2014届高三湛江市一模文科数学试题及答案

合集下载

2014届湛江一模

2014届湛江一模

广东省湛江市2014届高三高考模拟测试(一)文科综合试题24.党的十八届三中全会指出,要紧紧围绕使市场在资源配置中起决定性作用深化经济体制改革。

在市场经济中,市场主体主要是通过________信号来配置资源的。

A.宏观经济政策B.供给与需求C.价格与供求D.价值与使用价值25.一句“好空调,格力造”(广告语)曾让无数消费者记住格力。

今天,尽管海外市场潜在消费整体低迷,但“掌握核心科技”(广告语)的格力空调却发展势头依旧迅猛,不仅出口保持稳定增长,利润也在行业内遥遥领先。

这启示企业A.要迎合消费者心理做好广告和宣传B.要依靠科技进步形成自己的竞争优势C.要制定正确的经营战略促进产品出口D.建立良好的信誉和形象关乎企业品牌建设和效益提升26.《中共中央关于全面深化改革若干重大问题的决定》指出要完善产权保护制度。

国家保护各种所有制经济产权和合法利益,保证各种所有制经济依法平等使用生产要素、公开公平公正参与市场竞争、同等受到法律保护。

完善产权保护制度有利于A.巩固国有制经济在国民经济中的主体地位B.各种经济成分在国民经济中起同等作用C.形成统一开放竞争有序的现代市场规则D.各种所有制经济在市场竞争中平等配置资源27.如图,某商品的需求曲线(D)和供给曲线(S)相交于E点。

在不考虑其他因素条件下,会导致E点向E′方向移动的原因有可能是①该商品的替代品降价促销②居民对未来收入预期不乐观③政府提高了该商品的税率④企业普遍采用新技术提高劳动生产率A.①②B.①③C.②③D.③④材料三:近年来,G省人大及其常委会在人大工作方面勇于创新,亮点纷呈。

如,推行法规草案提请表决前评估制度,委托第三方起草法规制度,突破了以往由立法机关和政府机关起草法规的既定模式,建立起社会各界广泛参与的法规起草工作新机制;提前介入底线民生财政预算编制,在重大民生领域引入第三方评估制度;建立人大代表在线交流平台系统,方便基层省人大代表远程参与人大工作,获取代表履职的有关文字图像信息资源;开展人大代表能力培训等。

2014年全国统一高考数学试卷(文科)(大纲版)(含答案及解析)

2014年全国统一高考数学试卷(文科)(大纲版)(含答案及解析)

2014年全国统一高考数学试卷(文科)(大纲版)一、选择题(本大题共12小题,每小题5分)1.(5分)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为()A.2B.3C.5D.72.(5分)已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣3.(5分)不等式组的解集为()A.{x|﹣2<x<﹣1}B.{x|﹣1<x<0}C.{x|0<x<1}D.{x|x>1}4.(5分)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A.B.C.D.5.(5分)函数y=ln(+1)(x>﹣1)的反函数是()A.y=(1﹣e x)3(x>﹣1)B.y=(e x﹣1)3(x>﹣1)C.y=(1﹣e x)3(x∈R)D.y=(e x﹣1)3(x∈R)6.(5分)已知,为单位向量,其夹角为60°,则(2﹣)•=()A.﹣1B.0C.1D.27.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种8.(5分)设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=()A.31B.32C.63D.649.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1B.+y2=1C.+=1D.+=110.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.11.(5分)双曲线C:﹣=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于()A.2B.2C.4D.412.(5分)奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.﹣2B.﹣1C.0D.1二、填空题(本大题共4小题,每小题5分)13.(5分)(x﹣2)6的展开式中x3的系数是.(用数字作答)14.(5分)函数y=cos2x+2sinx的最大值是.15.(5分)设x,y满足约束条件,则z=x+4y的最大值为.16.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.三、解答题17.(10分)数列{a n}满足a1=1,a2=2,a n+2=2a n+1﹣a n+2.(Ⅰ)设b n=a n+1﹣a n,证明{b n}是等差数列;(Ⅱ)求{a n}的通项公式.18.(12分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.19.(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.20.(12分)设每个工作日甲,乙,丙,丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)实验室计划购买k台设备供甲,乙,丙,丁使用,若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.21.(12分)函数f(x)=ax3+3x2+3x(a≠0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)在区间(1,2)是增函数,求a的取值范围.22.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.2014年全国统一高考数学试卷(文科)(大纲版)参考答案与试题解析一、选择题(本大题共12小题,每小题5分)1.(5分)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为()A.2B.3C.5D.7【考点】1A:集合中元素个数的最值;1E:交集及其运算.【专题】5J:集合.【分析】根据M与N,找出两集合的交集,找出交集中的元素即可.【解答】解:∵M={1,2,4,6,8},N={1,2,3,5,6,7},∴M∩N={1,2,6},即M∩N中元素的个数为3.故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣【考点】G9:任意角的三角函数的定义.【专题】56:三角函数的求值.【分析】由条件直接利用任意角的三角函数的定义求得cosα的值.【解答】解:∵角α的终边经过点(﹣4,3),∴x=﹣4,y=3,r==5.∴cosα===﹣,故选:D.【点评】本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.3.(5分)不等式组的解集为()A.{x|﹣2<x<﹣1}B.{x|﹣1<x<0}C.{x|0<x<1}D.{x|x>1}【考点】7E:其他不等式的解法.【专题】59:不等式的解法及应用.【分析】解一元二次不等式、绝对值不等式,分别求出不等式组中每个不等式的解集,再取交集,即得所求.【解答】解:由不等式组可得,解得0<x<1,故选:C.【点评】本题主要考查一元二次不等式、绝对值不等式的解法,属于基础题.4.(5分)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】5G:空间角.【分析】由E为AB的中点,可取AD中点F,连接EF,则∠CEF为异面直线CE 与BD所成角,设出正四面体的棱长,求出△CEF的三边长,然后利用余弦定理求解异面直线CE与BD所成角的余弦值.【解答】解:如图,取AD中点F,连接EF,CF,∵E为AB的中点,∴EF∥DB,则∠CEF为异面直线BD与CE所成的角,∵ABCD为正四面体,E,F分别为AB,AD的中点,∴CE=CF.设正四面体的棱长为2a,则EF=a,CE=CF=.在△CEF中,由余弦定理得:=.故选:B.【点评】本题考查异面直线及其所成的角,关键是找角,考查了余弦定理的应用,是中档题.5.(5分)函数y=ln(+1)(x>﹣1)的反函数是()A.y=(1﹣e x)3(x>﹣1)B.y=(e x﹣1)3(x>﹣1)C.y=(1﹣e x)3(x∈R)D.y=(e x﹣1)3(x∈R)【考点】4R:反函数.【专题】51:函数的性质及应用.【分析】由已知式子解出x,然后互换x、y的位置即可得到反函数.【解答】解:∵y=ln(+1),∴+1=e y,即=e y﹣1,∴x=(e y﹣1)3,∴所求反函数为y=(e x﹣1)3,故选:D.【点评】本题考查反函数解析式的求解,属基础题.6.(5分)已知,为单位向量,其夹角为60°,则(2﹣)•=()A.﹣1B.0C.1D.2【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】由条件利用两个向量的数量积的定义,求得、的值,可得(2﹣)•的值.【解答】解:由题意可得,=1×1×cos60°=,=1,∴(2﹣)•=2﹣=0,故选:B.【点评】本题主要考查两个向量的数量积的定义,属于基础题.7.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种【考点】D9:排列、组合及简单计数问题.【专题】5O:排列组合.【分析】根据题意,分2步分析,先从6名男医生中选2人,再从5名女医生中选出1人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,先从6名男医生中选2人,有C62=15种选法,再从5名女医生中选出1人,有C51=5种选法,则不同的选法共有15×5=75种;故选:C.【点评】本题考查分步计数原理的应用,注意区分排列、组合的不同.8.(5分)设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=()A.31B.32C.63D.64【考点】89:等比数列的前n项和.【专题】54:等差数列与等比数列.【分析】由等比数列的性质可得S2,S4﹣S2,S6﹣S4成等比数列,代入数据计算可得.【解答】解:S2=a1+a2,S4﹣S2=a3+a4=(a1+a2)q2,S6﹣S4=a5+a6=(a1+a2)q4,所以S2,S4﹣S2,S6﹣S4成等比数列,即3,12,S6﹣15成等比数列,可得122=3(S6﹣15),解得S6=63故选:C.【点评】本题考查等比数列的性质,得出S2,S4﹣S2,S6﹣S4成等比数列是解决问题的关键,属基础题.9.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1B.+y2=1C.+=1D.+=1【考点】K4:椭圆的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】利用△AF1B的周长为4,求出a=,根据离心率为,可得c=1,求出b,即可得出椭圆的方程.【解答】解:∵△AF1B的周长为4,∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C的方程为+=1.故选:A.【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.10.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.【考点】LG:球的体积和表面积;LR:球内接多面体.【专题】11:计算题;5F:空间位置关系与距离.【分析】正四棱锥P﹣ABCD的外接球的球心在它的高PO1上,记为O,求出PO1,OO1,解出球的半径,求出球的表面积.【解答】解:设球的半径为R,则∵棱锥的高为4,底面边长为2,∴R2=(4﹣R)2+()2,∴R=,∴球的表面积为4π•()2=.故选:A.【点评】本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.11.(5分)双曲线C:﹣=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于()A.2B.2C.4D.4【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】根据双曲线的离心率以及焦点到直线的距离公式,建立方程组即可得到结论.【解答】解:∵:﹣=1(a>0,b>0)的离心率为2,∴e=,双曲线的渐近线方程为y=,不妨取y=,即bx﹣ay=0,则c=2a,b=,∵焦点F(c,0)到渐近线bx﹣ay=0的距离为,∴d=,即,解得c=2,则焦距为2c=4,故选:C.【点评】本题主要考查是双曲线的基本运算,利用双曲线的离心率以及焦点到直线的距离公式,建立方程组是解决本题的关键,比较基础.12.(5分)奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.﹣2B.﹣1C.0D.1【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数的奇偶性的性质,得到f(x+8)=f(x),即可得到结论.【解答】解:∵f(x+2)为偶函数,f(x)是奇函数,∴设g(x)=f(x+2),则g(﹣x)=g(x),即f(﹣x+2)=f(x+2),∵f(x)是奇函数,∴f(﹣x+2)=f(x+2)=﹣f(x﹣2),即f(x+4)=﹣f(x),f(x+8)=f(x+4+4)=﹣f(x+4)=f(x),则f(8)=f(0)=0,f(9)=f(1)=1,∴f(8)+f(9)=0+1=1,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键.二、填空题(本大题共4小题,每小题5分)13.(5分)(x﹣2)6的展开式中x3的系数是﹣160.(用数字作答)【考点】DA:二项式定理.【专题】11:计算题.【分析】根据题意,由二项式定理可得(x﹣2)6的展开式的通项,令x的系数为3,可得r=3,将r=3代入通项,计算可得T4=﹣160x3,即可得答案.【解答】解:根据题意,(x﹣2)6的展开式的通项为T r=C6r x6﹣r(﹣2)r=(﹣1)+1r•2r•C6r x6﹣r,令6﹣r=3可得r=3,此时T4=(﹣1)3•23•C63x3=﹣160x3,即x3的系数是﹣160;故答案为﹣160.【点评】本题考查二项式定理的应用,关键要得到(x﹣2)6的展开式的通项.14.(5分)函数y=cos2x+2sinx的最大值是.【考点】HW:三角函数的最值.【专题】11:计算题.【分析】利用二倍角公式对函数化简可得y=cos2x+2sinx=1﹣2sin2x+2sinx=,结合﹣1≤sinx≤1及二次函数的性质可求函数有最大值【解答】解:∵y=cos2x+2sinx=1﹣2sin2x+2sinx=又∵﹣1≤sinx≤1当sinx=时,函数有最大值故答案为:【点评】本题主要考查了利用二倍角度公式对三角函数进行化简,二次函数在闭区间上的最值的求解,解题中要注意﹣1≤sinx≤1的条件.15.(5分)设x,y满足约束条件,则z=x+4y的最大值为5.【考点】7C:简单线性规划.【专题】31:数形结合.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得C(1,1).化目标函数z=x+4y为直线方程的斜截式,得.由图可知,当直线过C点时,直线在y轴上的截距最大,z最大.此时z max=1+4×1=5.故答案为:5.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.16.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.【考点】IV:两直线的夹角与到角问题.【专题】5B:直线与圆.【分析】设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,由直角三角形中的边角关系求得sinθ=的值,可得cosθ、tanθ 的值,再根据tan2θ=,计算求得结果.【解答】解:设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,且点A与圆心O之间的距离为OA==,圆的半径为r=,∴sinθ==,∴cosθ=,tanθ==,∴tan2θ===,故答案为:.【点评】本题主要考查直线和圆相切的性质,直角三角形中的变角关系,同角三角函数的基本关系、二倍角的正切公式的应用,属于中档题.三、解答题17.(10分)数列{a n}满足a1=1,a2=2,a n+2=2a n+1﹣a n+2.(Ⅰ)设b n=a n+1﹣a n,证明{b n}是等差数列;(Ⅱ)求{a n}的通项公式.【考点】83:等差数列的性质;84:等差数列的通项公式;8H:数列递推式.【专题】54:等差数列与等比数列.【分析】(Ⅰ)将a n=2a n+1﹣a n+2变形为:a n+2﹣a n+1=a n+1﹣a n+2,再由条件得+2b n+1=b n+2,根据条件求出b1,由等差数列的定义证明{b n}是等差数列;(Ⅱ)由(Ⅰ)和等差数列的通项公式求出b n,代入b n=a n+1﹣a n并令n从1开始取值,依次得(n﹣1)个式子,然后相加,利用等差数列的前n项和公式求出{a n}的通项公式a n.=2a n+1﹣a n+2得,【解答】解:(Ⅰ)由a n+2a n+2﹣a n+1=a n+1﹣a n+2,由b n=a n+1﹣a n得,b n+1=b n+2,即b n﹣b n=2,+1又b1=a2﹣a1=1,所以{b n}是首项为1,公差为2的等差数列.(Ⅱ)由(Ⅰ)得,b n=1+2(n﹣1)=2n﹣1,由b n=a n+1﹣a n得,a n+1﹣a n=2n﹣1,则a2﹣a1=1,a3﹣a2=3,a4﹣a3=5,…,a n﹣a n﹣1=2(n﹣1)﹣1,所以,a n﹣a1=1+3+5+…+2(n﹣1)﹣1==(n﹣1)2,又a1=1,所以{a n}的通项公式a n=(n﹣1)2+1=n2﹣2n+2.【点评】本题考查了等差数列的定义、通项公式、前n项和公式,及累加法求数列的通项公式和转化思想,属于中档题.18.(12分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.【考点】GL:三角函数中的恒等变换应用;HP:正弦定理.【专题】58:解三角形.【分析】由3acosC=2ccosA,利用正弦定理可得3sinAcosC=2sinCcosA,再利用同角的三角函数基本关系式可得tanC,利用tanB=tan[π﹣(A+C)]=﹣tan(A+C)即可得出.【解答】解:∵3acosC=2ccosA,由正弦定理可得3sinAcosC=2sinCcosA,∴3tanA=2tanC,∵tanA=,∴2tanC=3×=1,解得tanC=.∴tanB=tan[π﹣(A+C)]=﹣tan(A+C)=﹣=﹣=﹣1,∵B∈(0,π),∴B=【点评】本题考查了正弦定理、同角的三角函数基本关系式、两角和差的正切公式、诱导公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.19.(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.【考点】LW:直线与平面垂直;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)由已知数据结合线面垂直的判定和性质可得;(Ⅱ)作辅助线可证∠A1FD为二面角A1﹣AB﹣C的平面角,解三角形由反三角函数可得.【解答】解:(Ⅰ)∵A1D⊥平面ABC,A1D⊂平面AA1C1C,∴平面AA1C1C⊥平面ABC,又BC⊥AC∴BC⊥平面AA1C1C,连结A1C,由侧面AA1C1C为菱形可得AC1⊥A1C,又AC1⊥BC,A1C∩BC=C,∴AC1⊥平面A1BC,AB1⊂平面A1BC,∴AC1⊥A1B;(Ⅱ)∵BC⊥平面AA1C1C,BC⊂平面BCC1B1,∴平面AA1C1C⊥平面BCC1B1,作A1E⊥CC1,E为垂足,可得A1E⊥平面BCC1B1,又直线AA1∥平面BCC1B1,∴A1E为直线AA1与平面BCC1B1的距离,即A1E=,∵A1C为∠ACC1的平分线,∴A1D=A1E=,作DF⊥AB,F为垂足,连结A1F,又可得AB⊥A1D,A1F∩A1D=A1,∴AB⊥平面A1DF,∵A1F⊂平面A1DF∴A1F⊥AB,∴∠A1FD为二面角A1﹣AB﹣C的平面角,由AD==1可知D为AC中点,∴DF==,∴tan∠A1FD==,∴二面角A1﹣AB﹣C的大小为arctan【点评】本题考查二面角的求解,作出并证明二面角的平面角是解决问题的关键,属中档题.20.(12分)设每个工作日甲,乙,丙,丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)实验室计划购买k台设备供甲,乙,丙,丁使用,若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】(Ⅰ)把4个人都需使用设备的概率、4个人中有3个人使用设备的概率相加,即得所求.(Ⅱ)由(Ⅰ)可得若k=2,不满足条件.若k=3,求得“同一工作日需使用设备的人数大于3”的概率为0.06<0.1,满足条件,从而得出结论.【解答】解:(Ⅰ)由题意可得“同一工作日至少3人需使用设备”的概率为0.6×0.5×0.5×0.4+(1﹣0.6)×0.5×0.5×0.4+0.6×(1﹣0.5)×0.5×0.4+0.6×0.5×(1﹣0.5)×0.4+0.6×0.5×0.5×(1﹣0.4)=0.31.(Ⅱ)由(Ⅰ)可得若k=2,则“同一工作日需使用设备的人数大于2”的概率为0.31>0.1,不满足条件.若k=3,则“同一工作日需使用设备的人数大于3”的概率为0.6×0.5×0.5×0.4=0.06<0.1,满足条件.故k的最小值为3.【点评】本题主要考查相互独立事件的概率乘法公式,体现了分类讨论的数学思想,属于中档题.21.(12分)函数f(x)=ax3+3x2+3x(a≠0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)在区间(1,2)是增函数,求a的取值范围.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【专题】53:导数的综合应用.【分析】(Ⅰ)求出函数的导数,通过导数为0,利用二次函数的根,通过a的范围讨论f(x)的单调性;(Ⅱ)当a>0,x>0时,f(x)在区间(1,2)是增函数,当a<0时,f(x)在区间(1,2)是增函数,推出f′(1)≥0且f′(2)≥0,即可求a的取值范围.【解答】解:(Ⅰ)函数f(x)=ax3+3x2+3x,∴f′(x)=3ax2+6x+3,令f′(x)=0,即3ax2+6x+3=0,则△=36(1﹣a),①若a≥1时,则△≤0,f′(x)≥0,∴f(x)在R上是增函数;②因为a≠0,∴a≤1且a≠0时,△>0,f′(x)=0方程有两个根,x1=,x2=,当0<a<1时,则当x∈(﹣∞,x2)或(x1,+∞)时,f′(x)>0,故函数在(﹣∞,x2)或(x1,+∞)是增函数;在(x2,x1)是减函数;当a<0时,则当x∈(﹣∞,x1)或(x2,+∞),f′(x)<0,故函数在(﹣∞,x1)或(x2,+∞)是减函数;在(x1,x2)是增函数;(Ⅱ)当a>0,x>0时,f′(x)=3ax2+6x+3>0 故a>0时,f(x)在区间(1,2)是增函数,当a<0时,f(x)在区间(1,2)是增函数,当且仅当:f′(1)≥0且f′(2)≥0,解得﹣,a的取值范围[)∪(0,+∞).【点评】本题考查函数的导数的应用,判断函数的单调性以及已知单调性求解函数中的变量的范围,考查分类讨论思想的应用.22.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.【考点】KH:直线与圆锥曲线的综合.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C的方程,求得x0=,根据|QF|=|PQ|求得p的值,可得C的方程.(Ⅱ)设l的方程为x=my+1 (m≠0),代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长|AB|.把直线l′的方程代入抛物线方程化简,利用韦达定理、弦长公式求得|MN|.由于MN垂直平分线段AB,故AMBN 四点共圆等价于|AE|=|BE|=|MN|,由此求得m的值,可得直线l的方程.【解答】解:(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C:y2=2px (p>0),可得x0=,∵点P(0,4),∴|PQ|=.又|QF|=x0+=+,|QF|=|PQ|,∴+=×,求得p=2,或p=﹣2(舍去).故C的方程为y2=4x.(Ⅱ)由题意可得,直线l和坐标轴不垂直,y2=4x的焦点F(1,0),设l的方程为x=my+1(m≠0),代入抛物线方程可得y2﹣4my﹣4=0,显然判别式△=16m2+16>0,y1+y2=4m,y1•y2=﹣4.∴AB的中点坐标为D(2m2+1,2m),弦长|AB|=|y1﹣y2|==4(m2+1).又直线l′的斜率为﹣m,∴直线l′的方程为x=﹣y+2m2+3.过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,把线l′的方程代入抛物线方程可得y2+y﹣4(2m2+3)=0,∴y3+y4=,y3•y4=﹣4(2m2+3).故线段MN的中点E的坐标为(+2m2+3,),∴|MN|=|y3﹣y4|=,∵MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,∴+DE2=MN2,∴4(m2+1)2 ++=×,化简可得m2﹣1=0,∴m=±1,∴直线l的方程为x﹣y﹣1=0,或x+y﹣1=0.【点评】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了转化的数学思想,属于难题.。

2014届高三数学一模文科试卷(附答案)

2014届高三数学一模文科试卷(附答案)

2014届高三数学一模文科试卷(附答案)箴言中学2013年高三第一次学月考试(时量120分钟满分 150分)一、选择题:本大题共9小题,每小题5分,共45分,每小题只有一项符合题目要求. 1.已知全集,集合,,则 =__________. A. {1,2,4} B. {2,3,4} C. {0,2,4} D . {0,2,3,4} 2.复数为虚数单位)在复平面内所对应的点在__________. A.第一象限 B.第二象限C.第三象限 D.第四象限 3.设 , 则“ ”是“ ”的__________. A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 4.四名同学根据各自的样本数据研究变量之间的相关关系,并求得回归直线方程,分别得到以下四个结论:① y与x负相关且;② y与x负相关且;③ y与x正相关且;④ y与x正相关且 . 其中一定不正确的结论的序号是__________. A.①② B.②③ C.③④ D.①④ 5.下列函数中,既是偶函数又在区间上单调递减的是__________. A. B. C. D. 6.已知向量,,若,则=__________. A. B. C. D. 7.已知点在圆外, 则直线与圆的位置关系是_______. A.相切 B.相交 C.相离 D.不确定 8.若 ,则的取值范围是__________. A. B. C. D. 9.形如的函数因其函数图象类似于汉字中的�遄郑�故生动地称为“�搴�数”。

则当时的“�搴�数”与函数的交点个数为__________. A.2 B.3 C.4 D.5 二、填空题:本大题共6小题,每小题5分,共30分. 10.直线(为参数)的倾斜角为__________. 11.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4, 则命中环数的方差为 . (注:方差,其中为的平均数) 12. 某几何体的三视图如图1所示,它的体积为__________. 13. 阅读图2的程序框图, 该程序运行后输出的的值为 __. 14. 设F1,F2是椭圆C:的两个焦点,若在C上存在一点P, 使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为_____________. 15.已知函数的定义域为,部分对应值如下表,的导函数,的图象如图所示.�1 0 2 4 5 1 2 0 2 1 (1)的极小值为_______;(2)若函数有4个零点,则实数的取值范围为_________.箴言中学2013年高三第一次学月考试文科数学答题卷一、选择题:本大题共9小题,每小题5分,共45分,序号 1 2 3 4 5 6 7 8 9 答案二、填空题:本大题共6小题,每小题5分,共30分. 10.____________11.____________ 12..____________ 13.____________14.____________ 15.____________ _____________ 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题12分) 若函数在R上的最大值为5. (1)求实数m的值; (2)求的单调递减区间。

2014广东高考文科数学试卷及答案解析(word版)

2014广东高考文科数学试卷及答案解析(word版)

2014年普通高等学校招生全国统一考试(广东卷)数学 (文科)一、选择题{}{}{}{}{}{}1.2,3,4,0,2,3,5,()..0,2.2,3.3,4.3,5M N M N A B C D ===已知集合则答案:B2.(34)25,()..34.34.34.34z i z z A i B iC iD i-==---+-+已知复数满足则答案:D 2525(34)25(34):=34,.34(34)(34)25i i z i D i i i ++===+--+提示故选 3.(1,2),(3,1),()..(2,1).(2,1).(2,0).(4,3)a b b a A B C D =-=--已知向量则答案:B284.,04,2().03.7.8.10.11x y x y x z x y y A B C D +≤⎧⎪≤≤=+⎨⎪≤≤⎩若变量满足约束条件则的最大值等于 答案:C提示:作出可行域(为一个五边形及其内部区域),易知在点(4,2)处目标函数取到最大值10. 选C. 5.下列函数为奇函数的是( ).A.xx212-B.x x sin 3C.1cos 2+xD.xx 22+ 答案:A111:()2,(),()22(),222(),A .x xxx x x f x f x R f x f x f x --=--=-=-=-∴提示设则的定义域为且为奇函数故选6.1000,,40,()..50.40.25.20:1000:25.40A B C D C=为了解名学生的学习情况采用系统抽样的方法从中抽取容量为的样本则分段的间隔为答案提示分段的间隔为7.,,,,,,sin sin ().....::,,,sin ,sin ,sin sin .sin sin ABC A B C a b c a b A B A B C D Aa ba b A B a b A B A B∆≤≤=∴≤⇔≤在中角所对应的边分别为则“”是“”的充分必要条件充分非必要条件必要非充分条件非充分非必要条件答案提示由正弦定理知都为正数22228.05,11().165165....05,50,160,16(5)21(16)5,x y x y k k k k A B C D k k k k k k <<-=-=--<<∴->->+-=-=-+若实数满足则曲线与曲线的实半轴长相等虚半轴长相等离心率相等焦距相等答案:D提示:从而两曲线均为双曲线,又故两双曲线的焦距相等,选D.1234122334141414149.,,,,,//,,()...//..l l l l l l l l l l A l l B l l C l l D l l ⊥⊥⊥若空间中四条两两不同的直线满足则下列结论一定正确的是与既不垂直也不平行与的位置关系不确定答案:D1212122212310.,,=,,,,z z z ωωωωωωωω*对任意复数定义其中是的共轭复数对任意复数有如下四个命题:①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*; ③123123()();z z z z z z **=**④1221z z z z *=*;则真命题的个数是( )A.1B.2C.3D.412312313231323123123123121312131231231231231231:()()()()()();()()()()()()();(),()()(),,;Bz z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z ++++=+=+=+====≠答案提示:①*===*+*,故①是真命题②**+*,②对③左边=*=右边*左边右边③错 ④左边=2122121,,,z z z z z z z ==≠*右边=*左边右边故④不是真命题.综上,只有①②是真命题,故选B.(一)必做题(11-13)''142511.53(0,2)_______.:520:5,5,25,520.12.,,,d,e ________.2:542:105x x x y e x y y e y y x x y a b c a C P C ==-+-++==-∴=-∴+=-++====曲线在点处的切线方程为答案提示所求切线方程为即从字母中任取两个不同字母,则取到字母的概率为答案提示13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.212223242525242322212152:5:log log log log log ,log log log log log ,25log ()5log 410,5.S a a a a a S a a a a a S a a S =++++=++++∴===∴=答案提示设则2121214.()2cos sin cos =1.,,_____________.C C x C C ρθθρθ=坐标系与参数方程选做题在极坐标系中,曲线与的方程分别为与以极点为平面直角坐标系的原点,极轴为轴的正半轴建立平面直角坐标系则曲线与交点的直角坐标为2221212:(1,2):2cos sin 2cos =sin ,2,1,,(1,2).C y x C x C C ρθθρθρθ===∴答案提示由得()故的直角坐标方程为:的直角坐标方程为:交点的直角坐标为15.()1,,2,,___________.:3:, 3.ABCD E AB EB AE AC DE F CDF AEF CDF CD EB AECDFAEF AEF AE AE=∆=∆∆+∆∆∴===∆几何证明选讲选做题如图在平行四边形中点在上且与交于点的周长则的周长答案的周长提示显然的周长16.(本小题满分12分) 已知函数()sin(),3f x A x x R π=+∈,且5()122f π=(1) 求A 的值;(2)若()()(0,)2f f πθθθ--=∈,求()6f πθ-553:(1)()sin()sin 3.121234(2)(1):()3sin(),3()()3sin()3sin()333(sin cos cos sin )3(sin()cos cos()sin )33336sin cos3sin 3sin (0,),2f A A A f xx f f πππππππθθθθππππθθθθπθθπθθ=+==∴===+∴--=+--+=+--+-===∴=∈解由得又cos ()3sin()3sin()3cos 36632f θππππθθθθ∴=∴-=-+=-===17. 某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差.:(1)2030,401921.-=解这名工人年龄的众数为极差为(2)茎叶图如下:()2222222(1928329330531432340)3:30,20120:(11)3(2)3(1)504132102011(121123412100)25212.62020+⨯+⨯+⨯+⨯+⨯+=⎡⎤-+⨯-+⨯-+⨯+⨯+⨯+⎣⎦=+++++=⨯=年龄的平均数为故这名工人年龄的方差为18.2,,,1, 2.3://,,,,,.(1):;(2).ABCD PD ABCD AB BC PC EF DC E F PD PC EF P AD M MF CF CF MDF M CDE ⊥===⊥⊥-如图四边形为矩形平面作如图折叠折痕其中点分别在线段上沿折叠后点叠在线段上的点记为并且证明平面求三棱锥的体积00:(1):,,,,,,,,,,,,,.11(2),,60,30,==,22,PD ABCD PD PCD PCD ABCD PCD ABCD CD MD ABCD MD CD MD PCD CF PCD CF MD CF MF MD MF MDF MD MF M CF MDF CF MDF CF DF PCD CDF CF CD DE EF DC D ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥⊂=∴⊥⊥∴⊥∠=∴∠=∴解证明平面平面平面平面平面平面平面平面又平面平面平面又易知从而∥2112,,2211.33CDE M CDE CDE CF DE PE S CD DE P CP MD V S MD ∆-∆=∴=∴==⋅=====∴=⋅=={}{}222119.,(3)3()0,.(1);(2);n n n n n n a n S S S n n S n n n N a a *-+--+=∈设各项均为正数的数列的前项和为且满足求的值求数列的通项公式1 92 8 8 8 9 9 93 0 0 0 0 0 1 1 1 1 2 2 24 0(3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a221111*********2221:(1)1:(1)320,60,(3)(2)0,0,2, 2.(2)(3)3()0,:(3)()0,0(),0,30,,2,(1)(1)n n n n n n n n n n n n S S S S S S S S a S n n S n n S S n n a n N S S S n n n a S S n n n n *-=---⨯=+-=∴+-=>∴==⎡⎤-+--+=+-+=⎣⎦>∈∴>+>∴=+⎡∴≥=-=+--+-⎣解令得即即由得从而当时12211222,221,2().313(3):,()(),221644111111(1)2(21)44()()()24411111111144(1)()(1)4444111(1)(1)n k k n a a n n N k k k N k k k k a a k k k k k k k k k k a a a a **⎤=⎦==⨯∴=∈∈+>+-=-+∴==⋅<⋅+++-+⎡⎤⎢⎥=⋅=⋅-⎢⎥⎡⎤⎢⎥-+--⋅+-⎢⎥⎣⎦⎣⎦∴+++++又解法一当时(1)1111111()()11111141223(1)444444111111().11434331(1)44111111:(),.(1)2(21)(21)(21)22121(:)n n k k a a n n n n a a k k k k k k +⎡⎤⎢⎥<-+-++-⎢⎥⎢⎥-----+-⎣⎦=-=-<+-+-=<=-++-+-+解法二以下略注解法二的放缩没有解法一的精确,在使用中第一项不放缩时才能得到答案2222002222220.:1(0)(1);(2)(,),,.:(1)3,954,1.94(2),,4x yC a ba bCP x y C P C Pcc e a b a cax yCx y+=>>====∴==-=-=∴+=已知椭圆的一个焦点为求椭圆的标准方程若动点为椭圆外一点且点到椭圆的两条切线相互垂直求点的轨迹方程解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P共个002200222000022222000000(3,2),(3,2).(),(),194(94)18()9()40,,0,(18)()36()4(94)0,4()4y y k x xx yy k x x yk x k y kx x y kxk y kx y kx k y kx-±±-=-=-++=⎡⎤++-+--=∆=⎣⎦⎡⎤----+=--⎣⎦,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:依题意即:即2222200000122220022(94)0,4(9)240,,1,:1,913,(3,2),(3,2),13.kyx k x y k y k kxx yP x y+=-∴--+-=∴=-=--∴+=-±±∴+=两切线相互垂直即显然这四点也满足以上方程点的轨迹方程为3200121.()1().3(1)();111(2)0,(0,)(,1),()=().222f x x x ax a Rf xa x f x f=+++∈<∈已知函数求函数的单调区间当时试讨论是否存在使得3232000033220002000000200000111111(2):()()1()()()12332221111()()()3222111111()()()()()322422211111()()()(4236122122f x f x x ax a x x a x x x x x x a x x x x x a x ⎡⎤-=+++-+++⎢⎥⎣⎦⎡⎤⎡⎤=-+-+-⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤=-+++-++-⎢⎥⎣⎦=-+++++=-解法一2000020020014712)111(0,)(,1),()(),222114147120(0,)(,1).220,1416(712)4(2148)0,0,,01,7x x a x f x f x x a a a a x x +++∴∈=+++=<∴∆=-+=->=>∴<<<若存在使得必须在上有解方程的两根为依题意即0000025711,492148121,,1212155,,,,24425557111(,)(,),(0,)(,1)()().124412222257511(,][,0),(0,)(,1)(1212422a a a x a a x f x f a x f x ∴<-<-<<-=-≠-∴∈----∈=⎧⎫∈-∞---∈⎨⎬⎩⎭即得故欲使满足题意的存在则当时存在唯一的满足当时不存在使1)().2f =00:0,10,()3,11,(1)()(0,1),111(0,)(,1),()=();222()30,()(0,1,(1,5111),()(0,),(,1),422a i a f x x f x f ii a f x a f x <∴-≤--∈-<<-+-+=-解法二若从而由知在区间上是减函数故此时不存在使得若则函数在区间上递减在区间上递增若则在上递减在上递增显然此时不存在满足题意的000000;512)3,11,,(14212525255(1)()0,0,,;222412124513)0,01,,(0,1421775(0)()0,0,,2224124x a x x a f f a a x a x x a f f a -<<-<-∈-+->+>>--<<--<<<-+∈-+->--><--若则若题意中的存在则故只需即则故时存在满足题意的若则若题意中的存在则故只需即则故000007.12:25557111(,)(,),(0,)(,1)()().1244122222575111(,][,0),(0,)(,1)()().12124222a x a x f x f a x f x f <<-∴∈----∈=⎧⎫∈-∞---∈=⎨⎬⎩⎭时存在满足题意的综上所述当时存在唯一的满足当时不存在使。

2014年湛江市一模文科数学试题及答案

2014年湛江市一模文科数学试题及答案

湛江市2014年普通高考测试题(一)数学(文科)本试卷共4页,21小题,满分150分.考试用时120分钟 参考公式:锥体的体积公式:1=3V Sh ,其中S 是底面面积,h 是高。

n 个数据123,,,,n x x x x 的平均数是x ,这组数据的方差2s 由以下公式计算:222221231[()()()()].n s x x x x x x x x n=-+-+-++- 一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数1i +的共轭复数是A .1i +B .1i -C .1i -+D . 1i -- 2.设函数()lg(1)f x x =-的定义域为A ,值域为B ,则A B =A .(0,)+∞B .(1,)+∞C .(0,1)D .(,1)-∞3.“3πα=”是“sin α=”的 A .充分必要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件 4.通过某雷达测速点的机动车的时速频率分布直方图如图 所示,则通过该测速点的机动车的时速超过60的概率是 A .0.038 B .0.38 C .0.028 D .0.28 5.等差数列{}n a 中,2374,20a a a =+=,则8a =A .8B .12C .16D .246.运行如图的程序框图,若输出的结果是1320s =,则判断框中可填入A .10?k ≤B .10?k <C .9?k <D .8?k ≤ 7.如下图所示的几何体,其俯视图正确的是8.在△ABC 中,AB =5,AC =3,BC =7,则∠BAC = A .6π B . 3πC . 23πD . 56π9.若曲线4y x =的一条切线l 与直线430x y +-=垂直,则l 的方程为A .430x y --=B . 450x y +-=C .430x y -+=D . 430x y ++= 10.将一张画了直角坐标系(两坐标轴单位长度相同)的纸折叠一次,使点(2,0)与点(2,4)-重合, 则与点(5,8)重合的点是 A .(6,7)B .(7,6)C .(5,4)--D .(4,5)--二、填空题:本大题共5小题.考生作答4小题.每小题5分,满分20分. (一)必做题(11~13题)11.双曲线2214x y -=的焦点坐标是_____________ 。

2014年全国统一高考数学试卷(文科)(新课标ⅰ)(附参考答案+详细解析Word打印版)

2014年全国统一高考数学试卷(文科)(新课标ⅰ)(附参考答案+详细解析Word打印版)

2014年全国普通高等学校招生统一考试数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3) D.(﹣2,3)2.(5分)若tanα>0,则()A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>03.(5分)设z=+i,则|z|=()A.B.C.D.24.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=()A.2 B.C.D.15.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=()A.1 B.2 C.4 D.811.(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=()A.﹣5 B.3 C.﹣5或3 D.5或﹣312.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)二、填空题:本大题共4小题,每小题5分13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是.16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN=m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f (1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。

2014年高考广东文科数学试题及答案(word解析版)

2014年高考广东文科数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试(广东卷)数学(文科)一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2014年广东,文1,5分】已知集合{}2,3,4M =,{}0,2,3,5N =,则M N =( )(A ){}0,2 (B ){}2,3 (C ){}3,4 (D ){}3,5 【答案】B 【解析】{}2,3MN =,故选B .【点评】本题主要考查集合的基本运算,比较基础. (2)【2014年广东,文2,5分】已知复数z 满足(34i)25z -=,则z =( )(A )34i -- (B )34i -+ (C )34i - (D )34i + 【答案】D【解析】2525(34i)25(34i)=34i 34i (34i)(34i)25z ++===+--+,故选D .【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i 的幂运算性质,属于基础题. (3)【2014年广东,文3,5分】已知向量(1,2)a =,(3,1)b =,则b a -=( )(A )(2,1)- (B )(2,1)- (C )(2,0) (D )(4,3) 【答案】B【解析】()2,1b a -=-,故选B .【点评】本题考查向量的坐标运算,基本知识的考查.(4)【2014年广东,文4,5分】若变量,x y 满足约束条件280403x y x y +≤⎧⎪≤≤⎨⎪≤≤⎩,则2z x y =+的最大值等于( )(A )7 (B )8 (C )10 (D )11 【答案】C 【解析】作出不等式组对应的平面区域如图:由2z x y =+,得2y x z =-+,平移直线2y x z =-+, 由图象可知当直线2y x z =-+经过点()4,2B 时,直线2y x z =-+的截距最大,此时z 最大,此时24210z ==⨯+=,故选C . 【点评】本题主要考查线性规划的应用,利用z 的几何意义,利用数形结合是解决本题的关键. (5)【2014年广东,文5,5分】下列函数为奇函数的是( )(A )122x x - (B )3sin x x (C )2cos 1x + (D )22x x +【答案】A【解析】对于函数()122x x f x =-,()()112222x x x x f x f x ---=-=-=-,故此函数为奇函数;对于函数()3sin f x x x =,()()()()33sin sin f x x x x x f x -=--==,故此函数为偶函数;对于函数()2cos 1f x x =+,()()()2cos 12cos 1f x x x f x -=-+=+=,故此函数为偶函数;对于函数()22x f x x =+,()()()2222x x f x x x f x ---=-+=+≠-,同时()()f x f x -=≠故此函数为非奇非偶函数,故选A .【点评】本题主要考查函数的奇偶性的判断方法,属于基础题.(6)【2014年广东,文6,5分】为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )(A )50 (B )40 (C )25 (D )20 【答案】C【解析】∵从1000名学生中抽取40个样本,∴样本数据间隔为1000÷40=25,故选C . 【点评】本题主要考查系统抽样的定义和应用,比较基础. (7)【2014年广东,文7,5分】在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,则“a b ≤”是“sin sin A B ≤”的( )(A )充分必要条件 (B )充分非必要条件 (C )必要非充分条件 (D )非充分非必要条件 【答案】A【解析】由正弦定理可知sin sin a bA B=,∵ABC ∆中,角A 、B 、C 所对应的边分别为a ,b ,c ,∴a ,b ,sin A ,sin B 都是正数,sin sin a b A B ≤⇔≤.∴“a b ≤”是“sin sin A B ≤”的充分必要条件,故选A .【点评】本题考查三角形中,角与边的关系正弦定理以及充要条件的应用,基本知识的考查.(8)【2014年广东,文8,5分】若实数k 满足05k <<,则曲线221165x y k-=-与曲线221165x y k -=-的( ) (A )实半轴长相等 (B )虚半轴长相等 (C )离心率相等 (D )焦距相等 【答案】D【解析】当05k <<,则055k <-<,111616k <-<,即曲线221165x y k-=-表示焦点在x 轴上的双曲线,其中216a =,25b k =-,221c k =-,曲线221165x y k -=-表示焦点在x 轴上的双曲线,其中216a k =-,25b =,221c k =-,即两个双曲线的焦距相等,故选D .【点评】本题主要考查双曲线的方程和性质,根据不等式的范围判断a ,b ,c 是解决本题的关键. (9)【2014年广东,文9,5分】若空间中四条两两不同的直线1234,,,l l l l ,满足122334,//,l l l l l l ⊥⊥,则下列结论一定正确的是( )(A )14l l ⊥ (B )14//l l (C )1l 与4l 既不垂直也不平行 (D )1l 与4l 的位置关系不确定 【答案】D【解析】在正方体中,若AB 所在的直线为2l ,CD 所在的直线为3l ,AE 所在的直线为1l , 若GD 所在的直线为4l ,此时14//l l ,若BD 所在的直线为4l ,此时14l l ⊥,故1l 与4l 的位 置关系不确定,故选D .【点评】本题主要考查空间直线平行或垂直的位置关系的判断,比较基础.(10)【2014年广东,文10,5分】对任意复数12,ωω,定义1212*ωωωω=,其中2ω是2ω的共轭复数,对任意复数123,,z z z ,有如下四个命题: ①1231323()()()z z z z z z z +=**+*②1231213()()()z z z z z z z +=**+*; ③123123()()z z z z z z *=***④1221z z z z *=*;则真命题的个数是( )(A )1 (B )2 (C )3 (D )4 【答案】B【解析】①12312313231323()()()()()()z z z z z z z z z z z z z z +++*===*+*,正确;②12312312312131213()()()()()()()z z z z z z z z z z z z z z z z z +=+=+=+=**+*,正确;③123123123123123(),()()(),z z z z z z z z z z z z z z z ===≠左边=*=右边*左边右边,等式不成立,故错误;④12122121,,z z z z z z z z ==≠左边=*右边=*左边右边,等式不成立,故错误; 综上所述,真命题的个数是2个,故选B .【点评】本题以命题的真假判断为载体,考查了复数的运算性质,细心运算即可,属于基础题. 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13) (11)【2014年广东,文11,5分】曲线53x y e =-+在点()0,2-处的切线方程为 . 【答案】520x y ++= 【解析】'5x y e =-,'5x y =∴=-,因此所求的切线方程为:25y x +=-,即520x y ++=.【点评】本题考查了导数的几何意义、曲线的切线方程,属于基础题. (12)【2014年广东,文12,5分】从字母,,,,a b c d e 中任取两个不同字母,则取到字母a 的概率为 .【答案】25【解析】142542105C P C ===.【点评】本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A 包含的基本事件的个数和试验中基本事件的总数.(13)【2014年广东,文13,5分】等比数列{}n a 的各项均为正数,且154a a =, 则2122232425log log log log log a a a a a ++++= . 【答案】5【解析】设2122232425log log log log log S a a a a a =++++,则2524232221log log log log log S a a a a a =++++,215225log ()5log 410S a a ∴===,5S ∴=.【点评】本题考查等比数列的性质,灵活运用性质变形求值是关键,本题是数列的基本题,较易. (二)选做题(14-15题,考生只能从中选做一题) (14)【2014年广东,文14,5分】(坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为22cos sin ρθθ=与cos =1ρθ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 交点的直角坐标为 . 【答案】(1,2)【解析】由22cos sin ρθθ=得22cos =sin ρθρθ(),故1C 的直角坐标系方程为:22y x =,2C 的直角坐标系方程为:1x =,12,C C ∴交点的直角坐标为(1,2).【点评】本题考查极坐标与直角坐标的互化,考查了方程组的解法,是基础题. (15)【2014年广东,文15,5分】(几何证明选讲选做题)如图,在平行四边形ABCD 中,点E 在AB 上,且2EB AE =,AC 与DE 交于点F ,则CDF AEF ∆=∆的周长的周长. 【答案】3【解析】由于CDF AEF ∆∆∽,3CDF CD EB AEAEF AE AE∆+∴===∆的周长的周长.【点评】本题考查三角形相似的判断,考查学生的计算能力,属于基础题.三、解答题:本大题共6题,共80分.解答应写出文字说明,证明过程或演算步骤.(16)【2014年广东,文16,12分】已知函数()sin ,3f x A x x R π⎛⎫=+∈ ⎪⎝⎭,且512f π⎛⎫= ⎪⎝⎭.(1)求A 的值;(2)若()()0,2f f πθθθ⎛⎫--=∈ ⎪⎝⎭,求6f πθ⎛⎫- ⎪⎝⎭.解:(1)553()sin()sin 121234f A A ππππ=+==3A ∴.(2)由(1)得:()3sin()3f x x π=+,()()3sin()3sin()33f f ππθθθθ∴--=+--+3(sin coscos sin )3(sin()cos cos()sin )6sin cos 3sin 3333πππππθθθθθθ=+--+-===sin 0,2πθθ⎛⎫∴=∈ ⎪⎝⎭,cos θ∴==()3sin()3sin()3cos 36632f ππππθθθθ∴-=-+=-==【点评】本题考查两角和与差的三角函数,三角函数的解析式的求法,基本知识的考查. (17)【2014年广东,文17,12分】某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差. 解:(1)这这20名工人年龄的众数为30,极差为40﹣19=21.(2)茎叶图如下: (3)年龄的平均数为:(1928329330531432340)3020+⨯+⨯+⨯+⨯+⨯+=,这20名工人年龄的方差为:2222222111(11)3(2)3(1)50413210(121123412100)25212.6202020⎡⎤-+⨯-+⨯-+⨯+⨯+⨯+=+++++=⨯=⎣⎦【点评】本题考查了众数,极差,茎叶图,方差的基本定义,属于基础题. (18)【2014年广东,文18,14分】如图1,四边形ABCD 为矩形,PD ABCD ⊥平面,1,2AB BC PC ===,做如图2折叠:折痕//EF DC ,其中点,E F 分别在线段,PD PC 上,沿EF 折叠后,点P 叠在线段AD 上的点记为M ,并且MF CF ⊥. (1)证明:CF MDF ⊥平面; (2)求三棱锥M CDE -的体积. 解:(1)PD ⊥平面ABCD ,PD PCD ⊂,∴平面PCD ⊥平面ABCD ,平面PCD 平面ABCD CD =,MD ⊂平面ABCD ,MD CD ⊥,MD ∴⊥平面PCD ,CF ⊂平面PCD ,CF MD ∴⊥,又 CF MF ⊥,MD ,MF ⊂平面MDF ,MD MF M =,CF ∴⊥平面MDF .(2)CF ⊥平面MDF ,CF DF ∴⊥,又易知060PCD ∠=,030CDF ∴∠=,从而11==22CF CD ,EF DC ∥,DE CFDP CP ∴=122,DE ∴=,PE ∴=12CDE S CD DE ∆=⋅=,2MD ===,1133M CDE CDE V S MD -∆∴=⋅== 【点评】本题考查了空间中的垂直关系的应用问题,解题时应结合图形,明确线线垂直、线面垂直以及面面垂直的相互转化关系是什么,几何体的体积计算公式是什么,是中档题.(19)【2014年广东,文19,14分】设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足222(3)3()0,n n S n n S n n n N *-+--+=∈.(1)求1a 的值;(2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有()()()112211111113n n a a a a a a +++<+++.解:(1)令1n =得:211(1)320S S ---⨯=,即21160S S +-=,11(3)(2)0S S ∴+-=,10S >,12S ∴=,即12a =.(2)由222(3)3()0nn S n n S n n -+--+=,得:2(3)()0n n S S n n ⎡⎤+-+=⎣⎦,0()n a n N *>∈,0n S ∴>,从而30n S +>,2n S n n ∴=+,∴当2n ≥时,221(1)(1)2n n n a S S n n n n n -⎡⎤=-=+--+-=⎣⎦,又1221a ==⨯,2()n a n n N *∴=∈. (3)当k N *∈时,22313()()221644k k k k k k +>+-=-+, 111111111111131111(1)2(21)4444()()()(1)()(1)2444444k k a a k k k k k k k k k k ⎡⎤⎢⎥∴==⋅<⋅=⋅=⋅-⎢⎥++⎡⎤⎢⎥+-+-+--⋅+-⎢⎥⎣⎦⎣⎦11221111111111()()111111(1)(1)(1)41223(1)444444n n a a a a a a n n ⎡⎤⎢⎥∴+++<-+-++-⎢⎥+++⎢⎥-----+-⎣⎦1 92 8 8 8 9 9 93 0 0 0 0 0 1 1 1 1 2 2 24 0111111()11434331(1)44n n =-=-<+-+-. 【点评】本题考查了数列的通项与前n 项和的关系、裂项求和法,还用到了放缩法,计算量较大,有一定的思维难度,属于难题.(20)【2014年广东,文20,14分】已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为.(1)求椭圆C 的标准方程;(2)若动点00(,)P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.解:(1)cc e a ===3a ∴=,222954b a c =-=-=,∴椭圆C 的标准方程为:22194x y +=. (2)若一切线垂直x 轴,则另一切线垂直于y 轴,则这样的点P 共4个,它们坐标分别为(3,2)-±,(3,2)±.若两切线不垂直与坐标轴,设切线方程为00()y y k x x -=-,即00()y k x x y =-+,将之代入椭圆方程22194x y +=中并整理得:2220000(94)18()9()40k x k y kx x y kx ⎡⎤++-+--=⎣⎦,依题意,0∆=, 即22220000(18)()36()4(94)0k y kx y kx k ⎡⎤----+=⎣⎦,即22004()4(94)0y kx k --+=, 2220000(9)240x k x y k y ∴--+-=,两切线相互垂直,121k k ∴=-,即2020419y x -=--,220013x y ∴+=, 显然(3,2)-±,(3,2)±这四点也满足以上方程,∴点P 的轨迹方程为2213x y +=.【点评】本题主要考查了椭圆的标准方程,轨迹方程的相关问题.对于求轨迹方程,最重要的是建立模型求得x和y 关系.(21)【2014年广东,文21,14分】已知函数321()1()3f x x x ax a R =+++∈.(1)求函数()f x 的单调区间;(2)当0a <时,试讨论是否存在011(0,)(,1)22x ∈,使得01()=()2f x f .解:(1)'2()2f x x x a =++,方程220x x a ++=的判别式:44a ∆=-,∴当1a ≥时,0∆≤,'()0f x ∴≥,此时()f x 在(,)-∞+∞上为增函数.当1a <时,方程220x xa ++=的两根为1-(,1x ∈-∞-时,'()0f x >,∴此时()f x为增函数,当(11x ∈--,'()0f x <,此时()f x 为减函数,当(1)x ∈-+∞时,'()0f x >,此时()f x 为增函数,综上,1a ≥时,()f x 在(,)-∞+∞上为增函数,当1a <时,()f x 的单调增函数区间为(,1-∞-,(1)-++∞,()f x的单调递减区间为(11---.(2)3232332200000001111111111()()1()()()1()()()2332223222f x f x x ax a x x a x ⎡⎤⎡⎤⎡⎤-=+++-+++=-+-+-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦200011()(414712)122x x x a =-+++∴若存在011(0,)(,1)22x ∈,使得01()()2f x f =, 必须2004147120x x a +++=在11(0,)(,1)2上有解.0a <,21416(712)4(2148)0a a ∴∆=-+=->,00x >,0x ∴ 01<,即711<,492148121a ∴<-<,即2571212a -<<-,12,得54a =-,故欲使满足题意的0x 存在,则54a ≠-,∴当25557(,)(,)124412a ∈----时,存在唯一的011(0,)(,1)22x ∈满足01()()2f x f =.当2575(,][,0)12124a ⎧⎫∈-∞---⎨⎬⎩⎭时,不存在011(0,)(,1)22x ∈使01()()2f x f =.【点评】(1)求含参数的函数的单调区间时,导函数的符号往往难以确定,如果受到参数的影响,应对参数进行讨论,讨论的标准要根据导函数解析式的特征而定.如本题中导函数为一元二次函数,就有必要考虑对应方程中的判别式△.(2)对于存在性问题,一般先假设所判断的问题成立,再由假设去推导,若求得符合题意的结果,则存在;若得出矛盾,则不存在.。

2014年广东省高考文科数学模拟试卷及参考答案

2014年广东省高考文科数学模拟试卷及参考答案

17. (本小题满分 12 分)(本小题主要考查概率与统计的概念,考查运算求解能力等.

解( 1) ∵
x
0.19
2000
x 380
………………3 分
( 2)高三年级人数为 y+z=2000 -( 373+ 377+ 380+ 370)= 500, …………………5 分 现用分层抽样的方法在全校抽取 48 名学生,应在高三年级抽取的人数为:
棱锥的高为 2, 连结 AM ,则 AM=
2
AB
BM 2 =
2
2
BM 2 ,
由( 2)知 PA
AM
∴S
1 PAM= PA ? AM
2
1 2 22 BM 2 2
4 BM 2
∴ V D— PAM= 1 ? S PAM 3
?2= 1 ?
3
4
BM 2 ? 2 = 2 4 BM 2
3
…………………
11分
∵ S AMD
5
( 1)求 cos( A C ) 的值;
( 2)求 sin B
的值;
6
uuur uuur ( 3)若 BAgBC 20 ,求
ABC 的面积 .
.
17.(本小题满分 12 分) 某完全中学高中部共有学生
2000 名,各年级男、女生人数如下表:
女生
高一年级 373
高二年级 x
高三年级 y
男生
377
370
∴ GH//AD//EF ,
∴ E, F, G, H 四点共面。
…………………………2 分
又 H 为 AB 中点,∴ EH//PB 。
…………………………3 分
又 EH 面 EFG, PB 平面 EFG,

2014年广东省高考数学试卷(文科)(含解析版)

2014年广东省高考数学试卷(文科)(含解析版)

2014年广东省高考数学试卷(文科)一、选择题:(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合M={2,3,4},N={0,2,3,5},则M∩N=()A.{0,2}B.{2,3}C.{3,4}D.{3,5} 2.(5分)已知复数z满足(3﹣4i)z=25,则z=()A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i3.(5分)已知向量=(1,2),=(3,1),则﹣=()A.(﹣2,1)B.(2,﹣1)C.(2,0)D.(4,3)4.(5分)若变量x,y满足约束条件A.7B.8,则z=2x+y的最大值等于()C.10D.115.(5分)下列函数为奇函数的是()A.2x﹣B.x3sinx C.2cosx+1D.x2+2x6.(5分)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为()A.50B.40C.25D.207.(5分)在△ABC中,角A、B、C所对应的边分别为a,b,c,则“a≤b”是“sinA ≤sinB”的()A.充分必要条件C.必要非充分条件8.(5分)若实数k满足0<k<5,则曲线A.实半轴长相等B.虚半轴长相等B.充分非必要条件D.非充分非必要条件﹣=1与﹣=1的()C.离心率相等D.焦距相等9.(5分)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4C.l1与l4既不垂直也不平行B.l1∥l4D.l1与l4的位置关系不确定10.(5分)对任意复数ω1,ω2,定义ω1*ω2=ω1对任意复数z1,z2,z3有如下命题:①(z1+z2)*z3=(z1*z3)+(z2*z3)②z1*(z2+z3)=(z1*z2)+(z1*z3)③(z1*z2)*z3=z1*(z2*z3);④z1*z2=z2*z1则真命题的个数是()A.1B.2C.3其中2,2是ω2的共轭复数,D.4二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(1113题)11.(5分)曲线y=﹣5e x+3在点(0,﹣2)处的切线方程为.12.(5分)从字母a,b,c,d,e中任取两个不同字母,则取到字母a的概率为.13.(5分)等比数列{an }的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5=.(二)(1415题,考生只能从中选做一题)【坐标系与参数方程选做题】14.(5分)在极坐标系中,曲线C1与C2的方程分别为2ρcos2θ=sinθ与ρcosθ=1,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1与C2交点的直角坐标为.【几何证明选讲选做题】15.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则=.四、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤)16.(12分)已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)﹣f(﹣θ)=,θ∈(0,),求f(﹣θ).17.(13分)某车间20名工人年龄数据如下表:年龄(岁)工人数(人)191283293305314323401合计20(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.18.(13分)如图1,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB=1,BC=PC=2作如图2折叠;折痕EF ∥DC ,其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 叠在线段AD 上的点记为M ,并且MF ⊥CF .(1)证明:CF ⊥平面MDF ;(2)求三棱锥M ﹣CDE 的体积.19.(14分)设各项均为正数的数列{a n }的前n 项和为S n 满足S n 2﹣(n 2+n ﹣3)S n ﹣3(n 2+n )=0,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有++…+<.20.(14分)已知椭圆C:为.+=1(a>b>0)的右焦点为(,0),离心率(1)求椭圆C的标准方程;(2)若动点P(x0,y)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.21.(14分)已知函数f(x)=x3+x2+ax+1(a∈R).(1)求函数f(x)的单调区间;(2)当a<0时,试讨论是否存在x0∈(0,)∪(,1),使得f(x)=f().2014年广东省高考数学试卷(文科)参考答案与试题解析一、选择题:(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合M={2,3,4},N={0,2,3,5},则M∩N=()A.{0,2}B.{2,3}C.{3,4}D.{3,5}【考点】1E:交集及其运算.【专题】5J:集合.【分析】根据集合的基本运算即可得到结论.【解答】解:∵M={2,3,4},N={0,2,3,5},∴M∩N={2,3},故选:B.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)已知复数z满足(3﹣4i)z=25,则z=()A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i【考点】A1:虚数单位i、复数.【专题】5N:数系的扩充和复数.【分析】由题意利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果.【解答】解:∵满足(3﹣4i)z=25,则z===3+4i,故选:D.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.3.(5分)已知向量=(1,2),=(3,1),则﹣=()A.(﹣2,1)B.(2,﹣1)C.(2,0)D.(4,3)【考点】99:向量的减法;9J:平面向量的坐标运算.【专题】5A:平面向量及应用.【分析】直接利用向量的减法的坐标运算求解即可.【解答】解:∵向量=(1,2),=(3,1),∴﹣=(2,﹣1)故选:B.【点评】本题考查向量的坐标运算,基本知识的考查.4.(5分)若变量x,y满足约束条件A.7,则z=2x+y的最大值等于()C.10D.11B.8【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用z的几何意义,进行平移即可得到结论.【解答】解:作出不等式组对应的平面区域如图:由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点B(4,2)时,直线y=﹣2x+z的截距最大,此时z最大,此时z=2×4+2=10,故选:C.【点评】本题主要考查线性规划的应用,利用z 的几何意义,利用数形结合是解决本题的关键.5.(5分)下列函数为奇函数的是()A .2x ﹣B .x 3sinxC .2cosx +1D .x 2+2x【考点】3K :函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数的奇偶性的定,对各个选项中的函数进行判断,从而得出结论.【解答】解:对于函数f (x )=2x ﹣故此函数为奇函数.对于函数f (x )=x 3sinx ,由于f (﹣x )=﹣x 3(﹣sinx )=x 3sinx=f (x ),故此函数为偶函数.对于函数f (x )=2cosx +1,由于f (﹣x )=2cos (﹣x )+1=2cosx +1=f (x ),故此函数为偶函数.对于函数f (x )=x 2+2x ,由于f (﹣x )=(﹣x )2+2﹣x =x 2+2﹣x ≠﹣f (x ),且f (﹣x )≠f (x ),故此函数为非奇非偶函数.故选:A .【点评】本题主要考查函数的奇偶性的判断方法,属于基础题.6.(5分)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为(),由于f (﹣x )=2x ﹣﹣=﹣2x =﹣f (x ),A .50B .40C .25D .20【考点】B4:系统抽样方法.【专题】5I :概率与统计.【分析】根据系统抽样的定义,即可得到结论.【解答】解:∵从1000名学生中抽取40个样本,∴样本数据间隔为1000÷40=25.故选:C .【点评】本题主要考查系统抽样的定义和应用,比较基础.7.(5分)在△ABC 中,角A 、B 、C 所对应的边分别为a ,b ,c ,则“a ≤b”是“sinA ≤sinB”的()A .充分必要条件C .必要非充分条件B .充分非必要条件D .非充分非必要条件【考点】HP :正弦定理.【专题】5L :简易逻辑.【分析】直接利用正弦定理以及已知条件判断即可.【解答】解:由正弦定理可知⇒=,∵△ABC 中,∠A ,∠B ,∠C 均小于180°,角A 、B 、C 所对应的边分别为a ,b ,c ,∴a ,b ,sinA ,sinB 都是正数,∴“a ≤b”⇔“sinA ≤sinB”.∴“a ≤b”是“sinA ≤sinB”的充分必要条件.故选:A .【点评】本题考查三角形中,角与边的关系正弦定理以及充要条件的应用,基本知识的考查.8.(5分)若实数k 满足0<k <5,则曲线A .实半轴长相等B .虚半轴长相等﹣=1与﹣=1的()C .离心率相等D .焦距相等【考点】KC :双曲线的性质.【专题】5D :圆锥曲线的定义、性质与方程.【分析】根据k 的取值范围,判断曲线为对应的双曲线,以及a ,b ,c 的大小关系即可得到结论.【解答】解:当0<k <5,则0<5﹣k <5,11<16﹣k <16,即曲线﹣=1表示焦点在x 轴上的双曲线,其中a 2=16,b 2=5﹣k ,c 2=21﹣k ,曲线﹣=1表示焦点在x 轴上的双曲线,其中a 2=16﹣k ,b 2=5,c 2=21﹣k ,即两个双曲线的焦距相等,故选:D .【点评】本题主要考查双曲线的方程和性质,根据不等式的范围判断a ,b ,c 是解决本题的关键.9.(5分)若空间中四条两两不同的直线l 1,l 2,l 3,l 4,满足l 1⊥l 2,l 2∥l 3,l 3⊥l 4,则下列结论一定正确的是()A .l 1⊥l 4C .l 1与l 4既不垂直也不平行B .l 1∥l 4D .l 1与l 4的位置关系不确定【考点】LO :空间中直线与直线之间的位置关系.【专题】5F :空间位置关系与距离.【分析】根据空间直线平行或垂直的性质即可得到结论.【解答】解:在正方体中,若AB 所在的直线为l 2,CD 所在的直线为l 3,AE 所在的直线为l 1,若GD 所在的直线为l 4,此时l 1∥l 4,若BD 所在的直线为l 4,此时l 1⊥l 4,故l 1与l 4的位置关系不确定,故选:D.【点评】本题主要考查空间直线平行或垂直的位置关系的判断,比较基础.10.(5分)对任意复数ω1,ω2,定义ω1*ω2=ω1对任意复数z 1,z 2,z 3有如下命题:①(z 1+z 2)*z 3=(z 1*z 3)+(z 2*z 3)②z 1*(z 2+z 3)=(z 1*z 2)+(z 1*z 3)③(z 1*z 2)*z 3=z 1*(z 2*z 3);④z 1*z 2=z 2*z 1则真命题的个数是()A.1其中2,2是ω2的共轭复数,B.2C.3D .4【考点】2K:命题的真假判断与应用;A5:复数的运算.【专题】5L:简易逻辑;5N :数系的扩充和复数.【分析】根据已知中ω1*ω2=ω12,其中2是ω2的共轭复数,结合复数的运算性质逐一判断四个结论的真假,可得答案.【解答】解:①(z 1+z 2)*z 3=(z 1+z 2)确;=(z 1+z 2=(z 1*z 3)+(z 2*z 3),正②z 1*(z 2+z 3)=z 1(③(z 1*z 2)*z 3=z 1成立,故错误;④z 1*z 2=z 1,z 2*z 1=z 2)=z 1(+)=z 1+z 1=(z 1*z 2)+(z 1*z 3),正确;)=z 1z 3,等式不,z 1*(z 2*z 3)=z 1*(z 2)=z 1(,等式不成立,故错误;综上所述,真命题的个数是2个,故选:B .【点评】本题以命题的真假判断为载体,考查了复数的运算性质,细心运算即可,属于基础题.二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(1113题)11.(5分)曲线y=﹣5e x +3在点(0,﹣2)处的切线方程为5x +y +2=0..【考点】6H :利用导数研究曲线上某点切线方程.【专题】53:导数的综合应用.【分析】利用导数的几何意义可得切线的斜率即可.【解答】解:y′=﹣5e x ,∴y′|x=0=﹣5.因此所求的切线方程为:y +2=﹣5x ,即5x +y +2=0.故答案为:5x +y +2=0.【点评】本题考查了导数的几何意义、曲线的切线方程,属于基础题.12.(5分)从字母a ,b ,c ,d ,e 中任取两个不同字母,则取到字母a 的概率为.【考点】C6:等可能事件和等可能事件的概率.【专题】5I :概率与统计.【分析】求得从字母a ,b ,c ,d ,e 中任取两个不同字母、取到字母a 的情况,利用古典概型概率公式求解即可.【解答】解:从字母a ,b ,c ,d ,e 中任取两个不同字母,共有取到字母a ,共有∴所求概率为故答案为:.【点评】本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A 包含的基本事件的个数和试验中基本事件的总数.13.(5分)等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=5.=10种情况,=4种情况,=.【考点】4H :对数的运算性质;87:等比数列的性质;89:等比数列的前n 项和.【专题】54:等差数列与等比数列.【分析】可先由等比数列的性质求出a 3=2,再根据性质化简log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=5log 2a 3,代入即可求出答案.【解答】解:log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2a 1a 2a 3a 4a 5=log 2a 35=5log 2a 3.又等比数列{a n }中,a 1a 5=4,即a 3=2.故5log 2a 3=5log 22=5.故选为:5.【点评】本题考查等比数列的性质,灵活运用性质变形求值是关键,本题是数列的基本题,较易.(二)(14-15题,考生只能从中选做一题)【坐标系与参数方程选做题】14.(5分)在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sinθ与ρcosθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为(1,2).【考点】Q8:点的极坐标和直角坐标的互化.【专题】5S:坐标系和参数方程.【分析】直接由x=ρcosθ,y=ρsinθ化极坐标方程为直角坐标方程,然后联立方程组求得答案.【解答】解:由2ρcos2θ=sinθ,得:2ρ2cos2θ=ρsinθ,即y=2x2.由ρcosθ=1,得x=1.联立,解得:.∴曲线C1与C2交点的直角坐标为(1,2).故答案为:(1,2).【点评】本题考查极坐标与直角坐标的互化,考查了方程组的解法,是基础题.【几何证明选讲选做题】15.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则=3.【考点】%H:三角形的面积公式.【专题】58:解三角形.【分析】证明△CDF∽△AEF,可求.【解答】解:∵四边形ABCD是平行四边形,EB=2AE,∴AB∥CD,CD=3AE,∴△CDF∽△AEF,∴==3.故答案为:3.【点评】本题考查三角形相似的判断,考查学生的计算能力,属于基础题.四、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤)16.(12分)已知函数f (x )=Asin (x +(1)求A 的值;(2)若f (θ)﹣f (﹣θ)=),x ∈R ,且f ()=.,θ∈(0,),求f (﹣θ).【考点】GP :两角和与差的三角函数.【专题】56:三角函数的求值;57:三角函数的图像与性质.【分析】(1)通过函数f (x )=Asin (x +A 的值;(2)利用函数的解析式,通过f (θ)﹣f (﹣θ)=利用两角差的正弦函数求f (﹣θ).),x ∈R ,且f (,)=,,θ∈(0,),求出cosθ,),x ∈R ,且f ()=,直接求【解答】解:(1)∵函数f (x )=Asin (x +∴f (∴)=Asin (.+)=Asin=(2)由(1)可知:函数f (x )=3sin (x +∴f (θ)﹣f (﹣θ)=3sin (θ+=3[(=3•2sinθcos ∴sinθ=∴cosθ=,,=3sinθ=,),))])﹣3sin (﹣θ+)﹣(∴f(﹣θ)=3sin()=3sin()=3cosθ=.【点评】本题考查两角和与差的三角函数,三角函数的解析式的求法,基本知识的考查.17.(13分)某车间20名工人年龄数据如下表:年龄(岁)19282930313240合计工人数(人)133543120(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.【考点】BA:茎叶图;BB:众数、中位数、平均数;BC:极差、方差与标准差.【专题】5I:概率与统计.【分析】(1)根据众数和极差的定义,即可得出;(2)根据画茎叶图的步骤,画图即可;(3)利用方差的计算公式,代入数据,计算即可.【解答】解:(1)这20名工人年龄的众数为30,极差为40﹣19=21;(2)茎叶图如下:(3)年龄的平均数为:这20名工人年龄的方差为S 2=2=30.[(19﹣30)2+3×(28﹣30)2+3×(29﹣30)+5×(30﹣30)2+4×(31﹣30)2+3×(32﹣30)2+(40﹣30)2]=12.6.【点评】本题考查了众数,极差,茎叶图,方差的基本定义,属于基础题.18.(13分)如图1,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB=1,BC=PC=2作如图2折叠;折痕EF ∥DC ,其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 叠在线段AD 上的点记为M ,并且MF ⊥CF .(1)证明:CF ⊥平面MDF ;(2)求三棱锥M ﹣CDE 的体积.【考点】LF :棱柱、棱锥、棱台的体积;LW :直线与平面垂直.【专题】5F :空间位置关系与距离;5G :空间角;5Q :立体几何.【分析】(1)要证CF ⊥平面MDF ,只需证CF ⊥MD ,且CF ⊥MF 即可;由PD ⊥平面ABCD ,得出平面PCD ⊥平面ABCD ,即证MD ⊥平面PCD ,得CF ⊥MD ;(2)求出△CDE 的面积S△CDE,对应三棱锥的高MD ,计算它的体积V M﹣CDE.【解答】解:(1)证明:∵PD ⊥平面ABCD ,PD ⊂平面PCD ,∴平面PCD ⊥平面ABCD ;又平面PCD ∩平面ABCD=CD ,MD ⊂平面ABCD ,MD ⊥CD ,∴MD ⊥平面PCD ,CF ⊂平面PCD ,∴CF ⊥MD ;又CF ⊥MF ,MD 、MF ⊂平面MDF ,MD ∩MF=M ,∴CF ⊥平面MDF ;(2)∵CF ⊥平面MDF ,∴CF ⊥DF ,又∵Rt △PCD 中,DC=1,PC=2,∴∠P=30°,∠PCD=60°,∴∠CDF=30°,CF=CD=;∵EF ∥DC ,∴∴DE==,即,;=,,∴PE=∴S△CDE=CD•DE=MD===×=,.∴V M﹣CDE =S△CDE•MD=×【点评】本题考查了空间中的垂直关系的应用问题,解题时应结合图形,明确线线垂直、线面垂直以及面面垂直的相互转化关系是什么,几何体的体积计算公式是什么,是中档题.19.(14分)设各项均为正数的数列{a n }的前n 项和为S n 满足S n 2﹣(n 2+n ﹣3)S n ﹣3(n 2+n )=0,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有++…+<.【考点】8H :数列递推式;8K :数列与不等式的综合.【专题】54:等差数列与等比数列;55:点列、递归数列与数学归纳法.【分析】(1)本题可以用n=1代入题中条件,利用S 1=a 1求出a 1的值;(2)利用a n 与S n 的关系,将条件转化为a n 的方程,从而求出a n ;(3)利用放缩法,将所求的每一个因式进行裂项求和,即可得到本题结论.【解答】解:(1)令n=1得:∴(S 1+3)(S 1﹣2)=0.∵S 1>0,∴S 1=2,即a 1=2.(2)由.∵a n >0(n ∈N *),∴S n >0.∴.,得:,即.∴当n ≥2时,又∵a 1=2=2×1,∴.==<=<;(3)由(2)可知n ∈N *,当n=1时,显然有当n ≥2时,<+,=(),=﹣<.所以,对一切正整数n ,有【点评】本题考查了数列的通项与前n 项和的关系、裂项求和法,还用到了放缩法,计算量较大,有一定的思维难度,属于难题.20.(14分)已知椭圆C :+=1(a >b >0)的右焦点为(,0),离心率为.(1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.【考点】J3:轨迹方程;K3:椭圆的标准方程.【专题】5D :圆锥曲线的定义、性质与方程.【分析】(1)根据焦点坐标和离心率求得a 和b ,则椭圆的方可得.(2)设出切线的方程,带入椭圆方程,整理后利用△=0,整理出关于k 的一元二次方程,利用韦达定理表示出k 1•k 2,进而取得x 0和y 0的关系式,即P 点的轨迹方程.【解答】解:(1)依题意知,求得a=3,b=2,∴椭圆的方程为+=1.(2)①当两条切线中有一条斜率不存在时,即A 、B 两点分别位于椭圆长轴与短轴的端点,P 的坐标为(±3,±2),符合题意,②当两条切线斜率均存在时,设过点P (x 0,y 0)的切线为y=k (x ﹣x 0)+y 0,+=+=1,4x 2+9[k 2x 2+﹣2kx 0x ++2ky 0x ﹣2ky 0x 0]=36整理得(9k 2+4)x 2+18k (y 0﹣kx 0)x +9[(y 0﹣kx 0)2﹣4]=0,∴△=[18k (y 0﹣kx 0)]2﹣4(9k 2+4)×9[(y 0﹣kx 0)2﹣4]=0,整理得(x 02﹣9)k 2﹣2x 0×y 0×k +(y 02﹣4)=0,∴﹣1=k 1•k 2=∴x 02+y 02=13.=﹣1,把点(±3,±2)代入亦成立,∴点P 的轨迹方程为:x 2+y 2=13.【点评】本题主要考查了椭圆的标准方程,轨迹方程的相关问题.对于求轨迹方程,最重要的是建立模型求得x 和y 关系.21.(14分)已知函数f (x )=x 3+x 2+ax +1(a ∈R ).(1)求函数f (x )的单调区间;(2)当a <0时,试讨论是否存在x 0∈(0,)∪(,1),使得f (x 0)=f ().【考点】6B :利用导数研究函数的单调性;6E :利用导数研究函数的最值.【专题】51:函数的性质及应用;53:导数的综合应用.【分析】对第(1)问,先求导,再通过一元二次方程的实根讨论单调性;对第(2)问,可将f (x 0)=f ()转化为f (x 0)﹣f ()=0,即将“函数问题”化为“方程是否有实根问题”处理.【解答】解:(1)由f (x )得f′(x )=x 2+2x +a ,令f′(x )=0,即x 2+2x +a=0,判别式△=4﹣4a ,①当△≤0即a ≥1时,f′(x )≥0,则f (x )在(﹣∞,+∞)上为增函数.②当△>0即a <1时,方程f′(x )=0的两根为当x ∈(﹣∞,﹣1﹣当当,即,)时,f′(x )>0,则f (x )为增函数;时,f′(x )<0,则f (x )为减函数;,+∞)时,f′(x )>0,则f (x )为增函数.综合①、②知,a ≥1时,f (x )的单调递增区间为(﹣∞,+∞),a <1时,f (x )的单调递增区间为(﹣∞,f (x )的单调递减区间为和.,+∞),(2)∵==21===∴若存在∪.,使得∪,即内必有实数解.,则关于x 的方程4x 2+14x +7+12a=0在∵a <0,∴△=142﹣16(7+12a )=4(21﹣48a )>0,方程4x 2+14x +7+12a=0的两根为∵x 0>0,∴依题意有即得∴当得当得,且,且∪成立;∪成立.∪{}时,不存在∪,使.时,存在唯一的∪,使,,且,,∴49<21﹣48a <121,且21﹣48a ≠81,,即,【点评】1.求含参数的函数的单调区间时,导函数的符号往往难以确定,如果受到参数的影响,应对参数进行讨论,讨论的标准要根据导函数解析式的特征而定.如本题中导函数为一元二次函数,就有必要考虑对应方程中的判别式△.2.对于存在性问题,一般先假设所判断的问题成立,再由假设去推导,若求得符合题意的结果,则存在;若得出矛盾,则不存在.22。

湛江市2014年普通高考模拟测试(二)数学(文科)

湛江市2014年普通高考模拟测试(二)数学(文科)
(称 为 B类 工人).现 用分层抽样的方法 (按
A类 、 B类 分二层
)
从该工厂的工人中共抽查 100名 工人 ,调 查他们的生产能力 (此 处的生产能力指一天加
(1)A类 工人和 B类 工人中各抽查多少工人?
(2)从 A类 工人 中的抽查结果和从 B类 工人中的抽查结果分别如下表 l和 表 2,
0
的取值范围是
A.(0,4]
⒊崂
c. (0,2)
⑼ 吒虍
若 /(艿 )=← -。 J← +z+J为 偶函数 ,则 实数 曰=_⊥____
邻边长分别等于线段 AC,CB的 长 ,则 该矩形面积 大于 8c叼 概率为 。 ・
(二 )选 做题 (10-15题 ,考 生只能从中选做一题 )
o:/,2+2`∞ s汐 -3=0的 圆心到直线
0的 距离是
.

C为 圆周上一点 ,BC=3,过 C作 圆 0的 切线
D= 直线 ′ 的距离 彳
【 湛江市 9014年 普通高考模拟测试题 (二 )
`,则
'到

数学 (文 科 )
2页

4页 :
解答题 :本 大题共 6小 题 ,共 BO分 。解答应写出文字说明、证明过程或演算步骤 。
(本 小题满分
〓一 ⒗
ˉ1+j对
9
D。 租 ,2)
2.在 复 平面 内 ,复 数
A。
应 的点位于
第 =象 限
男的 方 程 尸
B。
第 二象 限
C。
第三象 限
D。
第 四象 限
3.若 关 于
+Hjr+÷ =0有 两个不相等的实数根 ,则 实数 昭 的取值范围是

广东省湛江市高三数学测试试题(一)文(湛江一模)新人教A版

广东省湛江市高三数学测试试题(一)文(湛江一模)新人教A版

绝密★启用前 试卷类型:A湛江市2014年普通高考测试题(一)数学(文科)本试卷共4页,21小题,满分150分.考试用时120分钟 注意事项:1.答卷前,考生务必用黑色笔迹的钢笔或签字笔将自己的姓名和考生号填写在答题卡上。

用2B 铅笔将答题卡试卷类型(A )填涂在答题卡上。

在答题卡右上角“试室号”和“座位号”栏填写试室号、座位号,将相应的试室号、座位号信息点涂黑。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考试结束后,将试题与答题卡一并交回。

参考公式:锥体的体积公式:1=3V Sh ,其中S 是底面面积,h 是高。

n 个数据123,,,,n x x x x 的平均数是x ,这组数据的方差2s 由以下公式计算:222221231[()()()()].n s x x x x x x x x n=-+-+-++-一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数1i +的共轭复数是A .1i +B .1i -C .1i -+D . 1i -- 2.设函数()lg(1)f x x =-的定义域为A ,值域为B ,则AB =A .(0,)+∞B .(1,)+∞C .(0,1)D .(,1)-∞3.“3πα=”是“sin 2α=”的 A .充分必要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件4.通过某雷达测速点的机动车的时速频率分布直方图如图 所示,则通过该测速点的机动车的时速超过60的概率是 A .0.038 B .0.38 C .0.028 D .0.285.等差数列{}n a 中,2374,20a a a =+=,则8a =A .8B .12C .16D .246.运行如图的程序框图,若输出的结果是1320s =,则判断框中可填入A .10?k ≤B .10?k <C .9?k <D .8?k ≤ 7.如下图所示的几何体,其俯视图正确的是8.在△ABC 中,AB =5,AC =3,BC =7,则∠BAC = A .6π B . 3π C . 23π D . 56π9.若曲线4y x =的一条切线l 与直线430x y +-=垂直,则l 的方程为 A .430x y --= B . 450x y +-= C .430x y -+=D . 430x y ++=10.将一张画了直角坐标系(两坐标轴单位长度相同)的纸折叠一次,使点(2,0)与点(2,4)-重合,则与点(5,8)重合的点是A .(6,7)B .(7,6)C .(5,4)--D .(4,5)--二、填空题:本大题共5小题.考生作答4小题.每小题5分,满分20分. (一)必做题(11~13题)11.双曲线2214x y -=的焦点坐标是_____________ 。

Do_2014广东高考数学文科试卷含答案(WORD版)

Do_2014广东高考数学文科试卷含答案(WORD版)

20. 已知椭圆C的:一ax22个焦by22点为1(离a 心b率为0)
( 5, 0),
5.
3
21(.1已)求知椭函圆数C的f标(x准) 方1程x3 ;x2 ax 1(a R).
(2)若动点P为(椭x0,圆y0外)3 一点且C点到椭圆, 的两P条切线相C 互垂直求点的轨迹方, 程 P
.
(1)求函数f的(x单) 调区间 ;
2x
1 2x
B. x3 sin x
C. 2cosx 1
D. x2 2x
答案:A
提示设: 则f 的(x)定义2x域 为1 且, f (x) 2x
f (x)为奇函数,故选 A.
R,
f (x) 2x
1 2 x
1 2x
2x
f (x),
6. 为了解1名00学0生的学习情况采用,系统抽样的方法从中抽, 取容量为的样本40
(2)由S得n2 (n2 n 3)Sn 3(n2 n) 0, : (Sn 3) Sn (n2 n) 0,
an 0(n N ), Sn 0,从而Sn 3 0, Sn n2 n,
当n时 2 , an Sn Sn1 n2 n (n 1)2 (n 1) 2n,
20
故这名20工人年龄的方差为
:
1 20
(11)2
3
(2)2
3
(1)2
5
02
4
12
3
22
102
1 (12112 3 4 12 100) 20
1 252 20
12.6
18. 如图四2, 边形为A矩B形CD平面 , PD ABCD,
AB 1, BC PC 2.作如图折3 叠折: 痕 EF / /DC,
3

2014年普通高等学校招生全国统一考试(广东模拟卷)文科数学试题(一) 及答案

2014年普通高等学校招生全国统一考试(广东模拟卷)文科数学试题(一) 及答案

2014年普通高等学校招生全国统一考试(广东模拟卷)数学(文科)试题参考答案及评分标准本试卷共5页,21小题, 满分150分.考试用时120分钟 参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高.用最小二乘法求线性回归方程:()()()1122211.n ni i i ii i n n ii i i x x y y x y nx y b a y bx x x x nx ====---===---∑∑∑∑,一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【原创题】已知集合{}{}210,230A x x B y y y =->=+->,则A B =A .()1+∞,B .()(),31-∞-+∞, C. ()1-∞, D .()3-∞-,【命题意图:考查解简单不等式、集合运算等知识】2.【原创题】已知i 是虚数单位,则31i +=A .iB .i -C .1i +D .1i -【命题意图:考查复数的化简】3.【原创题】函数()()()()1,0,00,0x x f x x x π+>⎧⎪==⎨⎪<⎩,则(){}1f f f -=⎡⎤⎣⎦A .0B .πC .1π+D .1【命题意图:考查分段函数求值】4.【原创题】若()=1,3a ,()=2,x b ,且1a b = ,则x =A .0B .13C .1D .13-【命题意图:考查向量及向量的数量积运算】5.【原创题】直线0x y -=截圆222210x y x y +--+=所得弦长为A .2B .1 C.D【命题意图:考查直线与圆的综合应用】6.【原创题】如果执行图1的程序框图,那么输出的S 是A .6B .24C .120D .720【命题意图:考查程序框图】7.【原创题】已知某几何体的三视图如图2所示,则该几何体的表面积是A.9 B.172 C.112D.1【命题意图:考查空间几何体的三视图、求表面积等知识】8.【原创题】设标量x,y满足约束条件,1,2,y xy xx k≤⎧⎪⎪≥⎨⎪≤⎪⎩且目标函数2z x y=-的最大值为4,则k=A.4 B.43 C.2 D.83【命题意图:考查直线、线性规划求最优解等知识】9.【改编题】设ABC∆的内角A B C、、所对的边分别是a b c、、,若cos cos sina Bb Ac C+=,则ABC∆的形状为否A .直角三角形B .锐角三角形C .钝角三角形D .不确定【命题意图:考查正弦定理、三角函数的诱导公式等知识】10.【原创题】已知方程()log 0,0,1a x b a a -=>≠有且只有二个解,则A .=1bB .=0bC .1b >D .0b >【命题意图:考查函数思想与数形结合思想的应用】二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11~13题)11.【原创题】设32παπ⎛⎫∈ ⎪⎝⎭,,且3tan 4α=,则sin α= . 【命题意图:考查同角异名三角函数求值】12.【原创题】某产品的广告费用x (万元)与销售额y (万元)的统计数据表如下表:根据上表得回归直线方程=9.4y x a +,据此模型预报广告费用为6万元的销售额为:_________万元.【命题意图:考查回归直线系数的计算,并能对回归直线方程进行简单应用】13.【原创题】已知数列{}n a ,满足113,21n n a a a +==+,则9=a .【命题意图:考查递推数列】(二)选做题(14~15题,考生只能从中选做一题)14.【原创题】(坐标系与参数方程选做题)在极坐标系中,圆2cos 2sin ρθθ=-的圆心O 到 直线sin 4πρθ⎛⎫-= ⎪⎝⎭的距离为 . 【命题意图:考查极坐标系、直线、圆、点到直线的距离等知识】15.【原创题】(几何证明选讲选做题)如图3,AB 是圆O 的直径,AD DE =,10AB =,8BD =,则DC = .【命题意图:考查圆周角定理、相似三角形的性质等知识】三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.【原创题】(本小题满分12分)已知函数()cos2cos f x x x x =-⋅.(1)求()f x 最小正周期及最值;(2)若2παπ⎛⎫∈ ⎪⎝⎭,,且()2f α=,求()3f πα+的值. 【命题意图:考查三角函数的化简、三角函数的周期性与最值、同角三角函数的基本关系等知识,考查化归与转化的数学思想方法,以及运算求解能力】17.【原创题】(本小题满分12分)为了解某地区用电高峰期居民的用电量,抽取一个容量为200的样本,记录某天各户居民的用电量(单位:度),制成频率分布直方图,如图4.(1) 求样本数据落在区间[10,12]内的频数;(2) 若打算从[4,6)和[6,8)这两组中按分层抽样抽取4户居民作进一步了解,问各组分别抽取多少人?(3) 在(2)的基础上,为答谢上述4户居民的参与配合,从中再随机选取2户居民发放奖品,求这2户居民来不同组的概率是多少?【命题意图:考查统计、分层抽样、频率分布直方图、古典概型等基础知识,考查化归与转化的数学思想方法,以及数据处理能力与应用意识】18.【原创题】(本小题满分14分)如图5,在四棱锥P ABCDCD AB=,平面⊥,2-中,AB CD,AB AD⊥.E和F分别是CD和PC的中点.PAD⊥平面ABCD,PA AD(1)求证:PA⊥底面ABCD;(2)求证:BE平面PAD;(3)若2AB=,3PA=,1-的体积.AD=,求三棱锥B EFC【命题意图:考查空间线面关系、求几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力】19.【原创题】本小题满分14分)已知数列{}n a 的前n 项和2=n S n ,*n ∈N ,数列{}n b 满足:2n n n b a =⋅,且{}n b 的前n 项和记为n T .(1)求数列{}n a 与{}n b 的通项公式;(2)证明:对任意*n ∈N ,2n T ≥恒成立.【命题意图:考查等差数列、错位相减法求数列的前n 项和、不等式、恒成立等知识,考查化归与转化的数学思想方法,以及运算求解能力和创新意识】20.【改编题】(本小题满分14分)已知直线:1l x my =+过椭圆C :()222210x y a b a b+=>>的右焦点F ,抛物线2x =的焦点为椭圆C 的上顶点,且直线l 交椭圆C 于A 、B 两点.(1)求椭圆C 的方程;(2)若直线l 交y 轴与点M ,且1MA AF λ=,2MB BF λ=,当m 变化时,12λλ+是否为定值?若是,求出这个定值;若不是,请说明理由.【命题意图:考查直线、椭圆的方程、直线与圆锥曲线的位置关系等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力】21.【改编题】(本小题满分14分)已知函数()()3221132af x x a x ax =+--. (1)若曲线()y f x =在点()()11f ,处的切线方程为820x y +-=,求a 的值;(2)当0a ≠时,求函数()f x 的单调区间与极值;(3)若=1a 时,存在实数m ,使得方程()f x m =恰好有三个不同的解,求m 的取值范围.【命题意图:考查函数的导数、曲线的切线方程、函数的极值、函数的单调性、函数的图象等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力、抽象概括能力与创新意识】2014年普通高等学校招生全国统一考试(广东模拟卷)数学(文科)试题参考答案及评分标准说明:1.参考答案与评分标准只给出了一种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共10小题,每小题,满分50分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共5小题,每小题,满分20分.其中14~15题是选做题,考生只能选做一题.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分)(本小题主要考查三角函数的化简、三角函数的周期性与最值、同角三角函数的基本关系等知识,考查化归与转化的数学思想方法,以及运算求解能力)解:(1)1()cos2cos=2sin2cos2=2sin226f x x x x x x xπ⎛⎫⎛⎫=-⋅--⋅--⎪ ⎪⎪⎝⎭⎝⎭,…3分所以2=2T ππ=.…………………………………………………………………………………………4分()max 2f x =⎡⎤⎣⎦;()min 2f x =-⎡⎤⎣⎦.………………………………………………………………………6分(2)由(1)得,()2sin 2=26f παα⎛⎫=-- ⎪⎝⎭,得:sin 2=16πα⎛⎫-- ⎪⎝⎭,即32=2,62k k Z ππαπ-+∈.得:5=,6k k Z παπ+∈…………………8分 又因为2παπ<<,所以5=6πα.………………………………………………………………………10分577()()=()=2sin 2363666f f f ππππππα⎛⎫+=+-⋅- ⎪⎝⎭=132sin 6π⎛⎫-⎪⎝⎭=2sin 6π-=12=12-⋅-……………………………………………………………………………………12分17.(本小题满分)(本小题主要考查统计、分层抽样、频率分布直方图、古典概型等基础知识,考查化归与转化的数学思想方法,以及数据处理能力与应用意识)解:(1)数据落在区间[10,12]的频率为:()10.0220.0520.1520.192=0.18-⨯+⨯+⨯+⨯……2分数据落在区间[10,12]的频数为:2000.18=36⨯人. …………………………………………………4分(2)数据落在区间[4,6)的频数为:2000.052=20⨯⨯人;数据落在区间[6,8)的频数为:2000.152=60⨯⨯人.二组频数之比为1:3,……………………………………………………………………………………6分故:从用电量在区间[4,6)度中抽取的人数为:1⨯4=14人;………………………………………7分从用电量在区间[6,8)度中抽取的人数为:3⨯4=34人;……………………………………………8分(3)记“这2户居民来自不同组”为事件A,用电量在区间[6,8)度中的3人编号为:1、2、3用电量在区间[4,6)度中的1人编号为:a………………………………………………………9分则从4户居民中依次随机抽取2户的基本事件有:()1,a,1,3,()1,2,()()2,a,2,3,()()3,a共6种. ………………………………………………………………………………………10分事件B包含的基本事件有:()3,a,共3 1,a,()2,a,()种. ………………………………………………………………11分则31()62P B ==.所以从4户居民中随机抽取2户,抽到的2户居民来自不同组的概率为12.………………12分18.(本小题满分)(本小题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力)(1)证明:PAD ABCD ⊥面面,且=PAD ABCD AD 面面 又PA AD ⊥PA ABCD ∴⊥面………………………………………………………………………………………4分(2)证明:由已知得:AB DE ,ABCD ∴四边形为平行四边形.………………………………6分BEAD ∴,又AD PAD ⊂面,BE PAD ⊄面BEPAD ∴面……………………………………………………………………………………………8分(3)解:B EFC F BEC V V --=,且点F 到平面ABCD 的距离等于PA 的一半. ………………………10分1131=13322B EFC F BEC BEC V V S h --=⨯=⨯⨯=.故几何体ABFED的体积为12.………………………………………………………………………14分19.(本小题满分)(本小题主要考查等差数列、错位相减法求数列的前n 项和、不等式、恒成立等知识,考查化归与转化的数学思想方法,以及运算求解能力和创新意识)解:(1)当1n =时,111a S ==;…………………………………………………………………2分 当2n ≥时,()221121n n n a S S n n n -=-=--=- (4)分21n a n ∴=-,*n N ∈ ………………………………………………………………………………6分()212nn b n ∴=-⋅,*n N ∈…………………………………………………………………………8分(2)123n n T b b b b =++++即()123123252212n n T n =⋅+⋅+⋅+⋅⋅⋅+-⋅------------○1○1⨯2:2()2341123252212n n T n +=⋅+⋅+⋅+⋅⋅⋅+-⋅ -----------------○2 ○1-○2:()12312222222212n n n T n +-=+⋅+⋅+⋅⋅⋅+⋅-- ()()123122222212n n n +=+++⋅⋅⋅+-- ()()114122221212n n n -+-=+---()6426n n =--……………………………………………………………………………12分()4626n n T n ∴=-+n T 随着n 的增大而增大,12n T T ∴≥=, 2n T ∴≥,对任意n N *∈恒成立. …………………………………………………………………………14分20.(本小题满分)(本小题主要考查直线、椭圆的方程、直线与圆锥曲线的位置关系等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力)(1)解:因直线:1l x my =+过椭圆()222210x y C a b a b+=>>:的右焦点F ,令0y =得1x =,所以()1,0F ,即1c =,又抛物线的焦点坐标为()0,3,,所以b =………………………………………1分由222a b c =+得:24a =,…………………………………………………………………………………2分 所以椭圆C的方程为:22143x y += ………………………………………………………………………4分(2)证明:由题意知0m ≠,且直线l 交y 轴于点10M m ⎛⎫- ⎪⎝⎭,,………………………………………5分设直线l 交椭圆于点()11,A x y ,()22,B x y .联立方程221143x my x y =+⎧⎪⎨+=⎪⎩,消去x 得()2234690my my ++-=.所以()()()222=6363414410m m m ++=+>,由根与系数的关系知:122634my y m +=-+,122934y y m ⋅=-+.………………………………………………………………9分又由1MA AF λ=得()111111,1,x y x y m λ⎛⎫+=-- ⎪⎝⎭,所以111=1my λ--, 同理,221=1my λ--,所以1212111=2m y y λλ⎛⎫+--+ ⎪⎝⎭…………………………………………11分因为1222121211692===34343y y m my y y y m m +⎛⎫+-⋅- ⎪⋅++⎝⎭,…………………………………………12分所以1212111=2m y y λλ⎛⎫+--+ ⎪⎝⎭=12128=233m m λλ+--=-. 即当m变化时,12λλ+为定值83-.…………………………………………………………………14分21.(本小题满分)(本小题主要考查函数的导数、曲线的切线方程、函数的极值、函数的单调性、函数的图象等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力、抽象概括能力与创新意识)解:(1)因为()()221f x ax a x a '=+-- 由题意可得()()211=8f a a a '=+---,2=9a ,解得=3a ±.………………………………………2分当=3a 时,()3243f x x x x =--,()16f =-,()2383f x x x '=+--,()18f '=-, 故曲线()y f x =在点()()1,1f 处的切线方程为()681y x +=--.即820x y +-=;当=3a -时,()3243f x x x x =--+,()12f =-,切点为()1,2-,曲线()y f x =在点()()1,1f 处的切线方程为()281y x +=--.即860x y +-=不合题意舍去.综上,=3a .……………………………………………………………………………………………………4分 (2)()()221f x ax a x a '=+--=()()1x a ax -+=()1a x a x a ⎛⎫-+ ⎪⎝⎭.……………………………5分 分二种情况讨论:当0a >时,令()0f x '=,解得11x a=-,2x a =.当x 变化时,()f x '、()f x 的变化情况如下表:所以()f x 在区间1,a ⎛⎫-∞- ⎪⎝⎭,(),a +∞内为增函数,在区间1,a a ⎛⎫- ⎪⎝⎭内为减函数. ……………6分函数()f x 在2x a =处取得极小值()f a ,且()f a =()3224211113262a a a a a a a a ⨯+--⨯=--,函数()f x 在11x a=-出取得极大值1f a ⎛⎫- ⎪⎝⎭,且()3221111=1132a f a a a a ⎛⎫⎛⎫-⨯-+-⨯+ ⎪ ⎪⎝⎭⎝⎭21162a =+.………………………………………………………………………………………………………7分当0a <时,令()0f x '=,解得1x a =,21x a=-,当x 变化时,()f x '、()f x 的变化情况如下表:所以()f x 在区间(),a -∞,1,a ⎛⎫-+∞ ⎪⎝⎭内为减函数,在区间1a a ⎛⎫- ⎪⎝⎭,内为增函数. ………………8分函数()f x 在1x a =处取得极小值()f a ,且()f a =()3224211113262a a a a a a a a ⨯+--⨯=--,函数()f x 在21x a=-处取得极大值1f a ⎛⎫- ⎪⎝⎭,且()32211111=132a f a a a a a a ⎛⎫⎛⎫⎛⎫-⨯-+-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭21162a =+.…………………………………………………………………………………………………10分(3)当=1a 时,()313f x x x =-,()2=1f x x '-,由(2)知()313f x x x =-在区间()1-∞-,,()1+∞,内为增函数,在区间()11-,内为减函数. ………………………………………………………11分 函数()f x 在21x =处取得极小值()1f ,且()1121=623f --=-,…………………………………12分函数()f x 在11x =-处取得极大值()1f -,且()1121=623f --=,…………………………………13分 如图,分别作出()313f x x x =-与直线x m =的图象,从图象上可以看出当2233x -<<时,两个函数的图象有三个不同的交点,即方程()f x m =有三个不同的解.故m 的取值范围是2233⎛⎫- ⎪⎝⎭,.……………………………………………………………………………14分。

2014年广东省高考文科数学模拟试卷及参考答案

2014年广东省高考文科数学模拟试卷及参考答案

2014年普通高等学校招生全国统一模拟考试(广东卷)数 学(文科)一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数()i i 1i a b +=-(其中,a b ∈R ,i 是虚数单位),则a b +的值为 A .2- B .1- C .0 D .22.集合M ={}R y x x x y x ∈++-=,,762,N ={}R y x x x y y ∈++-=,,762,则集合M N ⋂= A .∅ B .[-1,4] C .[-1,7] D .[0,4] 3.右茎叶图是第十五届全国青年歌手电视大奖赛决赛上十五位评委给某民族唱法选手的所有打分,按照比赛规则,去掉一个最高分和一个最低分,该选手的最终得分是A .88B .89C .90D .91 4.偶函数)(x f y =当),0( ∞+∈x 时,1)(-=x x f ,则0)1(<-x f 的解集是 A .[-1,1] B .[0,1] C .[0,2] D .∅ 5.已知某几何体的三视图如右,根据图中标出的尺寸 (单位:cm ),可得这个几何体的体积是A .343cm B .383cm C .32cm D .34cm6.已知a ,b 是实数,则“a +b >0且ab >0”是“a >0且b >0”的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件7.实数y x ,满足不等式组20206318x y x y x y -≥⎧⎪+-≥⎨⎪+≤⎩,且()0z ax y a =+>取得最小值的最优解有无穷多个, 则实数a的取值范围是A .2B . 1C . 45-D . 无法确定 8.设f’(x )是函数f (x )的导函数,y = f’(x )的图象如图3所示,则y = f (x )的图象最有可能的是9.设S n 是等比数列{a n }前n 项的乘积,若a 9=1,则下面的等式中正确的是 A .S 1=S 19 B .S 3=S 17 C .S 5=S 12 D .S 8=S 1110.某中学要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于..6.时再增选一名代表. 那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数[]y x =([x ]表示不大于x 的最大整数)可以表示为7 9 08 9 8 4 99 5 4 5 2 0 4 3 1 2xyo1 2()y f x =xyo12()y f x =xyo 12()y f x =xyo 1 2()y f x =xy o'()y f x = 2 正视图俯视图22侧视图211 2 图2A B C D 图3图1A .3[]10x y +=B .4[]10x y +=C .5[]10x y += D .[]10xy =二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.图4所示的程序框图的输出结果为 .12.若m 是2和8的等比中项,则圆锥曲线221y x m+=的离心率为 . 13.请判断以下给出的所有命题:①使“1lg <m ”成立的一个充分不必要条件.......是),0(+∞∈m ; ②给出一组向量12(5,7),(1,2)==-e e ,它们可以作为表示它们所在平面内所有向量的基底;③函数x y 2sin =的图象向左平移3π个单位后,得到函数)32sin(π+=x y 图象;④若,,m m l l αβ⊥⊂P 且,m β⊄则αβ⊥;⑤函数(2)f x -的定义域是[1,3],则函数(21)f x +的定义域是[0,1]. 其中属于假命题...的有 .(二)选做题(14~15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,直线l 过点(1,0)且与直线3πθ=(ρ∈R )垂直,则直线l 极坐标方程为 .15.(几何证明选讲选做题)如图5,△ABC 的外角平分线AD 交外接圆于D ,4BD =, 则CD = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)在ABC ∆中,内角,,A B C 所对边长分别为,,a b c ,4cos 5B =. (1)求cos()AC +的值;(2)求sin 6B π⎛⎫+ ⎪⎝⎭的值; (3)若20BA BC =u u u r u u u rg ,求ABC ∆的面积.图4图517.(本小题满分12分)某完全中学高中部共有学生2000名,各年级男、女生人数如下表:高一年级 高二年级高三年级女生 373 x y 男生377370z已知在全校高中学生中随机抽取1名,抽到高二年级女生的概率是0.19. (1) 求x 的值;(2) 现用分层抽样的方法在全校抽取48名学生,求在高三年级抽取的人数; (3) 已知y ≥245,z ≥245,求高三年级中女生比男生多的概率.18.(本小题满分14分)如图6所示,圆柱的高为2,P A 是圆柱的母线, 四边形ABCD 为矩形, AB =2,BC =4,E ,F ,G 分别是线段P A ,PD ,CD 的中点. (1)求证:PB //面EFG ;(2)求证:平面PDC ⊥平面P AD ;(3)在线段BC 上是否存在一点M ,使得D 到平面P AM 的距离为2?若存在,求出BM ;若不存在,请说明理由.19.(本小题满分14分) 已知二次函数 )(x f 的最小值为-4,且关于x 的不等式0)(≤x f 的解集为{}R x x x ∈≤≤- ,31|. (1)求函数)(x f 的解析式; (2)求函数x xx f x g ln 4)()(-=的零点个数.图620.(本小题满分14分)已知数列{}n a 满足*111,21().n n a a a n N +==+∈(1)求数列{}n a 的通项公式; (2)若数列{}n b 滿足12111*444(1)()n n b b b b na n N ---=+∈L (1)11*444(1)()nnb b b b n a n N ---=+∈,证明:数列{}n b 是等差数列; (3)证明:*122311...()232n n a a a n nn N a a a +-<+++<∈.21.(本小题满分14分)已知抛物线21:8C y x =与双曲线22222:1(0,0)x y C a b a b-=>>有公共焦点2F ,点A 是曲线12,C C 在第一象限的交点,且25AF =.(1)求双曲线2C 的方程;(2)以双曲线2C 的另一焦点1F 为圆心的圆M与直线y =相切,圆N :22(2)1x y -+=.过点P 作互相垂直且分别与圆M 、圆N 相交的直线1l 和2l ,设1l 被圆M 截得的弦长为s ,2l 被圆N 截得的弦长为t .st是否为定值?请说明理由.2014年普通高等学校招生全国统一模拟考试(广东卷)数学(文科)试题A 参考答案及评分标准题号 1 2 3 4 5 6 7 8 9 10 答案DDCCBABDCA二、填空题:11.1006201312.3或5 13.①③⑤ (第12和13题漏填不得分)14.2sin()16πρθ+=(或2cos()13πρθ-=,cos 3sin 1ρθρθ+=) 15. 4三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(本小题主要考查三角函数性质、三角函数基本关系、两角和的正弦、向量运算和三角形面积公式等知识,考查化归与转化的数学思想方法以及运算求解能力)解:(1)在ABC ∆中,∵A B C π++=,∴A C B π+=- ………………1分 ∵4cos 5B =,∴4cos()cos()cos 5A CB B π+=-=-=- ………………3分 (2) 在ABC ∆中,∵4cos 5B =,∴2243sin 1cos 155B B ⎛⎫=-=-= ⎪⎝⎭………………5分 ∴sin sin cos sin cos 666B B B πππ⎛⎫+=+ ⎪⎝⎭3314334522510+=⨯+⨯= ………………8分 (3) ∵20BA BC =u u u r u u u r g ,即cos 20BA BC B =u u u r u u u r, ………………9分∴4205c a ⋅⨯=,即25ac = ………………10分 ∴ABC ∆的面积11315sin 252252ABC S ac B ∆==⨯⨯= ………………12分 17. (本小题满分12分)(本小题主要考查概率与统计的概念,考查运算求解能力等.) 解(1)∵0.192000x= ∴ 380x = ………………3分 (2)高三年级人数为y +z =2000-(373+377+380+370)=500, …………………5分现用分层抽样的方法在全校抽取48名学生,应在高三年级抽取的人数为:48500122000⨯= 名; ………………7分 (3)设高三年级女生比男生多的事件为A ,高三年级女生男生数记为(y ,z ); 由(2)知 500y z += ,且 ,y z N ∈,基本事件空间包含的基本事件有:(245,255),(246,254),(247,253),(248,252),(249,251),(250,250),(251,249), (252,248),(253,247),(254,246),(255,245)共11个; …………………9分事件A 包含的基本事件有:(251,249)、(252,248)、(253,247)、(254,246)、(255,245) 共5个,∴ 5()11P A =. ………………12分18. (本小题满分14分)(本小题主要考查几何体体积,空间线线、线面关系等知识,考查化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.) (1)证明:取AB 中点H ,连结GH ,HE ,数学(文科)参考答案及评分标准A 第1页(共4页)∵E ,F ,G 分别是线段PA 、PD 、CD 的中点, ∴GH//AD//EF ,∴E ,F ,G ,H 四点共面。

广东省湛江一中高三数学第一次综合检测试题 文 新人教A版

广东省湛江一中高三数学第一次综合检测试题 文 新人教A版

湛江一中2014届高三第一次综合检测数学文试题第Ⅰ卷(选择题 共50分)注意事项:1.答题前,考生务必用黑色笔将自己的姓名、班级、学号、清楚填写在答题卷的密封线内,座位号填写在试卷右上角的座位号栏内。

2.每小题选出答案后,填写在试卷的答题栏内,在试题上作答无效。

一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数()1()z a a ia R =++∈是纯虚数,则2z 的值为( )A .0B .1-C .iD . i -2.命题“x R ∃∈,2210x x -+<”的否定是 ( ) A .x R ∃∈,2210x x -+≥ B .x R ∃∈,2210x x -+> C .x R ∀∈,2210x x -+≥D .x R ∀∈,2210x x -+<3.若()()1,2,3,,,a b m a b ==-⊥r r r r,则=m ( )A .32 B .32- C .6 D .6- 4.已知R θ∈,则“3πθ=”是“1cos 2θ=”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既非充分也非必要条件5.设,x y 满足24,1,22,x y x y x y +≥⎧⎪-≥⎨⎪-≤⎩则z x y =+( )A .有最小值2,最大值3B .有最小值2,无最大值C .有最大值3,无最小值D .既无最小值,也无最大值 6.记等差数列{}n a 的前n 项和为n S ,已知728S =,836S =,则15S =( )A .210B .120C .64D .567.如下图,某几何体的主视图与左视图都是边长为1的正方形,且其体积为4π. 则该几何体的俯视图可以是( )第7题图8.已知函数sin()y A x m ωϕ=++的最大值是4,最小值是0,最小正周期是2π,直线3x π=是其图象的一条对称轴,则下面各式中符合条件的解析式是( )A.4sin(4)6y x π=+ B.2sin(2)23y x π=++ C.2sin(4)23y x π=++ D.2sin(4)26y x π=++ 9.若n m ,是两条不同的直线,γβα,,是三个不同的平面,给出下列命题: ①若n m n m ⊥⊥则,//,αα; ②若βαγβγα//,,则⊥⊥; ③若n m n m //,//,//则αα; ④若//,//,m αββγα⊥,则m γ⊥ 其中正确命题的个数为( )A .1B .2C .3D .410.⎪⎩⎪⎨⎧>+-≤<=10,621100|,lg |)(x x x x x f 已知函数 , 若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A.(1,10)B.(5,6)C.(10,12)D.(20, 24)第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,只做4小题。

广东省湛江一中2014届高三数学临门一脚文科试题新人教A版

广东省湛江一中2014届高三数学临门一脚文科试题新人教A版

湛江一中2014届高三5月高考模拟试题(文科数学)参考公式:圆柱侧面积公式 2S rl π=侧,其中r 底面半径,l 为圆柱的母线.第一部分选择题(共50分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.复数z 满足i i i z +=-2)((i 为虚数单位),则 z =( )A .i --1B .i -1C .i 31+-D .i 21-2.已知全集{}6,54321,,,,=I ,集合{}543,,=M ,{}4,321,,=N ,则右图中阴影部分表示的集合为 ( )A .{}21, B .{}6,21, C .{}543,21,,, D .{}643,21,,, 3.命题“R x ∈∃0,使得01020<++x x ”的否定是( ) A .“R x ∈∃0使得01020≥++x x ” B .“R x ∈∃0使得01020>++x x ” C .“R x ∈∀,使得012≥++x x ” D .“R x ∈∀,使得12++x x >0” 4.设公比12q =的等比数列}{n a 的前n 项和为n S ,则43S a = ( ) A .152 B .154C .72 D .745.某一个班全体学生参加历史测试,成绩的频 率分布直方图如图,则该班的平均分估计是 ( ) A .70 B .75C .66D .68 6.将函数x y 2sin =的图象向右平移4π个单位,再向上 平移1个单位,所得函数图象对应的解析式为( ) A.1)42sin(+-=πx y B.x y 2cos 2=C.x y 2sin 2= D.x y 2cos -=7.一个算法的程序框图如图所示,若该程序输出的结果为65,则判断框中应填入的条件是( )A .5<i ?B .6<i ?C .5≥i ?D .6≥i ?8.一个几何体的三视图如图所示,则这个几何体的体积为( ) A .648π+ B .16083π+ C .6416π+ 开始是否1+=i i 0=S S输出)1(1++=i i S S 1=i 结束(第7题图)20 10080 60 40 0.02 0.0050.0150.01 成绩/分频率组距CBA75°45°D .160163π+9.函数22()22x xx xf x --+=-的图像大致为 ( )10.已知函数()f x 的定义域为()0,+∞,若()f x y x=在()0,+∞上为增函数,则称()f x 为“一阶比增函数”;若()2f x y x=在()0,+∞上为增函数,则称()f x 为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为1Ω,所有“二阶比增函数”组成的集合记为2Ω.若函数()322f x x hx hx =--,且()1f x ∈Ω,()2f x ∉Ω,则实数h 的取值范围是( ) A.[)0,+∞ B.()0,+∞ C.(],0-∞D.(),0-∞第二部分非选择题(共100分)二、填空题:(本大题共5小题.考生作答4小题.每小题5分,满分20分). (一)必做题(11~13题)11. 已知向量(1,3)=a ,(,21)m m =-b .若向量a 与b 共线,则实数m =_________ 12.抛物线22x y =上的点M 到其焦点F 的距离52MF =,则点M 的坐标是________ 13.一艘船以均匀的速度由A 点向正北方向航行,如图,开始航行时,从A 点观测灯塔C 的方位角(从正北方向顺时针转到目标方向的水平角)为45°,行驶60海里后,船在B 点观测灯塔C 的方位角为75°,则A 到C 的距离是________海里. (二)选做题(14、15题,考生只能从中选做一题)xD AB C 俯视图侧视图ODCBAP14. (坐标系与参数方程选做题)曲线C 极坐标方程为06sin 4cos 42=+--θρθρρ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,直线l 参数方程为⎩⎨⎧+=--=ty t x 2322(t 为参数),则曲线C 上的点到直线l 距离最小值为 .15.(几何证明选讲选做题)如图,AB 是半径为3的⊙O 的直径,CD 是 弦,BA ,CD 的延长线交于点P ,4,5PA PD ==,则=∠CBD . 三、解答题(本大题共6小题,满分80分。

广东省湛江市高三数学测试试题(二)文(湛江二模)新人教A版

广东省湛江市高三数学测试试题(二)文(湛江二模)新人教A版

广东省湛江市2014届高三高考模拟测试(二)数学(文科)本试卷共4页,21小题,满分150分.考试用时120分钟。

注意事项: 1.答卷前,考生务必用黑色笔迹的钢笔或签字笔将自己的姓名和考生号填写在答题卡上。

用2B 铅笔将答题卡试卷类型(A )填涂在答题卡上。

在答题卡右上角“试室号”和“座位号”栏填写试室号、座位号,将相应的试室号、座位号信息点涂黑。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考试结束后,将试题与答题卡一并交回。

一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}1,0,1A =-,{}1,2B =,则A B =A .{}1,0,1- B .{}0,1 C .{}1 D . {}1,22.在复平面内,复数1ii -+对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 3.若关于x 的方程2104x mx ++=有两个不相等的实数根,则实数m 的取值范围是A .()1,1- B .()(),11,-∞-+∞ C .()(),22,-∞-+∞ D .()2,2-4.一个几何体的正视图、侧视图、和俯视图形状都相同,大小均相等,则这个几何体不可以是A .球B .三棱锥C .正方体D .圆柱 5.已知向量()1,2a =,(),1b x =,且a b ⊥,则x 等于A .2-B .12C .2D .12-6.等比数列{}n a 中,21a =,864a =,则5a =A .8B .12C .88-或D .1212-或7.已知 1.10.8512log 2,2,()2a b c -===,则a 、b 、c 的大小关系是A .c b a <<B .a c b <<C .a b c <<D .b c a << 8.下列命题正确的是A .若两条直线和同一个平面所成的角相等,则这两条直线平行B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行9.已知双曲线()222210,0x y a b a b -=>>的离心率为2,一个焦点与抛物线216y x =的焦点相同,则双曲线的渐近线方程为 A.y = B .y = C.y x= D .32y x =± 10.已知实数x 、y 满足不等式组0022x y x y ≥⎧⎪≥⎨⎪+≤⎩,且()1,0,0ax by a b +≤>>恒成立,则a b +的取值范围是A .(]0,4B .3(0,]2 C .(0,2)D .3[,)2+∞二、填空题:本大题共5小题.考生作答4小题.每小题5分,满分20分.(一)必做题(11~13题)11.若()()(4)f x x a x =-+为偶函数,则实数a =_______. 12.阅读如图所示的程序框图,若输入5i =,则输出的 k 值为______________.13.在长为6cm 的线段AB 上任取一点C ,现作一矩形, 邻边长分别等于线段AC ,CB 的长,则该矩形面积 大于82cm 的概率为_____________.(二)选做题(14~15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)极坐标系中,圆O :22cos 30ρρθ+-=的圆心到直线 cos sin 70ρθρθ+-=的距离是_______________. 15.(几何证明选讲选做题)如图所示,圆O 的直径6AB =,C为圆周上一点,3BC=,过C作圆O的切线l,则点A到直线l的距离AD=___________.三、解答题:本大题共6小题,满分80分.解答应写出文字说明、证明过程和演算步骤.16.(本小题满分12分)设函数()2cos(sin cos) f x x x x=-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湛江市2014年普通高考测试题(一)数学(文科)本试卷共4页,21小题,满分150分.考试用时120分钟 注意事项:1.答卷前,考生务必用黑色笔迹的钢笔或签字笔将自己的姓名和考生号填写在答题卡上。

用2B 铅笔 将答题卡试卷类型(A )填涂在答题卡上。

在答题卡右上角“试室号”和“座位号”栏填写试室号、 座位号,将相应的试室号、座位号信息点涂黑。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考试结束后,将试题与答题卡一并交回。

参考公式:锥体的体积公式:1=3V Sh ,其中S 是底面面积,h 是高。

n 个数据123,,,,n x x x x 的平均数是x ,这组数据的方差2s 由以下公式计算:222221231[()()()()].n s x x x x x x x x n=-+-+-++-一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数1i +的共轭复数是A .1i +B .1i -C .1i -+D . 1i -- 2.设函数()lg(1)f x x =-的定义域为A ,值域为B ,则AB =A .(0,)+∞B .(1,)+∞C .(0,1)D .(,1)-∞3.“3πα=”是“sin α=”的 A .充分必要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件4.通过某雷达测速点的机动车的时速频率分布直方图如图所示,则通过该测速点的机动车的时速超过60的概率是 A .0.038 B .0.38 C .0.028 D .0.285.等差数列{}n a 中,2374,20a a a =+=,则8a =A .8B .12C .16D .246.运行如图的程序框图,若输出的结果是1320s =,则判断框中可填入A .10?k ≤B .10?k <C .9?k <D .8?k ≤ 7.如下图所示的几何体,其俯视图正确的是8.在△ABC 中,AB =5,AC =3,BC =7,则∠BAC = A .6π B . 3π C . 23π D . 56π9.若曲线4y x =的一条切线l 与直线430x y +-=垂直,则l 的方程为A .430x y --=B . 450x y +-=C .430x y -+=D . 430x y ++= 10.将一张画了直角坐标系(两坐标轴单位长度相同)的纸折叠一次,使点(2,0)与点(2,4)-重合, 则与点(5,8)重合的点是 A .(6,7)B .(7,6)C .(5,4)--D .(4,5)--二、填空题:本大题共5小题.考生作答4小题.每小题5分,满分20分. (一)必做题(11~13题)11.双曲线2214x y -=的焦点坐标是_____________ 。

12.不等式122x>的解集是 . 13.若关于x y、的不等式组5002x y y a x -+≥⎧⎪≥⎨⎪≤≤⎩表示的平面区域是一个三角形,则a 的取值范围是.(二)选做题(14—15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)已知曲线C的参数方程是x y αα⎧=⎪⎨=⎪⎩.(α为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为cos ρθ=,则在曲线C 上到直线l点有_____________个。

15.(几何证明选讲选做题)如图,⊙O 的直径AB =4,C 为圆周上一点,AC =3,CD 是⊙O 的切 线,BD ⊥CD 于D ,则CD = .三、解答题:本大题共6小题,满分80分.解答应写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()sin(),(0,0,(0,))2f x A x A πωϕωϕ=+>>∈.的部分图象如图所示,其中点P 是图象的一个最高点。

(1) 求函数()f x 的解析式; (2) 已知(,)2παπ∈且5sin 13α=,求()2f α. 17.(本小题满分12分)汽车是碳排放量比较大的行业之一,某地规定,从2014年开始,将对二氧化碳排放量超过130g/km 的轻型汽车进行惩罚性征税。

检测单位对甲、乙两品牌轻型汽车各抽取5辆进行二氧化碳排放量检测,记录如下(单位:g/km )。

经测算得乙品牌轻型汽车二氧化碳排放量的平均值为120/x g km =乙。

(1) 从被检测的5辆甲品牌轻型汽车中任取2辆,则至少有一辆二氧化碳排放量超过130/g km 的概率是多少?(2) 求表中x 的值,并比较甲、乙两品牌轻型汽车二氧化碳排放量的稳定性。

18.(本小题满分14分)如图,在三棱锥P ABC -中,△P AB 和△C AB 都是以AB 为斜边的等腰直角三角形,D 、E 、F 分别是PC 、AC 、BC 的中点。

. (1) 证明:平面DEF //平面PAB ; (2) 证明:AB ⊥PC ;(3) 若2AB PC =P ABC -的体积. 19.(本小题满分14分)在正项等比数列{}n a 中,公比(0,1)q ∈,355a a +=且3a 和5a 的等比中项是2. (1) 求数列{}n a 的通项公式; (2) 若212221(log log log )n n b a a a n=+++,判断数列{}n b 的前n 项和n S 是否存在最大值,若存在,求出使n S 最大时n 的值;若不存在,请说明理由。

20.(本小题满分14分)已知顶点为原点O 的抛物线1C 的焦点F 与椭圆22222:1(0)x y C a b a b+=>>的右焦点重合1C 与2C 在第一和第四象限的交点分别为A 、B .(1) 若△AOB 是边长为1C 的方程; (2)若AF OF ⊥,求椭圆2C 的离心率e ;(3) 点P 为椭圆2C 上的任一点,若直线AP 、BP 分别与x 轴交于点(,0)M m 和(,0)N n ,证明:2mn a =.21.(本小题满分14分)已知21()ln(1),()(,)2f x xg x ax bx a b R =+=+∈. (1) 若2()(1)()b h x f x g x ==--且存在单调递减区间,求实数a 的取值范围; (2) 若0,1a b ==,求证:当(1,)x ∈-+∞时,()()0f x g x -≤恒成立; (3) 利用(2)的结论证明:若0,0x y >>,则ln ln ()ln2x yx x y y x y ++>+。

湛江市2014年普通高考测试题(一)数学(文科)参考答案及评分意见一、选择题(本大题共10小题,每小题5分,共50分)1.B2.D3.B4.B5.C6.B7.C8.C9.A 10.A 二、填空题(本大题共4小题,每小题5分,共20分)11.(, 12.{|1}x x >- 13.[5,7)三、解答题(本大题共6小题,共80分)16. (本小题满分12分)解:(1)由函数最大值为2 ,得A =2 。

……………………………………………………….1分 由图可得周期4[()]126T πππ=--= ,……………………………………………………….2分 由2ππω=,得2ω= 。

……………………………………………………….3分又2,122k k Z ππωϕπ⋅+=+∈,及(0,)2πϕ∈,…………………………………………….4分 得3πϕ=。

……………………………………………………….5分()2sin(2)3f x x π∴=+ 。

……………………………………………………….6分(2)51221313παπαα∈=-由(,),且sin =,得cos ,…………………….8分 ()2sin(2)2(sin cos cos sin )22333f ααπππαα∴=⋅+=+,………………………………….10分513-=. ……………………………………………………….12分 17. (本小题满分12分)解:(1)从被检测的5辆甲品牌的轻型汽车中任取2辆,共有10种不同的二氧化碳排放量结果: (80,110),(80,120),(80,140),(80,150),(110,120),(110,140),(110,150), (120,140),(120,150),(140,150)。

…………………………………………………. 2分 设“至少有一辆二氧化碳排放量超过130g/km ”为事件A ,则事件A 包含以下7种不同的结果: (80,140),(80,150),(110,140),(110,150),(120,140),(120,150),(140,150) ∴ 7()0.710P A ==。

答:至少有一辆二氧化碳排放量超过130g/km 的概率为0.7。

………………………………. 6分 (2)由题可知,4801201205xx +=∴=乙,, 解得 120x = 。

……………………………….7分 又120x =甲, …………………………………………………. 8分∴ 22222216005s ⎡⎤=++++=⎣⎦甲(80-120)(110-120)(120-120)(140-120)(150-120),∴ 22222214805s ⎡⎤=++++=⎣⎦乙(100-120)(120-120)(120-120)(100-120)(160-120),…………………………………………………11分∵ 22120x x s s ==>甲乙乙甲,,∴ 乙品牌轻型汽车二氧化碳排放量的稳定性好。

………………………………………12分 18.(本小题满分14分)(1)证明:∵ E 、F 分别是AC 、BC 的中点,∴ //.EF AB …………………………………………………1分 ∵ ,,AB PAB EF PAB ⊂⊄平面平面∴ //,//.EF PAB DF PAB 平面同理平面……………………………………………2分 ∵ ,,EFDF F EF DEF DF DEF =⊂⊂且平面平面 ………………………3分∴ //.DEF PAB 平面平面 ……………………………………………4分 (2)证明:取AB 的中点G ,连结PG 、CG ,∵ △PAB 和△CAB 都是以AB 为斜边的等腰直角三角形,∴ ,,PG AB CG AB ⊥⊥ ∵ ,,,PGCG G PG PCG CG PCG =⊂⊂且平面平面∴ .AB PCG ⊥平面……………………………………6分 ∵ ,PC PCG ⊂平面∴ .AB PC ⊥ …………………………8分(3)解:在等腰直角三角形PAB 中,AB ,G 是斜边AB 的中点,∴ 1,2PG AB ==同理2CG =。

相关文档
最新文档