l 的方程为y =kx +2,代入椭圆方程得x 22+(kx +2)2=1,整理得⎝ ⎛⎭⎪⎫12+k 2x 2+22kx +1=0,直线l 与椭圆有两个不同的交点P 和Q 等价于Δ=8k 2-4⎝ ⎛⎭⎪⎫12+k 2=4k 2-2>0,解得k <-22或k >22,所以k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫22,+∞.类型2 弦长和中点弦问题【例2】 过椭圆x 216+y 24=1内一点M (2,1)引一条弦,使弦被M 点平分. (1)求此弦所在的直线方程; (2)求此弦长.弦的中点坐标已知,则弦的两端点的横(纵坐标)之和可求,由此思考解决问题的方法.[解] (1)法一:设所求直线方程为y -1=k (x -2).代入椭圆方程并整理,得 (4k 2+1)x 2-8(2k 2-k )x +4(2k -1)2-16=0. 又设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2), 则x 1,x 2是方程的两个根, 于是x 1+x 2=8(2k 2-k )4k 2+1.又M 为AB 的中点,∴x 1+x 22=4(2k 2-k )4k 2+1=2,解得k =-12.故所求直线的方程为x +2y -4=0.法二:设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2). 又M (2,1)为AB 的中点,∴x 1+x 2=4,y 1+y 2=2. 又A ,B 两点在椭圆上,则x 21+4y 21=16,x 22+4y 22=16. 两式相减得(x 21-x 22)+4(y 21-y 22)=0.于是(x 1+x 2)(x 1-x 2)+4(y 1+y 2)(y 1-y 2)=0. ∴y 1-y 2x 1-x 2=-x 1+x 24(y 1+y 2)=-12,即k AB =-12. 又直线AB 过点M (2,1),故所求直线的方程为x +2y -4=0. (2)设弦的两端点分别为A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧x +2y -4=0,x 216+y 24=1,得x 2-4x =0,∴x 1+x 2=4,x 1x 2=0,∴|AB |=1+k 2·(x 1+x 2)2-4x 1x 2=1+⎝ ⎛⎭⎪⎫-122·42-4×0=2 5.1.本例中把条件改为“点M (2,1)是直线x +2y -4=0被焦点在x 轴上的椭圆所截得的线段的中点”,求该椭圆的离心率.[解] 设直线与椭圆的两交点为(x 1,y 1),(x 2,y 2),则x 1+x 2=4,y 1+y 2=2. 由x 21a 2+y 21b 2=1和x 22a 2+y 22b 2=1,得4(x 1-x 2)a 2=-2(y 1-y 2)b 2,∴k =y 1-y 2x 1-x 2=-2b 2a 2.又x +2y -4=0的斜率为-12,∴b 2a 2=14. 所以椭圆的离心率为e =ca =1-⎝ ⎛⎭⎪⎫b a 2=1-14=32.2.把本例条件中“使弦被M 点平分去掉”,其他条件不变,求弦的中点P 的轨迹方程.[解] 设弦的中点为P (x ,y ),两端点的坐标为(x 1,y 1),(x 2,y 2),则⎩⎪⎨⎪⎧x 2116+y 214=1,x 2216+y 224=1.∴2x (x 1-x 2)16=-2y (y 1-y 2)4,从而k l =y 1-y 2x 1-x 2=-x 4y .又k l =k PM =y -1x -2,∴-x 4y =y -1x -2.整理得x 2+4y 2-2x -4y =0.故轨迹方程为x 2+4y 2-2x -4y =0.(椭圆内的部分)试总结用“点差法”求解弦中点问题的解题步骤.[提示] ①设点——设出弦的两端点坐标; ②代入——代入圆锥曲线方程;③作差——两式相减,再用平方差公式把上式展开; ④整理——转化为斜率与中点坐标的关系式,然后求解.[跟进训练]2.已知斜率为2的直线l 经过椭圆x 25+y 24=1的右焦点F 1,与椭圆相交于A ,B 两点,求弦AB 的长.[解] 因为直线l 过椭圆x 25+y 24=1的右焦点F 1(1,0),又直线的斜率为2,所以直线l 的方程为y =2(x -1),即2x -y -2=0.法一:解方程组⎩⎨⎧x 25+y 24=1,2x -y -2=0,得交点A (0,-2),B ⎝ ⎛⎭⎪⎫53,43,所以|AB |=(x A -x B )2+(y A -y B )2=⎝ ⎛⎭⎪⎫0-532+⎝ ⎛⎭⎪⎫-2-432 =1259=553.法二:设A (x 1,y 1),B (x 2,y 2),由方程组⎩⎨⎧x 25+y 24=1,2x -y -2=0消去y 得3x 2-5x =0,因为Δ=(-5)2=25>0, 则x 1+x 2=53,x 1·x 2=0. 所以|AB |=(x 1-x 2)2+(y 1-y 2)2=(x 1-x 2)2(1+k 2AB ) =(1+k 2AB )[(x 1+x 2)2-4x 1x 2]=(1+22)⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫532-4×0=553.类型3 直线与椭圆的最短距离问题【例3】 在椭圆x 24+y 27=1上求一点P ,使它到直线l :3x -2y -16=0的距离最短,并求出最短距离.[解] 设与椭圆相切并与l 平行的直线方程为y =32x +m , 代入x 24+y 27=1,并整理得4x 2+3mx +m 2-7=0, 由Δ=9m 2-16(m 2-7)=0 得m 2=16,∴m =±4,故两切线方程为y =32x +4和y =32x -4,显然y =32x -4即3x -2y -8=0距l 最近,它们之间的距离即为所求最短距离,且y =32x -4与椭圆的切点即为所求点P .故所求最短距离为 d =|16-8|32+(-2)2=813=81313. 由⎩⎪⎨⎪⎧ x 24+y 27=1,y =32x -4得⎩⎪⎨⎪⎧x =32,y =-74,即P ⎝ ⎛⎭⎪⎫32,-74.本题将求最小距离问题转化为直线与椭圆的相切问题.此类问题的常规解法是直线方程与椭圆方程联立,消去y 或x 得到关于x 或y 的一元二次方程,根据判别式Δ=0建立方程求解.[跟进训练]3.已知椭圆x 2+8y 2=8,在椭圆上求一点P ,使P 到直线l :x -y +4=0的距离最短,并求出最短距离.[解] 设与直线x -y +4=0平行且与椭圆相切的直线方程为x -y +a =0,由⎩⎪⎨⎪⎧x 2+8y 2=8,x -y +a =0,消x 得9y 2-2ay +a 2-8=0, 由Δ=4a 2-36(a 2-8)=0, 解得a =3或a =-3,∴与直线l 距离较近的切线为x -y +3=0,它们之间的距离即为所求最短距离,且x -y +3=0与椭圆的切点即为所求点P .故所求最短距离为d =|4-3|2=22.由⎩⎪⎨⎪⎧x 2+8y 2=8,x -y +3=0得⎩⎪⎨⎪⎧x =-83,y =13,即P ⎝ ⎛⎭⎪⎫-83,13.类型4 与椭圆有关的综合问题【例4】 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为F 1,F 2,上顶点为M ,且△MF 1F 2为面积是1的等腰直角三角形.(1)求椭圆E 的方程;(2)若直线l :y =-x +m 与椭圆E 交于A ,B 两点,以AB 为直径的圆与y 轴相切,求m 的值.[解] (1)由题意可得M (0,b ),F 1(-c ,0),F 2(c ,0),由△MF 1F 2为面积是1的等腰直角三角形得12a 2=1,b =c ,且a 2-b 2=c 2,解得b =c =1,a =2,则椭圆E 的方程为x 22+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),联立⎩⎨⎧x 22+y 2=1,-x +m =y⇒3x 2-4mx +2m 2-2=0,有Δ=16m 2-12(2m 2-2)>0, 即-3<m <3,x 1+x 2=4m 3,x 1x 2=2m 2-23,可得AB 中点横坐标为2m3, |AB |=1+1·(x 1+x 2)2-4x 1x 2=2·16m 29-8m 2-83=433-m 2,以AB 为直径的圆与y 轴相切, 可得半径r =12|AB |=2|m |3, 即233-m 2=2|m |3,解得m =±62∈(-3,3),则m 的值为±62.解决直线和椭圆综合问题的注意点(1)根据条件设出合适的直线的方程,当不知直线是否有斜率时需要分两种情况讨论.(2)在具体求解时,常采用设而不求、整体代换的方法,可使运算简单. (3)不要忽视判别式的作用,在解题中判别式起到了限制参数范围的作用,这一点容易忽视.[跟进训练]4.椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点A (-2,0),且离心率为22. (1)求椭圆E 的方程;(2)过点P (4,0)任作一条直线l 与椭圆C 交于不同的两点M ,N .在x 轴上是否存在点Q ,使得∠PQM +∠PQN =180°?若存在,求出点Q 的坐标;若不存在,请说明理由.[解] (1)由条件可知,椭圆的焦点在x 轴上,且a =2,又e =c a =22,得c = 2.由a 2-b 2=c 2得b 2=a 2-c 2=2. ∴所求椭圆的方程为x 24+y 22=1.(2)若存在点Q (m ,0),使得∠PQM +∠PQN =180°, 则直线QM 和QN 的斜率存在,分别设为k 1,k 2. 等价于k 1+k 2=0.依题意,直线l 的斜率存在,故设直线l 的方程为y =k (x -4).由⎩⎨⎧y =k (x -4)x 24+y 22=1,得(2k 2+1)x 2-16k 2x +32k 2-4=0.因为直线l 与椭圆C 有两个交点,所以Δ>0. 即(16k 2)2-4(2k 2+1)(32k 2-4)>0,解得k 2<16.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=16k 22k 2+1,x 1x 2=32k 2-42k 2+1,y 1=k (x 1-4),y 2=k (x 2-4), 令k 1+k 2=y 1x 1-m +y 2x 2-m =0,(x 1-m )y 2+(x 2-m )y 1=0,当k ≠0时,2x 1x 2-(m +4)(x 1+x 2)+8m =0, 化简得,8(m -1)2k 2+1=0,所以m =1.当k =0时,也成立.所以存在点Q (1,0),使得∠PQM +∠PQN =180°.1.若点P (a ,1)在椭圆x 22+y 23=1的外部,则a 的取值范围为( ) A .⎝ ⎛⎭⎪⎫-233,233 B .⎝ ⎛⎭⎪⎫233,+∞∪⎝ ⎛⎭⎪⎫-∞,-233 C .⎝ ⎛⎭⎪⎫43,+∞D .⎝ ⎛⎭⎪⎫-∞,-43B [由题意知a 22+13>1,即a 2>43,解得a >233或a <-233.]2.已知直线l :x +y -3=0,椭圆x 24+y 2=1,则直线与椭圆的位置关系是( ) A .相离 B .相切 C .相交D .相交或相切A [把x +y -3=0代入x 24+y 2=1, 得x 24+(3-x )2=1,即5x 2-24x +32=0. ∵Δ=(-24)2-4×5×32=-64<0, ∴直线与椭圆相离.]3.已知F 是椭圆x 225+y 29=1的一个焦点,AB 为过椭圆中心的一条弦,则△ABF 面积的最大值为( )A .6B .15C .20D .12D [由可知a =5,b =3,c =52-32=4,设A (x 1,y 1),B (x 2,y 2),则S =12|OF |·|y 1-y 2|≤12|OF |·2b =12.]4.已知椭圆4x 2+y 2=1及直线y =x +m ,当直线与椭圆有公共点时,则实数m 的取值范围是________.⎣⎢⎡⎦⎥⎤-52,52 [由⎩⎪⎨⎪⎧4x 2+y 2=1,y =x +m ,得5x 2+2mx +m 2-1=0,当直线与椭圆有公共点时,Δ=4m 2-4×5(m 2-1)≥0, 即-4m 2+5≥0,解得-52≤m ≤52.]5.过椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点F (c ,0)的弦中最短弦长是________. 2b 2a [最短弦是过焦点F (c ,0)且与焦点所在坐标轴垂直的弦.将点(c ,y )的坐标代入椭圆x 2a 2+y 2b 2=1,得y =±b 2a ,故最短弦长是2b 2a .]回顾本节知识,自我完成以下问题: (1)直线和椭圆有几种位置关系?如何判断?[提示]三种位置关系:相交、相切、相离.解直线方程与椭圆方程组成的方程组,通过解的个数判断位置关系,当方程组有两个解(Δ>0)时,直线与椭圆相交,当方程组有一个解(Δ=0)时,直线与椭圆相切,当方程组无解(Δ<0)时,直线与椭圆相离.(2)当直线与椭圆相交时,试写出弦长公式.[提示]|AB|=1+k2·(x1+x2)2-4x1x2=1+12-4y1y2.k2·(y1+y2)(3)如何处理椭圆的中点弦问题?[提示]①根与系数的关系法:联立直线方程与椭圆方程构成方程组,消掉其中的一个未知数,得到一个一元二次方程,利用一元二次方程根与系数的关系结合中点坐标公式求解.②点差法:设出弦的两个端点坐标,代入椭圆方程,两式相减即得弦的中点与斜率的关系.即“设而不求”思想,这也是此类问题最常用的方法.。
椭圆标准方程及性质的应用(解析版)
2.2.2椭圆的简单几何性质第2课时 椭圆的标准方程及性质的应用(1)【教学目标】知识目标:进一步掌握椭圆的方程及其性质的应用,会判断直线与椭圆的位置关系; 能力目标:能运用直线与椭圆的位置关系解决相关的弦长、中点弦问题;思想目标:通过弦长、中点弦问题及椭圆综合问题的学习,提升学生的逻辑推理、直观想象及数学运算的核心素养. 【教学过程】一、自主学习知识检测1.点与椭圆的位置关系点P (x 0,y 0)与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系;点P 在椭圆上⇔x 20a 2+y 20b2=1;点P 在椭圆内部⇔x 20a 2+y 20b 2<1;点P 在椭圆外部⇔x 20a 2+y 20b 2>1.2.直线与椭圆的位置关系(1)直线y =kx +m 与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系:联立⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y 2b 2=1,消去y 得一个关于x 的一元二次方程.(2)直线与椭圆相交1+k 2·(x 1+x 2)2-4x 1x 2=1+1k 2·(y 1+y 2)2-4y 1y 2,其中x 1,x 2(y 1,y 2)是上述一元二次方程的两根. (3)弦的中点P 0(x 0,y 0)与弦所在直线的斜率k 的关系.(点差法)设弦AB 的端点A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21a 2+y 21b2=1x 22a 2+y22b 2=1⇒x 21-x 22a 2+y 21-y 22b2=0,即(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b 2=0,即2x 0(x 1-x 2)a 2+2y 0k (x 1-x 2)b 2=0,即x 0a 2+y 0k b 2=0.3.自主检测1.已知点(3,2)在椭圆x 2a 2+y 2b 2=1上,则A .点(-3,-2)不在椭圆上B .点(3,-2)不在椭圆上C .点(-3,2)在椭圆上D .无法判断点(-3,-2)、(3,-2)、(-3,2)是否在椭圆上 答案:C2.直线y =x +1与椭圆x 2+y 22=1的位置关系是( ) A .相离 B .相切 C .相交 D .无法确定答案:C3.直线y =x +1被椭圆x 24+y 22=1所截得的弦的中点坐标是( )A.⎝⎛⎭⎫23,53B.⎝⎛⎭⎫43,73C.⎝⎛⎭⎫-23,13D.⎝⎛⎭⎫-132,-172 答案:C 二、名师引路已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不同的公共点; (2)有且只有一个公共点.【解】 直线l 的方程与椭圆C 的方程联立, ⎩⎪⎨⎪⎧y =2x +m ,x 24+y 22=1,消去y , 得9x 2+8mx +2m 2-4=0.①方程①的判别式Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144. (1)当Δ>0,即-32<m <32时,方程①有两个不同的实数解,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不同的公共点. (2)当Δ=0,即m =±32时,方程①有两个相同的实数解,可知原方程组有两组相同的实数解. 这时直线l 与椭圆C 有且只有一个公共点. 变式1:直线l :y =66x +2与椭圆2x 2+3y 2=6的位置关系为________(填相交、相切或相离). 解析:由⎩⎪⎨⎪⎧y =66x +2,2x 2+3y 2=6,得2x 2+3⎝⎛⎭⎫66x +22=6, 即52x 2+26x +6=0. Δ=(26)2-4×52×6=24-60=-36<0.因此直线与椭圆没有公共点. 答案:相离已知椭圆x 236+y 29=1和点P (4,2),直线l 经过点P 且与椭圆交于A 、B 两点.(1)当直线l 的斜率为12时,求线段AB 的长度;(2)当P 点恰好为线段AB 的中点时,求l 的方程. 【解】 (1)由已知可得直线l 的方程为 y -2=12(x -4),即y =12x .由⎩⎨⎧y =12x ,x 236+y29=1,可得x 2-18=0,若设A (x 1,y 1),B (x 2,y 2). 则x 1+x 2=0,x 1x 2=-18.于是|AB |=(x 1-x 2)2+(y 1-y 2)2 =(x 1-x 2)2+14(x 1-x 2)2=52×62=310. 所以线段AB 的长度为310.(2)法一:易知直线l 的斜率存在,不妨设为k ,则其方程为y -2=k (x -4). 联立⎩⎪⎨⎪⎧x 236+y 29=1,y -2=k (x -4),消去y 得(1+4k 2)x 2-(32k 2-16k )x +(64k 2-64k -20)=0. 若设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=32k 2-16k 1+4k 2,由于AB 的中点恰好为P (4,2), 所以x 1+x 22=16k 2-8k 1+4k 2=4,解得k =-12,且满足Δ>0.这时直线的方程为y -2=-12(x -4),即y =-12x +4.法二:设A (x 1,y 1),B (x 2,y 2), 则有⎩⎨⎧x 2136+y 219=1,x 2236+y 229=1,两式相减得x 22-x 2136+y 22-y 219=0,整理得k AB =y 2-y 1x 2-x 1=-9(x 2+x 1)36(y 2+y 1), 由于P (4,2)是AB 的中点, 所以x 1+x 2=8,y 1+y 2=4, 于是k AB =-9×836×4=-12,于是直线AB 的方程为y -2=-12(x -4),即y =-12x +4.变式2: 已知斜率为2的直线l 经过椭圆x 25+y 24=1的右焦点F 1,与椭圆交于A ,B 两点,则|AB |=____________.解析:因为直线l 经过椭圆的右焦点F 1(1,0),且斜率为2,则直线l 的方程为y =2(x -1),即2x -y -2=0.由⎩⎪⎨⎪⎧2x -y -2=0x 25+y 24=1,得3x 2-5x =0.解得⎩⎪⎨⎪⎧x 1=0y 1=-2,⎩⎨⎧x 2=53y 2=43.|AB |=259+⎝⎛⎭⎫43+22=553. 答案:553已知椭圆4x 2+y 2=1,直线y =x +m ,设直线与椭圆相交于A (x 1,y 1),B (x 2,y 2)两点,求△AOB 面积的最大值及△AOB 面积最大时的直线方程.【解】 可求得O 到AB 的距离d =|m |2,将y =x +m 代入4x 2+y 2=1, 消y 得5x 2+2mx +m 2-1=0. 又|AB |=2510-8m 2,Δ=20-16m 2>0,-52<m <52, 所以S △AOB =12|AB |·d=12×25 10-8m 2·|m |2=25⎝⎛⎭⎫54-m 2m 2 ≤25·⎝⎛⎭⎫54-m 2+m 22=14. 当且仅当“54-m 2=m 2”时,上式取“=”.此时m =±104∈⎝⎛⎭⎫-52,52. 所以△AOB 面积的最大值为14,面积最大时直线方程为x -y ±104=0. 变式3:如图所示,点A 、B 分别是椭圆x 236+y 220=1长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,P A ⊥PF .(1)求点P 的坐标;(2)设M 是椭圆长轴AB 上的一点,点M 到直线AP 的距离等于|MB |,求椭圆上的点到点M 的距离d 的最小值.解:(1)由已知可得点A (-6,0),F (4,0),B (6,0), 设点P 的坐标是(x ,y ),则AP →=(x +6,y ),FP →=(x -4,y ). 由已知得⎩⎪⎨⎪⎧x 236+y 220=1,(x +6)(x -4)+y 2=0.则2x 2+9x -18=0, 解得x =32或x =-6.由于y >0,只能x =32,于是y =523.所以点P 的坐标是⎝⎛⎭⎫32,523. (2)直线AP 的方程是x -3y +6=0. 设点M 的坐标是(m ,0), 则M 到直线AP 的距离是|m +6|2,于是|m +6|2=|m -6|,又-6≤m ≤6,解得m =2, 所以点M (2,0).设椭圆上的点(x ,y )到点M 的距离为d ,有 d 2=(x -2)2+y 2=x 2-4x +4+20-59x 2=49(x -92)2+15, 由于-6≤x ≤6.所以当x =92时,d 取最小值15.三、课后练习1.直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为( )A .相切B .相交C .相离D .不确定解析:选B .直线y =kx -k +1恒过定点(1,1). 又因为129+124<1,所以点(1,1)在椭圆x 29+y 24=1的内部,所以直线y =kx -k +1与椭圆相交.故选B .2.过椭圆x 225+y 29=1的右焦点且倾斜角为45°的弦AB 的长为( )A .5B .6C .9017D .7 解析:选C .椭圆的右焦点为(4,0),直线的斜率为k =1, 所以直线AB 的方程为y =x -4, 由⎩⎪⎨⎪⎧y =x -4,x 225+y 29=1,得9x 2+25(x -4)2=225,由弦长公式易求|AB |=9017. 3.若过椭圆x 216+y 24=1内一点(2,1)的弦被该点平分,则该弦所在直线的方程是________.解析:设弦两端点A (x 1,y 1),B (x 2,y 2),则x 2116+y 214=1,x 2216+y 224=1, 两式相减并把x 1+x 2=4,y 1+y 2=2代入得,y 1-y 2x 1-x 2=-12,所以所求直线方程为y -1=-12(x -2),即x +2y -4=0. 答案:x +2y -4=04.已知直线l :y =x -12,椭圆C :x 2+4y 2=4.(1)求证:直线l 与椭圆C 有两个交点; (2)求连接这两个公共点所成线段的长. 解:(1)证明:由⎩⎪⎨⎪⎧y =x -12,x 2+4y 2=4消去y 得5x 2-4x -3=0.所以Δ=(-4)2-4×5×(-3)=76>0, 所以直线l 与椭圆C 有两个交点. (2)设两交点为A (x 1,y 1),B (x 2,y 2), 由(1)知x 1+x 2=45,x 1·x 2=-35.所以|AB |=(y 2-y 1)2+(x 2-x 1)2 =2·(x 2-x 1)2=2·(x 1+x 2)2-4x 1x 2 =2·⎝⎛⎭⎫452-4×⎝⎛⎭⎫-35=2538. 2.已知椭圆x 216+y 24=1,求过点Q (8,2)的直线被椭圆截得的弦的中点的轨迹方程.解:设椭圆中弦的两端点分别为A (x 1,y 1)、B (x 2,y 2)(x 1≠x 2),弦AB 的中点为R (x ,y ),则2x =x 1+x 2,2y =y 1+y 2.因为A 、B 两点均在椭圆上,故有x 21+4y 21=16,x 22+4y 22=16.两式相减得(x 1+x 2)(x 1-x 2)=-4(y 1+y 2)(y 1-y 2). 因为x 1≠x 2,所以k AB =y 1-y 2x 1-x 2=-x 1+x 24(y 1+y 2)=-x 4y .由k AB =k RQ 得,-x 4y =y -2x -8,得所求轨迹方程为(x -4)2+4(y -1)2=20⎝⎛⎭⎫0<x ≤165.四、课堂小结知识结构深化拓展1.直线与椭圆的位置关系直线y =kx +m 与椭圆x 2a 2+y 2b 2=1(a >b>0)的位置关系的判断方法:联立得⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y 2b 2=1,消y 得一个一元二次方程.位置关系 解的个数 Δ的取值 相交 两解 Δ>0 相切 一解 Δ=0 相离无解Δ<02.设而不求思想解决直线与椭圆的位置关系问题经常利用设而不求的方法,解题步骤为 (1)设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2);(2)联立直线与椭圆的方程; (3)消元得到关于x 或y 的一元二次方程;(4)利用根与系数的关系设而不求; (5)把题干中的条件转化为x 1+x 2,x 1x 2或y 1+y 2,y 1y 2,进而求解.。
2.1.1 第二课时 椭圆的定义及标准方程的应用 课件(人教A选修1-1)
二 章
2.1.
1
第二 课时
2.
圆1 锥
椭 圆 及
椭圆 的定 义及
曲椭
其
标准
线圆
标
方程
与 方
准
的
方
应用
程
程
名师课堂 ·一点通
考点一 考点二 考点三
解题高手
创新演练 ·大冲关
课堂强化 课下检测
[例1] 如图,圆C:(x+1)2+ y2=16及点A(1,0),Q为圆上一点, AQ的垂直平分线交CQ于M,求点 M的轨迹方程.
2.已知圆C的方程为x2+y2=4,过圆C上的一动点M作平行 于x轴的直线m,设m与y轴的交点为N,若向量OQ= OM+ON,求动点Q的轨迹方程. 解:设点Q的坐标为(x,y),点M的坐标为(x0,y0) (y0≠0),则点N的坐标为(0,y0). 因为OQ=OM+ON, 即(x,y)=(x0,y0)+(0,y0)=(x0,2y0),
在解焦点三角形的有关问题时,一般地利用两个关系 式:
(1)由椭圆的定义可得|PF1|,|PF2|的关系式; (2)利用正余弦定理或勾股定理可得|PF1|,|PF2|的关系 式,然后求解得|PF1|,|PF2|,有时也根据需要,把|PF1|+ |PF2|,|PF1|-|PF2|,|PF1|·|PF2|等看成一个整体来处理.
3.设 F1、F2 为椭圆x92+y42=1 的两个焦点,P 为椭圆上一点,
已知△PF1F2 为直角三角形,且|PF1|>|PF2|,求||PPFF12||的值. 解:由已知|PF1|+|PF2|=6,|F1F2|=2 5. 根据直角位置不同,分两种情况: ①若∠PF2F1=90°,则||PPFF11||2+=|P|PFF22|=|2+6,20 ∴有||PPFF21||==4313,4,∴||PPFF21||=72.
高中数学 2.1.2 第2课时 椭圆的简单几何性质教案 选修1-1
第2课时椭圆方程及性质的应用(教师用书独具)●三维目标1.知识与技能掌握利用根的判别式判断直线与椭圆位置关系的方法,初步探寻弦长公式有关知识.2.过程与方法通过问题的提出与解决,培养学生探索问题、解决问题的能力.领悟数形结合和化归等思想.3.情感、态度与价值观培养学生自主参与意识,激发学生探索数学的兴趣.●重点、难点重点:掌握直线与椭圆位置关系的判断方法,注意数形结合思想的渗透.难点:应用直线与椭圆位置关系的知识解决一些简单几何问题和实际问题.教学内容是在熟练椭圆方程与性质的基础上的习题课,涉及直线与椭圆的位置关系、椭圆的实际应用问题,掌握好椭圆方程与性质,类比直线与圆的位置关系的研究方法是突破重点与难点的关键.(教师用书独具)●教学建议由于学生已经学习了直线与圆位置关系及相关知识的推导及运用过程,但大部分还停留在经验基础上,主动迁移能力、整合能力较弱,所以本节课宜采用启发引导式教学;同时借助多媒体,充分发挥其形象、生动的作用.●教学流程创设问题情境,引出命题:能否用几何法判断直线与椭圆的位置关系?⇒引导学生结合以前学习过的直线与圆的位置关系,通过比较、分析,得出判断方法——代数法.⇒引导学生分析代数法判断直线与椭圆位置关系的步骤,引出解题关键与注意事项.⇒通过例1及其变式训练,使学生掌握直线与椭圆相交、相切、相离的条件及应用.⇒通过例2及其变式训练,使学生掌握直线与椭圆相交问题,学会求直线方程和弦长的方法.⇒错误!⇒错误!⇒错误!(对应学生用书第25页)课标解读1.掌握椭圆的方程及其性质的应用.(重点)2.掌握直线与椭圆位置关系的判断方法,初步探寻弦长公式.(难点)点与椭圆的位置关系【问题导思】点与椭圆有几种位置关系?【提示】 三种位置关系:点在椭圆上,点在椭圆内,点在椭圆外.设点P (x 0,y 0),椭圆x 2a 2+y 2b 2=1(a >b >0).(1)点P 在椭圆上⇔x 20a 2+y 20b 2=1;(2)点P 在椭圆内⇔x 20a 2+y 20b 2<1;(3)点P 在椭圆外⇔x 20a 2+y 20b2>1.直线与椭圆的位置关系【问题导思】1.直线与椭圆有几种位置关系?【提示】 三种位置关系:相离、相切、相交.2.我们知道,可以用圆心到直线的距离d 与圆的半径r 的大小关系判断直线与圆的位置关系,这种方法称为几何法,能否用几何法判断直线与椭圆的位置关系?【提示】 不能.3.用什么方法判断直线与椭圆的位置关系? 【提示】 代数法.直线y =kx +m 与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系联立⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y2b 2=1,消y 得一个一元二次方程.位置关系 解的个数 Δ的取值 相交 两解 Δ>0 相切 一解 Δ=0 相离无解Δ<0(对应学生用书第26页)直线与椭圆的位置关系的判定当m 为何值时,直线y =x +m 与椭圆x 24+y 2=1相交、相切、相离?【思路探究】 错误!→错误!→错误!→错误! 【自主解答】 联立方程组得⎩⎪⎨⎪⎧y =x +m , ①x 24+y 2=1, ②将①代入②得x 24+(x +m )2=1,整理得5x 2+8mx +4m 2-4=0③Δ=(8m )2-4×5(4m 2-4)=16(5-m 2).当Δ>0,即-5<m <5时,方程③有两个不同的实数根,代入①可得到两个不同的公共点坐标,此时直线与椭圆相交;当Δ=0,即m =-5或m =5时,方程③有两个相等的实数根,代入①可得到一个公共点坐标,此时直线与椭圆相切;当Δ<0,即m <-5或m >5时,方程③没有实数根,直线与椭圆相离.判断直线与椭圆位置关系的步骤:试判断直线y =x -12与椭圆x 2+4y 2=2的位置关系.【解】 联立方程组得⎩⎪⎨⎪⎧y =x -12,x 2+4y 2=2,消去y ,整理得5x 2-4x -1=0,(*)Δ=(-4)2-4×5×(-1)=36>0,即方程(*)有两个实数根,所以方程组有两组解,即直线和椭圆相交.直线与椭圆相交问题已知椭圆x 236+y 29=1和点P (4,2),直线l 经过点P 且与椭圆交于A ,B 两点.(1)当直线l 的斜率为12时,求线段AB 的长度;(2)当P 点恰好为线段AB 的中点时,求l 的方程.【思路探究】 (1)你能写出直线方程吗?怎样求此直线在椭圆上截得的弦长的长度? (2)点P 与A 、B 的坐标之间有怎样的关系?能否用根与系数的关系求得直线的斜率? 【自主解答】 (1)由已知可得直线l 的方程为y -2=12(x -4),即y =12x .由⎩⎪⎨⎪⎧y =12x ,x 236+y 29=1,可得x 2-18=0,若设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=0,x 1x 2=-18. 于是|AB |=x 1-x 22+y 1-y 22=x 1-x 22+14x 1-x 22=52x 1+x 22-4x 1x 2=52×62=310. 所以线段AB 的长度为310.(2)法一:设l 的斜率为k ,则其方程为y -2=k (x -4).联立⎩⎪⎨⎪⎧x 236+y 29=1,y -2=k x -4,消去y 得(1+4k 2)x 2-(32k 2-16k )x +(64k 2-64k -20)=0. 若设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=32k 2-16k 1+4k 2,由于AB 的中点恰好为P (4,2),所以x 1+x 22=16k 2-8k 1+4k 2=4,解得k =-12.这时直线l 的方程为y -2=-12(x -4),即y =-12x +4.法二:设A (x 1,y 1),B (x 2,y 2),则有⎩⎪⎨⎪⎧x 2136+y 219=1,x 2236+y229=1,两式相减得x 22-x 2136+y 22-y 219=0.由于P (4,2)是AB 的中点,∴x 1+x 2=8,y 1+y 2=4, 从而(x 2-x 1)+2(y 2-y 1)=0,k AB =y 2-y 1x 2-x 1=-12,于是直线AB ,即为l 的方程为y -2=-12(x -4),即y =-12x +4. 1.求直线与椭圆相交所得弦长问题,通常解法是将直线方程与椭圆方程联立,然后消去y (或x )得到关于x (或y )的一元二次方程,根据两点间的距离公式以及根与系数的关系求解.也可以直接代入弦长公式:|P 1P 2|=1+k2x 1+x 22-4x 1x 2=1+1k 2y 1+y 22-4y 1y 2求解.2.解决直线与椭圆相交弦的中点有关的问题时,通常有两种方法:法一:由直线的方程与椭圆的方程组成的方程组消去y 后转化为关于x 的一元二次方程,再利用根与系数的关系,运用中点坐标公式建立方程组求解.法二:通过弦AB 的端点的坐标是椭圆的方程的解,得到两个“对称方程”,然后将两个方程相减,再变形运算转化为直线的斜率公式,这种方法通常称为“点差法”.过点P (-1,1)的直线与椭圆x 24+y 22=1交于A ,B 两点,若线段AB 的中点恰为点P ,求AB 所在的直线方程及弦长|AB |.【解】 设A (x 1,y 1),B (x 2,y 2),由于A ,B 两点在椭圆上, ∴x 21+2y 21=4,x 22+2y 22=4. 两式相减,得(x 1-x 2)(x 1+x 2)+2(y 1-y 2)(y 1+y 2)=0 ①显然x 1≠x 2, 故由①得:k AB =y 1-y 2x 1-x 2=-x 1+x 22y 1+y 2. ②又点P (-1,1)是弦AB 的中点, ∴x 1+x 2=-2,y 1+y 2=2. ③把③代入②得:k AB =12,∴直线AB 的方程为y -1=12(x +1),即x -2y +3=0由⎩⎪⎨⎪⎧x -2y +3=0,x 24+y22=1,消去y 得3x 2+6x +1=0,∴x 1+x 2=-2,x 1x 2=13,|AB |=1+k 2·x 1+x 22-4x 1x 2=1+14·243=303.与椭圆相关的实际应用问题 图2-1-3如图2-1-3,某隧道设计为双向四车道,车道总宽22米,要求通行车辆限高4.5米,隧道的拱线近似地看成半个椭圆形状.若最大拱高h 为6米,则隧道设计的拱宽l 是多少?【思路探究】 恰当建系→设椭圆方程→错误!→错误!→错误!【自主解答】 如图建立直角坐标系,则点P (11,4.5),椭圆方程为x 2a 2+y 2b2=1.∵P (11,4.5)在椭圆上, ∴112a 2+4.52b2=1,又b =h =6代入①式,得a =4477.此时l =2a =8877≈33.3(米).因此隧道的拱宽约为33.3米.1.解答与椭圆相关的应用问题,事物的实际含义向椭圆的几何性质的转化是关键,其次要充分利用椭圆的方程对变量进行讨论,以解决实际问题.2.实际问题中,最后的结论不可少,一定要结合实际问题中变量的含义做出结论. 有一椭圆形溜冰场,长轴长100 m ,短轴长60 m ,现要在这个溜冰场上划定一个各顶点都在溜冰场边界上的矩形区域,且使这个区域的面积最大,应把这个矩形的顶点定位在何处?这时矩形的周长是多少?【解】 分别以椭圆的长轴、短轴各自所在的直线为x 轴和y 轴,建立如图所示的平面直角坐标系xOy ,设矩形ABCD 的各顶点都在椭圆上.因为矩形的各顶点都在椭圆上,而矩形是中心对称图形,又是以过对称中心且垂直其一边的直线为对称轴的轴对称图形, 所以矩形ABCD 关于原点O 及x 轴,y 轴都对称. 已知椭圆的长轴长2a =100 m ,短轴长2b =60 m , 则椭圆的方程为x 2502+y 2302=1.考虑第一象限内的情况,设A (x 0,y 0), 则有1=x 20502+y 20302≥2x 20502·y 20302=2x 0y 01 500, 当且仅当x 20502=y 20302=12,即x 0=252,y 0=152时,等号成立,此时矩形ABCD 的面积S =4x 0y 0取最大值3 000 m 2.这时矩形的周长为4(x 0+y 0)=4(252+152)=160 2 (m).(对应学生用书第27页) 运用“设而不求”法研究直线和椭圆位置关系问题(12分)(2013·本溪高二检测)已知椭圆方程为x 2a 2+y 2b2=1(a >b >0),过点A (-a,0),B (0,b )的直线倾斜角为π6,原点到该直线的距离为32.(1)求椭圆的方程;(2)斜率大于零的直线过D (-1,0)与椭圆分别交于点E ,F ,若ED →=2DF →,求直线EF 的方程;(3)对于D (-1,0),是否存在实数k ,使得直线y =kx +2分别交椭圆于点P ,Q ,且|DP |=|DQ |,若存在,求出k 的值,若不存在,请说明理由.【思路点拨】 【规范解答】 (1)由b a =33,12ab =12×32×a 2+b 2,得a =3,b =1,所以椭圆的方程是x 23+y 2=1.2分(2)设EF :x =my -1(m >0)代入x 23+y 2=1,得(m 2+3)y 2-2my -2=0.设E (x 1,y 1),F (x 2,y 2).由ED →=2DF →,得y 1=-2y 2,4分 由y 1+y 2=-y 2=2m m 2+3,y 1y 2=-2y 22=-2m 2+3得 (-2m m 2+3)2=1m 2+3,∴m =1,m =-1(舍去), 直线EF 的方程为x =y -1,即x -y +1=0. 7分(3)记P (x ′1,y ′1),Q (x ′2,y ′2).将y =kx +2代入x 23+y 2=1,得(3k 2+1)x 2+12kx+9=0(*),x ′1,x ′2是此方程的两个相异实根.设PQ 的中点为M ,则x M =x ′1+x ′22=-6k 3k 2+1,y M =kx M +2=23k 2+1.由|DP |=|DQ |,得DM ⊥PQ ,∴k DM =y M x M +1=23k 2+1-6k 3k 2+1+1=-1k,∴3k 2-4k +1=0,得k =1或k =13.10分但k =1,k =13均不能使方程(*)有两相异实根,∴满足条件的k 不存在.1.直线和椭圆位置关系问题中设而不求、整体代换是常用的运算技巧,在解题中要注意运用.2.直线和椭圆相交时要切记Δ>0是求参数范围的前提条件,不要因忘记造成不必要的失分.1.直线与椭圆的位置关系,可通过讨论椭圆方程与直线方程组成的方程组的实数解的个数来确定,通常用消元后的关于x (或y )的一元二次方程的判别式Δ来判定.直线与椭圆相交的弦长公式: |P 1P 2|=[x 1+x 22-4x 1x 2]1+k2或|P 1P 2|=[y 1+y 22-4y 1y 2]1+1k 2.2.直线和椭圆相交时的弦的中点坐标或弦中点的轨迹方程常由韦达定理来解决,设点而不求点是解析几何中重要的解题方法.3.解决与椭圆有关的实际问题时首先要仔细审题,弄懂题意,再把实际问题中的量化归为椭圆的性质,从而得以解决.(对应学生用书第28页)1.下列在椭圆x 24+y 22=1内部的点为( )A .(2,1)B .(-2,1)C .(2,1)D .(1,1)【解析】 点(2,1),(-2,1)满足椭圆方程,故在椭圆上;把点(1,1)代入x 24+y 22得:14+12=34<1,故点(1,1)在椭圆内.【答案】 D2.已知椭圆x 2a 2+y 2b2=1有两个顶点在直线x +2y =2上,则此椭圆的焦点坐标是( )A .(±3,0)B .(0,±3)C .(±5,0)D .(0,±5)【解析】 ∵直线x +2y =2过(2,0)和(0,1)点, ∴a =2,b =1,∴c =3, 椭圆焦点坐标为(±3,0). 【答案】 A3.直线y =x +1被椭圆x 24+y 22=1所截得线段的中点的坐标是( )A .(23,53)B .(43,73)C .(-23,13)D .(-132,-172)【解析】 联立方程⎩⎪⎨⎪⎧y =x +1,x 24+y22=1,消去y 得3x 2+4x -2=0.设交点A (x 1,y 1)、B (x 2,y 2),中点M (x 0,y 0).∴x 1+x 2=-43,x 0=x 1+x 22=-23,y 0=x 0+1=13,∴中点坐标为(-23,13).【答案】 C4.直线2x -y -2=0与椭圆x 25+y 24=1交于A 、B 两点,求弦长|AB |.【解】 设A (x 1,y 1),B (x 2,y 2), 联立方程⎩⎪⎨⎪⎧2x -y -2=0,x 25+y24=1,消去y 得3x 2-5x =0,则x 1+x 2=53,x 1·x 2=0,∴|AB |=1+k 2AB ·x 1+x 22-4x 1x 2=1+22·532-4×0=553.一、选择题1.点A (a,1)在椭圆x 24+y 22=1的内部,则a 的取值范围是( )A .-2<a < 2B .a <-2或a > 2C .-2<a <2D .-1<a <1【解析】 ∵点A (a,1)在椭圆x 24+y 22=1内部,∴a 24+12<1.∴a 24<12. 则a 2<2,∴-2<a < 2. 【答案】 A2.已知直线y =kx +1和椭圆x 2+2y 2=1有公共点,则k 的取值范围是( ) A .k <-22或k >22 B .-22<k <22 C .k ≤-22或k ≥22D .-22≤k ≤22【解析】 由⎩⎪⎨⎪⎧y =kx +1,x 2+2y 2=1,得(2k 2+1)x 2+4kx +1=0.∵直线与椭圆有公共点. ∴Δ=16k 2-4(2k 2+1)≥0,则k ≥22或k ≤-22. 【答案】 C3.直线l 交椭圆x 216+y 212=1于A ,B 两点,AB 的中点为M (2,1),则l 的方程为( ) A .2x -3y -1=0 B .3x -2y -4=0 C .2x +3y -7=0D .3x +2y -8=0【解析】 根据点差法求出k AB =-32,∴l 的方程为:y -1=-32(x -2).化简得3x +2y -8=0. 【答案】 D4.若直线mx +ny =4和⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数为( )A .2个B .至多一个C .1个D .0个【解析】 若直线与圆没有交点,则d =4m 2+n 2>2,∴m 2+n 2<4,即m 2+n 24<1.∴m 29+n 24<1,∴点(m ,n )在椭圆的内部,故直线与椭圆有2个交点.【答案】 A5.椭圆有如下的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后必过椭圆的另一个焦点.今有一个水平放置的椭圆形台球盘,点A ,B 是它的两个焦点,其长轴长为2a ,焦距为2c (a >c >0),静放在点A 的小球(小球的半径不计),从点A 沿直线出发,经椭圆壁反弹后第一次回到点A 时,小球经过的路程是( )A .2(a -c )B .2(a +c )C .4aD .以上答案均有可能【解析】 如图,本题应分三种情况讨论:当小球沿着x 轴负方向从点A 出发,经椭圆壁反弹后第一次回到点A 时,小球经过的路程是2(a -c );当小球沿着x 轴正方向从点A 出发,经椭圆壁反弹后第一次回到点A 时,小球经过的路程是2(a +c );当是其他情况时,从点A 沿直线出发,经椭圆壁反弹后第一次回到点A 时,小球经过的路程是4a .【答案】 D 二、填空题6.(2013·济宁高二检测)已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线x +3y +4=0有且仅有一个交点,则椭圆的长轴长为________.【解析】 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0)与直线方程联立消去x 得(a 2+3b 2)y 2+83b 2y +16b 2-a 2b 2=0,由Δ=0及c =2得a 2=7,∴2a =27.【答案】 277.(2013·合肥高二检测)以等腰直角三角形ABC 的两个顶点为焦点,并且经过另一顶点的椭圆的离心率为________.【解析】 当以两锐角顶点为焦点时,因为三角形为等腰直角三角形,故有b =c ,此时可求得离心率e =c a=cb 2+c2=c2c=22;同理,当以一直角顶点和一锐角顶点为焦点时,设直角边长为m ,故有2c =m,2a =(1+2)m ,所以离心率e =c a =2c 2a =m1+2m=2-1.【答案】2-1或228.(2013·石家庄高二检测)过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A 、B 两点,O 为原点,则△OAB 的面积为________.【解析】 直线方程为y =2x -2,与椭圆方程x 25+y 24=1联立,可以解得A (0,-2),B (53,43),∴S △=12|OF |·|y A -y B |=53(也可以用设而不求的方法求弦长|AB |,再求出点O 到AB 的距离,进而求出△AOB 的面积).【答案】 53三、解答题9.已知椭圆的短轴长为23,焦点坐标分别是(-1,0)和(1,0). (1)求这个椭圆的标准方程;(2)如果直线y =x +m 与这个椭圆交于不同的两点,求m 的取值范围. 【解】 (1)∵2b =23,c =1,∴b =3,a 2=b 2+c 2=4. 故所求椭圆的标准方程为x 24+y 23=1.(2)联立方程组⎩⎪⎨⎪⎧y =x +m ,x 24+y23=1,消去y 并整理得7x 2+8mx +4m 2-12=0.若直线y =x +m 与椭圆x 24+y 23=1有两个不同的交点,则有Δ=(8m )2-28(4m 2-12)>0,即m 2<7,解得-7<m <7. 即m 的取值范围是(-7,7).10.椭圆ax 2+by 2=1与直线x +y -1=0相交于A ,B 两点,C 是AB 的中点,若|AB |=22,OC 的斜率为22,求椭圆的方程.【解】 由⎩⎪⎨⎪⎧ax 2+by 2=1,x +y =1,得(a +b )x 2-2bx +b -1=0.设A (x 1,y 1)、B (x 2,y 2), 则|AB |=k 2+1x 1-x 22=2·4b 2-4a +bb -1a +b 2.∵|AB |=22,∴a +b -aba +b =1.①设C (x ,y ),则x =x 1+x 22=ba +b,y =1-x =aa +b,∵OC 的斜率为22,∴a b =22. 代入①,得a =13,b =23.∴椭圆方程为x 23+23y 2=1.图2-1-411.(2013·亳州高二检测)如图2-1-4所示,已知椭圆x 2a 2+y 2b2=1(a >b >0)过点(1,22),离心率为22,左、右焦点分别为F 1、F 2.点P 为直线l :x +y =2上且不在x 轴上的任意一点,直线PF 1和PF 2与椭圆的交点分别为A 、B 和C 、D ,O 为坐标原点. (1)求椭圆的标准方程;(2)设直线PF 1、PF 2的斜率分别为k 1、k 2. 证明:1k 1-3k 2=2.【解】 因为椭圆过点(1,22),e =22, 所以1a 2+12b 2=1,c a =22,又a 2=b 2+c 2,所以a =2,b =1,c =1, 故所求椭圆方程为x 22+y 2=1.(2)证明:设点P (x 0,y 0),则k 1=y 0x 0+1,k 2=y 0x 0-1, 因为点P 不在x 轴上,所以y 0≠0,又x 0+y 0=2, 所以1k 1-3k 2=x 0+1y 0-3x 0-1y 0=4-2x 0y 0=2y 0y 0=2. (教师用书独具)(2012·北京高考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (2,0),离心率为22.直线y =k (x -1)与椭圆C 交于不同的两点M ,N .(1)求椭圆C 的方程; (2)当△AMN 的面积为103时,求k 的值. 【解】 (1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,解得b = 2.所以椭圆C 的方程为x 24+y 22=1. (2)由⎩⎪⎨⎪⎧y =k x -1,x 24+y22=1得(1+2k 2)x 2-4k 2x +2k 2-4=0.设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则y 1=k (x 1-1),y 2=k (x 2-1),x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-41+2k 2.所以|MN |=x 2-x 12+y 2-y 12=1+k2[x 1+x 22-4x 1x 2]=21+k 24+6k21+2k2.又因为点A (2,0)到直线y =k (x -1)的距离d =|k |1+k2,所以△AMN 的面积为 S =12|MN |·d =|k |4+6k 21+2k 2. 由|k |4+6k 21+2k 2=103,解得k =±1.(2013·济南高二检测)设F 1、F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 2的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,F 1到直线l 的距离为2 3.(1)求椭圆C 的焦距;(2)如果AF 2→=2F 2B →,求椭圆C 的方程.【解】 (1)设焦距为2c ,由已知可得F 1到直线l 的距离3c =23,故c =2.所以椭圆C 的焦距为4.(2)设A (x 1,y 1),B (x 2,y 2),由题意知y 1<0,y 2>0. 直线l 的方程为y =3(x -2).联立⎩⎪⎨⎪⎧y =3x -2,x 2a 2+y 2b2=1,得(3a 2+b 2)y 2+43b 2y -3b 4=0.解得y 1=-3b 22+2a 3a 2+b 2,y 2=-3b 22-2a 3a 2+b2. 因为AF 2→=2F 2B →,所以-y 1=2y 2.则3b 22+2a 3a 2+b 2=2·-3b 22-2a3a 2+b 2. 解得a =3.又b 2=a 2-c 2=9-4=5. ∴b = 5.故椭圆C 的方程为x 29+y 25=1.。
高中数学 错误解题分析 2-2-2第2课时 椭圆方程及性质的应用
第2课时 椭圆方程及性质的应用双基达标 限时20分钟1.椭圆x 212+y 23=1的一个焦点为F 1,点P 在椭圆上.如果线段PF 1的中点M 在y 轴上,那么点M 的纵坐标是 ( ). A .±34.±32 C .±22 D .±34解析 由条件可得F 1(-3,0),PF 1的中点在y 轴上, ∴P 坐标(3,y 0),又P 在x 212+y 23=1的椭圆上得y 0=±32,∴M 的坐标(0,±34),故选A. 答案 A2.如图所示,直线l :x -2y +2=0过椭圆的左焦点F 1和一个顶点B ,该椭圆的离心率为( ).A.15B.25255 解析 由条件知,F 1(-2,0),B (0,1),∴b =1,c =2, ∴a =22+12=5, ∴e =c a=25=255. 答案 D3.已知椭圆x 23+y 24=1的上焦点为F ,直线x +y -1=0和x +y +1=0与椭圆分别相交于点A ,B 和C ,D ,则AF +BF +CF +DF = ( ).A .2 3B .4 3C .4D .8解析 如图,两条平行直线分别经过椭圆的两个焦点,连接AF 1、FD .由椭圆的对称性可知,四边形AFDF 1(其中F 1为椭圆的下焦点)为平行四边形, ∴AF 1=FD ,同理BF 1=CF ,∴AF +BF +CF +DF =AF +BF +BF 1+AF 1=4a =8. 答案 D4.直线y =x +2与椭圆x 2m +y 23=1有两个公共点,则m 的取值范围是________.解析 由⎩⎪⎨⎪⎧y =x +2,x 2m +y 23=1消去y ,整理得(3+m )x 2+4mx +m =0. 若直线与椭圆有两个公共点, 则⎩⎪⎨⎪⎧3+m ≠0,Δ=(4m )2-4m (3+m )>0,解得⎩⎪⎨⎪⎧m ≠-3,m <0或m >1.由x 2m +y 23=1表示椭圆知,m >0且m ≠3. 综上可知,m 的取值范围是(1,3)∪(3,+∞). 答案 (1,3)∪(3,+∞)5.椭圆x 2+4y 2=16被直线y =12x +1截得的弦长为________.解析 由⎩⎪⎨⎪⎧x 2+4y 2=16,y =12x +1,消去y 并化简得x 2+2x -6=0. 设直线与椭圆的交点为M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=-2,x 1x 2=-6.∴弦长|MN |=(x 1-x 2)2+(y 1-y 2)2 =(x 1-x 2)2+(12x 1-12x 2)2=54[(x 1+x 2)2-4x 1x 2] =54(4+24)=35. 答案 356.已知直线l :y =kx +1与椭圆x 22+y 2=1交于M 、N 两点,且|MN |=423.求直线l 的方程.解 设直线l 与椭圆的交点M (x 1,y 1),N (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +1,x 22+y 2=1,消y 并化简,得(1+2k 2)x 2+4kx =0, ∴x 1+x 2=-4k 1+2k 2x 1x 2=0.由|MN |=423,得(x 1-x 2)2+(y 1-y 2)2=329, ∴(1+k 2)(x 1-x 2)2=329,∴(1+k 2)[(x 1+x 2)2-4x 1x 2]=329.即(1+k 2)(-4k 1+2k 2)2=329. 化简,得k 4+k 2-2=0,∴k 2=1,∴k =±1. ∴所求直线l 的方程是y =x +1或y =-x +1.综合提高(限时25分钟)7.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率是63,过椭圆上一点M 作直线MA ,MB 分别交椭圆于A ,B 两点,且斜率分别为k 1,k 2,若点A ,B 关于原点对称,则k 1·k 2的值为 ( ).A.12 B .-12 C.13 D .-13 解析 设点M (x ,y ),A (x 1,y 1),B (-x 1,-y 1),则y 2=b 2-b 2x 2a 2,y 12=b 2-b 2x 12a2,所以k 1·k 2=y -y 1x -x 1·y +y 1x +x 1=y 2-y 12x 2-x 12=-b 2a 2=c 2a 2-1=e 2-1=-13,即k 1·k 2的值为-13.答案 D8.已知椭圆C :x 22+y 2=1的右焦点为F ,直线l :x =2,点A ∈l ,线段AF 交C 于点B ,若FA→=3FB →,则|AF →|= ( ). A. 2 B .2 C. 3 D .3 解析 设点A (2,n ),B (x 0,y 0).由椭圆C :x 22+y 2=1知a 2=2,b 2=1,∴c 2=1,即c =1,∴右焦点F (1,0). ∴由FA →=3FB →得(1,n )=3(x 0-1,y 0). ∴1=3(x 0-1)且n =3y 0. ∴x 0=43,y 0=13n .将x 0,y 0代入x 22+y 2=1,得12×(43)2+(13n )2=1. 解得n 2=1,∴|AF →|=(2-1)2+n 2=1+1= 2.所以选A. 答案 A9.已知F 1、F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A 、B 两点.若|F 2A |+|F 2B |=12,则|AB |=________.解析 由题意知(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=|AB |+|AF 2|+|BF 2|=2a +2a ,又由a =5,可得|AB |+(|BF 2|+|AF 2|)=20,即|AB |=8. 答案 810.如图,在平面直角坐标系xOy 中,A 1,A 2,B 1,B 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的四个顶点,F 为其右焦点,直线A 1B 2与直线B 1F 相交于点T ,线段OT 与椭圆的交点M 恰为线段OT 的中点,则该椭圆的离心率为________.解析 直线A 1B 2的方程为x -a +y b =1,直线B 1F 的方程为x c +y -b =1,二者联立,得T (2aca -c ,b (a +c )a -c),则M (aca -c ,b (a +c )2(a -c ))在椭圆x 2a 2+y 2b2=1(a >b >0)上,∴c 2(a -c )2+(a +c )24(a -c )2=1, c 2+10ac -3a 2=0,e 2+10e -3=0,解得e =27-5.答案 27-511.已知过点A (-1,1)的直线与椭圆x 28+y 24=1交于点B 、C ,当直线l 绕点A (-1,1)旋转时,求弦BC 中点M 的轨迹方程.解 设直线l 与椭圆的交点B (x 1,y 1),C (x 2,y 2), 弦BC 中点M (x ,y ), 则x 128+y 124=1,①x 228+y 224=1.②②-①,得(x 228-x 128)+(y 224-y 124)=0.∴(x 2+x 1)(x 2-x 1)+2(y 2+y 1)(y 2-y 1)=0.③ 当x 1≠x 2时,x 1+x 22=x ,y 1+y 22=y ,y 2-y 1x 2-x 1=y -1x +1, 又∵③式可化为(x 1+x 2)+2(y 1+y 2)·y 2-y 1x 2-x 1=0. ∴2x +2·2y ·y -1x +1=0,化简得x 2+2y 2+x -2y =0. 当x 1=x 2时,由点M (x ,y )是线段BC 中点, ∴x =-1,y =0,显然适合上式.总之,所求弦中点M 的轨迹方程是x 2+2y 2+x -2y =0. 12.(创新拓展)如图所示,点A 、B 分别是椭圆x 236+y 220=1长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PA ⊥PF .(1)求点P 的坐标;(2)设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于|MB |,求椭圆上的点到点M 的距离d 的最小值.解 (1)由已知可得点A (-6,0),F (4,0), 设点P 的坐标是(x ,y ),则AP →=(x +6,y ),FP →=(x -4,y ).由已知得⎩⎪⎨⎪⎧x 236 +y 220=1,(x +6)(x -4)+y 2=0.则2x 2+9x -18=0, 即得x =32或x =-6.由于y >0,只能x =32,于是y =52 3.∴点P 的坐标是(32,523).(2)直线AP 的方程是x -3y +6=0. 设点M 的坐标是(m ,0), 则M 到直线AP 的距离是|m +6|2,于是|m +6|2=|m -6|, 又-6≤m ≤6,解得m =2,设椭圆上的点(x ,y )到点M 的距离d ,有d 2=(x -2)2+y 2=x 2-4x +4+20-59x 2=49(x -92)2+15, 由于-6≤x ≤6.∴当x =92时,d 取最小值15.。
2.1.2-椭圆的简单几何性质-第2课时-椭圆方程及性质的应用
(c,0)、(c,0)
(0,c)、(0,c)
(a,0)、(0,b)
(b,0)、(0,a)
e=
c a
(
0
<
e
<
1
)
1.掌握椭圆的范围、对称性、顶点、离心率等简单 性质.(重点)
2.能用椭圆的简单性质求椭圆方程.(重点) 3.能用椭圆的简单性质分析解决有关问题.(难点)
探究点1 利用椭圆的简单几何性质求椭圆的方程
【解析】建立上图 所示的直角坐标系, 设所求椭圆方程为
在 Rt BF1F2 中,
x2 a2
y2 b2
1.
待定 系数
| F2 B | | F1B |2 | F1F2 |2 2.82 4.52 .
法
由 椭 圆 的 性 质 知 ,| F1B | | F 2 B | 2a , 所 以
1
1
a 2 ( | F1B | | F2 B | ) 2 2.8
中 ,F
是椭圆
x2 a2
+
y2 b2
=1
(a>b>0) 的 右焦 点 ,直 线
y=
b 2
与椭圆交于
B,C
两点,且∠BFC=90°,则该
6
椭圆的离心率是 3 .
4. 已知椭圆G的中心在坐标原点,长轴在x轴上, 离心率为 3 ,且G上一点到G的两个焦点的距离之 和为12,则2椭圆G的方程为___3x_62 __y9_2 __1__.
|
PF1
|
4 3
,|
PF2
|
14 , 3
求椭
圆C的方程.
【解析】因为点P在椭圆C上,所以2a | PF1 | | PF2 | 6,a 3
椭圆方程的基本性质及其应用
椭圆方程的基本性质及其应用椭圆方程是数学中一个重要的概念,它在不同领域的问题中都有着广泛的应用。
本文将介绍椭圆方程的基本性质以及其在实际问题中的应用。
一、椭圆方程的基本性质椭圆方程是指形如 $ax^2 + bxy + cy^2 + dx + ey + f =0$ 的二次方程,其中 $a,b,c,d,e,f$ 都是实数且 $a,b,c$ 不全为零。
其图像是一个椭圆或一个退化的椭圆,例如两条直线。
椭圆方程的基本性质包括:1. 椭圆方程的系数矩阵是一个实对称矩阵。
(这个可以通过对称性来证明)2. 椭圆方程对应的椭圆可以通过平移、旋转、缩放三个基本变换得到。
3. 椭圆方程的解法可以通过配方法,化为标准形式后求出$x$ 和 $y$ 的值。
4. 椭圆方程的根的个数在不同条件下是有区别的。
当它有两个不同实根时,对应的椭圆方程图像是两条直线;当它有两个共轭复根时,对应的椭圆方程图像是一个退化的椭圆;当它有两个不同实根和一个共轭复根时,对应的椭圆方程图像是一个椭圆。
二、椭圆方程的应用椭圆方程在各个领域的问题中都有着广泛的应用,下面仅列出一些典型的例子。
1. 机械工程:在机械运动学中,椭圆方程可以用于描述转矩传递的行为。
例如,当一个椭圆形轮廓的齿轮与一个圆形轮廓的齿轮啮合时,它们之间的传递角速度可以通过椭圆方程来计算。
2. 电磁学:在电磁场中,椭圆方程可以用于描述电场和磁场的分布。
例如,当一个二元球对称的电场在两个直接相交的平面上被截面后,这两个截面形成的几何形状是一个椭圆。
3. 经济学:在经济学中,椭圆方程可以用于描述生产生态系统的生物量和体积之间的关系。
例如,如果一个生态系统中的物种的生物量是椭圆形的,那么它们之间的相互影响可以通过椭圆方程来描述。
4. 物理学:椭圆方程在物理学中也有着广泛的应用。
例如,当一个由两个质点组成的系统的轨迹是椭圆形时,它们之间的相互作用可以用椭圆方程来计算。
三、总结椭圆方程作为数学中一个重要的概念,在各个领域的问题中都有着广泛的应用。
第二课时 椭圆及其性质.pptx
设 P(x,y),则FP=(x-2,y),OP=(x,y),所以
FP·OP =x (x-2)+y2=x2+y2-2x=2x-3. …………………………10 分
学海无 涯
因为(x-2)2+y2=1,所以(x-2)2≤1,即-1≤x-2≤1,得 1≤x≤3. 所 以 -1≤2x-3≤3,
即FP·OP 的取值范围为[-1,3].………………………………………………………14
|PF2|=r2,∠F1PF2= )
【基础自测】 1.已知椭圆的长轴长是短轴长的 2 倍,则椭圆的离心率等于 .
2.若椭圆 x2 y2 =1 的离心率为 1 ,则实数 m= .
2m
2
学海无 涯
3 设椭圆 x2 + y2 =1(m>0,n>0)的右焦点与抛物线 y2=8x 的焦点相同,离心率为 1 ,则此
(5) 椭 圆 的 参 数 方 程 为 . 4
.焦点三角形应注意以下关系:
(1) 定义:r1+r2=2a
(2) 余弦定理: r12+ r 22-2r r1 c2 os =(2c) 2
(3)
面in
=
1 2
·2c|
y0 |(其中 P( x0,0y )为椭圆上一点,|PF |1 =r ,1
学海无涯
4 经过椭圆 x2 +y2=1 的一个焦点作倾斜角为 45°的直线 l,交椭圆于 A、B 两点,设 O 为
2
坐标原点,则 OA · OB 等于 .
解 (Ⅰ)设椭圆 E 的标准方程为 mx2+ny2=1(m>0,n>0,且 m≠n).………………2
分
因为
A(1,2
5
5),B(-2,
55)在椭圆
m2 n2
2
高中数学选修2-1-椭圆的方程及其性质
椭圆的方程及其性质知识集结知识元椭圆的定义知识讲解1.椭圆的定义【知识点的认识】1.椭圆的第一定义平面内与两个定点F1、F2的距离的和等于常数2a(2a>|F1F2|)的动点P的轨迹叫做椭圆,其中,这两个定点F1、F2叫做椭圆的焦点,两焦点之间的距离|F1F2|叫做焦距.2.椭圆的第二定义平面内到一个定点的距离和到一条定直线的距离之比是常数e=(0<e<1,其中a是半长轴,c是半焦距)的点的轨迹叫做椭圆,定点是椭圆的焦点,定直线叫椭圆的准线,常数e 叫椭圆的离心率.3.注意要点椭圆第一定义中,椭圆动点P满足{P||PF1|+|PF2|=2a}.(1)当2a>|F1F2|时,动点P的轨迹是椭圆;(2)当2a=|F1F2|时,动点P的轨迹是线段F1F2;(3)当2a<|F1F2|时,动点P没有运动轨迹.【命题方向】利用定义判断动点运动轨迹,需注意椭圆定义中的限制条件:只有当平面内动点P与两个定点F1、F2的距离的和2a>|F1F2|时,其轨迹才为椭圆.1.根据定义判断动点轨迹例:如图,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是()A.椭圆B.双曲线C.抛物线D.圆分析:根据CD是线段MF的垂直平分线.可推断出|MP|=|PF|,进而可知|PF|+|PO|=|PM|+|PO|=|MO|结果为定值,进而根据椭圆的定义推断出点P的轨迹.解答:由题意知,CD是线段MF的垂直平分线.∴|MP|=|PF|,∴|PF|+|PO|=|PM|+|PO|=|MO|(定值),又显然|MO|>|FO|,∴根据椭圆的定义可推断出点P轨迹是以F、O两点为焦点的椭圆.故选A点评:本题主要考查了椭圆的定义的应用.考查了学生对椭圆基础知识的理解和应用.2.与定义有关的计算例:已知椭圆上的一点P到左焦点的距离为,则点P到右准线的距离为()A.2B.2C.5D.3分析:先由椭圆的第一定义求出点P到右焦点的距离,再用第二定义求出点P到右准线的距离d.解答:由椭圆的第一定义得点P到右焦点的距离等于4﹣=,离心率e=,再由椭圆的第二定义得=e=,∴点P到右准线的距离d=5,故选C.点评:本题考查椭圆的第一定义和第二定义,以及椭圆的简单性质.例题精讲椭圆的定义例1.'点M(x,y)与定点F(4,0)的距离和它到直线l:x=的距离的比是常数,求M的轨迹.'例2.'已知P为⊙B:(x+2)2+y2=36上一动点,点A(2,0),线段AP垂直平分线交直线BP于点Q,求点Q的轨迹方程.'例3.'已知△ABC 的周长等于18,B 、C 两点坐标分别为(0,4),(0,-4),求A 点的轨迹方程.'椭圆的标准方程知识讲解1.椭圆的标准方程【知识点的认识】椭圆标准方程的两种形式:(1)(a >b >0),焦点在x 轴上,焦点坐标为F (±c ,0),焦距|F 1F 2|=2c ;(2)(a >b >0),焦点在y 轴上,焦点坐标为F (0,±c ),焦距|F 1F 2|=2c .两种形式相同点:形状、大小相同;都有a >b >0;a 2=b 2+c 2两种形式不同点:位置不同;焦点坐标不同.标准方程(a >b >0)中心在原点,焦点在x 轴上(a >b >0)中心在原点,焦点在y 轴上图形顶点A(a ,0),A ′(﹣a ,0)B (0,b ),B ′(0,﹣b )A (b ,0),A ′(﹣b ,0)B (0,a ),B ′(0,﹣a )对称轴x 轴、y 轴,长轴长2a ,短轴长2b焦点在长轴长上x 轴、y 轴,长轴长2a ,短轴长2b焦点在长轴长上焦点F 1(﹣c ,0),F 2(c ,0)F 1(0,﹣c ),F 2(0,c )焦距|F 1F 2|=2c (c >0)c 2=a 2﹣b 2|F 1F 2|=2c (c >0)c 2=a 2﹣b 2离心率e =(0<e <1)e =(0<e <1)准线x =±y =±例题精讲椭圆的标准方程例1.'已知椭圆的焦点在x 轴上,长轴长为12,离心率为,求椭圆的标准方程.'例2.'写出适合下列条件的曲线方程:(1)求椭圆的标准方程.(2)已知双曲线两个焦点分别为F 1(-5,0),F 2(5,0),双曲线上一点P 到F 1,F 2距离差的绝对值等于6,求双曲线的标准方程.'例3.'若椭圆ax2+by2=1与直线x+y=1交于A、B两点,M为AB的中点,直线OM(O为原点)的斜率为,且OA⊥OB,求椭圆的方程.'椭圆的性质知识讲解1.椭圆的性质【知识点的认识】1.椭圆的范围2.椭圆的对称性3.椭圆的顶点顶点:椭圆与对称轴的交点叫做椭圆的顶点.顶点坐标(如上图):A1(﹣a,0),A2(a,0),B1(0,﹣b),B2(0,b)其中,线段A1A2,B1B2分别为椭圆的长轴和短轴,它们的长分别等于2a和2b,a和b分别叫做椭圆的长半轴长和短半轴长.4.椭圆的离心率①离心率:椭圆的焦距与长轴长的比叫做椭圆的离心率,用e表示,即:e=,且0<e<1.②离心率的意义:刻画椭圆的扁平程度,如下面两个椭圆的扁平程度不一样:e越大越接近1,椭圆越扁平,相反,e越小越接近0,椭圆越圆.当且仅当a=b时,c=0,椭圆变为圆,方程为x2+y2=a2.5.椭圆中的关系:a2=b2+c2.例题精讲椭圆的性质例1.'求满足下列条件的椭圆或双曲线的标准方程:(1)椭圆的焦点在y轴上,焦距为4,且经过点A(3,2);(2)双曲线的焦点在x轴上,右焦点为F,过F作重直于x轴的直线交双曲线于A,B两点,且|AB|=3,离心率为.'例2.'已知中心在原点的椭圆C的两个焦点和椭圆C1:4x2+9y2=36的两个焦点是一个正方形的四个顶点,且椭圆C过点A(2,-3).(1)求椭圆C的方程;(2)若PQ是椭圆C的弦,O是坐标原点,OP⊥OQ,已知直线OP的斜率为,求点Q的坐标.'例3.'如图,椭圆E:+=1(a>b>0)经过点A(0,1),且离心率为.(1)求椭圆E的方程;(2)若M点为右准线上一点,B为左顶点,连接BM交椭圆于N,求的取值范围;(3)经过点(1,1),且斜率为k的直线与椭圆E交于不同两点P,Q(均异于点A)证明:直线AP与AQ的斜率之和为定值.'当堂练习解答题练习1.'已知椭圆的中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与直线AB相交于点D,与椭圆相交于E,F两点.(Ⅰ)求椭圆的标准方程;(Ⅱ)若,求k的值;(Ⅲ)求四边形AEBF面积的最大值.'练习2.'椭圆C:=1(a>b>0)的左焦点为F1(-1,0),点P(1,)在椭圆上.(1)求椭圆C的方程;(2)直线l:y=kx+m与椭圆C交于A,B两点,椭圆C上另一点M满足△ABM的重心为坐标原点O,求△ABM的面积.'练习3.'已知P是右焦点为F的椭圆Γ:上一动点,若|PF|的最小值为1,椭圆的离心率为.(Ⅰ)求椭圆Γ的方程;(Ⅱ)当PF⊥x轴且点P在x轴上方时,设直线l与椭圆Γ交于不同的两点M,N,若PF平分∠MPN,则直线l的斜率是否为定值?若是,求出这个定值;若不是,说明理由.'练习4.'己知椭圆的一个顶点坐标为(2,0),离心率为,直线y=x+m 交椭圆于不同的两点A,B.(Ⅰ)求椭圆M的方程;(Ⅱ)设点C(1,1),当△ABC的面积为1时,求实数m的值.'练习5.'已知椭圆Γ:,B1,B2分别是椭圆短轴的上下两个端点,F1是椭圆的左焦点,P是椭圆上异于点B1,B2的点,若△B1F1B2的边长为4的等边三角形.(1)写出椭圆的标准方程;(2)当直线PB1的一个方向向量是(1,1)时,求以PB1为直径的圆的标准方程;(3)设点R满足:RB1⊥PB1,RB2⊥PB2,求证:△PB1B2与△RB1B2的面积之比为定值.'练习6.'已知曲线Γ:=1的左、右顶点分别为A,B,设P是曲线Γ上的任意一点.(1)当P异于A,B时,记直线PA,PB的斜率分别为k1,k2,求证:k1∙k2是定值;(2)设点C满足=λ(λ>0),且|PC|的最大值为7,求λ的值.'练习7.'已知椭圆C:的左、右焦点分别是E、F,离心率,过点F的直线交椭圆C于A、B两点,△ABE的周长为16.(1)求椭圆C的方程;(2)已知O为原点,圆D:(x-3)2+y2=r2(r>0)与椭圆C交于M、N两点,点P为椭圆C 上一动点,若直线PM、PN与x轴分别交于G、H两点,求证:|OG|∙|OH|为定值.'练习8.'已知椭圆E:=1(a>b>0)的离心率为,且过点A(2,0).(1)求椭圆E的标准方程;(2)问:是否存在过点M(0,2)的直线l,使以直线l被椭圆E所截得的弦CD为直径的圆过点N(-1,0),若存在,求出直线l的方程;若不存在,请说明理由.'练习9.'已知椭圆C:=1(a>b>0)的短轴长为2,离心率为,直线l:y=k(x-1)与椭圆C交于不同的两点M,N,A为椭圆C的左顶点.(1)求椭圆C的标准方程;(2)当△AMN的面积为时,求1的方程.'练习10.'求与双曲线-=1有相同的焦点,且过点M(2,1)的椭圆的方程.'练习11.'求适合下列条件的椭圆的标准方程:(1)焦点在x轴上,a=6,e=;(2)焦点在y轴上,c=3,e=.'练习12.'已知椭圆的中心在原点,它在x轴上的一个焦点与短轴两端点连线互相垂直,且此焦点和x轴上的较近端点的距离为4(-1),求椭圆方程.'。
椭圆的标准方程及性质应用(2)
服/务/教/师 免/费/馈/赠
返回菜单
数学-选修2-1
预习完成后,请把你认为难以解决的问题记录在下面的表格中 问题 1 问题 2 问题 3 问题 4
服/务/教/师 免/费/馈/赠
返回菜单
数学-选修2-1
直线与椭圆位置关系的判断 对不同的实数值 m,讨论直线 y=x+m 与椭圆x42+y2
=1 的位置关系.
Δ<0 时,即 m<- 5或 m> 5,方程③无实根,直线与椭圆 相离.
服/务/教/师 免/费/馈/赠
返回菜单
数学-选修2-1
1.直线与椭圆有相交、相切和相离三种情况,其位置关系的
几何特征分别是直线与椭圆有两个交点、有且只有一个交点、无公
共点,并且二者互为充要条件.
2.判断直线与椭圆的位置关系可使用代数法,即通过方程研
数学-选修2-1
自 主 学 习. 基 础 知 识
解
题
模
版
.
规
范
示
第 2 课时 椭圆标准方程及性质的应用
例
合
作
探
课
究.
时
重
作
难
业
疑
点
服/务/教/师 免/费/馈/赠
返回菜单
数学-选修2-1
[学习目标] 1.进一步掌握椭圆的方程及其性质的应用,会判 断直线与椭圆的位置关系.(重点) 2.能运用直线与椭圆的位置关 系解决相关的弦长、中点弦问题.(难点)
C.-23,13
D.-123,-127
服/务/教/师 免/费/馈/赠
返回菜单
数学-选修2-1
y=x+1, 【解析】 联立x42+y22=1, 消去 y,得 3x2+4x-2=0,设 直线与椭圆交于点 A(x1,y1),B(x2,y2),则 x1+x2=-43,故 AB 的 中点横坐标 x0=x1+2 x2=-23.纵坐标 y0=x0+1=-23+1=13. 【答案】 C
选择性必修第一册第三章 3.1.2 第2课时 椭圆的标准方程及性质的应用
第2课时 椭圆的标准方程及性质的应用学习目标 1.了解椭圆在实际生活中的应用.2.进一步掌握椭圆的方程及其性质的应用,会判断直线与椭圆的位置关系.知识点 直线与椭圆的位置关系直线y =kx +m 与椭圆x 2a 2+y 2b2=1(a >b >0)的位置关系的判断方法:联立⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y 2b 2=1.消去y 得到一个关于x 的一元二次方程.直线与椭圆的位置关系、对应一元二次方程解的个数及Δ的取值的关系如表所示.直线与椭圆 解的个数 Δ的取值 两个不同的公共点 两解 Δ>0 一个公共点 一解 Δ=0 没有公共点无解Δ<01.直线y =x +1与椭圆x 2+y 22=1的位置关系是( ) A .相离 B .相切 C .相交 D .无法确定 答案 C解析 联立⎩⎪⎨⎪⎧y =x +1,x 2+y 22=1,消去y ,得3x 2+2x -1=0,因为Δ=22+12=16>0,所以直线与椭圆相交.2.直线y =x +1被椭圆x 24+y 22=1所截得的弦的中点坐标是( )A.⎝⎛⎭⎫23,53B.⎝⎛⎭⎫43,73 C.⎝⎛⎭⎫-23,13 D.⎝⎛⎭⎫-132,-172 答案 C解析 联立⎩⎪⎨⎪⎧y =x +1,x 24+y 22=1,消去y ,得3x 2+4x -2=0,设直线与椭圆交于点A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-43,故AB 的中点横坐标x 0=x 1+x 22=-23.纵坐标y 0=x 0+1=-23+1=13.3.椭圆x 24+y 2=1的两个焦点为F 1,F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|PF 2|=________. 答案 72解析 因为|PF 1|+|PF 2|=4,|PF 1|=b 2a =12,所以|PF 2|=4-12=72.4.过椭圆x 216+y 29=1的右焦点F 作与x 轴垂直的直线与椭圆交于A ,B 两点,则以AB 为直径的圆的面积是________. 答案81π16解析 由题意,在x 216+y 29=1中,c =16-9=7,故F (7,0). 当x =7时,y =±31-716=±94,所以|AB |=92, 故以AB 为直径的圆的面积是π×⎝⎛⎭⎫942=81π16.一、实际生活中的椭圆例1 (多选)中国的嫦娥四号探测器,简称“四号星”,是世界首个在月球背面软着陆和巡视探测的航天器.2019年9月25日,中国科研人员利用嫦娥四号数据精确定位了嫦娥四号的着陆位置,并再现了嫦娥四号的落月过程,该成果由国际科学期刊《自然·通讯》在线发表.如图所示,现假设“四号星”沿地月转移轨道飞向月球后,在月球附近一点P 变轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行.若用2c 1和2c 2分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用2a 1和2a 2分别表示椭圆轨道Ⅰ和Ⅱ的长轴长,则下列式子正确的是( )A.a1+c1=a2+c2 B .a1-c1=a2-c2C.c1a1<c2 a2D .c1a1>c2a2答案BD解析由图可知,a1>a2,c1>c2所以a1+c1>a2+c2,所以A不正确;在椭圆轨道Ⅰ中可得,a1-c1=|PF|,在椭圆轨道Ⅱ中可得,|PF|=a2-c2,所以a1-c1=a2-c2,所以B正确;a1+c2=a2+c1,两边同时平方得,a21+c22+2a1c2=a22+c21+2a2c1,所以a21-c21+2a1c2=a22-c22+2a2c1,即b21+2a1c2=b22+2a2c1,由图可得,b21>b22,所以2a1c2<2a2c1,c2a2<c1a1,所以C错误,D正确.反思感悟解决和椭圆有关的实际问题的思路(数学抽象)(1)通过数学抽象,找出实际问题中涉及的椭圆,将原问题转化为数学问题.(2)确定椭圆的位置及要素,并利用椭圆的方程或几何性质求出数学问题的解.(3)用解得的结果说明原来的实际问题.跟踪训练1某隧道的拱线设计为半个椭圆的形状,最大拱高h为6米(如图所示),路面设计是双向车道,车道总宽为87 米,如果限制通行车辆的高度不超过4.5米,那么隧道设计的拱宽d至少应是________米.答案32解析设椭圆方程为x2a2+y236=1,当点(47,4.5)在椭圆上时,16×7a 2+⎝⎛⎭⎫92236=1,解得a =16,∵车辆高度不超过4.5米,∴a ≥16,d =2a ≥32, 故拱宽至少为32米. 二、直线与椭圆命题角度1 直线与椭圆的位置关系例2 已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不同的公共点; (2)有且只有一个公共点; (3)没有公共点?解 直线l 的方程与椭圆C 的方程联立,得方程组 ⎩⎪⎨⎪⎧y =2x +m , ①x 24+y 22=1, ② 将①代入②,整理得9x 2+8mx +2m 2-4=0,③ 关于x 的一元二次方程的判别式 Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144. (1)由Δ>0,得-32<m <3 2.于是,当-32<m <32时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不同的公共点. (2)由Δ=0,得m =±3 2.也就是当m =±32时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点.(3)由Δ<0,得m <-32或m >3 2.从而当m <-32或m >32时,方程③没有实数根,可知原方程组没有实数解.这时直线l 与椭圆C 没有公共点.反思感悟 直线与椭圆有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程组是否有实数解或实数解的个数问题,此时要注意分类讨论思想和数形结合思想的运用.跟踪训练2 在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q ,求k 的取值范围.解 由已知条件知直线l 的方程为y =kx +2, 代入椭圆方程得x 22+(kx +2)2=1,整理得⎝⎛⎭⎫12+k 2x 2+22kx +1=0,直线l 与椭圆有两个不同的交点P 和Q 等价于Δ=8k 2-4⎝⎛⎭⎫12+k 2=4k 2-2>0, 解得k <-22或k >22, 所以k 的取值范围为⎝⎛⎭⎫-∞,-22∪⎝⎛⎭⎫22,+∞.命题角度2 弦长问题例3 已知动点P 与平面上两定点A (-2,0),B (2,0)连线的斜率的积为定值-12.(1)试求动点P 的轨迹方程C ;(2)设直线l :y =kx +1与(1)中曲线C 交于M ,N 两点,当|MN |=423时,求直线l 的方程. 解 (1)设动点P 的坐标是(x ,y ), 由题意得k P A ·k PB =-12.∴y x +2·y x -2=-12,化简整理得x 22+y 2=1.故点P 的轨迹方程C 是x 22+y 2=1(x ≠±2).(2)设直线l 与曲线C 的交点为M (x 1,y 1),N (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +1,x 2+2y 2=2,得(1+2k 2)x 2+4kx =0. Δ=16k 2>0,∴x 1+x 2=-4k1+2k 2,x 1x 2=0.|MN |=1+k 2·(x 1+x 2)2-4x 1x 2=423,整理得k 4+k 2-2=0,解得k 2=1或k 2=-2(舍). ∴k =±1,经检验符合题意. ∴直线l 的方程是y =±x +1, 即x -y +1=0或x +y -1=0. 反思感悟 求弦长的两种方法(1)求出直线与椭圆的两交点坐标,用两点间距离公式求弦长.(2)联立直线与椭圆的方程,消元得到关于一个未知数的一元二次方程,利用弦长公式:|P 1P 2|=1+k 2·(x 1+x 2)2-4x 1x 2⎝⎛⎭⎫或|P 1P 2|=1+1k 2(y 1+y 2)2-4y 1y 2,其中x 1,x 2(y 1,y 2)是上述一元二次方程的两根,由根与系数的关系求出两根之和与两根之积后代入公式可求得弦长.跟踪训练3 已知斜率为1的直线l 过椭圆x 24+y 2=1的右焦点F ,交椭圆于A ,B 两点,求弦AB 的长.解 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2), 由椭圆方程知a 2=4,b 2=1,∴c =a 2-b 2=3, ∴F (3,0),∴直线l 的方程为y =x -3,将其代入椭圆方程,并化简、整理得5x 2-83x +8=0, ∴x 1+x 2=835,x 1x 2=85,∴|AB |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =2·(83)2-4×5×85=85.1.过椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点F (c ,0)的弦中最短弦长是( )A.2b 2aB.2a 2bC.2c 2aD.2c 2b答案 A解析 最短弦是过焦点F (c ,0)且与焦点所在坐标轴垂直的弦. 将点(c ,y )的坐标代入椭圆x 2a 2+y 2b 2=1,得y =±b 2a ,故最短弦长是2b 2a.2.已知直线l :x +y -3=0,椭圆x 24+y 2=1,则直线与椭圆的位置关系是( )A .相离B .相切C .相交D .相交或相切 答案 A解析 把x +y -3=0代入x 24+y 2=1,得x 24+(3-x )2=1,即5x 2-24x +32=0. ∵Δ=(-24)2-4×5×32=-64<0, ∴直线与椭圆相离.3.已知F 是椭圆x 225+y 29=1的一个焦点,AB 为过椭圆中心的一条弦,则△ABF 面积的最大值为( )A .6B .15C .20D .12 答案 D解析 S =12|OF |·|y 1-y 2|≤12|OF |·2b =12.4.(多选)某颗人造地球卫星的运行轨道是以地球的中心F 为一个焦点的椭圆,如图所示,已知它的近地点A (离地面最近的点)距地面m 千米,远地点B (离地面最远的点)距地面n 千米,并且F ,A ,B 三点在同一直线上,地球半径约为R 千米,设该椭圆的长轴长、短轴长、焦距分别为2a ,2b ,2c ,则( )A .a -c =m +RB .a +c =n +RC .2a =m +nD .b =(m +R )(n +R )答案 ABD解析 ∵地球的中心是椭圆的一个焦点,并且根据图象可得⎩⎪⎨⎪⎧m =a -c -R ,n =a +c -R , (*)∴a -c =m +R ,故A 正确; a +c =n +R ,故B 正确;(*)中两式相加m +n =2a -2R ,可得2a =m +n +2R ,故C 不正确;由(*)可得⎩⎪⎨⎪⎧m +R =a -c ,n +R =a +c ,两式相乘可得(m +R )(n +R )=a 2-c 2.∵a 2-c 2=b 2 ,∴b 2=(m +R )(n +R )⇒b =(m +R )(n +R ) ,故D 正确.5.已知椭圆4x 2+y 2=1及直线y =x +m ,当直线与椭圆有公共点时,则实数m 的取值范围是________.答案 ⎣⎡⎦⎤-52,52解析 由⎩⎪⎨⎪⎧4x 2+y 2=1,y =x +m ,得5x 2+2mx +m 2-1=0,当直线与椭圆有公共点时,Δ=4m 2-4×5(m 2-1)≥0, 即-4m 2+5≥0,解得-52≤m ≤52.1.知识清单:(1)直线与椭圆的位置关系. (2)弦长公式.2.方法归纳:判别式法.3.常见误区:代数计算中的运算失误.1.直线y =x +1与椭圆x 25+y 24=1的位置关系是( )A .相交B .相切C .相离D .无法判断答案 A解析 方法一 直线过点(0,1),而0+14<1,即点(0,1)在椭圆内部,所以可推断直线与椭圆相交.方法二 联立直线与椭圆的方程,得⎩⎪⎨⎪⎧y =x +1,x 25+y 24=1,消去y 得9x 2+10x -15=0,Δ=100-4×9×(-15)=640>0,所以直线与椭圆相交.2.(多选)若直线y =kx +2与椭圆x 23+y 22=1相切,则斜率k 的值是( )A.63 B .-63 C .-33 D.33答案 AB解析 由⎩⎪⎨⎪⎧y =kx +2,x 23+y 22=1,得(3k 2+2)x 2+12kx +6=0, 由题意知Δ=144k 2-24(3k 2+2)=0, 解得k =±63.3.直线x -y +1=0被椭圆x 23+y 2=1所截得的弦长|AB |等于( )A.322B. 2 C .2 2 D .3 2答案 A解析 由⎩⎪⎨⎪⎧x -y +1=0,x 23+y 2=1,得交点为(0,1),⎝⎛⎭⎫-32,-12,则|AB |=⎝⎛⎭⎫322+⎝⎛⎭⎫1+122=322.4.若直线y =kx +1与椭圆x 25+y 2m =1总有公共点,则m 的取值范围是( )A .m >1B .m >0C .0<m <5且m ≠1D .m ≥1且m ≠5答案 D解析 方法一 由于直线y =kx +1恒过点(0,1), 所以点(0,1)必在椭圆内或椭圆上, 则0<1m ≤1且m ≠5,故m ≥1且m ≠5.方法二 由⎩⎪⎨⎪⎧y =kx +1,mx 2+5y 2-5m =0, 消去y 整理得(5k 2+m )x 2+10kx +5(1-m )=0.由题意知Δ=100k 2-20(1-m )(5k 2+m )≥0对一切k ∈R 恒成立, 即5mk 2+m 2-m ≥0对一切k ∈R 恒成立, 由于m >0且m ≠5,∴m ≥1且m ≠5.5.已知椭圆C :y 29+x 2=1,过点P ⎝⎛⎭⎫12,12的直线与椭圆C 相交于A ,B 两点,且弦AB 被点P 平分,则直线AB 的方程为( ) A .9x -y -4=0 B .9x +y -5=0 C .4x +2y -3=0 D .4x -2y -1=0答案 B解析 设A (x 1,y 1),B (x 2,y 2).因为点A ,B 在椭圆上,所以y 219+x 21=1,①y 229+x 22=1.② ①-②,得(y 1+y 2)(y 1-y 2)9+(x 1+x 2)(x 1-x 2)=0.③因为P ⎝⎛⎭⎫12,12是线段AB 的中点, 所以x 1+x 2=1,y 1+y 2=1,代入③得y 1-y 2x 1-x 2=-9,即直线AB 的斜率为-9.故直线AB 的方程为y -12=-9⎝⎛⎭⎫x -12, 整理得9x +y -5=0.6.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线x +3y +4=0有且仅有一个公共点,则椭圆的长轴长为______________. 答案 27解析 由题意可设椭圆的方程为x 2a 2+y 2a 2-4=1(a >2),与直线方程x +3y +4=0联立,得4(a 2-3)y 2+83(a 2-4)y +(16-a 2)(a 2-4)=0, 由Δ=0,得a =7, 所以椭圆的长轴长为27.7.过椭圆x 25+y 24=1的右焦点F 作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为________. 答案 53解析 由已知可得直线方程为y =2x -2,|OF |=1, 联立方程得⎩⎪⎨⎪⎧x 25+y 24=1,y =2x -2,解得A (0,-2),B ⎝⎛⎭⎫53,43,所以S △AOB =12·|OF |·|y A -y B |=53.8.已知椭圆的方程为x 24+y 23=1的左、右焦点分别为F 1,F 2,经过点F 1的一条直线与椭圆交于A ,B 两点.若直线AB 的倾斜角为π4,则弦长|AB |为________.答案 247 解析 易知F 1(-1,0),∵直线AB 的倾斜角为π4, ∴直线AB 的斜率为1,可得直线AB 的方程为y =x +1.联立⎩⎪⎨⎪⎧ y =x +1,x 24+y 23=1, 整理得7x 2+8x -8=0,设A (x 1,y 1),B (x 2,y 2),由根与系数的关系可知x 1+x 2=-87,x 1·x 2=-87, 则由弦长公式得|AB |=1+k 2·(x 1+x 2)2-4x 1x 2=2×⎝⎛⎭⎫-872-4×⎝⎛⎭⎫-87=247. 9.对不同的实数值m ,讨论直线y =x +m 与椭圆x 24+y 2=1的位置关系. 解 由⎩⎪⎨⎪⎧y =x +m ,x 24+y 2=1消去y , 得x 24+(x +m )2=1, 整理得5x 2+8mx +4m 2-4=0.Δ=(8m )2-4×5(4m 2-4)=16(5-m 2).当Δ>0,即-5<m <5时,此时直线与椭圆相交;当Δ=0,即m =±5时,此时直线与椭圆相切;当Δ<0,即m <-5或m >5时,直线与椭圆相离.10.某海域有A ,B 两个岛屿,B 岛在A 岛正东4海里处,经多年观察研究发现,某种鱼群洄游的路线是曲线C ,曾有渔船在距A 岛、B 岛距离和为8海里处发现过鱼群.以A ,B 所在直线为x 轴,AB 的垂直平分线为y 轴建立平面直角坐标系.(1)求曲线C 的标准方程;(2)某日,研究人员在A ,B 两岛同时用声纳探测仪发出不同频率的探测信号(传播速度相同),A ,B 两岛收到鱼群在P 处反射信号的时间比为5∶3,问你能否确定P 处的位置(即点P 的坐标)?解 (1)由题意知曲线C 是以A ,B 为焦点且长轴长为8的椭圆,又2c =4,则c =2,a =4,故b =23,所以曲线C 的方程是x 216+y 212=1. (2)由于A ,B 两岛收到鱼群发射信号的时间比为5∶3, ∴设此时距A ,B 两岛的距离比为5∶3,即鱼群分别距A ,B 两岛的距离为5海里和3海里.设P (x ,y ),B (2,0),由|PB |=3, ∴(x -2)2+y 2=3,⎩⎪⎨⎪⎧ (x -2)2+y 2=9,x 216+y 212=1,-4≤x ≤4,∴x =2,y =±3,∴点P 的坐标为(2,3)或(2,-3).11.椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,若直线y =kx 与椭圆的一个交点的横坐标x 0=b ,则k 的值为( )A.22 B .±22 C.12 D .±12答案 B 解析 根据椭圆的离心率为22,得c a =22. 由x 0=b ,得y 20=b 2⎝⎛⎭⎫1-b2a 2=b 2c 2a 2, 所以y 0=±bc a ,∴k =y 0x 0=±c a =±22. 12.以F 1(-1,0),F 2(1,0)为焦点且与直线x -y +3=0有公共点的椭圆中,离心率最大的椭圆方程是( )A.x 220+y 219=1 B.x 29+y 28=1 C.x 25+y 24=1 D.x 23+y 22=1 答案 C解析 由题意设椭圆方程为x 2b 2+1+y 2b 2=1,⎩⎪⎨⎪⎧x 2b 2+1+y 2b 2=1,x -y +3=0,得(2b 2+1)x 2+6(b 2+1)x +8b 2+9-b 4=0,由Δ≥0得b 2≥4,所以b 2的最小值为4,由e =1-b 2b 2+1=1b 2+1, 则b 2=4时,e 取最大值,故选C. 13.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为________. 答案 6解析 由x 24+y 23=1可得,F (-1,0). 设P (x ,y ),-2≤x ≤2,则OP →·FP →=x 2+x +y 2=x 2+x +3⎝⎛⎭⎫1-x 24=14x 2+x +3=14(x +2)2+2, 当x =2时,OP →·FP →取得最大值6. 14.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为________. 答案 4105解析 方法一 设直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧ y =x +t ,x 24+y 2=1,消去y 得 x 24+(x +t )2=1, 整理得5x 2+8tx +4(t 2-1)=0.∵Δ=64t 2-80(t 2-1)>0,∴-5<t < 5.设直线与椭圆交于A (x 1,y 1),B (x 2,y 2)两点,则x 1+x 2=-8t 5,x 1·x 2=4(t 2-1)5. ∴|AB |=2[(x 1+x 2)2-4x 1x 2] =2⎣⎡⎦⎤6425t 2-4×4(t 2-1)5=-32t 2+16025. 当t =0时,|AB |为最大,即|AB |max =4105. 方法二 根据椭圆的对称性,当直线斜率固定时,直线过原点时截椭圆所得弦长最长,将y=x 代入x 24+y 2=1得交点坐标为A ⎝⎛⎭⎫255,255和B ⎝⎛⎭⎫-255,-255, 故|AB |=4105.15.已知椭圆的左焦点为F 1,有一质点A 从F 1处以速度v 开始沿直线运动,经椭圆内壁反射(无论经过几次反射速率始终保持不变),若质点第一次回到F 1时,它所用的最长时间是最短时间的7倍,则椭圆的离心率e 为( )A.23B.34C.35D.57答案 D解析 假设长轴在x 轴,短轴在y 轴,以下分为三种情况:(1)球从F 1沿x 轴向左直线运动,碰到左顶点必然原路反弹,这时第一次回到F 1路程是2(a -c );(2)球从F 1沿x 轴向右直线运动,碰到右顶点必然原路反弹,这时第一次回到F 1路程是2(a +c );(3)球从F 1沿x 轴斜向上(或向下)运动,碰到椭圆上的点A , 反弹后经过椭圆的另一个焦点F 2,再弹到椭圆上一点B ,反弹后经过点F 1,此时小球经过的路程是4a .综上所述,从点F 1沿直线出发,经椭圆壁反弹后第一次回到点F 1时,小球经过的最大路程是4a ,最小路程是2(a -c ).∴由题意可得4a =7×2(a -c ),即5a =7c ,得c a =57. ∴椭圆的离心率为57. 16.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点⎝⎛⎭⎫1,32,离心率为12,左、右焦点分别为F 1,F 2,过F 1的直线交椭圆于A ,B 两点.(1)求椭圆C 的方程;(2)当△F 2AB 的面积为1227时,求直线的方程.解 (1)∵椭圆过点⎝⎛⎭⎫1,32, ∴1a 2+94b 2=1, 又e =c a =12且a 2=b 2+c 2, 解得a 2=4,b 2=3,c 2=1,∴椭圆方程为x 24+y 23=1. (2)显然直线AB 的斜率不为0,设AB 的方程为x =ty -1,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x =ty -1,x 24+y 23=1, 整理得(3t 2+4)y 2-6ty -9=0,Δ=36t 2+36(3t 2+4)=144t 2+144>0,∴y 1+y 2=6t 3t 2+4,y 1y 2=-93t 2+4, 2ABF S =12|F 1F 2||y 1-y 2| =|y 1-y 2|=(y 1+y 2)2-4y 1y 2 =⎝⎛⎭⎫6t 3t 2+42+363t 2+4=12t 2+13t 2+4=1227, 解得t 2=1,∴直线方程为x =±y -1,即y =x +1或y =-x -1.。
原创1:3.1.2 第2课时 椭圆的标准方程及性质的应用
+
1 2 23
+ >0.
8
2
设A,B的横坐标分别为x1,x2,
1 +2 −18(1−)
4
则
=
=1,解得k=- .
2
2(9 2 +4)
9
4
9
故AB的方程为y=- (x-1)+1,
即4x+9y-13=0.
典例精析
跟踪练习
题型三:中点弦问题
例6
已知一直线与椭圆4x2+9y2=36相交于A,B两点,弦AB的中点坐标为M(1,1),
然后利用根与系数的关系求弦长,从而绕过求直线与椭圆的交点坐标.
若直线y=kx+b与椭圆相交于A(x1,y1),B(x2,y2)两点,
则|AB|= 1 + 2 |x1-x2|= 1 + 2 · 1 + 2
或|AB|= 1 +
1
·|y -y2|=
2 1
1+
1
2
2
· 1 + 2
− 41 2 ,
+ =
由ቐ 2
2
+
20
5
=1
y
,消去y,
得5x2-8mx+4m2-20Байду номын сангаас0.
令Δ=(-8m)2-4×5×(4m2-20)=0,
得m=5或m=-5.
∴所求最大距离即为直线x+y=-5与直线l间的距离,
11
2
11 2
.
2
∴最大距离为 =
O
x
典例精析
题型一:直线与椭圆的位置关系
例4
2 2
已知A(6,0),B(0,6),C为椭圆 + =1上一点,求△ABC面积的最小值.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探究点二 求椭圆的离心率
而|MF1|+|MF2|=
4 2 4c2+9b2+3b=2a,
整理得 3c2=3a2-2ab.又 c2=a2-b2,所以 3b=2a.
2 2 2 2 a - b b2 4 c b 5 所以a2=9.所以 e2=a2= a2 =1-a2=9,所以 e
5 =3.
【提升总结】
c (1)求离心率 e 时, 除用关系式 a =b +c 外, 还要注意 e= 的 a
1 3 为___
。
4、若某个椭圆的长轴、短轴、焦距依次成等差数列,
3 5 则其离心率e=__________ 。
【变式训练3】已知椭圆的两个焦点为F1、F2,A为椭
圆上一点,且AF1⊥AF2,∠AF2F1=60°,求该椭圆的 离心率. 解:不妨设椭圆的焦点在x轴上,画出草图如图所 示.
由 AF1⊥AF2 知△AF1F2 为直角三角形,且∠AF2F1=60° . 由椭圆定义,知|AF1|+|AF2|=2a,|F1F2|=2c.则在 Rt△AF1F2 中,由∠AF2F1=60° 得|AF2|=c,|AF1|= 3c, c 所以|AF1|+|AF2|=2a=( 3+1)c,所以离心率 e=a= 3 -1.
思考2 椭圆的哪些几何性长,短轴长,离心率等.
例1 : 求适合下列条件的椭圆的标准方程: 2 (1)长轴在x轴上,长轴的长等于12,离心率等于 . 3 (2)经过点P ( 6, 0)和Q(0, 8).
c 2 解 : (1)由已知2a 12, e , 得a 6, c 4, a 3
第2课时 椭圆方程及性质的应用
椭 圆 的 几 何 性 质
y
标准方程 范围 对称性 顶点坐标 焦点坐标 半轴长 离心率
x2 y2 2 1( a b 0) 2 a b
o
x
|x|≤ a,|y|≤ b
关于x轴、y轴成轴对称;关于原点成 中心对称 (a,0),(-a,0),(0,b),(0,-b) (c,0),(-c,0) 长半轴长为a,短半轴长为b. a>b
2 2
1 + k 2· |x1-x2|= 1+k2· x1+x22-4x1x2求解.
x 例 3: 已知斜率为 1 的直线 l 过椭圆 +y2=1 的右 4 焦点,交椭圆于 A、B 两点,求弦 AB 的长.
学习圆时知道点与圆的位置关系有:
点在圆内、点在圆上、点在圆外三种位置关系; 直线与圆的位置关系有: 相切、相离、相交三种位置关系. 思考:你知道点与椭圆、直线与椭圆的位置关系吗?
探究点3
点与椭圆、直线与椭圆的位置关系
点与椭圆、直线与椭圆的位置关系 x2 y2 (1)点 P(x0,y0)与椭圆 2+ 2=1(a>b>0)的位置关系: a b
2 x0 y2 0 点 P 在椭圆上⇔ 2+ 2=1; a b 2 x2 y 0 0 点 P 在椭圆内部⇔ 2+ 2<1; a b
点P
2 2 x0 y0 在椭圆外部⇔ 2+ 2>1.
a
b
(2)判断直线与椭圆的位置关系的常用方法为:
联立直线与椭圆方程,消去y或x,得到关于x或
y的一元二次方程,记该方程的判别式为Δ ,
y2 x2 所以椭圆的标准方程为 1. 64 36
【提升总结】求椭圆标准方程的常用方法及一般步骤
(1)常用方法:利用椭圆的几何性质求椭圆的标准方程
通常利用待定系数法.
(2)一般步骤:根据已知条件求椭圆的标准方程的思路
是“选标准,定参数”.其一般步骤为:
一:确定焦点所在的坐标轴;
二:求出a2,b2的值; 三:写出标准方程.
【变式练习1】 已知椭圆的中心在坐标原点,焦点在坐标轴上, 两顶点分别是(4,0),(0,2),求此椭圆的标准方 程. 解析:由已知a=4,b=2,椭圆的焦点在x轴上,
x 2 y2 所以椭圆方程是 + =1 . 16 4
椭圆的标准方 程和离心率都 例 2: 如图所示,F1,F2 分别为 与a,b,c有关, 椭圆的左、右焦点,椭圆上点 M 的横坐 如何由已知条 件求椭圆的离 标等于右焦点的横坐标,其纵坐标等于短 心率呢? 2 半轴长的 ,求椭圆的离心率. 3 解 设椭圆的长半轴、短半轴、半焦距长分别为a,b,c. 则焦点为F1(-c,0),F2(c,0),M点的坐标为 (c, 2 b) , 3 则△MF1F2为直角三角形. 在Rt△MF1F2中,|F1F2|2+|MF2|2=|MF1|2, 即4c2+b2=|MF1|2.
2 2 2
代换,通过方程思想求离心率.
(2)在椭圆中涉及三角形问题时,要充分利用椭圆的定义、 正弦定理及余弦定理、全等三角形、相似三角形等知识.
【变式训练2】
1、若椭圆的焦距长等于它的短轴长,则其离心率为
2 2
。
2、若椭圆的两个焦点及一个短轴端点构成正三角形,则 其离心率为
1 2
。
3、若椭圆的两个焦点把长轴分成三等分,则其离心率
c e a
1. 会根据椭圆的几何性质求椭圆的标准方程.
(重点)
2.利用椭圆性质解决一些实际问题. (重点)
3.掌握点与椭圆、直线与椭圆的位置关系.(难点)
探究点1
思考1 椭圆的哪些几何性质可确定焦点在哪个坐 标轴上? 提示:焦点坐标,长轴及短轴的顶点坐标.
如何利用椭 圆的简单性 利用椭圆性质求椭圆的标准方程 质求椭圆的 标准方程呢?
则①直线与椭圆相交⇔Δ >0; ②直线与椭圆相切⇔Δ =0; ③直线与椭圆相离⇔Δ <0.
(3)弦长公式:
①求出直线与椭圆的交点,利用两点间的距离公
式求弦长.
②设而不求得弦长,设直线 y=kx+m(k∈R,m∈ R),弦长|AB|,A(x1,y1),B(x2,y2),联立直线与椭 圆的方程,消去 y(或 x)得关于 x(或 y)的一元二次方 程 , 利 用 弦 长 公 式 |AB| = x1-x2 +y1-y2 =
从而b2 a 2 c 2 20,
x2 y2 所求椭圆的标准方程为 1. 36 20
(2)由椭圆的几何性质可知,以坐标轴为对称轴 的椭圆与坐标轴的交点就是椭圆的顶点,所以 P、Q分别是椭圆的短轴和长轴的 一个端点,于是有b 6, a 8, 且短轴、长轴分别在x轴和y轴上,