《金属精密液态成形技术》习题参考答案及解析
《金属精密液态成形技术》习题参考答案及解析
一、简答题1.常用金属精密液态成形方法有哪些?答:常用的金属精密液态成形方法有:熔模精密铸造、石膏型精密铸造、陶瓷型精密铸造、消失模铸造、金属型铸造、压力铸造、低压铸造、差压铸造、真空吸铸、调压铸造、挤压铸造、离心铸造、壳型铸造、连续铸造、半固态铸造、喷射成形技术、石墨型铸造、电渣熔铸和电磁铸造等。
2.金属精密液态成形技术的特点是什么?对铸件生产有哪些影响?特点:〔1特殊的铸型制造工艺与材料。
〔2特殊的液态金属充填方式与铸件冷凝条件。
对铸件生产的影响:由于铸型材料与铸型制作工艺的改变,对铸件表面粗糙度产生很大影响,不但尺寸精度很高,还可使铸件表面粗糙度降低,从而可实现近净成形。
在某些精密液态成形过程中,金属液是在外力〔如离心力、电磁力、压力等作用下完成充型和凝固的,因此提高了金属液的充型能力,有利于薄壁铸件的成形;液态金属在压力下凝固,有利于获得细晶组织,减少缩松缺陷,提高力学性能。
熔模:一、名词解释1.硅溶胶:硅溶胶是由无定形二氧化硅的微小颗粒分散在水中而形成的稳定胶体。
硅溶胶是熔模铸造常用的一种优质黏结剂。
2.硅酸乙酯水解:3.水玻璃模数:水玻璃中的SiO2与Na2O摩尔数之比。
4.树脂模料:是以树脂及改性树脂为主要组分的模料。
5.压型温度:6.涂料的粉液比:涂料中耐火材料与黏结剂的比例。
7析晶:石英玻璃在熔点以下处于介稳定状态,在热力学上是不稳定的,当加热到一定温度,开始转变为方石英,此转变过程称"析晶"。
二、填空题1.熔模铸造的模料强度通常以抗弯强度来衡量。
2.硅溶胶型壳的干燥过程实质上就是硅溶胶的胶凝过程。
3.一般说来说:硅溶胶中SiO2含量越高、密度越大,则型壳强度越高。
4.涂料中最基本的两个组成耐火材料和黏结剂之间的比例,即为涂料的粉液比。
5.通常按模料熔点的高低将其分为高温、中温和低温模料。
6.硅溶胶中Na20含量和PH值反映了硅溶胶及其涂料的稳定性。
7.模料的耐热性是指温度升高时模料的抗软化变形的能力。
材料成形参考习题及答案
材料成形理论基础习题第一部分 液态金属凝固学1. 纯金属和实际合金的液态结构有何不同?举例说明。
答:(1)纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成。
原子集团的空穴或裂纹内分布着排列无规则的游离原子,这样的结构处于瞬息万变的状态,液体内部存在着能量起伏。
实际的液态合金是由各种成分的原子集团、游离原子、空穴、裂纹、杂质气泡组成的鱼目混珠的“混浊”液体,也就是说,实际的液态合金除了存在能量起伏外,还存在结构起伏。
(2)例如钢液,在钢液中主要为Fe ,含有C 、Si 、S 、P 、Mn 、O 、H 等元素。
这些元素或以原子集团存在,或以高熔点化合物如SiO 、CaO 、MnO 等形式存在,共同构成有较大成分起伏的钢液主体以及杂质、气体和空穴等。
2. 液态金属的表面张力和界面张力有何不同?表面张力和附加压力有何关系?答:(1)液态金属的表面张力是界面张力的一个特例。
表面张力对应于液-气的交界面,而界面张力对应于固-液、液-气、固-固、固-气、液-液、气-气的交界面。
(2)表面张力与附加压力符合下列公式的关系:1211r r ρσ=+()式中r 1、r 2分别为曲面的曲率半径。
附加压力是因为液面弯曲后由表面张力引起的。
3. 液态合金的流动性和充型能力有何异同?如何提高液态金属的充型能力?答:(1)液态金属的流动性和冲型能力都是影响成形产品质量的因素;不同点:流动性是确定条件下的充型能力,是液态金属本身的流动能力,由液态合金的成分、温度、杂质含量决定,与外界因素无关。
而充型能力首先取决于流动性,同时又与铸件结构、浇注条件及铸型等条件有关。
(2)提高液态金属的冲型能力的措施:1)金属性质方面:①改善合金成分;②结晶潜热L 要大;③比热、密度、导热系大;④粘度、表面张力大。
2)铸型性质方面:①蓄热系数大;②适当提高铸型温度;③提高透气性。
3)浇注条件方面:①提高浇注温度;②提高浇注压力。
4)铸件结构方面:①在保证质量的前提下尽可能减小铸件厚度;②降低结构复杂程度。
材料成型技术基础第2版课后习题答案
第一章金属液态成形1.①液态合金的充型能力是指熔融合金充满型腔,获得轮廓清晰、形状完整的优质铸件的能力。
②流动性好,熔融合金充填铸型的能力强,易于获得尺寸准确、外形完整的铸件。
流动性不好,则充型能力差,铸件容易产生冷隔、气孔等缺陷。
③成分不同的合金具有不同的结晶特性,共晶成分合金的流动性最好,纯金属次之,最后是固溶体合金。
④相比于铸钢,铸铁更接近更接近共晶成分,结晶温度区间较小,因而流动性较好。
2.浇铸温度过高会使合金的收缩量增加,吸气增多,氧化严重,反而是铸件容易产生缩孔、缩松、粘砂、夹杂等缺陷。
3.缩孔和缩松的存在会减小铸件的有效承载面积,并会引起应力集中,导致铸件的力学性能下降。
缩孔大而集中,更容易被发现,可以通过一定的工艺将其移出铸件体外,缩松小而分散,在铸件中或多或少都存在着,对于一般铸件来说,往往不把它作为一种缺陷来看,只有要求铸件的气密性高的时候才会防止。
4 液态合金充满型腔后,在冷却凝固过程中,若液态收缩和凝固收缩缩减的体积得不到补足,便会在铸件的最后凝固部位形成一些空洞,大而集中的空洞成为缩孔,小而分散的空洞称为缩松。
浇不足是沙型没有全部充满。
冷隔是铸造后的工件稍受一定力后就出现裂纹或断裂,在断口出现氧化夹杂物,或者没有融合到一起。
出气口目的是在浇铸的过程中使型腔内的气体排出,防止铸件产生气孔,也便于观察浇铸情况。
而冒口是为避免铸件出现缺陷而附加在铸件上方或侧面的补充部分。
逐层凝固过程中其断面上固相和液相由一条界线清楚地分开。
定向凝固中熔融合金沿着与热流相反的方向按照要求的结晶取向进行凝固。
5.定向凝固原则是在铸件可能出现缩孔的厚大部位安放冒口,并同时采用其他工艺措施,使铸件上远离冒口的部位到冒口之间建立一个逐渐递增的温度梯度,从而实现由远离冒口的部位像冒口方向顺序地凝固。
铸件相邻各部位或铸件各处凝固开始及结束的时间相同或相近,甚至是同时完成凝固过程,无先后的差异及明显的方向性,称作同时凝固。
液态成型试题
第一章、金属的液态成型试题一、选择题1、铸件易产生冷隔与浇不足等缺陷,主要原因是合金的()。
A、收缩性大B、流动性不好C、力学性能不高D、氧化性太强2、不同铸造合金的缩孔和缩松倾向不同,下列几类合金中,缩孔倾向小,缩松倾向大的是()。
A、纯金属B、共晶合金C、逐层凝固的合金D、糊状凝固的合金3、能有效防止缩孔和宏观缩松的凝固原则为()。
A、定向凝固B、同时凝固C、糊状凝固D、中间凝固4、确定不同铸造合金所能铸出的“最小壁厚”大小,所依据的性能是()A、铸造合金的收缩性B、铸造合金的流动性C、铸造合金的吸气性D、铸造合金的氧化性5、大口径铸铁污水管生产,常采用的铸造方法是()。
A、熔模铸造B、离心铸造C、金属型铸造D、压力铸造6、象汽轮机叶片这类形状复杂、难以采用切削加工成形的零件,常采用的铸造方法为()。
A、金属型铸造B、离心铸造C、熔模铸造D、砂型铸造7、为有效减少铸件产生铸造内应力,防止变形与裂纹,常采用的凝固原则为()A、定向凝固B、同时凝固C、逐层凝固D、中间凝固8、铸件进行人工时效的主要目的是()。
A、细化晶粒B、消除内应力C、防止冷隔D、防止缩松9、下列铸造合金中,流动性最好的是()A、铜合金B、铝合金C、铸钢D、灰铸铁二、填空题1、液态金属结晶过程遵循和这个基本规律进行的。
2、铸造合金的收缩经历、和固态收缩三个阶段。
3、影响铸铁石墨化的主要因素是和。
4、灰铸铁的显微组织是由和组成的。
5、铸件凝固的方式有、和中间凝固三种。
6、为绘制铸造工艺图,在铸造工艺方案初步确定后,还必须选定铸件的机械加工余量、、、型芯头尺寸等工艺参数。
5、铸件凝固的方式有、和中间凝固三种。
6、为绘制铸造工艺图,在铸造工艺方案初步确定后,还必须选定铸件的机械加工余量、、、型芯头尺寸等工艺参数。
五、简答题1、什么是铸造生产方法?它有哪些主要优点?2、铸件的凝固方式有哪些?凝固方式受哪些因素影响?3、什么是液态合金的充型能力?它与合金的流动性有何关系?影响合金流动性的因素有哪些?如何提高合金流动性?4、试分析铸件产生缩孔、缩松、变形和裂纹的原因及防止方法。
《金属精密液态成形技术》复习题答案
《金属精密液态成形技术》复习题答案第1章绪论一、简答题1.常用金属精密液态成形方法有哪些?答:熔模精密铸造、石膏型精密铸造、陶瓷型精密铸造、消失模铸造、金属型铸造、压力铸造、低压铸造、差压铸造、真空铸造、调压铸造、挤压铸造、离心铸造、壳型铸造、连续铸造、半固态铸造、喷射成行技术、石墨型铸造、电渣熔铸、电磁铸造2.金属精密液态成形技术的特点是什么?对铸件生产有哪些影响?答:(1)特点:特殊的铸型制造工艺与材料;特殊的液态金属充填方式与铸件冷凝条件。
(2)对铸件生产的影响:由于铸型材料与铸型制作工艺的改变,对铸件表面粗糙度产生很大影响,不但尺寸精度很高,还可使铸件表面粗糙度降低,从而可实现近净成形。
在某些精密液态成形过程中,金属液是在外力(如离心力、电磁力、压力等)作用下完成充型和凝固的,因此提高了金属液的充型能力,有利于薄壁铸件的成形;液态金属在压力下凝固,有利于获得细晶组织,减少缩松缺陷,提高力学性能。
第2章熔模铸造成形一、名词解释1.硅溶胶:是由无定形二氧化硅的微小颗粒分散在水中而形成的稳定胶体溶液。
2.水玻璃模数:水玻璃中的二氧化硅与氧化钠摩尔数之比。
3.树脂模料:以树脂及改性树脂为主要组分的模料。
4.压型温度:熔模压制时压型的工作温度。
5.涂料的粉液比:涂料配置中粉料和液体的比例。
6.析晶:是当物体在处于非平衡态时,会析出另外的相,该相以晶体的形式被析出。
7.硅酸乙酯水解:硅酸乙酯通过熔剂(乙醇)和催化剂(盐酸)的作用与水发生反应的全过程。
8.皂化物:油脂等样品中能与氢氧化钠或氢氧化钾起皂化反应的物质。
二、填空题1.熔模铸造的模料强度通常以抗弯强度来衡量。
2.硅溶胶型壳的干燥过程实质上就是硅溶胶的胶凝过程。
3.一般说来说:硅溶胶中SiO2含量越高、密度越大,则型壳强度越大。
4.涂料中最基本的两个组成粘结剂和耐火粉料之间的比例,即为涂料的粉液比。
5.通常按模料熔点的高低将其分为高温、中温和低温模料。
《金属精密液态成形技术》习题参考答案及解析
一、简答题1.常用金属精密液态成形方法有哪些答:常用的金属精密液态成形方法有:熔模精密铸造、石膏型精密铸造、陶瓷型精密铸造、消失模铸造、金属型铸造、压力铸造、低压铸造、差压铸造、真空吸铸、调压铸造、挤压铸造、离心铸造、壳型铸造、连续铸造、半固态铸造、喷射成形技术、石墨型铸造、电渣熔铸和电磁铸造等。
2.金属精密液态成形技术的特点是什么对铸件生产有哪些影响特点:(1)特殊的铸型制造工艺与材料。
(2)特殊的液态金属充填方式与铸件冷凝条件。
对铸件生产的影响:由于铸型材料与铸型制作工艺的改变,对铸件表面粗糙度产生很大影响,不但尺寸精度很高,还可使铸件表面粗糙度降低,从而可实现近净成形。
在某些精密液态成形过程中,金属液是在外力(如离心力、电磁力、压力等)作用下完成充型和凝固的,因此提高了金属液的充型能力,有利于薄壁铸件的成形;液态金属在压力下凝固,有利于获得细晶组织,减少缩松缺陷,提高力学性能。
熔模:一、名词解释(1.硅溶胶:硅溶胶是由无定形二氧化硅的微小颗粒分散在水中而形成的稳定胶体。
硅溶胶是熔模铸造常用的一种优质黏结剂。
2.硅酸乙酯水解:3.水玻璃模数:水玻璃中的SiO2与Na2O摩尔数之比。
4.树脂模料:是以树脂及改性树脂为主要组分的模料。
5.压型温度:6.涂料的粉液比:涂料中耐火材料与黏结剂的比例。
7析晶:石英玻璃在熔点以下处于介稳定状态,在热力学上是不稳定的,当加热到一定温度,开始转变为方石英,此转变过程称“析晶”。
\二、填空题1.熔模铸造的模料强度通常以抗弯强度来衡量。
2.硅溶胶型壳的干燥过程实质上就是硅溶胶的胶凝过程。
3.一般说来说:硅溶胶中SiO2含量越高、密度越大,则型壳强度越高。
4.涂料中最基本的两个组成耐火材料和黏结剂之间的比例,即为涂料的粉液比。
5.通常按模料熔点的高低将其分为高温、中温和低温模料。
6.硅溶胶中Na20含量和PH值反映了硅溶胶及其涂料的稳定性。
7.模料的耐热性是指温度升高时模料的抗软化变形的能力。
液态成形工艺与原理作业与思考题答案(部分)
第二讲1、哪些现象说明金属的熔化并不是原子间结合力的全部破坏?答:以下现象说明金属的熔化并不是原子间结合力的全部破坏:(1)物质熔化时体积变化、熵变(及焓变)一般均不大。
[注意:简答题此部分可略:如金属熔化时典型的体积变化△Vm/V(多为增大)为3~5%左右,表明液体原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。
](2)金属熔化潜热比其汽化潜热小得多(1/15~1/30),表明熔化时其内部原子结合键只有部分被破坏。
2、实际液态金属的结构是怎样的?3、名词解释:能量起伏、结构起伏、浓度起伏、粘度、运动粘度、雷诺数、层流、紊流、表面张力和表面能。
答:雷诺数:流体流动时的惯性力Fg和粘性力(内摩擦力)Fm之比称为雷诺数。
用符号Re 表示。
Re是一个无因次量。
层流:流体流动时,如果流体质点的轨迹(一般说随初始空间坐标x、y、z和时间t而变)是有规则的光滑曲线(最简单的情形是直线),这种流动叫层流。
紊流:在一定雷诺数下,流体表现在时间和空间上的随机脉动运动,流体中含有大量不同尺度的涡旋(eddy)。
4、分析粘度的影响因素及其对粘度的影响规律。
5、分析表面张力的影响因素及其对表面张力的影响规律。
第三讲1、流动性与充型能力的联系和区别。
答:区别:①二者概念不同。
铸造工艺学中的流动性指液态金属本身的流动能力,常用规定的铸型条件和浇注条件下的试样的长度或薄厚尺寸来衡量;而充型能力是指液态金属充满铸型型腔,并使铸件形状完整、轮廓清晰的能力。
②影响因素有区别。
流动性是液态金属本身的流动能力,与金属的成分、温度、杂质含量,及其物理性质有关;而充型能力除了取决于金属本身的流动能力外,还受外界条件,如铸型性质、浇注条件、铸件结构等因素的影响。
联系:都是影响成形产品质量的因素。
①流动性好的合金充型能力强;流动性差的合金充型能力亦差,但是,可以通过改善外界条件提高其充型能力。
②可认为合金的流动性是在确定条件(试样结构、铸型性质、浇注条件)下的充型能力。
金属精密液态成形技术-第8章反重力铸造
240~ 320
300
—
345~
—
374
—
350~
360
—
390~
395
—
440~
450
断后伸长率δ(%)
铸态
热处理
—
—
—
—
15
Hale Waihona Puke —18.5~48.7 —
—
13
—
21~
24
—
17~
22
布氏硬度 HBS
铸态 热处理
70~80 95~ 115
75~85 100~ 120
90
—
84~
—
100
—
70~80
—
98
反重力铸造可与砂型铸造、金属型铸造、熔模 精铸、石膏型精密铸造等技术结合, 生产出用其 他成形方法难以浇注的复杂、薄壁、整体铝、镁 合金铸件, 解决了优质复杂薄壁铸件浇注中的重 大关键难题。
低压铸造
反 重 真空铸造 力 铸 差压铸造 造
调压铸造
坩埚液面增压,将金属液沿反重 力方向压入铸型型腔。
型腔置负压,大气压作用于坩埚 液面,将金属液沿反重力方向压 入铸型型腔。
➢ 低压铸造的设备比压力铸造的设备简单,且容易制造。
8.2低压铸造工艺设计
8.2 低压铸造工艺设计
8.2.1铸型种类
低压铸造对铸型材料没有特殊要求,凡可作为 铸型的各种材料,都可以用作低压铸造的铸型材 料。
金属型 非金属铸型
如砂型(黏土砂、水玻璃砂、树脂砂等)、壳 型、金属型、石墨型、熔模精铸壳型、陶瓷型、 石膏型等都可应用。
8.1.1工作原理及浇注工艺过程
低压铸造工作原理
金属材料液态成形工艺技术
3 熔模铸造
4 . 型1石壳2水.3蜡.焙玻制.+制璃硬蜡烧脱型、脂模蜡壳(石酸强英(1粉:化1固))化层。 800-9在5蜡压0型C料中熔铸化造流成出形型。 壳。
零件
木模
(5)填砂浇注 (6)脱壳、清理。
熔模铸造
熔模铸造
熔模铸件的结构工艺性
铸孔不能太小和太深,一般铸孔应大于 2mm。
逐渐壁厚不可太薄,一般2-8mm。 铸件壁厚尽量均匀。
熔模铸造的特点和应用
(1)铸件精度高,表面质量好,属少,无切削工 艺。尺寸精度IT11-14,表面粗糙度Ra12.5-1.6m。
(2)可铸造形状复杂铸件,最小壁厚可达0.3mm ,最小铸孔直径0.5mm。可一次铸出组合体。
(3)铸造合金种类不受限制,尤其适合高熔点和 难切削合金。
可成形复杂零件:适合形状复杂,尤其是有 复杂内腔的毛坯或零件。
成本低 缺点:组织缺陷,力学性能低,质量不稳定,
工作环境较差。因此,铸件多数做为毛坯用。
3 分类
按造型分: 砂型铸造与特种铸造。
砂型铸造是基础,特种铸造是在砂 型铸造基础上革新发展起来的。
4 砂型铸造工艺流程图
型砂配制造型砂型干燥 工装准备炉料准备合金冶炼 芯砂配制造芯型芯干燥
案例介绍
地处杏林的厦门路达有限公司为台资 企业,产品为高档水龙头。国际市场售价 在$几十到$几百不等。
该水龙头基体为黄铜铸件,采用数控 低压铸造,生产过程瑞士远端实时故障监 控。铸件外表防护装饰性电镀,或根据需 要进行磁控溅射特殊涂层。
低压铸造装备外型
压缩气
主要步骤
通气充型 加压凝固 放气开模
(4)生产批量不受限制,可单件或成批生产。
(5)工序繁杂,生产周期长,原辅材料费用高, 生产成本较高,铸件限于25kg。
金属液态砂型成形工艺智慧树知到课后章节答案2023年下南昌航空大学
金属液态砂型成形工艺智慧树知到课后章节答案2023年下南昌航空大学南昌航空大学绪论单元测试1.铸造的本质是为了获得铸件,首先必须熔配出符合化学成分要求的液态金属(具有流动性),然后将液态金属注入铸型之中,使其在铸型中凝固、冷却,形成铸件。
()答案:对2.铸造的特点(优点、缺点)有()答案:适应范围广;成本低廉;尺寸精度较高;尺寸均一性差、内部质量不如锻件等不足3.按形成铸型的方法分,分为____,____和____。
答案:null第一章测试1.普通型砂主要原砂、()和水等按一定比例混制成。
答案:粘土2.粘土中哪种形式的水与粘土质点的结合力最强()答案:矿物组成水3.产生化学粘砂的先决条件是金属表面的()答案:氧化4.形成侵入气孔的条件()答案:P气>P阻+P静+P型5.金属与铸型的相互作用有()答案:化学和物理化学作用;热作用;机械作用6.铸型内由于湿分迁移形成哪几个区()答案:水分不饱和凝聚区;正常区;干燥区;水分饱和凝聚区7.以下哪些伴生现象是由金属与铸型相互的热作用产生的()。
答案:石英砂发生同质异构转变;型壁强度发生变化;型腔表面层的水分迁移8.铸型中由于湿分迁移,产生的干燥区的特点有()答案:温度高;强度高;水分少;水蒸气压高9.铸型中由于湿分迁移,产生的水分饱和凝聚区的特点有()答案:强度低;透气性低;湿分高10.金属液的浇注温度越高,流动性越好,对铸型表面的冲刷作用越弱。
()答案:错11.水分饱和凝聚区与水分不饱和凝聚区的界面,称为蒸发界面。
()答案:错12.β石英向α石英转变时,体积膨胀率较小,仅为0.82%,所以对铸件影响不大。
()答案:错13.化学粘砂层的厚度越厚,越难清除。
()答案:错14.选用SiO2含量少的原砂,有利于防止夹砂缺陷的产生。
()答案:对15.湿分迁移是指铸型中水分和水蒸气从型腔表面层向铸型内部迁移的现象。
()答案:对16.根据砂层粘结在铸件表面的粘结物质的性质,粘砂可分为____和____。
《液态金属成型原理》全套试题含答案(大学期末复习资料)
《液态金属成型原理》习题一(第一章~第三章)1.根据实验现象说明液态金属结构。
描述实际液态金属结构。
实验依据:1)多数金属熔化有约3-5%的体积膨胀,表明原子间距增加1-1.5%;2)熔化时熵增大,表明原子排列混乱程度增加,有序性下降;3)汽化潜热远大于熔化潜热, 比值=15-28,液态结构更接近固态;4)衍射图的特征可以用近程有序概括;仅在几个原子间距范围内,质点的排列与固态相似,排列有序;液态金属结构:液体是原子或分子的均质的、密集的、“短程有序”的随机堆积集合体。
其中既无晶体区域,也无大到足以容纳另一原子的空穴。
与理想结构不同,实际金属含有杂质和合金元素,存在着能量起伏、结构起伏和成分起伏。
2.估计压力变化10kbar引起的铜的平衡熔点的变化。
已知液体铜的摩尔体积为8.0⨯10-6m3/mol,固态为7.6⨯10-6m3/mol,熔化潜热Lm=13.05kJ/mol,熔点为1085︒C。
41.56K3.推导凝固驱动力的计算公式,指出各符号的意义并说明凝固驱动力的本质。
本质:凝固驱动力是由过冷度提供的,过冷度越大,凝固驱动力越大。
4.在环境压力为100kPa下,在紧靠熔融金属的表面处形成一个直径为2μm的稳定气泡时,设气泡与液体金属的σ=0.84N/m,求气泡的内压力。
P=100kPa +( 2*0.84N/m)/(1*10-6m)=1780kPa5.如何区分固—液界面的微观结构?界面结构判据:Jackson因子α≤2,X=0.5时,∆G=min,粗糙界面;α≥3,X→ 0或1时,∆G=min,光滑界面;6.推导均质形核下临界晶核半径和临界形核功,并说明过冷度对二者的影响7.细化晶粒的目的?选择形核剂时的应遵循哪些原则?目的:增加晶粒数目,降低晶粒尺寸,增大晶界面积。
溶质和杂质等分布更加均匀,晶粒互相咬合紧密,使机械性能得到提高。
原则:1)应遵循共格对应原则,共格或半共格,润湿角越小越好;2)固体质点表面上原子的排列方式与新相中某一晶面上的原子排列方式相似,原子间距相近或成比例;3)形核剂本身或与合金液反应后的产物可作为生核剂;4)形核剂稳定,高温难熔、不溶解于金属液,不带入杂质。
金属材料成形基础习题答案
金属材料成形基础作业(2)
一、填空题 1.液态金属的充型能力主要取决于合金的流动性。流动 性不好的合金铸件易产生浇不足和冷隔、气孔、夹渣等 铸造缺陷。 2.影响液态合金流动性的主要因素有合金的化学成分、 合金的物理性质、合金的温度、不溶杂质和气体等。合 金的凝固温度范围越宽,其流动性越 差 。 3.任何一种液态金属注入铸型以后,从浇注温度冷却至 室温都要经历三个相互联系的收缩阶段,即 液态收缩 、 凝固收缩 和 固态收缩 。导致铸件产生缩孔和缩松的根 本原因是液态收缩和凝固收缩 ;导致铸件产生应力、变
1)牌号相同,成分不同。
2)因为铸铁的牌号是用强度来表示的,其强度相同,则牌 号相同。而影响铸铁组织和性能的因素是化学成分和冷却 速度两个因素。试棒的直径不同——冷却速度不同,要获 得同一强度,必须调整其化学成分,即10mm的试棒其碳 硅含量较高,而30mm、60mm的试棒其碳硅含量依次降 低。
4.有一测试铸造应力用的应力框铸件,如图2-1所示,凝 固冷却后,用钢锯沿A-A线锯断Φ30的粗杆 ,此时断口间 隙的大小会发生什么变化?为什么?
素异晶转变温度和晶格类型 。
(1)固态下随着温度的变化, 金属的晶体结构从一种晶格类 型转变为另一种晶格类型的过
温度℃
1538 ℃ Fe
体心 1394 ℃
Fe
面心
程。
912 ℃
体心
Fe
时间
8.图1-1所示为部分的铁碳合金状态图,请在右边的T-t图中 画出含碳量为0.45%的铁碳合金的结晶过程并标注出各温度 段的组织。
形、裂纹的原因是固态收缩 。
4.铸件在凝固过程中所造成的体积缩减如得不到液态金属 的补充,将产生缩孔或缩松。凝固温度范围窄的合金,倾 向于“逐层凝固”,因此易产生缩孔;而凝固温度范围宽 的合金,倾向于“糊状凝固”,因此易产生缩松。
材料成形原理课后习题解答
材料成型原理第一章(第二章的内容)第一部分:液态金属凝固学1.1 答:(1)纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成。
原子集团的空穴或裂纹内分布着排列无规则的游离的原子,这样的结构处于瞬息万变的状态,液体内部存在着能量起伏。
(2)实际的液态合金是由各种成分的原子集团、游离原子、空穴、裂纹、杂质气泡组成的鱼目混珠的“混浊”液体,也就是说,实际的液态合金除了存在能量起伏外,还存在结构起伏。
1.2答:液态金属的表面张力是界面张力的一个特例。
表面张力对应于液-气的交界面,而界面张力对应于固-液、液-气、固-固、固-气、液-液、气-气的交界面。
表面张力σ和界面张力ρ的关系如(1)ρ=2σ/r,因表面张力而长生的曲面为球面时,r为球面的半径;(2)ρ=σ(1/r1+1/r2),式中r1、r2分别为曲面的曲率半径。
附加压力是因为液面弯曲后由表面张力引起的。
1.3答:液态金属的流动性和冲型能力都是影响成形产品质量的因素;不同点:流动性是确定条件下的冲型能力,它是液态金属本身的流动能力,由液态合金的成分、温度、杂质含量决定,与外界因素无关。
而冲型能力首先取决于流动性,同时又与铸件结构、浇注条件及铸型等条件有关。
提高液态金属的冲型能力的措施:(1)金属性质方面:①改善合金成分;②结晶潜热L要大;③比热、密度、导热系大;④粘度、表面张力大。
(2)铸型性质方面:①蓄热系数大;②适当提高铸型温度;③提高透气性。
(3)浇注条件方面:①提高浇注温度;②提高浇注压力。
(4)铸件结构方面:①在保证质量的前提下尽可能减小铸件厚度;②降低结构复杂程度。
1.4 解:浇注模型如下:则产生机械粘砂的临界压力ρ=2σ/r显然 r =21×0.1cm =0.05cm 则 ρ=410*5.05.1*2-=6000Pa 不产生机械粘砂所允许的压头为H =ρ/(ρ液*g )=10*75006000=0.08m 1.5 解: 由Stokes 公式 上浮速度 92(2v )12r r r -= r 为球形杂质半径,γ1为液态金属重度,γ2为杂质重度,η为液态金属粘度γ1=g*ρ液=10*7500=75000γ2=g 2*ρMnO =10*5400=54000所以上浮速度 v =0049.0*95400075000(*10*1.0*223)-)(-=9.5mm/s 3.1解:(1)对于立方形晶核 △G 方=-a 3△Gv+6a 2σ①令d △G 方/da =0 即 -3a 2△Gv+12a σ=0,则临界晶核尺寸a *=4σ/△Gv ,得σ=4*a △Gv ,代入① △G 方*=-a *3△Gv +6 a *24*a △Gv =21 a *2△Gv 均质形核时a *和△G 方*关系式为:△G 方*=21 a *3△Gv (2)对于球形晶核△G 球*=-34πr *3△Gv+4πr *2σ 临界晶核半径r *=2σ/△Gv ,则△G 球*=32πr *3△Gv 所以△G 球*/△G 方*=32πr *3△Gv/(21 a *3△Gv) 将r*=2σ/△Gv ,a *=4σ/△Gv 代入上式,得△G 球*/△G 方*=π/6<1,即△G 球*<△G 方*所以球形晶核较立方形晶核更易形成材料成型原理第 3 页 共 16 页3-7解: r 均*=(2σLC /L)*(Tm/△T)=319*6.618702731453*10*25.2*25)+(-cm =8.59*10-9m △G 均*=316πσLC 3*Tm/(L 2*△T 2) =316π*262345319*)10*6.61870(2731453*10*10*25.2()+()-=6.95*10-17J3.2答: 从理论上来说,如果界面与金属液是润湿得,则这样的界面就可以成为异质形核的基底,否则就不行。
液态成形理论及工艺_复习题及解答
液态成形理论及工艺复习题及解答一、选择题1、下述描述影响异质形核速率的因素中错误的是( B )。
A接触角θ越小,形核速率越大 B 接触角θ越大,形核速率越大C 形核基底数量多,形核速率越大D 过冷度越大,形核速率越大2、在常见的凝固条件下,单相合金的凝固过程是以( C )生长方式进行的。
A平面状 B 胞状 C 枝晶状 D 上述所有3、在下述共晶组织形态中,属于不规则共晶组织的是( D )。
A层片状 B 棒状 C 球状 D 针状4、下述关于影响液态金属充型能力的描述中,错误的是( D )。
A合金的结晶温度范围越宽,充型能力越差B 铸型的蓄热系数越大,充型能力下降C 浇注温度越高,充型能力越好D 充型压头越大,充型能力下降5、下述所谓防止铸造变形的措施中,错误的是( C )。
A铸型上放置压铁 B 在铸造模样上设置预变形量C 过早打箱D 设置防变形筋6、不能减小铸造应力的措施是( C )。
A预热铸型 B 铸件厚大部位放置冷铁C 选择弹性模量大和收缩系数小的合金D 合理控制打箱时间7、下述防止析出性气孔的措施中,错误的是( D )。
A采用真空熔炼 B 浮游去气C 提高金属凝固时的外压D 减小铸件冷却速度8、高压造型法的目的就在于制出均匀的高紧实度铸型。
在下述各种压实方法中,紧实度最高、最均匀的是( D )。
A上压法 B 下压法 C 上压、下压两次进行 D 两面压实法9、金属铜、铁、铝、镁的氧化物中,不能起致密保护作用的是( D )。
A铜 B 铁 C 铝 D 镁10、型砂最适宜水分含量的确定依据是( B )。
A湿压强度峰值 B 透气性峰值 C 紧实度 D 过筛性11、在下述铸造方法中,无需分型面的是( D )。
A砂型铸造 B 压力铸造 C 低压铸造 D 熔模铸造12、在下述铸造方法中,生成率最高的是( B )。
A砂型铸造 B 压力铸造 C 低压铸造 D 熔模铸造13、压力铸造生产条件下,铸件最容易产生的铸造缺陷是( B )。
中南大学金属液态成性原理老师标记的课后题答案
中南大学金属液态成形原理老师标记的重点课后题答案P31.2.如何理解实际液态金属结构及其三种“起伏”特征?答:实际液态金属合金的结构式及其复杂的,它有大量各种成分的时聚时散,此起彼伏游动原子集团,空穴所组成,同时也含有各种固态,液态,气态杂质或化合物,而且还表现出能量,结构及浓度三种起伏特征。
三种起伏影响液态金属的结晶凝固过程,从而对铸件的质量产生重要的影响。
11.某飞机制造厂的一牌号Al-Mg合金机翼因铸造常出现浇不足缺陷而报废,。
请问可采取哪些措施来提高成品率?答:机翼铸造常出现“浇不足”缺陷可能是由金属液的充型能力不足造成的,可采取以下工艺提高成品率:(1)调整铸型性质。
使用小蓄热系数的铸型来提高金属液的充型能力;采用预热铸型,减小金属与铸型的温差,提高金属液充型能力。
(2)改善浇注条件。
提高浇注温度,加大充型压头,改善浇注系统结构,提高金属液的充型能力。
P53.1. 凝固速度对铸件凝固组织、性能与凝固缺陷的产生有重要影响。
试分析可以通过哪些工艺措施来改变或控制凝固速度?答:可以通过以下的工艺措施改变或控制凝固速度:①改变铸件的浇注温度、浇注方式以及浇注速度;②选用适当的铸型材料和预热温度;③在铸型中适当设置一些冒口、浇口等;④在铸型型腔内表面涂适当厚度与性能的材料。
3.何为凝固动态曲线?有何意义?答:根据凝固体断面各位置的温度与时间的关系曲线,在位置与时间的坐标图上绘制成的凝固体断面上,不同位置、不同时间达到同一温度的连线,称之为凝固动态曲线。
凝固动态曲线的意义:可以判断金属在凝固过程中两相区(凝固区)的宽窄,由两相区的宽窄判断凝固断面的凝固方式。
4.铸件凝固方式由哪些因素决定?凝固方式与铸件质量有何关系?答;影响铸件凝固方式的因素有合金凝固的温度区间和铸件断面的温度梯度两方面。
凝固方式分为三种:①逐层凝固方式对铸件质量的影响:流动性好,容易获得健全凝固体,液体补缩好,铸件组织致密,形成集中缩孔的倾向大;热裂倾向小,气孔倾向小,应力大,偏析严重。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、简答题1.常用金属精密液态成形方法有哪些?答:常用的金属精密液态成形方法有:熔模精密铸造、石膏型精密铸造、陶瓷型精密铸造、消失模铸造、金属型铸造、压力铸造、低压铸造、差压铸造、真空吸铸、调压铸造、挤压铸造、离心铸造、壳型铸造、连续铸造、半固态铸造、喷射成形技术、石墨型铸造、电渣熔铸和电磁铸造等。
2.金属精密液态成形技术的特点是什么?对铸件生产有哪些影响?特点:(1)特殊的铸型制造工艺与材料。
(2)特殊的液态金属充填方式与铸件冷凝条件。
对铸件生产的影响:由于铸型材料与铸型制作工艺的改变,对铸件表面粗糙度产生很大影响,不但尺寸精度很高,还可使铸件表面粗糙度降低,从而可实现近净成形。
在某些精密液态成形过程中,金属液是在外力(如离心力、电磁力、压力等)作用下完成充型和凝固的,因此提高了金属液的充型能力,有利于薄壁铸件的成形;液态金属在压力下凝固,有利于获得细晶组织,减少缩松缺陷,提高力学性能。
熔模:一、名词解释1.硅溶胶:硅溶胶是由无定形二氧化硅的微小颗粒分散在水中而形成的稳定胶体。
硅溶胶是熔模铸造常用的一种优质黏结剂。
2.硅酸乙酯水解:3.水玻璃模数:水玻璃中的SiO2与Na2O摩尔数之比。
4.树脂模料:是以树脂及改性树脂为主要组分的模料。
5.压型温度:6.涂料的粉液比:涂料中耐火材料与黏结剂的比例。
7析晶:石英玻璃在熔点以下处于介稳定状态,在热力学上是不稳定的,当加热到一定温度,开始转变为方石英,此转变过程称“析晶”。
二、填空题1.熔模铸造的模料强度通常以抗弯强度来衡量。
2.硅溶胶型壳的干燥过程实质上就是硅溶胶的胶凝过程。
3.一般说来说:硅溶胶中SiO2含量越高、密度越大,则型壳强度越高。
4.涂料中最基本的两个组成耐火材料和黏结剂之间的比例,即为涂料的粉液比。
5.通常按模料熔点的高低将其分为高温、中温和低温模料。
6.硅溶胶中Na20含量和PH值反映了硅溶胶及其涂料的稳定性。
7.模料的耐热性是指温度升高时模料的抗软化变形的能力。
8.熔模的制备方法有自由浇注和压注两种。
9.常用石蜡-硬脂酸模料的配比为白石蜡和一级硬脂酸各50%。
三、判断题1.压蜡温度愈高,熔模的表面粗糙度越小,表面越光滑;但压蜡温度越高,熔模的收缩率越大。
(√)2.压注压力和保压时间对熔模尺寸有影响,随压力和保压时间增加,熔模的线收缩率减小。
(√)3.为提高水玻璃模数,可在水玻璃中加入氢氧化钠。
(×)4.熔模铸造使用最广泛的浇注方法是热壳重力浇注法。
(√)5.使用树脂基模料时,脱蜡后所得的模料可以直接用来制造新的熔模。
(×)四、简答题1.什么是熔模铸造?试用方框图表示其大致工艺过程。
熔模铸造是用易熔材料制成精确的可熔性模样,在其上涂覆若干层耐火涂料,熔去模样,经过焙烧而得到型壳,浇入金属而得到铸件的方法。
其工艺过程如下:制作蜡模或蜡模组→涂挂耐火涂料→撒砂→结壳硬化→脱蜡→烘干焙烧型壳→浇注铸件→出箱清理打磨。
2.影响熔模质量的因素有哪些?答:(1)压型尺寸精度及表秒粗糙度(2)模料质量(3)制模工艺:压射压力保压时间注蜡温度压型温度3.常用模料有哪两类,其基本组成、特点和应用范围如何?答:①蜡基模料蜡基模料是以矿物蜡、动植物蜡为主要成分的模料。
此类模料一般成分比较简单,成本较低,便于脱蜡和回收,但强度和热稳定性较低,收缩大。
多用于要求较低的铸件。
②树脂基模料树脂基模料是以树脂及改性树脂为主要组分的模料。
此类模料一般成分比较复杂,强度较高,热稳定性较好,收缩较小,制成的熔模的质量和尺寸稳定性较高,但模料易老化、寿命短,成本较高,多用于质量要求较高的熔模铸件。
从模料中去除水分、粉尘、砂粒和皂化物的工艺过程称为模料回收。
采用蒸汽或热水脱蜡后所回收的模料中会不可避免地混有杂质、砂粒和水分,某些蜡基模料中所含的硬脂酸,在制壳工艺过程中还会与一些物质反应生成皂化物(脂肪酸盐),因而使模料变质,影响使用性能。
4.试述常用三种制壳黏结剂的特点及应用范围。
答:目前国内熔模铸造常用的黏结剂主要有:如水玻璃、硅酸乙酯、硅溶胶等。
水玻璃作黏结剂具有成本低、硬化速度快(化学硬化)、湿态强度高、制壳周期短等优点。
缺点是表面质量差,尺寸精度不高,在近净形熔模铸造中用得较少。
硅酸乙酯的表面张力低,黏度小,对模料的润湿性能好。
所制型壳耐火度高,尺寸稳定,高温时变形及开裂的倾向小,表面粗糙度低,铸件表面质量好,较硅溶胶的制壳周期短,但价格较贵,且对环境有一定污染,工业发达国家现使用有下降的趋势。
硅溶胶使用方便,易配成高粉液比(耐火材料与黏结剂的比例)的优质涂料,涂料稳定性好。
型壳制造时不需化学硬化,工序简单,所制型壳高温性能好,有高的型壳高温强度及高温抗变形能力。
但硅溶胶涂料对熔模润湿性差,需加表面活性剂改善涂料的涂挂性。
另外,硅溶胶型壳干燥速度慢,型壳湿强度较低,制壳周期长。
5.熔模铸造用硅溶胶主要有哪些物化参数?它们对型壳质量有何影响?答:硅溶胶的主要物化参数有SiO2含量、Na2O含量、密度、值、黏度及胶粒直径等,它们与硅溶胶涂料和型壳性能关系密切。
硅溶胶中SiO2含量及密度都反映其胶体含量的多少,即黏结力的强弱。
一般来说,硅溶胶中SiO2含量增加,硅溶胶密度越高,则型壳强度越高。
而Na2O含量影响硅溶胶的PH值,它们都影响硅溶胶及其涂料的稳定性。
硅溶胶的黏度反映其黏稠程度,将影响所配涂料的粉液比,黏度低的硅溶胶可配成高粉液比涂料,所制型壳表面粗糙度值低、强度较好。
硅溶胶的另一参数是胶体粒子直径,它影响硅溶胶的稳定性和型壳强度。
粒子越小,凝胶结构中胶粒接触点越多,凝胶致密,型壳强度越高,但溶胶稳定性越差。
6.硅溶胶、水玻璃、硅酸乙酯粘结剂型壳的干燥和硬化工艺有何本质的区别?硅溶胶型壳的干燥和硬化是物理硬化过程。
随着型壳的干燥,水分蒸发,硅溶胶含量提高,胶体颗粒碰撞几率增加,溶胶便胶凝而形成凝胶,牢固地将耐火材料颗粒粘结起来,同时耐火材料颗粒彼此接近,这就使得型壳获得了强度。
水玻璃型壳化学硬化前的自然干燥是水玻璃型壳脱除自由水的过程。
但水玻璃型壳只有经过化学硬化才能形成不可逆转化的硅凝胶,使型壳获得足够的湿强度。
化学硬化是指水玻璃粘结剂与硬化剂发生硬化反应,达到硬化型壳的目的,其原理是基于电解质对水玻璃的胶凝作用。
硅酸乙酯黏结剂型壳的干燥硬化,实质上是涂料中的硅酸乙酯水解液继续水解-缩聚反应而达到最终的胶凝以及溶剂挥发的过程。
前者主要是化学硬化,后者是物理过程,但彼此有密切联系。
型壳的硬化可用氨气催化,俗称氨干。
氨气既可通过碱解反应加快水解,又可通过改变涂层中水解液的PH值而加快缩聚反应。
7.型壳焙烧的目的是什么?常用三种型壳焙烧工艺参数如何?答:焙烧的目的是去除型壳中的水分、残余模料、硬化剂、盐分等,降低型壳浇注时的发气性,提高透气性,防止出现气孔、浇不足等缺陷。
水玻璃型壳的焙烧温度一般为 850℃,保温时间约为0.5 ~2h。
对于硅溶胶或硅酸乙酯型壳则为950~1100℃,薄壁件应适当提高,保温时间约为2~3h。
焙烧时,升温速度不能太快,应缓慢加热,因为型壳的热导率很低,升温太快时型壳内外温差较大,各部位膨胀量不同会导致型壳出现裂纹。
8. 试述热压注硅质陶瓷型芯的成形方法及型芯材料的组成。
在耐火粉料中加入热塑性材料(如蜡)为增塑剂制成陶瓷料浆,用热压注法制成型芯坯体,再经高温烧结成型芯。
型芯材料的主要组成基体基体(如石英玻璃)、矿化剂(如氧化铝系)、增塑剂(如蜡)、表面活性剂(如油酸)等。
9.硅溶胶型壳制壳有哪些步骤?影响硅溶胶型壳干燥的因素有那些?生产中可不可以采用提高环境温度来缩短型壳干燥时间?为什么?答:硅溶胶型壳制壳工艺过程下图所示:影响硅溶胶型壳干燥的因素很多,其中环境湿度、风速和环境温度三种因素作用最大。
生产中不能用提高环境温度来缩短型壳干燥时间,而应将温度控制在一个较窄的范围内。
因为环境温度会影响模组模料的热膨胀和热稳定性,从而影响铸件尺寸精度。
石膏型:一、填空题1.石膏型熔模精密铸造时,石膏型工作温度一般在 150℃~300℃℃之间。
2.α型半水石膏更适合作为石膏铸型用材料。
3.为使石膏型具有良好的强度,减小其线收缩和裂纹倾向,需要在石膏中加入填料。
4.石膏型导热性能差,焙烧时应采用阶梯升温。
5.制备石膏型所用的原材料主要有石膏、填料和添加剂等。
二、简答题1.石膏有哪几种变体?石膏型精密铸造应选用哪种石膏?为什么?答:石膏有7种变体:二水石膏、β型硬石膏Ⅲ、α型半水石膏、硬石膏Ⅱ、β型半水石膏、硬石膏Ⅰ和α型硬石膏Ⅲ。
硬石膏不能配成石膏浆料,故不能用于石膏型铸造中;生石膏含水量过多,所制石膏型强度低也不能用于石膏型铸造;α型半水石膏具有致密、完整而粗大的晶粒,总比表面积小。
β型半水石膏因孔多,表面不规律,似海面状,其比表面积大。
在配成相同流动性的石膏浆料时,α型半水石膏所需水固比低,浆料凝固后强度高,故α型半水石膏更适合作为石膏铸型用的材料。
2.石膏浆料中为什么要加填料?填料应如何选择?答:为使石膏型具有良好的强度,减小其线收缩和裂纹倾向,需要在石膏中加入填料。
石膏型的填料应满足下列要求:(1)有合适的线膨胀率;(2)有较高的熔点和耐火度;(3)有良好的化学稳定性;(4)发气量少、吸湿性小、保水性好;(5)填料在石膏型浆体中有良好的悬浮弥散性;(6)能降低石膏混合料的裂纹倾向。
3.为什么石膏浆料配制和灌注时需在真空下进行?答:在真空下配制石膏浆料和灌浆是为了使浆料中所含的气体能够顺利外排。
石膏浆料吸附大量的气体,在浆体搅拌时又会卷入大量的气,致使浆体中有大量的气泡,影响石膏型腔表面的质量。
因此石膏浆料配制和灌注需在真空下进行。
4.石膏型精密铸造常用的充填及凝固方法有哪些?各用于什么情况下?石膏型精密铸造常用的充填及凝固方法有:1)重力浇注,常压凝固——适用于壁不薄、形状简单的中小件。
2)真空吸铸——适于生产中、小型复杂薄壁铸件。
3)真空下重力浇注,增压凝固——目前国内外石膏型精铸常用的充填凝固方法。
4)低压铸造——适于生产批量较大的复杂薄壁铸件。
5)真空下重力浇注,常压凝固——适用于壁较薄、壁厚较均匀铸件。
6)调压铸造——适于生产有厚壁部分的复杂薄壁铸件。
5.如何确定石膏型精密铸造浇注工艺参数?答:浇注工艺参数主要包括浇注温度和石膏型温度。
(1)铝合金浇注温度由于石膏型导热性差,合金浇注温度可低于其他铸造方法。
一般控制在700℃左右,大型薄壁件不宜超过720℃。
2)石膏型温度确定石膏型温度时要考虑两个因素,一是石膏型抗激冷激热能力差,二是石膏型导热性差。
石膏型工作温度过低,浇注时石膏型易开裂;石膏型温过高,铸件凝固速度慢,易出现粗大组织。
浇注时石膏型温度一般控制在150~300℃之间,大型复杂薄壁件取上限,中小型、壁稍厚铸件取下限。