2014年联赛A一试试题答案
2014年全国高中数学联赛A卷真题word版
一试一、填空题1. 若正数b a ,满足()b a b a +=+=+632log log 3log 2,则b a 11+的值为________.2. 设集合⎭⎬⎫⎩⎨⎧≤≤≤+213b a b a 中的最大元素与最小元素分别为m M ,,则m M -的值为__________.3. 若函数()12-+=x a x x f 在[)+∞,0上单调递增,则实数a 的取值范围是__________.4. 数列{}n a 满足21=a ,()()*+∈++=N n a n n a n n 1221,则=+++2013212014a a a a Λ . 5. 正四棱锥ABCD P -中,侧面是边长为1的正三角形,N M ,分别是边BC AB ,的中点,则异面直线MN 与PC 之间的距离是__________.6. 设椭圆Γ的两个焦点是21,F F ,过点1F 的直线与Γ交于点Q P ,.若212F F PF =,且1143QF PF =,则椭圆Γ的短轴与长轴的比值为__________.7. 设等边三角形ABC 的内切圆半径为2,圆心为I .若点P 满足1=PI ,则APB ∆与APC ∆的面积之比的最大值为__________.8. 设D C B A ,,,是空间四个不共面的点,以21的概率在每对边之间连一条边,任意两对点之间是否连边是相互独立的,则B A ,可用(一条边或者若干条边组成的)空间折线连接的概率为__________.二、解答题9. 平面直角坐标系xOy 中,P 是不在x 轴上的一个动点,满足条件:过P 可作抛物线x y 42=的两条切线,两切点连线P l 与PO 垂直.设直线P l 与直线PO ,x 轴的交点分别为R Q ,.(1)证明R 是一个定点; (2)求QR PQ 的最小值. 10. 数列{}n a 满足61π=a ,()n n a a sec arctan 1=+()*∈N n .求正整数m ,使得1001sin sin sin 21=⋅⋅⋅m a a a Λ. 11. 确定所有的复数α,使得对任意复数21,z z ()2121,1,z z z z ≠<,均有 ()()222121z z z z αααα++≠++.二试一、设实数c b a ,,满足1=++c b a ,0>abc .求证:412+<++abc ca bc ab .二、如图,在锐角ABC ∆中,︒≠∠60BAC ,过点B 、C 分别作ABC ∆的外接圆⊙O 的切线BD 、EC ,且满足BC CE BD ==.直线DE 与AB 、AC 的延长线分别交于点F 、G .设CF 与BD 交于点M ,CE 与BG 交于点N .求证:AN AM =.三、设{}100,,3,2,1Λ=S .求最大的整数k ,使得S 有k 个互不相同的非空子集,具有性质:对这k 个子集中任意两个不同子集,若它们的交非空,则它们交集中的最小元素与这两个子集中的最大元素均不相同.四、设整数201421,,,x x x Λ模2014互不同余,整数201421,,,y y y Λ模2014也互不同余. 证明:可将201421,,,y y y Λ重新排列为201421,,,z z z Λ,使得201420142211,,,z x z x z x +++Λ模4028互不同余.。
2014年全国高中数学联赛江苏赛区复赛参考答案与评分标准(加试)
取正整数 k1 满足 1- 1k1>cos nt,由(1)可知存在正整数 n,使得 cos n>1- 1k1>22001145. 这与使 cosn>22001145成立的正整数 n 的个数是 t 矛盾.
所以存在无穷多个正整数 n,使得 cosn>22001145.
………………………50 分
2014 年全国高中数学联赛江苏赛区复赛试4 卷(加试)参考答案 第 4 页 共 4 页
从而 n<36,又因为 n 为偶数,所以 n≤34.
……………… 40 分
(3)证明 n=34 能取到.
不妨设凸 34 边形内角中只有两个值 x 和 x-20°,它们相间出现,各为一半,
有 17(2x-20°)=32×180°,x=301570°<180°.x-20°>0,
知存在满足条件的凸 34 边形.
({x}=x-[x],[x]表示不大于 x 的最大整数). 将区间[0,1)分成 M 个小区间:[0,M1 ),[M1 ,M2 ),…,[MM-1,1), 由抽屉原理可知,一定存在 1≤i<j≤M+1,使得{iα},{jα}在同一个小区间,
因此,|{jα}-{iα}|<M1 ,从而|nα-([jα]-[iα])|<M1 ,
而当 n 为偶数时,且 x1,x2,…,xn 中一半取 2,一半取 8 时,等号成立. 故当且仅当 n 为偶数,且 x1,x2,…,xn 中一半取 2,一半取 8 时等号成立.
…………………………… 40 分
2014 年全国高中数学联赛江苏赛区复赛试2 卷(加试)参考答案 第 2 页 共 4 页
Printed with FinePrint trial version - purchase at
⎩⎨⎧ 由①②知,必须有
2014年全国高中数学联赛江苏赛区初赛参考答案与评分细则(定稿)
2014年全国高中数学联赛江苏赛区初赛参考答案与评分细则一、填空题(本题满分70分,每小题7分)1.若x ≥2,则函数f (x )=x +1x +1的最小值是 .答案:73.2.已知函数f (x )=e x .若f (a +b )=2,则f (3a )·f (3b )的值是 . 答案:8.3.已知数列{a n }是各项均不为0的等差数列,公差为d ,S n 为其前n 项和,且满足a n 2=S 2n -1,n ∈N *,则数列{a n }的通项a n = . 答案:2n -1.4.若函数f (x )=⎩⎨⎧2x 2-3x , x ≥0,-2x 2+ax ,x <0是奇函数,则实数a 的值是_________. 答案:-3. 5.已知函数f (x )=|lg|x -103||.若关于x 的方程f 2(x )-5f (x )-6=0的实根之和为m ,则f (m )的值是 . 答案:1.6.设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β等于 . 答案:2525.说明:若学生得出255或2525,255,本题得4分.7.四面体ABCD 中,AB =3,CD =5,异面直线AB 和CD 之间的距离为4,夹角为60°,则四面体ABCD 的体积为 . 答案:53.8.若满足∠ABC =π3,AC =3,BC =m 的△ABC 恰有一解,则实数m 的取值范围是 .答案:(0,3]∪{23}.9.设集合S ={1,2,…,8},A ,B 是S 的两个非空子集,且A 中最大的数小于B 中的最小数,则这样的集合对(A ,B )的个数是 . 答案:769.10.如果正整数m 可以表示为x 2-4y 2 (x ,y ∈Z ),那么称m 为“好数”.问1,2,3,…,2014中“好数”的个数为 . 答案:881.二、解答题(本题满分80分,每小题20分)11.已知a ,b ,c 为正实数,a x =b y =c z ,1x +1y +1z=0,求abc 的值.证明:设a x =b y =c z =p >0,则a =1xp ,b =1yp ,c =1zp .…………………… 10分所以abc =1xp·1yp·1zp =111x y zp++. …………………… 15分因为1x +1y +1z=0,所以abc =0p =1. …………………… 20分12.已知F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左右焦点,点B 的坐标为(0,b ),直线F 1B 与双曲线C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交于点M .若MF 2=12F 1F 2,求双曲线C 的离心率.解:设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的半焦距长为c ,则点F 1,F 2的坐标分别(-c ,0),(c ,0).从而直线F 1B 的方程为x -c +y b=1,双曲线C :x 2a 2-y 2b 2=1的渐近线方程为x 2a 2-y 2b 2=0.联立⎩⎨⎧x -c +yb =1,x 2a 2-y2b 2=0,消去y 得,b 2x 2-2a 2cx -a 2c 2=0.由韦达定理得:线段PQ 中点的坐标(a 2c b 2,c 2b ). ………………………… 10分因此PQ 中垂线的方程是:y -c 2b =-c b (x -a 2cb2).在上式中,令y =0,得M (c +a 2cb 2,0). ………………………… 15分另一方面,由MF 2=12F 1F 2,则M (2c ,0),或M (0,0)(舍去),由此可得,c +a 2cb2=2c ,即a =b ,故e =2. ………………………… 20分13.如图,已知△ABC 是锐角三角形,以AB 为直径的圆交边AC 于点D ,交边AB 上的高CH于点E .以AC 为直径的半圆交BD 的延长线于点G .求证:AG =AE .证明:连结BE ,CG . 因为AB 为直径,所以∠AEB =90°,BG ⊥AC . 又EH ⊥AB ,在△AEB 中,由射影定理得 AE 2=AH ·AB . 因为AC 为直径,所以∠AGC =90°.在△AGC 中,由射影定理得AG 2=AD ·AC . …………10分因为∠BDC =∠BHC =90°, 所以B ,C ,D ,H 四点共圆,从而由割线定理知AH ·AB =AD ·AC . …………………… 15分 所以AE 2=AG 2,即AE =AG . …………………… 20分14.(1)正六边形被3条互不交叉(端点可以重合)的对角线分割成4个三角形.将每个三角形区域涂上红、蓝两种颜色之一,使得有公共边的三角形涂的颜色不同.怎样分割并涂色可以使红色三角形个数与蓝色三角形个数的差最大?(2) 凸2016边形被2013条互不交叉(端点可以重合)的对角线分割成2014个三角形.将每个三角形区域涂上红、蓝两种颜色之一,使得有公共边的三角形涂的颜色不同.在上述分割并涂色的所有情形中,红色三角形个数与蓝色三角形个数之差的最大值是多少?证明你的结论.ABCDEFABCDGE HABCDGEH解:(1)3条对角线分得4个三角形,相邻的两个涂色相异,则既有红 色三角形,又有蓝色三角形.不妨设红色三角形多于蓝色三角形.则蓝色三角形至少有1个,红色三角形最多3个,红色三角形个数与蓝色三角形个数之差不超过3-1=2.如图连接AC ,CE ,EA ,△ACE 涂蓝色,其余3个三角形涂红色,差为2. 故红色三角形个数与蓝色三角形个数之差的最大值为2. …………………… 5分 (2)2013条互不交叉(端点可以重合)的对角线分割成2014个三角形.每个三角形区域涂红、蓝两种颜色之一,使得有公共边的三角形涂的颜色不同.设红色三角形多于蓝色三角形.每个蓝色三角形三条边中至少有一条对角线,即三条边中对角线的条数只能为1、2或3.每条对角线只属于一个蓝色三角形.设边中恰含k (k =1,2,3)条对角线的蓝色三角形的个数为m k ,则对角线条数m 1+2m 2+3m 3=2013, 蓝色三角形个数m 1+m 2+m 3=3m 1+3m 2+3m 33≥m 1+2m 2+3m 33= 20133 =671,红色三角形个数≤2013-671=1343,红色三角形个数与蓝色三角形个数之差≤1343-671=672. ……………………10分 注意到凸6边形中红色三角形个数与蓝色三角形个数之差的最大值为2,此时6边形的边均为红色; 假定凸3k 边形中,红色三角形个数与蓝色三角形个 数之差的最大值为k 且凸3k 边形的边均为红色.则凸3(k +1)边形A 1A 2A 3…A 3k A 3k +1A 3k +2A 3k +3中的凸3k 边形A 1A 2A 3…A 3k 按假定涂色,红色三角形个数与蓝色三角形个数之差最大值为k 且边A 1A 3k 为红色.如图,则△A 1A 3k A 3k +2区域涂蓝色,△A 3k A 3k +1A 3k +2区域涂红色,△A 1A 3k +2A 3k +3区域涂红色,凸3(k +1)边形中红色三角形个数与蓝色三角形个数之差的值为k +2-1= k +1.即按上述方法涂色,凸2016边形中红色三角形个数与蓝色三角形个数之差为20163 = 672.所以凸2016边形中红色三角形个数与蓝色三角形个数之差的最大值为672.……………………20分ABCDEFA 1A 3k +1A 3kA 3k +2A 3k +3。
2014年高中数学联赛试题及其解答
加试
一、(本题满分 40 分)设实数a、b、c满足a + b + c = 1,abc>0,求证:ab + bc + ca< √ + 。
证明方法一:因为abc>0,故a、b、c全为正数,或一正两负。 (Ⅰ)若a、b、c中一正两负,不妨设a>0,b、c<0,则ab + bc + ca = a(b + c) + bc = a(b + c) + bc = [1 − (b + c)](b + c) + bc = (b + c) − b − − <0< √ + 。
解答:我们考虑存在复数z 、z ,|z |、|z |<1,z ≠ z ,使得(z + α) + αz =
(z + α) + αz 的充要条件。此时
(z + α) + αz = (z + α) + αz
⇔ α(z − z ) = (z − z )(z + z + 2α)
⇔ α[(z − z ) + 2(z − z )] = (z − z )(z + z )
3、若函数f(x) = x + a|x − 1|在[0, + ∞)上单调递增,则实数a的取值范围是
。
x − ax + a,x ∈ 0,1
解答:根据条件知f(x) =
。f(x)在 0,1 单调递增的充要
x + ax − a,x ∈ 1, + ∞
条件为 ≤ 0 ⇔ a ≤ 0;f(x)在 1, + ∞ 单调递增的充要条件为− ≤ 1 ⇔ a ≥ −2。故实数
2014年全国初中数学联赛试题及答案
2014年全国初中数学联合竞赛试题参考答案第一试一、选择题:1.已知x ,y 为整数,且满足(1x +1y ) (1x 2+1y 2)=-23(1x 4-1y 4),则x +y 的可能的值有( )A. 1个B. 2个C. 3个D. 4个2.已知非负实数x ,y ,z 满足x +y +z =1,则t =2xy +yz +2xz 的最大值为( ) A .47 B .59 C .916 D .12253.在△ABC 中,AB =AC ,D 为BC 的中点,BE ⊥AC 于E ,交AD 于P ,已知BP =3,PE =1,则AE =( )A .62B .2C .3D .6 4.6张不同的卡片上分别写有数字2,2,4,4,6,6,从中取出3张,则这3张卡片上所写的数字可以作为三角形的三边长的概率是( )A .12B .25C .23D .345.设[t ]表示不超过实数t 的最大整数,令{t }=t -[t ].已知实数x 满足x 3+1x 3=18,则{x }+{1x}=( ) A .12 B .3-5 C .12(3-5) D .1 6.在△ABC 中,∠C =90°,∠A =60°,AC =1,D 在BC 上,E 在AB 上,使得△ADE 为等腰直角三角形, ∠ADE =90° ,则BE 的长为( )A .4-23B .2-3C .12(3-1)D .3-1 二、填空题:1.已知实数a ,b ,c 满足a +b +c =1, 1 a +b -c + 1 a +c -b + 1 b +c -a=1,则abc =__2.使得不等式917<n n +k <815对唯一的整数k 成立的最大正整数n 为________. 3.已知P 为等腰△ABC 内一点,AB =BC ,∠BPC =108°,D 为AC 的中点,BD 与PC 交于点E ,如果点P 为△ABE 的内心,则∠PAC =________.4.已知正整数a ,b ,c 满足: 1<a <b <c ,a +b +c =111,b 2=ac ,则b =________.第一试 参考答案一、选择题1.C2.A3.B4.B5.D6.A二、填空题F CA B D E1. 02. 1443. 48°4. 36第二试 (A )一、 设实数,a b 满足22(1)(2)40a b b b a +++=,(1)8a b b ++=,求2211a b+的值. 二、如图,在□ABCD 中, D 为对角线BD 上一点,且满足∠ECD =∠ACB , AC 的延长线与△ABD 的外接圆交于点F .证明:∠DFE =∠AFB三、设n 是整数,如果存在整数x ,y ,z 满足n =x 3+y 3+z 3-3xyz ,则称n 具有性质P .在1,5,2013,2014这四个数中,哪些数具有性质P ,哪些数不具有性质P ?并说明理由.第二试 (A )答案一、解 由已知条件可得222()40a b a b ++=,()8ab a b ++=.设a b x +=,ab y =,则有2240x y +=,8x y +=,联立解得(,)(2,6)x y =或(,)(6,2)x y =.若(,)(2,6)x y =,即2a b +=,6ab =,则,a b 是一元二次方程2260t t -+=的两根,但这个方程的判别式2(2)24200∆=--=-<,没有实数根;若(,)(6,2)x y =,即6a b +=,2ab =,则,a b 是一元二次方程2620t t -+=的两根,这个方程的判别式2(6)8280∆=--=>,它有实数根.所以2222222222211()262282a b a b ab a b a b a b ++--⨯+====. 二、证明 由ABCD 是平行四边形及已知条件知ECD ACB DAF ∠=∠=∠.又A 、B 、F 、 D 四点共圆,所以BDC ABD AFD ∠=∠=∠,所以△ECD ∽△DAF ,所以ED CD AB DF AF AF==.又EDF BDF BAF ∠=∠=∠,所以△EDF ∽△BAF ,故 DFE AFB ∠=∠.三、解 取1x =,0y z ==,可得33311003100=++-⨯⨯⨯,所以1具有性质P . 取2x y ==,1z =,可得33352213221=++-⨯⨯⨯,所以5具有性质P .为了一般地判断哪些数具有性质P ,记333(,,)3f x y z x y z xyz =++-,则=3()3()()x y z x y z xy yz zx ++-++++2221()[()()()]2x y z x y y z z x =++-+-+-. 即(,,)f x y z 2221()[()()()]2x y z x y y z z x =++-+-+- ①不妨设x y z ≥≥,如果1,0,1x y y z x z -=-=-=,即1,x z y z =+=,则有(,,)31f x y z z =+;如果0,1,1x y y z x z -=-=-=,即1x y z ==+,则有(,,)32f x y z z =+;如果1,1,2x y y z x z -=-=-=,即2,1x z y z =+=+,则有(,,)9(1)f x y z z =+;由此可知,形如31k +或32k +或9k (k 为整数)的数都具有性质P .因此,1,5和2014都具有性质P .若2013具有性质P ,则存在整数,,x y z 使得32013()3()()x y z x y z xy yz zx =++-++++.注意到3|2013,从而可得33|()x y z ++,故3|()x y z ++,于是有39|()3()()x y z x y z xy yz zx ++-++++,即9|2013,但2013=9×223+6,矛盾,所以2013不具有性质P .第二试 (B )试题及答案一.同(A )卷第一题.二.如图,已知O 为△ABC 的外心,AB AC =,D 为△OBC 的外接圆上一点,过点A 作直线OD 的垂线,垂足为H .若7BD =,3DC =,求AH .解 延长BD 交⊙O 于点N ,延长OD 交⊙O 于点E ,由题意得NDE ODB OCB OBC CDE ∠=∠=∠=∠=∠,所以DE 为BDC ∠的平分线.又点D 在⊙O 的半径OE 上,点C 、N 在⊙O 上,所以点C 、N 关于直线OE 对称,DN DC =.延长AH 交⊙O 于点M ,因为O 为圆心,AM OD ⊥,所以点A 、M 关于直线OD 对称,AH MH =.因此MN AC AB ==.又FNM FAB ∠=∠,FBA FMN ∠=∠,所以△ABF ≌△NMF ,所以MF BF =,FN AF =. 因此,AM AF FM FN BF BN BD DN BD DC =+=+==+=+ 7310=+=,即210AH =,所以5AH =.三.设n 是整数,如果存在整数x ,y ,z 满足n =x 3+y 3+z 3-3xyz ,则称n 具有性质P ..(1)试判断1,2,3是否具有性质P ;(2)在1,2,3,…,2013,2014这2014个连续整数中,不具有性质P 的数有多少个?解 取1x =,0y z ==,可得33311003100=++-⨯⨯⨯,所以1具有性质P ; 取1x y ==,0z =,可得33321103110=++-⨯⨯⨯,所以2具有性质P ;若3具有性质P ,则存在整数,,x y z 使得33()3()()x y z x y z xy yz zx =++-++++, 从而可得33|()x y z ++,故3|()x y z ++,于是有39|()3()()x y z x y z xy yz zx ++-++++,即9|3,这是不可能的,所以3不具有性质P .(2)记333(,,)3f x y z x y z xyz =++-,则=3()3()()x y z x y z xy yz zx ++-++++2221()[()()()]2x y z x y y z z x =++-+-+-. 即(,,)f x y z 2221()[()()()]2x y z x y y z z x =++-+-+- ①不妨设x y z ≥≥,如果1,0,1x y y z x z -=-=-=,即1,x z y z =+=,则有(,,)31f x y z z =+;如果0,1,1x y y z x z -=-=-=,即1x y z ==+,则有(,,)32f x y z z =+;如果1,1,2x y y z x z -=-=-=,即2,1x z y z =+=+,则有(,,)9(1)f x y z z =+;由此可知,形如31k +或32k +或9k (k 为整数)的数都具有性质P .又若33|(,,)()3()()f x y z x y z x y z xy yz zx =++-++++,则33|()x y z ++,从而3|()x y z ++,进而可知3f x y z x y z x y z xy yz zx=++-++++.9|(,,)()3()()综合可知:当且仅当93=+(k为整数)时,整数n不具有性质P.n kn k=+或96又2014=9×223+7,所以,在1,2,3,…,2013,2014这2014个连续整数中,不具有性质P的数共有224×2=448个.2020-2-8。
2014年全国高中数学联赛试题及解答
全国高中数学联合竞赛试题(A 卷)一试一、填空题(本大题共8小题,每小题8分,共64分)1. 若正数,a b 满足()2362log 3log log a b a b +=+=+,则11a b+的值为________.答案:设连等式值为k ,则232,3,6k k ka b a b --==+=,可得答案108分析:对数式恒等变形问题,集训队讲义专门训练并重点强调过2. 设集合3|12b a b a ⎧⎫+≤≤≤⎨⎬⎩⎭中的最大元素与最小你别为,M m ,则M m -的值为______.答案:33251b a +≤+=,33b a a a+≥+≥,均能取到,故答案为5-分析:简单最值问题,与均值、对勾函数、放缩有关,集训队讲义上有类似题 3. 若函数()21f x x a x =+-在[0,)+∞上单调递增,则实数a 的取值范围是______.答案:零点分类讨论去绝对值,答案[]2,0-分析:含绝对值的函数单调性问题,集训队讲义专门训练并重点强调过4. 数列{}n a 满足12a =,()()*1221n n n a a n N n ++=∈+,则2014122013a a a a =+++______. 答案:()1221n n n aa n ++=+,迭乘得()121n n a n -=+,()212232421n n S n -=+⨯+⨯+++,乘以公比错位相减,得2n n S n =,故答案为20152013.分析:迭乘法求通项,等差等比乘积求前n 项和,集训队讲义专门训练并重点强调过5. 正四棱锥P ABCD -中,侧面是边长为1的正三角形,,M N 分别是边,AB BC 的中点,则异面直线MN与PC 之间的距离是________.答案:OB 为公垂线方向向量,故距离为12OB =分析:异面直线距离,也可以用向量法做,集训队讲义专门练并重点强调过6. 设椭圆Γ的两个焦点是12,F F ,过点1F 的直线与Γ交于点,P Q .若212PF F F =,且1134PF QF =,则椭圆Γ的短轴与长轴的比值为________.答案:不妨设焦点在x 轴(画图方便),设114,3PF QF ==,焦距为2c ,224a c =+,可得△2PQF 三边长为7,21,2c c +,过2F 作高,利用勾股可得5c =. 分析:椭圆中常规计算,与勾股定理、解三角形、斯特瓦尔特等有关,集训队讲义训练过相关7. 设等边三角形ABC 的内切圆半径为2,圆心为I .若点P 满足1PI =,则△APB 与△APC 的面积之比的最大值为________.答案:sin sin APB APC S PABS PAC ∠=∠,又两角和为60最大,即AP 与(),1I 切于对称轴右侧8. 设,,,A B C D 是空间中四个不共面的点,以12的概率在每对点之间连一条边,任意两点之间是否连边是相互独立的,则,A B 之间可以用空间折线(一条边或者若干条边组成)连结的概率为_______. 答案:总连法64种,按由A 到B 最短路线的长度分类.长度为1,即AB 连其余随意,32种; 长度为2,即AB 不连,ACB 或ADB 连,其余随意,ACB 连8种,故共88214+-=种 (一定注意,ACB ADB 同时连被算了2次,根据CD 是否连有2种情形);长度为3,两种情形考虑ACDB ,ACDB 连、,,AB CB AD 均不连只有1种,故连法为2种;综上,答案483644=分析:组合计数,分类枚举,难度不大但容易算错,集训队讲义训练过类似题目二、解答题(本大题共3小题,共56分)9. (本题满分16分)平面直角坐标系xOy 中,P 是不在x 轴上的一个动点,满足条件:过P 可作抛物线24y x =的两条切线,两切点连线P l 与PO 垂直.设直线P l 与直线PO ,x 轴的交点分别为,Q R . (1)证明:R 是一个定点;(2)求PQQR的最小值.答案:(1)设(),P a b ,()()1122,,,A x y B x y ,0,0a b ≠≠,()11:2PA yy x x =+,()22:2PB yy x x =+ 故,A B 两点均适合方程()2by a x =+,利用垂直,可得2a =-,故交点为定点()2,0(2)∵2a =-,故,2PO PR b bk k =-=-,设OPR α∠=,则α为锐角,1tan PQ QR α=,利用两角差 的正切公式,可得282PQ b QR b+=≥. 分析:涉及圆锥曲线切点弦方程、两直线夹角公式、不等式求最值,集训队讲义专门训练并重点过10. (本题满分20分)数列{}n a 满足16a π=,()()*1arctan sec n n a a n N +=∈.求正整数m ,使得121sin sin sin 100m a a a ⋅⋅⋅=. 答案:由反函数值域,知,22n a ππ⎛⎫∈- ⎪⎝⎭,2222132tan sec tan 1tan 3n n n n a a a +-==+==,1212112122311tan tan tan tan tan tan tan sin sin sin sec sec sec tan tan tan tan m m m m m m a a a a a a a a a a a a a a a a a ++⋅⋅⋅=⋅=⋅==故3333m =分析:涉及简单反三角函数、数列通项公式求法,集训队讲义对类似题目进行过训练11. (本题满分20分)确定所有的复数α,使得对任意复数()121212,,1,z z z z z z <≠,均有()()221122z z z z αααα++≠++.答案:转换命题为计算存在12,z z 使得相等时的充要条件存在12,z z 使得相等,记()()2f z z z αα=++,()()()()()1212121220f z f z z z z z z z αα-=++-+-=, 则()()()1212122z z z z z z αα-=-++-,故12122222z z z z a ααα=++≥-->-, 故2α<; 若2α<,令12,22z i z i ααββ=-+=--,其中012αβ<<-,则12z z ≠,122i ααββ-±≤-+<,计算121212,2,2z z z z i z z i αββ+=--=-=-并代入,知()()12f z f z =.综上,满足条件的α为,2Z αα∈≥二试一、(本题满分40分)设实数,,a b c满足1a b c++=,0abc>.求证:14ab bc ca++<.a b c≥≥>,则1a≥1c≤.)ab bc ca c++-+⎭12c-,故有()()111122c c cc cc c⎛---≤-+-⎭⎝⎭由于1110,3333c-≥+≥>310c->,故原不等式成立.方法2:不妨设0a b c≥≥>,则13a≥c,设()()1f b ab bc ca ab c c=++=+-,()f b递增f⇔,()())()1f b ab a b a b⎛'=--=-⎝,()010f b'≥⇔≥⇔≤≥故()f b a;题目转化为21ac+=,a c≥,记()()222212g a a ac a a a=+-=+--()()262621g a a a⎫'=-+=-⎪⎭,由于13a≥1=,得1532a=,115,332a⎛⎫∈ ⎪⎝⎭时g'151,322⎫⎪⎝⎭时()g a在13或12max1124g g⎛⎫==⎪⎝⎭分析:一道偏函数化的不等式题,可以将其放缩为一元函数,也可以拿导数与调整法很快做出来,集训队讲义上两种方法都训练过.二、(本题满分40分)在锐角三角形ABC中,60BAC∠≠,过点,B C分别作三角形ABC的外接圆的切线,BD CE,且满足BD CE BC==.直线DE与,AB AC的延长线分别交于点,F G.设CF与BD交于点M,CE与BG交于点N.证明:AM AN=.答案:设△ABC三边为,,a b c,则BD CE a==,先计算AM,∵,BFD ABC BDF DBC BAC∠=∠∠=∠=∠,∴△BFD∽△CBA.由比例可知acDFb=,故BM BC bBDDF c==,故abBMb c=+,故由余弦定理知()2222cosab abAM c c A Bb c b c⎛⎫=+-⋅+⎪++⎝⎭222cosab abcc Cb c b c⎛⎫=++⎪++⎝⎭,整理可得此式关于,b c对称故可知22AM AN=分析:由于一旦,,a b c三边确定则图形固定,所以通过相似、比例、余弦定理计算的思路比较显然GF ED三、(本题满分50分)设{}1,2,3,,100S =.求最大的整数k ,使得S 有k 个互不相同的非空子集,具有性质:对这k 个子集中任意两个不同子集,若它们的交非空,则它们交集中的最小元素与这两个子集中的最大元素均不相同.答案:一方面,取包含1的、至少含2个元素的所有子集,共9921-个,显然满足题意; 另外归纳证对于{}1,2,3,,S n =,任取()123n n -≥个子集,均存在两个的交集中最小的等于某个中最大的当3n =时,将7个非空子集分为三类:{}{}{}31,32,3,{}{}21,2,{}{}11,2,3.任取四个必有两个同类. 假设n k =时命题成立,当1n k =+时,如果取出的2k 个子集中至少有12k -个不含1k +,利用归纳假设知成 立;如果不含1k +的不足12k -,则至少有121k -+个含有1k +,而S 含有1k +的子集共2k 个,可以配成12k - 对,使得每对中除了公共元素1k +外,其余恰为1到n 的互补子集,这样,如果选出121k -+个,则必有两 个除1k +外不交,故命题成立. 综上,k 的最大值为9921-.分析:集合中的组合最值问题,比较常规的一道题,类似感觉的题集训队讲义在组合中的归纳法中有过四、(本题满分50分)设整数122014,,,x x x 模2014互不同余,整数122014,,,y y y 模2014也互不同余.证明:可将122014,,,y y y 重新排列为122014,,,z z z ,使得112220142014,,,x z x z x z +++模4028互不同余.答案:不妨设()mod 2014i i x y i ≡≡,1,2,,2014i =.下面对i y 序列进行1007次调整从而构成i z 序列:若i i x y +与10071007i i x y +++模4028不同余,则1007,i i y y +不调整;否则,交换1007,i i y y +位置,1,2,,2014i =.下证,进行1007次调整后,得到的i z 序列一定满足条件. 任意挑选一列()1,2,,1007i i x z i +=,只需证其与10071007i i x z +++、()1,2,,1007,j j x z j j i +=≠、10071007j j x z +++模4028不同余即可由i z 构造方法,i i x z +与10071007i i x z +++不同余是显然的,因为不可能调整前后均同余,故只需看另两个; 首先,对于不同的,i j ,2i 与2j 模4028不同余,否则会导致()mod 2014i j ≡.若,i j y y 均未调整,则()2mod 2014i i x z i +≡,()100710072mod 2014j j j j x z x z j +++≡+≡,故成立;若,i j y y 均已调整,则()21007mod 2014i i x z i +≡+,()1007100721007mod 2014j j j j x z x z j +++≡+≡+,故成立; 若只有一个被调整过,不妨设i y 未调整、j y 已调整,则()2mod 2014i i x z i +≡, ()1007100721007mod 2014j j j j x z x z j +++≡+≡+,若()4028|21007i j --,则()1007|i j -,矛盾,故同样成立. 综上,构造的i z 序列满足条件.全国高中数学联赛试题及解答高中联赛试题分析从试题类型来看,今年代数、几何、数论、组合4部分所占的比例为:代数37.3%,几何26.7%,数论16.7%,组合19.3%.这方面和历年情况差不多,但具体的知识点差别极大.一试第7题填空题可谓出人意表,虽然解答是用三角函数的方法处理的,对比历年试题,这题毫无疑问也是顶替了三角函数的位置.但本题却是一道彻头彻尾的平面几何题.从图中不难看出,最值情况在相切时取到,剩下的只是利用三角函数处理了一下计算上的问题.其余填空题中,第1~6题和往年出题风格类似,第8题概率计算略显突兀,本题几乎不需要用到计数的技巧,而是用单纯枚举的方法即可解决.放在填空题最后一题的位置不免显得难度不够.一试三道解答题中,第9题和第10题均不太难,所考知识点也和往年类似,无需多说.第11题又再次爆了冷门,考了一道复数问题.联赛已经多年没有考复数的大题了,许多学生都没有准备.可以说,这次一下戳中了学生的罩门.相信本题最终的得分率不容乐观.而本次试题中最特殊的要数加试中的平面几何题了.一反从1997年开始保持到如今的惯例,没有将平面几何题放在加试的第一题.而且本题实则为《中等数学》2012年第12期中的数学奥利匹克高中训练题中的原题,这无疑又让此题失色不少.今年的加试第一题放了一道不等式问题,虽然近几年不等式考察得较少,但是不等式一直是数学竞赛中的热门,在历年联赛中多有出现.考虑到本题难度并不大,放在联赛加试第一题还是非常合适的.全国高中数学联赛试题及解答加试第三题组合最值问题的出题风格一如既往,可以从很极端的情况下猜出答案,再进行证明.值得一提的是本题题干描述有歧义,最后一句“则它们交集中的最小元素与这两个子集中的最大元素均不相同”中,记最小元素为a ,两个最大元素为b 和c .本句话中到底是指a 、b 、c 这3个数互不相同还是指a b ≠且a c ≠,无疑是容易让人误解的.希望今后联赛试题中能避免出现这种情况.加试第四题虽说考察的是数论中的同余知识,但更多考察的是构造法技巧,这也符合联赛加试中试题综合各方面知识的出题思想.从难度上来说本题难度不算太大,只要能从较小的数开始构造并寻找规律,找出2014的构造并不显得困难.但本题的出题背景无疑和以下题目相关:“n 为给定正整数,()122,,,n x x x 和()122,,,n y y y 均为1~2n 的一个排列,则112222,,,n n x y x y x y +++这2n 个数不可能模2n 互不同余.” 总的说来,本次联赛考察的知识点和往年比差别较大,但从试卷难度来说,和前两年是相当的.预计今年联赛的分数线可能比去年略低.。
2014年全国高中数学联赛福建省预赛试题及详解
2014年福建省高中数学竞赛暨2014年全国高中数学联赛(福建省赛区)预赛试卷(考试时间:2014年5月17日上午9:00-11:30,满分160分)一、填空题(共10小题,每小题6分,满分60分。
请直接将答案写在题中的横线上) 1.已知直线1l :260ax y ++=,2l :2(1)10x a y a +-+-=,若12l l ⊥,则a = 。
2.函数2()sin cos 2f x x x x =+-(122x ππ⎡⎤∈⎢⎥⎣⎦,)的值域为 。
3.在三棱锥D ABC -中,2AB BC ==,AB BC ⊥,BC CD ⊥,DA AB ⊥,60CDA ∠=︒。
则三棱锥D ABC -的体积为 。
4.已知1F 、2F 为双曲线C :22124y x -=的左、右焦点,P 为双曲线C 上一点,且点P 在第一象限。
若1243PF PF =,则12PF F △内切圆半径为 。
5.已知集合{}2280A x x x =+->,{}2240B x x ax =-+≤。
若0a >,且A B ⋂中恰有1个整数,则a 的取值范围为 。
6.若分数p q (p ,q 为正整数)化成小数为0.198pq=,则当q 取最小值时,p q += 。
7.随机地投掷3粒骰子,则其中有2粒骰子出现的点数之和为7的概率为 。
8.已知点(11)A -,,(40)B ,,(22)C ,。
平面区域D 由所有满足AP AB AC λμ=+(1a λ<≤,1b μ<≤)的点()P x y ,组成的区域。
若区域D 的面积为8,则a b +的最小值为 。
9. 23201488889999A ⎡⎤⎡⎤⎡⎤⎡⎤=++++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦被63除的余数为 。
(符号[]x 表示不超过x 的最大整数。
)10.若a ,b ,c 为关于x 的方程320x x x m --+=的三个实根,则m 的最小值为 。
二、解答题(共5小题,每小题20分,满分100分。
全国高中数学联赛试题分类汇编-数论(1981年-2019年)
全国高中数学联赛试题分类汇编——数论(1981年~2019年)2019A 5、在1,2,3,,10?中随机选出一个数a ,在1,2,3,,10----?中随机选出一个数b ,则2a b +被3整除的概率为 .答案:37100解析:首先数组(),a b 有1010100⨯=?种等概率的选法. 考虑其中使2a b +被3整除的选法数N .①若a 被 3 整除,则b 也被 3 整除.此时,a b 各有3种选法,这样的(),a b 有339⨯=组.若a 不被 3 整除,则()21mod3a ≡,从而()1mod3b ≡-.此时a 有7 种选法,b 有4种选法,这样的(),a b 有7428⨯=组. 因此92837N =+=.于是所求概率为37100。
2019A 三、(本题满分 50 分)设m 为整数,2m ≥.整数数列12,,a a 满足:12,a a 不全为零,且对任意正整数n ,均有21n n n a a ma ++=-.证明:若存在整数,r s , (2r s >≥ )使得1r s a a a ==,则r s m -≥.解析:证明:不妨设12,a a 互素(否则,若()12,1a a d =>,则12,1a a d d ⎛⎫=⎪⎝⎭互素,并且用12,,a a d d代替12,,a a ,条件与结论均不改变).由数列递推关系知()234mod a a a m ≡≡≡. ①以下证明:对任意整数3n ≥,有()()2123mod n a a a n a m m ≡-+-⎡⎤⎣⎦. ② ………10 分事实上,当3n =时②显然成立.假设n k =时②成立(其中k 为某个大于2的整数),注意到①,有()212mod k ma ma m -≡,结合归纳假设知()()()21122221232mod k k k a a ma a k a m ma a a k a m +-≡-≡+--=-+-⎡⎤⎡⎤⎣⎦⎣⎦,即1n k =+时②也成立.因此②对任意整数3n ≥均成立. ………………20 分 注意,当12a a =时,②对2n =也成立. 设整数,r s , (2r s >≥ ),满足1r s a a a ==. 若12a a =,由②对2n ≥均成立,可知()()()221221233mod r s a a r a m a a a a s a m m -+-≡≡≡-+-⎡⎤⎡⎤⎣⎦⎣⎦即()()()121233mod a r a a s a m +-≡+-,即 ()()20mod r s a m -≡. ③ 若12a a ≠,则12r s a a a a ==≠故3r s >≥.此时由于②对3n ≥均成立, 故类似可知③仍成立. ………………30 分 我们证明2,a m 互素.事实上,假如2a 与m 存在一个公共素因子p ,则由①得p 为23,,a a 的公因子,而12,a a 互素,故/|p 1a ,这与1r s a a a ==矛盾.因此,由③得()0mod r s m -≡.又r s >,所以r s m -≥. ………………50分2018A 四、(本题满分50分)数列{}n a 定义如下:1a 是任意正整数,对整数1≥n ,1+n a 与∑=ni ia1互素,且不等于n a a a ,.,,21 的最小正整数,证明:每个正整数均在数列{}n a 中出现。
2014年全国高中联赛一试训练题(附每题详解)
当a=π时,cos(2+)取得最小值-1,x(x+y)有最大值+.
3.1个解:4xyz≥x4+y4+z4+1≥2x2y2+2z2≥4xyz(x,y,z>0)有且只有一解x=y=z=1.
4.C.
5.991.解:因为(S1+S2+…+S99)=1000,
⑵若bn=(n∈N*),求证:(b1+b2+…+bn-n)=1.
20.设a>1,a,θ均为实数,试求当θ变化时,函数f(θ)=的最小值.
21.已知f(u)=u2+au+(b-2),其中u=x+(x∈R且x≠0),若a,b是可使方程f(u)=0至少有一个实数根的实数,求a2+b2的最小值.
22.如果an=1+++…+(n∈N*),证明:对一切n≥2,都有a>2(++…+).
4.设集合A={1,2,3,…,k},B={1,2,3,…,m}(k≤m)建立从A到B的映射f,使f是递增的,则这样的f共有__________个.
5.对于一个有限数列P=(P1,P2,…,Pn),P的蔡查罗和(蔡查罗是一名数学家)定义为(S1+S2+…+Sn),
其中Sk=P1+P2+…+Pk(1≤k≤n),若一个99项的数列(P1,P2,…,P99)的蔡查罗和为1000,
a2+b2=-1.∴原式=-2.
11.11.解:记所求和为∑=a1a2+a1a3+…+a1a99+a2a3+a2a4+…+a98a99,S=a1+a2+…+a99.
则2∑+a12+a22+…+a992=2∑+99=S2.∴∑=(S2-99),取大于99且为奇完全平方数121,即得∑≥11.
而令a1=a2=…=a55=1,a56=a57=…=a99=-1,则S=11.即可使和取得最小值.
2014年全国高中数学联赛江苏赛区复赛参考答案与评分细则(一试)[1]
2014年全国高中数学联赛江苏赛区复赛参考答案与评分细则(一试)[1]2014年全国高中数学联赛江苏赛区复赛参考答案与评分细则一试一、填空题(本题满分64分,每小题8分)1.在△ABC中,若c cos B=12,b sin C=5,则c=.答案:13.解:根据正弦定理,得c sin B=b sin C=5,所以c2=(c cos B)2+(c sin B)2=132,从而c=13.2.函数f(x)=x+1(x+1)3+1(x>0),则函数取得最小值时,所对应的x值是.答案:43-1.解:由f(x)=x+1(x+1)3+1=13(x+1)+13(x+1)+13(x+1)+1(x+1)3≥44(13)3,等号当且仅当13(x+1)=1(x+1)3,即x=43-1.(本题也可求导)3.对于任意的实数a∈(-2,4],都有x2-ax+9>0成立,则实数x的取值范围为.答案:R.解:当a∈(-2,4]时,△=a2-36<0,故x2-ax+9>0恒成立,从而x的取值范围是R.4.已知等比数列{a n}的公比为q,前n项和S n>0(n=1,2,3,…),则q的取值范围是.答案:(-1,0)∪(0,+∞).解:因为S n>0(n=1,2,3,…),所以a1>0.当q=1,S n=na1>0成立.当q≠1,S n=a1(1-q n)1-q>0(n=1,2,3,…)恒成立,所以q∈(-1,0)∪(0,1)∪(1,+∞).综上q的取值范围是(-1,0)∪(0,+∞).5.已知5件产品中有3件合格品,2件次品.每次任取一个检验,检验后不再放回,恰好经过3次检验找出2件次品的概率为.答案:3 10.解:恰好3次找出2件次品,有三种情况:(1)第1次,第3次找出次品;(2)第2次,第3次找出次品,(3)前三次均为正品.若第1次,第3次找出次品的25×34×13=110;若第2次,第3次找出次品的概率35×24×13=110.若前3次均找出的是正品的概率35×24×13=110,故恰好经过3次检验找出2件次品的概率为110+110+110=310.6.点A 是椭圆x 2a 2+y 2=1(a >1)的上顶点,B 、C 是该椭圆上的另外两点,且△ABC 是以点A为直角顶点的等腰直角三角形.若满足条件的△ABC 只有一解,则椭圆的离心率的范围为.答案:(0,63].解:设等腰直角三角形的一边所在直线方程为:y =kx +1(k >0),它与椭圆的另一个交点B 的横坐标为-2ka 21+a 2k 2,从而点C 的横坐标为2ka 2a 2+k 2.由AB =AC ,得(1+k 2)×4k 2a 4(1+a 2k 2)2=(1+1k 2)×4k 2a 4(a 2+k 2)2,化简得:k 3-a 2k 2+ka 2-1=0,由题意知,此方程的解只有k =1.而k 3-a 2k 2+ka 2-1=(k -1)[k 2-(a 2-1)k +1]=0,要使上述方程有惟一的正数解k =1,则(a 2-1)2-4≤0,即1<a ≤3(a =3时,方程的解惟一).所以其离心率的取值范围是(0,63].7.方程x +2y +3z =2014的非负整数解(x ,y ,z )的个数为.答案:339024.解:方程x +2y =k 的非负整数解(x ,y )个数为[k2]+1,所以,方程x +2y =2014-3z 的非负整数解的个数为671∑z =0{[2014-3z 2]+1}=671∑z =0(1007-2z )+671∑z =0[z2]+672 =672×1007-670×672+335×336=339024.8.计算:2014∑k =1[-3+8k +14]=.答案:40115.解:令t =-3+8k +14,则k =2t 2+3t +1.因此[-3+8k +14]=n 当且仅当2n 2+3n +1≤k <2(n +1)2+3(n +1)+1,n ∈N .由于2×302+3×30+1=1891,2×312+3×31+1=2016,所以 2014∑k =1[-3+8k +14]=30∑n =1n [2(n +1)2+3(n +1)+1-(2n 2+3n +1)]-30 =30∑n =1(4n 2+5n )-30=4(12+22+…+302)+5(1+2+…+30)-30=40115.二、解答题(本题满分16分)设数列{a n }的前n 项和为S n ,a 1≠0,2S n +1-3S n =2a 1,n ∈N *.(1)证明数列{a n }为等比数列;(2)若a 1,a p (p ≥3)两项均为正整数,且存在正整数m ,使a 1≥m p -1,a p ≤(m +1) p -求a n .解:(1)由题意2S 2-3S 1 =2a 1,得2a 2-3a 1=0.由a 1≠0,得 a 2a 1=32.………………………… 2分又 2S n +1-3S n =2a 1,2S n +2-3S n +1=2a 1,得 2a n +2-3a n +1=0,n ∈N *.由a 1≠0,得a n +1≠0,故a n +2a n +1=32.所以数列{a n }为等比数列.………………………… 6分(2)由(1)知a p =a 1×(32p -1.因为a 1,a p ∈N *,所以a 1=k ×2p -1,k ∈N *,从而a p = k ×3 p -1.………………………… 10分由a 1≥m p -1,a p ≤(m +1) p -1,得k ×2p -1≥m p -1,k ×3p -1≤(m +1) p -1,即m ≤2×p -1k ,m +1≥3×k ,作差得1≥p -1k ,即k ≤1,所以k =1.所以 a n =2p -1×(32)n -1.………………………… 16分已知动点A ,B 在椭圆x 28+y 24=1上,且线段AB 的垂直平分线始终过点P (-1,0).(1)求线段AB 中点M 的轨迹方程;(2)求线段AB 长度的最大值.解:(1)设点A ,B 的坐标为A (x 1,y 1),B (x 2,y 2),线段AB 的中点M 的坐标为(x 0,y 0).当AB 与x 轴垂直时,线段AB 的中点M 的坐标为(-2,0).当AB 与x 轴不垂直时,因为点A ,B 在椭圆x 28+y 24=1上,所以x 128+y 124=1,x 228+y 224=1.从而(x 1-x 2)(x 1+x 2)8+(y 1-y 2)(y 1+y 2)4=0,即y 1-y 2x 1-x 2=-x 02y 0.因为线段AB 的垂直平分线始终过点P (-1,0),所以y 1-y 2x 1-x 2×y 0x 0+1=-1,从而x 0=-2.即线段AB 中点M 的轨迹方程为x =-2,-2<y <2.…………………… 8分(2)当AB 与x 轴垂直时,AB =22.当AB 与x 轴不垂直时,由(1)知,直线AB 的方程为y -y 0=1y 0(x +2).…………………… 12分由y -y 0=1y 0(x +2),x 28+y 24=1,得(y 02+2)x 2+4(y 02+2)x +2y 04+8=0.所以x 1+x 2=-4,x 1x 2=2y 04+8y 02+2.从而AB =(1+1y 02)×[16-4×2y 04+8y 02+2])=8(y 02+1)(2-y 02)y 02+2=22×-[(y 02+2)+4y 02+2]+5,其中-2<y 0<2,且y 0≠0,所以AB <22.所以线段AB 长度的最大值为22.…………………… 20分设a ,b ,c ,d 都是整数,p =a 2+b 2是素数.如果p |c 2+d 2,证明:c 2+d 2p 可以表示为两个整数的平方和.证明:因为p | c 2+d 2,所以c 2+d 2=pm ,其中m 为整数.于是m =c 2+d 2p =(c 2+d 2)(a 2+b 2)p 2=(c +d i)(c -d i)(a +b i)(a -b i)p 2,一方面,m =(c +d i)(c -d i)(a +b i)(a -b i)p 2=(ca -db )2+(da +cb )2p 2,(1)另一方面,m =(c +d i)(c -d i)(a +b i)(a +b i)p 2=(ca +db )2+(da -cb )2p 2,(2)…………………………………… 10分注意到(ca +db )(ca -db )=c 2a 2-d 2b 2=(pm -d 2)a 2-d 2b 2 =pma 2-d 2(a 2+b 2) =p (ma 2-d 2).因为p 是素数,所以ca +db 和ca -db 中至少有一个数能被p 整除.……………………………… 15分当ca -db 能被p 整除时,令ca -db =pt ,t 是整数,根据(1),因为m 是整数,所以da +cb 也被p 整除.令da +cb =ps ,s 是整数,则c 2+d 2p =m =t 2+s 2.当ca +db 能被p 整除时,同理可证:c 2+d 2p 也可以表示为两个整数的平方和.……………………………… 20分。
2014年全国初中数学联赛决赛试题和参考题答案
2014年全国初中数学联赛决赛试题一、选择题:(本题满分42分,每小题7分)1.已知,x y 为整数,且满足22441111211()()()3xyxyxy,则x y 的可能的值有【】A. 1个B. 2个C. 3个D. 4个2.已知非负实数,,x y z 满足1x y z ,则22t xy yz zx 的最大值为【】A .47B .59C .916D .12253.在△ABC 中,ABAC ,D 为BC 的中点,BE AC 于E ,交AD 于P ,已知3BP ,1PE,则AE =【】A .62B .2C .3D .64.6张不同的卡片上分别写有数字2,2,4,4,6,6,从中取出3张,则这3张卡片上所写的数字可以作为三角形的三边长的概率是【】A .12B .25C .23D .345.设[]t 表示不超过实数t 的最大整数,令{}[]t tt .已知实数x 满足33118xx,则1{}{}x x 【】A .12B .35C .1(35)2D .16.在△ABC 中,90C,60A ,1AC ,D 在BC 上,E 在AB 上,使得△ADE 为等腰直角三角形,90ADE ,则BE 的长为【】A .423B .23C .1(31)2D .31二、填空题:(本题满分28分,每小题7分)1.已知实数,,a b c 满足1a b c ,1111abcbc ac ab,则abc____.2.使得不等式981715n nk对唯一的整数k 成立的最大正整数n 为.3.已知P 为等腰△ABC 内一点,ABBC ,108BPC ,D 为AC 的中点,BD 与PC 交于点E ,如果点P 为△ABE 的内心,则PAC.4.已知正整数,,a b c 满足:1ab c ,111a b c ,2b ac ,则b.三、(本题满分20分)设实数,a b 满足22(1)(2)40a b b b a ,(1)8a b b ,求2211ab的值.四、.(本题满分25分)如图,在平行四边形ABCD 中,E 为对角线BD 上一点,且满足ECDACB , AC 的延长线与△ABD 的外接圆交于点F. 证明:DFE AFB .五、(本题满分25分)设n 是整数,如果存在整数,,x y z 满足3333nxyzxyz ,则称n 具有性质P .(1)试判断1,2,3是否具有性质P ;(2)在1,2,3,…,2013,2014这2014个连续整数中,不具有性质P 的数有多少个?FCA BDE2014年全国初中数学联赛决赛试题和参考答案一、选择题:(本题满分42分,每小题7分)1.已知,x y 为整数,且满足22441111211()()()3xyxyxy,则x y 的可能的值有【】A. 1个B. 2个C. 3个D. 4个【答】 C. 由已知等式得2244224423x y xyx yxyx y x y,显然,x y 均不为0,所以x y =0或32()xy x y .若32()xy x y ,则(32)(32)4x y .又,x y 为整数,可求得12,x y,或21.x y,所以1x y 或1x y .因此,x y 的可能的值有3个.2.已知非负实数,,x y z 满足1xyz,则22txyyzzx 的最大值为【】A .47B .59C .916D .1225【答】 A.21222()2()()4t xyyzzx x yz yz x y z y z 212(1)(1)4x x x 2731424xx2734()477x,易知:当37x ,27yz时,22t xy yzzx 取得最大值47.3.在△ABC 中,ABAC ,D 为BC 的中点,BEAC 于E ,交AD 于P ,已知3BP ,1PE,则AE =【】A .62B .2C .3D .6【答】 B.因为AD BC ,BE AC ,所以,,,P D C E 四点共圆,所以12BD BC BP BE ,又2BCBD ,所以6BD,所以3DP.又易知△AEP ∽△BDP,所以AE PE BDDP,从而可得1623PE AEBD DP.4.6张不同的卡片上分别写有数字2,2,4,4,6,6,从中取出3张,则这3张卡片上所写的数字可以作为三角形的三边长的概率是【】A .12B .25C .23D .34【答】 B.若取出的3张卡片上的数字互不相同,有2×2×2=8种取法;若取出的3张卡片上的数字有相同的,有3×4=12种取法.所以,从6张不同的卡片中取出3张,共有8+12=20种取法.要使得三个数字可以构成三角形的三边长,只可能是:(2,4,4),(4,4,6),(2,6,6),(4,6,6),由于不同的卡片上所写数字有重复,所以,取出的3张卡片上所写的数字可以作为三角形的三边长的情况共有4×2=8种.因此,所求概率为82205.5.设[]t 表示不超过实数t 的最大整数,令{}[]t tt .已知实数x 满足33118xx,则1{}{}x x【】A .12B .35C .1(35)2D .1【答】 D. 设1x a x,则32223211111()(1)()[()3](3)xxxxxa axxxxx,所以2(3)18a a,因式分解得2(3)(36)0a a a ,所以3a .由13xx解得1(35)2x,显然1{}1,0{}1x x ,所以1{}{}x x1.6.在△ABC 中,90C,60A ,1AC,D 在BC 上,E 在AB 上,使得△ADE 为等腰直角三角形,90ADE ,则BE 的长为【】A .423B .23C .1(31)2D .31【答】 A.过E 作EF BC 于F ,易知△ACD ≌△DFE ,△EFB ∽△ACB .设EFx ,则2BEx ,22AEx ,2(1)DEx ,1DFAC ,故2221[2(1)]x x,即2410x x .又01x ,故可得23x.故2423BE x .二、填空题:(本题满分28分,每小题7分)1.已知实数,,a b c 满足1a b c ,1111abcbc ac ab,则abc____.【答】0. 由题意知1111121212cab,所以(12)(12)(12)(12)(12)(12)(12)(12)(12)a b b c a c a b c 整理得22()8a b c abc ,所以abc 0.2.使得不等式981715n n k对唯一的整数k 成立的最大正整数n 为.【答】144. 由条件得7889k n,由k 的唯一性,得178k n且189k n,所以FEBCAD2118719872k k nnn,所以144n .当144n 时,由7889k n可得126128k ,k 可取唯一整数值127.故满足条件的正整数n 的最大值为144.3.已知P 为等腰△ABC 内一点,ABBC ,108BPC ,D 为AC 的中点,BD与PC 交于点E ,如果点P 为△ABE 的内心,则PAC .【答】48.由题意可得PEA PEB CED AED ,而180PEA PEB AED ,所以60PEA PEB CED AED ,从而可得30PCA . 又108BPC ,所以12PBE ,从而24ABD . 所以902466BAD ,11()(6630)1822PAEBAD CAE ,所以183048PAC PAE CAE 4.已知正整数,,a b c 满足:1ab c ,111a b c ,2b ac ,则b.【答】36. 设,a c 的最大公约数为(,)a c d ,1aa d ,1c c d ,11,a c 均为正整数且11(,)1a c ,11a c ,则2211bacd a c ,所以22|d b ,从而|d b ,设1b b d (1b 为正整数),则有2111ba c ,而11(,)1a c ,所以11,a c 均为完全平方数,设2211,a m c n ,则1b m n ,,m n均为正整数,且(,)1m n ,mn .又111a b c ,故111()111d a b c ,即22()111d m nmn .注意到222212127m nmn,所以1d或3d .若1d ,则22111mnmn ,验算可知只有1,10m n 满足等式,此时1a ,不符合题意,故舍去.若3d,则2237m nmn ,验算可知只有3,4m n 满足等式,此时27,36,48a bc,符合题意.EDAB PC因此,所求的36b .三、(本题满分20分)设实数,a b 满足22(1)(2)40a b b b a ,(1)8a b b ,求2211ab的值.解由已知条件可得222()40a bab ,()8ab a b .设a b x ,ab y ,则有2240xy,8xy,…………5分联立解得(,)(2,6)x y 或(,)(6,2)x y .………10分若(,)(2,6)x y ,即2a b ,6ab ,则,a b 是一元二次方程2260tt 的两根,但这个方程的判别式2(2)24200,没有实数根;……………15分若(,)(6,2)x y ,即6ab,2ab ,则,a b 是一元二次方程2620tt 的两根,这个方程的判别式2(6)8280,它有实数根.所以2222222222211()262282a ba b ab aba b a b.………20分四、.(本题满分25分)如图,在平行四边形ABCD 中,E 为对角线BD 上一点,且满足ECD ACB , AC 的延长线与△ABD 的外接圆交于点F . 证明:DFE AFB .证明由ABCD 是平行四边形及已知条件知ECDACB DAF .………5分又A 、B 、F 、D四点共圆,所以B D CA B D,………… ….10分所以△ECD ∽△DAF ,………15分所以ED CD AB DFAFAF.………20分又EDFBDF BAF ,所以△EDF ∽△BAF ,故DFE AFB .……………………25分五、(本题满分25分)设n 是整数,如果存在整数,,x y z 满足3333nxyzxyz ,则称n 具有性质P .FCA BDE(1)试判断1,2,3是否具有性质P ;(2)在1,2,3,…,2013,2014这2014个连续整数中,不具有性质P 的数有多少个?解取1x ,0y z ,可得3331103100,所以1具有性质P ;取1xy,0z,可得33321103110,所以2具有性质P ;…………………5分若3具有性质P ,则存在整数,,x y z 使得33()3()()xy z x yz xyyzzx ,从而可得33|()x y z ,故3|(x yz,于是有39|()3()()x y z x yz xyyzzx ,即9|3,这是不可能的,所以3不具有性质P .……………………10分(2)记333(,,)3f x y z xy zxyz ,则33(,,)()3()3f x y z x y zxy x y xyz 3()3()()3()xy z x y z x yz xy x y z =3()3()()xy z xy z xy yz zx 2221()()2x y z x yzxy yzzx 2221()[()()()]2xyz x y y z zx . 即(,,)f x y z 2221()[()()()]2xy z xy yz z x ①……………………15分不妨设xy z ,如果1,0,1x y y z x z ,即1,x z y z ,则有(,,)31f x y z z ;如果0,1,1x y y z x z ,即1x yz ,则有(,,)32f x y z z ;如果1,1,2xyyzxz,即2,1xz y z ,则有(,,)9(1)f x y z z ;由此可知,形如31k 或32k或9k(k 为整数)的数都具有性质P .……………………20分又若33|(,,)()3()()f x y z xyz x y z xy yz zx ,则33|()x y z ,从而3|()x yz ,进而可知39|(,,)()3()()f x y z xyz xyz xyyzzx .综合可知:当且仅当93n k 或96n k (k 为整数)时,整数n 不具有性质P .又2014=9×223+7,所以,在1,2,3,…,2013,2014这2014个连续整数中,不具有性质P 的数共有224×2=448个.…………………25分我们对服务人员的配备以有经验、有知识、有技术、懂管理和具有高度的服务意识为准绳,在此基础上建立一支高素质的物业管理队伍,为销售中心的物业管理创出优质品牌。
全国高中数学联赛一试试题
全国高中数学联合竞赛一试 试题参考答案及评分标准(A 卷)说明:1.评阅试卷时,请依据本评分标准.选择题只设6分和0分两档,填空题只设9分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中5分为一个档次,不要增加其他中间档次.一、选择题(本题满分36分,每小题6分)1.函数254()2x x f x x-+=-在(,2)-∞上的最小值是 ( C )A .0B .1C .2D .3[解] 当2x <时,20x ->,因此21(44)1()(2)22x x f x x x x+-+==+---12(2)2x x ≥⋅--2=,当且仅当122x x=--时上式取等号.而此方程有解1(,2)x =∈-∞,因此()f x 在(,2)-∞上的最小值为2.2.设[2,4)A =-,2{40}B x x ax =--≤,若B A ⊆,则实数a 的取值范围为 ( D ) A .[1,2)- B .[1,2]- C .[0,3] D .[0,3) [解] 因240x ax --=有两个实根21424a a x =+22424a a x =+故B A ⊆等价于12x ≥-且24x <,即24224a a +≥-且24424a a +, 解之得03a ≤<.3.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互,则比赛停止时已打局数ξ的期望E ξ为 ( B ) A. 24181 B. 26681 C. 27481D. 670243[解法一] 依题意知,ξ的所有可能值为2,4,6.设每两局比赛为一轮,则该轮结束时比赛停止的概率为22215()()339+=.若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.从而有5(2)9P ξ==,4520(4)()()9981P ξ===,2416(6)()981P ξ===,故520162662469818181E ξ=⨯+⨯+⨯=.[解法二] 依题意知,ξ的所有可能值为2,4,6.令k A 表示甲在第k 局比赛中获胜,则k A 表示乙在第k 局比赛中获胜. 由性与互不相容性得12125(2)()()9P P A A P A A ξ==+=, 1234123412341234(4)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++332112202[()()()()]333381=+=,1234123412341234(6)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++2221164()()3381==,故520162662469818181E ξ=⨯+⨯+⨯=.4.若三个棱长均为整数(单位:cm )的正方体的表面积之和为564 cm 2,则这三个正方体的体积之和为 ( A ) A. 764 cm 3或586 cm 3 B. 764 cm 3 C. 586 cm 3或564 cm 3 D. 586 cm 3[解] 设这三个正方体的棱长分别为,,a b c ,则有()2226564a b c ++=,22294a b c ++=,不妨设110a b c ≤≤≤<,从而2222394c a b c ≥++=,231c >.故610c ≤<.c 只能取9,8,7,6.若9c =,则22294913a b +=-=,易知2a =,3b =,得一组解(,,)(2,3,9)a b c =. 若8c =,则22946430a b +=-=,5b ≤.但2230b ≥,4b ≥,从而4b =或5.若5b =,则25a =无解,若4b =,则214a =无解.此时无解.若7c =,则22944945a b +=-=,有唯一解3a =,6b =.若6c =,则22943658a b +=-=,此时222258b a b ≥+=,229b ≥.故6b ≥,但6b c ≤=,故6b =,此时2583622a =-=无解.综上,共有两组解2,3,9a b c =⎧⎪=⎨⎪=⎩或3,6,7.a b c =⎧⎪=⎨⎪=⎩体积为3331239764V =++=cm 3或3332367586V =++=cm 3.5.方程组0,0,0x y z xyz z xy yz xz y ++=⎧⎪+=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为 ( B ) A. 1 B. 2 C. 3 D. 4[解] 若0z =,则00.x y xy y +=⎧⎨+=⎩,解得00x y =⎧⎨=⎩,或11.x y =-⎧⎨=⎩,若0z ≠,则由0xyz z +=得1xy =-. ① 由0x y z ++=得z x y =--. ②将②代入0xy yz xz y +++=得220x y xy y ++-=. ③ 由①得1x y=-,代入③化简得3(1)(1)0y y y ---=. 易知310y y --=无有理数根,故1y =,由①得1x =-,由②得0z =,与0z ≠矛盾,故该方程组共有两组有理数解0,0,0x y z =⎧⎪=⎨⎪=⎩或1,1,0.x y z =-⎧⎪=⎨⎪=⎩6.设ABC ∆的内角A B C ,,所对的边,,a b c 成等比数列,则sin cot cos sin cot cos A C AB C B++的取值范围是( C )A. (0,)+∞B. 51(0,)2C. 5151()-+D. 51()-+∞[解] 设,,a b c 的公比为q ,则2,b aq c aq ==,而sin cot cos sin cos cos sin sin cot cos sin cos cos sin A C A A C A CB C B B C B C++=++ sin()sin()sin sin()sin()sin A C B B bq B C A A aππ+-=====+-.因此,只需求q 的取值范围.因,,a b c 成等比数列,最大边只能是a 或c ,因此,,a b c 要构成三角形的三边,必需且只需a b c +>且b c a +>.即有不等式组22,a aq aq aq aq a ⎧+>⎪⎨+>⎪⎩即2210,10.q q q q ⎧--<⎪⎨+->⎪⎩ 解得1551,225151.22q q q ⎧-<<⎪⎪⎨⎪><-⎪⎩或 5151q -+<<,因此所求的取值范围是5151(-+. 二、填空题(本题满分54分,每小题9分)7.设()f x ax b =+,其中,a b 为实数,1()()f x f x =,1()(())n n f x f f x +=,1,2,3,n =,若7()128381f x x =+,则a b += 5 . [解] 由题意知12()(1)n n n n f x a x a a a b --=+++++11n na a xb a -=+⋅-,由7()128381f x x =+得7128a =,713811a b a -⋅=-,因此2a =,3b =,5a b +=.8.设()cos 22(1cos )f x x a x =-+的最小值为12-,则a =23-+[解] 2()2cos 122cos f x x a a x =---2212(cos )2122a x a a =----,(1) 2a >时,()f x 当cos 1x =时取最小值14a -; (2) 2a <-时,()f x 当cos 1x =-时取最小值1; (3) 22a -≤≤时,()f x 当cos 2a x =时取最小值21212a a ---. 又2a >或2a <-时,()f x 的最小值不能为12-,故2112122a a ---=-,解得23a =-+23a =-舍去).9.将24个志愿者名额分配给3个学校,则每校至少有一个名额且各校名额互不相同的分配方法共有 222 种.[解法一] 用4条棍子间的空隙代表3个学校,而用*表示名额.如||||********表示第一、二、三个学校分别有4,18,2个名额.若把每个“*”与每个“|”都视为一个位置,由于左右两端必须是“|”,故不同的分配方法相当于24226+=个位置(两端不在内)被2个“|”占领的一种“占位法”.“每校至少有一个名额的分法”相当于在24个“*”之间的23个空隙中选出2个空隙插入“|”,故有223C 253=种. 又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种.综上知,满足条件的分配方法共有253-31=222种.[解法二] 设分配给3个学校的名额数分别为123,,x x x ,则每校至少有一个名额的分法数为不定方程12324x x x ++=.的正整数解的个数,即方程12321x x x ++=的非负整数解的个数,它等于3个不同元素中取21个元素的可重组合:2121232323H C C 253===. 又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种.综上知,满足条件的分配方法共有253-31=222种. 10.设数列{}n a 的前n 项和n S 满足:1(1)n n n S a n n -+=+,1,2,n =,则通项n a =112(1)n n n -+. [解] 1111(1)(2)(1)n n n n n n n a S S a a n n n n +++-=-=--++++,即 2n n a n n n n n n a ++++-++-+=+)1(111)2)(1(221=)1(1)2)(1(2+++++-n n a n n n , 由此得 2)1(1))2)(1(1(1++=++++n n a n n a n n . 令1(1)n n b a n n =++,111122b a =+= (10a =),有112n n b b +=,故12n n b =,所以)1(121+-=n n a n n . 11.设()f x 是定义在R 上的函数,若(0)2008f = ,且对任意x ∈R ,满足(2)()32x f x f x +-≤⋅,(6)()632x f x f x +-≥⋅,则)2008(f =200822007+.[解法一] 由题设条件知(2)()((4)(2))((6)(4))((6)())f x f x f x f x f x f x f x f x +-=-+-+-+-+++-24323263232x x x x ++≥-⋅-⋅+⋅=⋅, 因此有(2)()32x f x f x +-=⋅,故(2008)(2008)(2006)(2006)(2004)(2)(0)(0)f f f f f f f f =-+-++-+2006200423(2221)(0)f =⋅+++++10031413(0)41f +-=⋅+-200822007=+. [解法二] 令()()2x g x f x =-,则2(2)()(2)()2232320x x x x g x g x f x f x ++-=+--+≤⋅-⋅=,6(6)()(6)()226326320x x x x g x g x f x f x ++-=+--+≥⋅-⋅=,即(2)(),(6)()g x g x g x g x +≤+≥,故()(6)(4)(2)()g x g x g x g x g x ≤+≤+≤+≤, 得()g x 是周期为2的周期函数,所以200820082008(2008)(2008)2(0)222007f g g =+=+=+.12.一个半径为1的小球在一个内壁棱长为46球永远不可能接触到的容器内壁的面积是723.[解] 如答12图1,考虑小球挤在一个角时的情况,记小球半径为r ,作平面111A B C //平面ABC ,与小球相切于点D ,则小球球心O 为正四面体111P A B C -的中心,111PO A B C ⊥面,垂足D 为111A B C 的中心.因11111113P A B C A B C V S PD -∆=⋅1114O A B C V -=⋅111143A B C S OD ∆=⋅⋅⋅,故44PD OD r ==,从而43PO PD OD r r r =-=-=.记此时小球与面PAB 的切点为1P ,连接1OP ,则222211(3)22PP PO OP r r r=--=.答13图答12图 2 考虑小球与正四面体的一个面(不妨取为PAB )相切时的情况,易知小球在面PAB 上最靠近边的切点的轨迹仍为正三角形,记为1P EF ,如答12图2.记正四面体 的棱长为a ,过1P 作1PM PA ⊥于M . 因16MPP π∠=,有113cos 226PM PP MPP r r =⋅==,故小三角形的边长1226PE PA PM a r =-=-. 小球与面PAB 不能接触到的部分的面积为(如答12图2中阴影部分)1PAB P EF S S ∆∆-223(26))a a r =--23263ar r =-. 又1r =,46a =124363183PAB PEF S S ∆∆-= 由对称性,且正四面体共4个面,所以小球不能接触到的容器内壁的面积共为723 三、解答题(本题满分60分,每小题20分)13.已知函数|sin |)(x x f =的图像与直线y kx = )0(>k 有且仅有三个交点,交点的横坐标的最大值为α,求证:2cos 1sin sin 34ααααα+=+. [证] ()f x 的图象与直线y kx =)0(>k 的三个交点如答13图所示,且在3(,)2ππ内相切,其切点为(,sin )A αα-,3(,)2παπ∈. …5分由于()cos f x x '=-,3(,)2x ππ∈,所以sin cos ααα-=-,即tan αα=. …10分 因此cos cos sin sin 32sin 2cos αααααα=+ 14sin cos αα=…15分22cos sin 4sin cos αααα+=21tan 4tan αα+=214αα+=. …20分 14.解不等式121086422log (3531)1log (1)x x x x x ++++<++.[解法一] 由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等价于1210864353122x x x x x ++++>+.即 1210864353210x x x x x +++-->. …5分 分组分解 12108x x x +- 1086222x x x ++- 864444x x x ++- 642x x x ++- 4210x x ++->,864242(241)(1)0x x x x x x +++++->, …10分所以 4210x x +->, 221515()(022x x ----->. …15分 所以215x -+>,即152x -+<-152x -+> 故原不等式解集为5151(,)(,)22---∞-+∞. …20分 [解法二] 由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等价于1210864353122x x x x x ++++>+. (5)分 即6422232262133122(1)2(1)x x x x x x x x+<+++++=+++, )1(2)1()1(2)1(232232+++<+x x xx , …10分题15图令3()2g t t t =+,则不等式为221()(1)g g x x<+, 显然3()2g t t t =+在R 上为增函数,由此上面不等式等价于2211x x <+, …15分 即222()10x x +->,解得251x ->(251x +<舍去),故原不等式解集为5151(,)(,)22---∞-+∞. …20分 15.如题15图,P 是抛物线22y x =上的动点,点B C ,在y 轴上,圆22(1)1x y -+=内切于PBC ∆,求PBC ∆面积的最小值.[解] 设00(,),(0,),(0,)P x y B b C c ,不妨设b c >.直线PB 的方程:00y by b x x --=, 化简得 000()0y b x x y x b --+=.又圆心(1,0)到PB 的距离为1,0022001()y b x b y b x-+=-+ , …5分故22222000000()()2()y b x y b x b y b x b -+=-+-+,易知02x >,上式化简得2000(2)20x b y b x -+-=,同理有2000(2)20x c y c x -+-=. …10分 所以0022y b c x -+=-,002x bc x -=-,则22200020448()(2)x y x b c x +--=-.因00(,)P x y 是抛物线上的点,有2002y x =,则22204()(2)x b c x -=-,0022x b c x -=-. …15分 所以00000014()(2)4222PBC x S b c x x x x x ∆=-⋅=⋅=-++-- 2448≥=.当20(2)4x -=时,上式取等号,此时004,22x y ==±.因此PBC S 的最小值为8. …20分。
2014年全国中学生生物学联赛试题 含答案及解析
2014年全国中学生生物学联赛试题及答案一、细胞生物学、生物化学、微生物学1.兼性异染色质具有( )的特征。
(单1)A.染色质始终凝集从不转录B.染色质松散时可转录C.染色质始终凝集可以转录D.染色质松散时不能转录2.亨廷顿氏(Huntington)舞蹈病是由于编码huntington蛋白基因的碱基序列( )过度重复造成的一种遗传病。
(单1)A.AGC B.GGG C.CAG D.CGA3.癌细胞一般具有下列哪种细胞活动特征?(单1)A.核酸合成减弱B.细胞周期停滞C.蛋白质合成减弱D.糖酵解显著增强4.细胞凋亡和程序性坏死的主要区别包括(多2)A.是否引发炎症反应B.有无信号转导过程C.有无蛋白质的合成D.是否随机降解DNA5.关于胆固醇的描述正确的是A.细胞质膜的内外小叶均有分布B.仅分布在细胞质膜的外小叶C.胆固醇是各种生物体细胞质膜的固有成分D.胆固醇是细胞质膜中脂筏的基本结构组分之一6.以下有关光学显微镜和电子显微镜分辨率的描述,正确的是(多2)A.光学显微镜的分辨率能达到1nm B.光学显微镜能观察到多数病毒C.电子显微镜的分辨率能达到0.1nm D.电子显微镜能观察到蛋白与核酸分子7.溶酶体的功能包括(多2)A.降解由胞外环境进入胞内的物质B.清除无用的生物大分子及衰老的细胞器C.吞噬和自噬D.胞吐8.以下对生物膜“流动镶嵌模型”描述正确的是(单1)A.脂膜由脂双层构成,内外表面各分布一层球状蛋白质B.脂膜由脂双层构成,中间有一层蛋白质C.脂膜由脂双层构成,蛋白质以不连续的颗粒形式嵌入脂层,脂分子可以移动,蛋白质不能移动D.脂膜由脂双层构成,蛋白质以不连续的颗粒形式嵌入脂层,脂分子和蛋白质均呈流动状态9.细胞中的核糖体根据定位不同可分为游离核糖体和结合核糖体,下列哪一组细胞器的蛋白质由游离核糖体合成?(单1)A.线粒体、叶绿体、分泌泡B.内质网、细胞核、高尔基体C.细胞核、线粒体、溶酶体D.线粒体、细胞核、叶绿体10.如果线粒体内膜的不通透性被破坏,会导致以下哪种结果?(单1)A.氢离子梯度不能形成,A TP无法产生B.糖酵解无法进行C.三羧酸循环无法生成ATP D.电子传递链无法将NADH的电子传递到氧11.内质网是细胞中的“钙库"之一,以下描述正确的是(单1)A.钙离子从细胞质扩散到内质网中B.内质网上钙泵将钙离子从细胞质主动运输至内质网C.钙离子通过内质网上的钙离子通道主动运输至内质网D.钙离子通过钠钾泵协同转运至内质网12.真核细胞有丝分裂的意义在于(单1)A.保证母细胞完整地一分为二B.保证复制后的染色体平均分配到两子细胞中C.保证母细胞的细胞质平均地分配到两子细胞中D.保证母细胞的细胞器平均地分配到两子细胞中13.癌细胞与正常细胞的不同之处在于(单1)A.癌细胞不能合成DNA B.癌细胞被锁定在细胞周期的S期C.癌细胞不受细胞周期检验点的控制D.癌细胞始终处于细胞周期的分裂期14.拟南芥叶肉细胞有5对染色体,下列关于拟南芥细胞染色体数目叙述正确的是(单1)A.成熟花粉粒中的营养细胞有10条染色体B.珠被细胞有10条染色体C.胚乳细胞有5条染色体D.胚囊细胞有10条染色体15.关于大肠杆菌和小鼠细胞相同的特性描述正确的是(单1)A.均含有环状DNA和线状DNA B.均不含有线状DNA和核糖体C.均含有环状DNA和核糖体D.均含细胞核和核糖体16.光呼吸涉及的细胞器(单1)A.叶绿体、高尔基体和线粒体B.叶绿体、过氧化物酶体和溶酶体C.叶绿体、过氧化物酶体和线粒体D.叶绿体、内质网和线粒体17.在细胞生长过程中可以向胞外分泌可溶性色素的微生物是(单1)A.粘红酵母(Rhodotorula glutinis) B.黑曲霉(Aspergillus nige)C.天蓝色链霉菌(Streptomyces coelicolor) D.金黄色葡萄球菌(Staphylococcus aureus) 18.红曲霉是食品工业常用的菌株,其生活细胞参与TCA循环的酶系存在于线粒体的(单1)A.内膜B.基质C.嵴内隙D.膜间隙二、植物和动物的解剖、生理、组织和器官19以下对根冠细胞的描述,不正确的是(单1)A.根冠细胞的壁仅具中胶层和初生壁B.根冠中央的细胞中常含淀粉粒C.根冠周围的细胞会不断死亡脱落D.根冠细胞持续分裂以保持根冠细胞数目大致不变20.筛管分子和筛胞都是输导有机物的细胞,下列哪一句描述不符合两种细胞的发育与结构特点?(单1)A.执行功能时是生活细胞B.成熟时细胞中缺乏细胞核C.具有来源于同一原始细胞的伴胞D.细胞之间通过联络索沟通21.关于小麦雌配子体从珠心原基中的发育开始到胚囊成熟,下列描述错误的是(单2)A.孢原细胞起源于珠心表皮下方B.大孢子母细胞在减数分裂前逐渐积累胼胝质的细胞壁C.减数分裂产生的四个大孢子,进一步发育成雌配子体D.卵细胞位于成熟胚囊的珠孔端22.给一个新植物物种进行命名要用双名法,双名法的书写格式是(单1)A.科名+属名+定名人B.属名+种名+定名人C.属名+种加词+定名人D.种名+属名+定名人23.苔藓植物是现存最古老的陆生植物之一,限制其适应陆生环境的主要特征是(多2)A.植物体组织分化程度不高,体内无维管组织,输导能力不强B.没有真根,只能靠假根或其它表皮细胞行使吸收功能C.有性生殖过程必须借助于水才能完成D.性器官外围有不育细胞为之保护24.下列有关地钱的叙述哪些是错误的?(单1)A.地钱的营养体可产生胞芽,胞芽成熟时脱落,并在土中萌发成新一代的孢子体B.地钱的颈卵器和精子器分别产生卵和精子,受精过程必须有水的参与才能完成C.地钱的孢子体十分简单,仅由基足、蒴柄和孢蒴组成,必须寄生在配子体上D.地钱的卵在颈卵器中完成受精作用,形成胚,并进一步发育成孢子体25.下列有关松树花粉传播与萌发的描述正确的是(单1)A.花粉借助风的作用通过珠孔进入胚珠,在贮粉室内萌发形成花粉管并进入雌配子体B.花粉借助传粉滴的作用通过珠孔进入胚珠,在贮粉室内萌发形成花粉管并进入雌配子体C.花粉借助风的作用到达胚珠并萌发形成花粉管通过珠孔进入胚珠和雌配子体D.花粉借助传粉滴的作用达胚珠并萌发形成花粉管通过珠孔进入胚珠和雌配子体26.研究发现,拟南芥中存在脱落酸的受体,感受脱落酸的信号,与野生型相比,缺失这类受体功能的突变体,其可能的表型为(多2)A.气孔运动对脱落酸更敏感B.气孔运动对脱落酸欠敏感C.更耐旱D.更不耐旱27.营寄生生活的吸虫与自由生活的涡虫的体壁有很大的差别,以下描述正确的是(单1)A.吸虫的体表没有纤毛,但密布微小的微绒毛B.吸虫的表皮层没有成杆状体细胞C.吸虫的表皮是一层合胞体,有一些结晶蛋白所形成的棘钳D.吸虫由于较少运动,环肌和纵肌退化28.节肢动物的一大特征是具有带关节的附肢。
2014年全国高中数学联赛模拟试题(一)
2014年全国高中数学联合竞赛模拟试题(一)一试 试题纸说明:①本次考试时间:8:00-9:20,满分:120分②本次考试禁止使用计算器③请答在答题纸上,答在试题纸及草稿纸上无效一、填空题(本大题共8题,每题8分,共64分)1、已知,,x y z R +Î且11x x x y z++ ,那么x y z ++的最小值为____________。
2、如果复数z 满足:1,Im 0z z =>,那么23z z -+的辐角主值的最小值为_______________。
3、三角形ABC 面积为1,用,,a b c 表示三边长度,那么22a bc +的最小值为___________。
4、不等式2arctan tan 12tan (cos sin )4x y x x x x p p +-++?的解集为__________。
5、区间(,),(,],[,),[,]a b a b a b a b 的区间长度均为b a -,若干不想交区间的并集的区间长度定义为这些区间的长度的和,那么不等式201412015k k x k=³-å的解集长度为____________。
6、实数,x y 满足222224229x xy y x y +++=,则2()33z x y xy =++的取值范围是___________。
7、函数22(1)(3)(28)()(21)(1)(4)k x k x k f x k x k x k ++++-=-+++-的定义域记为D ,则使()0f x >对任意x D Î 成立的k 的取值范围为____________。
8、离心率为e ,焦准距为p 的椭圆C 的右焦点为圆心做圆G ,现已知平面存在上一点使得该点到圆G 上任意一点对椭圆C 两切线切点所确定直线距离为定值,那么该定值为___________。
2014年全国高中数学联合竞赛 模拟试题(一) 一试 试题纸 第一页 共二页二、(本题满分16分)已知1212,,,A A F F 为椭圆22221(0)x y a b a b+=>>的左右顶点、焦点,点A 是椭圆上一点,过原点做12,AF AF 的平行线于椭圆在A 处的切线l 于点,M N ,试求:三角形OMN 外心的轨迹。
2014年福建省高中数学竞赛暨2014年全国高中数学联赛(福建省赛区)预赛试卷参考答案
2014年福建省高中数学竞赛暨2014年全国高中数学联赛(福建省赛区)预赛试卷参考答案(考试时间:2014年5月17日上午9:00-11:30,满分160分)一、填空题(共10小题,每小题6分,满分60分。
请直接将答案写在题中的横线上) 1.已知直线1l :260ax y ++=,2l :2(1)10x a y a +-+-=,若12l l ⊥,则a = 。
【答案】23【解答】12212(1)03l l a a a ⊥⇔⨯++-=⇔=。
2.函数23()3sin sin cos 2f x x x x =+-(122x ππ⎡⎤∈⎢⎥⎣⎦,)的值域为 。
【答案】 112x ⎡⎤∈-⎢⎥⎣⎦, 【解答】1cos 21313()3sin 2sin 2cos 2sin(2)222223x f x x x x x π-=⨯+-=-=-。
由122x ππ⎡⎤∈⎢⎥⎣⎦,知,22633x πππ-≤-≤,1sin(2)123x π-≤-≤。
3.在三棱锥D ABC -中,2AB BC ==,AB BC ⊥,BC CD ⊥,DA AB ⊥,60CDA ∠=︒。
则三棱锥D ABC -的体积为 。
【答案】43【解答】如图,作DE ABC ⊥面于E ,连EA 、EC 、ED 。
∵ BC CD ⊥,DA AB ⊥,∴ EC CB ⊥,EA AB ⊥,四边形EABC 为矩形。
由AB BC =知,四边形EABC 为正方形,且DA DC =。
又60CDA ∠=︒,因此,DAC △为正三角形,DA AC =。
∴2222EA ED EA EC +=+。
于是,2ED EC ==。
∴ 三棱锥D ABC -的体积为114(22)2323⨯⨯⨯⨯=。
4.已知1F 、2F 为双曲线C :22124y x -=的左、右焦点,P 为双曲线C 上一点,且点P 在第一象限。
若1243PF PF =,则12PF F △内切圆半径为 。
【答案】 2【解答】设14PF t =,则23PF t =,12432t t PF PF -=-=。
2014年全国高中数学联赛加试_A卷_试题及参考答案
在三角 形 A 由余弦 BM 中 , BM =B+A, ∠A 定理得
2 2 a b a b c ( 2 2 AM2 = c +( c o s A+B) 2- ) b+ c b+ c 2 2 2 2 2 a b a b c·a + b - c 2 2 = c +( 2+ ) b+ c 2 a b b+ c
数 学 竞 赛 之 窗
MC B C B D A C L C, = = = = MF F D F D A B L B
因此 LM ∥B F. 同理 , 由此推出 LN ∥C G.
1 [2 ( 2 2 2 2 2 ) =( + c +a b+ c( a +b 2 c b ) b+ c
2 ) ( ) ] - c b+ c
z x s s . c b t . c n k i . n e t z x s s h i n a o u r n a l . n e t . c n 网址 : 电子邮箱 : @c p j
·2 8·
中学生数学 ·2 高中 ) 0 1 5 年 1 月上 · 第 5 0 5期(
n-1
若 不 然, 我们有x m o d i +y i =x i +k +y i +k ( , , 两式相加可得 4 k) x x m o d 4 k) y y i+ i +k ≡ i +k + i( , 于是x , 但 2 x 2 x m o d 4 k) x m o d 2 k) i≡ i +k ( i≡ i +k ( …, 互 不 同 余, 特 别 地, x x x 0 1 4( =2 k) 1, 2, 2 0 1 4模2 , 矛盾 . x x m o d 2 k) i i +k ( 由上 述 构 造 方 法 知 z …, z z y 1, 2, 2 k 是y 1, 2, …, 记w …, 下面 x z i =1, 2, 2 k. y 2 k 的排列 . i= i+ i, …, 这只需证明, 验证 w1 , w2 , w2 k 互不 同 余 . k模 4 对任意整数i 、 、 i+k 、 模 1≤ i w w w < j, j≤k, i、 j w j+k ( 4 k 两两不同余 *) 注意 , 前面的构造方式已保证 , (o w m o d 4 k) w d 4 k) iw i +k ( j w j+k m ( ** ) 情形一 : 且z 则由前面的构造方 z y y i= i, j= j. 式可知 ,w w i( m o d 2 k) j i≡ w i +k ≡ 2 j ≡w j+k ≡ 2 ( ) m o d 2 k. 由于 2 , 故易知 w i m o d 2 k) 2 j( i 与w i +k 模 及 wj+k 模 2 从而 2 k不同 余, w k 不 同 余, i +k 与 w j 再结合 ( 可见 ( 得证 . 模4 k 更不同余 , ** ) *) 情形二 : 且z 则由前面的构 z y y i= i +k , j= j+k . 造方式可知 ,w w 2 i+k ( m o d 2 k) j i≡w i +k ≡ j ≡w j+k ≡2 ) + k( m o d 2 k . 同样有 w 及 wi+k 模 2 k 不同 余 , w i 与w i +k 与 j 与情形一相同地可知 wj 及 wj+k 模 2 k 不 同 余. ( 得证 . *) 情形三 : 且z (i =y 且z z y y i= i, i +k , j= j+k z j= 的情形与此相同 ) 则由前面的构造方式可知 . y j ,w w 2 i( m o d 2 k) j+k i≡w i +k ≡ j ≡w j+k ≡2 ( m o d 2 k) . 由 于k 是奇数 , 故2 ) , 更有 2 i k( m o d 2 i 2 j+ , 因此仍然有 w 及 wj+k 模 k( m o d 2 k) 2 j+ i 与w j 及 wj+k 模 2 从而 2 k不同 余, w k 不 同 余. i +k 与 w j ( 得证 . *) 因此本题得证 .
高中联赛一试试题及答案
高中联赛一试试题及答案一、选择题(每题3分,共30分)1. 下列哪项不是细胞的基本结构?A. 细胞膜B. 细胞质C. 细胞核D. 细胞壁答案:D2. 光合作用主要发生在植物细胞的哪个部分?A. 细胞核B. 细胞质C. 线粒体D. 叶绿体答案:D3. 人体最大的器官是什么?A. 心脏B. 肝脏C. 皮肤D. 肺答案:C4. 以下哪种元素不属于人体必需微量元素?A. 铁B. 锌C. 钙D. 碘答案:C5. 人体中负责运输氧气的蛋白质是?A. 血红蛋白B. 球蛋白C. 纤维蛋白D. 清蛋白答案:A6. 以下哪种遗传病是由单基因突变引起的?A. 唐氏综合症B. 血友病C. 肌肉萎缩症D. 多囊肾答案:B7. 以下哪种生物不属于脊椎动物?A. 鱼B. 鸟C. 昆虫D. 哺乳动物答案:C8. 细胞分裂过程中,染色体数量加倍发生在哪个阶段?A. 间期B. 前期C. 中期D. 后期答案:D9. 以下哪种维生素是脂溶性的?A. 维生素BB. 维生素CC. 维生素DD. 维生素E答案:C10. 人体免疫系统中,负责识别和攻击外来病原体的细胞是?A. 红细胞B. 白细胞C. 血小板D. 淋巴细胞答案:D二、填空题(每题2分,共20分)1. 人体中负责维持酸碱平衡的系统是__________。
答案:缓冲系统2. 细胞膜的主要功能是__________。
答案:控制物质进出细胞3. 人体中负责消化脂肪的酶是__________。
答案:脂肪酶4. 人体中最大的淋巴器官是__________。
答案:脾脏5. 人体中负责感觉味觉的器官是__________。
答案:舌头6. 人体中负责调节体温的系统是__________。
答案:体温调节系统7. 人体中负责产生尿液的器官是__________。
答案:肾脏8. 人体中负责运输二氧化碳的分子是__________。
答案:碳酸氢盐9. 人体中负责储存能量的主要物质是__________。