高数第六章作业
高数第六章阶段练习
第六章 定积分的应用一、选择题1. 曲线x y ln =与直线ex 1=,e x =及0=y 所围成的区域的面积S=( ) A .)11(2e - B. e e 1- C. ee 1+ D. 11+e2.曲线)2)(1(x x x y --=与x 轴所围成图形的面积为( ) A .⎰---20)2)(1(dx x x x B.⎰⎰-----121)2)(1()2)(1(dx x x x dx x x xC. ⎰⎰--+---121)2)(1()2)(1(dx x x x dx x x x D.⎰--20)2)(1(dx x x x3.曲线422+-=x x y 上点)4 ,0(0M 处的切线T M 0与曲线)1(22-=x y 所围图形的面积S=( ) A.49 B. 94 C. 1213 D. 4214.设)(),(x g x f 在[]b a ,上连续且m x f x g <<)()(,则由曲线)(),(x g y x f y ==与直线b x a x ==,围成的平面图形绕直线m y =旋转而成的旋转体的体积V=( )A. [][]⎰-+-b adx x g x f x g x f m )()()()(2π B. [][]⎰---badx x g x f x g x f m )()()()(2πC.[][]⎰-+-badx x g x f x g x f m )()()()(π D.[][]⎰---badx x g x f x g x f m )()()()(π5.曲线⎩⎨⎧-=+=)cos (sin )sin (cos t t t a y t t t a x 从0=t 到π=t 的一段弧长可表示成定积分( )A.dt t at ⎰+π2)sin (1 B.[]⎰-+π2)cos (sin 1dt t t t aC .⎰πatdt D.tdt at t at cos )sin (102⎰+π6.如图6-1所示,x 轴上有一线密度为常数μ,长度为l 的细杆,有一质量为m 的质点到杆右端的距离为a ,已知引力系数为k ,则质点与细杆之间引力的大小为( )图6-1A. ⎰--02)(l dx x a km μB. ⎰-ldx x a km 02)(μ C. ⎰-+022)(2l dx x a km μ D. ⎰+l dx x a km 2102)(2μ1.求由下列曲线所围成的平面图形的面积: (1)抛物线y x 3252=与直线20516=-x y ; (2)曲线xxe y e y 2 ,==与直线2=y ;(3)曲线t a y t a x 33sin ,cos ==与)0( sin ,cos >==a t a y t a x .2. 求位于曲线xe y =下方,该曲线过原点的切线的左方以及x 轴上方之间的图形的面积. 3. 求下列各曲线所围成图形的公共部分的面积: (1)θρcos 3=及θρcos 1+=; (2))0( )sin (cos ,sin >+==a a a θθρθρ.4. 求下列各题中给出的平面图形绕指定的轴或直线旋转所形成的旋转体的体积: (1)16)5(22=-+y x ,绕x 轴;(2)在第一象限中,等轴双曲线9=xy 与直线10=+y x 之间的平面图形,绕y 轴; (3)在第一象限中,由抛物线24x y =,直线1 ,0==y x 所围成的平面图形,绕直线2=x . 5. 求阿基米德螺线)0( >=a a θρ从极点到第一圈终点的长度. 6. 试证曲线)20( sin π≤≤=x x y 的弧长等于椭圆2222=+y x 的周长.7. 用铁锤将一铁钉击入木板,设木板对铁钉的阻力与铁钉击入木板的深度成正比,在击第一次时,将铁钉击入木板cm 1. 如果铁锤每次锤击铁钉所作的功相等,问锤击第二次时,铁钉又击入多少 三、选作题1. 设)(x ρρ=是抛物线x y =上任一点)1( ),(≥x y x M 处的曲率半径,)(x s s =是该抛物线上介于点)1 ,1(A 与M 之间的弧长,计算222)(3dsd ds d ρρρ-的值. 2. 设直线ax y =与抛物线2x y =所围成图形的面积为1S ,它们与直线1=x 所围成的图形面积为2S ,并且1<a .(1)试确定a 的值,使21S S +达到最小,并求出最小值.(2)求该最小值所对应的平面图形绕x 轴旋转一周所得旋转体的体积.3. 一抛物线的轴平行于x 轴,开口向左且通过原点与点)1 ,2(,求当它与y 轴所围的面积4. 半径为R的半球形水池充满水,将水从池中抽出,当抽出的水所作的功为将水全部抽空所作的功的一半时,试问水面下降的深度H为多少?。
高数第六章总习题答案
复习题A、判断正误1、若a b b c 且b 0 ,则a c;()解析 a b b c = b (a c) =0 时, 不能判定b0或a c . 例如ai , b j ,k ,有 a b b c 0 , 但a c .cM * 2、 右ab bc 且 b 0 ,则a c ;()解析 此结论不一定成立.例如a i,b j , c(i j), 则b i j k ,bc j [ (i j)]k , a b b c , 但ac .3、若 a c 0 ,则a 0或c 0 ;()两个相互垂直的非零向量点积也为零.解析二、选择题:当a 与b 满足(D )时,有a b解析只有当a 与b 方向相同时,才有 a + b=a+b .解析 对于曲面z 1 x 2 2 y 2,垂直于z 轴的平面截曲面是椭圆, 垂直于x 轴或y 轴 的平面截曲面是开口向下的抛物线,根据曲面的截痕法,可以判断曲面是椭圆抛物面.4、 a解析 b b a .这是叉积运算规律中的反交换律. (A) a b ;(B ) a b (为常数);(C)// b ; (D) a||b .(A)中a , b 夹角不为0, (B),(C )中a , b 方向可以相同,也可以相反.2、下列平面方程中,方程(C ) 过y 轴; (A) x y z 1 ;(B) x(C) x z 0;(D)解析平面方程Ax By Cz 0若过 y 轴,则B D 0,故选C.3、在空间直角坐标系中,方程 1 x 22y 2所表示的曲面是(B );(A )椭球面;(B ) 椭圆抛物面;(C)椭圆柱面;(D ) 单叶双曲面.25、直线x 1 yz 1与平面x y z 1的位置关系是(B ).2 11(A )垂直;(B ) 平行;(C )n夹角为一;(D )夹角为n44解析直线的方向向量s ={2 ,1,-1}, 平面的法向量 n ={1 , -1 , 1},s n =2-1-1=0 ,所以,s 丄n ,直线与平面平行.三、填空题:所以,与平面垂直的单位向量为3、过点(3,1, 2)和(3,0,5)且平行于x 轴的平面方程为 7y z 5 0 ;解 已知平面平行于 x 轴,则平面方程可设为 By Cz D 0,将点(-3 , 1, -2)4、空间曲线2'在xOy 面上的投影方程为(C );(A) x 2 y27; (B)7; (C)7; (D)解析 2 2曲线x yz 57与xOy 平面平行,在xOy 面上的投影方程为x 2 y 2 7z 01、 若a|ba b sin(a$) = . 2 sin n = 2 , a ba b cos(a$) = , 2 cos^o.2、 与平面x y 2z 6 0垂直的单位向量为平面的法向量 n ={1, -1,2}与平面垂直,其单位向量为:n =/和(3 ,0,5)代入方程,有 B 2C D5C D 0,0,B CD,得D,7 , Dy 5 -Dz D 0, 5即7y z 5 0.4、过原点且垂直于平面2y z2 0的直线为 xy z ;2解 直线与平面垂直,则与平面的法向量n ={0,2,-1}平行,取直线方向向量s = n ={0 ,2,-1},由于直线过原点,所以直线方程为- 1 z 0 2曲线方程.四、解答题:2、已知向量RP 2的始点为R (2, 2,5),终点为P 2( 1,4,7),试求:(1)向量RR 的坐标表示;(2)向量RF 2的模;(3)向量RP 2的方向余弦;(4)与向量P 1P 2方向一致的单位5、曲线Z 2x 2z 12y ,在xOy 平面上的投影曲线方程为2 2 ,2x y 1, z 0.解:投影柱面为2x 2y 2 1,故2x 2z 01'为空间曲线在xOy 平面上的投影1、 已知{1, 2,1},{1,1,2},计算⑻;(b)(2a b) (a b) ; (c)解:a b = 12 1{ 5, 1,3}.1 12(b)2a b {2, 4,2} {1,1 2} {1, 5,0},所以(2ab) (a b) {1, 5,0} {2, 1,3} 7 .(c)a b {1, 2,1} {1,1,2} {0,3, {1, 2,1} {1,1,2} {2, 1,3},a b 2 W'9 1)210 ijk1},所以 a b b ;故与a 、b 都垂直的单位向量为求向量d5、求满足下列条件的平面方程:(1)过三点 R(0,1,2) , P 2(1,2,1)和 P 3(3,0,4) ; (2)过 x 轴且与平面-5xx 0 y 1 z 2用三点式.所求平面的方程为1 02 1 1 2 0 ,即3 0 0 14 2解 (1)解1 :向量.(1)P i PP { 1 2,4(2),7 5} { 3,6,2}⑵PP 2.(3)2 62 22.49cos3、 P i P 2x,y,z 的方向余弦分别|,cos6,cos(P 1P 2)PP 23i 2k3. i 72k .7设向量1, 1,1 , b1,1, 1 ,求与a 和b 都垂直的单位向量•解:令c°,2,2 , c °1c1 1 °\2 \2,4、向量d 垂直于向量a[2,3, 1]和b [1, 2,3],且与 c [2, 1,1]的数量积为解:d 垂直于a 与b ,故d 平行于ab ,存在数使[2,3, 1] [1, 2,3] [7 , 7,7]因 d c 6,故 2 7( 1) ( 7 ) 137d [ 3,3,3].2y z 0的夹x 5y 4z 13 0.x 5y z Q6、一平面过直线且与平面x 4y 8z 12 0垂直,求该平面方程;x z 4 0x 5y 4z 13 0.解2: 量为用点法式.P 1P 2{1,1, 1},PB {3, 1,2},由题设知,所求平面的法向n P 1P2R Bi j k 1 1 1 i 5j 4k ,31 2又因为平面过点R(0,1,2),所以所求平面方程为(x 0) 5(y 1) 4( z 2) 0,即解3: 用下面的方法求出所求平面的法向量n {A,B,C},再根据点法式公式写出平面万程也可.因为 n RP 2,n P 1P 3,所以 3A平面方程为2C °0解得B 5A,C 4A ,于是所求A(x 0) 5A(y 1) 4A(z 2) 0,即 x 5y 4z 13 0.(2)因所求平面过x 轴,故该平面的法向量 n {A, B,C}垂直于x 轴,n 在x 轴上的投影A 0,又平面过原点,所以可设它的方程为 By Cz 0,由题设可知B 0 (因为B 0时,所求平面方程为 Cz 0又C0 ,即z 0 .这样它与已知平面5x 2y z 0所夹锐角的余弦为0 V5 0 2 1 102 02 12 . (. 5)2 22 12n 1Ccos ——,所以 B 0 ),令一 3 2 BC ,则有 y Cz 0,由题设得0 <5 1 2 C 1cos —J _ = 302 12 c 2.( 5)2 22 12解得C 3或C1,于是所求平面方程为3y 3z 0 或 3y z 0.x 5y z 0, 4解法1 : 直线在平面上,令X =0,得y , z=4,则(0, x z 4 0 54)为平面上的点.设所求平面的法向量为n ={ A, B, C},相交得到直线的两平面方程的法向量分别为求平面经过直线,故平面的法向量与直线的方向向量垂直,即解方程组解法2:用平面束(略)直线方程•式方程,所求直线方程为x 4z 23 02x y 5z 33 0n i={l ,5 , 1}, n2 ={1, 0, -1},则直线的方向向量s = n1 n?=={-5 , 2,-5} ,由于所s n ={-5 ,2, -5} ? {A,B,C}= 5A 2B 5C =0,因为所求平面与平面x 4y8z 12 0垂直,则{A, B,C} {1, 4, 8}=A 4B 8C =0,所求平面方程为5AA2B4B5C8C2C,2C52C(x 0) ^(y4) C(z5 4) 0,即4x 5y 2z 12 0.7、求既与两平面14z 3和2:2x y 5z 1的交线平行,又过点(3,2,5)的解法1: n11,0, 2, 1, 5 , s 3, 1 ,从而根据点向解法2:设s m, n, p ,因为s n1,所以m 4p 0 ;又s n2,则2m n 5p 0,可解m4p,n 3p,从而p 0 .根据点向式方程,所求直线方程为解法x 34p口◎,即2LJ3p p 43:设平面3过点(3,2,5),且平行于平面则n3n11,0, 4为3的法向量,从而3的方程为1 (x 3) 0 (y 2) 4 (z 5) 4z 23 0 .同理, 过已知点且平行于平面2的平面4的方程为2x y 5z 33 0 •故所求直线的方程为相交,求该直线方程;又因为直线过点A(1,2,1),则所求直线方程为可得m p ,代入③解得n9、指出下列方程表示的图形名称:⑻ x 2 4y 2 z 21 ; (b)x 2 y 2 (d) x 2y 2 0 ; (e) x 2 y 21 ; 解:(a)绕y 轴旋转的旋转椭球面. 的锥面.(d)母线平行于z 轴的两垂直平面:x (f)旋转抛物面被平行于 XOY 面的平面所截得到的圆,半径为 2 ,圆心在(0, 0, 2)处.2x 所以柱面与xOy 平面的交线C : z y 1所围成的区域x 2 y 21即为曲面解: 设所求直线的方向向量为s {m,n, p},因垂直于 所以3m 2nx 1 m,,则有 y 2 n,代入方程②有1m 2n, m 1 p,z 1p,10、2 2 2求曲面z x y 与z 2 (x)所围立体在xOy 平面上的投影并作其图形.将所给曲面方程联立消去z就得到两曲面交线C 的投影柱面的方程一直线通过点 A(1,2,1),且垂直于直线L :x 1 ~3~,又和直线xx 1 y 2z 1J① m n px y z,②3m2n p 0 , ③由①,令x 1y 2 z 1mnp2z;(c) zx 22y ;22(f)z xyz 2(b) 绕z 轴旋转的旋转抛物面.(c) 绕z 轴旋转y ,xy . (e) 母线平行于 z 轴的双曲柱面.2p ,因此,所求直线方程为2 2 2 2z x y与z 2 (x y )所围立体在xOy平面上的投影(图略).1、设a解:A(a 2b) (a3a b 2a2、设(a复习题B(细-,求以a 2b和a 3b为邻边的平行四边形的面积3b)3b) (7a 5b),解:由已知可得:(a 3b)15b216a b 0,这可看成是含三个变量3、求与a解由于5a(a(7aa 3ab 2b a 6b b4b)5b)5a8b{1, 2,3} { , 24、已知a解法由①得z| |bsin($b) 5 4 3(7a 2b),求(?,b).0, (a 4b) (7a 2b)230a b 0.、b及a b的方程组,可将a、b都用a J2a b,从而cos(£b)a b a ba |b 2a b2,(?'b) {1, 2,3}共线,且a b 28的向量b .b与a共线,所以可设b,3 } 28 ,28,所以{1,0, 2}, b1:待定系数法•设x2④,由②得y,2 ,3 },2,从而b {2,{1,1,0},求c,使4,6}.c a, cc {x, y, z},则由题设知cx 2z 0x y 0x2y2z2 6x⑤,将④和⑤代入③得-30.2b表示,即28 ,得6.a 0, cb 0 及c2x2( x)2 26,所以6,解得x 4,y4,z2,于是 c{4, 4,2} 或c { 4,4, 2}.解法2:利用向量白 勺垂直平行条件,因为c a,c b , 所以c // a b设 是不为零的常数,则i jkc(a b) 1 0 22 i 2 jk ,1 1因为c :6 ,所以卡■' 2[22 ( 2)212] 6 ,解得2,所以c{4, 4,2}或c { 4,4, 2}.解法3:先求出与向量ab 方向一致的单位向量,然后乘以6 .i j ka b1 0 22i 2j k ,a bJ 22 ( 2)2 123,1 1 0故与a b 方向一致的单位向量为1f{2, 2,1}.于是 c 6{2, 2,1},即 c {4, 4,2}或 3c { 4,4, 2}.22R 25、求曲线x y R 的参数式方程.x y z 0解:曲线参数式方程是把曲线上任一点P(x, y,z)的坐标x, y, z 都用同一变量即参数表示出来,故可令 x R cost, y Rsi nt ,贝 U z R(cost si nt).2y在xOy 面上及在zOx 面上的投影曲线的方程.2x 解:求L 在xOy 面上的投影的方程,即由L 的两个方程将z消去,即得L 关于xOy 面 的投影柱面的方程x 2 y 2 2x 则L 在xOy 面上的投影曲线的方程为6、求曲线L: z 4 X 22 2x y2小y 2x z 0同理求L 在zOx 面上的投影的方程,即由 L 的两个方程消去y ,得L 关于 zOx 面的投影柱 面的方程z ,4 2x ,则L 在zOx 面上的投影曲线方程为z 4 2x7、已知平面 过点M °(1,0, 1)和直线L 1: — 2_y ~1三」,求平面1的方程.解法1: 设平面的法向量为n,直线L1的方向向量s, (2,0,1),由题意可知n s1,uLuiun uuuuurM (2,1,1)是直线L i上的一点,则M°M (1,1,2)在上,所以n MM。
高数第六章重积分课堂练习题及答案
r O
图3
D {(r, ) | 0 r r( ), 0 2}
f
(r cos , r sin )rdrd
2
0
d r( ) 0
f
(r cos , r sin )rdr
D
2o 极点在区域 D 的边界上,如图 8-10 所示.
O
r
图4
D {(r, ) | 0 r r( ), }
r( )
D
D
大小. 先判断 f (x, y) 和 g(x, y) 在 D 上的大小关系,再应用二重积分的比较性质比较两个二
重积分的大小.
解: 由 (x 1)2 ( y 1)2 2 ,可得
y
x y 1 (x2 y2 2x 3) 1 [(x 1)2 y2 ] 1 1
2
2
x
如图 8-22.
o
图 8-22
成的在第一卦限内的立体体积. R3 arctan K
y
3
z x2 y2 z2 1
y
O Dxy
y
x
x2 y2 1
O
x
o
x
图6
2. 求由曲面 z x2 2 y2 及 z 6 2x2 y2 所围成的立体的体积. 6 3. 求由曲面 z x2 y 2 及 z x 2 y 2 所围成的立体的体积
D
[思路] 利用二重积分的估值性质估计二重积分,先计算被积函数在积分区域上的最大、 最小值和积分区域的面积,应用估值性质来估计二重积分的值.
解: 因为在积分区域 D 上, 0 x 1,0 y 2 ,所以 0 xy 2, 1 x y 1 4
于是可得 0 xy(x y 1) 8 ,而 D 的面积 1 2 2 ,应用估值性质有
高等代数第6章习题参考答案
(N
L),故(M
N)
(M
L) M
(N
L),
于是M
(N
L) (M
N)
(M
L)。
若x M
U(N
I L),则x M
,x
N I L。
在前一情形Xx
M UN,
且X
M
UL,因而x
(M
U N)I(MU L)。
在后一情形,
故
即证。
3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间:
1)次数等于n(n1)的实系数多项式的全体,对于多项式的加法和数量乘法;
1
系数多项式组成的空间,其中A=0
0
解1)Pn n的基是Eij}(i, j 1,2,..., n),且dim( Pn n) n2。
... ... ... 1 ...
2) i)
F11,..
令Fij
1
.., Fnn
., 即aijaji1,其 余 元 素 均 为 零,则
.,F1n,F22,..
., F2n,.
n(n 1)维的。
2
3)任一不等于1的正实数都是线性无关的向量,例如取2,且对于任一正实数a,可经2线性
表出,即
.a (log2a)
2,所以此线性空间是
一维的,
且
2是它的一组基。
4)因为
1 3i
31,所以n
1,n ,n
3q
3q
1,
2
2
,n
3q
2
1
1
E,n
3q
当A,B为反对称矩阵,k为任意一实数时,有
(A+B)=A+B=-A-B=-(A+B),A+B仍是反对称矩阵。(KA)KA K(A) (KA),所以kA是反对称矩阵。 故反对称矩阵的全体构成线性空间。
高等数学第六章答案
高等数学第六章答案第六章定积分的应用第二节定积分在几何上的应用1? 求图中各阴影部分的面积?(1)(2) 1 1. 632? 332 (4)? 3 (3)2. 求由下列各曲线所围成的图形的面积?(1) 6??(2)4? 33?ln2? 21 (3)e??2? e(4)b?a93? ? 414? (1)?21(2)?4 35? (1) ?a2?(2) 32?a? 82 (3)18?a? ?6? (1)2?(2)?4? ?35? 4(3)及?2?cos2??6?127.求下列已知曲线所围成的图形? 按指定的轴旋转所产生的旋转体的体积:(1)y?x和x轴、向所围图形,绕x轴及y轴。
21(2)y?x2和y2?8x,绕x及y轴。
2(3)x??y?5??16,绕x轴。
2(4)xy=1和y=4x、x=2、y=0,绕。
(5)摆线x=a?t-sint?,y?a?1?cost?的一拱,y?0,绕x轴。
??482413(1,;(2)?,?;(3)160?2;(4)?;(5)5?2a3. 525568.由y?x3? x?2? y?0所围成的图形? 分别绕x轴及y轴旋转? 计算所得两个旋转体的体积?128?? 764? Vy?5 Vx?9.把星形线x2/3?y2/3?a2/3所围成的图形? 绕x轴旋转? 计算所得旋转体的体积?10.(1)证明由平面图形0?a?x?b? 0?y?f(x)绕y轴旋转所成的旋转体的体积为V?2?32?a3 105?xf(x)dx? 证明略。
a 2b (2)利用题(1)结论? 计算曲线y?sin x(0?x??)和x轴所围成的图形绕y轴旋转所得旋转体的体积? 2?11.计算底面是半径为R的圆? 而垂直于底面上一条固定直径的所有截面都是等边三角形的立体体积?3R? 22312.计算曲线y?x2上相应于3?x?8的一段弧的弧长。
12 33213.计算曲线y?ln(1?x)上相应于0?x?11的一段弧的弧长。
高等数学课后答案第六章习题详细解答
高等数学课后答案第六章习题详细解答-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN习 题 6—11、在平行四边形ABCD 中设−→−ABa −→−ADb 试用a 和b 表示向量−→−MA 、−→−MB 、−→−MC 、−→−MD其中M 是平行四边形对角线的交点解: 由于平行四边形的对角线互相平分 所以ab −→−−→−==AMAC 2 即 (ab )−→−=MA2 于是 21-=−→−MA (ab )因为−→−−→−-=MAMC 所以21=−→−MC (ab ) 又因a b −→−−→−==MDBD 2 所以21=−→−MD (ba )由于−→−−→−-=MD MB 所以21=−→−MB (ab )2、若四边形的对角线互相平分,用向量方法证明它是平行四边形. 证: AM =,=,∴=+=+=AD 与 BC 平行且相等,结论得证.3、 求起点为)1,2,1(A ,终点为)1,18,19(--B 的向量→AB 与12AB −−→-的坐标表达式.解:→AB =j i k j i 2020)11()218()119(--=-+--+--={20,20,0}--, 12AB −−→-={10,10,0}4、 求平行于a ={1,1,1}的单位向量. 解:与a 平行的单位向量为{}1,1,131±=±a a .5、在空间直角坐标系中,指出下列各点在哪个卦限?(1,1,1),A - (1,1,1),B -(1,1,1),C -- (1,1,1).D -- 解: A:Ⅳ; B:Ⅴ; C:Ⅷ; D:Ⅲ.6、 求点),,(z y x M 与x 轴,xOy 平面及原点的对称点坐标.解:),,(z y x M 关于x 轴的对称点为),,(1z y x M --,关于xOy 平面的对称点为),,(2z y x M -,关于原点的对称点为),,(3z y x M ---.7、已知点A(a, b, c), 求它在各坐标平面上及各坐标轴上的垂足的坐标(即投影点的坐标). 解:分别为),0,0(),0,,0(),0,0,(),,0,(),,,0(),0,,(c b a c a c b b a .8、过点(,,)P a b c 分别作平行于z 轴的直线和平行于xOy 面的平面,问它们上面的点的坐标各有什么特点?解:平行于z 轴的直线上面的点的坐标:x a,y b,z R ==∈;平行于xOy 面的平面上的点的坐标为 z c,x,y R =∈.9、求点P (2,-5,4)到原点、各坐标轴和各坐标面的距离.解:到原点的距离为x y 轴的距离为到z10、 求证以)1,3,4(1M 、)2,1,7(2M 、)3,2,5(3M 三点为顶点的三角形是一个等腰三角形. 解:222212(74)(13)(21)14M M =-+-+-=,222223(57)(21)(32)6M M =-+-+-=222213(45)(32)(13)6M M =-+-+-=,即1323M M M M =,因此结论成立.11、 在yoz 坐标面上,求与三个点A(3, 1, 2), B(4, -2, -2), C(0, 5, 1)等距离的点的坐标. 解:设yoz 坐标面所求点为),,0(z y M ,依题意有||||||MC MB MA ==,从而222)2()1()30(-+-+-z y 222)2()2()40(++++-=z y222)2()1()30(-+-+-z y联立解得2,1-==z y ,故所求点的坐标为)2,1,0(-.12、 z 轴上,求与点A(-4, 1, 7), 点B(3, 5,-2)等距离的点. 解:设所求z 轴上的点为),0,0(z ,依题意:222)7()10()40(-+-++z 222)2()50()30(++-+-=z ,两边平方得914=z ,故所求点为)914,0,0(.13、 求λ使向量}5,1,{λ=a 与向量}50,10,2{=b 平行. 解:由b a //得5051012==λ得51=λ.14、 求与y 轴反向,模为10的向量a 的坐标表达式.解:a =j j 10)(10-=-⋅={0,10,0}-.15、求与向量a ={1,5,6}平行,模为10的向量b 的坐标表达式. 解:}6,5,1{6210==a a a ,故 {}6,5,16210100±=±=a b .16、 已知向量6410=-+a i j k ,349=+-b i j k ,试求: (1)2+a b ; (2)32-a b .解:(1) 264102(349)1248i a b i j k i j k j k +=-+++-=+-; (2)323(6410)2(349)=122048a b =i j k i j k i j k --+-+--+.17、已知两点A 和(3,0,4)B ,求向量AB 的模、方向余弦和方向角.解: 因为(1,1)AB =-, 所以2AB =,11cos ,cos 22αβγ===-,从而 π3α=,3π4β=,2π3γ=.18、设向量的方向角为α、β、γ.若已知其中的两个角为π3α=,2π3β=.求第三个角γ.解: π3α=,2π3β=,由222cos cos cos 1αβγ++=得21cos 2γ=.故π4γ=或3π4.19、 已知三点(1,0,0)=A ,(3,1,1)B ,(2,0,1)C ,求:(1)BC 与CA 及其模; (2)BC 的方向余弦、方向角;(3)与BC 同向的单位向量.解:(1)由题意知{}{}23,01,111,1,0,BC =---=--{}{}12,00,011,0,1,CA =---=-- 故 2,2==BC CA .(2)因为{}1,1,0,=--BC 所以,由向量的方向余弦的坐标表示式得:cos 0αβγ===,方向角为:3,42ππαβγ===.(3)与BC 同向的单位向量为:o a =⎧⎫=⎨⎬⎩⎭BCBC .20、 设23,23,34,m i j k n i j k p i j k =++=+-=-+和23a m n p =+-求向量在x 轴上的投影和在y 轴上的分向量.解:2(23)3(23)(34)5114a i j k i j k i j k i j k =++++---+=+-.故向量a 在x 轴上的投影5=x a ,在y 轴上的投影分量为11y a j =.21、一向量的终点为点B(-2,1,-4),它在x 轴,y 轴和z 轴上的投影依次为3,-3和8,求这向量起点A 的坐标.解:设点A 为(x, y, z ),依题意有:84,31,32=---=-=--z y x , 故12,4,5-==-=z y x ,即所求的点A (-5, 4,-12).22、 已知向量a 的两个方向余弦为cos α=72 ,cos β=73, 且a 与z 轴的方向角是钝角.求cos γ. 解:因222cos cos cos 1,αβγ++=22223366cos 1cos 77497γγ=-==±故()—(),,又γ是钝角,所以76cos -=γ.23、设三力1232234F ,F ,F i j i j k j k =-=-+=+作用于同一质点,求合力的大小和方向角. 解: 合力123(2)(234)()F F F F i k i j k j k =++=-+-+++323i j k =-+,因此,合力的大小为|F |=合力的方向余弦为,222cos ,cos 223cos -===βγα因此παγβ===-习 题 6—21、 {}0,0,1=a ,{}0,1,0=b ,)1,0,0(=c ,求⋅a b ,c a ⋅,c b ⋅,及a a ⨯,b a ⨯,c a ⨯,c b ⨯. 解:依题意,i a =,j b =,k c =,故0=⋅=⋅j i b a ,0=⋅=⋅k i c a ,0=⋅=⋅k j c b .0=⨯=⨯i i a a ,k j i b a =⨯=⨯,j k i c a -=⨯=⨯,i k j c b =⨯=⨯.2、 }}{{1,2,2,21,1==b a ,,求b a ⋅及b a ⨯ .a 与b的夹角余弦.解:(1)121221⋅=⨯+⨯+⨯=a b 6, 112221⨯==i j ka b }{3,3,0-.(2)cos a b a b a b θ++==3、 已知 π5,2,,3∧⎛⎫=== ⎪⎝⎭a b a b ,求23a b -解:()()2232323-=-⋅-a b a b a b 22412976=-⋅+=a a b b ,∴ 23-=ab4、 证明下列问题:1)证明向量}{1,0,1=a 与向量}{1,1,1-=b 垂直. 2) 证明向量c 与向量()()a c b b c a ⋅-⋅垂直. 证:1)01110)1(1=⨯+⨯+-⨯=⋅b a ,^π(,)2a b ∴=,即a 与b 垂直. 2) [()()]⋅-⋅⋅a c b b c a c [()()]=⋅⋅-⋅⋅a c b c b c a c ()[]=⋅⋅-⋅c b a c a c 0=[()()]∴⋅-⋅⊥a c b b c a c .5、 求点)1,2,1(M 的向径OM 与坐标轴之间的夹角.解:设OM 与x 、y 、z 轴之间的夹角分别为γβα,,,则211)2(11cos 22=++==α, 22cos ==β, 21cos ==γ. 3π=∴α, 4π=β, 3π=γ.6、 求与k j i a ++=平行且满足1=⋅x a 的向量x .解:因x a //, 故可设{}λλλλ,,==a x ,再由1=⋅x a 得1=++λλλ,即31=λ,从而⎭⎬⎫⎩⎨⎧=31,31,31x .7、求与向量324=-+a i j k ,2=+-b i j k 都垂直的单位向量.解:=⨯=xy z xy zij kc a b a a a b b b 324112=--i j k =105+j k,||10==c0||∴=c c c=.⎫±⎪⎭j8、 在顶点为)2,1,1(-A 、)2,6,5(-B 和)1,3,1(-C 的三角形中,求三角形ABC 的面积以及AC 边上的高BD .解:{0,4,3},{4,5,0}AC AB =-=-,三角形ABC 的面积为,22516121521||21222=++=⨯=A S ||||21,5)3(4||22BD S ==-+= ||521225BD ⋅⋅= .5||=∴BD9、 已知向量≠0a ,≠0b ,证明2222||||||()⨯=-⋅a b a b a b .解 2222||||||sin ()∧⨯=⋅a b a b ab 222||||[1cos ()]∧=⋅-a b ab 22||||=⋅a b 222||||cos ()∧-⋅a b ab 22||||=⋅a b 2().-⋅a b10、 证明:如果++=0a b c ,那么⨯=⨯=⨯b c c a a b ,并说明它的几何意义.证: 由++=0a b c , 有()++⨯=⨯=00a b c c c , 但⨯=0c c ,于是⨯+⨯=0a c b c ,所以⨯=-⨯=⨯b c a c c a . 同理 由()++⨯=0a b c a , 有 ⨯=⨯c a a b ,从而 ⨯=⨯=⨯b c c a a b . 其几何意义是以三角形的任二边为邻边构成的平行四边形的面积相等.11、 已知向量23,3=-+=-+a i j k b i j k 和2=-c i j ,计算下列各式: (1)()()⋅-⋅a b c a c b (2)()()+⨯+a b b c (3)()⨯⋅a b c (4)⨯⨯a b c 解: (1)()()8(2)8(3)⋅-⋅=---+=a b c a c b i j i j k 824--j k .(2) 344,233+=-++=-+a b i j k b c i j k ,故()()+⨯+a b b c 344233=-=-i jk--j k . (3)231()231(2)(85)(2)11311312-⨯⋅=-⋅-=--+⋅-=-=--i jk a b c i j i j k i j 2.(4)由(3)知85,()851120⨯=--+⨯⨯=--=-i jka b i j k a b c 221++i j k .习 题 6—31、已知)3,2,1(A ,)4,1,2(-B ,求线段AB 的垂直平分面的方程. 解:设),,(z y x M 是所求平面上任一点,据题意有|,|||MB MA =()()()222321-+-+-z y x ()()(),412222-+++-=z y x化简得所求方程26270x y z -+-=.这就是所求平面上的点的坐标所满足的方程, 而不在此平面上的点的坐标都不满足这个方程,所以这个方程就是所求平面的方程.2、 一动点移动时,与)0,0,4(A 及xOy 平面等距离,求该动点的轨迹方程.解:设在给定的坐标系下,动点),,(z y x M ,所求的轨迹为C ,则(,,)M x y z C MA z ∈⇔= 亦即 z z y x =++-222)4( 0)4(22=+-∴y x 从而所求的轨迹方程为0)4(22=+-y x .3、 求下列各球面的方程:(1)圆心)3,1,2(-,半径为6=R ; (2)圆心在原点,且经过点)3,2,6(-;(3)一条直径的两端点是)3,1,4()5,32(--与;(4)通过原点与)4,0,0(),0,3,1(),0,0,4(- 解:(1)所求的球面方程为:36)3()1()2(222=-+++-z y x(2)由已知,半径73)2(6222=+-+=R ,所以球面方程为49222=++z y x (3)由已知,球面的球心坐标1235,1213,3242=-=-=+-==+=c b a , 球的半径21)35()31()24(21222=++++-=R ,所以球面方程为: 21)1()1()3(222=-+++-z y x(4)设所求的球面方程为:0222222=++++++l kz hy gx z y x因该球面经过点)4,0,0(),0,3,1(),0,0,4(),0,0,0(-,所以⎪⎪⎩⎪⎪⎨⎧=-=++=+=08160621008160k h g g l 解之得⎪⎪⎩⎪⎪⎨⎧=-=-==2210k g h l∴所求的球面方程为0424222=+--++z y x z y x .4、将yOz 坐标面上的抛物线22y z =绕z 旋转一周,求所生成的旋转曲面的方程. 解:222x y z +=(旋转抛物面) .5、将zOx 坐标面上的双曲线12222=-cz a x 分别绕x 轴和z 轴旋转一周,求所生成的旋转曲面的方程.解: 绕x 轴旋转得122222=+-c z y a x 绕z 轴旋转得122222=-+cz a y x .6、指出下列曲面的名称,并作图:(1)22149x z +=;(2)22y z =;(3)221x z += ;(4)22220x y z x ++-=;(5)222y x z +=;(6)22441x y z -+=;(7)221916x y z ++=; (8)222149x y z -+=-;(9)1334222=++z y x ;(10)2223122z y x +=+. 解: (1)椭圆柱面;(2) 抛物柱面;(3) 圆柱面;(4)球面;(5)圆锥面;(6)双曲抛物面;(7)椭圆抛物面;(8)双叶双曲面;(9)为旋转椭球面;(10)单叶双曲面.7、指出下列方程在平面解析几何和空间解析几何中分别表示什么图形?(1)1+=x y;(2)422=+y x ;(3)122=-y x ;(4)22x y =.解:(1)1+=x y 在平面解析几何中表示直线,在空间解析几何中表示平面; (2)422=+y x 在平面解析几何中表示圆周,在空间解析几何中表示圆柱面; (3)122=-y x 在平面解析几何中表示双曲线,在空间解析几何中表示双曲柱面; (4)y x 22=在平面解析几何中表示抛物线,在空间解析几何中表示抛物柱面.8、 说明下列旋转曲面是怎样形成的?(1)1994222=++z y x ;(2)14222=+-z y x (3)1222=--z y x ;(4)222)(y x a z +=-解:(1)xOy 平面上椭圆19422=+y x 绕x 轴旋转而成;或者 xOz 平面上椭圆22149+=x z 绕x 轴旋转而成(2)xOy 平面上的双曲线1422=-y x 绕y 轴旋转而成;或者 yOz 平面上的双曲线2214-=y z 绕y 轴旋转而成(3)xOy 平面上的双曲线122=-y x 绕x 轴旋转而成;或者 xOz 平面上的双曲线221x z -=绕x 轴旋转而成(4)yOz 平面上的直线a y z +=绕z 轴旋转而成或者 xOz 平面上的直线z x a =+绕z 轴旋转而成.9、 画出下列各曲面所围立体的图形:(1)012243=-++z y x 与三个坐标平面所围成;(2)42,42=+-=y x x z 及三坐标平面所围成;(3)22=0,(0)=1z z =a a >,y =x,x +y 及0x =在第一卦限所围成;(4)2222,8z x y z x y =+=--所围.解:(1)平面012243=-++z y x 与三个坐标平面围成一个在第一卦限的四面体; (2)抛物柱面24z x =-与平面24x y +=及三坐标平面所围成;(3)坐标面=0z 、0x =及平面(0)z =a a >、y=x 和圆柱面22=1x +y 在第一卦限所围成; (4)开口向上的旋转抛物面22z x y =+与开口向下的抛物面228z x y =--所围.作图略.习 题 6—41、画出下列曲线在第一卦限内的图形(1)⎩⎨⎧==21y x ;(2)⎪⎩⎪⎨⎧=---=0422y x y x z ;(3)⎪⎩⎪⎨⎧=+=+222222a z x ay x解:(1)是平面1x =与2y =相交所得的一条直线; (2)上半球面z 与平面0x y -=的交线为14圆弧; (3)圆柱面222x y a +=与222x z a +=的交线.图形略.2、分别求母线平行于x 轴及y 轴而且通过曲线⎪⎩⎪⎨⎧=-+=++0162222222y z x z y x 的柱面方程.解:消去x 坐标得16322=-z y ,为母线平行于x 轴的柱面;消去y 坐标得:162322=+z x ,为母线平行于y 轴的柱面.3、求在yOz 平面内以坐标原点为圆心的单位圆的方程(任写出三种不同形式的方程).解:⎩⎨⎧==+0122x z y ;⎩⎨⎧==++01222x z y x ; ⎪⎩⎪⎨⎧=+=++1122222z y z y x .4、试求平面20x -=与椭球面222116124x y z ++=相交所得椭圆的半轴与顶点.解:将椭圆方程22211612420x y z x ⎧++=⎪⎨⎪-=⎩化简为:221932y z x ⎧+=⎪⎨⎪=⎩,可知其为平面2=x 上的椭圆,半轴分别为3,3,顶点分别为)3,0,2(),3,0,2(),0,3,2(),0,3,2(--.5 、将下面曲线的一般方程化为参数方程(1)2229x y z y x ⎧++=⎨=⎩; (2)⎩⎨⎧==+++-04)1()1(22z z y x解:(1)原曲线方程即:⎪⎩⎪⎨⎧=+=199222z x xy ,化为⎪⎪⎪⎩⎪⎪⎪⎨⎧=≤≤==tz t t y t x sin 3)20(cos 23cos 23π;(2))20(0sin 3cos 31πθθθ≤≤⎪⎪⎩⎪⎪⎨⎧==+=z y x .6、求螺旋线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 在三个坐标面上的投影曲线的直角坐标方程.解:⎩⎨⎧==+0222z a y x ;⎪⎩⎪⎨⎧==0sin x b z a y ;⎪⎩⎪⎨⎧==0cosy b z a x .7、指出下列方程所表示的曲线(1)222253⎧++=⎨=⎩x y z x (2)⎩⎨⎧==++13094222z z y x ;(3)⎩⎨⎧-==+-3254222x z y x ; (4)⎩⎨⎧==+-+408422y x z y ; (5)⎪⎩⎪⎨⎧=-=-0214922x z y . 解:(1)圆; (2)椭圆; (3)双曲线; (4)抛物线; (5)双曲线.8、 求曲线⎩⎨⎧==-+30222z x z y 在xOy 面上的投影曲线方程,并指出原曲线是何种曲线.解:原曲线即:⎩⎨⎧=-=3922z x y ,是位于平面3=z 上的抛物线,在xOy 面上的投影曲线为⎩⎨⎧=-=0922z x y 9、 求曲线 ⎪⎩⎪⎨⎧==++211222z z y x 在坐标面上的投影. 解:(1)消去变量z 后得,4322=+y x 在xOy 面上的投影为,04322⎪⎩⎪⎨⎧==+z y x 它是中心在原点,半径为23的圆周. (2)因为曲线在平面21=z 上,所以在xOz 面上的投影为线段.;23||,021≤⎪⎩⎪⎨⎧==x y z (3)同理在yOz 面上的投影也为线段..23||,021≤⎪⎩⎪⎨⎧==y x z10、 求抛物面x z y =+22与平面 02=-+z y x 的交线在三个坐标面上的投影曲线方程.解: 交线方程为⎩⎨⎧=-+=+0222z y x x z y ,(1)消去z 得投影,04522⎩⎨⎧==-++z x xy y x(2)消去y 得投影2252400x z xz x y ⎧+--=⎨=⎩,(3)消去x 得投影2220y z y z x ⎧++-=⎨=⎩.习 题 6—51、写出过点()3,2,10M 且以{}1,2,2=n 为法向量的平面方程. 解:平面的点法式方程为()()()032212=-+-+-z y x .2、求过三点()()()01,0,0,1,0,0,0,1C B A 的平面方程.解:设所求平面方程为0=+++d cz by ax ,将C B A ,,的坐标代入方程,可得d c b a -===,故所求平面方程为1=++z y x .3、求过点()1,0,0且与平面1243=++z y x 平行的平面方程. 解:依题意可取所求平面的法向量为}2,4,3{=n ,从而其方程为()()()0120403=-+-+-z y x 即 2243=++z y x .4、求通过x 轴和点(4, -3, -1)的平面的方程.解:平面通过x 轴, 一方面表明它的法线向量垂直于x 轴, 即A =0; 另一方面表明 它必通过原点, 即D =0. 因此可设这平面的方程为By +Cz =0.又因为这平面通过点(4, -3, -1), 所以有-3B -C =0, 或C =-3B . 将其代入所设方程并除以B (B ≠0), 便得所求的平面方程为y -3z =0.5、求过点)1,1,1(,且垂直于平面7=+-z y x 和051223=+-+z y x 的平面方程.解:},1,1,1{1-=n }12,2,3{2-=n 取法向量},5,15,10{21=⨯=n n n所求平面方程为化简得:.0632=-++z y x6、设平面过原点及点)1,1,1(,且与平面8x y z -+=垂直,求此平面方程.解: 设所求平面为,0=+++D Cz By Ax 由平面过点)1,1,1(知平0,A B C D +++=由平面过原点知0D =,{1,1,1},n ⊥- 0A B C ∴-+=,0A C B ⇒=-=,所求平面方程为0.x z -=7、写出下列平面方程:(1)xOy 平面;(2)过z 轴的平面;(3)平行于zOx 的平面;(4)在x ,y ,z 轴上的截距相等的平面.解:(1)0=z ,(2)0=+by ax (b a ,为不等于零的常数), (3)c y = (c 为常数), (4) a z y x =++ (0)a ≠.8、 求平行于0566=+++z y x 而与三个坐标面所围成的四面体体积为1的平面方程. 解: 设平面为,1=++cz b y a x ,1=V 111,32abc ∴⋅=由所求平面与已知平面平行得,611161c b a == 化简得,61161c b a ==令tc t b t a t c b a 61,1,6161161===⇒===代入体积式 11111666t t t ∴=⋅⋅⋅ 1,6t ⇒=±,1,6,1===∴c b a 或1,6,1,a b c =-=-=-所求平面方程为666x y z ++=或666x y z ++=-.9、分别在下列条件下确定n m l ,,的值:(1)使08)3()1()3(=+-+++-z n y m x l 和016)3()9()3(=--+-++z l y n x m 表示同一平面; (2)使0532=-++z my x 与0266=+--z y lx 表示二平行平面; (3)使013=+-+z y lx 与027=-+z y x 表示二互相垂直的平面.解:(1)欲使所给的二方程表示同一平面,则:168339133-=--=-+=+-l n n m m l 即: ⎪⎩⎪⎨⎧=-+=-+=-+092072032n l m n l m ,解之得 97=l ,913=m ,937=n . (2)欲使所给的二方程表示二平行平面,则:6362-=-=m l ,所以4-=l ,3=m . (3)欲使所给的二方程表示二垂直平面,则:7230l ++=所以: 57l =-.10 、求平面011=-+y x 与083=+x 的夹角;解:设011=-+y x 与083=+x 的夹角为θ,则cosθ==∴ 4πθ=.11、 求点(2,1,1)到平面2240x y z +-+=的距离.解:利用点到平面的距离公式可得933d ===.习 题 6—61、求下列各直线的方程:(1)通过点)1,0,3(-A 和点)1,5,2(-B 的直线; (2) 过点()1,1,1且与直线433221-=-=-z y x 平行的直线. (3)通过点)3,51(-M 且与z y x ,,三轴分别成︒︒︒120,45,60的直线; (4)一直线过点(2,3,4)-A ,且和y 轴垂直相交,求其方程. (5)通过点)2,0,1(-M 且与两直线11111-+==-z y x 和01111+=--=z y x 垂直的直线; (6)通过点)5,3,2(--M 且与平面02536=+--z y x 垂直的直线. 解:(1)所求的直线方程为:015323-=-=++z y x 即:01553-=-=+z y x ,亦即01113-=-=+z y x . (2)依题意,可取L 的方向向量为{}4,3,2=s ,则直线L 的方程为413121-=-=-z y x . (3)所求直线的方向向量为:{}⎭⎬⎫⎩⎨⎧-=︒︒︒21,22,21120cos ,45cos ,60cos ,故直线方程为: 132511--=+=-z y x . (4)因为直线和y 轴垂直相交,所以交点为),0,3,0(-B 取{2,0,4},BA s −−→==所求直线方程.440322-=+=-z y x (5)所求直线的方向向量为:{}{}{}2,1,10,1,11,1,1---=-⨯-,所以,直线方程为:22111+==-z y x .(6)所求直线的方向向量为:{}5,3,6--,所以直线方程为: 235635x y z -++==--.2、求直线1,234x y z x y z ++=-⎧⎨-+=-⎩的点向式方程与参数方程.解 在直线上任取一点),,(000z y x ,取10=x ,063020000⎩⎨⎧=--=++⇒z y z y 解2,000-==z y .所求点的坐标为)2,0,1(-,取直线的方向向量{}{}3,1,21,1,1-⨯=s k j i kji34312111--=-=,所以直线的点向式方程为:,321041-+=--=-z y x 令102,413x y z t --+===--则所求参数方程: .3241⎪⎩⎪⎨⎧--=-=+=tz ty tx3、判别下列各对直线的相互位置,如果是相交的或平行的直线求出它们所在的平面,如果相交时请求出夹角的余弦.(1)⎩⎨⎧=-+=+-0623022y x z y x 与⎩⎨⎧=-+=--+01420112z x z y x ;(2)⎪⎩⎪⎨⎧--=+==212t z t y tx 与142475x y z --+==-. 解:(1)将所给的直线方程化为标准式为:4343223z y x =-=--43227-=--=-z y x 234234-==-- ∴二直线平行.又点)0,43,23(与点(7,2,0)在二直线上,∴向量⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧--0,45,2110,432,237平行于二直线所确定的平面,该平面的法向量为:{}{}19,22,50,45,2114,3,2--=⎭⎬⎫⎩⎨⎧⨯-,从而平面方程为:0)0(19)2(22)7(5=-+---z y x ,即0919225=++-z y x .(2)因为121475-≠≠-,所以两直线不平行,又因为0574121031=--=∆,所以两直线相交,二直线所决定的平面的法向量为{}{}{}1,1,35,7,412,1--=-⨯-,∴二直线所决定的平面的方程为:330x y z -++=.设两直线的夹角为ϕ,则cos ϕ==.4、判别下列直线与平面的相关位置: (1)37423z y x =-+=--与3224=--z y x ;(2)723zy x =-=与8723=+-z y x ; (3)⎩⎨⎧=---=-+-01205235z y x z y x 与07734=-+-z y x ;(4)⎪⎩⎪⎨⎧-=+-==4992t z t y t x 与010743=-+-z y x .解(1) 0)2(3)2()7(4)2(=-⨯+-⨯-+⨯-,而017302)4(234≠=-⨯--⨯-⨯,所以,直线与平面平行.(2) 0717)2(233≠⨯+-⨯-⨯,所以,直线与平面相交,且因为772233=--=,∴直线与平面垂直. (3)直线的方向向量为:{}{}{}1,9,51,1,22,3,5=--⨯-, 0179354=⨯+⨯-⨯,所以直线与平面平行或者直线在平面上;取直线上的点)0,5,2(--M ,显然点在)0,5,2(--M 也在平面上(因为4(2)3(5)70⨯--⨯--=),所以,直线在平面上.(4)直线的方向向量为{}9,2,1-, 097)2(413≠⨯+-⨯-⨯∴直线与平面相交但不垂直.5、验证直线l :21111-=-=-z y x 与平面π:032=--+z y x 相交,并求出它的交点和交角. 解: 032111)1(2≠-=⨯-⨯+-⨯∴直线与平面相交.又直线的参数方程为:⎪⎩⎪⎨⎧+=+=-=t z t y tx 211设交点处对应的参数为0t ,∴03)21()1()(2000=-+-++-⨯t t t ∴10-=t ,从而交点为(1,0,-1). 又设直线l 与平面π的交角为θ,则:21662111)1(2sin =⨯⨯-⨯+-⨯=θ,∴6πθ=.6、确定m l ,的值,使: (1)直线13241zy x =+=-与平面0153=+-+z y lx 平行; (2)直线⎪⎩⎪⎨⎧-=--=+=135422t z t y t x 与平面076=-++z my lx 垂直.解:(1)欲使所给直线与平面平行,则须:015334=⨯-⨯+l 即1l =-. (2)欲使所给直线与平面垂直,则须:3642=-=m l ,所以:8,4-==m l .7、求下列各平面的方程: (1)通过点)1,0,2(-p ,且又通过直线32121-=-=+z y x 的平面; (2)通过直线115312-+=-+=-z y x 且与直线⎩⎨⎧=--+=---052032z y x z y x 平行的平面; (3)通过直线223221-=-+=-z y x 且与平面0523=--+z y x 垂直的平面; (4). 求过点(2,1,0)M 与直线2335x t y t z t =-⎧⎪=+⎨⎪=⎩垂直的平面方程.解:(1)因为所求的平面过点)1,0,2(-p 和)2,0,1(-'p ,且它平行于向量{}3,1,2-,所以要求的平面方程为:03331212=--+-z y x , 即015=-++z y x .(2)已知直线的方向向量为{}{}{}2,1,11,2,13,1,5--⨯-=,∴平面方程为:2311510315x y z -++--=,即3250x y z +--= (3)所求平面的法向量为{}{}{}13,8,11,2,32,3,2-=-⨯-,∴平面的方程为:0)2(13)2(8)1(=--+--z y x ,即09138=+--z y x .(4).所求平面的法向量为{}2,3,1,则平面的方程为:2(2)3(1)(0)0x y z -+-+-=, 即 2370x y z ++-=.8、求点(4,1,2)M 在平面1x y z ++=上的投影.解: 过点(4,1,2)M 作已知平面的垂线,垂线的方向向量就是已知平面的法向量(1,1,1),所以垂线方程为412111x y z ---==,此垂线与已知平面的交点即为所求投影.为了求投影,将垂线方程化为参数方程412x t y t z t =+⎧⎪=+⎨⎪=+⎩,代入平面方程求得2t =-,故投影为(2,1,0)-.9、求点)1,3,2(-p 到直线⎩⎨⎧=++-=++-0172230322z y x z y x 的距离.解:直线的标准方程为:2251211-+==-z y x 所以p 到直线的距离 1534532025)2(1212392292421243222222===-++-+--+-=d .10、设0M 是直线L 外一点,M 是直线L 上一点,且直线的方向向量为 ,试证:点0M 到直线L的距离为d =.证:设0M M 与L 的夹角为θ,一方面由于0sin d M M θ=;另一方面,00sin M M s M M s θ⨯=,所以d =.11、求通过平面0134=-+-z y x 和025=+-+z y x 的交线且满足下列条件之一的平面: (1)通过原点; (2)与y 轴平行;(3)与平面0352=-+-z y x 垂直. 解: (1)设所求的平面为:0)25()134(=+-++-+-z y x z y x λ 欲使平面通过原点,则须:021=+-λ,即21=λ,故所求的平面方程为 0)25()134(2=+-++-+-z y x z y x 即:0539=++z y x .(2)同(1)中所设,可求出51=λ.故所求的平面方程为 0)25()134(5=+-++-+-z y x z y x 即:031421=-+z x .(3)如(1)所设,欲使所求平面与平面0352=-+-z y x 垂直,则须:0)3(5)51()4(2=-++--+λλλ从而3=λ,所以所求平面方程为05147=++y x .12、求直线⎩⎨⎧=++-=--+0101z y x z y x 在平面0=++z y x 上的投影直线的方程.解:应用平面束的方法.设过直线⎩⎨⎧=++-=--+0101z y x z y x 的平面束方程为0)1()1(=++-+--+z y x z y x λ即01)1()1()1(=-++-+-++λλλλz y x这平面与已知平面0=++z y x 垂直的条件是01)1(1)1(1)1(=⋅+-+⋅-+⋅+λλλ,解之得1-=λ代入平面束方程中得投影平面方程为10y z --=,所以投影直线为⎩⎨⎧=++=--001z y x z y .13、请用异于本章第五节例7的方法来推导点到平面的距离公式.证:设),,(0000z y x P 是平面π:0+++=Ax By Cz D 外的一点,下面我们来求点0P 到平面π的距离.过0P 作平面π的垂线L :000x x y y z z A B C---==,设L 与平面π的交点为(,,)P x y z ,则P 与0P 之间的距离即为所求.因为点(,,)P x y z 在L 上,所以000x x Aty y Bt z z Ct-=-=-=⎧⎪⎨⎪⎩,而(,,)P x y z 在平面π上,则000()()()0A x At B y Bt C z Ct D ++++++=000222Ax By Cz A B t DC⇒=-+++++,故000222Ax By Cz Dd t A B C+++===++=习 题 6—7飞机的速度:假设空气以每小时32公里的速度沿平行y 轴正向的方向流动,一架飞机在xoy 平面沿与x 轴正向成π6的方向飞行,若飞机相对于空气的速度是每小时840公里,问飞机相对于地面的速度是多少?解:如下图所示,设OA 为飞机相对于空气的速度,AB 为空气的流动速度,那么OB 就是飞机相对于地面的速度.840cos 840sin 4203420,3266OA i j i j AB j ππ=⋅+⋅=+=所以, 24203452,(420856.45OB i j OB =+=≈千米/小时.复习题A一 、判断正误:1、 若c b b a ⋅=⋅且≠0b ,则c a =; ( ⨯ ) 解析 c b b a ⋅-⋅=)(c a b -⋅=0时,不能判定=b 0或c a =.例如i a =,j b =,k c =,有⋅=⋅=0a b b c ,但c a ≠.图6-1 空所流动与飞机飞行速度的关2、 若c b b a ⨯=⨯且≠0b ,则c a =; ( ⨯ ) 解析 此结论不一定成立.例如i a =,j b =,)(j i c +-=,则k j i b a =⨯=⨯,k j i j c b =+-⨯=⨯)]([,c b b a ⨯=⨯,但c a ≠.3 、若0=⋅c a ,则=0a 或=0c ; ( ⨯ ) 解析 两个相互垂直的非零向量点积也为零.4、 a b b a ⨯-=⨯. ( √ ) 解析 这是叉积运算规律中的反交换律.二、选择题:1 、 当a 与b 满足( D )时,有b a b a +=+;(A)⊥a b ; (B)λ=a b (λ为常数); (C)a ∥b ; (D)⋅=a b a b .解析 只有当a 与b 方向相同时,才有a +b =a +b .(A)中a ,b 夹角不为0,(B),(C)中a ,b 方向可以相同,也可以相反.2、下列平面方程中,方程( C )过y 轴;(A) 1=++z y x ; (B) 0=++z y x ; (C) 0=+z x ; (D) 1=+z x . 解析 平面方程0=+++D Cz By Ax 若过y 轴,则0==D B ,故选C .3 、在空间直角坐标系中,方程2221y x z --=所表示的曲面是( B );(A) 椭球面; (B) 椭圆抛物面; (C) 椭圆柱面; (D) 单叶双曲面. 解析 对于曲面2221y x z --=,垂直于z 轴的平面截曲面是椭圆,垂直于x 轴或y 轴的平面截曲面是开口向下的抛物线,根据曲面的截痕法,可以判断曲面是椭圆抛物面.4、空间曲线⎩⎨⎧=-+=5,222z y x z 在xOy 面上的投影方程为( C );(A)722=+y x ; (B)⎩⎨⎧==+5722z y x ; (C) ⎩⎨⎧==+0722z y x ;(D)⎩⎨⎧=-+=0222z y x z解析 曲线⎩⎨⎧==+5722z y x 与xOy 平面平行,在xOy 面上的投影方程为⎩⎨⎧==+0722z y x .5 、直线11121-+==-z y x 与平面1=+-z y x 的位置关系是( B ). (A) 垂直; (B) 平行; (C) 夹角为π4; (D) 夹角为π4-.解析 直线的方向向量s ={2,1,-1},平面的法向量n ={1,-1,1},n s ⋅=2-1-1=0,所以,s ⊥n ,直线与平面平行.三、填空题:1、若2=b a ,π()2=a,b ,则=⨯b a 2 ,=⋅b a 0 ; 解 =⨯b a b a sin()a,b π22=2,=⋅b a b a cos()a,b π22=0.2、与平面062=-+-z y x 垂直的单位向量为 }2,1,1{66-±; 解 平面的法向量 n ={1,-1,2}与平面垂直,其单位向量为0n =411++=6,所以,与平面垂直的单位向量为}2,1,1{66-±.3、过点)2,1,3(--和)5,0,3(且平行于x 轴的平面方程为 057=-+z y ;解 已知平面平行于x 轴,则平面方程可设为 0=++D Cz By ,将点 (-3,1,-2)和(3,0,5)代入方程,有{20,50,B C D C D -+=+= ⇒ 7,51,5B D C D ⎧=-⎪⎨⎪=-⎩得 05157=+--D Dz Dy ,即 057=-+z y .4、过原点且垂直于平面022=+-z y 的直线为z yx -==20;解 直线与平面垂直,则与平面的法向量 n ={0,2,-1}平行,取直线方向向量s =n ={0,2,-1},由于直线过原点,所以直线方程为z yx -==20 .5、曲线⎩⎨⎧=+=1,222z y x z 在xOy 平面上的投影曲线方程为 ⎩⎨⎧==+.0,1222z y x解: 投影柱面为 1222=+y x ,故 ⎩⎨⎧==+0,1222z y x 为空间曲线在xOy 平面上的投影曲线方程.四、解答题:1、 已知}1,2,1{-=a ,}2,1,1{=b ,计算(a) b a ⨯; (b) ()()-⋅+2a b a b ; (c) 2b a -;解: (a) b a ⨯=211121-kji1,3}5,{--=.(b) {2,4,2}{1,1,2}{1,5,0}2a b -=--=-,1,3}{2,{1,1,2}2,1}{1,-=+-=+b a , 所以()()-⋅+2a b a b 7}3,1,2{}0,5,1{=-⋅-=.(c) 1}3,{0,{1,1,2}2,1}{1,--=--=-b a ,所以2b a -10)19(2=+=.2、已知向量21P P 的始点为)5,2,2(1-P ,终点为)7,4,1(2-P ,试求:(1)向量21P P 的坐标表示; (2)向量21P P 的模;(3)向量21P P 的方向余弦; (4)与向量21P P 方向一致的单位向量.解: (1) }2,6,3{}57),2(4,21{21-=-----=P P ;74926)3(222==++-=; (3) 21P P 在z y x ,,三个坐标轴上的方向余弦分别为362cos ,cos ,cos 777αβγ=-==;(4)k j i k j i 7276737263)(21++-=++-==P P .3、设向量{}1,1,1=-a ,{}1,1,1=-b ,求与a 和b 都垂直的单位向量.解: 令{}1110,2,2111=⨯=-=-i j kc a b,01⎧==⎨⎩c c c ,故与a 、b 都垂直的单位向量为0⎧±=±⎨⎩c .4、向量d 垂直于向量]1,3,2[-=a 和]3,2,1[-=b ,且与]1,1,2[-=c的数量积为6-,求向量d解: d 垂直于a 与b,故d 平行于b a ⨯,存在数λ使()b a d ⨯=λ⨯-=]1,3,2[λ]3,2,1[-]7,7,7[λλλ--= 因6-=⋅c d,故6)7(1)7()1(72-=-⨯+-⨯-+⨯λλλ, 73-=λ]3,3,3[-=∴d .5、求满足下列条件的平面方程:(1)过三点)2,1,0(1P ,)1,2,1(2P 和)4,0,3(3P ;(2)过x 轴且与平面025=++z y x 的夹角为π3. 解 (1)解1: 用三点式.所求平面的方程为0241003211201210=---------z y x ,即01345=+--z y x .解2: }1,1,1{-=}2,1,3{-=,由题设知,所求平面的法向量为k j i kj in 452131113121--=--=⨯=P P P P , 又因为平面过点)2,1,0(1P ,所以所求平面方程为0)2(4)1(5)0(=-----z y x ,即01345=+--z y x .解3: 用下面的方法求出所求平面的法向量},,{C B A =n ,再根据点法式公式写出平面方程也可.因为3121,P P P P ⊥⊥n n ,所以{0,320,A B C A B C +-=-+=解得A C A B 4,5-=-=,于是所求平面方程为0)2(4)1(5)0(=-----z A y A x A ,即 01345=+--z y x .(2)因所求平面过x 轴,故该平面的法向量},,{C B A =n 垂直于x 轴,n 在x 轴上的投影0=A ,又平面过原点,所以可设它的方程为0=+Cz By ,由题设可知0≠B (因为0=B 时,所求平面方程为0=Cz 又0≠C ,即0=z .这样它与已知平面025=++z y x 所夹锐角的余弦为π1cos 32=≠=,所以0≠B ),令C B C'=,则有0='+z C y ,由题设得22222212)5(10121503cos ++'++⨯'+⨯+⨯=πC C , 解得3='C 或13C '=-,于是所求平面方程为03=+z y 或03=-z y .6、 一平面过直线⎩⎨⎧=+-=++04,05z x z y x 且与平面01284=+--z y x 垂直,求该平面方程;解法1: 直线⎩⎨⎧=+-=++04,05z x z y x 在平面上,令x =0,得 54-=y ,z =4,则(0,-54,4)为平面上的点.设所求平面的法向量为n =},,{C B A ,相交得到直线的两平面方程的法向量分别为 1n ={1,5,1},2n ={1,0,-1},则直线的方向向量s =1n ⨯2n =101151-kji ={-5,2,-5},由于所求平面经过直线,故平面的法向量与直线的方向向量垂直,即⋅n s ={-5,2,-5}•},,{C B A =C B A 525-+-=0,因为所求平面与平面01284=+--z y x 垂直,则}8,4,1{},,{--⋅C B A =C B A 84--=0,解方程组{5250,480,A B C A B C -+=--= ⇒ 2,5,2A CBC =-⎧⎪⎨=-⎪⎩ 所求平面方程为 0)4()54(25)0(2=-++---z C y C x C ,即012254=+-+z y x .解法2: 用平面束(略)7、求既与两平面1:43x z π-=和2:251x y z π--=的交线平行,又过点(3,2,5)-的直线方程.解法1:{}11,0,4=-n ,{}22,1,5=--n ,{}124,3,1s =⨯=---n n ,从而根据点向式方程,所求直线方程为325431x y z +--==---,即325431x y z +--==. 解法2:设{},,s m n p =,因为1⊥s n ,所以40m p -=;又2⊥s n ,则250m n p --=,可解4,3m p n p ==,从而0p ≠.根据点向式方程,所求直线方程为32543x y z p p p +--==,即325431x y z +--==. 解法3:设平面3π过点(3,2,5)-,且平行于平面1π,则{}311,0,4==-n n 为3π的法向量,从而3π的方程为1(3)0(2)4(5)0x y z ⋅++⋅--⋅-=,即4230x z -+=.同理,过已知点且平行于平面2π的平面4π的方程为25330x y z --+=.故所求直线的方程为423025330x z x y z -+=⎧⎨--+=⎩.8、 一直线通过点)1,2,1(A ,且垂直于直线11231:+==-z y x L ,又和直线z y x ==相交,求该直线方程;解: 设所求直线的方向向量为{,,}m n p =s ,因垂直于L ,所以320m n p ++=;又因为直线过点)1,2,1(A ,则所求直线方程为 p z n y m x 121-=-=-,联立121,①,②320,③x y z m n p x y z m n p ---⎧==⎪⎨==⎪++=⎩由①,令λ=-=-=-p z n y m x 121,则有⎪⎩⎪⎨⎧+=+=+=,1,2,1p z n y m x λλλ代入方程②有{12,11,m n m p λλλλ+=++=+ 可得p m =,代入③解得p n 2-=, 因此,所求直线方程为112211-=--=-z y x .9、 指出下列方程表示的图形名称:(a) 14222=++z y x ;(b) z y x 222=+;(c) 22y x z +=;(d) 022=-y x ;(e) 122=-y x ; (f) ⎩⎨⎧=+=222z y x z .解: (a) 绕y 轴旋转的旋转椭球面.(b) 绕z 轴旋转的旋转抛物面. (c) 绕z 轴旋转的锥面.(d) 母线平行于z 轴的两垂直平面:y x =,y x -=. (e) 母线平行于z 轴的双曲柱面. (f) 旋转抛物面被平行于XOY 面的平面所截得到的圆,半径为2,圆心在(0,0,2)处.10、求曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影并作其图形. 解: 将所给曲面方程联立消去z ,就得到两曲面交线C 的投影柱面的方程122=+y x ,所以柱面与xOy 平面的交线⎩⎨⎧==+'01:22z y x C 所围成的区域221+≤x y 即为曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影(图略).复习题B1、设4=a ,3=b ,()6π=a,b ,求以2+a b 和3-a b 为邻边的平行四边形的面积.解:(2)(3)326A =+⨯-=⨯-⨯+⨯-⨯a b a b a a a b b a b b325=-⨯-⨯=-⨯a b a b a b 15sin()543302=⋅=⨯⨯⨯=a b a,b .2、设(3)(75)+⊥-a b a b ,(4)(72)-⊥-a b a b ,求()a,b . 解: 由已知可得:(3)(75)0+⋅-=a b a b ,(4)(72)0-⋅-=a b a b 即 22715160-+⋅=a b a b ,2278300+-⋅=a b a b .这可看成是含三个变量a 、b 及⋅a b 的方程组,可将a 、b 都用⋅a b 表示,即=a b 1cos()22⋅⋅===⋅a b a b a,b a b a b ,()3π=a,b .3、求与}3,2,1{-=a 共线,且28=⋅b a 的向量b .解 由于b 与a 共线,所以可设}3,2,{λλλλ-==a b ,由28=⋅b a ,得28}3,2,{}3,2,1{=-⋅-λλλ,即2894=++λλλ,所以2=λ,从而}6,4,2{-=b .4、 已知}0,1,1{},2,0,1{=-=b a ,求c ,使b c a c ⊥⊥,且6=c .解法1: 待定系数法.设},,{z y x =c ,则由题设知0,0=⋅=⋅b c a c 及6=c ,所以有①20②③6x z ⎧-=⎪⎨⎪=⎩由①得2x z = ④,由②得x y -= ⑤,将④和⑤代入③得62)(222=⎪⎭⎫⎝⎛+-+x x x ,解得2,4,4±==±=z y x ,于是 }2,4,4{-=c 或}2,4,4{--=c .解法2: 利用向量的垂直平行条件,因为b c a c ⊥⊥,,所以c ∥b a ⨯.设λ是不为零的常数,则k j i k ji b a c λλλλλ+-=-=⨯=22011201)(,因为6=c ,所以6]1)2(2[2222=+-+λ,解得2±=λ,所以}2,4,4{-=c 或{4,4,2}=--c .解法3: 先求出与向量b a ⨯方向一致的单位向量,然后乘以6±.k j i kji b a +-=-=⨯22011201,31)2(2222=+-+=⨯b a ,故与b a ⨯方向一致的单位向量为}1,2,2{31-.于是}1,2,2{36-±=c ,即}2,4,4{-=c 或}2,4,4{--=c .5、求曲线222x y R x y z ⎧+=⎨++=⎩的参数式方程.解: 曲线参数式方程是把曲线上任一点(,,)P x y z 的坐标,,x y z 都用同一变量即参数表示出来,故可令cos ,sin x R t y R t ==,则(cos sin )z R t t =-+.6、求曲线22:2z L x y x⎧⎪=⎨+=⎪⎩xOy 面上及在zOx 面上的投影曲线的方程.解: 求L 在xOy 面上的投影的方程,即由L 的两个方程将z 消去,即得L 关于xOy 面的投影柱面的方程222x y x +=则L 在xOy 面上的投影曲线的方程为2220x y xz ⎧+=⎨=⎩.同理求L 在zOx 面上的投影的方程,即由L 的两个方程消去y ,得L 关于zOx 面的投影柱面的方程z =L 在zOx面上的投影曲线方程为0z y ⎧=⎪⎨=⎪⎩.7、已知平面π过点0(1,0,1)M -和直线1211:201x y z L ---==,求平面π的方程. 解法1: 设平面π的法向量为n ,直线1L 的方向向量1(2,0,1)=s ,由题意可知1⊥n s ,(2,1,1)M 是直线1L 上的一点,则0(1,1,2)M M =在π上,所以0MM ⊥n ,故可取10MM =⨯n s (1,3,2)=--.则所求平面的点法式方程为 1(1)3(0)2(1)0x y z ⋅-+⋅--⋅+=,即3230x y z +--=为所求平面方程.解法2: 设平面π的一般方程为0Ax By Cz D +++=,由题意可知,π过点0(1,0,1)M -,故有0A C D -+=, (1)在直线1L 上任取两点12(2,1,1),(4,1,2)M M ,将其代入平面方程,得20A B C D +++=, (2)420A B C D +++=, (3)由式(1)、(2)、(3)解得3,2,3B A C A D A ==-=-,故平面π的方程为3230x y z +--=.解法3: 设(),,M x y z 为π上任一点.由题意知向量0M M 、01M M 和1s 共面,其中()12,1,1M 为直线1L 上的点,1(2,0,1)=s 为直线1L 的方向向量.因此0011()0M M M M ⨯⋅=s ,故平面π的方程为1012110110201x y z --+--+=,即3230x y z +--=为所求平面方程.8、求一过原点的平面π,使它与平面0:π4830x y z -+-=成4π角,且垂直于平面1:π730x z ++=.解: 由题意可设π的方程为0Ax By Cz ++=,其法向量为(,,)A B C =n ,平面0π的法向量为0(1,4,8)=-n ,平面1π的法向量为1(7,0,1)=n ,由题意得00||cos4||||π⋅=⋅n n n n ,即=(1) 由10⋅=n n ,得70A C +=,将7C A =-代入(1=解得20,B A =或10049B A =-,则所求平面π的方程为2070x y z +-= 或 491003430x y z --=.9、求过直线1L :0230x y z x y z ++=⎧⎨-+=⎩且平行于直线2L :23x y z ==的平面π的方程.解法1: 直线1L 的方向向量为1=s 111(4,1,3)213==---i j k,直线2L 的对称式方程为632x y z==,方向向量为2(6,3,2)=s ,依题意所求平面π的法向量1⊥n s 且2⊥n s ,故可取12=⨯n s s ,则413(7,26,18)632=--=-i j kn ,又因为1L 过原点,且1L 在平面π上,从而π也过原点,故所求平面π的方程为726180x y z -+=.解法2: 设所求平面π为 (23)0x y z x y z λ+++-+=,即(12)(1)(13)0x y z λλλ++-++=, 其法向量为(12,1,13)λλλ=+-+n ,由题意知2⊥n s ,故26(12)3(1)2(13)0λλλ⋅=++-++=n s , 得1115λ=-,则所求平面π的方程为726180x y z -+=.另外,容易验证230x y z -+=不是所求的平面方程.10、求过直线L :⎩⎨⎧=+-+=+-+0185017228z y x z y x 且与球面1222=++z y x 相切的平面方程解: 设所求平面为 ()018517228=+-+++-+z y x z y x λ,即(15)(288)(2)170x y z λλλλ+++-+++=,由题意:球心)0,0,0(到它的距离为1,即1)2()828()51(17222=--+++++λλλλ解得:89250-=λ 或 2-=λ 所求平面为:42124164387=--z y x 或 543=-y x11、求直线L :11111--==-z y x 在平面π:012=-+-z y x 上投影直线0L 的方程,并求直线0L 绕y 轴旋转一周而成的曲面方程.解: 将直线L :11111--==-z y x 化为一般方程 ⎩⎨⎧=-+=--0101y z y x ,设过直线L 且与平面π垂直的平面方程为()011=-++--y z y x λ,则有02)1(1=+--λλ,即2λ=-,平面方程为。
高等数学第六章习题
高等数学第六章习题2(4)(0).(2,0)(2,0),.y a x a x a =->-1.设曲线过此曲线和轴交点及作曲线的两条法线求曲线与这两条法线所围成的平面图形的面积最小时的值 2. 算曲线x y =24与直线23=+x y 所围成图形的面积. 3. 算曲线22y px =及其在点(,)2p p 处的法线所围成的图形的面积. 4. 计算抛物线342-+-=x x y 及其在点)3,0(-和)0,3(处的切线所围成图形的面积.5. 计算抛物线x y =24与直线23=+y x 所围成图形的面积,及此图形绕y 轴旋转所成旋转体的体积;6. 求三次抛物线3x y =及直线x y 2=所围成的图形的面积.7. 求摆线(sin ),(1cos )x a t t y a t =-=-的一拱与横轴所围成图形的面积及该图形绕横周旋转所成旋转体的体积.8. 求r θ=及2cos2r θ=所围成图形的面积.9. 已知星形线方程⎩⎨⎧==ta y t a x 33sin cos ,求: 1. 它所围的面积;2. 它的弧长;3. 它绕x 轴旋转一周而生成的立体的体积. 10. 求曲线(1cos )r a θ=+的全长.22:sin 0222.y x x x y π=≤≤+=11. 试证曲线上相应于的一段弧的长度等于椭圆的周长12. 一根平放的弹簧,已知当拉长10cm 时,需力50牛顿,问拉长15cm 时,克服弹力做功多少?13.已盛满了水的圆台形蓄水池,其下底半径为10米,上底半径为2米,高为5米,计算抽完池中的水需做多少功?14.一个半径为5米,高10米的圆柱形水桶装满水,求将水全部吸出所作的功。
15. .闸门为矩形,宽20cm ,高16cm ,垂直置于水中,它的上沿与水相齐,求水对闸 门的压力.16. 薄板形状为一椭圆形,其轴为2a 和2b ()a b >,此薄板的一半铅直沉入水中,而其短轴与水的表面相齐,计算水对此薄板的一个面的压力.17. 一直线形细杆,长为l ,一端位于数轴的原点,线密度为2()x x ρ=,求细杆的质量. (单位长度的质量为线密度)17. 已盛满了水的半球形蓄水池,其半径为10米,计算抽完池中的水所做的功.18.设()f x 在[0,1]上连续,在(0,1)内大于0,并且23()()2a xf x f x x '=+,又曲线()y f x =与1,0x y ==所围图形S 的面积为2,求()f x ,并问a 为何值时,图形S 绕x 轴旋转一周所得旋转体的体积最小。
高等数学第六章习题及答案
微分方程习题课基本概念基本概念一阶方程一阶方程类型1.直接积分法2.可分离变量3.齐次方程4.可化为齐次方程5.线性方程类型1.直接积分法2.可分离变量3.齐次方程4.可化为齐次方程5.线性方程7.伯努利方程7.伯努利方程可降阶方程可降阶方程线性方程解的结构定理1;定理2定理3;定理4线性方程解的结构定理1;定理2定理3;定理4欧拉方程欧拉方程二阶常系数线性方程解的结构二阶常系数线性方程解的结构特征方程的根及其对应项特征方程的根及其对应项f(x)的形式及其特解形式f(x)的形式及其特解形式高阶方程高阶方程待定系数法特征方程法一、主要内容微分方程解题思路一阶方程一阶方程高阶方程高阶方程分离变量法分离变量法全微分方程全微分方程常数变易法常数变易法特征方程法特征方程法待定系数法待定系数法非全微分方程非变量可分离非全微分方程非变量可分离幂级数解法幂级数解法降阶作变换作变换积分因子1、基本概念微分方程凡含有未知函数的导数或微分的方程叫微分方程.微分方程的阶微分方程中出现的未知函数的最高阶导数的阶数称为微分方程的阶.微分方程的解代入微分方程能使方程成为恒等式的函数称为微分方程的解.通解如果微分方程的解中含有任意常数,并且任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解.特解确定了通解中的任意常数以后得到的解,叫做微分方程的特解.初始条件用来确定任意常数的条件.初值问题求微分方程满足初始条件的解的问题,叫初值问题.dxx f dy y g )()(=形如(1) 可分离变量的微分方程解法∫∫=dx x f dy y g )()(分离变量法2、一阶微分方程的解法)(x yf dx dy =形如(2) 齐次方程解法xyu =作变量代换)(111c y b x a c by ax f dxdy++++=形如齐次方程.,01时当==c c ,令k Y y h X x +=+=,(其中h 和k 是待定的常数)否则为非齐次方程.(3) 可化为齐次的方程解法化为齐次方程.)()(x Q y x P dxdy=+形如(4) 一阶线性微分方程,0)(≡x Q 当上方程称为齐次的.上方程称为非齐次的.,0)(≡x Q 当齐次方程的通解为.)(∫=−dxx P Cey (使用分离变量法)解法非齐次微分方程的通解为∫+∫=−∫dx x P dx x P eC dx e x Q y )()(])([(常数变易法)(5) 伯努利(Bernoulli)方程nyx Q y x P dxdy )()(=+形如)1,0(≠n 方程为线性微分方程.时,当1,0=n 方程为非线性微分方程.时,当1,0≠n解法需经过变量代换化为线性微分方程.,1nyz −=令.))1)((()()1()()1(1∫+∫−∫==−−−−c dx e n x Q ez ydxx P n dxx P n n),(),(=+dy y x Q dx y x P 其中dyy x Q dx y x P y x du ),(),(),(+=形如(6) 全微分方程xQ y P ∂∂=∂∂⇔全微分方程注意:解法¦应用曲线积分与路径无关.∫∫+=yy xx dyy x Q x d y x P y x u 0),(),(),(0,),(),(00x d y x P dy y x Q xx yy ∫∫+=.),(c y x u =§用直接凑全微分的方法.通解为3、可降阶的高阶微分方程的解法解法),(x P y =′令特点.y 不显含未知函数),()2(y x f y ′=′′型)()1()(x f yn =接连积分n 次,得通解.型解法代入原方程, 得)).(,(x P x f P =′,P y ′=′′),(x P y =′令特点.x 不显含自变量),()3(y y f y ′=′′型解法代入原方程, 得).,(P y f dydpP =,dydp P y =′′4、线性微分方程解的结构(1)二阶齐次方程解的结构:)1(0)()(=+′+′′y x Q y x P y 形如定理1 如果函数)(1x y 与)(2x y 是方程(1)的两个解,那末2211y C y C y +=也是(1)的解.(21,C C 是常数)定理2:如果)(1x y 与)(2x y 是方程(1)的两个线性无关的特解, 那么2211y C y C y +=就是方程(1)的通解.(2)二阶非齐次线性方程的解的结构:)2()()()(x f y x Q y x P y =+′+′′形如定理 3 设*y 是)2(的一个特解, Y 是与(2)对应的齐次方程(1)的通解, 那么*y Y y +=是二阶非齐次线性微分方程(2)的通解.定理4 设非齐次方程(2)的右端)(x f 是几个函数之和, 如)()()()(21x f x f y x Q y x P y +=+′+′′而*1y 与*2y 分别是方程,)()()(1x f y x Q y x P y =+′+′′ )()()(2x f y x Q y x P y =+′+′′的特解, 那么*2*1y y +就是原方程的特解.5、二阶常系数齐次线性方程解法)(1)1(1)(x f y P y P yP yn n n n =+′+++−−L 形如n 阶常系数线性微分方程=+′+′′qy y p y 二阶常系数齐次线性方程)(x f qy y p y =+′+′′二阶常系数非齐次线性方程解法由常系数齐次线性方程的特征方程的根确定其通解的方法称为特征方程法.2=++q pr r 0=+′+′′qy y p y 特征根的情况通解的表达式实根21r r ≠实根21r r =复根βαi r±=2,1xr x r eC e C y 2121+=xr ex C C y 2)(21+=)sin cos (21x C x C e y xββα+=特征方程为1)1(1)(=+′+++−−y P y P yP yn n n n L 特征方程为0111=++++−−n n n nP r P r P r L 特征方程的根通解中的对应项rk 重根若是rxk k exC x C C )(1110−−+++L β±αj k 复根重共轭若是xk k k k ex xD x D D x xC x C C α−−−−β++++β+++]sin )(cos )[(11101110L L 推广:阶常系数齐次线性方程解法n6、二阶常系数非齐次线性微分方程解法)(x f qy y p y =+′+′′二阶常系数非齐次线性方程型)()()1(x P e x f m xλ=解法待定系数法.,)(x Q e x y m xkλ=设⎪⎩⎪⎨⎧=是重根是单根不是根λλλ2,10k型]sin )(cos )([)()2(x x P x x P e x f n l xωωλ+=],sin )(cos )([)2()1(x x R x x R e x y mmxkωωλ+=设次多项式,是其中m x R x R mm)(),()2()1({}n l m ,max =⎩⎨⎧±±=.1;0是特征方程的单根时不是特征方程的根时ωλωλj j k7、欧拉方程欧拉方程是特殊的变系数方程,通过变量代换可化为常系数微分方程.x t e x tln ==或)(1)1(11)(x f y p y x p yxp yx n n n n n n =+′+++−−−L 的方程(其中n p p p L 21,形如叫欧拉方程.为常数),二、典型例题.)cos sin ()sin cos (dy x yx x y y x dx x y y x y x y −=+求通解例1解原方程可化为),cos sin sin cos (xyx y x y x yx y x y x y dx dy −+=,xyu =令.,u x u y ux y ′+=′=代入原方程得),cos sin sin cos (uu u uu u u u x u −+=′+,cos 2cos sin x dx du u u uu u =−分离变量两边积分,ln ln )cos ln(2C x u u +=−,cos 2xCu u =∴,cos 2x C x y x y =∴所求通解为.cos C xy xy =.32343y x y y x =+′求通解例2解原式可化为,32342y x y xy =+′,3223134x y x y y =+′−−即,31−=y z 令原式变为,3232x z xz =+′−,322x z x z −=−′即对应齐方通解为,32Cx z =一阶线性非齐方程伯努利方程,)(32x x C z =设代入非齐方程得,)(232x x x C −=′,73)(37C x x C ′+−=∴原方程的通解为.73323731x C x y ′+−=−利用常数变易法.212yy y ′+=′′求通解例3解.x 方程不显含,,dy dPP y P y =′′=′令代入方程,得,212y P dydP P +=,112y C P =+解得,,11−±=∴y C P ,11−±=y C dxdy即故方程的通解为.12211C x y C C +±=−.1)1()1(,2=′=−=+′−′′y y e xe y y y xx 求特解例4解特征方程,0122=+−r r 特征根,121==r r 对应的齐次方程的通解为.)(21xe x C C Y +=设原方程的特解为,)(2*xe b ax x y +=,]2)3([)(23*xe bx x b a ax y +++=′则,]2)46()6([)(23*xe b x b a x b a ax y +++++=′′代入原方程比较系数得将)(,)(,***′′′y y y ,21,61−==b a 原方程的一个特解为,2623*xx e x e x y −=故原方程的通解为.26)(2321x x xe x e x e x C C y −++=,1)1(=y Q ,1)31(21=−+∴e C C ,]6)1()([3221xe x x C C C y +−++=′,1)1(=′y Q ,1)652(21=−+∴e C C ,31121+=+e C C ,651221+=+e C C 由解得⎪⎩⎪⎨⎧−=−=,121,61221e C e C 所以原方程满足初始条件的特解为.26])121(612[23x x xe x e x e x e e y −+−+−=).cos (x x y y 2214+=+′′求解方程例5解特征方程,042=+r 特征根,22,1i r ±=对应的齐方的通解为.2sin 2cos 21x C x C Y +=设原方程的特解为.*2*1*y y y +=,)1(*1b ax y +=设,)(*1a y =′则,0)(*1=′′y ,得代入x y y 214=+′′,x b ax 2144=+由,04=b ,214=a 解得,0=b ,81=a ;81*1x y =∴),2sin 2cos ()2(*2x d x c x y +=设,2sin )2(2cos )2()(*2x cx d x dx c y −++=′则,2sin )44(2cos )44()(*2x dx c x cx d y +−−=′′,得代入x y y 2cos 214=+′′故原方程的通解为.2sin 81812sin 2cos 21x x x x C x C y +++=,2cos 212sin 42cos 4x x c x d =−由,04=−c ,214=d 即,81=d ,0=c ;2sin 81*2x x y =∴.)(),(1)()(2此方程的通解(2)的表达式;(1),试求:的齐次方程有一特解为,对应有一特解为设x f x p x xx f y x p y =′+′′例6解(1)由题设可得:⎪⎩⎪⎨⎧=−+=+),()1)((2,02)(223x f xx p x x x p 解此方程组,得.)(,)(331x x f xx p =−=(2)原方程为.313x y x y =′−′′,的两个线性无关的特解程是原方程对应的齐次方显见221,1x y y ==是原方程的一个特解,又xy 1*=由解的结构定理得方程的通解为.1221xx C C y ++=例7求微分方程()423d d 0y x y xy x −+=解原方程变形为23d 3,d x x x y y y−=−即223d 62,d x x y y y−=−此是关于函数的一阶线性非齐次微分方程,()2x f y =的通解.由求解公式得66d d 23e 2ed y y y yx y y C −⎛⎞∫∫=−+⎜⎟⎜⎟⎝⎠∫6463d 2.y y C y Cy y ⎛⎞=−+=+⎜⎟⎝⎠∫再作变换则有方程1,z u −=例8求解方程2d cos cos sin sin .d y y x y y x−=解令则原式为sin ,u y =2d cos .d u u x u x−=⋅此方程为伯努利方程,d cos .d zz x x+=−由积分公式, 得该方程的通解为()1sin cos e .2xz x x C −=−++从而得到原方程的通解()11sin sin cos e .2x y x x C −⎡⎤=−++⎢⎥⎣⎦⑵证明当时满足不等式例9设在时所定义的可微函数满足条件1x>−()g x ()()()()01d 0,011xg x g x g t t g x ′+−==+∫⑴求(),g x ′()e1.xg x −≤≤证⑴原方程变形为()()()()01d .xx g x g x g t t ′++=⎡⎤⎣⎦∫两端求导, 得()g x 0x ≥()()()()()()1,x g x g x g x g x g x ′′′′++++=⎡⎤⎣⎦令则原方程化为(),g x p ′=()()d 120,d px x p x +++=由条件所设即方程⑴()()001,g g ′=−=−01,x p ==−即2d ,1dp x x p x +=−+⑴()1e .1xg x p x −′==−+两端积分, 并由初始条件, 得⑵函数在上满足拉格郎日中值定理的条件, ()g x []0,x ()()()()()e 000,0,1g x g g x x x x ξξξξ−′−=−=−><<+从而有故当时, 又当()()01,g x g <=() 1.g x ≤0x ≥()()1ee e 0,1x x xf xg x x −−−′′=+=−≥+所以当时单调增加, 于是()f x 0x ≥因此时, 令则()()e ,xf xg x −=−()()()()e0010,x f x g x f g −=−≥=−=即综合以上得, 当时有,()e .x g x −≥0x ≥()e 1.x g x −≤≤例12 设()()()0sin d ,x f x x x t f t t =−−∫().f x 解因()()()00sin d d ,x xf x x xf t t tf t t =−+∫∫两边求导, 得()()()()0cos d xf x x f t t xf x xf x ′=−−+∫()0cos d ,xx f t t =−∫再次求导, 得()f x 其中为连续函数, 求()()sin ,f x x f x ′′=−−即()()sin .f x f x x ′′+=−并有初始条件对应的齐次方程的通()()00,0 1.f f ′==12sin cos .y C x C x =+设非齐次方程的特解是()*sin cos ,y x a x b x =+解是由待定系数法得10,.2a b ==121sin cos cos .2y C x C x x x =++由初始条件, 得121,0,2C C ==()11sin cos .22f x x x x =+即即原方程的通解为。
高数例题 第六章 定积分的应用
s
t t dt
例17. 计算摆线
x a sin y a 1 cos
的
一拱
(0 2 ) 的长度。
2、直角坐标情形 设曲线弧由直角坐标方程
y f x a x b 给出 f x 在a, b
球体体积的一半,试求该圆孔的直径.
(二)平行截面面积为已知的立体的体积
已知立体在过点 x a, x b且垂直于x 轴的两个平面之间,且垂直于轴的截面 面积为 A x , A x 为连续函数, 则
V A x dx
a
b
例14.一平面经过半径为R的圆柱体 的底圆中心,并与底面交成角
,计
算这平面截圆柱体所得立体的体积.
例15.求以半径为R的圆为底,平行 且等于底圆直径的线段为顶,高为h
的正劈锥体的体积。
例16. 证明由平面图形
0 a x b 0 y f ( x)
绕
y
轴旋转所成的旋转体的体积
b
为
V 2 xf x dx
a
三、平面曲线的弧长 (一)平面曲线弧长的概念 1、定义:设A,B是曲线弧上的两个端 点,在弧 AB 上依次任取分点
把区间 a, b 分成许多部分区间,则所求 量相应地分成许多部分量 ui ,而所求 量等于所有部分量之和,这一性质称为 所求量对于区间 a, b 具有可加性。
三.用定积分来表达的量 u 应具备的条件 1. 是与一个变量 x 的变化区间 a, b 有关的量。 2.量 对于区间 a, b 具有数量的可 加性。 3.部分量 ui 的近似值可表示为
在 , 上 , 围成,
高等数学课后答案-第六章-习题详细解答
习 题 6—11、在平行四边形ABCD 中, 设−→−AB =a , −→−AD =b . 试用a 和b 表示向量−→−MA 、−→−MB 、−→−MC 、−→−MD , 其中M 是平行四边形对角线的交点.解: 由于平行四边形的对角线互相平分, 所以a +b −→−−→−==AM AC 2, 即 -(a +b )−→−=MA 2, 于是 21-=−→−MA (a +b ).因为−→−−→−-=MA MC , 所以21=−→−MC (a +b ). 又因-a +b −→−−→−==MD BD 2, 所以21=−→−MD (b -a ). 由于−→−−→−-=MD MB , 所以21=−→−MB (a -b ).2、若四边形的对角线互相平分,用向量方法证明它是平行四边形.证: =,BM =,∴=+=+BM =与 平行且相等,结论得证.3、 求起点为)1,2,1(A ,终点为)1,18,19(--B 的向量→AB 与12AB −−→-的坐标表达式.解:→AB =j i k j i 2020)11()218()119(--=-+--+--={20,20,0}--, 12AB −−→-={10,10,0}4、 求平行于a ={1,1,1}的单位向量.解:与a 平行的单位向量为{}1,1,131±=±a a .5、在空间直角坐标系中,指出下列各点在哪个卦限?(1,1,1),A - (1,1,1),B -(1,1,1),C -- (1,1,1).D -- 解: A:Ⅳ; B:Ⅴ; C:Ⅷ; D:Ⅲ.6、 求点),,(z y x M 与x 轴,xOy 平面及原点的对称点坐标.解:),,(z y x M 关于x 轴的对称点为),,(1z y x M --,关于xOy 平面的对称点为),,(2z y x M -,关于原点的对称点为),,(3z y x M ---.7、已知点A(a, b, c), 求它在各坐标平面上及各坐标轴上的垂足的坐标(即投影点的坐标). 解:分别为),0,0(),0,,0(),0,0,(),,0,(),,,0(),0,,(c b a c a c b b a .8、过点(,,)P a b c 分别作平行于z 轴的直线和平行于xOy 面的平面,问它们上面的点的坐标各有什么特点?解:平行于z 轴的直线上面的点的坐标:x a,y b,z R ==∈;平行于xOy 面的平面上的点的坐标为 z c,x,y R =∈.9、求点P (2,-5,4)到原点、各坐标轴和各坐标面的距离.解:到原点的距离为x y 轴的距离为到z10、 求证以)1,3,4(1M 、)2,1,7(2M 、)3,2,5(3M 三点为顶点的三角形是一个等腰三角形. 解:222212(74)(13)(21)14M M =-+-+-=,222223(57)(21)(32)6M M =-+-+-= 222213(45)(32)(13)6M M =-+-+-=,即1323M M M M =,因此结论成立.11、 在yoz 坐标面上,求与三个点A(3, 1, 2), B(4, -2, -2), C(0, 5, 1)等距离的点的坐标. 解:设yoz 坐标面所求点为),,0(z y M ,依题意有||||||MC MB MA ==,从而222)2()1()30(-+-+-z y 222)2()2()40(++++-=z y222)2()1()30(-+-+-z y联立解得2,1-==z y ,故所求点的坐标为)2,1,0(-.12、 z 轴上,求与点A(-4, 1, 7), 点B(3, 5,-2)等距离的点. 解:设所求z 轴上的点为),0,0(z ,依题意:222)7()10()40(-+-++z 222)2()50()30(++-+-=z ,两边平方得914=z ,故所求点为)914,0,0(.13、 求λ使向量}5,1,{λ=a 与向量}50,10,2{=b 平行. 解:由b a //得5051012==λ得51=λ.14、 求与y 轴反向,模为10的向量a 的坐标表达式. 解:a =j j 10)(10-=-⋅={0,10,0}-.15、求与向量a ={1,5,6}平行,模为10的向量b 的坐标表达式. 解:}6,5,1{6210==a a a ,故 {}6,5,16210100±=±=a b .16、 已知向量6410=-+a i j k ,349=+-b i j k ,试求: (1)2+a b ; (2)32-a b .解:(1) 264102(349)1248i a b i j k i j k j k +=-+++-=+-; (2)323(6410)2(349)=122048a b =i j k i j k i j k --+-+--+.17、已知两点A 和(3,0,4)B ,求向量AB 的模、方向余弦和方向角.解: 因为(1,1)AB =-, 所以2AB =,11cos ,cos 22αβγ===-,从而π3α=,3π4β=,2π3γ=.18、设向量的方向角为α、β、γ.若已知其中的两个角为π3α=,2π3β=.求第三个角γ. 解: π3α=,2π3β=,由222cos cos cos 1αβγ++=得21cos 2γ=.故π4γ=或3π4.19、 已知三点(1,0,0)=A ,(3,1,1)B ,(2,0,1)C ,求:(1)BC 与CA 及其模;(2)BC 的方向余弦、方向角;(3)与BC 同向的单位向量.解:(1)由题意知{}{}23,01,111,1,0,BC =---=--{}{}12,00,011,0,1,CA =---=-- 故 2,2==BC CA .(2)因为{}1,1,0,=--BC 所以,由向量的方向余弦的坐标表示式得:cos 0αβγ===,方向角为:3,42ππαβγ===.(3)与BC 同向的单位向量为:oa =⎧⎫=⎨⎬⎩⎭BCBC .20、 设23,23,34,m i j k n i j k p i j k =++=+-=-+和23a m n p =+-求向量在x 轴上的投影和在y 轴上的分向量.解:2(23)3(23)(34)5114a i j k i j k i j k i j k =++++---+=+-.故向量a 在x 轴上的投影5=x a ,在y 轴上的投影分量为11y a j =.21、一向量的终点为点B(-2,1,-4),它在x 轴,y 轴和z 轴上的投影依次为3,-3和8,求这向量起点A 的坐标.解:设点A 为(x, y, z ),依题意有:84,31,32=---=-=--z y x , 故12,4,5-==-=z y x ,即所求的点A (-5, 4,-12).22、 已知向量a 的两个方向余弦为cos α=72 ,cos β=73, 且a 与z 轴的方向角是钝角.求cos γ. 解:因222cos cos cos 1,αβγ++=22223366cos 1cos 77497γγ=-==±故()—(),,又γ是钝角,所以76cos -=γ.23、设三力1232234F ,F ,F i j i j k j k =-=-+=+作用于同一质点,求合力的大小和方向角.解: 合力123(2)(234)()F F F F i k i j k j k =++=-+-+++323i j k =-+,因此,合力的大小为|F |=合力的方向余弦为,222cos ,cos 223cos -===βγα因此παγβ===-习 题 6—21、 {}0,0,1=a ,{}0,1,0=b ,)1,0,0(=c ,求⋅a b ,c a ⋅,c b ⋅,及a a ⨯,b a ⨯,c a ⨯,c b ⨯. 解:依题意,i a =,j b =,k c =,故0=⋅=⋅j i b a ,0=⋅=⋅k i c a ,0=⋅=⋅k j c b .0=⨯=⨯i i a a ,k j i b a =⨯=⨯,j k i c a -=⨯=⨯,i k j c b =⨯=⨯.2、 }}{{1,2,2,21,1==b a ,,求b a ⋅及b a ⨯ .a 与b的夹角余弦. 解:(1)121221⋅=⨯+⨯+⨯=a b 6, 112221⨯==i j ka b }{3,3,0-.(2)cos a b a b a b θ++==3、 已知 π5,2,,3∧⎛⎫=== ⎪⎝⎭a b a b ,求23a b -解:()()2232323-=-⋅-a b a b a b 22412976=-⋅+=a a b b ,∴ 23-=ab4、 证明下列问题:1)证明向量}{1,0,1=a 与向量}{1,1,1-=b 垂直. 2) 证明向量c 与向量()()a c b b c a ⋅-⋅垂直. 证:1)01110)1(1=⨯+⨯+-⨯=⋅b a ,^π(,)2a b ∴=,即a 与b 垂直. 2) [()()]⋅-⋅⋅a c b b c a c [()()]=⋅⋅-⋅⋅a c b c b c a c ()[]=⋅⋅-⋅c b a c a c 0=[()()]∴⋅-⋅⊥a c b b c a c .5、 求点)1,2,1(M 的向径OM 与坐标轴之间的夹角.解:设OM 与x 、y 、z 轴之间的夹角分别为γβα,,,则211)2(11cos 22=++==α,22cos ==β, 21cos ==γ. 3π=∴α, 4π=β, 3π=γ.6、 求与k j i a ++=平行且满足1=⋅x a 的向量x .解:因x a //, 故可设{}λλλλ,,==a x ,再由1=⋅x a 得1=++λλλ,即31=λ,从而⎭⎬⎫⎩⎨⎧=31,31,31x .7、求与向量324=-+a i j k ,2=+-b i j k 都垂直的单位向量.解:=⨯=xy z x y zij kc a b a a a b b b 324112=--i j k =105+j k,||10==c 0||∴=c c c=.⎫±+⎪⎭j8、 在顶点为)2,1,1(-A 、)2,6,5(-B 和)1,3,1(-C 的三角形中,求三角形ABC 的面积以及AC 边上的高BD .解:{0,4,3},{4,5,0}AC AB =-=-,三角形ABC 的面积为,22516121521||21222=++=⨯=AB C A S ||||21,5)3(4||22BD S ==-+= ||521225BD ⋅⋅= .5||=∴BD9、 已知向量≠0a ,≠0b ,证明2222||||||()⨯=-⋅a b a b a b .解 2222||||||sin ()∧⨯=⋅a b a b ab 222||||[1cos ()]∧=⋅-a b ab 22||||=⋅a b 222||||cos ()∧-⋅a b ab 22||||=⋅a b 2().-⋅a b10、 证明:如果++=0a b c ,那么⨯=⨯=⨯b c c a a b ,并说明它的几何意义.证: 由++=0a b c , 有()++⨯=⨯=00a b c c c , 但⨯=0c c ,于是⨯+⨯=0a c b c ,所以⨯=-⨯=⨯b c a c c a . 同理 由()++⨯=0a b c a , 有 ⨯=⨯c a a b ,从而 ⨯=⨯=⨯b c c a a b .其几何意义是以三角形的任二边为邻边构成的平行四边形的面积相等.11、 已知向量23,3=-+=-+a i j k b i j k 和2=-c i j ,计算下列各式:(1)()()⋅-⋅a b c a c b (2)()()+⨯+a b b c (3)()⨯⋅a b c (4)⨯⨯a b c 解: (1)()()8(2)8(3)⋅-⋅=---+=a b c a c b i j i j k 824--j k .(2) 344,233+=-++=-+a b i j k b c i j k ,故()()+⨯+a b b c 344233=-=-i jk--j k . (3)231()231(2)(85)(2)11311312-⨯⋅=-⋅-=--+⋅-=-=--i jk a b c i j i j k i j 2. (4)由(3)知85,()851120⨯=--+⨯⨯=--=-i jka b i j k a b c 221++i j k .习 题 6—31、已知)3,2,1(A ,)4,1,2(-B ,求线段AB 的垂直平分面的方程. 解:设),,(z y x M 是所求平面上任一点,据题意有|,|||MB MA =()()()222321-+-+-z y x ()()(),412222-+++-=z y x化简得所求方程26270x y z -+-=.这就是所求平面上的点的坐标所满足的方程, 而不在此平面上的点的坐标都不满足这个方程,所以这个方程就是所求平面的方程.2、 一动点移动时,与)0,0,4(A 及xOy 平面等距离,求该动点的轨迹方程.解:设在给定的坐标系下,动点),,(z y x M ,所求的轨迹为C ,则(,,)M x y z C MA z ∈⇔= 亦即z z y x =++-222)4( 0)4(22=+-∴y x 从而所求的轨迹方程为0)4(22=+-y x .3、 求下列各球面的方程:(1)圆心)3,1,2(-,半径为6=R ; (2)圆心在原点,且经过点)3,2,6(-;(3)一条直径的两端点是)3,1,4()5,32(--与;(4)通过原点与)4,0,0(),0,3,1(),0,0,4(- 解:(1)所求的球面方程为:36)3()1()2(222=-+++-z y x (2)由已知,半径73)2(6222=+-+=R ,所以球面方程为49222=++z y x(3)由已知,球面的球心坐标1235,1213,3242=-=-=+-==+=c b a , 球的半径21)35()31()24(21222=++++-=R ,所以球面方程为: 21)1()1()3(222=-+++-z y x(4)设所求的球面方程为:0222222=++++++l kz hy gx z y x因该球面经过点)4,0,0(),0,3,1(),0,0,4(),0,0,0(-,所以⎪⎪⎩⎪⎪⎨⎧=-=++=+=08160621008160k h g g l 解之得⎪⎪⎩⎪⎪⎨⎧=-=-==2210k g h l∴所求的球面方程为0424222=+--++z y x z y x .4、将yOz 坐标面上的抛物线22y z =绕z 旋转一周,求所生成的旋转曲面的方程. 解:222x y z +=(旋转抛物面) .5、将zOx 坐标面上的双曲线12222=-c z a x 分别绕x 轴和z 轴旋转一周,求所生成的旋转曲面的方程.解: 绕x 轴旋转得122222=+-c z y a x 绕z 轴旋转得122222=-+cz a y x .6、指出下列曲面的名称,并作图:(1)22149x z +=;(2)22y z =;(3)221x z += ;(4)22220x y z x ++-=; (5)222y x z +=;(6)22441x y z -+=;(7)221916x y z ++=;(8)222149x y z -+=-;(9)1334222=++z y x ;(10)2223122z y x +=+.解: (1)椭圆柱面;(2) 抛物柱面;(3) 圆柱面;(4)球面;(5)圆锥面;(6)双曲抛物面;(7)椭圆抛物面;(8)双叶双曲面;(9)为旋转椭球面;(10)单叶双曲面.7、指出下列方程在平面解析几何和空间解析几何中分别表示什么图形? (1)1+=x y ;(2)422=+yx ;(3)122=-y x ;(4)22x y =.解:(1)1+=x y 在平面解析几何中表示直线,在空间解析几何中表示平面; (2)422=+y x 在平面解析几何中表示圆周,在空间解析几何中表示圆柱面; (3)122=-y x 在平面解析几何中表示双曲线,在空间解析几何中表示双曲柱面;(4)y x22=在平面解析几何中表示抛物线,在空间解析几何中表示抛物柱面.8、 说明下列旋转曲面是怎样形成的?(1)1994222=++z y x ;(2)14222=+-z y x (3)1222=--z y x ;(4)222)(y x a z +=- 解:(1)xOy 平面上椭圆19422=+y x 绕x 轴旋转而成;或者 xOz 平面上椭圆22149+=x z 绕x 轴旋转而成(2)xOy 平面上的双曲线1422=-y x 绕y 轴旋转而成;或者 yOz 平面上的双曲线2214-=y z 绕y 轴旋转而成(3)xOy 平面上的双曲线122=-y x 绕x 轴旋转而成;或者 xOz 平面上的双曲线221x z -=绕x 轴旋转而成 (4)yOz 平面上的直线a y z +=绕z 轴旋转而成或者 xOz 平面上的直线z x a =+绕z 轴旋转而成.9、 画出下列各曲面所围立体的图形:(1)012243=-++z y x 与三个坐标平面所围成;(2)42,42=+-=y x x z 及三坐标平面所围成; (3)22=0,(0)=1z z =a a >,y =x,x +y 及0x =在第一卦限所围成;(4)2222,8z x y z x y =+=--所围. 解:(1)平面012243=-++z y x 与三个坐标平面围成一个在第一卦限的四面体; (2)抛物柱面24z x =-与平面24x y +=及三坐标平面所围成;(3)坐标面=0z 、0x =及平面(0)z =a a >、y=x 和圆柱面22=1x +y 在第一卦限所围成; (4)开口向上的旋转抛物面22z x y =+与开口向下的抛物面228z x y =--所围.作图略.习 题 6—41、画出下列曲线在第一卦限内的图形(1)⎩⎨⎧==21y x ;(2)⎪⎩⎪⎨⎧=---=0422y x y x z ;(3)⎪⎩⎪⎨⎧=+=+222222a z x ay x解:(1)是平面1x =与2y =相交所得的一条直线; (2)上半球面z 与平面0x y -=的交线为14圆弧; (3)圆柱面222x y a +=与222x z a +=的交线.图形略.2、分别求母线平行于x 轴及y 轴而且通过曲线⎪⎩⎪⎨⎧=-+=++0162222222y z x z y x 的柱面方程.解:消去x 坐标得16322=-z y ,为母线平行于x 轴的柱面;消去y 坐标得:162322=+z x ,为母线平行于y 轴的柱面.3、求在yOz 平面内以坐标原点为圆心的单位圆的方程(任写出三种不同形式的方程).解:⎩⎨⎧==+0122x z y ;⎩⎨⎧==++01222x z y x ; ⎪⎩⎪⎨⎧=+=++1122222z y z y x .4、试求平面20x -=与椭球面222116124x y z ++=相交所得椭圆的半轴与顶点.解:将椭圆方程22211612420x y z x ⎧++=⎪⎨⎪-=⎩化简为:221932y z x ⎧+=⎪⎨⎪=⎩,可知其为平面2=x 上的椭圆,半轴分别为3,3,顶点分别为)3,0,2(),3,0,2(),0,3,2(),0,3,2(--.5 、将下面曲线的一般方程化为参数方程(1)2229x y z y x ⎧++=⎨=⎩; (2)⎩⎨⎧==+++-04)1()1(22z z y x解:(1)原曲线方程即:⎪⎩⎪⎨⎧=+=199222z x xy ,化为⎪⎪⎪⎩⎪⎪⎪⎨⎧=≤≤==tz t t y t x sin 3)20(cos 23cos 23π;(2))20(0sin 3cos 31πθθθ≤≤⎪⎪⎩⎪⎪⎨⎧==+=z y x .6、求螺旋线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 在三个坐标面上的投影曲线的直角坐标方程.解:⎩⎨⎧==+0222z a y x ;⎪⎩⎪⎨⎧==0sin x b z a y ;⎪⎩⎪⎨⎧==0cosy b z a x .7、指出下列方程所表示的曲线(1)222253⎧++=⎨=⎩x y z x (2)⎩⎨⎧==++13094222z z y x ;(3)⎩⎨⎧-==+-3254222x z y x ; (4)⎩⎨⎧==+-+408422y x z y ; (5)⎪⎩⎪⎨⎧=-=-0214922x z y . 解:(1)圆; (2)椭圆; (3)双曲线; (4)抛物线; (5)双曲线.8、 求曲线⎩⎨⎧==-+30222z x z y 在xOy 面上的投影曲线方程,并指出原曲线是何种曲线.解:原曲线即:⎩⎨⎧=-=3922z x y ,是位于平面3=z 上的抛物线,在xOy 面上的投影曲线为⎩⎨⎧=-=0922z x y9、 求曲线 ⎪⎩⎪⎨⎧==++211222z z y x 在坐标面上的投影. 解:(1)消去变量z 后得,4322=+y x 在xOy 面上的投影为,04322⎪⎩⎪⎨⎧==+z y x 它是中心在原点,半径为23的圆周.(2)因为曲线在平面21=z 上,所以在xOz 面上的投影为线段.;23||,021≤⎪⎩⎪⎨⎧==x y z (3)同理在yOz 面上的投影也为线段..23||,21≤⎪⎩⎪⎨⎧==y x z10、 求抛物面x z y =+22与平面 02=-+z y x 的交线在三个坐标面上的投影曲线方程.解: 交线方程为⎩⎨⎧=-+=+0222z y x x z y ,(1)消去z 得投影,004522⎩⎨⎧==-++z x xy y x(2)消去y 得投影2252400x z xz x y ⎧+--=⎨=⎩,(3)消去x 得投影22200y z y z x ⎧++-=⎨=⎩.习 题 6—51、写出过点()3,2,10M 且以{}1,2,2=n 为法向量的平面方程. 解:平面的点法式方程为()()()032212=-+-+-z y x .2、求过三点()()()01,0,0,1,0,0,0,1C B A 的平面方程.解:设所求平面方程为0=+++d cz by ax ,将C B A ,,的坐标代入方程,可得d c b a -===,故所求平面方程为1=++z y x .3、求过点()1,0,0且与平面1243=++z y x 平行的平面方程. 解:依题意可取所求平面的法向量为}2,4,3{=n ,从而其方程为()()()0120403=-+-+-z y x 即 2243=++z y x .4、求通过x 轴和点(4, -3, -1)的平面的方程.解:平面通过x 轴, 一方面表明它的法线向量垂直于x 轴, 即A =0; 另一方面表明它必通过原点, 即D =0. 因此可设这平面的方程为By +Cz =0.又因为这平面通过点(4, -3, -1), 所以有-3B -C =0, 或C =-3B . 将其代入所设方程并除以B (B 0), 便得所求的平面方程为y -3z =0.5、求过点)1,1,1(,且垂直于平面7=+-z y x 和051223=+-+z y x 的平面方程.解:},1,1,1{1-=n }12,2,3{2-=n 取法向量},5,15,10{21=⨯=n n n所求平面方程为化简得:.0632=-++z y x6、设平面过原点及点)1,1,1(,且与平面8x y z -+=垂直,求此平面方程.解: 设所求平面为,0=+++D Cz By Ax 由平面过点)1,1,1(知平0,A B C D +++=由平面过原点知0D =,{1,1,1},n ⊥- 0A B C ∴-+=,0A C B ⇒=-=,所求平面方程为0.x z -=7、写出下列平面方程:(1)xOy 平面;(2)过z 轴的平面;(3)平行于zOx 的平面;(4)在x ,y ,z 轴上的截距相等的平面.解:(1)0=z ,(2)0=+by ax (b a ,为不等于零的常数), (3)c y = (c 为常数), (4) a z y x =++ (0)a ≠.8、 求平行于0566=+++z y x 而与三个坐标面所围成的四面体体积为1的平面方程.解: 设平面为,1=++c z b y a x ,1=V 111,32abc ∴⋅=由所求平面与已知平面平行得,611161c b a ==化简得,61161c b a ==令tc t b t a t c b a 61,1,6161161===⇒===代入体积式 11111666t t t ∴=⋅⋅⋅ 1,6t ⇒=±,1,6,1===∴c b a 或1,6,1,a b c =-=-=-所求平面方程为666x y z ++=或666x y z ++=-.9、分别在下列条件下确定n m l ,,的值:(1)使08)3()1()3(=+-+++-z n y m x l 和016)3()9()3(=--+-++z l y n x m 表示同一平面; (2)使0532=-++z my x 与0266=+--z y lx 表示二平行平面; (3)使013=+-+z y lx 与027=-+z y x 表示二互相垂直的平面.解:(1)欲使所给的二方程表示同一平面,则:168339133-=--=-+=+-l n n m m l 即: ⎪⎩⎪⎨⎧=-+=-+=-+092072032n l m n l m ,解之得 97=l ,913=m ,937=n . (2)欲使所给的二方程表示二平行平面,则:6362-=-=m l ,所以4-=l ,3=m . (3)欲使所给的二方程表示二垂直平面,则:7230l ++=所以: 57l=-.10、求平面011=-+y x 与083=+x 的夹角; 解:设011=-+y x 与083=+x 的夹角为θ,则cos θ ∴ 4πθ=.11、 求点(2,1,1)到平面2240x y z +-+=的距离. 解:利用点到平面的距离公式可得933d ===.习 题 6—61、求下列各直线的方程:(1)通过点)1,0,3(-A 和点)1,5,2(-B 的直线; (2) 过点()1,1,1且与直线433221-=-=-z y x 平行的直线. (3)通过点)3,51(-M 且与z y x ,,三轴分别成︒︒︒120,45,60的直线; (4)一直线过点(2,3,4)-A ,且和y 轴垂直相交,求其方程. (5)通过点)2,0,1(-M 且与两直线11111-+==-z y x 和01111+=--=z y x 垂直的直线; (6)通过点)5,3,2(--M 且与平面02536=+--z y x 垂直的直线.解:(1)所求的直线方程为:015323-=-=++z y x 即:01553-=-=+z y x ,亦即01113-=-=+z y x . (2)依题意,可取L 的方向向量为{}4,3,2=s ,则直线L 的方程为413121-=-=-z y x . (3)所求直线的方向向量为:{}⎭⎬⎫⎩⎨⎧-=︒︒︒21,22,21120cos ,45cos ,60cos ,故直线方程为: 132511--=+=-z y x . (4)因为直线和y 轴垂直相交,所以交点为),0,3,0(-B 取{2,0,4},BA s −−→==所求直线方程.440322-=+=-z y x (5)所求直线的方向向量为:{}{}{}2,1,10,1,11,1,1---=-⨯-,所以,直线方程为:22111+==-z y x . (6)所求直线的方向向量为:{}5,3,6--,所以直线方程为: 235635x y z -++==--.2、求直线1,234x y z x y z ++=-⎧⎨-+=-⎩的点向式方程与参数方程.解 在直线上任取一点),,(000z y x ,取10=x ,063020000⎩⎨⎧=--=++⇒z y z y 解2,000-==z y .所求点的坐标为)2,0,1(-,取直线的方向向量{}{}3,1,21,1,1-⨯=s k j i kji34312111--=-=,所以直线的点向式方程为:,321041-+=--=-z y x 令102,413x y z t --+===--则所求参数方程: .3241⎪⎩⎪⎨⎧--=-=+=tz ty tx3、判别下列各对直线的相互位置,如果是相交的或平行的直线求出它们所在的平面,如果相交时请求出夹角的余弦.(1)⎩⎨⎧=-+=+-0623022y x z y x 与⎩⎨⎧=-+=--+01420112z x z y x ;(2)⎪⎩⎪⎨⎧--=+==212t z t y tx 与142475x y z --+==-. 解:(1)将所给的直线方程化为标准式为:4343223z y x =-=--43227-=--=-z y x 234234-==-- ∴二直线平行.又点)0,43,23(与点(7,2,0)在二直线上,∴向量⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧--0,45,2110,432,237平行于二直线所确定的平面,该平面的法向量为:{}{}19,22,50,45,2114,3,2--=⎭⎬⎫⎩⎨⎧⨯-,从而平面方程为:0)0(19)2(22)7(5=-+---z y x ,即0919225=++-z y x .(2)因为121475-≠≠-,所以两直线不平行,又因为0574121031=--=∆,所以两直线相交,二直线所决定的平面的法向量为{}{}{}1,1,35,7,412,1--=-⨯-,∴二直线所决定的平面的方程为:330x y z -++=.设两直线的夹角为ϕ,则cos ϕ==4、判别下列直线与平面的相关位置: (1)37423z y x =-+=--与3224=--z y x ;(2)723zy x =-=与8723=+-z y x ; (3)⎩⎨⎧=---=-+-01205235z y x z y x 与07734=-+-z y x ;(4)⎪⎩⎪⎨⎧-=+-==4992t z t y t x 与010743=-+-z y x .解(1) 0)2(3)2()7(4)2(=-⨯+-⨯-+⨯-,而017302)4(234≠=-⨯--⨯-⨯,所以,直线与平面平行.(2) 0717)2(233≠⨯+-⨯-⨯,所以,直线与平面相交,且因为772233=--=,∴直线与平面垂直. (3)直线的方向向量为:{}{}{}1,9,51,1,22,3,5=--⨯-, 0179354=⨯+⨯-⨯,所以直线与平面平行或者直线在平面上;取直线上的点)0,5,2(--M ,显然点在)0,5,2(--M 也在平面上(因为4(2)3(5)70⨯--⨯--=),所以,直线在平面上.(4)直线的方向向量为{}9,2,1-, 097)2(413≠⨯+-⨯-⨯∴直线与平面相交但不垂直.5、验证直线l :21111-=-=-z y x 与平面π:032=--+z y x 相交,并求出它的交点和交角. 解: 032111)1(2≠-=⨯-⨯+-⨯∴直线与平面相交.又直线的参数方程为:⎪⎩⎪⎨⎧+=+=-=t z t y tx 211设交点处对应的参数为0t ,∴03)21()1()(2000=-+-++-⨯t t t ∴10-=t ,从而交点为(1,0,-1). 又设直线l 与平面π的交角为θ,则:21662111)1(2sin =⨯⨯-⨯+-⨯=θ,∴6πθ=.6、确定m l ,的值,使: (1)直线13241zy x =+=-与平面0153=+-+z y lx 平行; (2)直线⎪⎩⎪⎨⎧-=--=+=135422t z t y t x 与平面076=-++z my lx 垂直.解:(1)欲使所给直线与平面平行,则须:015334=⨯-⨯+l 即1l =-. (2)欲使所给直线与平面垂直,则须:3642=-=m l ,所以:8,4-==m l .7、求下列各平面的方程: (1)通过点)1,0,2(-p ,且又通过直线32121-=-=+z y x 的平面; (2)通过直线115312-+=-+=-z y x 且与直线⎩⎨⎧=--+=---052032z y x z y x 平行的平面; (3)通过直线223221-=-+=-z y x 且与平面0523=--+z y x 垂直的平面;(4). 求过点(2,1,0)M 与直线2335x t y t z t =-⎧⎪=+⎨⎪=⎩垂直的平面方程.解:(1)因为所求的平面过点)1,0,2(-p 和)2,0,1(-'p ,且它平行于向量{}3,1,2-,所以要求的平面方程为:03331212=--+-z y x , 即015=-++z y x .(2)已知直线的方向向量为{}{}{}2,1,11,2,13,1,5--⨯-=,∴平面方程为:2311510315x y z -++--=,即3250x y z +--= (3)所求平面的法向量为{}{}{}13,8,11,2,32,3,2-=-⨯-,∴平面的方程为:0)2(13)2(8)1(=--+--z y x ,即09138=+--z y x .(4).所求平面的法向量为{}2,3,1,则平面的方程为:2(2)3(1)(0)0x y z -+-+-=, 即 2370x y z ++-=.8、求点(4,1,2)M 在平面1x y z ++=上的投影.解: 过点(4,1,2)M 作已知平面的垂线,垂线的方向向量就是已知平面的法向量(1,1,1),所以垂线方程为412111x y z ---==,此垂线与已知平面的交点即为所求投影.为了求投影,将垂线方程化为参数方程412x t y t z t =+⎧⎪=+⎨⎪=+⎩,代入平面方程求得2t =-,故投影为(2,1,0)-. 9、求点)1,3,2(-p 到直线⎩⎨⎧=++-=++-0172230322z y x z y x 的距离.解:直线的标准方程为:2251211-+==-z y x 所以p 到直线的距离 1534532025)2(1212392292421243222222===-++-+--+-=d .10、设0M 是直线L 外一点,M 是直线L 上一点,且直线的方向向量为s ,试证:点0M 到直线L 的距离为d =.证:设0M M 与L 的夹角为θ,一方面由于0sin d M M θ=;另一方面,00sin M M s M M s θ⨯=,所以d =.11、求通过平面0134=-+-z y x 和025=+-+z y x 的交线且满足下列条件之一的平面: (1)通过原点; (2)与y 轴平行;(3)与平面0352=-+-z y x 垂直. 解: (1)设所求的平面为:0)25()134(=+-++-+-z y x z y x λ 欲使平面通过原点,则须:021=+-λ,即21=λ,故所求的平面方程为 0)25()134(2=+-++-+-z y x z y x 即:0539=++z y x .(2)同(1)中所设,可求出51=λ.故所求的平面方程为 0)25()134(5=+-++-+-z y x z y x 即:031421=-+z x .(3)如(1)所设,欲使所求平面与平面0352=-+-z y x 垂直,则须:0)3(5)51()4(2=-++--+λλλ从而3=λ,所以所求平面方程为05147=++y x .12、求直线⎩⎨⎧=++-=--+0101z y x z y x 在平面0=++z y x 上的投影直线的方程.解:应用平面束的方法.设过直线⎩⎨⎧=++-=--+0101z y x z y x 的平面束方程为0)1()1(=++-+--+z y x z y x λ即01)1()1()1(=-++-+-++λλλλz y x这平面与已知平面0=++z y x 垂直的条件是01)1(1)1(1)1(=⋅+-+⋅-+⋅+λλλ,解之得1-=λ代入平面束方程中得投影平面方程为10y z --=,所以投影直线为⎩⎨⎧=++=--001z y x z y .13、请用异于本章第五节例7的方法来推导点到平面的距离公式.证:设),,(0000z y x P 是平面π:0+++=Ax By Cz D 外的一点,下面我们来求点0P 到平面π的距离. 过0P 作平面π的垂线L :000x x y y z z A B C---==,设L 与平面π的交点为(,,)P x y z ,则P 与0P 之间的距离即为所求.因为点(,,)P x y z 在L 上,所以000x x Aty y Bt z z Ct-=-=-=⎧⎪⎨⎪⎩,而(,,)P x y z 在平面π上,则000()()()0A x At B y Bt C z Ct D ++++++=000222Ax By Cz A B t DC ⇒=-+++++,故000222Ax By Cz Dd t A B C+++===++=.习 题 6—7飞机的速度:假设空气以每小时32公里的速度沿平行y 轴正向的方向流动,一架飞机在xoy 平面沿与x 轴正向成π6的方向飞行,若飞机相对于空气的速度是每小时840公里,问飞机相对于地面的速度是多少?解:如下图所示,设OA 为飞机相对于空气的速度,AB 为空气的流动速度,那么OB 就是飞机相对于地面的速度.840cos 840sin 4203420,3266OA i j i j AB j ππ=⋅+⋅=+=所以, 24203452,(420856.45OB i j OB =+=≈千米/小时.复习题A一 、判断正误:1、 若c b b a ⋅=⋅且≠0b ,则c a =; ( ⨯ )解析 c b b a ⋅-⋅=)(c a b -⋅=0时,不能判定=b 0或c a =.例如i a =,j b =,k c =,有⋅=⋅=0a b b c ,但c a ≠.2、 若c b b a ⨯=⨯且≠0b ,则c a =; ( ⨯ )解析 此结论不一定成立.例如i a =,j b =,)(j i c +-=,则k j i b a =⨯=⨯,k j i j c b =+-⨯=⨯)]([,c b b a ⨯=⨯,但c a ≠.3 、若0=⋅c a ,则=0a 或=0c ; ( ⨯ ) 解析 两个相互垂直的非零向量点积也为零.4、 a b b a ⨯-=⨯. ( √ ) 解析 这是叉积运算规律中的反交换律.二、选择题:1 、 当a 与b 满足( D )时,有b a b a +=+;(A)⊥a b ; (B)λ=a b (λ为常数); (C)a ∥b ; (D)⋅=a b a b .解析 只有当a 与b 方向相同时,才有a +b =a +b .(A)中a ,b 夹角不为0,(B),(C)中a ,b 方向可以相同,也可以相反.2、下列平面方程中,方程( C )过y 轴;图6-1 空所流动与飞机飞行速度的关系(A) 1=++z y x ; (B) 0=++z y x ; (C) 0=+z x ; (D) 1=+z x . 解析 平面方程0=+++D Cz By Ax 若过y 轴,则0==D B ,故选C .3 、在空间直角坐标系中,方程2221y x z --=所表示的曲面是( B );(A) 椭球面; (B) 椭圆抛物面; (C) 椭圆柱面; (D) 单叶双曲面.解析 对于曲面2221y x z --=,垂直于z 轴的平面截曲面是椭圆,垂直于x 轴或y 轴的平面截曲面是开口向下的抛物线,根据曲面的截痕法,可以判断曲面是椭圆抛物面.4、空间曲线⎩⎨⎧=-+=5,222z y x z 在xOy 面上的投影方程为( C );(A)722=+y x ; (B)⎩⎨⎧==+5722z y x ; (C) ⎩⎨⎧==+0722z y x ;(D)⎩⎨⎧=-+=0222z y x z解析 曲线⎩⎨⎧==+5722z y x 与xOy 平面平行,在xOy 面上的投影方程为⎩⎨⎧==+0722z y x .5 、直线11121-+==-z y x 与平面1=+-z y x 的位置关系是( B ). (A) 垂直; (B) 平行; (C) 夹角为π4; (D) 夹角为π4-.解析 直线的方向向量s ={2,1,-1},平面的法向量n ={1,-1,1},n s ⋅=2-1-1=0,所以,s ⊥n ,直线与平面平行.三、填空题:1、若2=b a ,π()2=a,b ,则=⨯b a 2 ,=⋅b a 0 ; 解 =⨯b a b a sin()a,b π22=2,=⋅b a b a cos()a,b π22=0.2、与平面062=-+-z y x 垂直的单位向量为 }2,1,1{66-±; 解 平面的法向量 n ={1,-1,2}与平面垂直,其单位向量为0n =411++=6,所以,与平面垂直的单位向量为}2,1,1{66-±.3、过点)2,1,3(--和)5,0,3(且平行于x 轴的平面方程为 057=-+z y ;解 已知平面平行于x 轴,则平面方程可设为 0=++D Cz By ,将点 (-3,1,-2)和(3,0,5)代入方程,有{20,50,B C D C D -+=+= ⇒ 7,51,5B D C D ⎧=-⎪⎨⎪=-⎩得 05157=+--D Dz Dy ,即 057=-+z y .4、过原点且垂直于平面022=+-z y 的直线为z yx -==20; 解 直线与平面垂直,则与平面的法向量 n ={0,2,-1}平行,取直线方向向量s =n ={0,2,-1},由于直线过原点,所以直线方程为z yx -==20 .5、曲线⎩⎨⎧=+=1,222z y x z 在xOy 平面上的投影曲线方程为 ⎩⎨⎧==+.0,1222z y x解: 投影柱面为 1222=+y x ,故 ⎩⎨⎧==+0,1222z y x 为空间曲线在xOy 平面上的投影曲线方程.四、解答题:1、 已知}1,2,1{-=a ,}2,1,1{=b ,计算(a) b a ⨯; (b) ()()-⋅+2a b a b ; (c) 2b a -;解: (a) b a ⨯=211121-kj i 1,3}5,{--=. (b) {2,4,2}{1,1,2}{1,5,0}2a b -=--=-,1,3}{2,{1,1,2}2,1}{1,-=+-=+b a , 所以()()-⋅+2a b a b 7}3,1,2{}0,5,1{=-⋅-=.(c) 1}3,{0,{1,1,2}2,1}{1,--=--=-b a ,所以2b a -10)19(2=+=.2、已知向量21P P 的始点为)5,2,2(1-P ,终点为)7,4,1(2-P ,试求:(1)向量21P P 的坐标表示; (2)向量21P P 的模;(3)向量21P P 的方向余弦; (4)与向量21P P 方向一致的单位向量.解: (1) }2,6,3{}57),2(4,21{21-=-----=P P ;74926)3(222==++-=;(3) 21P P 在z y x ,,三个坐标轴上的方向余弦分别为362cos ,cos ,cos 777αβγ=-==;(4)k j i k j i 7276737263)(21++-=++-==P P.3、设向量{}1,1,1=-a ,{}1,1,1=-b ,求与a 和b 都垂直的单位向量.解: 令{}1110,2,2111=⨯=-=-i j kc a b,01⎧==⎨⎩c c c ,故与a 、b都垂直的单位向量为0⎧±=±⎨⎩c .4、向量d垂直于向量]1,3,2[-=a和]3,2,1[-=b ,且与]1,1,2[-=c的数量积为6-,求向量d解: d垂直于a与b ,故d平行于b a⨯,存在数λ使()b a d⨯=λ⨯-=]1,3,2[λ]3,2,1[-]7,7,7[λλλ--=因6-=⋅c d,故6)7(1)7()1(72-=-⨯+-⨯-+⨯λλλ, 73-=λ]3,3,3[-=∴d.5、求满足下列条件的平面方程:(1)过三点)2,1,0(1P ,)1,2,1(2P 和)4,0,3(3P;(2)过x 轴且与平面025=++z y x 的夹角为π3. 解 (1)解1: 用三点式.所求平面的方程为0241003211201210=---------z y x ,即01345=+--z y x . 解2:}1,1,1{-=}2,1,3{-=,由题设知,所求平面的法向量为k j i kj in 452131113121--=--=⨯=P P P P , 又因为平面过点)2,1,0(1P ,所以所求平面方程为0)2(4)1(5)0(=-----z y x ,即01345=+--z y x .解3: 用下面的方法求出所求平面的法向量},,{C B A =n ,再根据点法式公式写出平面方程也可. 因为3121,P P P P ⊥⊥n n ,所以{0,320,A B C A B C +-=-+=解得A C A B 4,5-=-=,于是所求平面方程为0)2(4)1(5)0(=-----z A y A x A ,即 01345=+--z y x .(2)因所求平面过x 轴,故该平面的法向量},,{C B A =n 垂直于x 轴,n 在x 轴上的投影0=A ,又平面过原点,所以可设它的方程为0=+Cz By ,由题设可知0≠B (因为0=B 时,所求平面方程为0=Cz 又0≠C ,即0=z .这样它与已知平面025=++z y x 所夹锐角的余弦为π1cos 32=≠=,所以0≠B ),令C B C'=,则有0='+z C y ,由题设得 22222212)5(10121503cos ++'++⨯'+⨯+⨯=πC C , 解得3='C 或13C '=-,于是所求平面方程为03=+z y 或03=-z y .6、 一平面过直线⎩⎨⎧=+-=++04,05z x z y x 且与平面01284=+--z y x 垂直,求该平面方程;解法1: 直线⎩⎨⎧=+-=++04,05z x z y x 在平面上,令x =0,得 54-=y ,z =4,则(0,-54,4)为平面上的点.设所求平面的法向量为n =},,{C B A ,相交得到直线的两平面方程的法向量分别为 1n ={1,5,1},2n ={1,0,-1},则直线的方向向量s =1n ⨯2n =101151-kj i ={-5,2,-5},由于所求平面经过直线,故平面的法向量与直线的方向向量垂直,即⋅n s ={-5,2,-5}•},,{C B A =C B A 525-+-=0,因为所求平面与平面01284=+--z y x 垂直,则}8,4,1{},,{--⋅C B A =C B A 84--=0,解方程组{5250,480,A B C A B C -+=--= ⇒ 2,5,2A CBC =-⎧⎪⎨=-⎪⎩ 所求平面方程为 0)4()54(25)0(2=-++---z C y C x C ,即012254=+-+z y x .解法2: 用平面束(略)7、求既与两平面1:43x z π-=和2:251x y z π--=的交线平行,又过点(3,2,5)-的直线方程.解法1:{}11,0,4=-n ,{}22,1,5=--n ,{}124,3,1s =⨯=---n n ,从而根据点向式方程,所求直线方程为325431x y z +--==---,即325431x y z +--==. 解法2:设{},,s m n p =,因为1⊥s n ,所以40m p -=;又2⊥s n ,则250m n p --=,可解4,3m p n p ==,从而0p ≠.根据点向式方程,所求直线方程为32543x y z p p p +--==,即325431x y z +--==. 解法3:设平面3π过点(3,2,5)-,且平行于平面1π,则{}311,0,4==-n n 为3π的法向量,从而3π的方程为1(3)0(2)4(5)0x y z ⋅++⋅--⋅-=,即4230x z -+=.同理,过已知点且平行于平面2π的平面4π的方程为25330x y z --+=.故所求直线的方程为423025330x z x y z -+=⎧⎨--+=⎩.8、 一直线通过点)1,2,1(A ,且垂直于直线11231:+==-z y x L ,又和直线z y x ==相交,求该直线方程;解: 设所求直线的方向向量为{,,}m n p =s ,因垂直于L ,所以320m n p ++=;又因为直线过点)1,2,1(A ,则所求直线方程为 p z n y m x 121-=-=-,联立121,①,②320,③x y z m n p x y z m n p ---⎧==⎪⎨==⎪++=⎩由①,令λ=-=-=-p z n y m x 121,则有⎪⎩⎪⎨⎧+=+=+=,1,2,1p z n y m x λλλ代入方程②有{12,11,m n m p λλλλ+=++=+ 可得p m =,代入③解得p n 2-=, 因此,所求直线方程为112211-=--=-z y x .9、 指出下列方程表示的图形名称:(a) 14222=++z y x ;(b) z y x 222=+;(c) 22y x z +=;(d) 022=-y x ;(e) 122=-y x ; (f) ⎩⎨⎧=+=222z y x z .解: (a) 绕y 轴旋转的旋转椭球面.(b) 绕z 轴旋转的旋转抛物面. (c) 绕z 轴旋转的锥面. (d) 母线平行于z 轴的两垂直平面:y x =,y x -=. (e) 母线平行于z 轴的双曲柱面. (f) 旋转抛物面被平行于XOY 面的平面所截得到的圆,半径为2,圆心在(0,0,2)处.10、求曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影并作其图形.解: 将所给曲面方程联立消去z ,就得到两曲面交线C 的投影柱面的方程122=+y x ,所以柱面与xOy 平面的交线⎩⎨⎧==+'01:22z y x C 所围成的区域221+≤x y 即为曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影(图略).复习题B1、设4=a ,3=b ,()6π=a,b ,求以2+a b 和3-a b 为邻边的平行四边形的面积.解:(2)(3)326A =+⨯-=⨯-⨯+⨯-⨯a b a b a a a b b a b b325=-⨯-⨯=-⨯a b a b a b 15sin()543302=⋅=⨯⨯⨯=a b a,b .2、设(3)(75)+⊥-a b a b ,(4)(72)-⊥-a b a b ,求()a,b . 解: 由已知可得:(3)(75)0+⋅-=a b a b ,(4)(72)0-⋅-=a b a b 即 22715160-+⋅=a b a b ,2278300+-⋅=a b a b .这可看成是含三个变量a 、b 及⋅a b 的方程组,可将a 、b 都用⋅a b 表示,即==a b 1cos()22⋅⋅===⋅a b a b a,b a b a b ,()3π=a,b .3、求与}3,2,1{-=a 共线,且28=⋅b a 的向量b .解 由于b 与a 共线,所以可设}3,2,{λλλλ-==a b ,由28=⋅b a ,得28}3,2,{}3,2,1{=-⋅-λλλ, 即2894=++λλλ,所以2=λ,从而}6,4,2{-=b .4、 已知}0,1,1{},2,0,1{=-=b a ,求c ,使b c a c ⊥⊥,且6=c .解法1: 待定系数法.设},,{z y x =c ,则由题设知0,0=⋅=⋅b c a c 及6=c ,所以有①20②③6x z ⎧-=⎪=由①得2xz = ④,由②得x y -= ⑤,将④和⑤代入③得62)(222=⎪⎭⎫⎝⎛+-+x x x ,解得2,4,4±==±=z y x ,于是 }2,4,4{-=c 或}2,4,4{--=c .解法2: 利用向量的垂直平行条件,因为b c a c ⊥⊥,,所以c ∥b a ⨯.设λ是不为零的常数,则k j i k j i b a c λλλλλ+-=-=⨯=22011201)(,因为6=c ,所以6]1)2(2[2222=+-+λ,解得2±=λ,所以}2,4,4{-=c 或{4,4,2}=--c .解法3: 先求出与向量b a ⨯方向一致的单位向量,然后乘以6±.k j i kji b a +-=-=⨯22011201,31)2(2222=+-+=⨯b a ,故与b a ⨯方向一致的单位向量为}1,2,2{31-.于是}1,2,2{36-±=c ,即}2,4,4{-=c 或}2,4,4{--=c .5、求曲线222x y R x y z ⎧+=⎨++=⎩的参数式方程.解: 曲线参数式方程是把曲线上任一点(,,)P x y z 的坐标,,x y z 都用同一变量即参数表示出来,故可令cos ,sin x R t y R t ==,则(cos sin )z R t t =-+.6、求曲线22:2z L x y x⎧⎪=⎨+=⎪⎩xOy 面上及在zOx 面上的投影曲线的方程.解: 求L 在xOy 面上的投影的方程,即由L 的两个方程将z 消去,即得L 关于xOy 面的投影柱面的方程222x y x +=则L 在xOy 面上的投影曲线的方程为2220x y xz ⎧+=⎨=⎩. 同理求L 在zOx 面上的投影的方程,即由L 的两个方程消去y ,得L 关于zOx 面的投影柱面的方程z =L 在zOx面上的投影曲线方程为0z y ⎧=⎪⎨=⎪⎩.7、已知平面π过点0(1,0,1)M -和直线1211:201x y z L ---==,求平面π的方程. 解法1: 设平面π的法向量为n ,直线1L 的方向向量1(2,0,1)=s ,由题意可知1⊥n s ,(2,1,1)M 是直线1L 上的一点,则0(1,1,2)M M =在π上,所以0MM ⊥n ,故可取10MM =⨯n s (1,3,2)=--.则所求平面的点法式方程为1(1)3(0)2(1)0x y z ⋅-+⋅--⋅+=,即3230x y z +--=为所求平面方程.解法2: 设平面π的一般方程为0Ax By Cz D +++=,由题意可知,π过点0(1,0,1)M -,故有0A C D -+=, (1)在直线1L 上任取两点12(2,1,1),(4,1,2)M M ,将其代入平面方程,得20A B C D +++=, (2)420A B C D +++=, (3)由式(1)、(2)、(3)解得3,2,3B A C A D A ==-=-,故平面π的方程为3230x y z +--=.解法3: 设(),,M x y z 为π上任一点.由题意知向量0M M 、01M M 和1s 共面,其中()12,1,1M 为直线1L 上的点,1(2,0,1)=s 为直线1L 的方向向量.因此0011()0M M M M ⨯⋅=s ,故平面π的方程为1012110110201x y z --+--+=,即3230x y z +--=为所求平面方程.8、求一过原点的平面π,使它与平面0:π4830x y z -+-=成4π角,且垂直于平面1:π730x z ++=. 解: 由题意可设π的方程为0Ax By Cz ++=,其法向量为(,,)A B C =n ,平面0π的法向量为0(1,4,8)=-n ,平面1π的法向量为1(7,0,1)=n ,由题意得00||cos 4||||π⋅=⋅n n n n ,即=(1) 由10⋅=n n ,得70A C +=,将7C A =-代入(12=,解得20,B A =或10049B A =-,则所求平面π的方程为2070x y z +-= 或 491003430x y z --=.9、求过直线1L :0230x y z x y z ++=⎧⎨-+=⎩且平行于直线2L :23x y z ==的平面π的方程.解法1: 直线1L 的方向向量为1=s 111(4,1,3)213==---i j k,直线2L 的对称式方程为632x y z==,方向向量为2(6,3,2)=s ,依题意所求平面π的法向量1⊥n s 且2⊥n s ,故可取12=⨯n s s ,则413(7,26,18)632=--=-i j kn ,又因为1L 过原点,且1L 在平面π上,从而π也过原点,故所求平面π的方程为726180x y z -+=.解法2: 设所求平面π为 (23)0x y z x y z λ+++-+=,即(12)(1)(13)0x y z λλλ++-++=, 其法向量为(12,1,13)λλλ=+-+n ,由题意知2⊥n s ,故26(12)3(1)2(13)0λλλ⋅=++-++=n s ,得1115λ=-,则所求平面π的方程为726180x y z -+=.另外,容易验证230x y z -+=不是所求的平面方程.10、求过直线L :⎩⎨⎧=+-+=+-+0185017228z y x z y x 且与球面1222=++z y x 相切的平面方程解: 设所求平面为 ()018517228=+-+++-+z y x z y x λ,即 (15)(288)(2)170x y z λλλλ+++-+++=,由题意:球心)0,0,0(到它的距离为1,即1)2()828()51(17222=--+++++λλλλ解得:89250-=λ 或 2-=λ 所求平面为:42124164387=--z y x 或 543=-y x11、求直线L :11111--==-z y x 在平面π:012=-+-z y x 上投影直线0L 的方程,并求直线0L 绕y 轴旋转一周而成的曲面方程.解: 将直线L :11111--==-z y x 化为一般方程 ⎩⎨⎧=-+=--0101y z y x ,设过直线L 且与平面π垂直的平面方程为()011=-++--y z y x λ,则有02)1(1=+--λλ,即2λ=-,平面方程为0123=+--z y x ,这样直线0L 的方程⎩⎨⎧=-+-=+--0120123z y x z y x 把此方程化为:⎩⎨⎧--==)1(221y z yx ,因此直线0L 绕y 轴旋转一周而成的曲面方程为:22221(2)(1)2x z y y ⎛⎫+=+-- ⎪⎝⎭即 0124174222=-++-y z y x .12、求过点)1,0,3(-A 且平行于平面1π:3450x y z --+=,又与直线1:2x L =1111y z -+=-相交的直线L 的方程.解法1: 用点向式方程.因为直线L 平行于平面1π,故直线L 的方向向量},,{p n m =s 垂直于平面1π的法向量}1,4,3{--=n ,从而得043=--p n m ①,又直线1L 的方向向量为}1,1,2{-=s ,)1,1,0(-B 是直线1L 上一点,)1,0,3(-A 是直线L 上一点,根据题设:直线L 与直线1L 相交,所以1s,s 及AB 共面,因此1()2110312m n pAB ⨯⋅=-=-s s ,即0=-+-p n m ②,将①和②联立解得p n p m 4,5-=-=,由此得145p n m =-=-,于是所求直线方程为11453-=-=-+z y x .。
高等数学 线性代数 习题答案第六章
第六章习题6-11. 利用定积分定义计算由抛物线y =x 2+1,直线x =a ,x =b 及x 轴所围成的图形的面积. 解 因y =x 2+1在[a,b ]上连续,所以x 2+1在[a,b ]上可积,从而可特殊地将[a,b ]n 等分,并取2,,()()1Δi i i b a b a b a a i x f a i n n nξξ---=+==++, 于是21122221222()[()1]1()[()2()1]111(1)1()[()(1)(21)2()]62Δ nni i i i ni b a b a f x a i n ni i b a a b a a b a n n n n n b a na b a n n n b a a n n n nξ===--=++=-+-+-++=-+-⋅⋅+++-⋅⋅+⋅∑∑∑ 故面积 22211(1)l i m ()()[()()1]3d Δnbi i a n i S x x f x b a a b a a b a ξ→∞==+==-+-+-+∑⎰ 331()()3b a b a =-+- 2. 利用定积分的几何意义求定积分: (1)12d x x ⎰;(2)x ⎰(a >0).解 (1)根据定然积分的几何意义知, 12d x x ⎰表示由直线y =2x ,x =0,x =1及x 轴所围的三角形的面积,而此三角形面积为1,所以12d x x ⎰=1.(2)根据定积分的几何意义知,0x ⎰表示由曲线0,y x x a ===及x轴所围成的14圆的面积,而此14圆面积为214πa ,所以2014πx a =⎰.3. 根据定积分的性质,比较积分值的大小: (1)12d x x ⎰与13d x x ⎰; (2)1e d xx ⎰与1(1)d x x +⎰.解 (1)∵当[0,1]x ∈时,232(1)0x x x x -=-≥,即23x x ≥,又2x3x ,所以11230d d x x x x >⎰⎰.(2)令()1,()1e e x xf x x f x '=--=-,因01x ≤≤,所以()0f x '>,从而()(0)0f x f ≥=,说明1e xx ≥+,又ex1+x .所以11(1)e d d xx x x >+⎰⎰.4. 估计下列各积分值的范围:(1)421(1)d x x +⎰;(2) arctan d x x ;(3)2e d ax ax --⎰(a >0); (4)22e d x x x -⎰.解 (1)在区间[1,4]上,函数2()1f x x =+是增函数,故在[1,4]上的最大值(4)17M f ==,最小值(1)2m f ==,所以4212(41)(1)17(41)d x x -≤+≤-⎰, 即 4216(1)51d x x ≤+≤⎰.(2)令()arctan f x x x =,则2()arctan 1x f x x x '=++,当x ∈时,()0f x '>,从而()f x在上是增函数,从而f (x )在上的最大值M f ==,最小值m f ==,所以2arctan 93ππd x x =≤≤=即2arctan 93ππd x x ≤≤. (3)令2()e x f x -=,则2()2e x f x x -'=-,令()0f x '=得驻点x =0,又(0)1f =,2()()e a f a f a -=-=,a >0时, 21e a -<,故()f x 在[-a,a ]上的最大值M =1,最小值 2e a m -=,所以2222e e d aa x aa x a ---≤≤⎰.(4)令2()ex xf x -=,则2()(21)e xxf x x -'=-,令()0f x '=得驻点12x =,又(0)1,f = 1241(),(2)2e ef f -==,从而()f x 在[0,2]上的最大值2e M =,最小值14e m -=,所以 212242ee d e x x x --≤≤⎰,而2222ed e d x xx x x x --=-⎰⎰,故 21024222e ed ex xx ---≤≤-⎰.习题6-21. 求下列导数:(1)20d d x t x ⎰; (2) 53ln 2d e d d x t t t x -⎰; (3) cos 2sin cos()d xxt t '⎡⎤π⎢⎥⎣⎦⎰; (4) 22dsin d d x t t x tπ⎰ (x >0). 解220(1)()d d x t x x'⋅=⎰5353ln 2(2)d e d e d x tx t t x x --=⎰cos cos sin 222sin 00cos sin 220022222(3)cos()cos()cos()cos()cos()cos(cos )(cos )cos(sin )(sin )cos(cos )sin cos(sin )cos cos(sin )sin πd πd πd πd πd πππππx x xx xx t t t t t t t t t tx x x x x x x x x x ''⎡⎤⎡⎤=-⎣⎦⎣⎦''⎡⎤⎡⎤=-⎣⎦⎣⎦''=⋅-⋅=--=-⎰⎰⎰⎰⎰22cos(sin )cos (sin cos )cos(sin )ππx x x x x =-2222sin sin sin (4)cos sin sin cos .ππd d d d d d d d d d xx t t x t t xt x x x t x x x x x x x x x⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭--=-=⎰⎰ 2. 求下列极限:(1) 02arctan d limxx t t x →⎰; (2) 2020sin 3d lim e d x xx tt t t t→-⎰⎰; (3)()22220e d lime d xt xx t t t t→⎰⎰.解 ()022000021a r c t a n a r c t a n a r c t a n11(1)l i m l i ml i m l i m 222d d x xx x xxt t t t x x x xx →→→→'⎡⎤--⎣⎦+====-'⎰⎰ 2220030003300222200sin 3sin 3sin 32(2)lim lim lim 2sin 3sin 3lim lim 663d d e e d e d e e x x x x x x x t x t x xx x t t t t x x x t t t t x x x x-→→→--→→'⎡⎤⋅⎢⎥⎣⎦=='⎡⎤⎣⎦=⋅=⋅⋅=⎰⎰⎰⎰()()[]222222222222222200002000022000200022(3)lim lim lim lim 222lim lim lim 2122e d e d e d e e d e e e d e d e d e e e e xxx x t t t x tx x x x x x x t x t x t x x x x x x x t t t t x x t tt t t x x x x →→→→→→→'⎡⎤⋅⎢⎥⎣⎦==='⎡⎤⎣⎦'⎡⎤⎣⎦====+'+⋅⎰⎰⎰⎰⎰⎰⎰ 3. 求由方程e d cos d 0yxtt t t +=⎰⎰所确定的隐函数y =y (x )的导数.解 方程两边对x 求导数得:cos 0e y y x '⋅+=, cos e yxy '∴=-. 又由已知方程有000sin e y xtt +=,即1sin sin 00e y x -+-=即1sin e yx =-,于是有cos cos sin 1e yx xy x '=-=-. 4. 当x 为何值时,I (x )=2e d xt t t -⎰有极值?解 2()e x I x x -'=,令()0I x '=得驻点0x =,又22()(12),(0)10e x I x x I -''''=-=>, 所以当x =0时,I (x )有极小值,且极小值为I (0)=0.5. 计算下列定积分:(1)3x ⎰; (2)221d x x x --⎰;(3)()d f x x π⎰,其中,0,2()sin ,2x x f x x x π⎧≤≤⎪⎪=⎨π⎪≤≤π;⎪⎩ (4) {}222max 1,d x x -⎰.解433322233222(1)(43)(8333x x ⎛⎫==-=- ⎪⎝⎭⎰201222221101(2)()()()d d d d x x x x x x x x x x x x --=-+-+--⎰⎰⎰⎰012322332101111111116322332x x x x x x -⎛⎫⎛⎫⎛⎫=++=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()22220022(3)()sin 1cos 82ππππππππd d d xf x x x x x x x =+=+=+-⎰⎰⎰(4)由于22221()max{1,}11112x x f x x x x x ⎧-≤<-⎪==-≤<⎨⎪≤≤⎩,于是 21121212223312122111120max{1,}333d d 1d d x x x x x x x x x x -------=++=++=⎰⎰⎰⎰ 6. 已知f (x )连续,且f (2)=3,求2222()d d lim(2)xt x f u u tx →⎡⎤⎢⎥⎣⎦-⎰⎰.解 []222222222222()()()()limlim lim lim (2)2(2)2(2)(2)d d d d d d x xx x t t x x x x t f u u t f u u f u u f u u x x x x →→→→''⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦===--''-⎡⎤-⎣⎦⎰⎰⎰⎰⎰⎰ 22()113lim lim ()(2)2222x x f x f x f →→-==-=-=-.习题6-31. 计算下列积分: (1)3sin()d x x πππ+3⎰; (2) 32d (115)xx 1-+⎰;(3)1x -⎰; (4) 320sin cos d ϕϕϕπ⎰;(5)22cos d u u ππ6⎰;(6)2e 1⎰;(7)1;(8)x ;(9)ln 3ln 2d e ex xx--⎰; (10) 322d 2xx x +-⎰;(11)21x ⎰;(12) 22x ππ-⎰.解 333(1)sin()d sin()d()[cos()]x x x x x ππππππππππ+=++=-+3333⎰⎰42coscos 033ππ=-+= 12332221d 1d(511)151(2)(511)(115)5(511)10512x x x x x 11---+==-=+++⎰⎰1111(3)4)14x x--=-==⎰⎰2334220011(4)sin cos d cos dcos cos44ϕϕϕϕϕϕπππ=-==-⎰⎰22222π2π61cos211(5)cos d d d cos2d22241πππ1sin226264uu u u u u uuππππππππ6666+==+⎛⎫=+=-⎪⎝⎭⎰⎰⎰⎰222e e11(6)1)===⎰⎰(7)令x=tan t,则d x=sec2t d t,当x=1时,π4t=;当x=,π3t=,于是ππ33π21π44cos1dsin sinttt t==-=⎰(8)令x t,则d dx t t=,当x=0时,t=0;当x=,π2t=,于是πππ222200π12cos d(1cos2)d(sin2)22x t t t t t t==+==+⎰⎰.(9)令e x t=,则1ln,d dx t x tt==,当ln2x=时,2t=;当ln3x=时,3t=,于是3ln3332ln2222d d1113111d ln lne e12222111x xx t ttt t t t--⎛⎫====-⎪---++⎝⎭⎰⎰⎰.3 333222222d d11111(10)()d ln19231232()241211(ln ln)ln2ln53543x x xxx x x x xx-==-=+--+++-=-=-⎰⎰⎰(11)t=,则65,d6dx t x t t==,当x=1时,t=1;当x=2,t于是2111611d6()d1x t tt t t t==-++⎰6(ln ln(7ln26ln(1t t=-+=-220202(12)d sin )d sin d x x x x x x x x xπ-π-π-==-+=-⎰⎰⎰33022202224cos cos 333x x ππ-=-= 2. 利用被积函数的奇偶性计算下列积分值:(1)ln(aa x x -+⎰(a 为正常数);(2) 325425sin d 21x xx x x -++⎰; (3) 4224cos d θθππ-⎰.解((1)()l n f x x =+是奇函数.(ln 0d aax x -∴=+⎰.3242sin (2)()21x xf x x x =++ 是奇函数.325425sin 021d x x x x x -∴=++⎰4(3)()cos f θθ= 是偶函数.4422222022202020222004cos 24cos 2(1cos )2(12cos 2cos 2)312(2cos 2cos 4)22(34cos 2cos 4)1332sin 2sin 442ππππππππππd d d d d d θθθθθθθθθθθθθθθθθθ-∴==+=++=++=++=++=⎰⎰⎰⎰⎰⎰π3. 证明下列等式: (1)23211()d ()d 2aa x f x x xf x x =⎰⎰ (a 为正整数);(2)证明:11221d d 11xx x x x x =++⎰⎰ (x >0);(3) 设f (x )是定义在(-∞,+∞)上的周期为T 的连续函数,则对任意a ∈[-∞,+∞),有()d ()d a TTaf x x f x x +=⎰⎰.证 (1)令x 2=t ,则d x x t ==,当x =0时,t =0;当x =a 时,t =a 2, 于是2223200011()()()()22d d d aa a a x f x x t t tf t t xf x x ===⎰⎰⎰⎰即2321()()2d d aa x f x x xf x x =⎰⎰.(2)令1x t=则21d d x t t -=,1111111222231111111111111d d d d d t xx t tx t t t x x t t x t t⎛⎫=⋅=-⋅==- ⎪++++⎝⎭+⎰⎰⎰⎰⎰ 即 1122111d d xx x x x x =++⎰⎰. (3)由于()d ()d ()d a TT a Taaf x x f x x f x x ++=+⎰⎰⎰,而()d ()d ()d ()d ()d ()d ,令 a TaaaaTTaf x x x t T f t T t f t tf x x f x x f x x +=++===-⎰⎰⎰⎰⎰⎰故有()d ()d a TTaf x x f x x +=⎰⎰.4. 若f (t )是连续函数且为奇函数,证明0()d xf t t ⎰是偶函数;若f (t )是连续函数且为偶函数,证明()d xf t t ⎰是奇函数.证 令0()()d xF x f t t =⎰.若f (t )为奇函数,则f (-t )=- f (t ),从而()()()()()d d d xxxF x f t tt u f u u f u u F x -==---==⎰⎰⎰,所以0()()d xF x f t t =⎰是偶函数.若f (t )为偶函数,则f (-t )=f (t ),从而()()()()()d d d xxxF x f t tt u f u u f u u F x --==---=-=-⎰⎰⎰,所以0()()d xF x f t t =⎰是奇函数.5. 设f (x )在(-∞,+∞)内连续,且F (x )= 0(2)()d xx -t f t t ⎰,试证:若f (x )单调不减,则F (x )单调不增.证 000()()()2()()2()d d d x x xF x f t t xf x xf x x f t t tf t x '⎡⎤'==+--⎣⎦⎰⎰⎰()()()()[()()]d xf t t xf x f x xf x x f f x ξξ=-=-=-⎰,其中ξ在x 与0之间.当x >0时,x >ξ,由f (x )单调不减有()()0f f x ξ-≤,即()0F x '≤;当x <0时,ξ> x ,由f (x )单调不减有()()0f f x ξ-≥,即()0F x '≤;综上所述知F (x )单调不增.习题6-41. 利用分部积分公式证明:()()()d ()d d xxuf u x u u f x x u -=⎰⎰⎰.证 令0()()d uF u f x x =⎰则()()F u F u '=,则(())()()()d d d d xu x xx f x x u f u u uF u uF u u '==-⎰⎰⎰⎰()()()()()()()()()()d d d d d d d d x x xx x x xxxF x uf u u x f x x uf u ux f u u uf u u xf u u uf u u x u f u u=-=-=-=-=-⎰⎰⎰⎰⎰⎰⎰⎰即等式成立.2. 计算下列定积分: (1)10e d x x x -⎰; (2)e1ln d x x x ⎰;(3)41x ⎰; (4) 324d sin xx x ππ⎰; (5) 220e cos d x x x π⎰; (6)221log d x x x ⎰;(7)π20(sin )d x x x ⎰; (8)e1sin(ln )d x x ⎰;(9)230e d x x ; (10)1201lnd 1xx x x+-⎰.解 (1)1111ed de ee d xxx x x x x x x ----=-=-+⎰⎰⎰111012e e e e e 1ex----=--=--+=-.e e e 22222ee 11111111111(2)ln d ln d ln d e (e 1)222244x x x x x x x x x x ==-=-=+⎰⎰⎰444441111(3)2ln 28ln 28ln 24x x x x ==-=-=-⎰⎰⎰33332444434(4)d dcot cot cot d sin π131πln πlnsin 4224xx x x x x x xx x ππππππππππ=-=-+⎛=+=+- ⎝⎰⎰⎰22222222000π2π222220π220(5)e cos d e dsin e sin 2e sin d e 2e dcos e 2e cos 4e cos d e 24e cos d xxxx xxx x x x x xx xx x x x x xππππππππ==-=+=+-=--⎰⎰⎰⎰⎰⎰故2π201e cos d (e 2)5x x x π=-⎰.()2222222111111(6)log d ln d ln d 2ln 22ln 2133(4ln 2)22ln 224ln 2x x x x x x x x x ==-=-=-⎰⎰⎰πππ2232π000033ππ2π0003ππ0033π01111(7)(sin )d (1cos 2)d (dsin2)2232π1π1(sin 22sin2d )dcos26464π1(cos 2cos d )64ππ1ππsin 264864x x x x x x x x x x x x x x x xx x x x x =-=-=--=-=--=-+=-⎰⎰⎰⎰⎰⎰ e ee111ee 11e1(8)sin(ln )d sin(ln )cos(ln )d esin1cos(ln )sin(ln )d esin1ecos11sin(ln )d x x x x x xx x x x x x=-=--=-+-⎰⎰⎰⎰故e11sin(ln )d (esin1ecos11)2x x =-+⎰. 222222322000011(9)e d de e e d 22111ln 2ln 2e ln 2222x x x x x x x x x x ==-=-=-=-1112122222220000111222200012011111(10)ln d ln d ln d 121211111111ln 3(1)d ln 3()d 818211111131ln 3ln ln 3822281x x x x x x x x x x x x x x x x x x x x x +++==+----=++=++---+-=++=-+⎰⎰⎰⎰⎰3. 已知f (2)= 12,f ′(2)=0,2()d 1f x x =⎰,求220()d x f x x ''⎰.解222222200()d d ()()2()d x f x x x f x x f x xf x x '''''==-⎰⎰⎰222004(2)2d ()2()2()d 14(2)21420.2f x f x xf x f x xf '=-=-+=-+⨯=-⨯+=⎰⎰习题6-51. 求由下列曲线所围成的平面图形的面积:(1) y =e x 与直线x =0及y =e; (2) y =x 3与y =2x ;(3) y =x 2,4y =x 3; (4) y =x 2与直线y =x 及y =2x ; (5) y =1x,x 轴与直线y =x 及x =2; (6) y =(x -1)(x -2)与x 轴; (7) y =e x ,y =e -x 与直线x =1; (8) y =ln x ,y 轴与直线y =ln a ,y =ln b , (0)a b <<. 解 (1)可求得y =e x 与y =e 的交点坐标(1,e), y =e x 与x =0的交点为(0,1),它们所围成的图形如图6-1中阴影部分,其面积eee111d ln d (ln )1S x y y y y y y ===-=⎰⎰图6-1 图6-2(2)解方程组32y x y x ⎧=⎨=⎩得0,0x x x y y y ⎧⎧===⎧⎪⎪⎨⎨⎨==-=⎩⎪⎪⎩⎩即三次抛物线3y x =和直线2y x =的交点坐标分别为(0,0),(-,它们所围成的图形的面积3342240112)d )d ()(244S x x x x x x x x x x =-+-=-+-=⎰.(3)解方程234y xy x⎧=⎪⎨=⎪⎩得两曲线的交点为(0,0),(4,16),所求面积为 4233440011116()d ()43163S x x x x x =-=-=⎰.图6-3 图6-4(4)可求得2y x =与y x =的交点为(0,0),(1,1);2y x =与2y x =的交点为(0,0),(2,4); y =x 与y =2x 的交点为(0,0),它们所围图形如图6-4中阴影所示,其面积为:121122012231201(2)d (2)d d (2)d 117()236S x x x x x x x x x x xx x x =-+-=+-=+-=⎰⎰⎰⎰(5) 1y x =与y x =的交点为(1,1),1y x=,x 轴与直线x =1,及x =2所围成的图形如图6-5阴影所示,其面积:2121201111d d ln ln 222x S x x x xx =+=+=+⎰⎰.图6-5 图6-6(6) 231(1)(2)()24y x x x =--=--,顶点坐标为31(,)24-,与x 轴所围成的图形如图6-6中阴影所示,由231()24y x =--得32x =所求面积143021433d 2222112364S y y y --⎡⎤⎛⎛=-=⎢⎥ ⎝⎝⎣⎦⎛⎫=⋅=+ ⎪⎝⎭⎰⎰(7)可求得曲线e x y =与e x y -=的交点(0,1),曲线e x y =,e x y -=与x =1所围成的图形如图6-7阴影所示,其面积:10)() 2.101(e e d e e e ex x x x S x --=-=+=+-⎰图6-7 图6-8(8)曲线ln ,y x y =轴与直线ln ,ln y a y b ==所围成的图形如图6-8阴影所示,其面积:ln ln ln ln ln ln .d e d e bby yb aaaS x y y b a ====-⎰⎰2. 求由下列曲线围成的平面图形绕指定轴旋转而成的旋转体的体积:(1) y =e x ,x =0,y =0,x =1,绕y 轴; (2) y =x 3,x =2,x 轴,分别绕x 轴与y 轴; (3) y =x 2,x =y 2,绕y 轴; (4) y 2=2px ,y =0,x =a (p >0,a >0),绕x 轴; (5) (x -2)2+y 2≤1,绕y 轴.解 (1)如图6-9所求旋转体的体积为矩形OABD ,与曲边梯形CBD 绕y 轴旋转所成的几何体体积之差,可求得y =e x 与x =1的交点为(1,e), y =e x 与y 轴的交点为(0,1),所以,所求旋转体的体积.222111(ln )(ln )2(ln )22(1)2(ln )e ee 11ee1πe πd πe πd πe πe ππe e π.d y V y y y y y y y y y ⎡⎤=⋅⋅-=--⎣⎦⎡⎤=-+=-+=-⎣⎦⎰⎰⎰7222620128(2)7ππd πd π7x x V y x x x ===⋅=⎰⎰25882283336428323255πππd ππd ππy V x y y y y =⨯⨯-=-=-⋅⋅=⎰⎰.图6-9 图6-10(3)解方程组22y xx y ⎧=⎪⎨=⎪⎩得交点(0,0),(1,1),所求旋转体的体积 25114100031025πd πd ππx x x V x x x x ⎛⎫=-=⋅=- ⎪⎝⎭⎰⎰.图6-11 图6-122230(4)2πd πd ππa aa x V y x px x p x pa ===⋅=⎰⎰.(5)所求旋转体的体积是由右半圆2x =2x =x 轴旋转生成的旋转体的体积之差,即((122122281641d πππy V y y y π-⎡⎤=-+-⎢⎥⎣⎦===⎰⎰⎰图6-133. 已知曲线y =(a >0)与y(x 0,y 0)处有公共切线,求:(1) 常数a 及切点(x 0,y 0);(2) 两曲线与x 轴围成的平面图形的面积S .解 (1)由题意有点00(,)x y 在已知曲线上,且在点00(,)x y 处两函数的导数相等.即有0000x x y y ==⎧=⎪⎪==即00012y y x ⎧=⎪⎪=⎨= 解得20011e ex y a ⎧=⎪⎪=⎨⎪=⎪⎩. (2)由(1)知两曲线的交点为2(,1)e ,又在区间(0,1)上,曲线y =y =方,它们与x 轴所围成的平面图形的面积12223122001111()6223d e e e e e y y S y y y ⎛⎫===-⎡⎤-- ⎪⎣⎦⎝⎭⎰. (由y ==得2()x ey =,由y =得2e yx =). 4. 设2()lim1e nx n x f x x →∞=+-,试求曲线y =f (x ),直线y =12x 及x =1所围图形的面积.解 220()lim 101nxn x x f x x x e x x →∞≥⎧⎪==⎨+-<⎪+⎩解方程2121y x xy x ⎧=⎪⎪⎨⎪=⎪+⎩得交点为11,2⎛⎫-- ⎪⎝⎭,且易知当(1,0)x ∈-时,12y x =位于21xy x=+的上方.所围图形如阴影部分所示,其面积 02221111111111ln 2ln(1)22422142d x S x x x x x --⎛⎫⎡⎤=+⨯⨯=+=--+ ⎪⎢⎥+⎣⎦⎝⎭⎰. 5. 一抛物线y =ax 2+bx +c 通过点(0,0)、(1,2)两点,且a <0,试确定a ,b ,c 的值,使抛物线与x 轴所围图形的面积最小.解 由抛物线过(0,0),(1,2)点,有c =0,a+b =2,又由抛物线方程2y ax bx =+得与x轴的两交点为(0,0), ,0b a ⎛⎫-⎪⎝⎭,抛物线与x 轴所围图形的面积.2220()6d b ab S ax bx x a-=+=⎰,由2a b +=得2b a =-,代入上式有32(2)6a S a -=, 23(2)(4)6a a S a--+'=,令0S '=得2a =或4a =-, 由已知0a <得4a =-,从而26b a =-=, 所以4,6,0a b c =-==.6. 已知某产品产量的变化率是时间t (单位:月)的函数f (t )=2t +5,t ≥0,问:第一个5月和第二个5月的总产量各是多少?解 设产品产量为()Q t ,则()()Q t f t '=,第一个5月的总产量552510()(25)(5)50.d d Q f t t t t t t ==+=+=⎰⎰ 第2个5月的总产量为10252055()(25)(5)100.d d tQ f t t t t t t ==+=+=⎰⎰ 7. 某厂生产某产品Q (百台)的总成本C (万元)的变化率为C ′(Q )=2(设固定成本为零),总收入R (万元)的变化率为产量Q (百台)的函数R ′(Q )=7-2Q .问: (1) 生产量为多少时,总利润最大?最大利润为多少?(2) 在利润最大的基础上又生产了50台,总利润减少了多少? 解 (1)总利润()()()L Q R Q C Q =-当()0L Q '=即()()0R Q C Q ''-=即7220Q --=, Q =2.5百台时,总利润最大,此时的总成本2.5 2.52.50()225d d C C Q Q Q Q'====⎰⎰总利润11.255 6.25L R C =-=-=(万元).即当产量为2.5百台时,总利润最大,最大利润是6.25万元.(2)在利润最大的基础上又生产了50台,此时产量为3百台,总成本3300()26d d C C Q Q Q '===⎰⎰,总收入3323000()(72)(7)12d d R R Q Q Q Q Q Q '==-=-=⎰⎰, 总利润为1266L R C =-=-=(万元).减少了6.25-6=0.25万元.即在利润最大的基础上又生产了50台时,总利润减少了0.25万元.8. 某项目的投资成本为100万元,在10年中每年可获收益25万元,年利率为5%,试求这10年中该投资的纯收入的现值. 解 投资后T 年中总收入的现值(1)e rt ay r-=-,由题意知 25,5%0.05,10.a r T ====所以0.051025(1)196.730.05e y -⨯=-= 纯收入的现值为196.73-100=96.73.即这10年中该投资的纯收入的现值为96.73万元.习题6-61. 判断下列广义积分的敛散性,若收敛,则求其值: (1)41d xx +∞⎰; (2)1+∞⎰; (3)0e d ax x +∞-⎰ (a >0); (4)0cos d x x +∞⎰;(5)0e sin d xx x +∞⎰; (6)2d 22xx x +∞-∞++⎰;(7)21⎰; (8)10ln d x x ⎰;(9)e1⎰(10)22d (1)xx -⎰; (11)1⎰解 (1)1431d 1133x x x +∞+∞=-=⎰,此广义积分收敛.(2)1+∞==+∞⎰,此广义积分发散. (3)111e d e ax axx aa+∞--+∞=-=⎰,此广义积分收敛. (4)1cos d sin lim sin sin 0lim sin x x x x xx x +∞+∞→+∞→+∞==-=⎰不存在,所以,此广义积分发散.00(5)e sin d e d cos e cos e cos d e cos e dsin e cos e sin e sin d 11e sin d (e sin e cos )e (sin cos )22e sin d lim e sin d lim x x x x x x x x x x x x x b x x b b x x x x x x x x x x x xx x x x x x x x x x +∞→+∞→=-=-+=-+=-+-∴=-=-∴==⎰⎰⎰⎰⎰⎰⎰⎰ 01e (sin cos )211 lim e (sin cos )22x b b b x x b b +∞→+∞⎧⎫⎡⎤-⎨⎬⎢⎥⎣⎦⎩⎭⎡⎤=-+⎢⎥⎣⎦不存在,此广义积分发散.22d d(1)(6)arctan(1)π22(1)1xx x x x x +∞+∞+∞-∞-∞-∞+==+=++++⎰⎰,收敛.23222110013202(7)lim lim (1)3222lim 2,.2333收敛x x εεεεεε++++→→+→⎡==-+⎢⎣⎛==-- ⎝⎰⎰111011eee1111222220100(8)ln d ln d ln 1 ln d lim ln d lim (ln 1)1,.π(9)arcsin(ln ),.211d d d (10)lim (1)(1)(1)收敛收敛x x x x x x x x x x x x x x x x εεσεεεεεεεεεεεε+++→→-+→=-=--∴==--=-===⎛⎫+= ⎪---⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰120100112 lim lim ,211xxεεεεε++-+→→⎛⎫⎛⎫===+∞+- ⎪ ⎪--⎝⎭⎝⎭此广义积分发散.)211-00001(11)lim lim 2lim 1,1εεεεε+++-→→→==-=-=⎰⎰此广义积分收敛. 2. 当k 为何值时,广义积分+2d (ln )kxx x ∞⎰收敛?当k 为何值时,这广义积分发散?又当k 为何值时,这广义积分取得最小值? 解 当k =1时,++222d dln ln(ln )ln ln x x x x x x∞∞+∞===+∞⎰⎰,发散.当1k ≠时,1++122211d (ln )(1)(ln 2)(ln )dln (ln)11kk kk k x x k x x x kk -∞∞--+∞⎧>⎪-==⎨-⎪+∞<⎩⎰⎰所以,当k >1时,此广义积分收敛,当k ≤1时,此广义积分发散.记1()(1)(ln 2),k f k k -=-11()(ln 2)(1)(ln 2)lnln 2k k f k k --'=+-.令()0f k '=得11ln ln 2k =-. 又 1()(ln 2)lnln 2[2(1)lnln 2]k f k k -''=+-,且 1ln ln 21(1)(ln 2)ln ln 20ln ln 2f -''-=<, 故()f k 在11ln ln 2k =-有极大值,而()f k 只有一个驻点,所以当11ln ln 2k =-时()f k 取得最大值,因而11ln ln 2k =-时,这个广义积分取得最小值.3. 利用递推公式计算反常积分+0e d n x n I x x ∞-=⎰.解 ++110de e e d n x n xn x n n I x x n x x nI ∞∞----+∞-=-=-+=⎰⎰又 +10de e e 1x x xI x x ∞---+∞+∞=-=--=⎰故 121(1)(1)2!n n n I nI n n I n n I n --==-=-= 4. 已知+0sin d =2x x x ∞π⎰,求 (1)+0sin cos d x xx x∞⎰; (2) 2+2sin d xx x ∞⎰. 解 (1)+++000sin cos sin 21sin πd d 2d .224令x x x t x x x t t x x t ∞∞∞===⎰⎰⎰2+++220+20sin 1sin 2sin cos (2)d sin d()d sin cos π2d 2x x x xx x x x x xx x x x x ∞∞∞+∞∞=-=-+==⎰⎰⎰⎰5. 求120(1)d n n I x x =-⎰(n 0,1,2,…).解 设x =sin t ,则d x =cosd t ,π2120cos d n n I t t +=⎰而 ππ2200(21)!!π2(2)!!2sin d cos d (2)!!21(21)!!n n k n kk x x x x k n k k -⎧⋅=⎪⎪==⎨⎪=+⎪+⎩⎰⎰所以 π221220(2)!!(!)cosd 2 (0,1,2,)(21)!!(21)!n nn n n I t t n n n +====++⎰.6. 用Γ函数表示下列积分:(1)e d nx x +∞-⎰ (n >0); (2)101(ln )d x x α⎰ (α>-1); (3) 0e d nm x x x +∞-⎰1(>0)m n +; (4)220e d n x x x +∞-⎰ (12n >-). 解 (1)令nx t =,则1111,d d nn x t x t t n-==,于是1111+++001111ed e d e d ()nx tt n nx t t t t n n n n --∞∞∞---=⋅==Γ⎰⎰⎰.(2)令1lnt x =,则e ,d e d .t t x x t --==- 于是 10+(1)1001(ln )d e d e d (1).a a t a t x t t t t a x∞-+--+∞=-==Γ+⎰⎰⎰ (3)令nx t =,则1111,d d nnx t x t t n-==, 于是1111+++001111ed ()e d e d ()nm m x m tt n n n m x x t t t t t n n n n+-∞∞∞---+=⋅⋅=⋅=Γ⎰⎰⎰.(4)令2x t =,则x x t ==,于是21+++2220011+201ed e e d 2111e d ()222n n x ntt n t x x t t tt t n ∞∞∞----⎛⎫-+∞ ⎪-⎝⎭=⋅===Γ+⎰⎰⎰⎰。
第六章 高数习题详细解答
习 题 6—11、在平行四边形ABCD 中, 设−→−AB =a , −→−AD =b . 试用a 和b 表示向量−→−MA 、−→−MB 、−→−MC 、−→−MD , 其中M 是平行四边形对角线的交点.解: 由于平行四边形的对角线互相平分, 所以a +b −→−−→−==AM AC 2, 即 -(a +b )−→−=MA 2, 于是 21-=−→−MA (a +b ).因为−→−−→−-=MA MC , 所以21=−→−MC (a +b ). 又因-a +b −→−−→−==MD BD 2, 所以21=−→−MD (b -a ).由于−→−−→−-=MD MB , 所以21=−→−MB (a -b ).2、若四边形的对角线互相平分,用向量方法证明它是平行四边形.证: AM =MC ,BM =MD ,∴AD =AM +MD =MC +BM =BC与 平行且相等,结论得证.3、 求起点为)1,2,1(A ,终点为)1,18,19(--B 的向量→AB 与12AB −−→-的坐标表达式.解:→AB =j i k j i 2020)11()218()119(--=-+--+--={20,20,0}--, 12AB −−→-={10,10,0}4、 求平行于a ={1,1,1}的单位向量.解:与a 平行的单位向量为{}1,1,131±=±a a .5、在空间直角坐标系中,指出下列各点在哪个卦限?(1,1,1),A - (1,1,1),B -(1,1,1),C -- (1,1,1).D -- 解: A:Ⅳ; B:Ⅴ; C:Ⅷ; D:Ⅲ.6、 求点),,(z y x M 与x 轴,xOy 平面及原点的对称点坐标.解:),,(z y x M 关于x 轴的对称点为),,(1z y x M --,关于xOy 平面的对称点为),,(2z y x M -,关于原点的对称点为),,(3z y x M ---.7、已知点A(a, b, c), 求它在各坐标平面上及各坐标轴上的垂足的坐标(即投影点的坐标). 解:分别为),0,0(),0,,0(),0,0,(),,0,(),,,0(),0,,(c b a c a c b b a .8、过点(,,)P a b c 分别作平行于z 轴的直线和平行于xOy 面的平面,问它们上面的点的坐标各有什么特点? 解:平行于z 轴的直线上面的点的坐标:x a,y b,z R ==∈;平行于xOy 面的平面上的点的坐标为z c,x,y R =∈.9、求点P (2,-5,4)到原点、各坐标轴和各坐标面的距离.解:到原点的距离为x y 轴的距离为,到z10、 求证以)1,3,4(1M 、)2,1,7(2M 、)3,2,5(3M 三点为顶点的三角形是一个等腰三角形. 解:222212(74)(13)(21)14M M =-+-+-=,222223(57)(21)(32)6M M =-+-+-=222213(45)(32)(13)6M M =-+-+-=,即1323M M M M =,因此结论成立.11、 在yoz 坐标面上,求与三个点A(3, 1, 2), B(4, -2, -2), C(0, 5, 1)等距离的点的坐标. 解:设yoz 坐标面所求点为),,0(z y M ,依题意有||||||MC MB MA ==,从而222)2()1()30(-+-+-z y 222)2()2()40(++++-=z y222)2()1()30(-+-+-z y联立解得2,1-==z y ,故所求点的坐标为)2,1,0(-.12、 z 轴上,求与点A(-4, 1, 7), 点B(3, 5,-2)等距离的点. 解:设所求z 轴上的点为),0,0(z ,依题意:222)7()10()40(-+-++z 222)2()50()30(++-+-=z ,两边平方得914=z ,故所求点为)914,0,0(.13、 求λ使向量}5,1,{λ=a 与向量}50,10,2{=b 平行. 解:由b a //得5051012==λ得51=λ.14、 求与y 轴反向,模为10的向量a 的坐标表达式. 解:a =j j 10)(10-=-⋅={0,10,0}-.15、求与向量a ={1,5,6}平行,模为10的向量b 的坐标表达式. 解:}6,5,1{6210==a a a ,故 {}6,5,16210100±=±=a b .16、 已知向量6410=-+a i j k ,349=+-b i j k ,试求: (1)2+a b ; (2)32-a b .解:(1) 264102(349)1248i a b i j k i j k j k +=-+++-=+-; (2)323(6410)2(349)=122048a b =i j k i j k i j k --+-+--+.17、已知两点A 和(3,0,4)B ,求向量AB的模、方向余弦和方向角.解:因为(1,1)AB =- , 所以2AB =,11cos ,cos 22αβγ===-,从而 π3α=,3π4β=,2π3γ=.18、设向量的方向角为α、β、γ.若已知其中的两个角为π3α=,2π3β=.求第三个角γ. 解: π3α=,2π3β=,由222cos cos cos 1αβγ++=得21cos 2γ=.故π4γ=或3π4.19、 已知三点(1,0,0)=A ,(3,1,1)B ,(2,0,1)C ,求:(1) BC 与CA 及其模;(2) BC 的方向余弦、方向角;(3)与 BC 同向的单位向量.解:(1)由题意知{}{}23,01,111,1,0,BC =---=-- {}{}12,00,011,0,1,CA =---=--故==BC CA (2)因为{}1,1,0,=--BC 所以,由向量的方向余弦的坐标表示式得:cos 0αβγ===,方向角为:3,42ππαβγ===. (3)与 BC 同向的单位向量为:oa=⎧⎫=⎨⎬⎩⎭BC BC .20、 设23,23,34,m i j k n i j k p i j k =++=+-=-+和23a m n p =+-求向量在x 轴上的投影和在y 轴上的分向量.解:2(23)3(23)(34)5114a i j k i j k i j k i j k =++++---+=+-.故向量a 在x 轴上的投影5=x a ,在y 轴上的投影分量为11y a j =.21、一向量的终点为点B(-2,1,-4),它在x 轴,y 轴和z 轴上的投影依次为3,-3和8,求这向量起点A 的坐标.解:设点A 为(x, y, z ),依题意有:84,31,32=---=-=--z y x , 故12,4,5-==-=z y x ,即所求的点A (-5, 4,-12).22、 已知向量a 的两个方向余弦为cos α=72 ,cos β=73, 且a 与z 轴的方向角是钝角.求cos γ. 解:因222cos cos cos 1,αβγ++=22223366cos 1cos 77497γγ=-==±故()—(),,又γ是钝角,所以76cos -=γ.23、设三力1232234F ,F ,F i j i j k j k =-=-+=+作用于同一质点,求合力的大小和方向角.解: 合力123(2)(234)()F F F F i k i j k j k =++=-+-+++323i j k =-+,因此,合力的大小为|F |合力的方向余弦为,222cos ,cos 223cos -===βγα因此παγβ===-习 题 6—21、 {}0,0,1=a ,{}0,1,0=b ,)1,0,0(=c ,求⋅a b ,c a ⋅,c b ⋅,及a a ⨯,b a ⨯,c a ⨯,c b ⨯. 解:依题意,i a =,j b =,k c =,故0=⋅=⋅j i b a ,0=⋅=⋅k i c a ,0=⋅=⋅k j c b .0=⨯=⨯i i a a ,k j i b a =⨯=⨯,j k i c a -=⨯=⨯,i k j c b =⨯=⨯.2、 }}{{1,2,2,21,1==b a ,,求b a ⋅及b a ⨯ .a 与b 的夹角余弦.解:(1)121221⋅=⨯+⨯+⨯=a b 6, 112221⨯==i j k a b }{3,3,0-.(2)cos a b a b a b θ++==3、 已知 π5,2,,3∧⎛⎫=== ⎪⎝⎭a b a b ,求23a b - 解:()()2232323-=-⋅-a b a b a b 22412976=-⋅+=a a b b ,∴ 23-=ab4、 证明下列问题:1)证明向量}{1,0,1=a 与向量}{1,1,1-=b 垂直. 2) 证明向量c 与向量()()a c b b c a ⋅-⋅垂直. 证:1)01110)1(1=⨯+⨯+-⨯=⋅b a ,^π(,)2a b ∴=,即a 与b 垂直.2) [()()]⋅-⋅⋅ a c b b c a c [()()]=⋅⋅-⋅⋅a c b c b c a c ()[]=⋅⋅-⋅c b a c a c 0=[()()]∴⋅-⋅⊥a c b b c a c .5、 求点)1,2,1(M 的向径OM 与坐标轴之间的夹角.解:设OM 与x 、y 、z 轴之间的夹角分别为γβα,,,则211)2(11cos 22=++==α, 22cos ==β,21cos ==γ. 3π=∴α, 4π=β, 3π=γ.6、 求与k j i a ++=平行且满足1=⋅x a 的向量x .解:因x a //, 故可设{}λλλλ,,==a x ,再由1=⋅x a 得1=++λλλ,即31=λ,从而⎭⎬⎫⎩⎨⎧=31,31,31x .7、求与向量324=-+a i j k ,2=+-b i j k 都垂直的单位向量. 解:=⨯=xy z xyzij kc a b a a a b b b 324112=--i j k =105+j k,||= c 0||∴=c c c=.⎫±+⎪⎭j8、 在顶点为)2,1,1(-A 、)2,6,5(-B 和)1,3,1(-C 的三角形中,求三角形ABC 的面积以及AC 边上的高BD .解:{0,4,3},{4,5,0}AC AB =-=- ,三角形ABC 的面积为,22516121521||21222=++=⨯=A S ||||21,5)3(4||22BD S ==-+= ||521225BD ⋅⋅= .5||=∴BD9、 已知向量≠0a ,≠0b ,证明2222||||||()⨯=-⋅a b a b a b .解 2222||||||sin ()∧⨯=⋅a b a b ab 222||||[1cos ()]∧=⋅-a b ab 22||||=⋅a b 222||||cos ()∧-⋅a b ab 22||||=⋅a b 2().-⋅a b10、 证明:如果++=0a b c ,那么⨯=⨯=⨯b c c a a b ,并说明它的几何意义.证: 由++=0a b c , 有()++⨯=⨯=00a b c c c , 但⨯=0c c ,于是⨯+⨯=0a c b c ,所以⨯=-⨯=⨯b c a c c a . 同理 由()++⨯=0a b c a , 有 ⨯=⨯c a a b ,从而 ⨯=⨯=⨯b c c a a b .其几何意义是以三角形的任二边为邻边构成的平行四边形的面积相等.11、 已知向量23,3=-+=-+a i j k b i j k 和2=-c i j ,计算下列各式:(1)()()⋅-⋅a b c a c b (2)()()+⨯+a b b c (3)()⨯⋅a b c (4)⨯⨯a b c解: (1)()()8(2)8(3)⋅-⋅=---+=a b c a c b i j i j k 824--j k .(2) 344,233+=-++=-+a b i j k b c i j k ,故()()+⨯+a b b c 344233=-=-i jk--j k . (3)231()231(2)(85)(2)11311312-⨯⋅=-⋅-=--+⋅-=-=--i jk a b c i j i j k i j 2. (4)由(3)知85,()851120⨯=--+⨯⨯=--=-i jka b i j k a b c 221++i j k .习 题 6—31、已知)3,2,1(A ,)4,1,2(-B ,求线段AB 的垂直平分面的方程. 解:设),,(z y x M 是所求平面上任一点,据题意有|,|||MB MA =()()()222321-+-+-z y x ()()(),412222-+++-=z y x化简得所求方程26270x y z -+-=.这就是所求平面上的点的坐标所满足的方程, 而不在此平面上的点的坐标都不满足这个方程,所以这个方程就是所求平面的方程.2、 一动点移动时,与)0,0,4(A 及xOy 平面等距离,求该动点的轨迹方程.解:设在给定的坐标系下,动点),,(z y x M ,所求的轨迹为C ,则(,,)M x y z C MA z∈⇔= 亦即z z y x =++-222)4( 0)4(22=+-∴y x 从而所求的轨迹方程为0)4(22=+-y x .3、 求下列各球面的方程:(1)圆心)3,1,2(-,半径为6=R ; (2)圆心在原点,且经过点)3,2,6(-;(3)一条直径的两端点是)3,1,4()5,32(--与;(4)通过原点与)4,0,0(),0,3,1(),0,0,4(- 解:(1)所求的球面方程为:36)3()1()2(222=-+++-z y x (2)由已知,半径73)2(6222=+-+=R ,所以球面方程为49222=++z y x(3)由已知,球面的球心坐标1235,1213,3242=-=-=+-==+=c b a , 球的半径21)35()31()24(21222=++++-=R ,所以球面方程为:21)1()1()3(222=-+++-z y x(4)设所求的球面方程为:0222222=++++++l kz hy gx z y x因该球面经过点)4,0,0(),0,3,1(),0,0,4(),0,0,0(-,所以⎪⎪⎩⎪⎪⎨⎧=-=++=+=08160621008160k h g g l 解之得⎪⎪⎩⎪⎪⎨⎧=-=-==2210k g h l∴所求的球面方程为0424222=+--++z y x z y x .4、将yOz 坐标面上的抛物线22y z =绕z 旋转一周,求所生成的旋转曲面的方程. 解:222x y z +=(旋转抛物面) .5、将zOx 坐标面上的双曲线12222=-c z a x 分别绕x 轴和z 轴旋转一周,求所生成的旋转曲面的方程.解: 绕x 轴旋转得122222=+-c z y a x 绕z 轴旋转得122222=-+cz a y x .6、指出下列曲面的名称,并作图:(1)22149x z +=;(2)22y z =;(3)221x z += ;(4)22220x y z x ++-=; (5)222y x z +=;(6)22441x y z -+=;(7)221916x y z ++=; (8)222149x y z -+=-;(9)1334222=++z y x ;(10)2223122z y x +=+.解: (1)椭圆柱面;(2) 抛物柱面;(3) 圆柱面;(4)球面;(5)圆锥面;(6)双曲抛物面;(7)椭圆抛物面;(8)双叶双曲面;(9)为旋转椭球面;(10)单叶双曲面.7、指出下列方程在平面解析几何和空间解析几何中分别表示什么图形? (1)1+=x y ;(2)422=+yx ;(3)122=-y x ;(4)22x y =.解:(1)1+=x y 在平面解析几何中表示直线,在空间解析几何中表示平面; (2)422=+yx 在平面解析几何中表示圆周,在空间解析几何中表示圆柱面;(3)122=-yx 在平面解析几何中表示双曲线,在空间解析几何中表示双曲柱面;(4)y x 22=在平面解析几何中表示抛物线,在空间解析几何中表示抛物柱面.8、 说明下列旋转曲面是怎样形成的?(1)1994222=++z y x ;(2)14222=+-z y x (3)1222=--z y x ;(4)222)(y x a z +=- 解:(1)xOy 平面上椭圆19422=+y x 绕x 轴旋转而成;或者 xOz 平面上椭圆22149+=x z 绕x 轴旋转而成 (2)xOy 平面上的双曲线1422=-y x 绕y 轴旋转而成;或者 yOz 平面上的双曲线2214-=y z 绕y 轴旋转而成 (3)xOy 平面上的双曲线122=-y x 绕x 轴旋转而成;或者 xOz 平面上的双曲线221x z -=绕x 轴旋转而成(4)yOz 平面上的直线a y z +=绕z 轴旋转而成或者 xOz 平面上的直线z x a =+绕z 轴旋转而成.9、 画出下列各曲面所围立体的图形:(1)012243=-++z y x 与三个坐标平面所围成;(2)42,42=+-=y x x z 及三坐标平面所围成; (3)22=0,(0)=1z z =a a >,y =x,x +y 及0x =在第一卦限所围成;(4)2222,8z x y z x y =+=--所围. 解:(1)平面012243=-++z y x 与三个坐标平面围成一个在第一卦限的四面体; (2)抛物柱面24z x =-与平面24x y +=及三坐标平面所围成;(3)坐标面=0z 、0x =及平面(0)z =a a >、y=x 和圆柱面22=1x +y 在第一卦限所围成; (4)开口向上的旋转抛物面22z x y =+与开口向下的抛物面228z x y =--所围.作图略.习 题 6—41、画出下列曲线在第一卦限内的图形(1)⎩⎨⎧==21y x ;(2)⎪⎩⎪⎨⎧=---=0422y x y x z ;(3)⎪⎩⎪⎨⎧=+=+222222az x ay x解:(1)是平面1x =与2y =相交所得的一条直线;(2)上半球面z 与平面0x y -=的交线为14圆弧; (3)圆柱面222x y a +=与222x z a +=的交线.图形略.2、分别求母线平行于x 轴及y 轴而且通过曲线⎪⎩⎪⎨⎧=-+=++0162222222y z x z y x 的柱面方程.解:消去x 坐标得16322=-z y ,为母线平行于x 轴的柱面;消去y 坐标得:162322=+z x ,为母线平行于y 轴的柱面.3、求在出三种不同形式的方程).yOz 平面内以坐标原点为圆心的单位圆的方程(任写解:⎩⎨⎧==+0122x z y ;⎩⎨⎧==++01222x z y x ; ⎪⎩⎪⎨⎧=+=++1122222z y z y x .4、试求平面20x -=与椭球面222116124x y z ++=相交所得椭圆的半轴与顶点. 解:将椭圆方程22211612420x y z x ⎧++=⎪⎨⎪-=⎩化简为:221932y z x ⎧+=⎪⎨⎪=⎩,可知其为平面2=x 上的椭圆,半轴分别为3,3,顶点分别为)3,0,2(),3,0,2(),0,3,2(),0,3,2(--.5 、将下面曲线的一般方程化为参数方程 (1)2229x y z y x ⎧++=⎨=⎩;(2)⎩⎨⎧==+++-04)1()1(22z z y x解:(1)原曲线方程即:⎪⎩⎪⎨⎧=+=199222z x xy ,化为⎪⎪⎪⎩⎪⎪⎪⎨⎧=≤≤==tz t ty t x sin 3)20(cos 23cos 23π;(2))20(0sin 3cos 31πθθθ≤≤⎪⎪⎩⎪⎪⎨⎧==+=z y x .6、求螺旋线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 在三个坐标面上的投影曲线的直角坐标方程.解:⎩⎨⎧==+0222z a y x ;⎪⎩⎪⎨⎧==0sin x b z a y ;⎪⎩⎪⎨⎧==0cosy b z a x .7、指出下列方程所表示的曲线(1)222253⎧++=⎨=⎩x y z x (2)⎩⎨⎧==++13094222z z y x ;(3)⎩⎨⎧-==+-3254222x z y x ; (4)⎩⎨⎧==+-+408422y x z y ; (5)⎪⎩⎪⎨⎧=-=-0214922x z y . 解:(1)圆; (2)椭圆; (3)双曲线; (4)抛物线; (5)双曲线.8、 求曲线⎩⎨⎧==-+3222z x z y 在xOy 面上的投影曲线方程,并指出原曲线是何种曲线.解:原曲线即:⎩⎨⎧=-=3922z x y ,是位于平面3=z 上的抛物线,在xOy 面上的投影曲线为⎩⎨⎧=-=0922z x y9、 求曲线 ⎪⎩⎪⎨⎧==++211222z z y x 在坐标面上的投影. 解:(1)消去变量z 后得,4322=+y x 在xOy 面上的投影为,04322⎪⎩⎪⎨⎧==+z y x 它是中心在原点,半径为23的圆周.(2)因为曲线在平面21=z 上,所以在xOz 面上的投影为线段.;23||,021≤⎪⎩⎪⎨⎧==x y z (3)同理在yOz 面上的投影也为线段..23||,21≤⎪⎩⎪⎨⎧==y x z10、 求抛物面x z y =+22与平面 02=-+z y x 的交线在三个坐标面上的投影曲线方程.解: 交线方程为⎩⎨⎧=-+=+0222z y x x z y ,(1)消去z 得投影,04522⎩⎨⎧==-++z x xy y x(2)消去y 得投影2252400x z xz x y ⎧+--=⎨=⎩,(3)消去x 得投影2220y z y z x ⎧++-=⎨=⎩.习 题 6—51、写出过点()3,2,10M 且以{}1,2,2=n 为法向量的平面方程. 解:平面的点法式方程为()()()032212=-+-+-z y x .2、求过三点()()()01,0,0,1,0,0,0,1C B A 的平面方程.解:设所求平面方程为0=+++d cz by ax ,将C B A ,,的坐标代入方程,可得d c b a -===,故所求平面方程为1=++z y x .3、求过点()1,0,0且与平面1243=++z y x 平行的平面方程. 解:依题意可取所求平面的法向量为}2,4,3{=n ,从而其方程为()()()0120403=-+-+-z y x 即 2243=++z y x .4、求通过x 轴和点(4, -3, -1)的平面的方程. 解:平面通过x 轴, 一方面表明它的法线向量垂直于x 轴, 即A =0; 另一方面表明 它必通过原点, 即D =0. 因此可设这平面的方程为By +Cz =0.又因为这平面通过点(4, -3, -1), 所以有-3B -C =0, 或C =-3B . 将其代入所设方程并除以B (B ≠0), 便得所求的平面方程为y -3z =0.5、求过点)1,1,1(,且垂直于平面7=+-z y x 和051223=+-+z y x 的平面方程.解:},1,1,1{1-=n }12,2,3{2-=n 取法向量},5,15,10{21=⨯=n n n所求平面方程为化简得:.0632=-++z y x6、设平面过原点及点)1,1,1(,且与平面8x y z -+=垂直,求此平面方程.解: 设所求平面为,0=+++D Cz By Ax 由平面过点)1,1,1(知平0,A B C D +++=由平面过原点知0D =,{1,1,1},n ⊥-0A B C ∴-+=,0A C B ⇒=-=,所求平面方程为0.x z -=7、写出下列平面方程:(1)xOy 平面;(2)过z 轴的平面;(3)平行于zOx 的平面;(4)在x ,y ,z 轴上的截距相等的平面.解:(1)0=z ,(2)0=+by ax (b a ,为不等于零的常数), (3)c y = (c 为常数), (4) a z y x =++ (0)a ≠.8、 求平行于0566=+++z y x 而与三个坐标面所围成的四面体体积为1的平面方程.解: 设平面为,1=++cz b y a x ,1=V 111,32abc ∴⋅=由所求平面与已知平面平行得,611161c b a == 化简得,61161c b a ==令tc t b t a t c b a 61,1,6161161===⇒===代入体积式 11111666t t t ∴=⋅⋅⋅ 1,6t ⇒=±,1,6,1===∴c b a 或1,6,1,a b c =-=-=-所求平面方程为666x y z ++=或666x y z ++=-.9、分别在下列条件下确定n m l ,,的值:(1)使08)3()1()3(=+-+++-z n y m x l 和016)3()9()3(=--+-++z l y n x m 表示同一平面; (2)使0532=-++z my x 与0266=+--z y lx 表示二平行平面; (3)使013=+-+z y lx 与027=-+z y x 表示二互相垂直的平面.解:(1)欲使所给的二方程表示同一平面,则:168339133-=--=-+=+-l n n m m l 即: ⎪⎩⎪⎨⎧=-+=-+=-+092072032n l m n l m ,解之得 97=l ,913=m ,937=n . (2)欲使所给的二方程表示二平行平面,则:6362-=-=m l ,所以4-=l ,3=m . (3)欲使所给的二方程表示二垂直平面,则:7230l ++=所以: 57l =-.10 、求平面011=-+y x 与083=+x 的夹角; 解:设011=-+y x 与083=+x 的夹角为θ,则cos θ==∴ 4πθ=.11、 求点(2,1,1)到平面2240x y z +-+=的距离. 解:利用点到平面的距离公式可得933d ===.习 题 6—61、求下列各直线的方程:(1)通过点)1,0,3(-A 和点)1,5,2(-B 的直线; (2) 过点()1,1,1且与直线433221-=-=-z y x 平行的直线. (3)通过点)3,51(-M 且与z y x ,,三轴分别成︒︒︒120,45,60的直线; (4)一直线过点(2,3,4)-A ,且和y 轴垂直相交,求其方程. (5)通过点)2,0,1(-M 且与两直线11111-+==-z y x 和01111+=--=z y x 垂直的直线; (6)通过点)5,3,2(--M 且与平面02536=+--z y x 垂直的直线. 解:(1)所求的直线方程为:015323-=-=++z y x 即:01553-=-=+z y x ,亦即01113-=-=+z y x .(2)依题意,可取L 的方向向量为{}4,3,2=s ,则直线L 的方程为413121-=-=-z y x . (3)所求直线的方向向量为:{}⎭⎬⎫⎩⎨⎧-=︒︒︒21,22,21120cos ,45cos ,60cos ,故直线方程为: 132511--=+=-z y x . (4)因为直线和y 轴垂直相交,所以交点为),0,3,0(-B 取{2,0,4},BA s −−→==所求直线方程.440322-=+=-z y x (5)所求直线的方向向量为:{}{}{}2,1,10,1,11,1,1---=-⨯-,所以,直线方程为:22111+==-z y x . (6)所求直线的方向向量为:{}5,3,6--,所以直线方程为: 235635x y z -++==--.2、求直线1,234x y z x y z ++=-⎧⎨-+=-⎩的点向式方程与参数方程.解 在直线上任取一点),,(000z y x ,取10=x ,063020000⎩⎨⎧=--=++⇒z y z y 解2,000-==z y .所求点的坐标为)2,0,1(-,取直线的方向向量{}{}3,1,21,1,1-⨯=s k j i kj i 34312111--=-=,所以直线的点向式方程为:,321041-+=--=-z y x 令102,413x y z t --+===--则所求参数方程: .3241⎪⎩⎪⎨⎧--=-=+=tz t y tx3、判别下列各对直线的相互位置,如果是相交的或平行的直线求出它们所在的平面,如果相交时请求出夹角的余弦.(1)⎩⎨⎧=-+=+-0623022y x z y x 与⎩⎨⎧=-+=--+01420112z x z y x ;(2)⎪⎩⎪⎨⎧--=+==212t z t y tx 与142475x y z --+==-. 解:(1)将所给的直线方程化为标准式为:4343223z y x =-=--43227-=--=-z y x 234234-==-- ∴二直线平行.又点)0,43,23(与点(7,2,0)在二直线上,∴向量⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧--0,45,2110,432,237平行于二直线所确定的平面,该平面的法向量为:{}{}19,22,50,45,2114,3,2--=⎭⎬⎫⎩⎨⎧⨯-,从而平面方程为:0)0(19)2(22)7(5=-+---z y x ,即0919225=++-z y x .(2)因为121475-≠≠-,所以两直线不平行,又因为0574121031=--=∆,所以两直线相交,二直线所决定的平面的法向量为{}{}{}1,1,35,7,412,1--=-⨯-,∴二直线所决定的平面的方程为:330x y z -++=.设两直线的夹角为ϕ,则cos ϕ==4、判别下列直线与平面的相关位置: (1)37423z y x =-+=--与3224=--z y x ;(2)723zy x =-=与8723=+-z y x ; (3)⎩⎨⎧=---=-+-01205235z y x z y x 与07734=-+-z y x ;(4)⎪⎩⎪⎨⎧-=+-==4992t z t y t x 与010743=-+-z y x .解(1) 0)2(3)2()7(4)2(=-⨯+-⨯-+⨯-,而017302)4(234≠=-⨯--⨯-⨯,所以,直线与平面平行.(2) 0717)2(233≠⨯+-⨯-⨯,所以,直线与平面相交,且因为772233=--=,∴直线与平面垂直. (3)直线的方向向量为:{}{}{}1,9,51,1,22,3,5=--⨯-, 0179354=⨯+⨯-⨯,所以直线与平面平行或者直线在平面上;取直线上的点)0,5,2(--M ,显然点在)0,5,2(--M 也在平面上(因为4(2)3(5)70⨯--⨯--=),所以,直线在平面上.(4)直线的方向向量为{}9,2,1-, 097)2(413≠⨯+-⨯-⨯∴直线与平面相交但不垂直.5、验证直线l :21111-=-=-z y x 与平面π:032=--+z y x 相交,并求出它的交点和交角. 解: 032111)1(2≠-=⨯-⨯+-⨯∴直线与平面相交.又直线的参数方程为:⎪⎩⎪⎨⎧+=+=-=t z t y tx 211设交点处对应的参数为0t ,∴03)21()1()(2000=-+-++-⨯t t t ∴10-=t ,从而交点为(1,0,-1).又设直线l 与平面π的交角为θ,则:21662111)1(2sin =⨯⨯-⨯+-⨯=θ,∴6πθ=.6、确定m l ,的值,使: (1)直线13241zy x =+=-与平面0153=+-+z y lx 平行; (2)直线⎪⎩⎪⎨⎧-=--=+=135422t z t y t x 与平面076=-++z my lx 垂直.解:(1)欲使所给直线与平面平行,则须:015334=⨯-⨯+l 即1l =-. (2)欲使所给直线与平面垂直,则须:3642=-=m l ,所以:8,4-==m l .7、求下列各平面的方程: (1)通过点)1,0,2(-p ,且又通过直线32121-=-=+z y x 的平面; (2)通过直线115312-+=-+=-z y x 且与直线⎩⎨⎧=--+=---052032z y x z y x 平行的平面; (3)通过直线223221-=-+=-z y x 且与平面0523=--+z y x 垂直的平面; (4). 求过点(2,1,0)M 与直线2335x t y t z t =-⎧⎪=+⎨⎪=⎩垂直的平面方程.解:(1)因为所求的平面过点)1,0,2(-p 和)2,0,1(-'p ,且它平行于向量{}3,1,2-,所以要求的平面方程为:03331212=--+-z y x , 即015=-++z y x .(2)已知直线的方向向量为{}{}{}2,1,11,2,13,1,5--⨯-=,∴平面方程为:2311510315x y z -++--=,即3250x y z +--= (3)所求平面的法向量为{}{}{}13,8,11,2,32,3,2-=-⨯-,∴平面的方程为: 0)2(13)2(8)1(=--+--z y x ,即09138=+--z y x .(4).所求平面的法向量为{}2,3,1,则平面的方程为:2(2)3(1)(0)0x y z -+-+-=, 即 2370x y z ++-=.8、求点(4,1,2)M 在平面1x y z ++=上的投影.解: 过点(4,1,2)M 作已知平面的垂线,垂线的方向向量就是已知平面的法向量(1,1,1),所以垂线方程为412111x y z ---==,此垂线与已知平面的交点即为所求投影.为了求投影,将垂线方程化为参数方程412x t y t z t =+⎧⎪=+⎨⎪=+⎩,代入平面方程求得2t =-,故投影为(2,1,0)-. 9、求点)1,3,2(-p 到直线⎩⎨⎧=++-=++-0172230322z y x z y x 的距离.解:直线的标准方程为:2251211-+==-z y x 所以p 到直线的距离 1534532025)2(1212392292421243222222===-++-+--+-=d .10、设0M 是直线L 外一点,M 是直线L 上一点,且直线的方向向量为 ,试证:点0M 到直线L 的距离为d =.证:设0M M与L 的夹角为θ,一方面由于0sin d M M θ= ;另一方面,00sin M M s M M s θ⨯= ,所以d =.11、求通过平面0134=-+-z y x 和025=+-+z y x 的交线且满足下列条件之一的平面: (1)通过原点; (2)与y 轴平行;(3)与平面0352=-+-z y x 垂直. 解: (1)设所求的平面为:0)25()134(=+-++-+-z y x z y x λ 欲使平面通过原点,则须:021=+-λ,即21=λ,故所求的平面方程为 0)25()134(2=+-++-+-z y x z y x 即:0539=++z y x .(2)同(1)中所设,可求出51=λ.故所求的平面方程为 0)25()134(5=+-++-+-z y x z y x 即:031421=-+z x .(3)如(1)所设,欲使所求平面与平面0352=-+-z y x 垂直,则须:0)3(5)51()4(2=-++--+λλλ从而3=λ,所以所求平面方程为05147=++y x .12、求直线⎩⎨⎧=++-=--+0101z y x z y x 在平面0=++z y x 上的投影直线的方程.解:应用平面束的方法.设过直线⎩⎨⎧=++-=--+0101z y x z y x 的平面束方程为0)1()1(=++-+--+z y x z y x λ即01)1()1()1(=-++-+-++λλλλz y x这平面与已知平面0=++z y x 垂直的条件是01)1(1)1(1)1(=⋅+-+⋅-+⋅+λλλ,解之得1-=λ代入平面束方程中得投影平面方程为10y z --=,所以投影直线为⎩⎨⎧=++=--001z y x z y .13、请用异于本章第五节例7的方法来推导点到平面的距离公式.证:设),,(0000z y x P 是平面π:0+++=Ax By Cz D 外的一点,下面我们来求点0P 到平面π的距离. 过0P 作平面π的垂线L :000x x y y z z A B C---==,设L 与平面π的交点为(,,)P x y z ,则P 与0P 之间的距离即为所求.因为点(,,)P x y z 在L 上,所以000x x Aty y Bt z z Ct-=-=-=⎧⎪⎨⎪⎩,而(,,)P x y z 在平面π上,则000()()()0A x At B y Bt C z Ct D ++++++=000222Ax By Cz A B t DC ⇒=-+++++,故000222Ax By Cz Dd t A B C+++===++=.习 题 6—7飞机的速度:假设空气以每小时32公里的速度沿平行y 轴正向的方向流动,一架飞机在xoy 平面沿与x 轴正向成π6的方向飞行,若飞机相对于空气的速度是每小时840公里,问飞机相对于地面的速度是多少?解:如下图所示,设OA 为飞机相对于空气的速度,AB 为空气的流动速度,那么OB就是飞机相对于地面的速度.840cos 840sin 420,3266OA i j j AB j ππ=⋅+⋅=+=所以, 2452,856.45OB j OB =+=≈千米/小时.复习题A一 、判断正误:1、 若c b b a ⋅=⋅且≠0b ,则c a =; ( ⨯ )解析 c b b a ⋅-⋅=)(c a b -⋅=0时,不能判定=b 0或c a =.例如i a =,j b =,k c =,有⋅=⋅=0a bbc ,但c a ≠.2、 若c b b a ⨯=⨯且≠0b ,则c a =; ( ⨯ )解析 此结论不一定成立.例如i a =,j b =,)(j i c +-=,则k j i b a =⨯=⨯,k j i j c b =+-⨯=⨯)]([,c b b a ⨯=⨯,但c a ≠.3 、若0=⋅c a ,则=0a 或=0c ; ( ⨯ ) 解析 两个相互垂直的非零向量点积也为零.4、 a b b a ⨯-=⨯. ( √ ) 解析 这是叉积运算规律中的反交换律.图6-1 空所流动与飞机飞行速度的关系二、选择题:1 、 当a 与b 满足( D )时,有b a b a +=+;(A)⊥a b ; (B)λ=a b (λ为常数); (C)a ∥b ; (D)⋅=a b a b .解析 只有当a 与b 方向相同时,才有a +b =a +b .(A)中a ,b 夹角不为0,(B),(C)中a ,b 方向可以相同,也可以相反.2、下列平面方程中,方程( C )过y 轴;(A) 1=++z y x ; (B) 0=++z y x ; (C) 0=+z x ; (D) 1=+z x . 解析 平面方程0=+++D Cz By Ax 若过y 轴,则0==D B ,故选C .3 、在空间直角坐标系中,方程2221y x z --=所表示的曲面是( B );(A) 椭球面; (B) 椭圆抛物面; (C) 椭圆柱面; (D) 单叶双曲面.解析 对于曲面2221y x z --=,垂直于z 轴的平面截曲面是椭圆,垂直于x 轴或y 轴的平面截曲面是开口向下的抛物线,根据曲面的截痕法,可以判断曲面是椭圆抛物面.4、空间曲线⎩⎨⎧=-+=5,222z y x z 在xOy 面上的投影方程为( C );(A)722=+y x ; (B)⎩⎨⎧==+5722z y x ; (C) ⎩⎨⎧==+0722z y x ;(D)⎩⎨⎧=-+=0222z y x z解析 曲线⎩⎨⎧==+5722z y x 与xOy 平面平行,在xOy 面上的投影方程为⎩⎨⎧==+0722z y x .5 、直线11121-+==-z y x 与平面1=+-z y x 的位置关系是( B ). (A) 垂直; (B) 平行; (C) 夹角为π4; (D) 夹角为π4-.解析 直线的方向向量s ={2,1,-1},平面的法向量n ={1,-1,1},n s ⋅=2-1-1=0,所以,s ⊥n ,直线与平面平行.三、填空题:1、若2=b a ,π()2= a,b ,则=⨯b a 2 ,=⋅b a 0 ;解 =⨯b a b a sin() a,bπ2=2,=⋅b a b a cos() a,bπ2=0.2、与平面062=-+-z y x 垂直的单位向量为 }2,1,1{66-±; 解 平面的法向量 n ={1,-1,2}与平面垂直,其单位向量为0n =411++=6,所以,与平面垂直的单位向量为}2,1,1{66-±.3、过点)2,1,3(--和)5,0,3(且平行于x 轴的平面方程为 057=-+z y ;解 已知平面平行于x 轴,则平面方程可设为 0=++D Cz By ,将点 (-3,1,-2)和(3,0,5)代入方程,有{20,50,B C D C D -+=+= ⇒ 7,51,5B D C D ⎧=-⎪⎨⎪=-⎩得 05157=+--D Dz Dy ,即 057=-+z y .4、过原点且垂直于平面022=+-z y 的直线为z yx -==20; 解 直线与平面垂直,则与平面的法向量 n ={0,2,-1}平行,取直线方向向量s =n ={0,2,-1},由于直线过原点,所以直线方程为z yx -==20 .5、曲线⎩⎨⎧=+=1,222z y x z 在xOy 平面上的投影曲线方程为 ⎩⎨⎧==+.0,1222z y x解: 投影柱面为 1222=+y x ,故 ⎩⎨⎧==+0,1222z y x 为空间曲线在xOy 平面上的投影曲线方程.四、解答题:1、 已知}1,2,1{-=a ,}2,1,1{=b ,计算(a) b a ⨯; (b) ()()-⋅+2a b a b ; (c) 2b a -;解: (a) b a ⨯=211121-kj i1,3}5,{--=. (b) {2,4,2}{1,1,2}{1,5,0}2a b -=--=-,1,3}{2,{1,1,2}2,1}{1,-=+-=+b a ,所以()()-⋅+2a b a b 7}3,1,2{}0,5,1{=-⋅-=.(c) 1}3,{0,{1,1,2}2,1}{1,--=--=-b a ,所以2b a -10)19(2=+=.2、已知向量21P P 的始点为)5,2,2(1-P ,终点为)7,4,1(2-P ,试求:(1)向量21P P 的坐标表示; (2)向量21P P 的模;(3)向量21P P 的方向余弦; (4)与向量21P P 方向一致的单位向量.解: (1) }2,6,3{}57),2(4,21{21-=-----=P P ;74926)3(222==++-=;(3) 21P P 在z y x ,,三个坐标轴上的方向余弦分别为362cos ,cos ,cos 777αβγ=-==;(4)k j i k j i 7276737263)(21++-=++-==P P.3、设向量{}1,1,1=-a ,{}1,1,1=-b ,求与a 和b 都垂直的单位向量.解: 令{}1110,2,2111=⨯=-=-i j kc a b,01⎧==⎨⎩c c c ,故与a 、b都垂直的单位向量为0⎧±=±⎨⎩c .4、向量d垂直于向量]1,3,2[-=a和]3,2,1[-=b ,且与]1,1,2[-=c的数量积为6-,求向量d解: d垂直于a与b ,故d平行于b a⨯,存在数λ使()b a d⨯=λ⨯-=]1,3,2[λ]3,2,1[-]7,7,7[λλλ--=因6-=⋅c d,故6)7(1)7()1(72-=-⨯+-⨯-+⨯λλλ, 73-=λ]3,3,3[-=∴d.5、求满足下列条件的平面方程:(1)过三点)2,1,0(1P ,)1,2,1(2P 和)4,0,3(3P ;(2)过x 轴且与平面025=++z y x 的夹角为π3. 解 (1)解1: 用三点式.所求平面的方程为0241003211201210=---------z y x ,即01345=+--z y x . 解2:}1,1,1{-=}2,1,3{-=,由题设知,所求平面的法向量为k j i kj i n 452131113121--=--=⨯=P P P P ,又因为平面过点)2,1,0(1P ,所以所求平面方程为0)2(4)1(5)0(=-----z y x ,即01345=+--z y x .解3: 用下面的方法求出所求平面的法向量},,{C B A =n ,再根据点法式公式写出平面方程也可.因为3121,P P P P ⊥⊥n n ,所以{0,320,A B C A B C +-=-+=解得A C AB 4,5-=-=,于是所求平面方程为 0)2(4)1(5)0(=-----z A y A x A ,即 01345=+--z y x .(2)因所求平面过x 轴,故该平面的法向量},,{C B A =n 垂直于x 轴,n 在x 轴上的投影0=A ,又平面过原点,所以可设它的方程为0=+Cz By ,由题设可知0≠B (因为0=B 时,所求平面方程为0=Cz 又0≠C ,即0=z .这样它与已知平面025=++z y x 所夹锐角的余弦为π1cos 32=≠=,所以0≠B ),令C B C '=,则有0='+z C y ,由题设得 22222212)5(10121503cos ++'++⨯'+⨯+⨯=πC C , 解得3='C 或13C '=-,于是所求平面方程为03=+z y 或03=-z y .6、 一平面过直线⎩⎨⎧=+-=++04,05z x z y x 且与平面01284=+--z y x 垂直,求该平面方程;解法1: 直线⎩⎨⎧=+-=++04,05z x z y x 在平面上,令x =0,得 54-=y ,z =4,则(0,-54,4)为平面上的点.设所求平面的法向量为n =},,{C B A ,相交得到直线的两平面方程的法向量分别为 1n ={1,5,1},2n ={1,0,-1},则直线的方向向量s =1n ⨯2n =101151-kj i={-5,2,-5},由于所求平面经过直线,故平面的法向量与直线的方向向量垂直,即⋅n s ={-5,2,-5}•},,{C B A =C B A 525-+-=0,因为所求平面与平面01284=+--z y x 垂直,则}8,4,1{},,{--⋅C B A =C B A 84--=0,解方程组{5250,480,A B C A B C -+=--= ⇒ 2,5,2A CBC =-⎧⎪⎨=-⎪⎩ 所求平面方程为 0)4()54(25)0(2=-++---z C y C x C ,即012254=+-+z y x .解法2: 用平面束(略)7、求既与两平面1:43x z π-=和2:251x y z π--=的交线平行,又过点(3,2,5)-的直线方程.解法1:{}11,0,4=-n ,{}22,1,5=--n ,{}124,3,1s =⨯=---n n ,从而根据点向式方程,所求直线方程为325431x y z +--==---,即325431x y z +--==. 解法2:设{},,s m n p =,因为1⊥s n ,所以40m p -=;又2⊥s n ,则250m n p --=,可解4,3m p n p ==,从而0p ≠.根据点向式方程,所求直线方程为32543x y z p p p+--==,即325431x y z +--==. 解法3:设平面3π过点(3,2,5)-,且平行于平面1π,则{}311,0,4==-n n 为3π的法向量,从而3π的方程为1(3)0(2)4(5)0x y z ⋅++⋅--⋅-=,即4230x z -+=.同理,过已知点且平行于平面2π的平面4π的方程为25330x y z --+=.故所求直线的方程为423025330x z x y z -+=⎧⎨--+=⎩.8、 一直线通过点)1,2,1(A ,且垂直于直线11231:+==-z y x L ,又和直线z y x ==相交,求该直线方程;解: 设所求直线的方向向量为{,,}m n p =s ,因垂直于L ,所以320m n p ++=;又因为直线过点)1,2,1(A ,则所求直线方程为 p z n y m x 121-=-=-,联立121,①,②320,③x y z m n p x y z m n p ---⎧==⎪⎨==⎪++=⎩由①,令λ=-=-=-p z n y m x 121,则有⎪⎩⎪⎨⎧+=+=+=,1,2,1p z n y m x λλλ代入方程②有{12,11,m n m p λλλλ+=++=+可得p m =,代入③解得p n 2-=, 因此,所求直线方程为112211-=--=-z y x .9、 指出下列方程表示的图形名称:(a) 14222=++z y x ;(b) z y x 222=+;(c) 22y x z +=;(d) 022=-y x ;(e) 122=-y x ; (f) ⎩⎨⎧=+=222z yx z .解: (a) 绕y 轴旋转的旋转椭球面.(b) 绕z 轴旋转的旋转抛物面. (c) 绕z 轴旋转的锥面. (d) 母线平行于z 轴的两垂直平面:y x =,y x -=. (e) 母线平行于z 轴的双曲柱面. (f) 旋转抛物面被平行于XOY 面的平面所截得到的圆,半径为2,圆心在(0,0,2)处.10、求曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影并作其图形. 解: 将所给曲面方程联立消去z ,就得到两曲面交线C 的投影柱面的方程122=+y x ,所以柱面与x O y 平面的交线⎩⎨⎧==+'01:22z y x C 所围成的区域221+≤x y 即为曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影(图略).复习题B1、设4=a ,3=b , ()6π=a,b,求以2+a b 和3-a b 为邻边的平行四边形的面积.解:(2)(3)326A =+⨯-=⨯-⨯+⨯-⨯a b a b a a a b b a b b325=-⨯-⨯=-⨯a b a b a b 15sin()543302=⋅=⨯⨯⨯=a b a,b.2、设(3)(75)+⊥-a b a b ,(4)(72)-⊥-a b a b ,求 ()a,b. 解: 由已知可得:(3)(75)0+⋅-=a b a b ,(4)(72)0-⋅-=a b a b 即 22715160-+⋅=a b a b ,2278300+-⋅=a b a b .这可看成是含三个变量a 、b 及⋅a b 的方程组,可将a 、b 都用⋅a b 表示,即==a b 1cos()22⋅⋅===⋅a b a b a,ba b a b , ()3π=a,b .3、求与}3,2,1{-=a 共线,且28=⋅b a 的向量b .解 由于b 与a 共线,所以可设}3,2,{λλλλ-==a b ,由28=⋅b a ,得28}3,2,{}3,2,1{=-⋅-λλλ, 即2894=++λλλ,所以2=λ,从而}6,4,2{-=b .4、 已知}0,1,1{},2,0,1{=-=b a ,求c ,使b c a c ⊥⊥,且6=c .解法1: 待定系数法.设},,{z y x =c ,则由题设知0,0=⋅=⋅b c a c 及6=c ,所以有①20②③6x z ⎧-=⎪= 由①得2xz = ④,由②得x y -= ⑤,将④和⑤代入③得62)(222=⎪⎭⎫⎝⎛+-+x x x ,解得2,4,4±==±=z y x ,于是 }2,4,4{-=c 或}2,4,4{--=c .解法2: 利用向量的垂直平行条件,因为b c a c ⊥⊥,,所以c ∥b a ⨯.设λ是不为零的常数,则k j i kj i b a c λλλλλ+-=-=⨯=22011201)(,因为6=c ,所以6]1)2(2[2222=+-+λ,解得2±=λ,所以}2,4,4{-=c 或{4,4,2}=--c .解法3: 先求出与向量b a ⨯方向一致的单位向量,然后乘以6±.k j i kj i b a +-=-=⨯22011201,31)2(2222=+-+=⨯b a ,故与b a ⨯方向一致的单位向量为}1,2,2{31-.于是}1,2,2{36-±=c ,即}2,4,4{-=c 或}2,4,4{--=c .5、求曲线222x y R x y z ⎧+=⎨++=⎩的参数式方程.解: 曲线参数式方程是把曲线上任一点(,,)P x y z 的坐标,,x y z 都用同一变量即参数表示出来,故可令cos ,sin x R t y R t ==,则(cos sin )z R t t =-+.6、求曲线22:2z L x y x⎧⎪=⎨+=⎪⎩xOy 面上及在zOx 面上的投影曲线的方程.解: 求L 在xOy 面上的投影的方程,即由L 的两个方程将z 消去,即得L 关于xOy 面的投影柱面的方程222x y x +=则L 在xOy 面上的投影曲线的方程为2220x y x z ⎧+=⎨=⎩. 同理求L 在zOx 面上的投影的方程,即由L 的两个方程消去y ,得L 关于zOx 面的投影柱面的方程z =L 在zOx面上的投影曲线方程为0z y ⎧=⎪⎨=⎪⎩7、已知平面π过点0(1,0,1)M -和直线1211:201x y z L ---==,求平面π的方程. 解法1: 设平面π的法向量为n ,直线1L 的方向向量1(2,0,1)=s ,由题意可知1⊥n s ,(2,1,1)M 是直线1L 上的一点,则0(1,1,2)M M = 在π上,所以0MM ⊥ n ,故可取10MM =⨯n s (1,3,2)=--.则所求平面的点法式方程为 1(1)3(0)2(1)0x y z ⋅-+⋅--⋅+=,即3230x y z +--=为所求平面方程.解法2: 设平面π的一般方程为0Ax By Cz D +++=,由题意可知,π过点0(1,0,1)M -,故有0A C D -+=, (1) 在直线1L 上任取两点12(2,1,1),(4,1,2)M M ,将其代入平面方程,得20A B C D +++=, (2) 420A B C D +++=, (3)由式(1)、(2)、(3)解得3,2,3B A C A D A ==-=-,故平面π的方程为3230x y z +--=.解法3: 设(),,M x y z 为π上任一点.由题意知向量0M M 、01M M和1s 共面,其中()12,1,1M 为直线1L 上的点,1(2,0,1)=s 为直线1L 的方向向量.因此0011()0M M M M ⨯⋅=s ,故平面π的方程为1012110110201x y z --+--+=,即3230x y z +--=为所求平面方程.8、求一过原点的平面π,使它与平面0:π4830x y z -+-=成4π角,且垂直于平面1:π730x z ++=. 解: 由题意可设π的方程为0Ax By Cz ++=,其法向量为(,,)A B C =n ,平面0π的法向量为0(1,4,8)=-n ,平面1π的法向量为1(7,0,1)=n ,由题意得00||cos 4||||π⋅=⋅n n n n ,即=(1) 由10⋅=n n ,得70A C +=,将7C A =-代入(1=解得20,B A =或10049B A =-,则所求平面π的方程为2070x y z +-= 或 491003430x y z --=.9、求过直线1L :0230x y z x y z ++=⎧⎨-+=⎩且平行于直线2L :23x y z ==的平面π的方程.解法1: 直线1L 的方向向量为1=s 111(4,1,3)213==---i j k,直线2L 的对称式方程为632x y z==,方向向量为2(6,3,2)=s ,依题意所求平面π的法向量1⊥n s 且2⊥n s ,故可取12=⨯n s s ,则413(7,26,18)632=--=-i j kn ,又因为1L 过原点,且1L 在平面π上,从而π也过原点,故所求平面π的方程为726180x y z -+=.解法2: 设所求平面π为 (23)0x y z x y z λ+++-+=,即(12)(1)(13)0x y z λλλ++-++=, 其法向量为(12,1,13)λλλ=+-+n ,由题意知2⊥n s ,故26(12)3(1)2(13)0λλλ⋅=++-++=n s , 得1115λ=-,则所求平面π的方程为726180x y z -+=.另外,容易验证230x y z -+=不是所求的平面方程.10、求过直线L :⎩⎨⎧=+-+=+-+0185017228z y x z y x 且与球面1222=++z y x 相切的平面方程解: 设所求平面为 ()018517228=+-+++-+z y x z y x λ,即 (15)(288)(2)170x y z λλλλ+++-+++=,由题意:球心)0,0,0(到它的距离为1,即1)2()828()51(17222=--+++++λλλλ解得:89250-=λ 或 2-=λ 所求平面为:42124164387=--z y x 或 543=-y x11、求直线L :11111--==-z y x 在平面π:012=-+-z y x 上投影直线0L 的方程,并求直线0L 绕y 轴旋转一周而成的曲面方程.解: 将直线L :11111--==-z y x 化为一般方程 ⎩⎨⎧=-+=--0101y z y x ,设过直线L 且与平面π垂直的平面方程为()011=-++--y z y x λ,则有02)1(1=+--λλ,即2λ=-,平面方程为0123=+--z y x ,这样直线0L 的方程⎩⎨⎧=-+-=+--0120123z y x z y x 把此方程化为:⎩⎨⎧--==)1(221y z yx ,因此直线0L 绕y 轴旋转一周而成的曲面方程为:22221(2)(1)2x z y y ⎛⎫+=+-- ⎪⎝⎭即 0124174222=-++-y z y x .。
高等数学课后习题答案第六章
习题六1. 指出下列各微分方程的阶数:1一阶 2二阶 3三阶 4一阶2. 指出下列各题中的函数是否为所给微分方程的解:2(1)2,5xy y y x '==;解:由25y x =得10y x '=代入方程得故是方程的解.(2)0,3sin 4cos y y y x x ''+==-;解:3cos 4sin ;3sin 4cos y x x y x x '''=+=-+代入方程得 3sin 4cos 3sin 4cos 0x x x x -++-=.故是方程的解.2(3)20,e x y y y y x '''-+== ;解:2222e e (2)e ,(24)e x x x x y x x x x y x x '''=+=+=++代入方程得 2e 0x ≠.故不是方程的解.解:12122211221122e e ,e e x x x x y C C y C C λλλλλλλλ'''=+=+代入方程得故是方程的解.3. 在下列各题中,验证所给二元方程为所给微分方程的解: 证:方程22x xy y C -+=两端对x 求导: 得22x y y x y -'=-代入微分方程,等式恒成立.故是微分方程的解.证:方程ln()y xy =两端对x 求导: 11y y x y ''=+ 得(1)yy x y '=-. 式两端对x 再求导得将,y y '''代入到微分方程,等式恒成立,故是微分方程的解.4. 从下列各题中的曲线族里,找出满足所给的初始条件的曲线: 解:当0x =时,y =5.故C =-25故所求曲线为:2225y x -= 解: 2212(22)e x y C C C x '=++当x =0时,y =0故有10C =.又当x =0时,1y '=.故有21C =.故所求曲线为:2e x y x =.5. 求下列各微分方程的通解:(1)ln 0xy y y '-=;解:分离变量,得 d 1d ln y xy y x =积分得 11d ln d ln y x y x =⎰⎰得 e cx y =.解:分离变量,得= 积分得=得通解:.c -=-(3)(e e )d (e e )d 0x y x x y y x y ++-++=;解:分离变量,得 e e d d 1e 1e y yy x y x =-+积分得ln(e 1)ln(e 1)ln y x c --=+- 得通解为 (e 1)(e 1)x yc +-=. (4)cos sind sin cos d 0x y x x y y +=;解:分离变量,得 cos cos d d 0sin sin x y x y x y +=积分得 lnsin lnsin ln y x c +=得通解为 sin sin .y x c ⋅=(5)y xy '=;解:分离变量,得 d d y x x y =积分得 211ln 2y x c =+得通解为 2112e (e )x c y c c ==(6)210x y '++=;解: 21y x '=--积分得 (21)d y x x =--⎰得通解为2y x x c =--+. 32(7)4230x x y y '+-=;解:分离变量,得 233d (42)d y y x x x =+积分得 342y x x c =++即为通解.(8)e x y y +'=.解:分离变量,得e d e d y x y x -= 积分得 e d e d y x y x-=⎰⎰ 得通解为: e e y x c --=+.6. 求下列各微分方程满足所给初始条件的特解:20(1)e ,0x y x y y -='== ;解:分离变量,得2e d e d y x y x = 积分得 21e e 2y x c =+.以0,0x y ==代入上式得12c = 故方程特解为 21e (e 1)2y x =+.π2(2)sin ln ,ex y x y y y ='== .解:分离变量,得 d d ln sin y x y y x =积分得 tan 2ex c y ⋅= 将π,e 2x y ==代入上式得1c =故所求特解为 tan 2exy =.7. 求下列齐次方程的通解:(1)0xy y '-=;解:d d y y x x =+令d d d d y y u u u x x x x =⇒=+ 原方程变为d x x = 两端积分得ln(ln ln u x c =+ 即通解为:2y cx += d (2)ln d y y xy x x =; 解:d ln d y y y x xx = 令y u x =, 则d d d d y u u x x x =+原方程变为 d d (ln 1)u x u u x =- 积分得 ln(ln 1)ln ln u x c -=+即方程通解为 1e cx y x +=解: 2221d d y y x y x y x xyx ⎛⎫+ ⎪+⎝⎭== 令y u x =, 则d d d d y u u x x x =+ 原方程变为2d 1d u u u x x u ++= 即 d 1d ,d d u x x u u x ux == 积分得 211ln ln 2u x c =+故方程通解为22221ln()()y x cx c c == 332(4)()d 3d 0x y x xy y +-=;解:333221d d 33y y x y x x xy y x ⎛⎫+ ⎪+⎝⎭==⎛⎫ ⎪⎝⎭ 令y u x =, 则d d d d y u u x x x =+ 原方程变为32d 1d 3u u u x x u ++= 即 233d d 12u x u ux =- 积分得 311ln(21)ln ln 2u x c --=+ 以yx 代替u ,并整理得方程通解为332y x cx -=. d (5)d y x y x x y +=-; 解:1d d 1yy x yx x +=- 令y u x =, 则d d d d y u u x x x =+原方程变为d 1d 1u u u xx u ++=- 分离变量,得 211d d 1u u x ux -=+ 积分得 211arctan ln(1)ln ln 2u u x c -+=+ 以y x 代替u ,并整理得方程通解为到2arctan 22211e .()y x x y c c c +== 解:d d yy x = 即d d x x y y =+令x v y =, 则d d ,d d x v x yv v y y y ==+, 原方程可变为 即d d v yy =分离变量,得d yy =积分得ln(ln ln v y c =-. 即y v c +=以yv x =代入上式,得222c y c x ⎛⎫=+ ⎪⎝⎭ 即方程通解为 222y cx c =+.8. 求下列各齐次方程满足所给初始条件的解:220(1)(3)d 2d 0,1x y x y xy x y =-+== ;解: 22d d 3y y xx y x =-⎛⎫- ⎪⎝⎭令y ux =,则得 2d 2d 3u u u x x u +=-- 分离变量,得 233d d u x u u ux -=- 积分得 3ln ln(1)ln(1)ln u u u cx -+-++=即 231ln ln u c u x -=得方程通解为 223y x cy -=以x =0,y =1代入上式得c =1.故所求特解为 223y x y -=.1(2),2x xyy y y x ='=+= .解:设y ux =, 则d d d d yuu x x x =+原方程可变为 d d x u u x =积分得 21ln ln 2u x c =+.得方程通解为 222(ln ln )y x x c =+以x =1,y =2代入上式得c =e 2.故所求特解为 222(ln 2)y x x =+.9. 利用适当的变换化下列方程为齐次方程,并求出通解:解:设1,1x X y Y =+=+,则原方程化为令 d 25d 24Y u uu u X X X u -=⇒+=+代回并整理得2(43)(23),(y x y x c c --+-==. 解:d 1d 41y x yx y x --=-+-作变量替换,令 1,0x X y Y Y =+=+=原方程化为 1d d 414YY X YX YX X Y X --=-=-++令Y uX =,则得分离变量,得 214d d 14u X u u x +-=+积分得即 22ln ln(14)arctan 2X u u c +++=代回并整理得 222ln[4(1)]arctan .1yy x c x +-+=-(3)()d (334)d 0x y x x y y +++-=;解:作变量替换,v x y =+ 则d d 1d d yvx x =-原方程化为 d 1d 34v v xv -=-- 代回并整理得 32ln(2).x y x y c +++-=d 1(4)1d y x x y =+-.解:令,u x y =-则d d 1d d u y xx =- 原方程可化为 d 1d u xu =- 分离变量,得 d d u u x =-积分得 2112u x c =-+故原方程通解为21()2.(2)x y x c c c -=-+= 10. 求下列线性微分方程的通解:(1)e x y y -'+=;解:由通解公式2(2)32xy y x x '+=++;解:方程可化为123y y x x x '+=++由通解公式得 解: cos d cos d sin sin e e ().e e d x x x x x x y x c x c ---⎰⎡⎤⎰==+⋅+⎢⎥⎣⎦⎰(4)44y xy x '=+;解:22(4)d (4)d 22e e 4e d 4e d x x x x x x y x x c x x c ----⎰⎡⎤⎰⎡⎤==++⎢⎥⎣⎦⎣⎦⎰⎰ ()222222e e e 1x x x c c -=-+=-.3(5)(2)2(2)x y y x '-=+-; 解:方程可化为 2d 12()d 2y y x x x x -=--解:方程可化为2222411x x y y x x '+=++ 11. 求下列线性微分方程满足所给初始条件的特解:πd 11(1)sin ,1d x y y x y x x x =+== ;解: 11d d 11sine sin d [cos ]e d x x x x x y x x c c x x c x x x -⎡⎤⎰⎰⎡⎤==+=-+⎢⎥⎣⎦⎣⎦⎰⎰以π,1x y ==代入上式得π1c =-,故所求特解为 1(π1cos )y x x =--.2311(2)(23)1,0x y x y y x ='+-== . 解:22323d 3ln x x x x c x --=--+⎰ 以x =1,y =0代入上式,得12e c =-. 故所求特解为2311e 22e x y x -⎛⎫=- ⎪⎝⎭. 12. 求下列伯努利方程的通解: 解:令121z y y --==,则有即为原方程通解. 411(2)(12)33y y x y '+=-.解:令3d 21d z z y z x x -=⇒-=-.即为原方程通解.13. 求下列各微分方程的通解:(1)sin y x x ''=+;解:方程两边连续积分两次得(2)e x y x '''=;解:积分得 1e d e e x x x y x x x c ''==-+⎰(3)y y x '''=+;解:令p y '=,则原方程变为故 21121(e 1)d e 2x x y c x x c x x c =--=--+⎰.3(4)()y y y ''''=+;解:设y p '=, 则d d p y py ''= 原方程可化为 3d d p p p py =+即 2d (1)0d p p p y ⎡⎤-+=⎢⎥⎣⎦ 由p =0知y =c ,这是原方程的一个解.当0p ≠时,22d d 1d d 1p p p y y p =+⇒=+解:11d ln y x c x x ''==+⎰(6)y ''=;解:1arcsin y x x c '==+(7)0xy y '''+=; 解:令y p '=,则得1d d 00p x p p x p x '+=⇒+=得1c p x =故 112d ln c y x c c x x ==+⎰.3(8)10y y ''-=. 解:令p y '=,则d d p y py ''=.原方程可化为33d 10,d d d p y p p p y y y --==14.求下列各微分方程满足所给初始条件的特解: 311(1)10,1,0x x y y y y =='''+===;解:令y p '=,则d d p y p y ''=,原方程可化为 33d 11d d d p y p p p y y y ⋅=-⇒=-由1,1,0x y y p '====知,11c =-,从而有由1,1x y ==,得21c =故222x y x += 或y =. 211(2)1,0,1x x x y xy y y ==''''+===;解:令y p '=,则y p '''=.原方程可化为211p p x x '+= 则 11(ln )y x c x '=+以1,1x y '==代入上式得11c = 则1(ln 1)y x x '=+ 当x =1时,y =0代入得20c =故所求特解为 21ln ln 2y x x =+.2001(3),01x x y y y x =='''===+;解:1arctan y x c '=+当0,0x y '==,得10c =以x =0,y =0代入上式得20c =故所求特解为 21arctan ln(1)2y x x x =-+.200(4)1,1,0x x y y y y ==''''=+==;解:令p y '=,则p y '''=.原方程可化为21p p '=+ 以0,0x y '==代入上式得1πc k =.以x =0,y =1代入上式得21c =故所求特解为200(5)e ,0y x x y y y =='''===;解:令y p '=,则d d p y py ''=. 原方程可化为 2d e d yp p y =即 2d e d y p p y =积分得221111e 222y p c =+ 以0,0x y y '===代入上式得11c =-,则p y '==以x =0,y =0代入得2π2c =,故所求特解为 πarcsin e 2y x -=+ 即πe sin cos 2y x x -⎛⎫==± ⎪⎝⎭. 即lnsec y x =.00(6)1,2x x y y y =='''===.解:令d ,d p y p y p y '''== 原方程可化为 12d 3d p p y y =以0,2,1x y p y '====代入得10c = 故 342y p y '==± 由于0y ''=>. 故342y y '=,即 34d 2d yx y =积分得14242y x c =+ 以x =0,y =1代入得24c =故所求特解为4112y x ⎛⎫=+ ⎪⎝⎭. 15. 求下列微分方程的通解:(1)20y y y '''+-=;解:特征方程为 220r r +-=解得 121,2r r ==-故原方程通解为212e e .x x y c c -=+ (2)0y y ''+=;解:特征方程为 210r +=解得 1,2r i =±故原方程通解为 12cos sin y c x c x =+22d d (3)420250d d x x x t t -+=;解:特征方程为 2420250r r -+=解得1252r r == 故原方程通解为 5212()e t x c c t =+.(4)450y y y '''-+=;解:特征方程为 2450r r -+= 解得 1,22r i =±故原方程通解为212e (cos sin )x y c x c x =+. (5)440y y y '''++=;解:特征方程为 2440r r ++=解得 122r r ==-故原方程通解为212e ()x y c c x -=+ (6)320y y y '''-+=.解:特征方程为 2320r r -+=解得 1,2r r ==故原方程通解为 212e e x x y c c =+.16. 求下列微分方程满足所给初始条件的特解:00(1)430,6,10x x y y y y y ==''''-+===;解:特征方程为 2430r r -+=解得 121,3r r ==通解为 312e e x x y c c =+由初始条件得 121122643102c c c c c c +==⎧⎧⇒⎨⎨+==⎩⎩ 故方程所求特解为 34e 2e x xy =+.解:特征方程为 24410r r ++= 解得1212r r ==- 通解为 1212()e x y c c x -=+由初始条件得 11221221102c c c c c =⎧=⎧⎪⇒⎨⎨=-=⎩⎪⎩故方程所求特解为 12(2)e x y x -=+.解:特征方程为 24290r r ++=解得 1,225r i =-±通解为212e (cos5sin 5)x y c x c x -=+ 由初始条件得 112120052153c c c c c ==⎧⎧⇒⎨⎨-==⎩⎩ 故方程所求特解为23e sin 5x y x -=. 00(4)250,2,5x x y y y y =='''+===.解:特征方程为 2250r +=解得 1,25r i =±通解为 12cos5sin 5y c x c x =+由初始条件得 112222551c c c c ==⎧⎧⇒⎨⎨==⎩⎩ 故方程所求特解为 2cos5sin 5y x x =+.17. 求下各微分方程的通解:(1)22e x y y y '''+-=;解: 2210r r +-=得相应齐次方程的通解为令特解为*e x y A =,代入原方程得 2e e e 2e x x x x A A A +-=,解得1A =, 故*e x y =,故原方程通解为 212e e e x x xy c c -=++.2(2)25521y y x x '''+=--;对应齐次方程通解为212e x y c c -=+ 令*2()y x ax bx c =++, 代入原方程得 比较等式两边系数得 则*321373525y x x x =-+ 故方程所求通解为532212137e 3525x y c c x x x -⎛⎫=++-+ ⎪⎝⎭. (3)323e x y y y x -'''++=;解:2320r r ++= 121,2r r =-=-,对应齐次方程通解为 212e e x x y c c --=+令*()e x y x Ax B -=+代入原方程得解得 3,32A B ==-则*23e 32x y x x -⎛⎫=- ⎪⎝⎭ 故所求通解为22123e e e 32x x x y c c x x ---⎛⎫=++- ⎪⎝⎭. (4)25e sin 2x y y y x '''-+=;解:2250r r -+=相应齐次方程的通解为令*e (cos 2sin 2)x y x A x B x =+,代入原方程并整理得 得 1,04A B =-=则 *1e cos 24x y x x =-故所求通解为 121e (cos 2sin 2)e cos 24x x y c x c x x x =+-.(5)2y y y x '''++=;解:2210r r ++=相应齐次方程通解为 12()e x y c c x -=+令*y Ax B =+代入原方程得得 1,2A B ==-则 *2y x =-故所求通解为 12()e 2x y c c x x -=++- 2(6)44e x y y y '''-+=.对应齐次方程通解为 12()e c c x =+令*22e x y Ax =代入原方程得 故原方程通解为222121()e e 2x x y c c x x =++.18. 求下列各微分方程满足已给初始条件的特解: ππ(1)sin 20,1,1x x y y x y y =='''++===; 解:特征方程为 210r +=得 1,2r i =±对应齐次方程通解为 12cos sin y c x c x =+令*cos 2sin 2y A x B x =+代入原方程并整理得得 10,3A B ==故通解为 121cos sin sin 23y c x c x x =++.将初始条件代入上式得11221121133c c c c -==-⎧⎧⎪⎪⇒⎨⎨-+==-⎪⎪⎩⎩ 故所求特解为 11cos sin sin 233y x x x =--+.200633(2)109e ,,77x x x y y y y y ==''''-+===.解: 21090r r -+=对应齐次方程通解为 912e e x x y c c =+令*2e x y A =,代入原方程求得 17A =-则原方程通解为 29121e e e 7x x xy c c =-++由初始条件可求得1211,22c c == 故所求特解为 9211(e e )e 27x x xy =+-.19. 求下列欧拉方程的通解:解:作变换e tx =,即t =ln x ,原方程变为 (1)0D D y Dy y -+-= 即 22d 0d y y t -=特征方程为 210r -=故 12121e e t t y c c c c x x -=+=+.23(2)4x y xy y x '''+-=.解:设e tx =,则原方程化为 232d 4e d ty y t -= ①特征方程为 240r -=故①所对应齐次方程的通解为又设*3e t y A =为①的特解,代入①化简得 15A =, *31e 5t y = 故 223223121211e e e .55t t t y c c c x c x x --=++=++。
高数习题作业
第六章 定积分的应用1.假设曲线21y x =-(01)x ≤≤,x 轴,y 轴所围区域被曲线2y ax =(0)a >分成面积相等的两部分,求a 的值.2.求双纽线2cos 2r θ=围成平面图形的面积.3.求圆22(2)1x y +-=围成的区域绕x 轴旋转而成的旋转体的体积.4.圆柱形水桶高10米,底面半径为3米,桶内盛满了水,问要把桶内的水全部抽完需做多少功?(取重力加速度10g =)5.一底为b ,高为h 的对称抛物线拱形闸门,其底平行于水面,距水面为h (即顶与水面齐)。
闸门垂直放在水中,求闸门所受的压力。
若底与高之和为常数,即b h l +=(为常数),问高和底各为多少时,闸所受的压力最大?参考答案习题61.3a =. 2.1. 3. 24π. 4.81.41310⨯焦耳. 5.23l h =,3l b =.第七章 常微分方程习题72- 一阶微分方程的常见类型及解法1.解下列微分方程的通解: (1)233d d 22d d y y xy x y x x-=;(2)2()d d 0xy x e x x y -+-=.2.若连续函数()f x 满足20()d ln 22xt f x f t ⎛⎫=+ ⎪⎝⎭⎰,求()f x .3.设曲线L 位于xOy 平面的第一象限内,L 上任意一点M 处的切线与y 轴总相交,交点记为A ,已知MA OA =,且L 过点33,22⎛⎫⎪⎝⎭,求L 的方程.习题73- 二阶线性微分方程理论及解法设函数()f x 二阶可导,()f x '是()2()xf x f x e '++的一个原函数,且(0)0f =,(0)1f '=,求()f x .习题74- 其它若干类型的高阶微分方程及解法1.求解下列初值问题:()20012,1, 3.x x x y xy y y ==⎧'''+=⎪⎨'==⎪⎩2.求微分方程22yy y '''=的通解.参考答案习题72-1. (1)22y x y Ce =; (2)()x y x e C -=-+.2.2()ln 2xf x e =. 3.2213y x x ⎛⎫+= ⎪⎝⎭或23y x x =-()03x <<习题73-2121()632x x x f x e e e -=-+-.习题74-1.331y x x =++. 2.121y C x C =-+.第八章 向量与空间解析几何习题81- 向量及其线性运算1.已知两点(B 和()1,3,0A .求(1)AB 的模; (2)与AB 平行的单位向量; (3)AB 的方向角.2.已知向量α的两个方向余弦为2cos 7α=,3cos 7β=,且α与z 轴的方向角为钝角,求cos γ.3.已知5xi j k α=+-,3i j zk β=++,且α∥β,求,x z .习题82- 向量的乘积1.设32a i j k =--,2b i j k =+-,求(1)a b ⋅及a b ⨯; (2)(2)(3)a b -⋅及2a b ⨯;(3)a 与b 夹角的余弦; (4)以a ,b 为邻边的平行四边形面积; (5)既垂直于a 又垂直于b 的一个向量; (6)()a b a ⋅⨯.2.设,,a b c 均为单位向量,且满足0a b c ++=,求a b b c c a ⋅+⋅+⋅.习题83- 空间曲面1.求以点(3,2,1)A 为球心,且与平面2318x y z +-=相切的球面方程.2.一平面过原点且平行于向量2i k α=+和3b i j k =-+,求此平面方程.3.已知曲线22,0,y z x ⎧=⎨=⎩求此曲线分别绕y 轴、z 轴旋转而成的旋转曲面方程.4.求平面2250x y z -++=与各坐标面间夹角的余弦.5.一平面过两点1(1,1,1)P 和2(0,1,1)P -且垂直于平面0x y z ++=,求它的方程.习题84- 空间曲线1.求过点(1,1,1)且平行于直线43,251x z x y z -=⎧⎨--=⎩的直线方程.2.求直线11111x y z --==-在平面210x y z -+-=上的投影直线方程.3.一直线L 过点(1,2,1)A ,与直线211z x y ==-相交,且垂直于直线11321x y z -+==,求直线L 的方程. 解:设所求直线与211x y z==-的交点为000(2,,)B t t t -,则 {}{}00021,2,13,2,1AB t t t =----⊥则 0003(21)2(2)(1)0t t t -+-+--= 解得 087t =, 所以直线L 的方向向量9615,,777AB ⎧⎫=--⎨⎬⎩⎭故直线L 的方程为:1219615777x y z ---==--, 即 121325x y z ---==--4.求曲面2222x y z ++=和22z x y =+的交线在xOy 面上投影柱面和投影曲线的方程,并作图.参考答案习题81-1.(1)2; (2)11,,222⎧⎪±-⎨⎪⎪⎩⎭; (3)6πα=;23πβ=;4πγ=. 2.67-. 3. 115,5x z ==-.习题82-1.(1)3,57i j k ++; (2)18-,10214i j k ++; (3; (4); (5)57i j k ++; (6)0. 2.32-.习题83-1.222(3)(2)(1)14x y z -+-+-=.2.250x y z +-=.3. 2y =4224()y x z =+,222x y z +=.4. 122,,333. 5.20x y z --=.习题84-1.111431x y z---==,或430,2540.x zx y z-+=⎧⎨--+=⎩2.3210210x y zx y z--+=⎧⎨-+-=⎩,或21421x y z--==-.3.121325x y z---==-,或{0,3280.x y zx y z-+=++-=4.221x y+=,221,0.x yz⎧+=⎨=⎩.第九章 多元函数微分学习题92- 二元函数的极限与连续性1.求下列函数的极限:(1)00x y →→; (2)1tan()0lim(1)(0)xy x y a x a →→+≠.2.验证下列极限不存在:(1)24200lim x y x y x y →→+. (2)2222200lim .(2)x y x y x y x y →→+++3.下列函数在何处间断: (1)z = (2)212z y x=-.习题93,4- 偏导数与全微分1.求下列函数的偏导数:(1)z x y =+ (2)arctan()zu x y =-.2.已知2(,)(2)f x y y x =+-(2,)y f y .3.设ln xz y =,求,.xx xy z z ''''4.验证函数y xz xy xe =+满足方程z zx y xy z x y∂∂+=+∂∂.5.求下列函数的全微分: (1)arctan x yz x y+=-;(2)()22ln z u x y e =-+.习题95- 多元复合函数的求导法则1. 设sin(23)z u v =+,u xy =,22v x y =+,求,z z x y∂∂∂∂.2. 设,kz y u x F x x ⎛⎫=⎪⎝⎭,k 为常数,F 具有一阶连续的偏导数,证明: u u u x y z ku x y z∂∂∂++=∂∂∂.3. 设,x y z f xy g y x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,其中f 具有二阶连续偏导数,g 具有二阶连续导数,求22z x ∂∂.4.设()22yz f x y =-,其中f 可微,求 11x y z z x y ''+.5.设变换2,u x y v x ay =-⎧⎨=+⎩可把方程2222260z z z x x y y ∂∂∂+-=∂∂∂∂简化为20z u v ∂=∂∂,其中z 的二阶偏导连续,求常数a .习题96- 隐函数的微分法1.设z 是由方程zx y z e +-=所确定的x 与y 的隐函数,求2zx y∂∂∂.2.设F 是任意可微函数,证明:由方程()222ax by cz F x y z ++=++所确定的隐函数满足等式()()z zcy bz az cx bx ay x y∂∂-+-=-∂∂.3.设(,)z u v ϕ=,ϕ具有一阶连续的偏导数,且,u v 是由方程组cos ,sin u ux e v y e v ⎧=⎨=⎩确定的,x y 的函数,求zx∂∂.4.设(,),(,)u u x y v v x y =⎧⎨=⎩是由方程组220,0u v x u v y ⎧-+=⎨+-=⎩确定的,x y 的隐函数,求,u vx y ∂∂∂∂.5.设(,)y g x z =,而z 是由方程(,)0f x z xy -=确定的,x y 的函数,其中,g f 一阶偏导连续,1220f x f g '''-≠,求d d z x.习题97- 方向导数和梯度1.求x yz xe =在0(2,0)M -点沿0M 到1(1,3)M -方向的方向导数.2.设(,)z f x y =在点0(2,0)P 可微,且在该点处指向1(2,2)P -的方向导数为1,指向原点的方向导数为3-,求指向2(4,2)P 的方向导数.3. 求函数(,)y xf x y e =在0(1,2)M 处的梯度.4.设222222(,,)x y z u x y z a b c=++,问(,,)u x y z 在点(,,)x y z 处朝何方向的方向导数最大?并求该方向的方向导数.习题99- 多元函数的极值1.求函数22(2)xz e x y y =++的极值.2.求函数(4)z xy x y =--在0x =,0y =及6x y +=围成的区域上的最大值及最小值.3.从斜边长为l 的直角三角形中求有最大周长的直角三角形.4.作一个长方体的箱子,其容积为39/2m .箱子的盖及侧面造价均为每平方米8元,箱底造价均为每平方米1元,试求造价最低的箱子尺寸.5.抛物面22z x y =+被平面1x y z ++=截成一椭圆,求原点到这椭圆的最长及最短距离.习题910- 多元函数微分学的几何应用1.求曲线22223418,241x y z x y z ⎧++=⎨+-=⎩在点(1,2,1)处的切线及法平面方程.2.在曲面z xy =上求一点,使该点处的法线垂直于平面30x y z ++=,并写出这法线的方程.解:设(,,)x y z 为曲面z xy =上任一点,则曲面在该点的法向量{},,1y x =-n ,由题意13,1131y x x y -==⇒=-=-,故(,,)(3,1,3)x y z =--,{}1,3,1=---n 则所求法线的方程为313131x y z ++-==---3.证明:曲面3(0)xyz a a =>上任一点的切平面与三个坐标轴所围成的四面体的体积为一个定值.4. 设直线0,:30x y b l x ay z ++=⎧⎨+--=⎩在平面π上,而平面π与曲面22z x y =+相切于点(1,2,5)-,求,a b 的值.参考答案习题92-1.(1)2; (2)1ae . 3.(1)(0,0); (2){}2(,)2x y y x =.习题93,4-1.(1)1z x ∂=∂,1z y ∂=∂; (2)12()1()z z u z x y x x y -∂-=∂+-,12()1()z z u z x y y x y -∂-=-∂+-,2ln ()1()zz x y x y u z x y -⋅-∂=∂+-. 2.(2,)2y f y y =. 3.()()ln ln 1211ln ln 1,ln ln 1xx xx xyz yy y z y x y x x-''''=⋅-=+. 5.(1)22ydx xdydz x y-+=+; (2)2222z z xdx ydy e dz du x y e -+=-+ .习题95-1.2(3)cos(23)zy x u v x∂=++∂,2(3)cos(23)z x y u v y ∂=++∂.3.22111222234122y y y f f f g g y x x '''''''''++++. 4. 1yf. 5. 3习题96-1.3(+1)z z e e -. 3.(cos sin )u u v ze v v xϕϕ-∂=-∂. 4.241u vx uv ∂=-∂+,241u u y uv ∂=∂+. 5.1221122d d f yf xf g z x f x f g ''''++='''-.习题97-123.{}222,e e -. 4.梯度方向,习题99-1.极小值1,122e z ⎛⎫-=- ⎪⎝⎭. 2.最大值为4464(,)3327f =,最小值为(3,3)18f =-. 34.长,宽,高分别为92,2,8. 5.d =习题910-1.切线方程为:1211661x y z ---==-,法平面方程为1665x y z -+=. 2.313131x y z ++-==. 4. 5, 2.a b =-=-第十章 重积分习题102(1)- 利用直角坐标系计算二重积分1.计算下列二重积分: (1)sin()d Dx y σ+⎰⎰,D 是由0y =,y x =及x π=围成的三角形区域;(2)22d Dy x y σ+⎰⎰,D 是由2y x =,y x =及3y =围成的区域;(3)cos()d Dx y σ+⎰⎰,D 是由0x =,2x π=及0y =,2y π=围成的正方形区域.2.计算下列二重积分,必要时交换积分次序: (1)220d d y yxy x xππ⎰; (2)2d d a ay xx e y ⎰⎰.3.交换下列积分次序: (1)ln 1d (,)d ex x f x y y ⎰⎰;(2)222614d (,)d x x x f x y y ---⎰⎰.习题102(2)- 利用极坐标系计算二重积分1.利用极坐标系计算下列二重积分: (1)22d Dxy x y σ+⎰⎰,D :y x ≥,2212x y ≤+≤; (2)d Dxy σ⎰⎰,D :222x y x +≤.2.求由曲面22z x =-,222z x y =+所围成的立体的体积.3.求221d d Dxyx y x y --⎰⎰,D 是由221x y +≤,0x ≥及0y ≥围成的区域;习题103- 三重积分的计算1.计算下列三重积分: (1)d yz v Ω⎰⎰⎰,其中Ω是由0,,1z z x x ===及抛物柱面2y x =所围成的闭区域; (2)222d x y z v Ω++⎰⎰⎰,其中Ω是由曲面222x y z z ++=所围成的立体区域;(3)d z v Ω⎰⎰⎰,其中Ω是由球面224z x y =--与抛物面()2213z x y =+所围成的立体区域.2.求曲面222x y ax +=,z x α=,z x β=(0αβ>>,0a >)所围成的立体体积.习题104- 重积分的应用1. 求由曲面222z x y =--,22z x y =+所围成的立体的表面积.2.设物体占有的空间区域为球面2221x y z ++=及三个坐标面在第一卦限内的部分,点(,,)x y z 处的体密度为(,,)x y z xyz ρ=,求物体的质量.3.在某一生产过程中,要在半径为R 半圆形均匀薄板的直径边上接一个边长与此直径等长的相同材料的均匀矩形薄板,使整个平板的重心落在圆心上,试求此矩形另一边的长度.4.求由292y x =和2x =围成的均匀薄片对x 轴及y 轴的转动惯量(设面密度为ρ).参考答案习题102(1)-1(1)0; (21ln 22-; (3)2π-. 2.(1)1; (2)21(1)2a e -.3.(1)1(,)ye e dyf x y dx ⎰⎰; (2)0821(,)(,)y dy f x y dx dy f x y dx ----+⎰⎰⎰⎰.习题102(2)-1.(1)0; (2)43. 2.π. 3.115.习题103-1.(1)0; (2)10π; (3)134π. 2.3()a παβ-.习题104-1.2(21)6ππ+. 2.148. 3 4. 725x I ρ=,967y I ρ=.。
高中数学第六章立体几何初步6.直观图作业含解析北师大版第二册
§2直观图(20分钟35分)1.如图,△A′B′C′是△ABC的直观图,其中A′B′=A′C′,那么△ABC 是()A.等腰三角形B。
直角三角形C.等腰直角三角形D.钝角三角形【解析】选B。
因为A′B′∥x′轴,A′C′∥y′轴,所以AB⊥AC.又AC=2A′C′=2AB,所以△ABC是直角三角形,不是等腰三角形.2.如图所示是水平放置的三角形的直观图,D′是△A′B′C′中B′C′边的中点,且A′D′平行于y′轴,那么A′B′,A′D′,A′C′三条线段对应原图形中的线段AB,AD,AC中()A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC。
最长的是AB,最短的是ADD.最长的是AD,最短的是AC【解析】选C.因为A′D′∥y′轴,所以在△ABC中,AD⊥BC,又因为D′是B′C′的中点,所以D是BC中点,所以AB=AC〉AD。
3。
如图,一个水平放置的图形的直观图是一个等腰直角三角形OAB,斜边长OB=1,那么原平面图形的面积是()A.2B.C。
D.【解析】选B.因为OB=1,△OAB为等腰直角三角形,所以OA=,点A在原平面图形中的对应点为A′,据斜二测画法可知,在原系中点A′在y′轴上,且O′A′=,故原三角形的面积为.4.水平放置的△ABC的直观图如图所示,已知A′C′=3,B′C′=2,则AB边上的中线的实际长度为________.【解析】由直观图知,原平面图形为直角三角形,且AC=A′C′=3,BC=2B′C′=4,计算得AB=5,所求中线长为2.5.答案:2.55。
有一个长为5 cm,宽为4 cm的矩形,则其直观图的面积为________ cm2。
【解析】该矩形的面积S=5×4=20( cm2),由平面图形的面积与直观图的面积间的关系,可得直观图的面积S′=S=5( cm2).答案:56.按如图的建系方法,画水平放置的五边形ABCDE的直观图。
【解析】画法:(1)在图①中作AG⊥x轴于点G,作DH⊥x轴于点H;(2)在图②中画相应的x′轴与y′轴,两轴相交于O′,使∠x′O′y′=45°;(3)在图②中的x′轴上取O′B′=OB,O′G′=OG,O′C′=OC,O′H′=OH,y′轴上取O′E′=OE,分别过G′和H′作y′轴的平行线,并在相应的平行线上取G′A′=GA,H′D′=HD;(4)连接A′B′,A′E′,E′D′,D′C′,并擦去辅助线G′A′,H′D′,x′轴与y′轴,点O′,便得到水平放置的五边形ABCDE的直观图A′B′C′D′E′(如图③).(30分钟60分)一、单选题(每小题5分,共20分)1。
高数习题第六章习题黄立宏第4版
习题6-11.指出下列各微分方程的阶数:(1)()220x y yy x '-'+=;一阶 (2) 20y x y y x "-'+=;二阶 (3)220x y y x y '''+"+=;三阶(4)()()76d d 0x y x x y y -++=. 一阶2.指出下列各题中的函数是否为所给微分方程的解:2(1)2,5xy y y x '==;解:由25y x =得10y x '=代入方程得22102510x x x x ⋅=⋅=故是方程的解.(2)0,3sin 4cos y y y x x ''+==-;解:3cos 4sin ;3sin 4cos y x x y x x '''=+=-+ 代入方程得 3sin 4cos 3sin 4cos 0x x x x -++-=. 故是方程的解.2(3)20,e x y y y y x '''-+== ;解:2222e e (2)e ,(24)e xxxxy x x x x y x x '''=+=+=++代入方程得 2e 0x≠. 故不是方程的解.12121212(4)()0,e e .x x y y y y C C λλλλλλ'''-++==+解:12122211221122e e ,e e xx x x y C C y C C λλλλλλλλ'''=+=+代入方程得1212122211221211221212e e ()(e e )(e e )0.x x x x x x C C C C C C λλλλλλλλλλλλλλ+-++++=故是方程的解.3.在下列各题中,验证所给函数(隐函数)为所给微分方程的解:22(1)(2)2,;x y y x y x xy y C '-=--+=证:方程22x xy y C -+=两端对x 求导:220x y xy yy ''--+=得22x yy x y-'=-代入微分方程,等式恒成立.故是微分方程的解.2(2)()20,ln().xy x y xy yy y y xy '''''-++-==证:方程ln()y xy =两端对x 求导:11y y x y''=+ (*) 得(1)yy x y '=-.(*)式两端对x 再求导得22211(1)1y y xx y y ⎡⎤''+=-⎢⎥--⎣⎦ 将,y y '''代入到微分方程,等式恒成立,故是微分方程的解.习题6-21.从下列各题中的曲线族里,找出满足所给的初始条件的曲线: (1) 220()x x y C C y =-==为常数,5;解:当0x =时,y =5.故C =-25故所求曲线为:2225y x -= (2) =+2e 12()x y C C x (12,C C 为常数),====,100'x x yy .解: 2212(22)e xy C C C x '=++当x =0时,y =0故有10C =. 又当x =0时,1y '=.故有21C =. 故所求曲线为:2e xy x =. 2.求下列各微分方程的通解:(1)ln 0xy y y '-=;解:分离变量,得d 1d ln y x y y x=积分得11d ln d ln y x y x =⎰⎰ln ln ln ln y x c =+ ln y cx =得 e cxy =.(2)y '=解:分离变量,得=积分得=⎰得通解: .c -=-(3)(e e )d (e e )d 0x y x x y y x y ++-++=;解:分离变量,得e e d d 1e 1e y yy xy x =-+ 积分得 ln(e 1)ln(e 1)ln yxc --=+- 得通解为 (e 1)(e 1)xy c +-=.(4)cos sin d sin cos d 0x y x x y y +=;解:分离变量,得cos cos d d 0sin sin x yx y x y+= 积分得 lnsin lnsin ln y x c += 得通解为 sin sin .y x c ⋅=(5)y xy '=;解:分离变量,得d d yx x y=积分得 211ln 2y x c =+ 得通解为 2112e (e )x c y c c ==(6)210x y '++=;解: 21y x '=--积分得 (21)d y x x =--⎰得通解为 2y x x c =--+.32(7)4230x x y y '+-=;解:分离变量,得 233d (42)d y y x x x =+积分得 342y x x c =++ 即为通解.(8)e x y y +'=.解:分离变量,得 e d e d yxy x -=积分得e d e d y x y x -=⎰⎰ 得通解为: ee y x c --=+.3.求下列各微分方程满足所给初始条件的特解:20(1)e ,0x y x y y -='== ;解:分离变量,得 2e d e d yxy x =积分得 21e e 2yxc =+. 以0,0x y ==代入上式得12c =故方程特解为 21e (e 1)2yx =+.π2(2)sin ln ,e x y x y y y ='== .解:分离变量,得d d ln sin y xy y x=积分得 tan2e x c y ⋅=将π,e 2x y ==代入上式得1c = 故所求特解为 tan 2e x y =.4.求下列齐次方程的通解:(1)0xy y '-=;解:d d y y x x =+令 d d d d y y uu u xx x x=⇒=+ 原方程变为d xx= 两端积分得ln(ln ln u x c =+u cxy cx x =+=即通解为:2y cx =d (2)ln d y y xy x x =; 解:d ln d y y y x x x =令y u x =, 则d d d d y u u x x x=+原方程变为d d (ln 1)u xu u x=-积分得 ln(ln 1)ln ln u x c -=+ln 1ln1u cx ycx x-=-= 即方程通解为 1ecx y x +=22(3)()d d 0x y x xy x +-=解:2221d d y y x y x y x xyx⎛⎫+ ⎪+⎝⎭== 令y u x =, 则d d d d y u u x x x=+ 原方程变为 2d 1d u u u x x u++= 即 d 1d ,d d u x x u u x u x== 积分得211ln ln 2u x c =+ 2122ln 2ln y x c x =+ 故方程通解为 22221ln()()y x cx c c ==332(4)()d 3d 0x y x xy y +-=;解: 333221d d 33y y x y x x xy y x ⎛⎫+ ⎪+⎝⎭==⎛⎫ ⎪⎝⎭令y u x =, 则d d d d y u u x x x=+ 原方程变为 32d 1d 3u u u x x u ++= 即 233d d 12u x u u x=- 积分得 311ln(21)ln ln 2u x c --=+ 以y x代替u ,并整理得方程通解为 332y x cx -=. d (5)d y x y x x y+=-;解:1d d 1yy x yx x +=- 令y u x =, 则d d d d y u u x x x=+原方程变为 d 1d 1u uu x x u ++=- 分离变量,得 211d d 1u u x u x -=+ 积分得 211arctan ln(1)ln ln 2u u x c -+=+以y x 代替u ,并整理得方程通解为到 2arctan 22211e .()yxx y c c c +==(6)y '=解:d d yy x=即d d x x y y =+令x v y =, 则d d ,d d x v x yv v y y y==+, 原方程可变为d d vv yv y+=+ 即d d vyy= 分离变量,得d y y= 积分得ln(ln ln v y c =-. 即y v c+=2222121y v v c y yv c c⎛⎫=+- ⎪⎝⎭-= 以yv x =代入上式,得 222c y c x ⎛⎫=+ ⎪⎝⎭即方程通解为 222y cx c =+.5.求下列各齐次方程满足所给初始条件的特解:220(1)(3)d 2d 0,1x y x y xy x y =-+== ;解:22d d 3y y xx y x =-⎛⎫- ⎪⎝⎭令y ux =,则得 2d 2d 3u uu xx u +=-- 分离变量,得 233d d u xu u u x-=- 积分得 3ln ln(1)ln(1)ln u u u cx -+-++=即 231ln ln u c u x-=得方程通解为 223y x cy -= 以x =0,y =1代入上式得c =1. 故所求特解为 223y x y -=.1(2),2x x yy y y x='=+= . 解:设y ux =, 则d d d d y u u x x x=+ 原方程可变为 d d xu u x=积分得 21ln ln 2u x c =+.得方程通解为 222(ln ln )y x x c =+以x =1,y =2代入上式得c =e 2.故所求特解为 222(ln 2)y x x =+.6.利用适当的变换化下列方程为齐次方程,并求出通解: 利用适当的变换化下列方程为齐次方程,并求出通解:(1)(253)d (246)d 0x y x x y y -+-+-=解:设1,1x X y Y =+=+,则原方程化为25d 25d 2424YY X Y X YX X Y X--==++ 令 d 25d 24Y u uu u X X X u-=⇒+=+ 242d d 472Xu Xu u u +⇒-=+- 2222211(87)3ln d 247213d ln(472)224721114ln(472)d 262411141ln(472)ln ln 262u X u u u uu u u u u u uu u u u u c u +-⇒=-+-=-+-++-⎛⎫=-+-+-+ ⎪+-⎝⎭-=-+--++⎰⎰⎰26221623264223233416ln 3ln(472)ln ln ()241(472)2(41)(2)(41)(2),(u X u u c c c u u X u u c u X u u c X u u c c -⇒++-+==+-⇒+-⋅=+⇒-+=⇒-+==代回并整理得2(43)(23),(y x y x c c --+-== .(2)(1)d (41)d 0;x y x y x y --++-=解:d 1d 41y x y x y x --=-+- 作变量替换,令 1,0x X y Y Y =+=+=原方程化为 1d d 414YY X Y X Y X X Y X--=-=-++ 令Y uX =,则得2d 1d 14d 14d 14u u u u u X X X u X u-++=-⇒=-++分离变量,得 214d d 14u Xu u x+-=+ 积分得222211d(14)ln d 1421411arctan 2ln(14)22u X u u u u u c +=--++=-++⎰⎰ 即 22ln ln(14)arctan 2X u u c +++=22ln (14)arctan 2X u u c ⇒++=代回并整理得 222ln[4(1)]arctan.1yy x c x +-+=- (3)()d (334)d 0x y x x y y +++-=;解:作变量替换,v x y =+ 则d d 1d d y v x x =- 原方程化为 d 1d 34v vx v -=-- 11d 2(2)d 3434d d 2(2)31d d d 223ln(2)232ln(2)2,(2)v v x v v v x v v v xv v v x c v v x c c c -⇒=--⇒=-⇒+=-⇒+-=+⇒+-=+=⎰⎰⎰ 代回并整理得 32ln(2).x y x y c +++-=d 1(4)1d y x x y=+-.解:令,u x y =- 则d d 1d d u y x x =- 原方程可化为 d 1d u x u=-分离变量,得 d d u u x =-积分得 2112u x c =-+2122u x c =-+故原方程通解为 21()2.(2)x y x c c c -=-+=7.求下列线性微分方程的通解:(1)e x y y -'+=;解:由通解公式d de e e e d e ()e e d xx x x x x x y x c x c x c -----⎰⎡⎤⎰⎡⎤==⋅+=+⋅+⎢⎥⎣⎦⎣⎦⎰⎰ 2(2)32xy y x x '+=++;解:方程可化为 123y y x x x'+=++ 由通解公式得11d d 22e (3) e d 12(3)d 132.32x x x x y x x c x x x x c x x c x x x-⎡⎤⎰⎰=++⋅+⎢⎥⎣⎦⎡⎤=++⋅+⎢⎥⎣⎦=+++⎰⎰ sin (3)cos e ;x y y x -'+=解: cos d cos d sin sin e e ().e e d x xx x x x y x c x c ---⎰⎡⎤⎰==+⋅+⎢⎥⎣⎦⎰(4)44y xy x '=+;解: 22(4)d (4)d 22e e 4e d 4e d x xx x x x y x x c x x c ----⎰⎡⎤⎰⎡⎤==++⎢⎥⎣⎦⎣⎦⎰⎰()222222e e e 1x x x c c -=-+=-.3(5)(2)2(2)x y y x '-=+-;解:方程可化为2d 12()d 2y y x x x x -=--11d d 222ln(2)2ln(2)3e 2(2)e d e 2(2)e d (2)2(2)d (2)(2)xx x x x x y x x c x x c x x x c x c x --------⎰⎡⎤⎰=-+⎢⎥⎣⎦⎡⎤=-+⎣⎦⎡⎤=--+⎣⎦=-+-⎰⎰⎰22(6)(1)24.x y xy x '++=解:方程可化为 2222411x x y y x x '+=++ 222222d d 1123ln(1)224e ed 14e 4d 3(1)xxx x x x x x y x c x x c x x c x -++-+⎡⎤⎰⎰=+⎢⎥+⎣⎦+⎡⎤=+=⎣⎦+⎰⎰8.求下列线性微分方程满足所给初始条件的特解:πd 11(1)sin ,1d x y y x y x x x=+== ; 解: 11d d 11sin e sin d [cos ]e d x x x x x y x x c c x x c x x x -⎡⎤⎰⎰⎡⎤==+=-+⎢⎥⎣⎦⎣⎦⎰⎰ 以π,1x y ==代入上式得π1c =-, 故所求特解为 1(π1cos )y x x=--. 2311(2)(23)1,0x y x y y x='+-== . 解:22323d 3ln x x x x c x--=--+⎰ 22223323d 23+3ln d 3ln ee e d e d x xx x x x x xx xy x c x c -------⎰⎡⎤⎰⎡⎤∴==++⎢⎥⎣⎦⎣⎦⎰⎰ 2223311e .e e 22x x x x x c c ----⎛⎫⎛⎫=⋅=++ ⎪ ⎪⎝⎭⎝⎭以x =1,y =0代入上式,得12ec =-. 故所求特解为 2311e 22e x y x -⎛⎫=-⎪⎝⎭. 9.求下列伯努利方程的通解:2(1)(cos sin );y y y x x '+=-解:令121z yy --==,则有d d (12)(12)(cos sin )sin cos d d z zz x x z x x x x+-=--⇒-=- (1)d (1)d e (sin cos )e d e e (sin cos )d e sin xx x x x z x x x c x x x c c x ----⎰⎡⎤⎰=-+⎢⎥⎣⎦⎡⎤=-+=-⎣⎦⎰⎰1e sin x c x y⇒=- 即为原方程通解.411(2)(12)33y y x y '+=-.解:令3d 21d z z y z x x -=⇒-=-.d de 21e (21)e d x x x z x c x x c -⎰⎡⎤⎰==--+-+⎢⎥⎣⎦⎰ 3(e 21)1x y c x ⇒--=即为原方程通解.习题6-31.求下列各微分方程的通解:(1)sin y x x ''=+;解:方程两边连续积分两次得213121cos 21sin 6y x x c y x x c x c '=-+=-++(2)e x y x '''=;解:积分得 1e d e e x x xy x x x c ''==-+⎰112212123(e e )d e 2e 1(e 2e )d (3)e 2x x x x xxxy x c x x c x c y x c x c x x c x c x c '=-+=-++=-++=--++⎰⎰ (3)y y x '''=+;解:令p y '=,则原方程变为d d 11,,e e 1e d xx x p p x p p x p c x x x c -⎰⎡⎤⎰''=+-===--+⎣⎦故 21121(e 1)d e 2x xy c x x c x x c =--=--+⎰.3(4)()y y y ''''=+;解:设y p '=, 则d d p y py''= 原方程可化为 3d d ppp p y=+ 即 2d (1)0d pp p y ⎡⎤-+=⎢⎥⎣⎦由p =0知y =c ,这是原方程的一个解. 当0p ≠时,22d d 1d d 1p p p y y p =+⇒=+ 1121arctan d ln sin()tan()p y c yx y c c y c ⇒=-'⇒==---⎰2212arcsin(e )(e )c x y c c c '∴=+=1(5);y x ''=解:11d ln y x c x x''==+⎰ 1121211(ln )d ln ln ((1))y c x x x c x c x x x c x c c c x ''=+=-++'=++=-+⎰(6)y ''=;解:1arcsin y x x c '==+112(arcsin )d arcsin .y x c x x x c x c =+=+⎰ (7)0xy y '''+=;解:令y p '=,则得1d d 00p x p p x p x'+=⇒+= 1ln ln ln p x c ⇒+=得 1c p x =故 112d ln cy x c c x x==+⎰.3(8)10y y ''-=.解:令p y '=,则d d p y py''=. 原方程可化为 33d 10,d d d py pp p y y y--==22221112221211211222d d 221().c p y p y c x xc x c c x c c y c x c --⇒=-+⇒=-+⇒=⇒±=⇒±=+⇒=+⇒-=+⎰2.求下列各微分方程满足所给初始条件的特解:311(1)10,1,0x x y y y y =='''+===;解:令y p '=,则d d py py''=, 原方程可化为 33d 11d d d p y pp p y y y⋅=-⇒=- 2212121112221p y c p c y -⇒=+⇒=+由1,1,0x y y p '====知,11c =-,从而有2d y p y x x c '==⇒=±⇒=±+由1,1x y ==,得21c =故 222x y x += 或y =.211(2)1,0,1x x x y xy y y ==''''+===;解:令y p '=,则y p '''=.原方程可化为 211p p x x'+= 11d d 11211e (ln )e d x x x x p x c x c x x -⎡⎤⎰⎰==++⎢⎥⎣⎦⎰则 11(ln )y x c x'=+ 以1,1x y '==代入上式得11c =则 1(ln 1)y x x'=+ 221ln ln 2y x x c =++当x =1时,y =0代入得20c =故所求特解为 21ln ln 2y x x =+. 2001(3),01x x y y y x =='''===+; 解:1arctan y x c '=+ 当0,0x y '==,得10c =222arctan d arctan d 11arctan ln(1)2x y x x x x x x x x x c ==-+=-++⎰⎰以x =0,y =0代入上式得20c =故所求特解为 21arctan ln(1)2y x x x =-+. 200(4)1,1,0x x y y y y ==''''=+==;解:令p y '=,则p y '''=. 原方程可化为 21p p '=+211d d 1arctan tan()px p p x c y p x c =+=+'==+ 以0,0x y '==代入上式得1πc k =.2tan(π)d ln cos(π)y x k x c x k =+=-++⎰以x =0,y =1代入上式得21c = 故所求特解为ln 1cos(π)y x k =-++200(5)e ,0y x x y y y =='''===;解:令y p '=,则d d p y py''=. 原方程可化为 2d e d y ppy= 即 2d e d yp p y = 积分得221111e 222y p c =+ 221e y p c =+以0,0x y y '===代入上式得11c =-, 则p y '==2d arcsine y xx c -=±=+以x =0,y =0代入得2π2c =, 故所求特解为 πarcsin e 2yx -=+即πesin cos 2yx x -⎛⎫==± ⎪⎝⎭. 即lnsec y x =. 00(6)1,2x x y y y =='''===.解:令d ,d py p y py'''== 原方程可化为 12d 3d pp y y= 123221d 3d 122p p y yp y c ==+以0,2,1x y p y '====代入得10c = 故 342y p y'==± 由于0y ''=>. 故342y y '=,即34d 2d y x y=积分得 14242y x c =+ 以x =0,y =1代入得24c =故所求特解为 4112y x ⎛⎫=+ ⎪⎝⎭.习题6-41. 验证21=x y e 及22=x y xe 都是方程24(42)0'''-+-=y xy x y 的解,并写出该方程的通解. 2.已知函数123sin ,?cos ,===x y x y x y e 都是某二阶线性非齐方程的解,求该方程的通解. *3.用观察法求下列方程的一个非零特解,用刘维尔公式求第二个特解,然后写出通解. (1)2(1)220'''+-+=x y xy y (2)(1)0'''-++=xy x y y 4.求方程221111'''+-=---x y y x x x 的通解.习题6-51.求下列微分方程的通解:(1)20y y y '''+-=;解:特征方程为 220r r +-= 解得 121,2r r ==-故原方程通解为 212e e .x xy c c -=+(2)0y y ''+=;解:特征方程为 210r += 解得 1,2r i =± 故原方程通解为 12cos sin y c x c x =+22d d (3)420250d d x xx t t-+=;解:特征方程为 2420250r r -+= 解得 1252r r == 故原方程通解为 5212()e t x c c t =+.(4)450y y y '''-+=;解:特征方程为 2450r r -+= 解得 1,22r i =±故原方程通解为 212e (cos sin )xy c x c x =+.(5)440y y y '''++=;解:特征方程为 2440r r ++= 解得 122r r ==-故原方程通解为 212e ()xy c c x -=+(6)320y y y '''-+=.解:特征方程为 2320r r -+= 解得 1,2r r ==故原方程通解为 212e e x xy c c =+.2.求下列微分方程满足所给初始条件的特解:00(1)430,6,10x x y y y y y ==''''-+===;解:特征方程为 2430r r -+= 解得 121,3r r ==通解为 312e e x xy c c =+312e 3e x x y c c '=+由初始条件得 121122643102c c c c c c +==⎧⎧⇒⎨⎨+==⎩⎩ 故方程所求特解为 34e 2e xxy =+.00(2)440,2,0;x x y y y y y ==''''++===解:特征方程为 24410r r ++= 解得 1212r r ==-通解为 1212()ex y c c x -=+22121e 22xx y c c c -⎛⎫'=-- ⎪⎝⎭由初始条件得 11221221102c c c c c =⎧=⎧⎪⇒⎨⎨=-=⎩⎪⎩ 故方程所求特解为 12(2)ex y x -=+.00(3)4290,0,15;x x y y y y y ==''''++===解:特征方程为 24290r r ++= 解得 1,225r i =-±通解为 212e (cos5sin 5)xy c x c x -=+22112e [(52)cos5(52)sin 5]x y c c x c c x -'=-+--由初始条件得 112120052153c c c c c ==⎧⎧⇒⎨⎨-==⎩⎩ 故方程所求特解为 23e sin 5xy x -=.00(4)250,2,5x x y y y y =='''+===.解:特征方程为 2250r += 解得 1,25r i =± 通解为 12cos5sin 5y c x c x =+125sin 55cos5y c x c x '=-+由初始条件得 112222551c c c c ==⎧⎧⇒⎨⎨==⎩⎩故方程所求特解为 2cos5sin 5y x x =+. 3.求下列各微分方程的通解:(1)22e x y y y '''+-=;解: 2210r r +-=1211,2r r ∴=-=得相应齐次方程的通解为1212e e x xy c c -=+令特解为*e xy A =,代入原方程得2e e e 2e x x x x A A A +-=,解得1A =, 故*e xy =,故原方程通解为 212e ee x x xy c c -=++.2(2)25521y y x x '''+=--;解:2250r r +=1250,2r r ==-对应齐次方程通解为 5212ex y c c -=+令*2()y x ax bx c =++, 代入原方程得222(62)5(32)521ax b ax bx c x x ++++=--比较等式两边系数得137,,3525a b c ==-=则 *321373525y x x x =-+故方程所求通解为 532212137e3525x y c c x x x -⎛⎫=++-+ ⎪⎝⎭.(3)323e x y y y x -'''++=;解:2320r r ++=121,2r r =-=-,对应齐次方程通解为 212e e x xy c c --=+令*()e xy x Ax B -=+代入原方程得(22)e 3e x x Ax B A x --++=解得 3,32A B ==- 则 *23e 32xy x x -⎛⎫=-⎪⎝⎭故所求通解为 22123ee e 32xx xy c c x x ---⎛⎫=++- ⎪⎝⎭.(4)25e sin 2x y y y x '''-+=;解:2250r r -+=1,212r i =±相应齐次方程的通解为12e (cos 2sin 2)x y c x c x =+令*e (cos 2sin 2)xy x A x B x =+,代入原方程并整理得4cos24sin 2sin 2B x A x x -=得 1,04A B =-=则 *1e cos 24x y x x =-故所求通解为 121e (cos 2sin 2)e cos 24xx y c x c x x x =+-.(5)2y y y x '''++=;解:2210r r ++=1,21r =-相应齐次方程通解为 12()e xy c c x -=+令*y Ax B =+代入原方程得2A Ax B x ++=得 1,2A B ==- 则 *2y x =-故所求通解为 12()e 2xy c c x x -=++-2(6)44e x y y y '''-+=.解:2440r r -+=1,22r =对应齐次方程通解为 212()e xy c c x =+令*22e xy Ax =代入原方程得121,2A A ==故原方程通解为 222121()ee 2xx y c c x x =++. 习题6-61.求下列微分方程的通解: (1)(4)13360''-+=y y y(2)460'''''-++=y y y y(3)(4)56480''''''-++-=y y y y y (4)(5)(4)(3)220'''+++++=y y y y y y 2.求下列微分方程的通解: (1)45223''''''-+-=+y y y y x (2)(4)223''-+=-y y y x(3)33''''''+++=x y y y y e(4)cos '''-=y y x习题6-7*求下列欧拉方程的通解:(1)20x y x y y "+'-=; (2)234x y x y y x "+'-=. (3)323220x y x y xy y ''''''+-+=; (4)246x y xy y x '''-+=. (5) 322324x y x y xy x ''''''++=; (6)()24sin ln x y xy y x x '''-+=. 解:(1)作变换e tx =,即t =ln x ,原方程变为 (1)0D D y Dy y -+-=即 22d 0d yy t-= 特征方程为 210r -=121,1r r =-=故 12121e e t ty c c c c x x-=+=+. (2)设e tx =,则原方程化为3(1)4e t D D y Dy y -+-=232d 4e d t yy t-= ① 特征方程为 240r -=122,2r r =-=故①所对应齐次方程的通解为2212e e t t y c c -=+又设*3e ty A =为①的特解,代入①化简得941A A -= 15A =, *31e 5t y =故 223223121211e e e .55t t t y c c c x c x x --=++=++(3)(4)(5)(6)习题六1.填空题(1)微分方程3222(2)'=-x y y x y 满足(1)1=-y 的特解为 . (2)设()f x 为连续函数,且满足方程0()1(1)()d xf x x f t t =+-⎰,则()f x 的表达式为1()2x xe e -+ . (3)已知3222123,,x x x x xy e xe y e xe y xe =-=-=-是某二阶常系数非齐线性微分方程的3个解,则该方程的通解y = 3212x x xC e C e xe +- .(4)微分方程2ln xy y x x '+=满足1(1)9y =-的解为 . (5)二阶常系数非齐次线性微分方程21'''-+=y y y 的通解为y= 12()1xC C x e ++ .2.选择题(1)设曲线L 的方程为()=y y x ,在L 上任一点(,)P x y 处的切线与点P 到原点O 的连线垂直,若C 为任意正数,则L 的方程为(). A. =xy C B. 22-+=x xy y C C. 22-=x y C D. 22+=x y C(2)设微分方程20'''++=y y y ,则-=xy Cxe (其中C 为任意常数)(). A.是这个方程的通解 B.是这个方程的特解C.不是这个方程的解D.是这个方程的解,但既非它的通解也非它的特解(3)设线性无关的函数123,,y y y 都是二阶非齐次线性方程()()()'''++=y P x y Q x y f x 的解,12,C C 是任意常数则该非齐方程的通解是(). A. 11223++C y C y y B. 1122123()+-+C y C y C C y C. 1122123(1)+---C y C y C C y D. 1122123(1)++--C y C y C C y (4)微分方程34sin 2''+=+xy y exx x 的一个特解形式是(A ).A. []3()cos2()sin 2++++xAe x Bx C x Dx E x B. 3()cos 2()sin 2++++xAeBx C x Dx E xC. []3()cos2()sin 2++++xAxe x Bx C x Dx E xD. 3()cos 2()sin 2++++xAxeBx C x Dx E x(5)在下列微分方程中,以1123cos 2sin 2=++xy C e C x C x (123,,C C C 为任意常数)为通解的是().A. 440''''''+--=y y y yB. 440''''''+++=y y y yC. 440''''''--+=y y y yD. 440''''''-+-=y y y y 3.求解初值问题21()2,(1)1,(1) 1.''⎧+=⎨'==-⎩y yy y y4.设()=y y x 是微分方程2(32)6'''+=x y xy 的一个特解,且当0→x 时,()y x 是与1-xe 等价的无穷小量,求此特解. 5.求下列微分方程的通解: (1)coscos 0⎛⎫-+= ⎪⎝⎭y y x y dx x dy x x;(2)(2sin 3)(24sin 3)0-++--=x y dx x y dy ; (3)cos cos sin 2sin '=-yy y y x y;(4)3(1ln )0⎡⎤-++=⎣⎦xdy x xy x dx(5)322xy y y xe '''-+= (6)234ln '''-+=+x y xy y x x x .解:(5)由方程322xy y y xe '''-+=的特征方程2320λλ-+=解得特征根120,2,λλ==所以方程322x y y y xe '''-+=的通解为12.x xy C e C e =+设322xy y y xe '''-+=的特解为()xy x ax b e *=+,则()2(2)x y axax bx b e *'=+++,()2(422)x y ax ax bx a b e *''=++++.代入原方程,解得1,2a b =-=-,故特解为(2)xy x x e *=--,所以原方程的通解为 212(2)xxx y y y C e C ex x e *=+=+-+.6.在研究某种传染病在一孤立环境条件下传播时,把人群分成未感染者(健康人)和已感染者(病人)两类.当健康人与病人有效接触后受感染变成病人;病人治愈成为健康人后,健康人可再次被感染.设该环境下人群总人数为常数N ,假设:(I )在t 时刻健康人和病人数占总人数的比例分别为()S t 和()I t ;(II )在单位时间内,健康人受感染成为病人的人数为()()NS t I t λ;(III )在单位时间内,被治愈的病人数占病人总数的比例为常数μ.称λ为接触率,μ为治愈率,0λ>,0μ>.已知0(0)I I =.(1)试建立函数()I t 的微分方程(将()I t 视为t 的连续可微函数);(2)当时2μλ=,求解该方程,计算lim ()t I t →+∞,并说明此极限结果的实际意义.解:(1)有题意,在t 时刻,已感染的病人数为()NI t ,未感染者(健康人)人数为()NS t ,则有()()NI t NS t N +=,即()()1I t S t +=.则,[][]()()()()()N I t t I t NS t I t t NI t t λμ+∆-=∆-∆,因此()()()()dI t S t I t I t dtλμ=- 故所求模板为下面的微分方程的初值问题0()()(1())(),(0).dI t I t I t I t dtI I λμ⎧=--⎪⎨⎪=⎩ (2)当2μλ=时,方程为(1)dI I I dt λ=-+,分离变量可得111dI dt I I λ⎛⎫-=- ⎪+⎝⎭,故解得000()(1)t I I t I e I λ=+-,并且lim ()0t I t →+∞=.7.某海监船在执行任务中,发现正南方b 海里有一艘可疑船只往正东方向行驶.为探明可疑船只的行动目的,海监船立即开始跟踪可疑船只,在跟踪过程中,海监船航行方向始终指向可疑穿船只并保持二者距离不变.........,设以可疑船只初始位置为坐标原点建立坐标系. (1) 试写出海监船航行轨迹的微分方程及初始条件; (2)当海监船的航行方向与正东方向夹角为6π时,海监船行驶的路程为多少 海里?(3)求海监船航行轨迹方程. 解:(1)以可疑船只初始位置为坐标原点,正东方向为x 轴正向,正北方向为y 轴正向建立直角坐标系,则海盗船的起始位置为(0,)b .设(,)x y为海盗船运动轨迹的任意一点,由题意可知dy dx =(0)y b =. (2)当海盗船的运动方向与正东方向夹角为6π时。
高等数学 答案 (北大版) 第六章总练习题
高等数学答案 (北大版) 第六章总练习题一、选择题1.在数学分析中,微分学和积分学是一对重要的基本概念和方法。
下面关于微分学和积分学的说法,正确的是:– A. 微分学研究的是函数的导数,积分学研究的是函数的原函数– B. 微分学研究的是函数的原函数,积分学研究的是函数的导数– C. 微分学和积分学研究的对象不同,没有明确的对应关系– D. 微分学和积分学都研究的是函数的极限问题正确答案:A. 微分学研究的是函数的导数,积分学研究的是函数的原函数2.设函数f(x)在点x=a处可导,则下列函数必定在点x=a处连续的是:– A. f’(x)– B. f(x)^2– C. f(x)|x|– D. f(x)/x正确答案:A. f’(x)3.设函数f(x)在区间[a, b]上可导,在(a, b)上连续,下列说法中正确的是:– A. 在[a, b]上f(x)一定有最大值和最小值– B. 在(a, b)上f(x)一定有最大值和最小值– C. 在[a, b]上f(x)一定有最大值,但不一定有最小值– D. 在(a, b)上f(x)一定有最小值,但不一定有最大值正确答案:A. 在[a, b]上f(x)一定有最大值和最小值4.设函数f(x)在区间[a, b]上连续,在(a, b)内可导,且f’(a) = f’(b) = 0,则下列结论中正确的是:– A. 在(a, b)上f(x)一定有相对极大值和相对极小值– B. 在(a, b)上f(x)一定有相对极大值,但不一定有相对极小值– C. 在(a, b)上f(x)一定有相对极小值,但不一定有相对极大值– D. 在(a, b)上f(x)既不一定有相对极大值,也不一定有相对极小值正确答案:D. 在(a, b)上f(x)既不一定有相对极大值,也不一定有相对极小值5.设函数f(x)在点x=a处连续,且f’(x)存在,则下列结论中正确的是:– A. f’(x)在点x=a处必定连续– B. f’(x)在点x=a处不一定连续– C. f’(x)在点x=a处不连续– D. f’(x)在点x=a处不存在正确答案:B. f’(x)在点x=a处不一定连续二、填空题1.将方程dy/dx = x^2 - 3x的通解表示为y = _______ + C,其中C为任意常数。
华理高数答案第6章
***16.求
arctan(tan 2 x) sin 2 x cos 4 x sin 4 x dx
dx .
解:
arctan(tan 2 x) sin 2 x cos 4 x sin 4 x
arctan(tan 2 x)2 tan x sec 2 x dx 1 (tan 2 x) 2
***3.
x a x3
2
dx .
解:
2 dx 3 a 2 x3
x
d (x 2 ) a 2 (x 2 )2
3
3
2 x2 arcsin C. 3 a
3
**4.
1 x dx . 1 x 1 x 1 x dx dx 1 x 1 x2
解:
dx 1 x2
***11.
dx 1 ex
x
.
解: 设 1 e t . 则e t 1 e dx 2tdt
x
2xBiblioteka 原式 ln2t dt t 1 dt 2 2 ln C t (t 1) t 1 t 1
2
t 2 1 c x 2 ln 1 1 e x C . (t 1) 2
ln sin x d x .
cot x
d(ln sin x) cot x dx ln ln sin x C . ln sin x ln sin x
**13. 求
( x ln x)
3 2
1 ln x
3 2
dx. d( x ln x) ( x ln x)
3 2
解: