2017届中考数学复习专题练习20

合集下载

2017中考数学复习----二次函数综合题

2017中考数学复习----二次函数综合题

2017中考数学复习----二次函数综合题1.如图,在△ABC中,∠BAC=90,BC∥x轴,抛物线y=ax2﹣2ax+3经过△ABC的三个顶点,并且与x轴交于点D、E,点A为抛物线的顶点.(1)求抛物线的解析式;(2)连接CD,在抛物线的对称轴上是否存在一点P使△PCD为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.3.如图,已知直线y=x+3与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A、B 两点,与x轴交于另一个点C,对称轴与直线AB交于点E.(1)求抛物线的解析式;(2)在第三象限内、F为抛物线上一点,以A、E、F为顶点的三角形面积为4,求点F的坐标;(3)连接B、C,点P是线段,AB上一点,作PQ平行于x轴交线段BC于点Q,过P作PM ⊥x轴于M,过Q作QN⊥x轴于N,求矩形PQNM面积的最大值和P点的坐标.2.如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的函数关系式及顶点D的坐标;(2)若点M是抛物线对称轴上的一个动点,求CM+AM的最小值.4.在平面直角坐标系中,抛物线y=x2﹣x﹣2的顶点为点D,与直线y=kx在第一象限内交于点A,且点A的横坐标为4;直线OA与抛物线的对称轴交于点C.(1)求△AOD的面积;(2)若点F为线段OA上一点,过点F作EF∥CD交抛物线于点E,求线段EF的最大值及此时点E坐标;(3)如图2,点P为该抛物线在第四象限部分上一点,且∠POA=45°,求出点P的坐标.5.如图,已知抛物线L1:y1=x2,平移后经过点A(﹣1,0),B(4,0)得到抛物线L2,与y轴交于点C.(1)求抛物线L2的解析式;(2)判断△ABC的形状,并说明理由;(3)点P为抛物线L2上的动点,过点P作PD⊥x轴,与抛物线L1交于点D,是否存在PD=2OC?若存在,求出点P的坐标;若不存在,说明理由.7.如图,已知抛物线与x轴交于A (﹣4,0)和B(1,0)两点,与y轴交于C点.(1)求此抛物线的解析式;(2)若P为抛物线上A、C两点间的一个动点,过P作y轴的平行线,交AC于Q点,当P点运动到什么位置时,线段PQ的长最大,并求此时P点的坐标.6.抛物线y=ax2+bx+c(a≠0)的顶点为P(1,﹣4),在x轴上截得的线段AB长为4个单位,OA<OB,抛物线与y轴交于点C.(1)求这个函数解析式;(2)试确定以B、C、P为顶点的三角形的形状;(3)已知在对称轴上存在一点F使得△ACF周长最小,请写出F点的坐标.8.如图,抛物线y=﹣x2+ax+8(a≠0)于x轴从左到右交于点A,B于y轴交于点C于直线y=kx+b 交于点c和点D(m,5),tan∠DCO=1。

2017年中考数学备考专题复习二次函数的应用含解析

2017年中考数学备考专题复习二次函数的应用含解析

二次函数的应用一、单选题(共12题;共24分)1、(2016•天津)已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A、1或﹣5B、﹣1或5C、1或﹣3D、1或32、(2016•滨州)在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点选择180°得到抛物线y=x2+5x+6,则原抛物线的解析式是()A、y=﹣(x﹣)2﹣B、y=﹣(x+ )2﹣C、y=﹣(x﹣)2﹣D、y=﹣(x+ )2+3、(2016•宁波)已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A、当a=1时,函数图象过点(﹣1,1)B、当a=﹣2时,函数图象与x轴没有交点C、若a>0,则当x≥1时,y随x的增大而减小D、若a<0,则当x≤1时,y随x的增大而增大4、(2016•黄石)以x为自变量的二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是()A 、b≥B、b≥1或b≤﹣1C、b≥2D、1≤b≤25、某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()A、y=60(300+20x)B、y=(60﹣x)(300+20x)C、y=300(60﹣20x)D、y=(60﹣x)(300﹣20x)6、(2016•达州)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0②4a+2b+c>0③4ac﹣b2<8a④ <a<⑤b>c.其中含所有正确结论的选项是()A、①③B、①③④C、②④⑤D、①③④⑤7、(2016•眉山)若抛物线y=x2﹣2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为()A、y=(x﹣2)2+3B、y=(x﹣2)2+5C、y=x2﹣1D、y=x2+48、(2016•张家界)在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A 、B 、C 、D 、9、(2016•常德)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c <b;④b2﹣4ac>0,其中正确的个数是()A、1B、2C、3D、410、(2016•呼和浩特)已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,则(m﹣1)2+(n﹣1)2的最小值是()A、6B、3C、﹣3D、011、(2016•攀枝花)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1和3,则下列结论正确的是()A、2a﹣b=0B、a+b+c>0C、3a﹣c=0D、当a= 时,△ABD是等腰直角三角形12、(2016•安顺)某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x 米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是()A 、B 、C 、D 、二、填空题(共5题;共5分)13、(2016•河南)已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是________.14、(2016•丹东)某公司今年4月份营业额为60万元,6月份营业额达到100万元,设该公司5、6两个月营业额的月均增长率为x,则可列方程为________.15、(2016•大庆)直线y=kx+b与抛物线y= x2交于A(x1, y1)、B(x2, y2)两点,当OA⊥OB时,直线AB恒过一个定点,该定点坐标为________.16、(2016•内江)二次函数y=ax2+bx+c的图象如图所示,且P=|2a+b|+|3b﹣2c|,Q=|2a﹣b|﹣|3b+2c|,则P,Q的大小关系是________.17、(2016•十堰)已知关于x的二次函数y=ax2+bx+c的图象经过点(﹣2,y1),(﹣1,y2),(1,0),且y1<0<y2,对于以下结论:①abc>0;②a+3b+2c≤0;③对于自变量x的任意一个取值,都有x2+x≥﹣;④在﹣2<x<﹣1中存在一个实数x0,使得x0=﹣,其中结论错误的是________ (只填写序号).三、综合题(共5题;共65分)18、(2016•淮安)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A、B、C三点,其中点A的坐标为(0,8),点B的坐标为(﹣4,0).(1)求该二次函数的表达式及点C的坐标;(2)点D的坐标为(0,4),点F为该二次函数在第一象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S.①求S的最大值;②在点F的运动过程中,当点E落在该二次函数图象上时,请直接写出此时S的值.19、(2016•义乌)课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.20、(2016•连云港)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx经过两点A(﹣1,1),B (2,2).过点B作BC∥x轴,交抛物线于点C,交y轴于点D.(1)求此抛物线对应的函数表达式及点C的坐标;(2)若抛物线上存在点M,使得△BCM的面积为,求出点M的坐标;(3)连接OA、OB、OC、AC,在坐标平面内,求使得△AOC与△OBN相似(边OA与边OB对应)的点N 的坐标.21、(2016•扬州)如图1,二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1.(1)求这个二次函数的表达式;(2)点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;(3)如图3,一次函数y=kx(k>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M在线段OC上(不与O、C重合),过点T作直线TN∥y轴交OC于点N.若在点T运动的过程中,为常数,试确定k的值.22、(12分)(2016•重庆)如图1,在平面直角坐标系中,抛物线y=﹣x2+ x+3与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,抛物线的顶点为点E.(1)判断△ABC的形状,并说明理由;(2)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一动点,当△PCD 的面积最大时,Q从点P出发,先沿适当的路径运动到抛物线的对称轴上点M处,再沿垂直于抛物线对称轴的方向运动到y轴上的点N处,最后沿适当的路径运动到点A处停止.当点Q的运动路径最短时,求点N的坐标及点Q经过的最短路径的长;(3)如图2,平移抛物线,使抛物线的顶点E在射线AE上移动,点E平移后的对应点为点E′,点A的对应点为点A′,将△AOC绕点O顺时针旋转至△A1OC1的位置,点A,C的对应点分别为点A1,C1,且点A1恰好落在AC上,连接C1A′,C1E′,△A′C1E′是否能为等腰三角形?若能,请求出所有符合条件的点E′的坐标;若不能,请说明理由.答案解析部分一、单选题【答案】B【考点】二次函数的最值【解析】【解答】解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5,解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5,解得:h=5或h=1(舍).综上,h的值为﹣1或5,故选:B.【分析】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.由解析式可知该函数在x=h时取得最小值1、x>h时,y随x的增大而增大、当x<h时,y 随x的增大而减小,根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1≤x≤3,x=1时,y取得最小值5;②若1≤x≤3<h,当x=3时,y取得最小值5,分别列出关于h的方程求解即可.【答案】A【考点】二次函数图象与几何变换【解析】【解答】解:∵抛物线的解析式为:y=x2+5x+6,∴绕原点选择180°变为,y=﹣x2+5x﹣6,即y=﹣(x﹣)2+ ,∴向下平移3个单位长度的解析式为y=﹣(x﹣)2+ ﹣3=﹣(x﹣)2﹣.故选A.【分析】先求出绕原点旋转180°的抛物线解析式,求出向下平移3个单位长度的解析式即可.本题考查的是二次函数的图象与几何变换,熟知二次函数的图象旋转及平移的法则是解答此题的关键.【答案】D【考点】二次函数的图象,二次函数的性质【解析】【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;故选D.【分析】把a=1,x=﹣1代入y=ax2﹣2ax﹣1,于是得到函数图象不经过点(﹣1,1),根据△=8>0,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=﹣=1判断二次函数的增减性.本题考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键.【答案】A【考点】二次函数的性质,二次函数图象与系数的关系【解析】【解答】解:∵二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,∴抛物线在x轴的上方或在x轴的下方经过一、二、四象限,当抛物线在x轴的上方时,∵二次项系数a=1,∴抛物线开口方向向上,∴b2﹣1≥0,△=[2(b﹣2)]2﹣4(b2﹣1)≤0,解得b≥ ;当抛物线在x轴的下方经过一、二、四象限时,设抛物线与x轴的交点的横坐标分别为x1, x2,∴x1+x2=2(b﹣2)≥0,b2﹣1≥0,∴△=[2(b﹣2)]2﹣4(b2﹣1)>0,①b﹣2>0,②b2﹣1>0,③由①得b<,由②得b>2,∴此种情况不存在,∴b≥ ,故选A.【分析】由于二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,所以抛物线在x轴的上方或在x轴的下方经过一、二、四象限,根据二次项系数知道抛物线开口方向向上,由此可以确定抛物线与x轴有无交点,抛物线与y轴的交点的位置,由此即可得出关于b的不等式组,解不等式组即可求解.此题主要考查了二次函数的图象和性质,解题的关键是会根据图象的位置得到关于b 的不等式组解决问题.【答案】B【考点】根据实际问题列二次函数关系式【解析】【解答】解:降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,根据题意得,y=(60﹣x)(300+20x),故选:B.【分析】根据降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,由题意可得等量关系:总销售额为y=销量×售价,根据等量关系列出函数解析式即可.【答案】D【考点】二次函数的性质【解析】【解答】解:①∵函数开口方向向上,∴a>0;∵对称轴在原点左侧∴ab异号,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①正确;②∵图象与x轴交于点A(﹣1,0),对称轴为直线x=﹣1,∴图象与x轴的另一个交点为(3,0),∴当x=2时,y<0,∴4a+2b+c<0,故②错误;③∵图象与x轴交于点A(﹣1,0),∴当x=﹣1时,y=(﹣1)2a+b×(﹣1)+c=0,∴a﹣b+c=0,即a=b﹣c,c=b﹣a,∵对称轴为直线x=1∴ =1,即b=﹣2a,∴c=b﹣a=(﹣2a)﹣a=﹣3a,∴4ac﹣b2=4•a•(﹣3a)﹣(﹣2a)2=﹣16a2<0∵8a>0∴4ac﹣b2<8a故③正确④∵图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间,∴﹣2<c<﹣1∴﹣2<﹣3a<﹣1,∴ >a>;故④正确⑤∵a>0,∴b﹣c>0,即b>c;故⑤正确;故选:D.【分析】根据对称轴为直线x=1及图象开口向下可判断出a、b、c的符号,从而判断①;根据对称轴得到函数图象经过(3,0),则得②的判断;根据图象经过(﹣1,0)可得到a、b、c之间的关系,从而对②⑤作判断;从图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间可以判断c的大小得出④的正误.主要考查图象与二次函数系数之间的关系.解题关键是注意掌握数形结合思想的应用.【答案】C【考点】二次函数图象与几何变换【解析】【解答】解:将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,这个相当于把抛物线向左平移有关单位,再向下平移3个单位,∵y=(x﹣1)2+2,∴原抛物线图象的解析式应变为y=(x﹣1+1)2+2﹣3=x2﹣1,故答案为C.【分析】思想判定出抛物线的平移规律,根据左加右减,上加下减的规律即可解决问题.本题考查二次函数图象的平移,解题的关键是理解坐标系的平移和抛物线的平移是反方向的,记住左加右减,上加下减的规律,属于中考常考题型.【答案】C【考点】一次函数的图象,二次函数的图象【解析】【解答】解:A、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,对称轴x= >0,应在y轴的右侧,故不合题意,图形错误;B、对于直线y=ax+b来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,对称轴x= <0,应在y轴的左侧,故不合题意,图形错误;C、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向上,对称轴x= >0,应在y轴的右侧,故符合题意;D、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,a<0,故不合题意,图形错误;故选:C.【分析】首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.此主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.【答案】C【考点】二次函数图象与系数的关系【解析】【解答】解:∵二次函数的开口向下,与y轴的交点在y轴的正半轴,∴a<0,c>0,故②正确;∵0<﹣<1,∴b>0,故①错误;当x=﹣1时,y=a﹣b+c<0,∴a+c<b,故③正确;∵二次函数与x轴有两个交点,∴△=b2﹣4ac>0,故④正确正确的有3个,故选:C.【分析】由二次函数的开口方向,对称轴0<x<1,以及二次函数与y的交点在x轴的上方,与x 轴有两个交点等条件来判断各结论的正误即可.此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).【答案】A【考点】根与系数的关系,二次函数的最值【解析】【解答】解:∵m2﹣2am+2=0,n2﹣2an+2=0,∴m,n是关于x的方程x2﹣2ax+2=0的两个根,∴m+n=2a,mn=2,∴(m﹣1)2+(n﹣1)2=m2﹣2m+1+n2﹣2n+1=(m+n)2﹣2mn﹣2(m+n)+2=4a2﹣4﹣4a+2=4(a﹣)2﹣3,∵a≥2,∴当a=2时,(m﹣1)2+(n﹣1)2有最小值,∴(m﹣1)2+(n﹣1)2的最小值=4(a﹣)2+3=4(2﹣)2﹣3=6,故选A.【分析】根据已知条件得到m,n是关于x的方程x2﹣2ax+2=0的两个根,根据根与系数的关系得到m+n=2a,mn=2,于是得到4(a﹣)2﹣3,当a=2时,(m﹣1)2+(n﹣1)2有最小值,代入即可得到结论.本题考查了根与系数的关系,二次函数的最值,熟练掌握根与系数的关系是解题的关键.【答案】D【考点】二次函数图象与系数的关系【解析】【解答】解:∵抛物线与x轴的交点A、B的横坐标分别为﹣1,3,∴抛物线的对称轴为直线x=1,则﹣=1,∴2a+b=0,∴选项A错误;∴当自变量取1时,对应的函数图象在x轴下方,∴x=1时,y<0,则a+b+c<0,∴选项B错误;∵A点坐标为(﹣1,0),∴a﹣b+c=0,而b=﹣2a,∴a+2a+c=0,∴3a+c=0,∴选项C错误;当a= ,则b=﹣1,c=﹣,对称轴x=1与x轴的交点为E,如图,∴抛物线的解析式为y= x2﹣x﹣,把x=1代入得y= ﹣1﹣=﹣2,∴D点坐标为(1,﹣2),∴AE=2,BE=2,DE=2,∴△ADE和△BDE都为等腰直角三角形,∴△ADB为等腰直角三角形,∴选项D正确.故选D.【分析】由于抛物线与x轴的交点A、B的横坐标分别为﹣1,3,得到对称轴为直线x=1,则﹣=1,即2a+b=0,得出,选项A错误;当x=1时,y<0,得出a+b+c<0,得出选项B错误;当x=﹣1时,y=0,即a﹣b+c=0,而b=﹣2a,可得到a与c的关系,得出选项C错误;由a= ,则b=﹣1,c=﹣,对称轴x=1与x轴的交点为E,先求出顶点D的坐标,由三角形边的关系得出△ADE和△BDE都为等腰直角三角形,得出选项D正确;即可得出结论.本题考查了二次函数y=ax2+bx+c的图象与系数的关系:当a>0,抛物线开口向上;抛物线的对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c).【答案】A【考点】二次函数的图象,二次函数的应用【解析】【解答】解:S△AEF = AE×AF= x2, S△DEG = DG×DE= ×1×(3﹣x)= ,S五边形EFBCG=S正方形ABCD﹣S△AEF﹣S△DEG=9﹣x2﹣=﹣x2+ x+ ,则y=4×(﹣x2+ x+ )=﹣2x2+2x+30,∵AE<AD,∴x<3,综上可得:y=﹣2x2+2x+30(0<x<3).故选:A【分析】先求出△AEF和△DEG的面积,然后可得到五边形EFBCG的面积,继而可得y与x的函数关系式.本题考查了动点问题的函数图象,解答本题的关键是求出y与x的函数关系式,对于有些题目可以不用求出函数关系式,根据走势或者特殊点的值进行判断.二、填空题【答案】(1,4)【考点】二次函数的性质,二次函数图象上点的坐标特征【解析】【解答】解:∵A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,∴代入得:,解得:b=2,c=3,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,顶点坐标为(1,4),故答案为:(1,4).【分析】把A、B的坐标代入函数解析式,即可得出方程组,求出方程组的解,即可得出解析式,化成顶点式即可.本题考查了二次函数的性质,二次函数图象上点的坐标特征的应用,能求出函数的解析式是解此题的关键.【答案】60(1+x)2=100【考点】一元二次方程的应用,根据实际问题列二次函数关系式【解析】【解答】解:设平均每月的增长率为x,根据题意可得:60(1+x)2=100.故答案为:60(1+x)2=100.【分析】本题考查的是一个增长率问题,关键是知道4月份的钱数和增长两个月后6月份的钱数,列出方程.设平均每月的增长率为x,根据4月份的营业额为60万元,6月份的营业额为100万元,分别表示出5,6月的营业额,即可列出方程.【答案】(0,4)【考点】二次函数的性质,一次函数的性质【解析】【解答】解:∵直线y=kx+b与抛物线y= x2交于A(x1, y1)、B(x2, y2)两点,∴kx+b= ,化简,得 x2﹣4kx﹣4b=0,∴x1+x2=4k,x1x2=﹣4b,又∵OA⊥OB,∴ ,解得,b=4,即直线y=kx+4,故直线恒过顶点(0,4),故答案为:(0,4).【分析】根据直线y=kx+b与抛物线y= x2交于A(x1, y1)、B(x2, y2)两点,可以联立在一起,得到关于x的一元二次方程,从而可以得到两个之和与两根之积,再根据OA⊥OB,可以求得b的值,从而可以得到直线AB恒过的定点的坐标.本题考查二次函数的性质、一次函数的性质,解题的关键是明确题意,找出所求问题需要的条件,知道两条直线垂直时,它们解析式中的k 的乘积为﹣1.【答案】P>Q【考点】二次函数的性质,二次函数图象与系数的关系【解析】【解答】解:∵抛物线的开口向下,∴a<0,∵﹣>0,∴b>0,∴2a﹣b<0,∵﹣=1,∴b+2a=0,x=﹣1时,y=a﹣b+c<0.∴﹣b﹣b+c<0,∴3b﹣2c>0,∵抛物线与y轴的正半轴相交,∴c>0,∴3b+2c>0,∴p=3b﹣2c,Q=b﹣2a﹣3b﹣2c=﹣2a﹣2b﹣2c,∴Q﹣P=﹣2a﹣2b﹣2c﹣3b+2c=﹣2a﹣5b=﹣4b<0∴P>Q,故答案为:P>Q.【分析】由函数图象可以得出a<0,b>0,c>0,当x=1时,y=a+b+c>0,x=﹣1时,y=a﹣b+c <0,由对称轴得出2a+b=0,通过确定绝对值中的数的符号后去掉绝对值再化简就可以求出P、Q 的值.本题考查了二次函数的图象与系数的关系,去绝对值,二次函数的性质.熟记二次函数的性质是解题的关键.【答案】②【考点】二次函数图象与系数的关系,二次函数图象上点的坐标特征【解析】【解答】解:由题意二次函数图象如图所示,∴a<0.b<0,c>0,∴abc>0,故①正确.∵a+b+c=0,∴c=﹣a﹣b,∴a+3b+2c=a+3b﹣2a﹣2b=b﹣a,又∵x=﹣1时,y>0,∴a﹣b+c>0,∴b﹣a<c,∵c>O,∴b﹣a可以是正数,∴a+3b+2c≤0,故②错误.故答案为②.∵函数y′= x2+x= (x2+ x)= (x+ )2﹣,∵ >0,∴函数y′有最小值﹣,∴ x2+x≥﹣,故③正确.∵y=ax2+bx+c的图象经过点(1,0),∴a+b+c=0,∴c=﹣a﹣b,令y=0则ax2+bx﹣a﹣b=0,设它的两个根为x1, 1,∵x1•1= =﹣,∴x1=﹣,∵﹣2<x1<x2,∴在﹣2<x<﹣1中存在一个实数x0,使得x0=﹣,故④正确,【分析】①正确.画出函数图象即可判断.②错误.因为a+b+c=0,所以a+3b+2c=a+3b﹣2a﹣2b=b﹣a,又a﹣b+c>0,所以b﹣a<c,故b﹣a可以是正数,由此可以周长判断.③正确.利用函数y′= x2+x= (x2+ x)= (x+ )2﹣,根据函数的最值问题即可解决.④令y=0则ax2+bx﹣a﹣b=0,设它的两个根为x1, 1,则x1•1= =﹣,求出x1即可解决问题.本题考查二次函数的图象与系数的关系、二次函数图象上的点的坐标特征,解题的关键是灵活应用二次函数的性质解决问题,学会构建二次函数解决最值问题,属于中考填空题中的压轴题.三、综合题【答案】(1)解:把A(0,8),B(﹣4,0)代入y=﹣x2+bx+c得,解得,所以抛物线的解析式为y=﹣x2+x+8;当y=0时,﹣x2+x+8=0,解得x1=﹣4,x2=8,所以C点坐标为(8,0)(2)解:①连结OF,如图,设F(t,﹣t2+t+8),∵S四边形OCFD=S△CDF+S△OCD=S△ODF+S△OCF,∴S△CDF=S△ODF+S△OCF﹣S△OCD = •4•t + •8•(﹣t2+t+8)﹣•4•8=﹣t2+6t+16=﹣(t﹣3)2+25,当t=3时,△CDF的面积有最大值,最大值为25,∵四边形CDEF为平行四边形,∴S的最大值为50;②∵四边形CDEF为平行四边形,∴CD∥EF,CD=EF,∵点C向左平移8个单位,再向上平移4个单位得到点D,∴点F向左平移8个单位,再向上平移4个单位得到点E,即E(t﹣8,﹣t2+t+12),∵E(t﹣8,﹣t2+t+12)在抛物线上,∴﹣(t﹣8)2+t﹣8+8=﹣t2+t+12,解得t=7,当t=7时,S△CDF=﹣(7﹣3)2+25=9,∴此时S=2S△CDF=18.【考点】待定系数法求二次函数解析式,与二次函数有关的动态几何问题【解析】【分析】(1)把A点和B点坐标代入y=﹣x2+bx+c得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线的解析式;然后计算函数值为0时对应的自变量的值即可得到C点坐标(2)①连结OF,如图,设F(t,﹣t2+t+8),利用S四边形OCFD=S△CDF+S△OCD=S△ODF+S△OCF,利用三角形面积公式得到S△CDF=﹣t2+6t+16,再利用二次函数的性质得到△CDF的面积有最大值,然后根据平行四边形的性质可得S的最大值;②由于四边形CDEF为平行四边形,则CD∥EF,CD=EF,利用C点和D的坐标特征可判断点C向左平移8个单位,再向上平移4个单位得到点D,则点F向左平移8个单位,再向上平移4个单位得到点E,即E(t﹣8,﹣t2+t+12),然后把E(t﹣8,﹣t2+t+12)代入抛物线解析式得到关于t的方程,再解方程求出t后计算△CDF的面积,从而得到S的值.本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和平行四边形的性质;会利用待定系数法求二次函数解析式;理解坐标与图形性质,掌握点平移的坐标规律.【答案】(1)解:由已知可得:AD= ,则S=1× m2(2)解:设AB=xm,则AD=3﹣m,∵ ,∴ ,设窗户面积为S,由已知得:,当x= m时,且x= m在的范围内,,∴与课本中的例题比较,现在窗户透光面积的最大值变大【考点】二次函数的应用【解析】【分析】此题考查二次函数的应用,关键是利用二次函数的最值解答.(1)根据矩形和正方形的周长进行解答即可;(2)设AB为xcm,利用二次函数的最值解答即可.【答案】(1)解:把A(﹣1,1),B(2,2)代入y=ax2+bx得:,解得,故抛物线的函数表达式为y= x2﹣x,∵BC∥x轴,设C(x0, 2).∴ x02﹣x0=2,解得:x0=﹣或x0=2,∵x0<0,∴C(﹣,2)(2)解:设△BCM边BC上的高为h,∵BC= ,∴S△BCM = •h= ,∴h=2,点M即为抛物线上到BC的距离为2的点,∴M的纵坐标为0或4,令y= x2﹣x=0,解得:x1=0,x2= ,∴M1(0,0),M2(,0),令y= x2﹣x=4,解得:x3= ,x4=,∴M3(,0),M4(,4),综上所述:M点的坐标为:(0,0),(,0),(,0),(,4)(3)解:∵A(﹣1,1),B(2,2),C(﹣,2),D(0,2),∴OB=2 ,OA= ,OC= ,∴∠AOD=∠BOD=45°,tan∠COD= ,①如图1,当△AOC∽△BON时,,∠AOC=∠BON,∴ON=2OC=5,过N作NE⊥x轴于E,∵∠COD=45°﹣∠AOC=45°﹣∠BON=∠NOE,在Rt△NOE 中,tan∠NOE=tan∠COD= ,∴OE=4,NE=3,∴N(4,3)同理可得N(3,4);②如图2,当△AOC∽△OBN时,,∠AOC=∠OBN,∴BN=2OC=5,过B作BG⊥x轴于G,过N作x轴的平行线交BG的延长线于F,∴NF⊥BF,∵∠COD=45°﹣∠AOC=45°﹣∠OBN=∠NBF,∴tan∠NBF=tan∠COD= ,∴BF=4,NF=3,∴N(﹣1,﹣2),同理N(﹣2,﹣1),综上所述:使得△AOC与△OBN相似(边OA与边OB对应)的点N的坐标是(4,3),(3,4),(﹣1,﹣2),(﹣2,﹣1).【考点】二次函数的性质,相似三角形的性质,与二次函数有关的动态几何问题【解析】【分析】(1)把A(﹣1,1),B(2,2)代入y=ax2+bx求得抛物线的函数表达式为y= x2﹣x,由于BC∥x轴,设C(x0, 2).于是得到方程x02﹣x0=2,即可得到结论;(2)设△BCM边BC上的高为h,根据已知条件得到h=2,点M即为抛物线上到BC的距离为2的点,于是得到M的纵坐标为0或4,令y= x2﹣x=0,或令y= x2﹣x=4,解方程即可得到结论;(3)解直角三角形得到OB=2 ,OA= ,OC= ,∠AOD=∠BOD=45°,tan∠COD= ①如图1,当△AOC∽△BON时,求得ON=2OC=5,过N作NE⊥x轴于E,根据三角函数的定义得到OE=4,NE=3,于是得到结果;②如图2,根据相似三角形的性质得到BN=2OC=5,过B作BG⊥x轴于G,过N作x 轴的平行线交BG的延长线于F解直角三角形得到BF=4,NF=3于是得到结论.本题主要考查的是二次函数与相似三角形的综合应用,难度较大,解答本题需要同学们熟练掌握二次函数和相似三角形的相关性质.【答案】(1)解:∵二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1,则有解得∴二次函数y=x2﹣2x(2)解:由(1)得,B(1,﹣1),∵A(﹣1,3),∴直线AB解析式为y=﹣2x+1,AB=2 ,设点Q(m,0),P(n,n2﹣2n)∵以A、B、P、Q为顶点的四边形是平行四边形,①当AB为对角线时,根据中点坐标公式得,则有,解得或∴P(1+ ,2)和(1﹣,2)②当AB为边时,根据中点坐标公式得解得或∴P(1+ ,4)或(1﹣,4).(3)解:设T(m,m2﹣2m),∵TM⊥OC,∴可以设直线TM为y=﹣x+b,则m2﹣2m=﹣m+b,b=m2﹣2m+ ,由解得,∴OM= = ,ON=m• ,∴ = ,∴k= 时,= .∴当k= 时,点T运动的过程中,为常数.本题考查二次函数综合题,平行四边形的判定和性质,中点坐标公式等知识,解题【考点】待定系数法求二次函数解析式,二次函数与一次函数的交点问题【解析】【分析】(1)利用待定系数法即可解决问题(2)①当AB为对角线时,根据中点坐标公式,列出方程组解决问题.②当AB为边时,根据中点坐标公式列出方程组解决问题.(3)设T(m,m2﹣2m),由TM⊥OC,可以设直线TM为y=﹣x+b,则m2﹣2m=﹣m+b,b=m2﹣2m+ ,求出点M、N坐标,求出OM、ON,根据列出等式,即可解决问题.本题的关键是利用参数,方程组解决问题,学会转化的思想,属于中考压轴题.【答案】(1)解:△ABC为直角三角形,当y=0时,即﹣x2+ x+3=0,∴x1=﹣,x2=3∴A(﹣,0),B(3 ,0),∴O A= ,OB=3 ,当x=0时,y=3,∴C(0,3),∴OC=3,根据勾股定理得,AC2=OB2+OC2=12,BC2=OB2+OC2=36,∴AC2+BC2=48,∵AB2=[3 ﹣(﹣)]2=48,∴AC2+BC2=AB2,∴△ABC是直角三角形(2)解:如图,∵B(3 ,0),C(0,3),∴直线BC解析式为y=﹣x+3,过点P作∥y轴,设P(a,﹣a2+ a+3),∴G(a,﹣a+3),∴PG=﹣a2+ a,设点D的横坐标为x D, C点的横坐标为x C,S△PCD = ×(x D﹣x C)×PG=﹣(a﹣)2+ ,∵0<a<3 ,∴当a= 时,S△PCD最大,此时点P(,),将点P向左平移个单位至P′,连接AP′,交y轴于点N,过点N作MN⊥抛物线对称轴于点M,连接PM,点Q沿P→M→N→A,运动,所走的路径最短,即最短路径的长为PM+MN+NA的长,∴P(,)∴P′(,),∵点A(﹣,0),∴直线AP′的解析式为y= x+ ,当x=0时,y= ,∴N(0,),过点P′作P′H⊥x轴于点H,∴AH= ,P′H= ,AP′= ,∴点Q运动得最短路径长为PM+MN+AN= + = ;(3)解:在Rt△AOC中,∵tan∠OAC= = ,∴∠OAC=60°,∵OA=OA1,∴△OAA1为等边三角形,∴∠AOA1=60°,∴∠BOC1=30°,∵OC1=OC=3,∴C1(,),∵点A(﹣,0),E(,4),∴AE=2 ,∴A′E′=AE=2 ,∵直线AE的解析式为y= x+2,设点E′(a,a+2),∴A′(a﹣2 ,﹣2)∴C1E′2=(a﹣2 )2+(+2﹣)2= a2﹣a+7,C1A′2=(a﹣2 ﹣)2+(﹣2﹣)2= a2﹣a+49,①若C1A′=C1E′,则C1A′2=C1E′2即:a2﹣a+7= a2﹣a+49,∴a= ,∴E′(,5),②若A′C1=A′E′,∴A′C12=A′E′2即:a2﹣a+49=28,∴a1= ,a2= ,∴E′(,7+ ),或(,7﹣),③若E′A′=E′C1,∴E′A′2=E′C12即:a2﹣a+7=28,∴a1= ,a2= (舍),∴E′(,3+ ),即,符合条件的点E′(,5),(,7+ ),或(,7﹣),(,3+ )【考点】二次函数的最值,勾股定理的逆定理,与二次函数有关的动态几何问题【解析】【分析】(1)先求出抛物线与x轴和y轴的交点坐标,再用勾股定理的逆定理判断出△ABC 是直角三角形;(2)先求出S△PCD最大时,点P(,),然后判断出所走的路径最短,即最短路径的长为PM+MN+NA的长,计算即可;(3)△A′C1E′是等腰三角形,分三种情况分别建立方程计算即可.此题是二次函数综合题,主要考查了函数极值的确定方法,等边三角形的判定和性质,勾股定理的逆定理,等腰三角形的性质,解本题的关键是分类讨论,也是解本题的难点.。

2017年中考数学专题练习 二元一次方程组(解析版)

2017年中考数学专题练习 二元一次方程组(解析版)

二元一次方程组一、填空题1.用加减消元法解方程组,由①×2﹣②得.2.在方程3x﹣y=5中,用含x的代数式表示y为:y=,当x=3时,y=.3.在代数式3m+5n﹣k中,当m=﹣2,n=1时,它的值为1,则k=;当m=2,n=﹣3时代数式的值是.4.已知方程组与有相同的解,则m=,n=.5.若(2x﹣3y+5)2+|x+y﹣2|=0,则x=,y=.6.有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为x,十位数字为y,则用代数式表示原两位数为,根据题意得方程组.7.如果是方程6x+by=32的解,则b=.8.若是关于x、y的方程ax﹣by=1的一个解,且a+b=﹣3,则5a﹣2b=.9.已知a2﹣a+1=2,那么a﹣a2+1的值是.10.若|3a+4b﹣c|+(c﹣2b)2=0,则a:b:c=.二、选择题11.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2 B.x=2,y=﹣3 C.x=﹣2,y=3 D.x=3,y=﹣212.已知是方程组的解,则a,b间的关系是()A.4b﹣9a=1 B.3a+2b=1 C.4b﹣9a=﹣1 D.9a+4b=113.若二元一次方程3x﹣y=7,2x+3y=1,y=kx﹣9有公共解,则k的取值为()A.3 B.﹣3 C.﹣4 D.414.若二元一次方程3x﹣2y=1有正整数解,则x的取值应为()A.正奇数B.正偶数C.正奇数或正偶数 D.015.关于x、y的二元一次方程组的解满足不等式x+y>0,则a的取值范围是()A.a<﹣1 B.a<1 C.a>﹣1 D.a>116.方程ax﹣4y=x﹣1是二元一次方程,则a的取值为()A.a≠0 B.a≠﹣1 C.a≠1 D.a≠217.当x=2时,代数式ax3+bx+1的值为6,那么当x=﹣2时这个式子的值为()A.6 B.﹣4 C.5 D.118.设A、B两镇相距x千米,甲从A镇、乙从B镇同时出发,相向而行,甲、乙行驶的速度分别为u千米/小时、v千米/小时,并有:①出发后30分钟相遇;②甲到B镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A镇还有4千米.求x、u、v.根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是()A.x=u+4 B.x=v+4 C.2x﹣u=4 D.x﹣v=4三、解答题19.解方程组:.20.解方程组:.21.解方程组:.22.王大伯承包了25亩土地,今年春季改种黄瓜和西红柿两种大棚蔬菜,用去了44 000元,其中种黄瓜每亩用了1700元,获纯利润2600元;种西红柿每亩用了1800元,获纯利润2800元,问王大伯一共获纯利润多少元?23.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段某市的一环路、二环路、三环路的车流量已知关于x、y的方程组与有相同的解,求a、b的值.28.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这种货车的情况如表所示.现租用该公司的甲种货车3辆乙种货车5辆,一次刚好运完这批货物,如果按每吨付运费30元计算,问货主应付运费多少元?第一次第二次甲种货车辆(辆)25乙种货车辆(辆)36累计运货吨数(吨)15.535二元一次方程组参考答案与试题解析一、填空题1.用加减消元法解方程组,由①×2﹣②得2x=﹣3.【考点】解二元一次方程组.【专题】计算题.【分析】此题主要考查加减消元法的应用,按照题目要求解答即可.【解答】解:①×2﹣②得,6x+2y﹣(4x+2y)=﹣2﹣1,合并同类项得,2x=﹣3.【点评】注意掌握二元一次方程的加减消元法.2.在方程3x﹣y=5中,用含x的代数式表示y为:y=12x﹣20,当x=3时,y=16.【考点】解二元一次方程.【分析】本题是将二元一次方程变形,用一个未知数表示另一个未知数,可先移项,再系数化为1,得到y的表达式,最后把x的值代入方程求出y值.【解答】解:①由已知方程3x﹣y=5,移项,得,系数化为1,得y=12x﹣20;②当x=3代入y=12x﹣20,得y=16.【点评】本题考查的是方程的基本运算技能:移项,合并同类项,系数化为1等.3.在代数式3m+5n﹣k中,当m=﹣2,n=1时,它的值为1,则k=﹣2;当m=2,n=﹣3时代数式的值是﹣7.【考点】代数式求值.【分析】直接把m=﹣2,n=1代入代数式,求得k,再利用代入法求代数式的解.【解答】解:∵m=﹣2,n=1∴3m+5n﹣k=1∴k=﹣2∵m=2,n=﹣3,k=﹣2∴3m+5n﹣k=3×2+5×(﹣3)﹣(﹣2)=﹣7.【点评】解题关键是先把m=﹣2,n=1代入代数式求出k的值,再把k的值,m=2,n=﹣3代入代数式求值.4.已知方程组与有相同的解,则m=,n=12.【考点】同解方程组.【专题】计算题.【分析】解此题可先将第二个方程组解出x、y的值,再代入第一个方程组,化为只有m、n的方程组,即可求出n、m.【解答】解:由(1)×2+(2),得10x=20,x=2,代入,得y=0.将x、y代入第一个方程组可得,解,得.【点评】此题考查的是考生对二元一次方程组的解的理解和二元一次方程组的解法,解出x、y的值,再代入方程组求出m、n的值、最重要的是将方程化简到只含有两个未知数.5.若(2x﹣3y+5)2+|x+y﹣2|=0,则x=,y=.【考点】解二元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出x、y的值.【解答】解:∵(2x﹣3y+5)2+|x+y﹣2|=0,∴,解,得x=,y=.【点评】本题考查了非负数的性质.初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.6.有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为x,十位数字为y,则用代数式表示原两位数为10y+x,根据题意得方程组.【考点】由实际问题抽象出二元一次方程组.【分析】如果设原两位数的个位数字为x,十位数字为y,那么原两位数可表示为10y+x.此题中的等量关系有:①有一个两位数,它的两个数字之和为11可得出方程x+y=11;②根据“把这个两位数的个位数字与十位数字对调,所得的新数比原数大63”,可得出方程为(10x+y)﹣(10y+x)=63,那么方程组是.【解答】解:根据数位的意义,该两位数可表示为10y+x.根据有一个两位数,它的两个数字之和为11,可得方程x+y=11;根据把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,可得方程(10x+y)﹣(10y+x)=63.那么方程组是.故答案为:10y+x,.【点评】根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.本题要注意两位数的表示方法.7.如果是方程6x+by=32的解,则b=7.【考点】二元一次方程的解.【专题】方程思想.【分析】将x=3,y=2代入方程6x+by=32,把未知数转化为已知数,然后解关于未知系数b的方程.【解答】解:把x=3,y=2代入方程6x+by=32,得6×3+2b=32,移项,得2b=32﹣18,合并同类项,系数化为1,得b=7.【点评】本题的关键是将方程的解代入原方程,把关于x、y的方程转化为关于系数b 的方程,此法叫做待定系数法,在以后的学习中,经常用此方法求函数解析式.8.若是关于x、y的方程ax﹣by=1的一个解,且a+b=﹣3,则5a﹣2b=﹣43.【考点】二元一次方程的解.【分析】要求5a﹣2b的值,要先求出a和b的值.根据题意得到关于a和b的二元一次方程组,再求出a和b的值.【解答】解:把代入方程ax﹣by=1,得到a+2b=1,因为a+b=﹣3,所以得到关于a和b的二元一次方程组,解这个方程组,得b=4,a=﹣7,所以5a﹣2b=5×(﹣7)﹣2×4=﹣35﹣8=﹣43.【点评】运用代入法,得关于a和b的二元一次方程组,再解方程组求解是解决此类问题的关键.9.已知a2﹣a+1=2,那么a﹣a2+1的值是0.【考点】代数式求值.【专题】整体思想.【分析】先求出a2﹣a的值,再把原式化为﹣(a2﹣a)+1的形式进行解答.【解答】解:∵a2﹣a+1=2,∴a2﹣a=1,∴a﹣a2+1=﹣(a2﹣a)+1,=﹣1+1=0.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式a2﹣a的值,然后利用“整体代入法”求代数式的值.10.若|3a+4b﹣c|+(c﹣2b)2=0,则a:b:c=﹣2:3:6.【考点】解三元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.【分析】解此题可以根据函数的非负性进行求解,含不等式的式子必大于0,含平方的式子也必大于0,因此可知|3a+4b﹣c|=0,且(c﹣2b)2=0,据此可以求出a,b,c的比.【解答】解:依题意得:|3a+4b﹣c|=0,且(c﹣2b)2=0,∴,∴由②得3a=﹣2b,即a=﹣b,∴a:b:c=﹣b:b:2b=﹣2:3:6.故答案为:﹣2:3:6.【点评】此题考查的是非负数的性质,据此可以列出二元一次方程组,求出相应的比,就可以计算出此题.二、选择题11.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2 B.x=2,y=﹣3 C.x=﹣2,y=3 D.x=3,y=﹣2【考点】同类项;解二元一次方程组.【专题】计算题.【分析】本题根据同类项的定义,即相同字母的指数相同,可以列出方程组,然后求出方程组的解即可.【解答】解:由同类项的定义,得,解这个方程组,得.故选B.【点评】根据同类项的定义列出方程组,是解本题的关键.12.已知是方程组的解,则a,b间的关系是()A.4b﹣9a=1 B.3a+2b=1 C.4b﹣9a=﹣1 D.9a+4b=1【考点】二元一次方程组的解.【分析】解此题时可将x,y的值代入方程,化简可得出结论.【解答】解:根据题意得,原方程可化为要确定a和b的关系,只需消去c即可,则有9a+4b=1.故选D.【点评】此题考查的是对方程组性质的理解,运用加减消元法来求解.13.若二元一次方程3x﹣y=7,2x+3y=1,y=kx﹣9有公共解,则k的取值为()A.3 B.﹣3 C.﹣4 D.4【考点】解三元一次方程组.【专题】计算题.【分析】由题意建立关于x,y的方程组,求得x,y的值,再代入y=kx﹣9中,求得k 的值.【解答】解:解得:,代入y=kx﹣9得:﹣1=2k﹣9,解得:k=4.故选D.【点评】本题先通过解二元一次方程组,求得后再代入关于k的方程而求解的.14.若二元一次方程3x﹣2y=1有正整数解,则x的取值应为()A.正奇数B.正偶数C.正奇数或正偶数 D.0【考点】解二元一次方程.【分析】应先用方程表示y的值,然后再根据解为正整数分析解的情况.【解答】解:由题意,得,要使x,y都是正整数,必须满足3x﹣1大于0,且是2的倍数.根据以上两个条件可知,合适的x值为正奇数.故选A.【点评】解题关键是把方程做适当的变形,再确定符合条件的x的取值范围.15.关于x、y的二元一次方程组的解满足不等式x+y>0,则a的取值范围是()A.a<﹣1 B.a<1 C.a>﹣1 D.a>1【考点】解二元一次方程组;解一元一次不等式.【分析】解此题时可以解出二元一次方程组中x,y关于a的式子,代入x+y>0,然后解出a的取值范围.【解答】解:方程组中两个方程相加得4x+4y=2+2a,即x+y=,又x+y>0,即>0,解一元一次不等式得a>﹣1,故选C.【点评】本题是综合考查了二元一次方程组和一元一次不等式的综合运用,灵活运用二元一次方程组的解法是解决本题的关键.16.方程ax﹣4y=x﹣1是二元一次方程,则a的取值为()A.a≠0 B.a≠﹣1 C.a≠1 D.a≠2【考点】二元一次方程的定义.【专题】计算题.【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面考虑求a的取值.【解答】解:方程ax﹣4y=x﹣1变形得(a﹣1)x﹣4y=﹣1,根据二元一次方程的概念,方程中必须含有两个未知数,所以a﹣1≠0,即a≠1.故选C.【点评】二元一次方程必须符合以下三个条件:(1)方程中必须只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.解本题时是根据条件(1).17.(2013春•苏州期末)当x=2时,代数式ax3+bx+1的值为6,那么当x=﹣2时这个式子的值为()A.6 B.﹣4 C.5 D.1【考点】代数式求值.【专题】整体思想.【分析】把x=2代入ax3+bx+1=6,得到8a+2b=5;又当x=﹣2时,ax3+bx+1=﹣8a﹣2b+1=﹣(8a+2b)+1.所以把8a+2b当成一个整体代入即可.【解答】解:当x=2时,代数式ax3+bx+1的值为6,即8a+2b+1=6,∴8a+2b=5①当x=﹣2时,ax3+bx+1=﹣8a﹣2b+1=﹣(8a+2b)+1②把①代入②得:ax3+bx+1=﹣5+1=﹣4.故选B.【点评】此题考查的是代数式的性质,将已知变形然后求解.18.设A、B两镇相距x千米,甲从A镇、乙从B镇同时出发,相向而行,甲、乙行驶的速度分别为u千米/小时、v千米/小时,并有:①出发后30分钟相遇;②甲到B镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A镇还有4千米.求x、u、v.根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是()A.x=u+4 B.x=v+4 C.2x﹣u=4 D.x﹣v=4【考点】由实际问题抽象出二元一次方程.【专题】行程问题.【分析】首先由题意可得,甲乙各走了一小时的路程.根据题意,得甲走的路程差4千米不到2x千米,即u=2x﹣4或2x﹣u=4;乙走的路程差4千米不到x千米,则v=x﹣4或x=v+4、x﹣v=4.【解答】解:根据甲走的路程差4千米不到2x千米,得u=2x﹣4或2x﹣u=4.则C正确;根据乙走的路程差4千米不到x千米,则v=x﹣4或x=v+4、x﹣v=4.则B,D正确,A 错误.故选:A.【点评】此题的关键是用代数式表示甲、乙走一小时的路程,同时用到了路程公式,关键是能够根据题中的第三个条件得到甲、乙所走的路程分别和总路程之间的关系.三、解答题19.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】观察本题可知x的系数的最小公倍数较小,应考虑消去x,具体用加减消元法.【解答】解:(1)×7+(2)×2得:﹣11y=66,y=﹣6,把y=﹣6代入(1)得:2x+18=8,x=﹣5,∴原方程组的解为.【点评】两个未知数系数的符号都相反,可考虑消去最小公倍数较小的未知数.20.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】在方程2中,y的系数为1,所以可用含x的式子表示y,即用代入消元法比较简单.【解答】解:由(2)变形得:y=3x+1,代入(1)得:x+2(3x+1)=9,解得:x=1.代入y=3x+1得:y=4.∴方程组的解为.【点评】这类题目的解题关键是掌握方程组解法中的加减消元法和代入法.21.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.【解答】解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.【点评】本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.22.王大伯承包了25亩土地,今年春季改种黄瓜和西红柿两种大棚蔬菜,用去了44 000元,其中种黄瓜每亩用了1700元,获纯利润2600元;种西红柿每亩用了1800元,获纯利润2800元,问王大伯一共获纯利润多少元?【考点】二元一次方程组的应用.【专题】应用题.【分析】根据建立方程组,先求到两种蔬菜种植的亩数,再求一共获的纯利润.【解答】解:设王大伯种了x亩黄瓜,y亩西红柿,根据题意可得.共获纯利润=2600×10+2800×15=68 000(元)答:王大伯一共获纯利润68 000元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.本题一共获的纯利润指黄瓜和西红柿的利润和.23.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段某市的一环路、二环路、三环路的车流量(2014春•惠山区校级期末)已知关于x、y的方程组与有相同的解,求a、b的值.【考点】同解方程组.【分析】因为两个方程组有相同的解,故只需把两个方程组中不含未知数和含未知数的方程分别组成方程组,求出未知数的值,再代入另一组方程组即可.【解答】解:据题意得,解得,代入其他两个方程,可得方程组为,解得.【点评】此题比较复杂,考查了学生对方程组有公共解定义的理解能力及应用能力,是一道好题.28.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这种货车的情况如表所示.现租用该公司的甲种货车3辆乙种货车5辆,一次刚好运完这批货物,如果按每吨付运费30元计算,问货主应付运费多少元?第一次第二次甲种货车辆(辆)25乙种货车辆(辆)36累计运货吨数(吨)15.535【考点】二元一次方程组的应用.【分析】应先算出甲种货车和乙种货车一次各运多少吨货物.等量关系为:2×每辆甲种车的载重+3×每辆乙种车的载重=15.5;5×每辆甲种车的载重+6×每辆乙种车的载重=35.【解答】解:设甲种车每辆装x吨,乙种车每辆装y吨.则解得,运费为30×(3×4+5×2.5)=735(元).答:货主应付运费735元.【点评】根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.。

2017年中考数学备考《一元二次方程》专题复习(含答案解析)

2017年中考数学备考《一元二次方程》专题复习(含答案解析)

2017年中考备考专题复习:一元二次方程一、单选题(共15题;共30分)1、(2016•江西)设α、β是一元二次方程x2+2x﹣1=0的两个根,则αβ的值是()A、2B、1C、﹣2D、﹣12、(2016•金华)一元二次方程x2﹣3x﹣2=0的两根为x1,x2,则下列结论正确的是()A、x1=﹣1,x2=2B、x1=1,x2=﹣2C、x1+x2=3D、x1x2=23、(2016•福州)下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是()A、a>0B、a=0C、c>0D、c=04、(2016•荆门)若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为()A、x1=0,x2=6B、x1=1,x2=7C、x1=1,x2=﹣7D、x1=﹣1,x2=75、(2016•玉林)若一次函数y=mx+6的图象与反比例函数y= 在第一象限的图象有公共点,则有()A、mn≥﹣9B、﹣9≤mn≤0C、mn≥﹣4D、﹣4≤mn≤06、(2016•玉林)关于x的一元二次方程:x2﹣4x﹣m2=0有两个实数根x1、x2,则m2()=()A 、B、-C、4D、﹣47、(2016•自贡)已知关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,则m的取值范围是()A、m>1B、m<1C、m≥1D、m≤18、(2016•大庆)若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2,则M与N的大小关系正确的为()A、M>NB、M=NC、M<ND、不确定9、(2016•呼和浩特)已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,则(m﹣1)2+(n﹣1)2的最小值是()A、6B、3C、﹣3D、010、(2016•包头)若关于x的方程x2+(m+1)x+ =0的一个实数根的倒数恰是它本身,则m的值是()A、﹣B 、C、﹣或D、111、(2016•黔东南州)已知一元二次方程x2﹣2x﹣1=0的两根分别为m、n,则m+n的值为()A、﹣2B、﹣1C、1D、212、(2016•雅安)已知关于x的一元二次方程x2+mx﹣8=0的一个实数根为2,则另一实数根及m 的值分别为()A、4,﹣2B、﹣4,﹣2C、4,2D、﹣4,213、(2016•贵港)若关于x的一元二次方程x2﹣3x+p=0(p≠0)的两个不相等的实数根分别为a 和b,且a2﹣ab+b2=18,则+ 的值是()A、3B、﹣3C、5D、﹣514、(2016•梧州)青山村种的水稻2010年平均每公顷产7200kg,2012年平均每公顷产8450kg,求水稻每公顷产量的年平均增长率,设水稻每公顷产量的年平均增长率为x,则所列方程正确的为()A、7200(1+x)=8450B、7200(1+x)2=8450C、7200+x2=8450D、8450(1﹣x)2=720015、(2016•枣庄)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A 、B 、C 、D 、二、填空题(共5题;共5分)16、(2016•德州)方程2x2﹣3x﹣1=0的两根为x1,x2,则x12+x22=________.17、(2016•菏泽)已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m=________.18、(2016•黄石)关于x的一元二次方程x2+2x﹣2m+1=0的两实数根之积为负,则实数m的取值范围是________.19、(2016•丹东)某公司今年4月份营业额为60万元,6月份营业额达到100万元,设该公司5、6两个月营业额的月均增长率为x,则可列方程为________.20、(2016•内蒙古)如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为________ m.三、解答题(共4题;共25分)21、(2016•潍坊)关于x的方程3x2+mx﹣8=0有一个根是,求另一个根及m的值.22、(2016•岳阳)已知关于x的方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值).23、(2016•新疆)周口体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?24、(2016•巴中)随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现在仅卖98元/瓶,现假定两次降价的百分率相同,求该种药品平均每场降价的百分率.四、综合题(共2题;共25分)25、(2016•荆州)已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均为实数,方程①的根为非负数.(1)求k的取值范围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.26、(2016•湖州)随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位不断增加.第3页共16页◎第4页共16页(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个,求该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率;(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位),因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t.①若该养老中心建成后可提供养老床位200个,求t的值;答案解析部分一、单选题【答案】D【考点】根与系数的关系【解析】【解答】解:∵α、β是一元二次方程x2+2x﹣1=0的两个根,∴αβ= ,故选D.【分析】本题考查根与系数的关系,解题的关键是明确两根之积等于常数项与二次项系数的比值.根据α、β是一元二次方程x2+2x﹣1=0的两个根,由根与系数的关系可以求得αβ的值,本题得以解决.【答案】C【考点】根与系数的关系【解析】【解答】解:∵方程x2﹣3x﹣2=0的两根为x1,x2,∴x1+x2=﹣=3,x1•x2= =﹣2,∴C选项正确.故选C.【分析】根据根与系数的关系找出“x1+x2=﹣=3,x1•x2= =﹣2”,再结合四个选项即可得出结论.本题考查了根与系数的关系,解题的关键是找出x1+x2=3,x1•x2=﹣2.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.【答案】D【考点】根的判别式【解析】【解答】解:∵一元二次方程有实数根,∴△=(﹣4)2﹣4ac=16﹣4ac≥0,且a≠0,∴ac≤4,且a≠0;A、若a>0,当a=1、c=5时,ac=5>4,此选项错误;B、a=0不符合一元二次方程的定义,此选项错误;C、若c>0,当a=1、c=5时,ac=5>4,此选项错误;D、若c=0,则ac=0≤4,此选项正确;故选:D.【分析】根据方程有实数根可得ac≤4,且a≠0,对每个选项逐一判断即可.本题主要考查根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.【答案】D【考点】解一元二次方程-因式分解法,二次函数的性质【解析】【解答】解:∵二次函数y=x2+mx的对称轴是x=3,∴﹣=3,解得m=﹣6,∴关于x的方程x2+mx=7可化为x2﹣6x﹣7=0,即(x+1)(x﹣7)=0,解得x1=﹣1,x2=7.故选D.【分析】先根据二次函数y=x2+mx的对称轴是x=3求出m的值,再把m的值代入方程x2+mx=7,求出x的值即可.本题考查的是二次函数的性质,熟知二次函数的对称轴方程是解答此题的关键.【答案】A【考点】根的判别式,反比例函数与一次函数的交点问题【解析】【解答】解:依照题意画出图形,如下图所示.将y=mx+6代入y= 中,得:mx+6= ,整理得:mx2+6x﹣n=0,∵二者有交点,∴△=62+4mn≥0,∴mn≥﹣9.故选A.【分析】依照题意画出图形,将一次函数解析式代入反比例函数解析式中,得出关于x的一元二次方程,由两者有交点,结合根的判别式即可得出结论.本题考查了反比例函数与一次函数的交点问题以及根的判别式,解题的关键由根的判别式得出关于mn的不等式.本题属于基础题,难度不大,解决该题型题目时,画出图形,利用数形结合解决问题是关键.【答案】D【考点】根与系数的关系【解析】【解答】解:∵x2﹣4x﹣m2=0有两个实数根x1、x2,∴,∴则m2()= = =﹣4.故答案选D.第7页共16页◎第8页共16页【分析】根据所给一元二次方程,写出韦达定理,代入所求式子化简.本题主要考查一元二次方程根与系数的关系,属基础题,熟练掌握韦达定理是解题关键.【答案】C【考点】根的判别式【解析】【解答】解:∵关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,∴△=b2﹣4ac=22﹣4×1×[﹣(m﹣2)]≥0,解得m≥1,故选C.【分析】根据关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,可知△≥0,从而可以求得m 的取值范围.本题考查根的判别式,解题的关键是明确当一元二次方程有实数根时,△≥0.【答案】B【考点】一元二次方程的解【解析】【解答】解:∵x0是方程ax2+2x+c=0(a≠0)的一个根,∴ax02+2x0+c=0,即ax02+2x0=﹣c,则N﹣M=(ax0+1)2﹣(1﹣ac)=a2x02+2ax0+1﹣1+ac=a(ax02+2x0)+ac=﹣ac+ac=0,∴M=N,故选:B.【分析】把x0代入方程ax2+2x+c=0得ax02+2x0=﹣c,作差法比较可得.本题主要考查一元二次方程的解得概念及作差法比较大小,熟练掌握能使方程成立的未知数的值叫做方程的解是根本,利用作差法比较大小是解题的关键.【答案】A【考点】根与系数的关系,二次函数的最值【解析】【解答】解:∵m2﹣2am+2=0,n2﹣2an+2=0,∴m,n是关于x的方程x2﹣2ax+2=0的两个根,∴m+n=2a,mn=2,∴(m﹣1)2+(n﹣1)2=m2﹣2m+1+n2﹣2n+1=(m+n)2﹣2mn﹣2(m+n)+2=4a2﹣4﹣4a+2=4(a ﹣)2﹣3,∵a≥2,∴当a=2时,(m﹣1)2+(n﹣1)2有最小值,∴(m﹣1)2+(n﹣1)2的最小值=4(a﹣)2+3=4(2﹣)2﹣3=6,故选A.【分析】根据已知条件得到m,n是关于x的方程x2﹣2ax+2=0的两个根,根据根与系数的关系得到m+n=2a,mn=2,于是得到4(a﹣)2﹣3,当a=2时,(m﹣1)2+(n﹣1)2有最小值,代入即可得到结论.本题考查了根与系数的关系,二次函数的最值,熟练掌握根与系数的关系是解题的关键.【答案】C【考点】一元二次方程的解,根与系数的关系【解析】【解答】解:由根与系数的关系可得:x1+x2=﹣(m+1),x1•x2= ,又知个实数根的倒数恰是它本身,则该实根为1或﹣1,若是1时,即1+x2=﹣(m+1),而x2= ,解得m=﹣;若是﹣1时,则m= .故选:C.【分析】由根与系数的关系可得:x1+x2=﹣(m+1),x1•x2= ,又知个实数根的倒数恰是它本身,则该实根为1或﹣1,然后把±1分别代入两根之和的形式中就可以求出m的值.本题考查了一元二次方程的解的定义和一元二次方程根与系数的关系.解此类题目要会把代数式变形为两根之积或两根之和的形式,代入数值计算即可.【答案】D【考点】根与系数的关系【解析】【解答】解:∵方程x2﹣2x﹣1=0的两根分别为m、n,∴m+n=﹣=2.故选D.【分析】本题考查了根与系数的关系,解题的关键是找出m+n=2.本题属于基础题,难度不大,解决该题型题目时,利用根与系数的关系找出两根之和与两根之积是关键.根据一元二次方程的系数结合根与系数的关系即可得出m+n的值,由此即可得出结论.【答案】D【考点】根与系数的关系【解析】【解答】解:由根与系数的关系式得:2x2=﹣8,2+x2=﹣m=﹣2,解得:x2=﹣4,m=2,则另一实数根及m的值分别为﹣4,2,故选D【分析】此题考查了根与系数的关系式,熟练掌握一元二次方程根与系数的关系是解本题的关键.根据题意,利用根与系数的关系式列出关系式,确定出另一根及m的值即可.【答案】D【考点】根与系数的关系【解析】【解答】解:∵a、b为方程x2﹣3x+p=0(p≠0)的两个不相等的实数根,∴a+b=3,ab=p,∵a2﹣ab+b2=(a+b)2﹣3ab=32﹣3p=18,∴p=﹣3.当p=﹣3时,△=(﹣3)2﹣4p=9+12=21>0,∴p=﹣3符合题意.+ = = = ﹣2= ﹣2=﹣5.故选D.【分析】本题考查了根与系数的关系、解一元一次方程以及完全平方公式的应用,解题的关键是求出p=﹣3.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.根据方程的解析式结合根与系数的关系找出a+b=3、ab=p,利用完全平方公式将a2﹣ab+b2=18变形成(a+b)2﹣3ab=18,代入数据即可得出关于p的一元一次方程,解方程即可得出p的值,经验证p=﹣3符合题意,再将+ 变形成﹣2,代入数据即可得出结论.【答案】B【考点】一元二次方程的应用【解析】【解答】解:由题意可得,7200(1+x)2=8450,故选B.【分析】本题考查由实际问题抽象出一元二次方程组,解题的关键是明确题意,列出相应的一元二次方程组.【答案】B【考点】根的判别式,一次函数的图象【解析】【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb<0,A.k>0,b>0,即kb>0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k<0,b<0,即kb>0,故C不正确;D.k>0,b=0,即kb=0,故D不正确;故选:B.【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到判别式大于0,求出kb 的符号,对各个图象进行判断即可.本题考查的是一元二次方程根的判别式和一次函数的图象,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题【答案】【考点】根与系数的关系【解析】【解答】解:∵方程2x2﹣3x﹣1=0的两根为x1,x2,∴x1+x2=﹣= ,x1•x2= =﹣,∴x12+x22= ﹣2x1•x2= ﹣2×(﹣)= .故答案为:.【分析】根据根与系数的关系得出“x1+x2=﹣= ,x1•x2= =﹣”,再利用完全平方公式将x12+x22转化成﹣2x1•x2,代入数据即可得出结论.本题考查了根与系数的关系以及完全平方公式,解题的关键是求出x1+x2= ,x1•x2=﹣.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积,再利用完全平方公式将原代数式转化成只含两根之和与两根之积的代数式是关键.【答案】6【考点】一元二次方程的解【解析】【解答】解:∵m是关于x的方程x2﹣2x﹣3=0的一个根,∴m2﹣2m﹣3=0,∴m2﹣2m=3,∴2m2﹣4m=6,故答案为:6.【分析】根据m是关于x的方程x2﹣2x﹣3=0的一个根,通过变形可以得到2m2﹣4m值,本题得以解决.本题考查一元二次方程的解,解题的关键是明确题意,找出所求问题需要的条件.【答案】m>【考点】根的判别式,根与系数的关系,解一元一次不等式组【解析】【解答】解:设x1、x2为方程x2+2x﹣2m+1=0的两个实数根,由已知得:,即解得:m>.故答案为:m>.【分析】设x1、x2为方程x2+2x﹣2m+1=0的两个实数根.由方程有实数根以及两根之积为负可得出关于m的一元一次不等式组,解不等式组即可得出结论.本题考查了根与系数的关系、根的判别式以及解一元一次不等式组,解题的关键是得出关于m的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,根据根的情况结合根的判别式以及根与系数的关系得出关于m的一元一次不等式组是关键.【答案】60(1+x)2=100【考点】一元二次方程的应用,根据实际问题列二次函数关系式第11页共16页◎第12页共16页【解析】【解答】解:设平均每月的增长率为x,根据题意可得:60(1+x)2=100.故答案为:60(1+x)2=100.【分析】本题考查的是一个增长率问题,关键是知道4月份的钱数和增长两个月后6月份的钱数,列出方程.设平均每月的增长率为x,根据4月份的营业额为60万元,6月份的营业额为100万元,分别表示出5,6月的营业额,即可列出方程.【答案】2【考点】一元二次方程的应用【解析】【解答】解:设人行道的宽度为x米,根据题意得,(30﹣3x)(24﹣2x)=480,解得x1=20(舍去),x2=2.即:人行通道的宽度是2m.故答案是:2.【分析】设人行道的宽度为x米,根据矩形绿地的面积之和为480米2,列出一元二次方程.本题考查了一元二次方程的应用,利用两块相同的矩形绿地面积之和为480米2得出等式是解题关键.三、解答题【答案】解:设方程的另一根为t.依题意得:3×()2+ m﹣8=0,解得m=10.又t=﹣,所以t=﹣4.综上所述,另一个根是﹣4,m的值为10【考点】根与系数的关系【解析】【分析】由于x= 是方程的一个根,直接把它代入方程即可求出m的值,然后由根与系数的关系来求方程的另一根.此题考查了根与系数的关系,一元二次方程的根的定义,把方程的根代入原方程就可以确定待定系数m的值.【答案】(1)证明:∵关于x的一元二次方程x2﹣(2m+1)x+m(m+1)=0.∴△=(2m+1)2﹣4m(m+1)=1>0,∴方程总有两个不相等的实数根(2)解:∵x=0是此方程的一个根,∴把x=0代入方程中得到m(m+1)=0,∴m=0或m=﹣1,把m=0或m=﹣1代入(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=4m2﹣4m+1+9﹣m2+7m﹣5=3m2+3m+5,可得:(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=5,或(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=3﹣3+5=5.【考点】一元二次方程的解,根的判别式【解析】【分析】(1)找出a,b及c,表示出根的判别式,变形后得到其值大于0,即可得证.(2)把x=0代入方程即可求m的值,然后将其整体代入所求的代数式并求值即可.本题考查了根的判别式和一元二次方程的解.解题时,逆用一元二次方程解的定义易得出所求式子的值,在解题时要重视解题思路的逆向分析.【答案】解:设要邀请x支球队参加比赛,由题意,得x(x﹣1)=28,解得:x1=8,x2=﹣7(舍去).答:应邀请8支球队参加比赛【考点】一元二次方程的应用【解析】【分析】设要邀请x支球队参加比赛,则比赛的总场数为x(x﹣1)场,与总场数为28场建立方程求出其解即可.本题考查了列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时单循环形式比赛规则的总场数为等量关系建立方程是关键.【答案】解:设该种药品平均每场降价的百分率是x,由题意得:200(1﹣x)2=98解得:x1=1.7(不合题意舍去),x2=0.3=30%.答:该种药品平均每场降价的百分率是30%【考点】一元二次方程的应用【解析】【分析】设该种药品平均每场降价的百分率是x,则两个次降价以后的价格是200(1﹣x)2,据此列出方程求解即可.此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.判断所求的解是否符合题意,舍去不合题意的解.四、综合题【答案】(1)解:∵关于x的分式方程的根为非负数,∴x≥0且x≠1,又∵x= ≥0,且≠1,∴解得k≥﹣1且k≠1,又∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0中2﹣k≠0,∴k≠2,综上可得:k≥﹣1且k≠1且k≠2;(2)解:∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0有两个整数根x1、x2,且k=m+2,n=1时,∴把k=m+2,n=1代入原方程得:﹣mx2+3mx+(1﹣m)=0,即:mx2﹣3mx+m﹣1=0,∴△≥0,即△=(﹣3m)2﹣4m(m﹣1),且m≠0,∴△=9m2﹣4m(m﹣1)=m(5m+4),∵x1、x2是整数,k、m都是整数,∵x1+x2=3,x1•x2= =1﹣,∴1﹣为整数,∴m=1或﹣1,由(1)知k≠1,则m+2≠1,m≠-1∴把m=1代入方程mx2﹣3mx+m﹣1=0得:x2﹣3x+1﹣1=0,x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3;(3)解:|m|≤2不成立,理由是:由(1)知:k≥﹣1且k≠1且k≠2,∵k是负整数,∴k=﹣1,(2﹣k)x2+3mx+(3﹣k)n=0且方程有两个实数根x1、x2,∴x1+x2=﹣= =﹣m,x1x2= = ,x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),x12﹣x1k+x22﹣x2k=x1x2﹣x1k﹣x2k+k2,x12+x22═x1x2+k2,(x1+x2)2﹣2x1x2﹣x1x2=k2,(x1+x2)2﹣3x1x2=k2,(﹣m)2﹣3×=(﹣1)2,m2﹣4=1,m2=5,m=±,∴|m|≤2不成立.【考点】根的判别式,根与系数的关系,分式方程的解【解析】【分析】(1)先解出分式方程①的解,根据分式的意义和方程①的根为非负数得出k的取值;(2)先把k=m+2,n=1代入方程②化简,由方程②有两个整数实根得△是完全平方数,列等式得出关于m的等式,由根与系数的关系和两个整数根x1、x2得出m=1和﹣1,分别代入方程后解出即可.(3)根据(1)中k的取值和k为负整数得出k=﹣1,化简已知所给的等式,并将两根和与积代入计算求出m的值,做出判断.本题考查了一元二次方程的根与系数的关系,考查了根的判别式及分式方程的解;注意:①解分式方程时分母不能为0;②一元二次方程有两个整数根时,根的判别式△为完全平方数.【答案】(1)解:设该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率为x,由题意可列出方程:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.(2)解:设规划建造单人间的房间数为t(10≤t≤30),则建造双人间的房间数为2t,三人间的房间数为100﹣3t,由题意得:t+4t+3(100﹣3t)=200,解得:t=25.答:t的值是25.②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?解:设该养老中心建成后能提供养老床位y个,由题意得:y=t+4t+3(100﹣3t)=﹣4t+300(10≤t≤30),∵k=﹣4<0,∴y随t的增大而减小.当t=10时,y的最大值为300﹣4×10=260(个),当t=30时,y的最小值为300﹣4×30=180(个).答:该养老中心建成后最多提供养老床位260个,最少提供养老床位180个.【考点】一元一次方程的应用,一元二次方程的应用,一次函数的应用【解析】【分析】本题考查了一次函数的应用、解一元一次方程以及解一元二次方程,解题的关键是:(1)根据数量关系列出关于x的一元二次方程;(2)①根据数量关系找出关于t的一元一次方程;②根据数量关系找出y关于t的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组或函数关系式)是关键.(1)设该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率为x,根据“2015年的床位数=2013年的床位数×(1+增长率)的平方”可列出关于x的一元二次方程,解方程即可得出结论;(2)①设规划建造单人间的房间数为t(10≤t≤30),则建造双人间的房间数为2t,三人间的房间数为100﹣3t,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出关于t的一元一次方程,解方程即可得出结论;②设该养老中心建成后能提供养老床位y个,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出y关于t的函数关系式,根据一次函数的性质结合t的取值范围,即可得出结论.第15页共16页◎第16页共16页。

2017届中考数学专题选择填空压轴题总复习最新版

2017届中考数学专题选择填空压轴题总复习最新版

A.1.5cm C.1.8cm
B.1.2cm D.2cm
首页
末页
6.如图,点G、E、A、B在一条直线上,Rt△EFG 从如图所示的位置出发,沿直线AB向右匀速运动 ,当点G与B重合时停止运动.设△EFG与矩形 ABCD重合部分的面积为S,运动时间为t,则S与t 的图象大致是( D )
首页
末页
二、填空题
专题一 选择填空压轴题
一、选择题
1.二次函数y=ax2+bx+c(a≠0)的部分图象如图,
图象过点(﹣1,0),对称轴为直线x=2,下列结
论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④
当x>﹣1时,y的值随x值的增大而增大.其中正 确的结论有( B )
A.1个
B.2个
C.3个
D.4个
7.如图-1,三个正方形的边长分别为2,6,8; 则图中阴影部分的面积为 21 .
8.如图-2,D是△ABC的边BC上任意一点,E、F分 别是线段AD、CE的中点,且△ABC的面积为20cm2 ,则△BEF的面积是 5 cm2.
首页
末页
9.如图-3,在矩形ABCD中,AD=9cm,AB=3cm,
将其折叠,使点D与点B重合,则重叠部分 (△BEF)的面积为 7.5cm2 .
A.
B.
C.
D.
首页
末页
4.如图,一根长5米的竹杆AB斜立于墙AC的右侧 ,底端B与墙角C的距离为3米,当竹杆顶端A下滑x 米时,底端B便随着向右滑行y米,反映y与x变化 关系的大致图象是( A )
首页
末页
5.如图1,在Rt△ABC中,∠ACB=90°,点P以每 秒1cm的速度从点A出发,沿折线AC﹣CB运动,到 点B停止,过点P作PD⊥AB,垂足为D,PD的长y (cm)与点P的运动时间x(秒)的函数图象如图 2所示,当点P运动5秒时,PD的长是( B )

2017中考数学《压轴题》专题训练含答案解析

2017中考数学《压轴题》专题训练含答案解析

压轴题1、已知,在平行四边形OABC 中,OA=5,AB=4,∠OCA=90°,动点P 从O 点出发沿射线OA 方向以每秒2个单位的速度移动,同时动点Q 从A 点出发沿射线AB 方向以每秒1个单位的速度移动.设移动的时间为t 秒. (1)求直线AC 的解析式;(2)试求出当t 为何值时,△OAC 与△PAQ 相似; (3)若⊙P 的半径为58,⊙Q 的半径为23;当⊙P 与对角线AC 相切时,判断⊙Q 与直线AC 、BC 的位置关系,并求出Q 点坐标。

解:(1)42033y x =-+ (2)①当0≤t≤2.5时,P 在OA 上,若∠OAQ=90°时, 故此时△OAC 与△PAQ 不可能相似.当t>2.5时,①若∠APQ=90°,则△APQ ∽△OCA ,∵t>2.5,∴符合条件.②若∠AQP=90°,则△APQ ∽△∠OAC ,∵t>2.5,∴符合条件.综上可知,当时,△OAC 与△APQ 相似.(3)⊙Q 与直线AC 、BC 均相切,Q 点坐标为(109,531)。

2、如图,以矩形OABC 的顶点O 为原点,OA 所在的直线为x 轴,OC 所在的直线为y 轴,建立平面直角坐标系.已知OA =3,OC =2,点E 是AB 的中点,在OA 上取一点D ,将△BDA 沿BD 翻折,使点A 落在BC 边上的点F 处. (1)直接写出点E 、F 的坐标;(2)设顶点为F 的抛物线交y 轴正半轴...于点P ,且以点E 、F 、P 为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x 轴、y 轴上是否分别存在点M 、N ,使得四边形MNFE 的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.解:(1)(31)E ,;(12)F ,.(2)在Rt EBF △中,90B ∠=o, 2222125EF EB BF ∴=+=+=.设点P 的坐标为(0)n ,,其中0n >,Q 顶点(12)F ,, ∴设抛物线解析式为2(1)2(0)y a x a =-+≠.①如图①,当EF PF =时,22EF PF =,221(2)5n ∴+-=.解得10n =(舍去);24n =.(04)P ∴,.24(01)2a ∴=-+.解得2a =. ∴抛物线的解析式为22(1)2y x =-+(第2题)②如图②,当EP FP =时,22EP FP =,22(2)1(1)9n n ∴-+=-+. 解得52n =-(舍去).③当EF EP =时,53EP =<,这种情况不存在. 综上所述,符合条件的抛物线解析式是22(1)2y x =-+. (3)存在点M N ,,使得四边形MNFE 的周长最小. 如图③,作点E 关于x 轴的对称点E ',作点F 关于y 轴的对称点F ',连接E F '',分别与x 轴、y 轴交于点M N ,,则点M N ,就是所求点.(31)E '∴-,,(12)F NF NF ME ME '''-==,,,.43BF BE ''∴==,.FN NM ME F N NM ME F E ''''∴++=++=22345+=.又5EF =Q ,∴55FN NM ME EF +++=+,此时四边形MNFE 的周长最小值是553、如图,在边长为2的等边△ABC 中,A D ⊥BC,点P 为边AB 上一个动点,过P 点作PF//AC 交线段BD 于点F,作PG ⊥AB 交AD 于点E,交线段CD 于点G,设BP=x . (1)①试判断BG 与2BP 的大小关系,并说明理由;②用x 的代数式表示线段DG 的长,并写出自变量x 的取值范围;(2)记△DEF 的面积为S,求S 与x 之间的函数关系式,并求出S 的最大值;(3)以P 、E 、F 为顶点的三角形与△EDG 是否可能相似?如果能相似,请求出BP 的长,如果不能,请说明理由。

2017年中考数学一轮复习专题图形折叠问题综合复习题

2017年中考数学一轮复习专题图形折叠问题综合复习题

2017年中考数学一轮复习专题图形折叠问题综合复习一选择题:1.如图.E是矩形ABCD中BC边的中点.将△ABE沿AE折叠到△AFE.F在矩形ABCD内部.延长AF交DC于G点.若∠AEB=55°.则∠DAF=( )A.40° B.35° C.20° D.15°2.如图.把一个长方形纸片沿EF折叠后.点D、C分别落在D′、C′的位置.若∠EFB=65°.则∠AED′等于()A.50° B.55° C.60° D.65°3.如图.把矩形ABCD沿EF翻折.点B恰好落在AD边的B′处.若AE=2.DE=6.∠EFB=60°.则矩形ABCD的面积是()A.12 B.24 C.12 D.164.如图.已知矩形ABCD沿着直线BD折叠.使点C落在C′处.BC′交AD于E.AD=8.AB=4.则DE长为()A.3 B.4 C.5 D.65.将矩形纸片ABCD按如图所示的方式折叠.得到菱形AECF.若AB=3.则BC的长为()A.1 B.2 C. D.6.如图.在矩形ABCD中.AB=8.BC=4.将矩形沿AC折叠.则重叠部分△AFC的面积为()A.12 B.10 C.8 D.67.如图.矩形ABCD中.点E在边AB上.将矩形ABCD沿直线DE折叠.点A恰好落在边BC的点F处.若AE=5.BF=3.则CD的长是()A.7B.8 C.9 D. 108.如图.菱形纸片ABCD中.∠A=60°.折叠菱形纸片ABCD.使点C落在DP(P为AB中点)所在的直线上.得到经过点D的折痕DE.则∠DEC的大小为()A.78° B.75° C.60° D.45°9.如图.将边长为12cm的正方形ABCD折叠.使得点A落在CD边上的点E处.折痕为MN.若CE的长为7cm.则MN 的长为()A. 10 B. 13 C. 15 D. 1210.如图.将矩形纸片ABCD的四个角向内翻折.恰好拼成一个无缝隙无重叠的四边形EFGH.若EH=12厘米.EF=16厘米.则边AD的长是 ( )A.12厘米 B.16厘米 C.20厘米 D.28厘米11.如图.在矩形 OABC 中.OA=8.OC=4.沿对角线 OB 折叠后.点 A 与点 D 重合.OD 与 BC交于点 E.则点 D 的坐标是()A.(4.8)B.(5.8)C.(.) D.(.)12.将矩形纸片ABCD按如图所示的方式折叠.AE、EF为折痕.∠BAE=30°..折叠后.点C落在AD边上的C1处.并且点B落在EC1边上的B1处.则BC的长为()A. B. 2 C. 3 D.13.如图.矩形纸片ABCD中.AD=3cm.点E在BC上.将纸片沿AE折叠.使点B落在AC上的点F处.且∠AEF=∠CEF.则AB的长是( )A.1 cm B.cm C.2 cm D. cm14.如图.在矩形ABCD中.AB=5.BC=7.点E是AD上一个动点.把△BAE沿BE向矩形内部折叠.当点A的对应点A1恰好落在∠BCD的平分线上时.CA1的长为()A.3或4 B.4或3C.3或4 D.3或415.如图.在矩形ABCD中.点E、F分别在边AB.BC上.且AE=AB.将矩形沿直线EF折叠.点B恰好落在AD边上的点P处.连接BP交EF于点Q.对于下列结论:①EF=2BE.②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是( )A.①② B.②③C.①③ D.①④16.如图.点M、N分别在矩形ABCD边AD、BC上.将矩形ABCD沿MN翻折后点C恰好与点A重合.若此时=,则△AMD′的面积与△AMN的面积的比为( )A.1:3 B.1:4 C.1:6 D.1: 917.图.矩形ABCD中.点E是AD的中点.将△ABE折叠后得到△GBE.延长B G交CD于点F.若CF=1.FD=2.则BC的长为( )A.3B.2C.2D.218.如图.矩形ABCD边AD沿拆痕AE折叠.使点D落在BC上的F处.已知AB=6.△ABF的面积是24.则FC等于().A.2 B.3 C.4 D.519.如图.在菱形纸片ABCD中.∠A=60°.将纸片折叠.点A、D分别落在点A′、D′处.且A′D′经过点B.EF为折痕.当D′F⊥CD时.的值为()A.B.C.D.20.如图.在矩形纸片ABCD中.AB=3.AD=5.折叠纸片.使点A落在BC边上的A′处.折痕为PQ.当点A′在BC边上移动时.折痕的端点P.Q也随之移动。

中考数学一轮复习《三角形及其性质》练习题(含答案)

中考数学一轮复习《三角形及其性质》练习题(含答案)

中考数学一轮复习《三角形及其性质》练习题(含答案)课时1一般三角形及等腰三角形(建议答题时间:40分钟)1. (2017泰州)三角形的重心是()A. 三角形三条边上中线的交点B. 三角形三条边上高线的交点C. 三角形三条边垂直平分线的交点D. 三角形三条内角平分线的交点2. (2017金华)下列各组数中,不可能成为一个三角形三边长的是()A. 2,3,4B. 5,7,7C. 5,6,12D. 6,8,103. (2017株洲)如图,在△ABC中,∠BAC=x,∠B=2x,∠C=3x,则∠BAD的度数是()A. 145°B. 150°C. 155°D. 160°第3题图4. (2017甘肃)已知a,b,c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A. 2a+2b-2cB. 2a+2bC. 2cD. 05. (2017德阳)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°,则∠DAC的大小是()A. 15°B. 20°C. 25°D. 30°第5题图第6题图6. (2017滨州)如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为()A. 40°B. 36°C. 30°D. 25°7. (2017荆州)如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC 于点D,则∠CBD的度数为()A. 30°B. 45°C. 50°D. 75°第7题图第8题图第9题图8. (2017郴州)小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A. 180°B. 210°C. 360°D. 270°9. (2017天津)如图,在△ABC中,AB=AC,AD,CE是△ABC的两条中线,P是AD上的一个动点,则下列线段的长等于BP+EP最小值的是().A. BCB. CEC. ADD. AC10. (2017泰州)将一副三角板如图叠放,则图中∠α的度数为________.第10题图第12题图第13题图11. (2017成都)在△ABC中,∠A∶∠B∶∠C=2∶3∶4,则∠A的度数为________.12. (2017江西)如图①是一把园林剪刀,把它抽象为图②,其中OA=OB,若剪刀张开的角为30°,则∠A=________度.13. (2017湘潭)如图,在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,DE垂直平分AB,垂足为点E,请任意写出一组相等的线段________.14. (2017徐州)△ABC中,点D、E分别是AB、AC的中点,DE=7,则BC=________.15. (2017丽水)等腰三角形的一个内角为100°,则顶角的度数是________.16. (2017陕西)如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A =52°,则∠1+∠2的度数为________.第16题图第18题图17. (2017淄博)在边长为4的等边三角形ABC中,D为BC边上的任意一点,过点D分别作DE⊥AB,DF⊥AC,垂足分别为E,F,则DE+DF=________. 18. (2017宁夏)在△ABC中,AB=6,点D是AB的中点,过点D作DE∥BC,交AC于点E,点M在DE上,且ME=13DM,当AM⊥BM时,则BC的长为________.19. (2017达州)△ABC中,AB=5,AC=3,AD是△ABC的中线,设AD长为m,则m的取值范围是________.20. (2017内江)如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.第20题图21. (2017北京)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC 于点D.求证:AD=BC.第21题图22. (2017连云港)如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、CD交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A、F的直线垂直平分线段BC.第22题图课时2直角三角形及勾股定理(建议答题时间:40分钟)1. 下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A. 3,4,5B. 1,2, 3C. 6,7,8D. 2,3,42. (2016沈阳)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是()A. 433 B.4 C. 83 D. 4 3第2题图第3题图3. (2017大连)如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB的长为()A. 2aB. 22aC. 3aD. 43 3a4. (2017黄石)如图,在△ABC中,E为BC边的中点,CD⊥AB,AB=2,AC=1,DE=32,则∠CDE+∠ACD=()A. 60°B. 75°C. 90°D. 105°第4题图第5题图5. (2017重庆巴蜀月考)如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交AC于点D,交AB于点E.若BC=4,AC=8,则BD=()A. 3B. 4C. 5D. 66. (2017陕西)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A. 3 3B. 6C. 3 2D. 21第6题图第7题图7. 关注数学文化(2017襄阳)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A. 3B. 4C. 5D. 68. (2017株洲)如图,在Rt△ABC中,∠B的度数是________度.第8题图第11题图第12题图9. (2017安顺)三角形三边长分别为3,4,5,那么最长边上的中线长等于________.10. (2017岳阳)在△ABC中,BC=2,AB=23,AC=b,且关于x的方程x2-4x +b=0有两个相等的实数根,则AC边上的中线长为________.11. (2017常德)如图,已知Rt△ABE中∠A=90°,∠B=60°,BE=10,D是线段AE上的一动点,过D作CD交BE于C,并使得∠CDE=30°,则CD长度的取值范围是________.12. (2017娄底)如图,在等腰Rt△ABC中,∠ABC=90°,AB=CB=2,点D为AC的中点,点E,F分别是线段AB,CB上的动点,且∠EDF=90°,若ED的长为m,则△BEF的周长是________.(用含m的代数式表示)13. (2017杭州)如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连接AE,则△ABE的面积等于________.第13题图第14题图14. (2017武汉)如图,在△ABC中,AB=AC=23,∠BAC=120°,点D,E都在边BC上,∠DAE=60°,BD=2CE,则DE的长为________.15. (2017山西)一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB =∠BCD=90°,∠A=60°,∠CBD=45°.E为AB的中点,过点E作EF⊥CD于点F.若AD=4 cm,则EF的长为________cm.第15题图第16题图16. (2017河南)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=2+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终..落在边AC上,若△MB′C为直角三角形,则BM的长为________.17. (2018原创)如图,在△ABC中,∠ABC=90°,∠A=30°,D是边AB上一点,∠BDC=45°,AD=4,求BC的长.(结果保留根号)第17题图18. (2018原创)如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.(1)求DB的长;(2)在△ABC中,求BC边上高的长.第18题图19. 在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AC=20,BC=15,(1)求AB的长;(2)求CD的长.第19题图20. (2017徐州)如图,已知AC⊥BC,垂足为C,AC=4,BC=33,将线段AC 绕点A按逆时针方向旋转60°,得到线段AD,连接DC、DB.(1)线段DC=________;(2)求线段DB的长度.第20题图答案课时1 一般三角形及等腰三角形1. A2. C3. B4. D【解析】由三角形中任意两边之和大于第三边,得:a+b>c,∴c-a-b =c-(a+b)<0,∴|c-a-b|=a+b-c,|a+b-c|=a+b-c,∴|a+b-c|-|c-a -b|=0.5. B【解析】∵BE是∠ABC的角平分线,∴∠ABC=2∠ABE=50°,又∵∠BAC =60°,则∠C=70°,又∵∠ADC=90°,∴∠DAC=20°.6.B【解析】设∠C=x°,∵AD=DC,∴∠DAC=∠C=x°,∴∠ADB=2x°,∵AB=BD,∴∠BAD=∠ADB=2x°,∴∠B=180°-4x°,∵AB=AC,∴∠B=∠C=x°,∴180°-4x°=x°,解得x=36,∴∠B=∠C=36°.7.B【解析】∵∠A=30°,AB=AC,∴∠ABC=∠C=75°,又∵l为AB的垂直平分线,∴DB=DA,∠DBA=∠A=30°∴∠CBD=∠CBA-∠DBA=75°-30°=45°.8. B【解析】如解图,∵∠C=∠F=90°,∴∠3+∠4=90°,∠2+∠5=90°,又∵∠2=∠4,∴∠3=∠5,∵∠1=∠3,∴∠1=∠5=180°-∠β,∵∠α=∠D+∠1=∠D+180°-∠β,∴∠α+∠β=∠D+180°=30°+180°=210°.第8题解图9. B【解析】∵AB=AC,AD是BC边上的中线,∴AD⊥BC,∴AD是BC的垂直平分线,∴点B关于AD的对应点为点C,∴CE等于BP+EP的最小值.10. 15°11. 40°12. 7513. CD=DE14. 1415. 100°【解析】由三角形内角和定理可知,若等腰三角形的一个内角为100°,则这个内角为顶角,此时两底角均为40°,即该三角形顶角的度数是100°.16. 64°【解析】∵在△ABC中,BD和CE是△ABC的两条角平分线,∴∠1=∠ABD=12∠ABC,∠2=∠ACE=12∠ACB,∴∠1+∠2=12(∠ABC+∠ACB),∵∠ABC+∠ACB+∠A=180°,∴∠ABC+∠ACB=180°-∠A=180°-52°=128°,∴∠1+∠2=12(∠ABC+∠ACB)=12×128°=64°.17. 23【解析】假设点D与点B重合,可得DE+DF为等边三角形AC边上的高,再由等边三角形的边长为4,可求AC边上的高为23,故DE+DF=2 3.18. 8【解析】∵AM⊥BM,∴∠AMB=90°,在Rt△ABM中,∵D是AB的中点,∴DM=12AB=3,∵ME=13DM,∴ME=1,DE=4,又∵DE∥BC,∴DE是△ABC的中位线,∴BC=8.19. 1<m<4【解析】如解图,延长AD到点E,使AD=ED,连接CE,∵AD 是△ABC的中线,∴BD=CD,∵在△ABD和△ECD中,BD=CD,DE=AD,∠ADB=∠EDC,∴△ABD≌△ECD(SAS),∴AB=EC,在△AEC中,∵AC+EC>AE,且EC-AC<AE,即AB+AC>2AD,AB-AC<2AD,∴2<2AD<8,∴1<AD<4即1<m<4.第11题解图20. 证明:∵AD平分∠BAC,∴∠BAD=∠DAC,∵DE∥AC,∴∠ADE=∠DAC.∴∠BAD=∠ADE,∵AD⊥BD,∴∠ADB=90°,∴∠BAD+∠B=90°.∵∠BDE+∠ADE=90°,∴∠B=∠BDE,∴BE=DE,∴△BDE是等腰三角形.21. 解:∵AB=AC∴在△ABC中,∠ABC=∠C=12(180°-∠A)=12×(180°-36°)=72°,又∵BD平分∠ABC,∴∠ABD=∠DBC=12∠ABC=12×72°=36°,∴∠ABD=∠A,∴AD=BD,又∵在△ABC中,∠BDC=∠A+∠ABD=36°+36°=72°,∴∠BDC=∠C,∴BD=BC,∴AD=BC.22. (1)解:∠ABE=∠ACD.理由如下:∵AB=AC,∠BAE=∠CAD,AE=AD,∴△ABE≌△ACD(SAS).∴∠ABE=∠ACD;(2)证明:∵AB=AC,∴∠ABC=∠ACB.由(1)可知∠ABE=∠ACD,∴∠FBC=∠FCB,∴FB=FC.又∵AB=AC,∴点A、F均在线段BC的垂直平分线上,即过点A、F的直线垂直平分线段BC.课时2直角三角形及勾股定理1. B2. D3. B【解析】∵CD⊥AB,CD=DE=a,∴CE=2a,∵在△ABC中,∠ACB =90°,点E是AB的中点,∴AB=2CE=22a.4. C【解析】∵点E为BC边的中点,CD⊥AB,DE=32,∴BE=CE=DE=32,∴∠CDE =∠DCE ,BC = 3.在△ABC 中,AC 2+BC 2=1+(3)2=4=AB 2,∴∠ACB =90°,∴∠CDE +∠ACD =∠DCE +∠ACD =90°.5. C 【解析】设BD =x ,∵边AB 的垂直平分线交AC 于点D ,∴AD =BD =x ,则CD =8-x ,在Rt △BCD 中,根据勾股定理,得x 2-(8-x )2=42,解得x =5.6. A 【解析】∵∠ACB =∠A ′C ′B ′=90°,AC =BC =3,∴△ABC 是等腰直角三角形,∴∠CAB =45°,在Rt △ABC 中,AB =AC 2+BC 2=32+32=32,又∵△ABC ≌△A ′B ′C ′, ∴A ′B ′= AB =32, ∠C ′A ′B ′=∠CAB =45°,∴∠CAB ′=∠C ′AB ′+∠CAB = 45°+45°=90°,在Rt △CAB ′中,AC =3,AB ′=32,∴B ′C =AC 2+AB′2=32+(32)2=3 3.7. C 【解析】如解图,∵S 正方形ABCD =13,∴AB =13,∵AG =a ,BG =b ,∴a 2+b 2=AB 2=13,∵(a +b )2=a 2+2ab +b 2=21,∴2ab =(a +b )2-a 2-b 2=21-13=8,∴ab =4,∴S △ABG =12ab =12×4=2,∴S 小正方形=S 大正方形-4S △ABG =13-4×2=5.第7题解图8. 25 9. 5210. 2 【解析】∵方程x 2-4x +b =0有两个相等的实数根,∴b 2-4ac =16-4b =0,解得b =4.又∵BC =2,AB =23,AC =b =4,∴AB 2+BC 2=(23)2+22=42=AC 2,∴∠B =90°,∴AC 边上的中线长为2.11. 0<CD ≤5 【解析】如解图,取BE 的中点F ,连接AF ,∵∠A =90°,则AF =12BE =EF =5,∴∠EAF =∠E =90°-∠B =30°,又∵∠CDE =30°,∴∠CDE=∠EAF ,∴CD ∥AF ,∴CD AF =EDEA .当D 与A 重合时,CD 与AF 重合,取得最大值为5,当D 接近于E 时,DE 越小,CD 越小,∵线段CD 不能为0,∴0<CD≤5.第11题解图12. 2+2m【解析】如解图,连接BD,∵D为AC的中点,∴BD⊥AC,BD 平分∠ABC,∴∠BDC=90°,∠ABD=∠C=45°,∴∠BDF+∠FDC=90°,又∵∠EDF=90°,∴∠BDF+∠BDE=90°,∴∠CDF=∠BDE,∴△BED≌△CFD(ASA),∴BE=CF,DE=DF,则BE+BF+EF=BC+EF=2+EF,而Rt △DEF中,DE=DF=m,∴EF=2m,则△BEF的周长为2+ 2 m.第12题解图13. 78【解析】如解图,过点A作AH⊥BC于点H,∵AB=15,AC=20,∠BAC=90°,∴由勾股定理得,BC=152+202=25,∵AD=5,∴DC=20-5=15,∵DE⊥BC,∠BAC=90°,∴△CDE∽△CBA,∴CECA=CDCB,∴CE=1525×20=12.第13题解图14. 33-3【解析】∵AB=AC=23,∠BAC=120°,∴BC=6,∠B=∠BCA =30°,如解图,将△ABD绕点A逆时针旋转120°得到△ACD′,∴∠D′CA=∠B =30°,AD=AD′,∴∠D′CE=60°,∵∠DAE=60°,∠DAD′=120°,∴∠EAD′=60°,∴△EAD′≌∠EAD(SAS),∴ED′=ED,∴ED′+BD+EC=6,∴EC=6-DE3,∵CD ′=BD =2CE ,∠D ′CE =60°,∴∠D ′EC =90°,∴D ′E 2+EC 2=D ′C 2,即DE 2+(6-DE 3)2=(6-DE3×2)2,解得DE =33-3(负根舍去).第14题解图15. 2+6 【解析】如解图,连接DE ,在EF 上找一点G ,使得DG =EG ,连接DG ,在Rt △ABD 中,∠A =60°, ∴AD =12AB ,又∵E 为AB 的中点,∴AE =12AB =DE ,∴AD =AE =DE ,∴△ADE 为等边三角形 ,∴DE =AD =4 cm ,∠DEA =60°,又∵EF ⊥CD ,∠C =90°,∴EF ∥CB ,∴∠AEF =∠ABC =75°,∴∠DEF =15°,在Rt △EFD 中,∠EFD =90°,∵DG =EG ,∴∠GDE =∠DEF =15°,∴∠DGF =30°,设DF =x ,则EG =DG =2x ,FG =3x ,EF =(2+3)x ,根据勾股定理得DF 2+EF 2=DE 2,即x 2+(2+3)2x 2=16,解得x =6-2,∴EF =(2+6) cm .第15题解图16. 2+12或1 【解析】(1)当∠B ′MC 为直角时,此时点M 在BC 的中点位置,点B ′与点A 重合,如解图①,则BM 长度为12BC =2+12;(2)当∠MB ′C 为直角时,如解图②,根据折叠性质得,BM =B ′M ,BN =B ′N ,B ′M ∥BA ,∴MC BC =B ′MAB ,即MC B ′M =BC AB =2,∴MC B ′M=2,即MC +BM BM =2+11,即BCBM =2+11,∵BC=2+1,∴BM=1.故BM长为2+12或1.第16题解图17. 解:∵∠BDC=45°,∠ABC=90°,∴△BDC为等腰直角三角形,∴BD=BC,∵∠A=30°,∴BC=12AC,在Rt△ABC中,根据勾股定理得AC2=AB2+BC2,即(2BC)2=(4+BD)2+BC2,解得BC=BD=2+23(负根舍去).18. 解:(1)∵DB⊥BC,BC=4,CD=5,∴BD=52-42=3;(2)如解图,延长CB,过点A作AE⊥CB交CB延长线于点E,∵DB⊥BC,AE⊥BC,∴AE∥DB,∵D为AC边的中点,∴BD=12AE,∴AE=6,即BC边上高的长为6.第18题解图19. 解:(1)在Rt△ABC中,∠ACB=90°,BC=15,AC=20,∴AB=AC2+BC2=202+152=25,即AB的长是25;(2)∵S△ABC=12AC·BC=12AB·CD,∴20×15=25·CD,∴CD=12.20. 解:(1) 4;【解法提示】在△ACD中,∵∠A=60°,AC=AD,∴△ACD是等边三角形,∴DC=AC=4.(2)如解图,过点D作DE⊥BC于点E.第20题解图在△CDE中,∠DCE=∠ACB-∠ACD=90°-60°=30°,CD=4,∴DE=2,根据勾股定理得CE=CD2-DE2=23,∴BE=BC-CE=33-23=3,∴DB=BE2+DE2=(3)2+22=7.。

初中数学 中考复习二次根式专题练习(含答案)

初中数学 中考复习二次根式专题练习(含答案)

二次根式复习一、知识归纳 (一)二次根式定义1注意:(12,(2)被开方数是非负数2、二次根式在实数范围内有意义的条件是 a ≥0 。

(二)二次根式的性质1、二次根式的双重非负性≥0,a ≥0a ≥0)表示非负数a 的算术平方根,≥0,2、)2=a (a ≥0)(0)0(0)(0)a a a a a a ⎧⎪===⎨⎪-⎩><(三)、最简二次根式和同类二次根式 1、最简二次根式的两个条件:(1)被开方数不含 ;(2)被开方数不含 的因数或因式。

满足:(1)根号内不含有分母,有分母的先通分,再将分母开出来 (2)根号内每个因式或因数的指数都小于根指数2,如果根号内含有因式或因数的指数大于根指数2,就利用,将每个因式或因数的指数都小于根指数2(3)分母内不含有根式,如果分母内含有根号,则利用分母有理化,将根号划去。

(1)判断一个二次根式是否是最简二次根式,要紧扣最简二次根式的特点: ①被开方数不含分母;②被开方数不能含开得尽方的因数或因式.即把每一个因数或因式都写成底数较小、乘方的形式后,因数或因式的指数小于2.③若被开方数是和(或差)的形式,则先把被开放方数写成积的形式,再作判定,若无法写成积(或一个数)的形式,则为最简二次根式.=简二次根式.=,且因式2和22()x y +的指数都是1,是最简二次根式.22a b +无法变成一个数(或因式)式.(2)化简二次根式一般例如为两步:一如果被开方数是分数或分式,利用分母有理化化简;二化去被开方数中的分母之后,再将被开方数分解成几个数相乘的形式或分解因式,然后利用积的算术平方根的性质把能开得尽方的因数或因式开出来.若被开方数中不含分母,则只需第二步.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式.同类二次根式与同类项类似. 对同类二次根式的理解应注意以下几点:(1)判断几个二次根式是否是同类二次根式时,首先将二次根式化为最简二次根式,其次看被开方数是否相同.(2)几个二次根式是否是同类二次根式,只与被开方数和根指数有关,与根号外的系数无关. 将同类二次根式的系数相加减,根指数与被开方数保持不变.(1)二次根式的系数就是这个二次根式根号外的因式(或因数),它包含前面的符号.(2)当二次根式的系数为带分数时,必须将其化为假分数.(3)不是同类二次根式,千万不要合并.(四)二次根式的运算0)=≥,≥0a b=≥,>00)a b≥,≥0a b0)=≥,>00)a b二次根式的加减实质上就是合并同类二次根式.4、二次根式加减的步骤:(1)先将二次根式化成。

2017中考数学题及答案

2017中考数学题及答案

2017中考数学题及答案2017年中考是许多中学生的重要转折点,其中数学科目是考试中最重要的一门科目。

今天我们将为您整理2017年中考数学题及答案,希望对您的复习有所帮助。

第一部分:选择题1.如果一个数的7倍加4得到33,那这个数是多少?A. 3B. 4C. 5D. 6答案:D. 6。

解析:设这个数为 x,则有 7x + 4 = 33,解方程可得 x = 6。

2.一个长方形的长是宽的1.5倍,若宽为6米,则长为多少米?A. 6B. 8C. 9D. 12答案:C. 9。

解析:设长为 x,则宽为 6 米,由题意可得x = 1.5 × 6 = 9。

3.一公斤苹果售价8元,现有100元,可以买多少公斤苹果?A. 10B. 11C. 12D. 13答案:C. 12。

解析:设可买的苹果数量为 x,则有 8x = 100,解方程可得 x = 12。

第二部分:填空题4.某班级有 50 名学生,其中男生占总数的 40%,那么女生的人数为 ______ 人。

答案:30。

解析:女生人数占 60%,即0.6×50=30 人。

5.一块土地面积为 60 平方米,如果将其等分为正方形,每个正方形的面积为 ______ 平方米。

答案:4。

解析:设每个正方形的边长为 x,则面积为 x^2。

根据题意可得x^2 = 60 ÷ 15 = 4,解方程可得 x = 2。

6.已知两个数的和为 72,差为 8,那么这两个数分别是 ______ 和______。

答案:40 和 32。

解析:设两个数为 x 和 y,则有 x + y = 72,x - y = 8。

解这个方程组可得 x = 40,y = 32。

第三部分:解答题7.现有 2 个水桶,第1个水桶的容量是第2个水桶容量的3倍,若第2个水桶的水满了,倒入第1个水桶后,第1个水桶正好装满。

求两个水桶的容量分别是多少?答案:第2个水桶容量为 x,第1个水桶容量为 3x。

2017年中考数学专题练习二次函数50题

2017年中考数学专题练习二次函数50题

二次函数50题一、选择题:1.若二次函数y=(m+1)x2-mx+m2-2m-3的图象经过原点,则m的值必为( )A.-1或3B.-1C.3D.-3或12.若为二次函数的图象上的三点,则的大小关系是()A. B. C. D.3.如图,抛物线y=﹣x2+2x+m+1交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列三个判断中,①当x>0时,y>0;②若a=﹣1,则b=4;③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2;正确的是()A.①B.②C.③D.①②③都不对4.已知一条抛物线经过E(0,10),F(2,2),G(4,2),H(3,1)四点,选择其中两点用待定系数法能求出抛物线解析式的为()A.E,FB.E,GC.E,HD.F,G5.已知二次函数y=ax2-1的图象开口向下,则直线y=ax-1经过的象限是( )A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限6.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间函数关系式为y=-n2+14n-24,则该企业一年中利润最高的月份是( )A.5月B.6月C.7月D.8月7.已知抛物线y=x2﹣x,它与x轴的两个交点间的距离为()A.0 B.1 C.2 D.48.一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A. B. C. D.9.二次函数y=x2+2x-7的函数值是8,那么对应的x的值是( )A.5B.3C.3或-5D.-3或510.抛物线y=3x2向下平移3个单位,再向左平移2个单位,得到的抛物线解析式为()A.y=3(x+2)2+3B.y=3(x-2)2+3C.y=3(x+2)2﹣3D.y=3(x-2)2﹣311.已知二次函数y=x2+2x﹣3,当自变量x取m时,对应的函数值小于0,设自变量分别取m﹣4,m+4时对应的函数值为y1,y2,则下列判断正确的是()A.y1<0,y2<0B.y1<0,y2>0C.y1>0,y2<0D.y1>0,y2>012.把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位,所得到抛物线是( )A.y=(x+2)2+2B.y=(x+2)2-2C.y=x2+2D.y=x2-213.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间函数关系式为y=﹣n2+14n﹣24,则该企业一年中应停产的月份是()A.1月、2月、3月B.2月、3月、4月C.1月、2月、12月D.1月、11月、12月14.二次函数y=-x2+bx+c的图象如图所示:若点A(x1,y1),B(x2,y2)在此函数图象上,且x1<x2<1,则y1与y2的大小关系是( )A.y1≤y2B.y1<y2C.y1≥y2D.y1>y215.二次函数y=x2﹣4x+5的最小值是( )A.﹣1B.1C.3D.516.在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是()A.y1<y2B.y1>y2C.y的最小值是﹣3D.y的最小值是﹣417.二次函数y=ax2+bx+c(a,bx -1 0 1 3y -1 3 5 3下列结论:①ac<0;②当x>1(b-1)x+c=0的一个根;④当-1<x<3时,ax2+(b-1)x+c>0.其中正确的个数为( )A.4个 B.3个 C.2个 D.1个18.如图,直线y=0.5x+2与y轴交于点A,与直线y=﹣0.5x交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=-0.5x上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是()A.﹣2≤h≤0.5B.﹣2≤h≤1C.﹣1≤h≤1.5D.﹣1≤h≤0.519.下列函数是二次函数的是( )A.y=2x+1B.y=-2x+1C.y=x2+2D.y=0.5x-220.抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到抛物线是()A.y=3(x﹣1)2﹣2B.y=3(x+1)2﹣2C.y=3(x+1)2+2D.y=3(x﹣1)2+2二、填空题:21.已知点(2,5),(4,5)是抛物线y=ax2+bx+c上的两点, 则这条抛物线的对称轴是22.二次函数y=x2-3x+2的图像与x轴的交点坐标是 ,与y轴的交点坐标为23.对于二次函数,有下列说法:①如果当x≤1时随的增大而减小,则m≥1;②如果它的图象与x轴的两交点的距离是4,则;③如果将它的图象向左平移3个单位后的函数的最小值是-4,则m=-1;④如果当x=1时的函数值与x=2013时的函数值相等,则当x=2014时的函数值为-3.其中正确的说法是.24.如图,坐标平面上,二次函数y=-x2+4x-k的图形与x轴交于A、B两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为何?25.如图,在Rt△ABC中,∠C=90°,AB= 5,AC= 4,则cos A= .A B C26.抛物线y=2(x﹣3)2+3的顶点在象限.27.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为元.28.如图,点A是抛物线y=x2﹣4x对称轴上的一点,连接OA,以A为旋转中心将AO逆时针旋转90°得到AO′,当O′恰好落在抛物线上时,点A的坐标为.29.如图,AC是⊙O的直径,点B在⊙O上,∠ACB=30°,按以下步骤作图:①以点B为圆心,小于AB的长为半径画弧,分别交AB、BC于点M、N;②分别以点M、N为圆心,大于0.5MN的长为半径画弧,两弧相交于点G;③连结BG交AC边于点E,交⊙O于点D,连接CD.则△ABE与△CDE的面积之比为.30.将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm2.31.如图,二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(-2,4),B(8,2),则使y1>y2成立的x的取值范围是__ _.32.如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A,B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D,若直线y=x+m与C1,C2共有3个不同的交点,则m的取值范围是.33.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(0.5,2.5)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.当△PAC为直角三角形时, 点P的坐标是____________________.34.如图,已知函数y=与y=ax2+bx(a>0,b>0)的图象交于点P,点P的纵坐标为1.则关于x的方程ax2+bx+=0的解为.35.二次函数y=2(x﹣3)2﹣4的最小值为.36.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC,则下列结论:①abc>0;②9a+3b+c<0;③c>﹣1;④关于x的方程ax2+bx+c=0(a≠0)有一个根为 -a-1.其中正确的结论个数有(填序号)37.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为.38.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.39.若抛物线y1=a1x2+b1x+c1与y2=a2x2+b2x+c2满足=k(k≠0,1),则称y1,y2互为“相关抛物线”.给出如下结论:①y1与y2的开口方向,开口大小不一定相同;②y1与y2的对称轴相同;③若y2的最值为m,则y1的最值为k2m;④若y2与x轴的两交点间距离为d,则y1与x轴的两交点间距离也为d.其中正确的结论的序号是(把所有正确结论的序号都填在横线上).40.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是.三、解答题:41.已知二次函数y=x2+bx+c的图象经过点(0,2)和(1,﹣1),求图象的顶点坐标和对称轴.42.一元二次方程x2+2x-3=0的二根x1,x2(x1< x2)是抛物线y=ax2+bx+c与x轴的两个交点B,C的横坐标,且此抛物线过点A(3,6).(1)求此二次函数的解析式.(2)用配方法求此抛物线的顶点为P对称轴(3)当x取什么值时,y随x增大而减小?43.某水渠的横截面呈抛物线形,水面的宽为AB(单位:米),现以AB所在直线为x轴,以抛物线的对称轴为y轴建立如图所示的平面直角坐标系,设坐标原点为O.已知AB=8米,设抛物线解析式为y=ax2-4.(1)求a的值;(2)点C(-1,m)是抛物线上一点,点C关于原点O的对称点为点D,连接CD,BC,BD,求△BCD的面积.44.某公司销售A,B两种产品,根据市场调研,确定两条信息:信息1:销售A种产品所获利润y:(万元)与销售产品x(吨)之间存在二次函数关系,如图所示:信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y2=0.3x.根据以上信息,解答下列问题;(1)求二次函数解析式;(2)该公司准备购进A、B两种产品共10吨,求销售A、B两种产品获得的利润之和最大是多少万元.45.已知抛物线y=x2﹣2x+1.(1)求它的对称轴和顶点坐标;(2)根据图象,确定当x>2时,y的取值范围.46. 某种商品的进价为每件50元,售价为每件60元,每个月可卖出200件;如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元),设每件商品的售价上涨x元(x为整数),每个月的销售利润为y 元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少时每个月可获得最大利润?最大利润是多少?47.如图,二次函数y=﹣x2+bx+c图象(抛物线)与x轴交于A(1,0),且当x=0和x=﹣2时所对应函数值相等.(1)求此二次函数的表达式;(2)设抛物线与x轴的另一交点为点B,与y轴交于点C,在这条抛物线的对称轴上是否存在点D,使得△DAC的周长最小?如果存在,求出D点的坐标;如果不存在,请说明理由.(3)设点M在第二象限,且在抛物线上,如果△MBC的面积最大,求此时点M的坐标及△MBC的面积.48.如图,已知二次函数的图象经过点A(6,0)、B(﹣2,0)和点C(0,﹣8).(1)求该二次函数的解析式;(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K的坐标为;(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ的面积为S.①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,请求出此时t的值;若不存在,请说明理由;②请求出S关于t的函数关系式,并写出自变量t的取值范围;③设S0是②中函数S的最大值,直接写出S0的值.49.如图,直线y=0.5x﹣2与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx﹣2经过A,B,C,点B坐标为(﹣1,0).(1)求抛物线的解析式;(2)若点D是线段AC上一个动点,DE⊥AC,交直线AC下方的抛物线于点E,EG⊥x轴于点G,交AC于点F,请求出DF长的最大值;(3)设抛物线对称轴与x轴相交于点H,点P是射线CH上的一个动点,当△ABP是直角三角形时,请直接写出点P的坐标.50.如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,-n),抛物线经过A、O、B三点,连结OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2-2x-3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连结OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD 面积的最大值,并写出此时点D的坐标.参考答案1.C2.D3.C4.C5.D6.C7.C8.C9.C10.C11.D12.D13.C14.B15.B16.D17.B18.A19.C20.A21.答案为:(0,6) ; (2,0),(3,0)22.答案为:(1,0),(2,0)、(0,2),23.答案为:①②④.24.答案为:0.8.25.答案为:0.826.答案为:第一.27.答案为:2528.答案为:(2,﹣1)或(2,2).29.答案为0.5.30.答案为:12.5;31.答案为:x<-2或x>832.解:令y=﹣2x2+8x﹣6=0,即x2﹣4x+3=0,解得x=1或3,则点A(1,0),B(3,0),由于将C1向右平移2个长度单位得C2,则C2解析式为y=﹣2(x﹣4)2+2(3≤x≤5),当y=x+m1与C2相切时,令y=x+m1=y=﹣2(x﹣4)2+2,即2x2﹣15x+30+m1=0,△=﹣8m1﹣15=0,解得m1=﹣,当y=x+m2过点B时,即0=3+m2,m2=﹣3,当﹣3<m<﹣时直线y=x+m与C1、C2共有3个不同的交点,故答案是:﹣3<m<﹣.33.答案为:(3,5)或(3.5,5.5)33.答案为:x=﹣3.34.答案为:﹣4.35.答案为:①③④;36.答案为:x1=4,x2=﹣237.答案为:0.538.答案为:①②④.39.答案为:-1<x<3.40.解:把点(0,2)和(1,﹣1)代入y=x2+bx+c得,解这个方程组得,所以所求二次函数的解析式是y=x2﹣4x+2;因为y=x2﹣4x+2=(x﹣2)2﹣2,所以顶点坐标是(2,﹣2),对称轴是直线x=2.y=0.5(x+1)2 -2 ∴它的顶点坐标为(-1,-2)对称轴为直线x=-1.当y=0时,即0.5(x+3)(x-1)=0解得x1=-3,x2=1.∴x<-3时…当x取什么值时, y随x增大而减小.41.解:(1)∵ ,由抛物线的对称性可知,∴(4,0).∴ 0=16a-4.∴ a.(2)如图所示,过点C作于点E,过点D作于点F.∵ a=,∴ -4.当-1时,m=×-4=-,∴ C(-1,-).∵点C关于原点O的对称点为点D,∴ D(1,).∴ .∴△BCD的面积为15平方米.42.解:(1)根据题意,设销售A种产品所获利润y与销售产品x之间的函数关系式为y=ax2+bx,将(1,1.4)、(3,3.6)代入解析式,得:a+b=1.4,9a+3b=3.6,解得:a=-0.1,b=1.5,∴销售A种产品所获利润y与销售产品x之间的函数关系式为y=﹣0.1x2+1.5x;(2)设购进A产品m吨,购进B产品(10﹣m)吨,销售A、B两种产品获得的利润之和为W元,则W=﹣0.1m2+1.5m+0.3(10﹣m)=﹣0.1m2+1.2m+3=﹣0.1(m﹣6)2+6.6,∵﹣0.1<0,∴当m=6时,W取得最大值,最大值为6.6万元,答:购进A产品6吨,购进B产品4吨,销售A、B两种产品获得的利润之和最大,最大利润是6.6万元.44.【解答】解:(1)y=x2﹣2x+1=(x﹣1)2,对称轴为直线x=1,顶点坐标为(1,0);(2)抛物线图象如下图所示:由图象可知当x>2时,y的取值范围是y>1.45.解答:解:(1)y=(30-20+x)(180-10x)=-10x2+80x+1800(0≤x≤5,且x为整数);(2)当x=时,y最大=1960元;∴每件商品的售价为34元.答:每件商品的售价为34元时,商品的利润最大,为1960元;(3))1920=-10x2+80x+1800 , x2-8x+12=0,即(x-2)(x-6)=0,解得x=2或x=6,∵0≤x≤5,∴x=2,∴售价为32元时,利润为1920元.46.【解答】解:(1)∵当x=0和x=﹣2时所对应的函数值相等,∴抛物线的对称轴为直线x=﹣1,∴抛物线与x轴的另一个交点坐标为(﹣3,0),∴抛物线解析式为y=﹣(x+3)(x﹣1),即y=﹣x2﹣2x+3;(2存在.连结BC交直线x=﹣1于点D,则DB=DA,∴DC+DA=DC+DB=BC,∴此时DA+DC最小,△ADC的周长最小,当x=0时,y=﹣x2﹣2x+3=3,则C(0,3),设直线BC的解析式为y=kx+m,把B(﹣3,0),C(0,3)代入得,解得,∴直线BC的解析式为y=x+3,当x=﹣1时,y=x+3=2,∴D点坐标为(﹣1,2);(3)作MN∥y轴交BC于N,如图,设M(t,﹣t2﹣2t+3)(﹣3<x<0),则N(t,t+3),S△BCM=S△MNB+S△NMC=•3•MN=(﹣t2﹣2t+3﹣t﹣3)=﹣t2﹣t=﹣(t+)2+,∴当t=﹣时,△MBC的面积的最大值为,此时M点坐标为(﹣,).47.解:(1)设二次函数的解析式为y=a(x+2)(x﹣6)∵图象过点(0,﹣8)∴a=∴二次函数的解析式为y=x2﹣x﹣8;(2)∵y=x2﹣x﹣8=(x2﹣4x+4﹣4)﹣8=(x﹣2)2﹣∴点M的坐标为(2,﹣)∵点C的坐标为(0,﹣8),∴点C关于x轴对称的点C′的坐标为(0,8)∴直线C′M的解析式为:y=﹣x+8令y=0得﹣x+8=0解得:x=∴点K的坐标为(,0);(3)①不存在PQ∥OC,若PQ∥OC,则点P,Q分别在线段OA,CA上,此时,1<t<2∵PQ∥OC,∴△APQ∽△AOC∴∵AP=6﹣3tAQ=18﹣8t,∴∴t=∵t=>2不满足1<t<2;∴不存在PQ∥OC;②分情况讨论如下,情况1:0≤t≤1S=OP•OQ=×3t×8t=12t2;情况2:1<t≤2作QE⊥OA,垂足为E,S=OP•EQ=×3t×=﹣+情况3:2<t<作OF⊥AC,垂足为F,则OF=S=QP•OF=×(24-11t)×=-+;③当0≤t≤1时,S=12t2,函数的最大值是12;当1<t≤2时,S=﹣+,函数的最大值是;当2<t<,S=QP•OF=﹣+,函数的最大值为;∴S0的值为.49.50.解(1)解方程,得,.∵,∴,∴A(-1,-1),B(3,-3).∵抛物线过原点,设抛物线的解析式为.∴解得,.∴抛物线的解析式为.(2)①设直线AB的解析式为.∴解得,. ∴直线AB的解析式为.∴C点坐标为(0,).∵直线OB过点O(0,0),B(3,-3),∴直线OB的解析式为.∵△OPC为等腰三角形,∴OC=OP或OP=PC或OC=PC.设,,(i)当OC=OP时, .解得,(舍去). ∴ P(,). (ii)当OP=PC时,点P在线段OC的中垂线上,∴ (,.(iii)当OC=PC时,由,解得,(舍去). ∴ P(.∴P点坐标为P1(,)或(,或P(.②过点D作DG⊥x轴,垂足为G,交OB于Q,过B作BH⊥x轴,垂足为H.设Q(,),D(,).===,∵0<<3,∴当时,S取得最大值为,此时D(,.。

2017年中考数学复习一元二次方程专练公式法解一元二次方程专项练习106题

2017年中考数学复习一元二次方程专练公式法解一元二次方程专项练习106题

公式法解一元二次方程1.2x2﹣7x+3=0(公式法)2.2t2﹣t﹣3=0,3.2x2﹣7x+4=0.4.2x2+2x=15.5y+2=3y2.6.x2+3x﹣4=0 7. 2x2﹣4x﹣1=08.2x2﹣x﹣2=0.9.2x2﹣5x+1=0.10.x2﹣1=4x.11.x2+3x﹣3=0 12.3x2﹣4x﹣2=0.13.x2+x﹣4=0.14.2x2﹣6x+3=0.15.2x2﹣3x﹣1=0.16.2x2﹣2x﹣1=0 17.3x2﹣4x﹣1=0.18.2x2﹣x﹣4=019.2x2+x﹣2=020.3x2+6x﹣4=021.x2﹣x﹣3=0.22.3x2+4x﹣4=0,23.(3x﹣1)(x+2)=11x﹣4.24.2x2﹣5x﹣1=0.25..26.3x2+4x+5=0.28.x2﹣x﹣4=0.29..30.2x2﹣2x﹣1=031.3x2+7x+10=1﹣8x.32.5x2﹣3x+2=0.33. 5x2﹣3x=x+11 34.x2+3x+1=0,36.5x2﹣3x=x+1.37.3x2+7x+4=038.2x2﹣3x﹣1=0(用公式法)39.3x2+5x+1=0;40.x2﹣4x+1=041. x2﹣4x+5=042. x2+5x+3=0 44.3x2+4x+1=045.x2﹣4x﹣8=046.2x2﹣x﹣2=047.3x2+2(x﹣1)=0.48.x2﹣4x﹣7=049.y2﹣2y﹣4=050.x2﹣3x=252.x 2x+1=0 53.2x2﹣9x+8=0;54. x2﹣6x+1=0;55. x2+x﹣1=0;56. 2x2﹣6x+3=0;57.2x(x+4)=1 58.3x2+5(2x+1)=0.60.3x2﹣6x﹣4=061.x2+2x﹣5=0 62.x2﹣4x﹣3=063.4x2﹣3x﹣1=063. x2+2x﹣2=0;64. y2﹣3y+1=0;65. x2+3=2x.66.x2﹣4x=﹣367. 3x2﹣2x﹣1=0;68.;69. 2x2﹣7x+5=0;70. 2x2﹣7x﹣18=0.71. (x+1)(x+3)=6x+4;73. x2﹣(2m+1)x+m=0.74. x(x+8)=16,75. x2﹣4x=4;76. 2x2﹣2x+1=0,77. 5x2+2x﹣1=078. 6y2+13y+6=079. 3•x2+6x+9=780. 2x2﹣3x+1=0;81. 2y(y﹣1)+3=(y+1)2.82. x2=3x+1;83. (t+1)(t﹣3)=﹣t(3﹣3t).84.x2﹣2ax﹣b2+a2=0.85. 3x2=2﹣5x;86. y2﹣4y=1;87. (x+1)(x﹣1)=2x.88.(2x﹣1)2﹣7=3(x+1);89.x2﹣6x+11=090 . 5x2﹣8x+2=0.91.x2﹣3x+1=0.92.x2=5﹣12x93. x2+x﹣1=0 94.3x2﹣4x﹣1=0 95.3x2+2(x﹣1)=0,96.97.3x2﹣4x﹣1=0 98.99. .101.2x2+5x﹣1=0.102.2x2﹣x﹣1=0.103..104.3x2+5x﹣1=0.105.5x2﹣8x+2=0,106.3x2+7x+10=1﹣8x,公式法解一元二次方程106题参考答案:1.2x2﹣7x+3=0(公式法)a=2,b=﹣7,c=3,∴b2﹣4ac=(﹣7)2﹣4×2×3=49﹣24=25>0,方程有两个不相等的实数根,即:,x1=3,2.2t2﹣t﹣3=0,∵a=2,b=﹣1,c=﹣3,∴x===,3.2x2﹣7x+4=0.∵a=2,b=﹣7,c=4,b2﹣4ac=49﹣32=17,∴x==,∴,∴x1=,x2=4.2x2+2x=1由原方程,得2x2+2x﹣1=0,∴该方程的二次项系数a=2,一次项系数b=2,常数项c=﹣1;∴x===,∴x1=,x2=5.5y+2=3y2.移项,3y2﹣5y﹣2=0,a=3,b=﹣5,c=﹣2,b2﹣4ac=(﹣5)2﹣4×3×(﹣2)=49>0,∴x=,∴x1=2,x2=﹣;6.x2+3x﹣4=0a=1,b=3,c=﹣4,△=9+4×1×4=25>0,∴x==,∴x1=﹣4,x2=1.7. 2x2﹣4x﹣1=0a=2,b=﹣4,c=﹣1,△=16+4×2=24>0,∴x==1±,∴x1=1+,x2=1﹣8.2x2﹣x﹣2=0.∵a=2,b=﹣1,c=﹣2,∴b2﹣4ac=17>0∴x=.即x1=,x2=9.2x2﹣5x+1=0.∵a=2,b=﹣5,c=1,∴b2﹣4ac=17,∴x=,∴x1=,x2=10.x2﹣1=4x.原方程化为一般式:x2﹣4x﹣1=0.∵a=1,b=﹣4,c=﹣1,∴△=b2﹣4ac=(﹣4)2﹣4×1×(﹣1)=20,∴x===2±,∴x1=2+,x2=2﹣11.x2+3x﹣3=0a=1,b=3,c=﹣3;∵b2﹣4ac=9+12=21>0∴=∴,12.3x2﹣4x﹣2=0.a=3,b=﹣4,c=﹣2,△=b2﹣4ac=(﹣4)2﹣4×3×(﹣2)=40>0,x==,x1=,x2=13.x2+x﹣4=0.∴x==,∵x1=﹣2,x2=.14.2x2﹣6x+3=0.∵a=2,b=﹣6,c=3∴x=∴x1=,x2=;15.2x2﹣3x﹣1=0.a=2,b=﹣3,c=﹣1,∴△=9+8=17,∴x=,x1=,x2=16.2x2﹣2x﹣1=0a=2,b=﹣2,c=﹣1,∴b2﹣4ac=12,∴x==,∴x1=,x2=17.3x2﹣4x﹣1=0.∵一元二次方程3x2﹣4x﹣1=0的二次项系数a=3,一次项系数b=﹣4,常数项c=﹣1,∴x===,∴x1=,x2=18.2x2﹣x﹣4=0∵2x2﹣x﹣4=0,∴=,∴x1=,19.2x2+x﹣2=0∵a=2,b=1,c=﹣2(1分)∵b2﹣4ac=12﹣4×2×(﹣2)=17>0(2分)∴(4分)∴,20.3x2+6x﹣4=0∵a=3,b=6,c=﹣4,∴b2﹣4ac=62﹣4×3×(﹣4)=84,∴x==,即x1=,x2=﹣21.x2﹣x﹣3=0.∵a=1,b=﹣1,c=﹣3,∴△=(﹣1)2﹣4×1×(﹣3)=13>0,∴x==,∴x1=,x2=.22.3x2+4x﹣4=0,这里a=3,b=4,c=﹣4,b2﹣4ac=42﹣4×3×(﹣4)=64,x=,x1=,x2=﹣223.(3x﹣1)(x+2)=11x﹣4.3x2+6x﹣x﹣2=11x﹣4,整理得3x2﹣6x+2=0,∵△=(﹣6)2﹣4×3×2=12,∴x==∴x1=,x2=24.2x2﹣5x﹣1=0.2x2﹣5x﹣1=0,∵b2﹣4ac=(﹣5)2﹣4×2×(﹣1)=33,∴x=,即x1=,x2=25..∵a=1,b=,c=﹣20,b2﹣4ac=()2﹣4×1×(﹣20)=100>0,∴x=,x=,解得x 1=﹣+5,x 2=﹣﹣5.26.3x 2+4x+5=0.∵△=42﹣4×3×5=﹣44<0, ∴方程没有实数根.27.x 2﹣4x ﹣2=0.∵a=1,b=﹣4,c=﹣2,∴△=(﹣4)2﹣4×1×(﹣2)=4×6, ∴x===2±,∴x 1=2+,x 2=2﹣.28.x 2﹣x ﹣4=0. a=1,b=﹣1,c=﹣4. b 2﹣4ac=1+16=17>0. ∴=∴x 1=,x 2=29.. 由原方程,得 t 2+2t ﹣2=0,这里a=1,b=2,c=2. 则t===﹣,即t 1=t 2=﹣30.2x 2﹣2x ﹣1=0∵a=2,b=﹣2,c=﹣1, ∴b 2﹣4ac=(﹣2)2﹣4×2×(﹣1)=12, ∴x===,∴x 1=,x 2=31.3x 2+7x+10=1﹣8x .原方程可化为x 2+5x+3=0,解得:32.5x 2﹣3x+2=0. ∵b 2﹣4ac=(﹣3)2﹣4×5×2<0, ∴此方程无解33. 5x 2﹣3x=x+11(公式法) 5x 2﹣3x=x+11,整理得:5x 2﹣4x ﹣11=0, 这里a=5,b=﹣4,c=﹣11,∵△=16+220=236, ∴x==, 则x 1=,x 2=34.x 2+3x+1=0,这里a=1,b=3,c=1,∵△=b 2﹣4ac=9﹣4=5, ∴x=, 则x 1=,x 2=35.4x 2=2x+1移项得:4x 2﹣2x ﹣1=0,∵b 2﹣4ac=(﹣2)2﹣4×4×(﹣1)=20, ∴x==, ∴x 1=,x 2=36.5x 2﹣3x=x+1.方程化简为:5x 2﹣4x ﹣1=0, 这里a=5,b=﹣4,c=﹣1,∵△=b 2﹣4ac=(﹣4)2﹣4×5×(﹣1)=36>0, ∴x==,∴x 1=1,x 2=﹣. 37.3x 2+7x+4=0 3x 2+7x+4=0,∵a=3,b=7,c=4,∴b 2﹣4ac=49﹣48=1>0, ∴x=,∴x 1=﹣1,x 2=﹣.38.2x 2﹣3x ﹣1=0(用公式法) ∵a=2,b=﹣3,c=﹣1,∴△=(﹣3)2﹣4×2×(﹣1)=17, ∴x==,所以x 1=,x 2=39.3x 2+5x+1=0;∵原方程的二次项系数a=3,一次项系数b=5,常数项c=1,∴原方程的根是: x==,即x=;40.x2﹣4x+1=0a=1,b=﹣4,c=1,∴x====2±;41. x2﹣4x+5=0a=1,b=﹣4,c=5,∵△=b2﹣4ac=16﹣20=﹣4<0,∴次方程无解.42. x2+5x+3=0a=1,b=5,c=3,∴x===43.2x2﹣3x﹣6=0.这里a=2,b=﹣3,c=﹣6,∵△=b2﹣4ac=9+48=57,∴x=,则x1=,x2=44.3x2+4x+1=0(用公式法)∵二次项系数a=3,一次项系数b=4,常数项c=1,∴△=b2﹣4ac=42﹣4×3×1=4>0∴x==∴x1=﹣1 x2=﹣;45.x2﹣4x﹣8=0(公式法)∵方程x2﹣4x﹣8=0的二次项系数a=1、一次项系数b=﹣4、常数项c=﹣8,∴x===2±2,∴x1=2+2,x2=2﹣2;46.2x2﹣x﹣2=0a=2,b=﹣1,c=﹣2,∵b2﹣4ac=(﹣1)2﹣4×2×(﹣2)=1+16=17>0,∴x==,∴x1=,x2=47.3x2+2(x﹣1)=0.整理得,3x2+2x﹣2=0,∵a=3,b=2,c=﹣2,△=b2﹣4ac=4+24=28,x==,解得x1=,x2=48.x2﹣4x﹣7=0∵x2﹣4x﹣7=0的二次项系数是a=1、一次项系数是b=﹣4、常数项是c=﹣7,∴x===2±,∴x1=2+,x2=2﹣49.y2﹣2y﹣4=0(公式法)由原方程知,二次项系数a=1,一次项系数b=﹣2,常数项c=﹣4,∴x==,∴,∴x1=1+,x2=1﹣;50.x2﹣3x=2x2﹣3x﹣2=0,∵a=1,b=﹣3,c=﹣2,∴x===,∴x1=,x2=51.2x2+x ﹣=0.∵关于x的一元二次方程2x2+x ﹣=0的二次项系数a=2,一次项系数b=1,常数项c=﹣,∴原方程的根是:=,即x=52.x 2x+1=0这里a=1,b=﹣2,c=1,∵△=8﹣4=4,∴x==±1,则x1=+1,x2=﹣153.2x2﹣9x+8=0;∵a=2,b=﹣9,c=8∴x=,x1=,x2=;54. x2﹣6x+1=0;∵a=1,b=﹣6,c=1∴x=,∴x1=3+2,x2=3﹣2;55. x2+x﹣1=0;∵a=1,b=1,c=﹣1,∴x==;56. 2x2﹣6x+3=0;∵a=2,b=﹣6,c=3,∴x===;57.2x(x+4)=12x2+8x﹣1=0,∵a=2,b=8,c=﹣1,△=b2﹣4ac=64+8=72,∴x===.即x1=,x2=58.3x2+5(2x+1)=0.3x2+5(2x+1)=0,整理得:3x2+10x+5=0,∵a=3,b=10,c=5,∴b2﹣4ac=100﹣60=40>0,∴x==,则原方程的解为x1=,x2=59.2x2﹣4x﹣1=0(公式法)解:这里a=2,b=﹣4,c=﹣1,∵b2﹣4ac=(﹣4)2﹣4×2×(﹣1)=24,∴x==,∴x1=,x2=60.3x2﹣6x﹣4=0(公式法)3x2﹣6x﹣4=0,这里a=3,b=﹣6,c=﹣4,∵b2﹣4ac=36+48=84>0,∴x==,则x1=,x2=61.x2+2x﹣5=0∵a=1,b=2,c=﹣5,b2﹣4ac=24,∴x==﹣1,即x1=,x2=﹣1.62.x2﹣4x﹣3=0由题意得:a=1,b=﹣4,c=﹣3,∴x====2±63.4x2﹣3x﹣1=0a=4,b=﹣3,c=﹣1,△=9+16=25x==∴x1=1,x2=﹣.63. x2+2x﹣2=0;这里a=1,b=2,c=﹣2,∵b2﹣4ac=22﹣4×1×(﹣2)=12>0,∴x==﹣1,∴x1=﹣1+,x2=﹣1﹣;64. y2﹣3y+1=0;这里a=1,b=﹣3,c=1.∵b2﹣4ac=(﹣3)2﹣4×1×1=5>0,∴ y=,∴y1=,y2=;65. x2+3=2x.移项,得x2﹣2x+3=0,这里a=1,b=﹣2,c=3.∵b2﹣4ac=(﹣2)2﹣4×1×3=﹣4<0.∴原方程没有实数根66.x2﹣4x=﹣3移项,得x2﹣4x+3=0.∵a=1,b=﹣4,c=3,∴b2﹣4ac=(﹣4)2﹣4×1×3=4>0,∴x==,∴x1=1,x2=367. 3x2﹣2x﹣1=0;∵a=3,b=﹣2,c=﹣1,∴b2﹣4ac=(﹣2)2﹣4×3×(﹣1)=16,∴x===,∴x1=1,x2=﹣.68.;∵a=2,b=﹣1,c=﹣,∴b2﹣4ac=(﹣1)2﹣4×2×(﹣)=5,∴x==,∴x1=,x2=.69. 2x2﹣7x+5=0;∵a=2,b=﹣7,c=5,∴b2﹣4ac=(﹣7)2﹣4×2×5=9,∴x==,∴x1=,x2=1.70. 2x2﹣7x﹣18=0.∵a=2,b=﹣7,c=﹣18,∴b2﹣4ac=(﹣7)2﹣4×2×(﹣18)=193,∴x==,∴x1=,x2=71. (x+1)(x+3)=6x+4;去括号,移项方程化为一般式为:x2﹣2x﹣1=0,∵a=1,b=﹣2,=﹣1,∴b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8∴x===1±,∴x1=1+,x2=1﹣;72. x2+2(+1)x+2=0;∵a=1,b=2(+1),c=2,∴b2﹣4ac=[2(+1)]2﹣4×1×2=16,∴x===﹣(+1)±2,∴x1=﹣﹣3,x2=﹣+1;73. x2﹣(2m+1)x+m=0.∵a=1,b=﹣(2m+1),c=m,∴b2﹣4ac=[﹣(2m+1)]2﹣4×1×m=4m2+1,∴x=,∴x1=,x2=74. x(x+8)=16,x2+8x﹣16=0,a=1,b=8,c=﹣16,b2﹣4ac=82﹣4×1×(﹣16)=128>0,x=,x1=﹣4+4,x2=﹣4﹣4;75. x2﹣4x=4;x2﹣4x﹣4=0;a=,b=﹣4,c=﹣4,b2﹣4ac=(﹣4)2﹣4××(﹣4)=48>0,x==±,x1=+,x2=﹣;76. 2x2﹣2x+1=0,a=2,b=﹣2,c=1,b2﹣4ac=(﹣2)2﹣4×2×1=0,x1=x2=.77. 5x2+2x﹣1=0∵a=5,b=2,c=﹣1,∴△=b2﹣4ac=4+4×5×1=24>0∴x1•x2=∴x1=.78. 6y2+13y+6=0∵a=6,b=13,c=6,∴△=b2﹣4ac=169﹣4×6×6=25>0∴x=∴x1=﹣,x2=﹣.79. 3•x2+6x+9=7整理,得:x2+6x+2=0∴a=1,b=6,c=2∴△=b2﹣4ac=36﹣4×1×2=28>0∴x1•2==﹣3±∴x1=﹣3+,x2=﹣3﹣.80. 2x2﹣3x+1=0;根据原方程,得a=2,b=﹣3,c=1,∵b2﹣4ac=9﹣4×2×1=1>0,∴x=,x==.∴x1=1,x2=;81. 2y(y﹣1)+3=(y+1)2.由原方程,得2y2﹣2y+3=y2+2y+1,即y2﹣4y+2=0,∴a=1,b=﹣4,c=2.b2﹣4ac=(﹣4)2﹣4×1×2=8>0.∴x=x==∴x1=2+,x2=2﹣.82. x2=3x+1;方程化为x2﹣3x﹣1=0,∴a=1,b=﹣3,c=﹣1,b2﹣4ac=(﹣3)2﹣4×1×(﹣1)=13.∴x1=.83. (t+1)(t﹣3)=﹣t(3﹣3t).方程化为2t2﹣t+3=0,a=2,b=﹣1,c=3b2﹣4ac=1﹣4×2×3=﹣23<0,∴原方程无实数根84.x2﹣2ax﹣b2+a2=0.∵a=1,b=﹣2a,c=﹣b2+a2∴b2﹣4ac=4a2+4b2﹣4a2=4b2∴x==a±|b|.85. 3x2=2﹣5x;a=3,b=5,c=﹣2b2﹣4ac=52﹣4×3×(﹣2)=25+24=49>0.x==.所以x1=﹣2,x2=.86. y2﹣4y=1;原方程变形为:3y2﹣8y﹣2=0.a=3,b=﹣8,c=﹣2.b2﹣4ac=(﹣8)2﹣4×3×(﹣2)=64+24=88.x==.所以x1=,x2=.87. (x+1)(x﹣1)=2x.原方程变形x2﹣2x﹣1=0.a=1,b=﹣2,c=﹣1.b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8+4=12>0.所以x==.故x1=+,x2=﹣.88.(2x﹣1)2﹣7=3(x+1);整理,得4x2﹣7x﹣9=0,因为a=4,b=﹣7,c=﹣9.所以x=89.x2﹣6x+11=0由原方程,知a=,b=﹣6,c=11将其代入求根公式x=,得x=,∴原方程的根是:x1=4,x2=90 . 5x2﹣8x+2=0.这里a=5,b=﹣8,c=2,∵b2﹣4ac=64﹣40=24>0,∴x==,则x1=,x2=.91.x2﹣3x+1=0.x2﹣3x+1=0,这里a=1,b=﹣3,c=1,∵b2﹣4ac=(﹣3)2﹣4×1×1=9﹣4=5>0,∴x==,则x1=,x2=92.x2=5﹣12x方程化为一般形式为:x2+12x﹣5=0,∴a=1,b=12,c=﹣5,∴△=122﹣4×1×(﹣5)=4×41>0,∴x===﹣6±,所以x1=﹣6+,x2=﹣6﹣.93. x2+x﹣1=0解:x2+x﹣1=0,b2﹣4ac=12﹣4×1×(﹣1)=5,∴x=,∴x1=,x2=.94.3x2﹣4x﹣1=0解:3x2﹣4x﹣1=0,这里a=3,b=﹣4,c=﹣1,b2﹣4ac=(﹣4)2﹣4×3×(﹣1)=28,∴x==,∴原方程的解是:x1=,x2=,这里a=2,b=﹣2,c=1,∴b2﹣4ac=﹣4×2×1=4,∴x==,∴x1=,x2=,∴原方程的解是x1=,x2=95.3x2+2(x﹣1)=0,整理得:3x2+2x﹣2=0,这里a=3,b=2,c=﹣2,∵△=b2﹣4ac=4+24=28,∴x==,则x1=,x2=96.方程整理得:x2﹣2x+1=0,这里a=1,b=﹣2,c=1,∵△=8﹣4=4,∴x==±1,则x1=+1,x2=﹣1.97.3x2﹣4x﹣1=03x2﹣4x﹣1=0,这里a=3,b=﹣4,c=﹣1,∵b2﹣4ac=(﹣4)2﹣4×3×(﹣1)=16+12=28>0,∴x==,则x1=,x2=98.2x2﹣x+1=0a=2,b=﹣,c=1△=10﹣8=2x=∴x1=,x2=99. .解:整理得:x2﹣2x﹣1=0,∴b2﹣4ac=﹣4×1×(﹣1)=12,∴x==±,∴x1=+,x2=﹣100.3x2﹣4x﹣1=0.3x2﹣4x﹣1=0,a=3,b=﹣4,c=﹣1,b2﹣4ac=(﹣4)2﹣4×3×(﹣1)=28,∴x==,∴x1=,x2=101.2x2+5x﹣1=0.∵a=2,b=5,c=﹣1,△=b2﹣4ac=25+8=33,∴x===.即x1=,x2=102.2x2﹣x﹣1=0.∵原方程的二次项系数a=2,一次项系数b=﹣1,常数项c=﹣1,∴x===,∴x1=1,x2=﹣.103..∵a=2,b=﹣,c=﹣,∴△=(﹣)2﹣4×2×(﹣)=6>0,x==.104.3x2+5x﹣1=0.∵一元二次方程3x2+5x﹣1=0的二次项系数a=3,一次项系数b=5,常数项c=﹣1,∴x===,∴x1=,x2=.105.5x2﹣8x+2=0,a=5,b=﹣8,c=2,b2﹣4ac=(﹣8)2﹣4×5×2=24>0,x==,x1=,x2=.106.3x2+7x+10=1﹣8x,整理得:x2+5x+3=0,解得:x==,即:x1=,x2=;。

2017年中考数学复习专题图形的旋转试题及答案

2017年中考数学复习专题图形的旋转试题及答案

2017年中考数学一轮复习专题图形的旋转综合复习一选择题:1.如图,△ODC是由△OAB绕点O顺时针旋转31°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100°,则∠DOB的度数是( )A.34°B.36°C.38°D.40°2.如图,将矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′的位置,旋转角为α(0<α<90°),若∠1=110°,则∠α=()A.10° B.20° C.25° D.30°3.如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是()A.(0,0)B.(1,0)C.(1,﹣1)D.(2.5,0.5)4.在右图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是( )A.点AB.点BC.点CD.点D5.如图,边长为1的正方形ABCD绕点A逆时针旋转45°得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是( )A. B. C.-1 D.6.如图,OA⊥OB,等腰直角△CDE的腰CD在OB上,∠ECD=45°,将△CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则的值为()A. B. C. D.7.如图,△ABC中,已知∠C=90°,∠B=55°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m为()A.70° B.70°或120° C.120° D.80°8.如图,在等边△ABC中,点O在AC上,且AO=3,CO=6,点P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是()A.4 B.5 C.6 D.89.将两个斜边长相等的三角形纸片如图1放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°,把△DCE绕点C 顺时针旋转15°得到△D′CE′.如图2,连接D′B,则∠E′D′B的度数为( )A.10°B.20°C.7.5°D.15°10.如图,将△ABC绕点C(0,-1)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′坐标为()A.(-a,-b)B.(-a,-b-1)C.(-a,-b+1)D.(-a,-b-2)11.将矩形ABCD绕点B顺时针旋转90°后得到矩形A′BC′D′,若AB=12,AD=5,则△DBD′面积为( )A. 13B.26 C.84.5 D.16912.如图,正方形ABCD的边长为6,点E,F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF的长为( )A.2 B.3 C. D.13.如图,在△ABC中AB=AC,∠BAC=90o.直角∠EPF的顶点P是BC中点,PE、PF分别交AB、AC于点E、F.当∠EPF在△ABC内绕顶点P旋转时(E点和F点可以与A、B、C重合)以下结论:①AE=CF;②△EPF是等腰直角三角形;③S四边形AEPF =S△ABC;④EF最长等于AP.上述结论中正确的有 ( )A.1个 B.2个 C.3个 D.4个14.把一副三角板如图甲放置,其中,,,斜边,,把三角板DCE绕着点C顺时针旋转得到△(如图乙),此时与交于点O,则线段的长度为()A. B. C.4 D.15.如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2﹣ B. C.﹣1 D.116.如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A.(,)B.(,)C.(,)D.(,4)17.如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E 是边长为2,中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为()A. 4B.4﹣C.3D. 6﹣218.△ABC是等腰直角三角形,∠A=90°,AB=,点D位于边BC的中点上,点E在AB上,点F在AC上,∠EDF=45°,给出以下结论:①当BE=1时,;②∠DFC=∠EDB;③CF×BE=1;④;⑤;正确的有()A.①④⑤ B.①③④⑤ C. ②③④ D.③④⑤19.如图所示,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,已知∠AP′B=135°,P′A:P′C=1:3,则P′A:PB=( )A.1:2;B.1:2;C.3:2;D.1:320.如图,在△ABC中,∠ACB=90º,∠B=30º,AC=1,AC在直线l上.将△ABC绕点A顺时针旋转到位置①,可得到点P1,此时AP 1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+;将位置②的三角形绕点P 2顺时针旋转到位置③,可得到点P3,此时AP3=3+;…,按此规律继续旋转,直到得到点P2012为止,则AP2012=( )A.2011+671B.2012+671 C.2013+671 D.2014+671二填空题:21.如图,在平面直角坐标系中,已知点A(3,4),将OA绕坐标原点O逆时针转900至OA/,则点A/的坐标是 .22.如图,在平面直角坐标系中,点A、B的坐标分别为(3,2)、(-1,0),若将线段BA绕点B顺时针旋转90°得到线段BA',则点A'的坐标为.23.如图,点E在正方形ABCD的边CD上,把△ADE绕点A顺时针旋转90°至△ABF位置,如果AB=,∠EAD=30°,那么点E与点F之间的距离等于.24.如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF= .25.如图,在Rt△ABC中,∠C=90°,∠A=45°,AB=2.将△ABC绕顶点A顺时针方向旋转至△AB′C′的位置,B,A,C′三点共线,则线段BC扫过的区域面积为.26.如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是________.27.如图,在Rt△ABC中,∠ACB=90°,AC=5 cm,BC=12 cm.将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF和△BDF的周长之和为________cm.28.如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是。

2017年中考数学专题复习规律探究问题

2017年中考数学专题复习规律探究问题

规律探究问题【专题点拨】规律探究问题是指给出一定条件(可以是有规律的算式、图形或图表),让学生认真分析,仔细观察,综合归纳,大胆猜想,得出结论,进而加以验证的数学探究题. 类型有“数字规律”“数式规律”“图形规律”等题型.【解题策略】针对此类专题我们在解题过程中要从特殊情况入手→探索发现规律→综合归纳→猜想得出结论→验证结论。

当然面对具体问题还需要具体分析,找到切入点进行解答。

【典例解析】类型一:数字规律探究例题1:(2016·辽宁丹东·3分)观察下列数据:﹣2,,﹣,,﹣,…,它们是按一定规律排列的,依照此规律,第11个数据是.【解析】规律型:数字的变化类.根据题意可得:所有数据分母为连续正整数,第奇数个是负数,且分子是连续正整数的平方加1,进而得出答案.【解答】解:∵﹣2=﹣,,﹣,,﹣,…,∴第11个数据是:﹣=﹣.故答案为:﹣.变式训练1:(2016广西南宁3分)观察下列等式:在上述数字宝塔中,从上往下数,2016在第层.类型二:代数式排列探究例题2:(2016·山东省滨州市·4分)观察下列式子:1×3+1=22;7×9+1=82; 25×27+1=262; 79×81+1=802; …可猜想第2016个式子为 .【解析】观察等式两边的数的特点,用n 表示其规律,代入n=2016即可求解. 【解答】解:观察发现,第n 个等式可以表示为:(3n﹣2)×3n+1=(3n﹣1)2, 当n=2016时, (32016﹣2)×32016+1=(32016﹣1)2, 故答案为:(32016﹣2)×32016+1=(32016﹣1)2.【点评】此题主要考查数的规律探索,观察发现等式中的每一个数与序数n 之间的关系是解题的关键.变式训练2:(2016·山东省东营市·4分)在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S =1+3+32+33+34+35+36+37+38①,然后在①式的两边都乘以3,得:3S =3+32+33+34+35+36+37+38+39②,②一①得:3S ―S =39-1,即2S =39-1, ∴S =39―12.得出答案后,爱动脑筋的张红想:如果把“3”换成字母m (m ≠0且m ≠1),能否求出1+m +m 2+m 3+m 4+…+m 2016的值?如能求出,其正确答案是___________.类型三:图形规律探究例题3:(2016·湖北荆州·3分)如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n 个图案中有2017个白色纸片,则n 的值为( )A.671 B.672 C.673 D.674【解析】将已知三个图案中白色纸片数拆分,得出规律:每增加一个黑色纸片时,相应增加3个白色纸片;据此可得第n个图案中白色纸片数,从而可得关于n的方程,解方程可得.【解答】解:∵第1个图案中白色纸片有4=1+1×3张;第2个图案中白色纸片有7=1+2×3张;第3个图案中白色纸片有10=1+3×3张;…∴第n个图案中白色纸片有1+n×3=3n+1(张),根据题意得:3n+1=2017,解得:n=672,故选:B.【点评】本题考查了图形的变化问题,观察出后一个图形比前一个图形的白色纸片的块数多3块,从而总结出第n个图形的白色纸片的块数是解题的关键.变式训练3:(2016·重庆市A卷·4分)下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.64 B.77 C.80 D.85类型四:坐标规律探究例题4:(2016·四川内江)一组正方形按如图3所示的方式放置,其中顶点B1在y轴上,顶点C1,E1,E2,C2,E3,E4,C3……在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O =60°,B1C1∥B2C2∥B3C3……则正方形A2016B2016C2016D2016的边长是( )A .(12)2015B .(12)2016C .)2016 D .)2015[答案] D[考点]三角形的相似,推理、猜想。

2017版中考数学复习一元二次方程专练一元二次方程之根与判别式专项练习60题

2017版中考数学复习一元二次方程专练一元二次方程之根与判别式专项练习60题

一元二次方程之根与判别式1.已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2.(1)求实数m的取值范围;(2)当时,求m的值.2.关于x的方程2x2﹣(a2﹣4)x﹣a+1=0,(1)若方程的一根为0,求实数a的值;(2)若方程的两根互为相反数,求实数a的值.3.已知关于x的方程x2﹣(k+1)x+k+2=0的两个实数根分别为x1和x2,且x12+x22=6,求k的值?4.已知关于x的方程kx2+2(k+1)x﹣3=0.(1)请你为k选取一个合适的整数,使方程有两个有理根,并求出这两个根;(2)若k满足不等式16k+3>0,试讨论方程实数根的情况.5.已知方程2(m+1)x2+4mx+3m=2,根据下列条件之一求m的值.(1)方程有两个相等的实数根;(2)方程有两个相反的实数根;(3)方程的一个根为0.6.已知α,β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足+=﹣1,求m的值.7.已知x1,x2是关于x的一元二次方程x2﹣(2m+3)x+m2=0的两个不相等的实数根,且满足,求m的8.已知关于x的一元二次方程x2+2(2一m)x+3﹣6m=0.(1)求证:无论m取何实数,方程总有实数根;(2)若方程的两个实数根x l和x2满足x l+x2=m,求m的值.9.已知关于x的一元二次方程x2﹣(8+k)x+8k=0(1)求证:无论k取任何实数,方程总有实数根;(2)若等腰三角形的一边长为5,另两边长恰好是这个方程的两个根,求这个等腰三角形的周长.10.已知关于x的一元二次方程x2﹣2(1﹣m)x+m2=0的两根为x1,x2.(1)求m的取值范围;(2)若x12+12m+x22=10,求m的值.11.已知:关于x的一元二次方程kx2+(2k+1)x+k﹣2=0的两个实数根是x1和x2.(1)求k的取值范围;(2)若x12=11﹣x22,求k的值.12.已知关于x的一元二次方程x2+5x﹣m=0有两个实数根(1)求m的取值范围;(2)若x=﹣1是方程的一个根,求m的取值及方程的另一个根.13.已知关于x的一元二次方程x2﹣(m+2)x+m﹣2=0.(1)求证:无论m取何值时,方程总有两个不相等的实数根.14.一元二次方程x2+kx﹣(k﹣1)=0的两根分别为x1,x2.且x12﹣x22=0,求k值.15.在正实数范围内,只存在一个数是关于x的方程的解,求实数k的取值范围.16.关于x的方程4kx2+4(k+2)x+k=0有两个不相等的实数根.(1)求k的取值范围.(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,说明理由.17.已知关于x的二次方程a2x2+2ax+1=﹣3x的两个实数根的积为1,且关于x的二次方程x2+2(a+n)x﹣a2=4﹣6a ﹣2n有小于2的正实根,求n的整数值.18.关于的方程2x3+(2﹣m)x2﹣(m+2)x﹣2=0有三个实数根分别为α、β、x0,其中根x0与m无关.(1)如(α+β)x0=﹣3,求实数m的值.(2)如α<a<b<β,试比较:与的大小,并说明你的理由.19.已知x1,x2是关于x的一元二次方程x2+(3a﹣1)x+2a2﹣1=0的两个实数根,其满足(3x1﹣x2)(x1﹣3x2)=﹣80.求实数a的所有可能值.20.已知关于x的方程x2+(2m﹣3)x+m2+6=0的两根x1,x2的积是两根和的两倍,①求m的值;②求作以为两根的一元二次方程.21.已知关于x的方程x2﹣(2k﹣3)x+k2+1=0.问:(1)当k为何值时,此方程有实数根;(2)若此方程的两实数根x1、x2,满足|x1|+|x2|=3,求k的值.22.已知,关于x的方程x2﹣2mx=﹣m2+2x的两个实数根x1、x2满足|x1|=x2,求实数m的值.23.设m为整数,且4<m<40,方程x2﹣2(2m﹣3)x+4m2﹣14m+8=0有两个整数根,求m的值.24.已知关于x的方程(k﹣1)x2+(2k﹣3)x+k+1=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由.25.已知关于x的一元二次方程x2﹣mx+2m﹣1=0的两个实数根的平方和为23,求m的值.26.已知关于x的方程x2+2(m﹣2)x+m2+4=0有两个实数根,且这两根的平方和比两根的积大21,求m的值.27.已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2.(1)求实数m的取值范围;(2)当(x1+x2)•(x1﹣x2)=0时,求m的值.(友情提示:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,则:,)28.关于x的方程有两个不相等的实数根.(1)求k的取值范围;(2)已知关于x的方程x2﹣(k+1)x+k+2=0的两个实数根的平方和等于6,求k的值.29.已知x1、x2是方程4x2﹣(3m﹣5)x﹣6m2=0的两根,且,求m的值.30.已知关于x的方程k有两个不相等的实数根.(1)求实数k的取值范围;(2)设方程的两实根为x1和x2(x1≠x2),那么是否存在实数k,使成立?若存在,请求出k的值;若不存在,请说明理由.31.已知:关于x的方程x2+kx+k﹣1=0(1)求证:方程一定有两个实数根;(2)设x1,x2是方程的两个实数根,且(x1+x2)(x1﹣x2)=0,求k的值.32.设关于x的二次方程(a2+1)x2﹣4ax+2=0的两根为x1,x2,若2x1x2=x1﹣3x2,试求a的值.33.已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根x1,x2,(1)求a的取值范围;(2)若5x1+2x1x2=2a﹣5x2;求a的值.34.已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0.(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根;(2)当Rt△ABC的斜边长a=,且两条直角边b和c恰好是这个方程的两个根时,求△ABC的周长.35.一元二次方程8x2﹣(m﹣1)x+m﹣7=0,(1)m为何实数时,方程的两个根互为相反数?(2)m为何实数时,方程的一个根为零?(3)是否存在实数m,使方程的两个根互为倒数?36.已知一元二次方程kx2+x+1=0(1)当它有两个实数根时,求k的取值范围;(2)问:k为何值时,原方程的两实数根的平方和为3?37.关于x的方程为x2+(m+2)x+2m﹣1=0.(1)证明:方程有两个不相等的实数根.(2)是否存在实数m,使方程的两个实数根互为相反数?若存在,求出m的值及两个实数根;若不存在,请说明理由.38.已知:关于的方程x2﹣kx﹣2=0.(1)求证:无论k为何值时,方程有两个不相等的实数根.(2)设方程的两根为x1,x2,若2(x1+x2)>x1x2,求k的取值范围.39.已知:关于x的方程x2﹣2(m+1)x+m2﹣3=0.(1)当m为何值时,方程总有两个实数根?(2)设方程的两实根分别为x1、x2,当x12+x22﹣x1x2=78时,求m的值.40.已知x1,x2是关于x的方程x2﹣(2m+3)x+m2=0的两个实数根,且=1时求m的值.41.已知关于x的方程x2+(m+2)x+2m﹣1=0.(1)求证:方程有两个不相等的实数根;(2)若方程有一根为2,求m的值,并求出此时方程的另一根.42.关于x的一元二次方程x2﹣mx+2m﹣1=0的两个实数根分别是x1、x2,且x12+x22=7.求(x1﹣x2)2的值.43.已知方程x2+2(k﹣2)x+k2+4=0有两个实数根,且这两个实数根的平方和比两根的积大21,求k的值和方程的两个根.44.若关于x的一元二次方程4kx2+4(k+2)x+k=0有两个不相等的实数根,是否存在实数k,使方程的两个实数根之和等于0?若存在,求出k的值;若不存在,请说明理由.45.已知关于x的一元二次方程x2+(k+3)x+k=0的一个根是x=﹣2,求k的值以及方程的另一根.46.已知x1、x2是方程x2﹣2mx+3m=0的两根,且满足(x1+2)(x2+2)=22﹣m2,求m的值.47.已知关于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.(1)求证:无论k为何值时,该方程总有实数根;(2)若两个实数根平方和等于5,求k的值.48.若关于x的方程x2+(m+1)x+m+4=0两实数根的平方和是2,求m的值.49.m为何值时,方程2x2+(m2﹣2m﹣15)x+m=0两根互为相反数?50.已知△ABC的两边AB、AC的长度是关于x的一元二次方程x2﹣(2k+2)x+k2+2k=0的两个根,第三边长为10,问k为何值时,△ABC是等腰三角形?并求出这个等腰三角形的周长.51.已知关于x的一元二次方程x2﹣2(k﹣1)x+k2=0(1)当k取什么值时,原方程有实数根;(2)对k选取一个合适的数,使方程有两个实数根,并求出这两个实数根的平方和.52.已知x1,x2是关于x的方程x2+(2a﹣1)x+a2=0的两个实数根,(1)当a取何值时,方程两根互为倒数?(2)如果方程的两个实数根x1、x2满足|x1|=x2,求a的值.53.已知关于x的方程(1)若方程有两个相等的实数根,求m的值,并求出此时方程的根;(2)是否存在正数m,使方程的两个实数根的平方和等于224.若存在,求出满足条件的m的值;若不存在,请说明理由.54.已知一元二次方程8x2﹣(2m+1)x+m﹣7=0,根据下列条件,分别求出m的值:(1)两根互为倒数;(2)两根互为相反数;(3)有一根为零;(4)有一根为1.55.已知关于x的一元二次方程(a﹣1)x2﹣(2a﹣3)x+a=0有实数根.(1)求a的取值范围;(2)设x1,x2是一元二次方程(a﹣1)x2﹣(2a﹣3)x+a=0的两个根,且x12+x22=9,求a的值.56.已知一元二次方程8y2﹣(m+1)y+m﹣5=0.(1)m为何值时,方程的一个根为零?(2)m为何值时,方程的两个根互为相反数?(3)证明:是否存在实数m,使方程的两个根互为倒数.57.已知一元二次方程(m+1)x2﹣x+m2﹣3m﹣3=0有一个根是1,求m的值及方程的另一个根.58.若关于x的方程(a2﹣3)x2﹣2(a﹣2)x+1=0的两个实数根互为倒数,求a的值.59.已知△ABC的一边为5,另外两边恰是方程x2﹣6x+m=0的两个根.(1)求实数m的取值范围.(2)当m取最大值时,求△ABC的面积.60.已知等腰三角形的一边长a=1,另两边b、c恰是方程x2﹣(k+2)x+2k=0的两根,求△ABC的周长.一元二次方程之根与判别式60题参考答案:1.解:(1)根据题意得△=(2m﹣1)2﹣4m2≥0,解得m ≤;(2)根据题意得x1+x2=﹣(2m﹣1),x1•x2=m2,∵,∴(x1+x2)2﹣2x1•x2=7,∴(2m﹣1)2﹣2m2=7,整理得m2﹣2m﹣3=0,解得m1=3,m2=﹣1,∵m ≤,∴m=﹣12.解:(1)把x=0代入原方程得﹣a+1=0,解得a=1;(2)设方程两个为x1,x2,根据题意得x1+x2==0,解得a=±2,当a=﹣2时,原方程化为2x2+3=0,此方程无实数解,∴a=23.解:由根与系数的关系可得:x1+x2=k+1,x1•x2=k+2,又知x12+x22=(x1+x2)2﹣2x1•x2=(k+1)2﹣2(k+2)=6 解得:k=±3.∵△=b2﹣4ac=(k+1)2﹣4(k+2)=k2﹣2k﹣7≥0,∴k=﹣34.解:(1)比如:取k=3,原方程化为3x2+8x﹣3=0.…(1分)即:(3x﹣1)(x+3)=0,解得:x1=﹣3,x2=;…(2分)(2)由16+k>0,解得k >﹣.…(3分)∵当k=0时,原方程化为2x﹣3=0;解得:x=,∴当k=0时,方程有一个实数根…(4分)∵当k >﹣且k≠0时,方程kx2+2(k+1)x﹣3=0为一元二次方程,∴△=[2(k+1)]2﹣4×k×(﹣3)=4k2+8k+4+12k=4k2+20k+4=[(2k)2+2×2k×1+1]+(16k+3)=(2k+1)2+16k+3,…(5分)∵(2k+1)2≥0,16k+3>0,∴△=(2k+1)2+16k+3>0.…(6分)∴当k >﹣且k≠0时,一元二次方程kx2+2(k+1)x﹣3=0有两个不等的实数根5.解:(1)∵△=16m2﹣8(m+1)(3m﹣2)=﹣8m2﹣8m+16,而方程有两个相等的实数根,∴△=0,即﹣8m2﹣8m+16=0,求得m1=﹣2,m2=1;(2)因为方程有两个相等的实数根,所以两根之和为0且△≥0,则﹣=0,求得m=0;(3)∵方程有一根为0,∴3m﹣2=0,∴m=.6.解:根据条件知:α+β=﹣(2m+3),αβ=m2,∴+==﹣1,∴=﹣1,即:m2﹣2m﹣3=0,解得:m=3或﹣1,当m=3时,方程为x2+9x+9=0,此方程有两个不相等的实数根,当m=﹣1时,方程为x2+x+1=0,此方程无实根,不合题意,舍去,∴m=37.解:根据题意得△=(2m+3)2﹣4m2>0,解得m >﹣;根据根与系数的关系得x1+x2=2m+3,则2m+3=m2,整理得m2﹣2m﹣3=0,即(m﹣3)(m+1)=0,解得m1=3,m2=﹣1,则m=38.(1)证明:方程根的判别式△=[2(2﹣m)]2﹣4×1×(3﹣6m)=4(4﹣4m+m2)﹣4(3﹣6m)=4(4﹣4m+m2﹣3+6m)=4(1+2m+m2)=4(m+1)2(4分)∵无论m为何实数,4(m+1)2≥0恒成立,即△≥0恒成立.(5分)∴无论m取何实数,方程总有实数根;(6分)(2)解:由根与系数关系得x1+x2=﹣2(2﹣m)(7分)由题知x1+x2=m,∴m=﹣2(2﹣m)(8分)解得m=4.9.解:(1)∵△=(8+k)2﹣4×8k=(k﹣8)2,∵(k﹣8)2,≥0,∴△≥0,∴无论k取任何实数,方程总有实数根;(2)解方程x2﹣(8+k)x+8k=0得x1=k,x2=8,①当腰长为5时,则k=5,∴周长=5+5+8=18;②当底边为5时,∴x1=x2,∴k=8,∴周长=8+8+5=2110.解:(1)△=[2(1﹣m)]2﹣4m2=4﹣8m,∵方程有两根,∴△≥0,即4﹣8m≥0,∴m ≤.(2)∵x1+x2=2(1﹣m),x1•x2=m2,且x12+12m+x22=10,∴m2+2m﹣3=0,解得 m1=﹣3,m2=1,又∵m ≤,∴m=﹣311.解:(1)∵方程有两个实数根,∴k≠0且△=(2k+1)2﹣4k(k﹣2)≥0,解得:k ≥﹣且k≠0,∴k的取值范围:k ≥﹣且k≠0.(2)∵一元二次方程kx2+(2k+1)x+k﹣2=0的两个实数根是x1和x2,∴x1+x2=﹣,x1x2=,∵x12=11﹣x22,∴x12+x22=11,∴(x1+x2)2﹣2x1x2=11,∴﹣2()=11,解得:k=﹣或k=1,∵k ≥﹣且k≠0,∴k=112.解:(1)∵方程x2+5x﹣m=0有两个实数根,∴△=25+4m≥0,解得:m ≥﹣;(2)将x=﹣1代入方程得:1﹣5﹣m=0,即m=﹣4,∴方程为x2+5x+4=0,设另一根为a,∴﹣1+a=﹣5,即a=﹣4,则m的值为﹣4,方程另一根为﹣413.解:(1)由题意得:△=[﹣(m+2)]2﹣4(m﹣2)=m2+12,∵无论m取何值时,m2≥0,∴m2+12≥12>0即△>0恒成立,∴无论m取何值时,方程总有两个不相等的实数根.(2)设方程两根为x1,x2,由韦达定理得:x1•x2=m﹣2,由题意得:m﹣2=m2+9m﹣11,解得:m1=﹣9,m2=1,∴14.解:∵x12﹣x22=0,∴(x1+x2)(x1﹣x2)=0,∴x1+x2=0或x1﹣x2=0,当x1+x2=0,则x1+x2=﹣k=0,解得k=0,原方程变形为x2+1=0,此方程没有实数根,当x1﹣x2=0,则△=k2﹣4(k﹣1)=0,解得k1=k2=2,∴k的值为215.解:原方程可化为2x2﹣3x﹣(k+3)=0,①(1)当△=0时,,满足条件;(2)若x=1是方程①的根,得2×12﹣3×1﹣(k+3)=0,k=﹣4;此时方程①的另一个根为,故原方程也只有一根;(3)当方程①有异号实根时,,得k>﹣3,此时原方程也只有一个正实数根;(4)当方程①有一个根为0时,k=﹣3,另一个根为,此时原方程也只有一个正实根.综上所述,满足条件的k 的取值范围是或k=﹣4或k≥﹣316.解:(1)由△=[4(k+2)]2﹣4×4k•k>0,∴k>﹣1又∵4k≠0,∴k的取值范围是k>﹣1,且k≠0;(2)不存在符合条件的实数k理由:设方程4kx2+4(k+2)x+k=0的两根分别为x1、x2,由根与系数关系有:x1+x2=﹣,x1•x2=,又==﹣=0,∴k=﹣2,由(1)知,k=﹣2时,△<0,原方程无实解,∴不存在符合条件的k的值17.解:∵关于x 的二次方程a 2x 2+2ax+1=﹣3x ∴a 2x 2+2ax+3x+1=0,∵关于x 的二次方程a 2x 2+2ax+1=﹣3x 的两个实数根的积为1, ∴=1,∴a=±1,∵12a+9≥0, ∴a=1∴关于x 的二次方程x 2+2(a+n )x ﹣a 2=4﹣6a ﹣2n 可化简为: x 2+2(1+n )x+(1+2n )=0 ∴x 1=﹣1,x 2=﹣1﹣2n ,∵关于x 的二次方程x 2+2(a+n )x ﹣a 2=4﹣6a ﹣2n 有小于2的正实根, ∴0<﹣1﹣2n <2, ∴n 的整数值为﹣118.解:(1)由2x 3+(2﹣m )x 2﹣(m+2)x ﹣2=0得(x+1)(2x 2﹣mx ﹣2)=0,∴x 0=﹣1,(2分) α、β是方程2x 2﹣mx ﹣2=0的根∴,∵(α+β)x 0=﹣3,所以m=6(4分)(2)设T=﹣=(5分)∵a <b ,∴b ﹣a >0,又a 2+1>0,b 2+1>0,∴>0(6分)设f (x )=2x 2mx ﹣2,所以α、β是f (x )=2x 2mx ﹣2与x 轴的两个交点, ∵α<a <b <β ∴,即∴ma+mb >2a 2+2b 2﹣4(8分)∴4﹣4ab+ma+mb >2(a ﹣b )2>0(9分) ∴T >0,即>19.解:∵x 1,x 2是关于x 的一元二次方程x 2+(3a ﹣1)x+2a 2﹣1=0的两个实数根,∴△≥0,即(3a ﹣1)2﹣4(2a 2﹣1)=a 2﹣6a+5≥0 所以a ≥5或a ≤1.…(3分)∴x 1+x 2=﹣(3a ﹣1),x 1•x 2=2a 2﹣1,∵(3x 1﹣x 2)(x 1﹣3x 2)=﹣80,即3(x 12+x 22)﹣10x 1x 2=﹣80,∴3(x 1+x 2)2﹣16x 1x 2=﹣80,∴3(3a ﹣1)2﹣16(2a 2﹣1)=﹣80,整理得,5a 2+18a ﹣99=0,∴(5a+33)(a ﹣3)=0,解得a=3或a=﹣,当a=3时,△=9﹣6×3+5=﹣4<0,故舍去, 当a=﹣时,△=(﹣)2﹣6×(﹣)+6=()2+6×+6>0,∴实数a 的值为﹣20.解:(1)∵原方程有两实根∴△=(2m ﹣3)2﹣4(m 2+6)=﹣12m ﹣15≥0得①…(3分)∵x 1+x 2=﹣(2m ﹣3)x 1x 2=m 2+6…(4分) 又∵x 1x 2=2(x 1+x 2),∴m 2+6=﹣2(2m ﹣3)整理得m 2+4m=0解得m=0或m=﹣4…(6分) 由①知m=﹣4…(7分) (2)∵…(9分),…(11分)由韦达定理得所求方程为…21.解:(1)若方程有实数根,则△=(2k ﹣3)2﹣4(k 2+1)≥0,∴k ≤,∴当k ≤,时,此方程有实数根;(2)∵此方程的两实数根x 1、x 2,满足|x 1|+|x 2|=3,∴(|x 1|+|x 2|)2=9,∴x 12+x 22+2|x 1x 2|=9,∴(x 1+x 2)2﹣2x 1x 2+2|x 1x 2|=9,而x 1+x 2=2k ﹣3,x 1x 2=k 2+1,∴(2k ﹣3)2﹣2(k 2+1)+2(k 2+1)=9, ∴2k ﹣3=3或﹣3,∴k=0或3,k=3不合题意,舍去; ∴k=022.解:方程整理为x 2﹣2(m+1)x+m 2=0,∵关于x 的方程x 2﹣2mx=﹣m 2+2x 的两个实数根x 1、x 2,∴△=4(m+1)2﹣4m2≥0,解得m ≥﹣;∵|x1|=x2,∴x1=x2或x1=﹣x2,当x1=x2,则△=0,所以m=﹣,当x1=﹣x2,即x1+x2=2(m+1)=0,解得m=﹣1,而m≥﹣,所以m=﹣1舍去,∴m 的值为﹣23.解:∵a=1,b=﹣2(2m﹣3),c=4m2﹣14m+8,∴△=b2﹣4ac=4(2m﹣3)2﹣4(4m2﹣14m+8)=4(2m+1).∵方程有两个整数根,∴△=4(2m+1)是一个完全平方数,所以2m+1也是一个完全平方数.∵4<m<40,∴9<2m+1<81,∴2m+1=16,25,36,49或64,∵m为整数,∴m=12或24.代入已知方程,得x=16,26或x=38,52.综上所述m为12,或2424.解:(1)方程(k﹣1)x2+(2k﹣3)x+k+1=0有两个不相等的实数根x1,x2,可得k﹣1≠0,∴k≠1且△=﹣12k+13>0,可解得且k≠1;(2)假设存在两根的值互为相反数,设为 x1,x2,∵x1+x2=0,∴,∴,又∵且k≠1∴k不存在25.解:设关于x的一元二次方程x2﹣mx+2m﹣1=0的两个实数根分别为x1,x2,则:x1+x2=m,x1•x2=2m﹣1,∵关于x的一元二次方程x2﹣mx+2m﹣1=0的两个实数根的平方和为23,∴x12+x22=(x1+x2)2﹣2x1•x2=m2﹣2(2m﹣1)=m2﹣4m+2=23,解得:m1=7,m2=﹣3,当m=7时,△=m2﹣4(2m﹣1)=﹣3<0(舍去),当m=﹣3时,△=m2﹣4(2m﹣1)=37>0,∴m=﹣326.解:设x的方程x2+2(m﹣2)x+m2+4=0有两个实数根为x1,x2,∴x1+x2=2(2﹣m),x1x2=m2+4,∵这两根的平方和比两根的积大21,∴x12+x22﹣x1x2=21,即:(x1+x2)2﹣3x1x2=21,∴4(m﹣2)2﹣3(m2+4)=21,解得:m=17或m=﹣1,∵△=4(m﹣2)2﹣4(m2+4)≥0,解得:m≤0.故m=17舍去,∴m=﹣127.解:∵x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2,∴△=(2m﹣1)2﹣4m2=1﹣4m≥0,解得:m ≤;(2)∵x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2,∴x1+x2=1﹣2m,x1x2=m2,∴(x1+x2)•(x1﹣x2)=0,当1﹣2m=0时,1﹣2m=0,解得m=(不合题意).当x1=x2时,(x1+x2)2﹣4x1x2=4m2﹣4m+1﹣4m2=0,解得:m=.故m 的值为:28.解:(1)依题意得△=(k+2)2﹣4k •>0,解之得k>﹣1,又∵k≠0,∴k的取值范围是k>﹣1,且k≠0;(2)设方程的两个实数根分别为x1,x2,则x1+x2=k+1,x1•x2=k+2,∴x12+x22=(x1+x2)2﹣2x1x2=6,即(k+1)2﹣2(k+2)=6,解得:k=±3,当k=3时,△=16﹣4×5<0,∴k=3(舍去);当k=﹣3时,△=4﹣4×(﹣1)>0,∴k=﹣329.解:∵a=4,b=5﹣3m,c=﹣6m2,∴△=(5﹣3m)2+4×4×6m2=(5﹣3m)2+96m2,∵5﹣3m=0与m=0不能同时成立.△=(5﹣3m)2+96m2>0 则:x1x2≤0,又∵,∴,又∵,,∴,∴,解得:m1=1,m2=530.解:(1)由>0,解得k>﹣1,又∵k≠0,∴k的取值范围是k>﹣1且k≠0;(2)不存在符合条件的实数k,理由如下:∵,,又,∴,解得经检验k=﹣是方程的解.由(1)知,当时,△<0,故原方程无实根∴不存在符合条件的k的值31.(1)证明:△=k2﹣4(k﹣1)=k2﹣4k+4=(k﹣2)2,∵(k﹣2)2≥0,即△≥0,∴方程一定有两个实数根;(2)根据题意得x1+x2=﹣k,x1•x2=k﹣1,∵(x1+x2)(x1﹣x2)=0,∴x1+x2=0或x1﹣x2=0,当x1+x2=0,则﹣k=0,解得k=0,当x1﹣x2=0,则△=0,即(k﹣2)2=0,解得k=2,∴k的值为0或232.解:∵关于x的二次方程(a2+1)x2﹣4ax+2=0的两根为x1,x2,∴①,②∵2x1x2=x1﹣3x2,∴2x1x2+(x1+x2)=2(x1﹣x2),平方得4(x1x2)2+4x1x2(x1+x2)=3(x1+x2)2﹣16x1x2,将式①、②代入后,解得a=3,a=﹣1,当a=3时,原方程可化为10x2﹣12x+2=0,△=122﹣4×10×2=64>0,原方程成立;当a=﹣1时,原方程可化为2x2+4x+2=0,△=42﹣4×2×2=0,原方程成立.∴a=3或a=﹣133.解:(1)根据题意得a﹣1≠0且△=4﹣4(a﹣1)>0,解得a<2且a≠1;(2)根据题意得x1+x2=,x1•x2=,∵5x1+2x1x2=2a﹣5x2,∴5(x1+x2)+2x1x2=2a,∴+=2a,整理得a2﹣a﹣6=0,解得a1=3,a2=﹣2,∵a<2且a≠1,∴a=﹣234.解:(1)关于x的一元二次方程x2﹣(2k+1)x+4k ﹣3=0,△=(2k+1)2﹣4(4k﹣3)=4k2﹣12k+13=4+4>0恒成立,故无论k取什么实数值,该方程总有两个不相等的实数根;(2)根据勾股定理得:b2+c2=a2=31①因为两条直角边b和c恰好是这个方程的两个根,则b+c=2k+1②,bc=4k﹣3③,因为(b+c)2﹣2bc=b2+c2=31,即(2k+1)2﹣2(4k﹣3)=31,整理得:4k2+4k+1﹣8k+6﹣31=0,即k2﹣k﹣6=0,解得:k1=3,k2=﹣2(舍去),则b+c=2k+1=7,又因为a=,则△ABC的周长=a+b+c=+7.35.解:(1)∵一元二次方程8x2﹣(m﹣1)x+m﹣7=0的两个根互为相反数,∴x1+x2==0,解得m=1;(2)∵一元二次方程8x2﹣(m﹣1)x+m﹣7=0的一个根为零,∴x1•x2==0,解得m=7;(3)设存在实数m,使方程8x2﹣(m﹣1)x+m﹣7=0的两个根互为倒数,则x1•x2==1,解得m=15;则原方程为4x2﹣7x+4=0,△=49﹣4×4×4=﹣15<0,所以原方程无解,这与存在实数m,使方程8x2﹣(m﹣1)x+m﹣7=0有两个根相矛盾.故不存在这样的实数m36.解:(1)∵方程有两个实数根,∴△=1﹣4k≥0且k≠0.故k ≤且k≠0.(2)设方程的两根分别是x1和x2,则:x1+x2=﹣,x1x2=,x12+x22=(x1+x2)2﹣2x1x2,=﹣=3,整理得:3k2+2k﹣1=0,(3k﹣1)(k+1)=0,∴k1=,k2=﹣1.∵k ≤且k≠0,∴k=(舍去).故k=﹣137.(1)证明:△=(m+2)2﹣4(2m﹣1)=m2﹣4m+8=(m ﹣2)2+4,∵(m﹣2)2≥0,∴(m﹣2)2+4>0,∴方程有两个不相等的实数根.(2)存在实数m,使方程的两个实数根互为相反数.由题知:x1+x2=﹣(m+2)=0,解得:m=﹣2,将m=﹣2代入x2+(m+2)x+2m﹣1=0,解得:x=,∴m的值为﹣2,方程的根为x=38.解:(1)证明:由方程x2﹣kx﹣2=0知a=1,b=﹣k,c=﹣2,∴△=b2﹣4ac=(﹣k)2﹣4×1×(﹣2)=k2+8>0,∴无论k为何值时,方程有两个不相等的实数根;(2)∵方程x2﹣kx﹣2=0.的两根为x1,x2,∴x1+x2=k,x1x2=﹣2,又∵2(x1+x2)>x1x2,∴2k>﹣2,即k>﹣139.解:(1)∵△≥0时,一元二次方程总有两个实数根,△=[2(m+1)]2﹣4×1×(m2﹣3)=8m+16≥0,m≥﹣2,所以m≥﹣2时,方程总有两个实数根.(2)∵x12+x22﹣x1x2=78,∴(x1+x2)2﹣3x1x2=78,∵x1+x2=﹣,x1•x2=,∴﹣[2(m+1)]2﹣3×1×(m2﹣3)=78,解得m=5或﹣13(舍去),故m的值是m=540.解:∵关于x的方程x2﹣(2m+3)x+m2=0有两个实数根,∴△≥0,即(2m+3)2﹣4m2≥0,解得:m ≥﹣,∵+=1,∴=1,∴2m+3=m2,∴m2﹣2m﹣3=0,∴m1=3,m2=﹣1(舍去).故可得m=341.(1)证明:∵△=(m+2)2﹣4×1×(2m﹣1)=(m﹣2)2+4>0,∴方程有两个不相等的实数根.(2)解:把x=2代入方程,得22+2(m+2)+2m﹣1=0解得m=﹣,设方程的另一根为x1,则2x1=2×(﹣)﹣1,解得x1=﹣42.解:∵x1+x2=m,x1x2=2m﹣1,∴x12+x22=(x1+x2)2﹣2x1x2=m2﹣2(2m﹣1)=7;解可得m=﹣1或5;当m=5时,原方程即为x2﹣5x+9=0的△=﹣11<0无实根,当m=﹣1时,原方程即为x2+x﹣3=0的△=1+12=13>0,有两根,则有(x1﹣x2)2=(x1+x2)2﹣4x1x2=13.答:(x1﹣x2)2的值为1343.解:∵方程x2+2(k﹣2)x+k2+4=0有两个实数根,∴△=4(k﹣2)2﹣4(k2+4)≥0,∴k≤0,设方程的两根分别为x1、x2,∴x1+x2=﹣2(k﹣2)…①,x1•x2=k2+4…②,∵这两个实数根的平方和比两根的积大21,即x12+x22=x1•x2+21,即(x1+x2)2﹣3x1•x2=21,把①、②代入得,4(k﹣2)2﹣3(k2+4)=21,∴k=17(舍去)或k=﹣1,∴k=﹣1,∴原方程可化为x2﹣6x+5=0,解得x1=1,x2=544.解:不存在实数k,使方程的两个实数根之和等于0.理由如下:设方程两个为x1,x2,则x1+x2=﹣∵一元二次方程4kx2+4(k+2)x+k=0有两个不相等的实数根,∴4k≠0且△=16(k+2)2﹣4×4k×k>0,∴k的取值范围为k>﹣1且k≠0,当x1+x2=0,∴﹣=0,∴k=﹣2,而k>﹣1且k≠0,∴不存在实数k,使方程的两个实数根之和等于0 45.解:把x=﹣2代入原方程得4﹣2(k+3)+k=0,解得k=﹣2,所以原方程为x2+x﹣2=0,设方程另一个根为t,则t+(﹣2)=﹣1,解得t=1,即k的值为﹣2,方程的另一根为1 46.解:∵x1、x2是方程x2﹣2mx+3m=0的两根,∴x1+x2=2m,x1x2=3m.又(x1+2)(x2+2)=22﹣m2,∴x1x2+2(x1+x2)+4=22﹣m2,3m+4m+4=22﹣m2,m2+7m﹣18=0,(m﹣2)(m+9)=0,m=2或﹣9.当m=2时,原方程为x2﹣4x+6=0,此时方程无实数根,应舍去,取m=﹣947.(1)证明:△=(k+1)2﹣4(2k﹣2)=k2﹣6k+9=(k﹣3)2,∵(k﹣3)2≥0,即△≥0,∴无论k为何值时,该方程总有实数根;(2)解:设方程两根为x1,x2,则x1+x2=k+1,x1•x2=2k﹣2,∵x12+x22=5,∴(x1+x2)2﹣2x1•x2=5,∴(k+1)2﹣2(2k﹣2)=5,∴k1=0,k2=248.解:设方程的两根为x1,x2,∴x1+x2=﹣(m+1),x1•x2=m+4,而x12+x22=2,∴(x1+x2)2﹣2x1•x2=2,∴(m+1)2﹣2(m+4)=2,解得m1=3,m2=﹣3,当m=3时,方程变形为x2+4x+7=0∵△=16﹣4×7<0,∴此方程无实数根;当m=﹣3时,方程变形为x2﹣2x+1=0∵△=4﹣4×1=0,∴此方程有实数根,∴m=﹣349.解:若两根互为相反数,则△>0,x1+x2=0,于是(m2﹣2m﹣15)2﹣4×2m≥0,又∵x1+x2=0,∴﹣=0,即m2﹣2m﹣15=0,解得,m=3,或m=5.当m=3时,(32﹣2×3﹣15)2﹣4×2×3=120>0,符合题意;当m=5时,(52﹣2×5﹣15)2﹣4×2×5=﹣40<0,不符合题意.故答案为:350.解:∵△ABC的两边AB、AC的长度是关于x的一元二次方程x2﹣(2k+2)x+k2+2k=0的两个根,则AB+AC=2k+2,AC×AB=k2+2k,分为三种情况:①若AB=AC时,则2AB=2k+2,AB2=k2+2k,AB=k+1,代入得:(k+1)2=k2+2k,此方程无解,即AB≠AC;②若AB=BC=10,则10+AC=2k+2,10AC=k2+2k,即AC=2k+2﹣10,代入得:10(2k+2﹣10)=k2+2k,解得:k1=10,k2=8,∴AC=12或8,③若AC=BC=10时,与②同法求出k=10或8,∴当AC=12,AB=10,BC=10时,△ABC的周长=12+10+10=32,∴当AC=8,AB=10,BC=10时,△ABC的周长=10+10+8=28,∴当k=10或k=8时,△ABC为等腰三角形,△ABC的周长为32或2851.解:(1)△=4(k﹣1)2﹣4k2=4(k2﹣2k+1)﹣4k2=﹣8k+4≥0,∴k ≤,故当k ≤时,原方程有实数根;(2)选k=0,则原方程化为:x2+2x=0,设两实数根为:x1,x2,由根与系数的关系:x1+x2=﹣2,x1x2=0,∴x12+x22=(x1+x2)2﹣2x1x2,=4﹣0=452.解:(1)方程两根互为倒数,根据根与系数的关系x1•x2=1,即a2=1,a=±1,当a为1或﹣1时,方程两根互为倒数;(2)∵|x1|=x2,∴x1=x2或x1=﹣x2,当x1=x2时△=0,即(2a﹣1)2﹣4a2=0﹣4a+1=0,a=﹣,当x1=﹣x2时,2a﹣1=0,a=.∴方程的两个实数根x1、x2满足|x1|=x2,a 的值是﹣或53.解::(1)∵a=,b=﹣(m﹣2),c=m2方程有两个相等的实数根,∴△=0,即△=b2﹣4ac=[﹣(m﹣2)]2﹣4××m2=﹣4m+4=0,∴m=1.原方程化为:x2+x+1=0 x2+4x+4=0,(x+2)2=0,∴x1=x2=﹣2.(2)不存在正数m使方程的两个实数根的平方和等于224.∵x1+x2=﹣=4m﹣8,x1x2==4m2x12+x22=(x1+x2)2﹣2x1x2=(4m﹣8)2﹣2×4m2=8m2﹣64m+64=224,即:8m2﹣64m﹣160=0,解得:m1=10,m2=﹣2(不合题意,舍去),又∵m1=10时,△=﹣4m+4=﹣36<0,此时方程无实数根,∴不存在正数m使方程的两个实数根的平方和等于224.54.解:设原方程的两根为x1、x2(1)∵两根互为倒数,∴两根之积为1x1•x2==1,解得m=15,(2)∵两根互为相反数,∴x1+x2==0,∴m=﹣,(3)当有一根为零时,∴m﹣7=0,∴m=7,(4)当有一根为1时,∴8﹣2m﹣1+m﹣7=0,解得m=055.解:(1)当a﹣1=0即a=1时,方程不是一元二次方程;当a≠1时,由△=b2﹣4ac≥0,得(2a﹣3)2﹣4a(a﹣1)≥0,解得a ≤,∵a﹣1≠0,∴a≠1,则a的取值范围是a ≤且a≠1,(2)∵x1,x2是一元二次方程(a﹣1)x2﹣(2a﹣3)x+a=0的两个根,∴x1+x2=,x1x2=.又∵x12+x22=9,∴(x1+x2)2﹣2x1x2=9.()2﹣2×=9.整理,得7a2﹣8a=0,a(7a﹣8)=0.∴a1=0,a2=(舍去).经检验0是方程的根.故a=056.解:(1)若方程的一个根为零,则m﹣5=0,解得m=5,(2)若方程的两个根互为相反数,则两根之和为0,故=0,解得m=﹣1,(3)若方程两根互为倒数,则=1,解得m=13,当m=13时,方程是8y2﹣14y+8=0,即4y2﹣7y+4=0,根的判别式△=﹣15<0,故不存在实数m,使方程的两个根互为倒数57.解:设另一根为x,∵一元二次方程(m+1)x2﹣x+m2﹣3m﹣3=0有一个根是1,∴m+1﹣1+m2﹣3m﹣3=0,解得m=3或﹣1(舍去),故m=3,∴x+1==,∴x=﹣,故另一根为﹣.58.解:设方程的两根为x1,x2,∵关于x的一元二次方程(a2﹣3)x2﹣2(a﹣2)x+1=0的两个实数根互为倒数,∴a2﹣3≠0,x1•x2==1,∴a2=4,∴a=2或﹣2,当a=2时,原方程变形为x2+1=0,△=﹣4<0,此方程无实数根,∴a=﹣2.即a的值是﹣259.解:(1)设另两边为x1,x2,且x1>x2.∴由韦达定理,得x1+x2=6,x1•x2,=m;根据三边关系得:x1+x2=6>5 ①;∴x1﹣x2==<5;解得,m >;又∵△=36﹣4m≥0,解得,m≤9,∴m 的取值范围是:<m≤9;(2)当m取最大值,即m=9时,由原方程得x2﹣6x+9=0,即(x﹣3)2=0,解得,x1=x2=3,过点A作AD⊥BC于点D.∴AD=∴S△ABC =.60.解:x2﹣(k+2)x+2k=0(x﹣2)(x﹣k)=0,∴x1=2,x2=k,∵当k=2时,b=c=2,周长为5,∴当k=1时,1+1=2,不能构成三角形,∴周长为5。

2017年中考数学备考专题复习探索规律问题含解析

2017年中考数学备考专题复习探索规律问题含解析

探索规律问题一、单选题(共7题;共14分)1、(2016•重庆)下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A、64B、77C、80D、852、(2016•重庆)观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是()A、43B、45C、51D、533、(2016•邵阳)如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A、y=2n+1B、y=2n+nC、y=2n+1+nD、y=2n+n+1 4、(2016•临沂)用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是()A、2n+1B、n2﹣1C、n2+2nD、5n﹣25、(2016•荆州)如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为()A、671B、672C、673D、6746、(2016•永州)我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log2=﹣1.其中正确的是()A、①②B、①③C、②③D、①②③7、(2016•青海)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为()A、()6B、()7C、()6D、()7二、填空题(共14题;共15分)8、(2016•宁波)下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需________根火柴棒.9、(2016•济宁)按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为________.10、(2016•岳阳)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1, P2,P3,…,均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2016的坐标为________.11、(2016•内江)将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第n个图形有________个小圆•(用含n的代数式表示)12、(2016•新疆)如图,下面每个图形中的四个数都是按相同的规律填写的,根据此规律确定x 的值为________.13、(2016•百色)观察下列各式的规律:(a﹣b)(a+b)=a2﹣b2(a﹣b)(a2+ab+b2)=a3﹣b3(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4…可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)=________14、(2016•丹东)观察下列数据:﹣2,,﹣,,﹣,…,它们是按一定规律排列的,依照此规律,第11个数据是________.15、(2016•泉州)找出下列各图形中数的规律,依此,a的值为________.16、(2016•铜仁市)如图是小强用铜币摆放的4个图案,根据摆放图案的规律,试猜想第n个图案需要________个铜币.17、(2016•益阳)小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是________枚.18、(2016•徐州)如图,每个图案都由大小相同的正方形组成,按照此规律,第n个图案中这样的正方形的总个数可用含n的代数式表示为________.19、(2016•青海)如图,下列各图形中的三个数之间均具有相同的规律,依此规律,那么第4个图形中的x=________,一般地,用含有m,n的代数式表示y,即y=________.20、(2016•曲靖)等腰三角形ABC在平面直角坐标系中的位置如图所示,已知点A(﹣6,0),点B在原点,CA=CB=5,把等腰三角形ABC沿x轴正半轴作无滑动顺时针翻转,第一次翻转到位置①,第二次翻转到位置②…依此规律,第15次翻转后点C的横坐标是________.21、(2016•葫芦岛)如图,点A1(2,2)在直线y=x上,过点A1作A1B1∥y轴交直线y= x于点B1,以点A1为直角顶点,A1B1为直角边在A1B1的右侧作等腰直角△A1B1C1,再过点C1作A2B2∥y 轴,分别交直线y=x和y= x于A2, B2两点,以点A2为直角顶点,A2B2为直角边在A2B2的右侧作等腰直角△A2B2C2…,按此规律进行下去,则等腰直角△A n B n C n的面积为________(用含正整数n 的代数式表示)三、综合题(共4题;共46分)22、(2016•连云港)环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系.(1)求整改过程中硫化物的浓度y与时间x的函数表达式;(2)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的1.0mg/L?为什么?23、(2016•台州)【操作发现】在计算器上输入一个正数,不断地按“ ”键求算术平方根,运算结果越来越接近1或都等于1.【提出问题】输入一个实数,不断地进行“乘以常数k,再加上常数b”的运算,有什么规律?【分析问题】我们可用框图表示这种运算过程(如图a).也可用图象描述:如图1,在x轴上表示出x1,先在直线y=kx+b上确定点(x1, y1),再在直线y=x上确定纵坐标为y1的点(x2, y1),然后再x轴上确定对应的数x2,…,以此类推.【解决问题】研究输入实数x1时,随着运算次数n的不断增加,运算结果x,怎样变化.(1)若k=2,b=﹣4,得到什么结论?可以输入特殊的数如3,4,5进行观察研究;(2)若k>1,又得到什么结论?请说明理由;(3)①若k=﹣,b=2,已在x 轴上表示出x 1(如图2所示),请在x 轴上表示x 2 , x 3 , x 4 , 并写出研究结论;②若输入实数x 1时,运算结果x n 互不相等,且越来越接近常数m ,直接写出k 的取值范围及m 的值(用含k ,b 的代数式表示)24、(2016•云南)有一列按一定顺序和规律排列的数: 第一个数是; 第二个数是; 第三个数是;…对任何正整数n ,第n 个数与第(n+1)个数的和等于.(1)经过探究,我们发现:设这列数的第5个数为a ,那么,,,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n 个数(即用正整数n 表示第n 数),并且证明你的猜想满足“第n 个数与第(n+1)个数的和等于”;(3)设M 表示,,,…,,这2016个数的和,即,求证:.25、(2016•北京)已知y 是x 的函数,自变量x 的取值范围x >0,下表是y 与x 的几组对应值:y 与x 之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy 中,描出了以上表格中各对对应值为坐标的点,根据描出的点,画出该函数的图象; (2)根据画出的函数图象,写出: ①x=4对应的函数值y 约为________ ②该函数的一条性质:________答案解析部分一、单选题2、【答案】D【考点】探索图形规律【解析】【解答】解:通过观察,得到小圆圈的个数分别是:第一个图形为:+12=4,第二个图形为:+22=6,第三个图形为:+32=10,第四个图形为:+42=15,…,所以第n个图形为:+n2,当n=7时,+72=85,故选D.分析:此题主要考查了学生分析问题、观察总结规律的能力.关键是通过观察分析得出规律.2、【答案】C【考点】探索图形规律【解析】【解答】解:设图形n中星星的颗数是a n(n为自然是),观察,发现规律:a1=2,a2=6=a1+3+1,a3=11=a2+4+1,a4=17=a3+5+1,…,∴a n =2+ .令n=8,则a8=2+ =51.故选C.【分析】设图形n中星星的颗数是a n(n为自然是),列出部分图形中星星的个数,根据数据的变化找出变化规律“a n =2+ ”,结合该规律即可得出结论.本题考查了规律型中的图形的变化类,解题的关键是找出变化规律“a n =2+ ”.本题属于中档题,难度不大,解决该题型题目时,根据给定条件列出部分数据,根据数据的变化找出变化规律是关键.2、【答案】B【考点】探索数与式的规律【解析】【解答】解:∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,下边三角形的数字规律为:1+2,2+22,…,n+2n,∴y=2n+n.故选B.【分析】由题意可得下边三角形的数字规律为:n+2n,继而求得答案.此题考查了数字规律性问题.注意根据题意找到规律y=2n+n是关键.2、【答案】C【考点】探索图形规律【解析】【解答】解:∵第1个图形中,小正方形的个数是:22﹣1=3;第2个图形中,小正方形的个数是:32﹣1=8;第3个图形中,小正方形的个数是:42﹣1=15;…∴第n个图形中,小正方形的个数是:(n+1)2﹣1=n2+2n+1﹣1=n2+2n;故选:C.【分析】由第1个图形中小正方形的个数是22﹣1、第2个图形中小正方形的个数是32﹣1、第3个图形中小正方形的个数是42﹣1,可知第n个图形中小正方形的个数是(n+1)2﹣1,化简可得答案.本题主要考查图形的变化规律,解决此类题目的方法是:从变化的图形中发现不变的部分和变化的部分及变化部分的特点是解题的关键.2、【答案】B【考点】探索图形规律【解析】【解答】解:∵第1个图案中白色纸片有4=1+1×3张;第2个图案中白色纸片有7=1+2×3张;第3个图案中白色纸片有10=1+3×3张;…∴第n个图案中白色纸片有1+n×3=3n+1(张),根据题意得:3n+1=2017,解得:n=672,故选:B.【分析】将已知三个图案中白色纸片数拆分,得出规律:每增加一个黑色纸片时,相应增加3个白色纸片;据此可得第n个图案中白色纸片数,从而可得关于n的方程,解方程可得.本题考查了图形的变化问题,观察出后一个图形比前一个图形的白色纸片的块数多3块,从而总结出第n个图形的白色纸片的块数是解题的关键.2、【答案】B【考点】实数的运算,定义新运算【解析】【解答】解:①因为24=16,所以此选项正确;②因为55=3125≠25,所以此选项错误;③因为2﹣1= ,所以此选项正确;故选B.【分析】根据指数运算和新的运算法则得出规律,根据规律运算可得结论.此题考查了指数运算和新定义运算,发现运算规律是解答此题的关键.2、【答案】A【考点】勾股定理【解析】【解答】解:在图中标上字母E,如图所示.∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2, DE=CE,∴S2+S2=S1.观察,发现规律:S1=22=4,S2= S1=2,S3= S2=1,S4= S3= ,…,∴S n=()n﹣3.当n=9时,S9=()9﹣3=()6,故选:A.【分析】根据等腰直角三角形的性质可得出S2+S2=S1,写出部分S n的值,根据数的变化找出变化规律“S n=()n﹣3”,依此规律即可得出结论.本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题的关键是找出规律“S n=()n﹣3”.本题属于中档题,难度不大,解决该题型题目时,写出部分S n的值,根据数值的变化找出变化规律是关键.二、填空题2、【答案】50【考点】坐标与图形变化-平移【解析】【解答】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n需火柴棒:8+7(n﹣1)=7n+1根;当n=7时,7n+1=7×7+1=50,∴图案⑦需50根火柴棒;故答案为:50.【分析】根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒8+7(n﹣1)=7n+1根,令n=7可得答案.此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.2、【答案】【考点】探索数与式的规律【解析】【解答】解:把整数1化为,得,,,(),,,…可以发现后一个数的分子恰是前面数的分母,所以,第4个数的分子是2,分母是3,故答案为:.【分析】把整数1化为,可以发现后一个数的分子恰是前面数的分母,分析即可求解.此题主要考查数列的规律探索,把整数统一为分数,观察找出存在的规律是解题的关键.2、【答案】(504,﹣504)【考点】探索图形规律【解析】【解答】解:由规律可得,2016÷4=504,∴点P2016的在第四象限的角平分线上,∵点P4(1,﹣1),点P8(2,﹣2),点P12(3,﹣3),∴点P2016(504,﹣504),故答案为(504,﹣504).【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第四象限的角平分线上,被4除余1的点在第三象限的角平分线上,被4除余2的点在第二象限的角平分线上,被4除余3的点在第一象限的角平分线上,点P2016的在第四象限的角平分线上,且横纵坐标的绝对值=2016÷4,再根据第四项象限内点的符号得出答案即可.本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,所在正方形,然后就可以进一步推得点的坐标.2、【答案】4+n(n+1)【考点】探索图形规律【解析】【解答】解:根据第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,∵6=4+1×2,10=4+2×3,16=4+3×4,24=4+4×5…,∴第n个图形有:4+n(n+1).故答案为:4+n(n+1),【分析】本题是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律.此题主要考查了图形的规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键,注意公式必须符合所有的图形.2、【答案】370【考点】探索数与式的规律【解析】【解答】解:∵左下角数字为偶数,右上角数字为奇数,∴2n=20,m=2n﹣1,解得:n=10,m=19,∵右下角数字:第一个:1=1×2﹣1,第二个:10=3×4﹣2,第三个:27=5×6﹣3,∴第n个:2n(2n﹣1)﹣n,∴x=19×20﹣10=370.故答案为:370.【分析】首先观察规律,求得n与m的值,再由右下角数字第n个的规律:2n(2n﹣1)﹣n,求得答案.此题考查了数字规律性问题.注意首先求得n与m的值是关键.2、【答案】a2017﹣b2017【考点】多项式乘多项式,平方差公式【解析】【解答】解:(a﹣b)(a+b)=a2﹣b2;(a﹣b)(a2+ab+b2)=a3﹣b3;(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4;…可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)=a2017﹣b2017,故答案为:a2017﹣b2017【分析】根据已知等式,归纳总结得到一般性规律,写出所求式子结果即可.此题考查了平方差公式,以及多项式乘以多项式,弄清题中的规律是解本题的关键.2、【答案】-【考点】探索数与式的规律【解析】【解答】解:∵﹣2=﹣,,﹣,,﹣,…,∴第11个数据是:﹣=﹣.故答案为:﹣.【分析】此题主要考查了数字变化类,正确得出分子与分母的变化规律是解题关键.根据题意可得:所有数据分母为连续正整数,第奇数个是负数,且分子是连续正整数的平方加1,进而得出答案.2、【答案】226【考点】探索数与式的规律【解析】【解答】解:根据题意得出规律:14+a=15×16,解得:a=226;故答案为:226.【分析】由0+2=1×2,2+10=3×4,4+26=5×6,6+50=7×8,得出规律,即可得出a的值.本题考查了数字的变化美;根据题意得出规律是解决问题的关键.2、【答案】n(n+1)【考点】数据分析【解析】【解答】解:n=1时,铜币个数=1+1=2;当n=2时,铜币个数=1+2+2=4;当n=3时,铜币个数=1+2+2+3=7;当n=4时,铜币个数=1+2+2+3+4=11;…第n 个图案,铜币个数=1+2+3+4+…+n= n(n+1).故答案为:n(n+1).【分析】找出相邻两个图形铜币的数目的差,从而可发现其中的规律,于是可求得问题的答案.本题主要考查的是图形的变化规律,找出其中的规律是解题的关键.2、【答案】13【考点】探索数与式的规律【解析】【解答】解:设第n个图形有a n个旗子,观察,发现规律:a1=1,a2=1+2=3,a3=3+1=4,a4=4+2=6,a5=6+1=7,…,a2n+1=3n+1,a2n+2=3(n+1)(n为自然数).当n=4时,a9=3×4+1=13.故答案为:13.【分析】设第n个图形有a n个旗子,罗列出部分a n的值,根据数值的变化找出变化规律“a2n+1=3n+1,a2n+2=3(n+1)(n为自然数)”,依次规律即可解决问题.本题考查了规律型中得图形的变化类,解题的关键是找出变化规律“a2n+1=3n+1,a2n+2=3(n+1)(n为自然数)”.本题属于基础题,难度不大,解决该题型题目时,找出部分图形的棋子数目,根据数的变化找出变化规律是关键.2、【答案】n(n+1)【考点】探索图形规律【解析】【解答】解:设第n个图案中正方形的总个数为a n,观察,发现规律:a1=2,a2=2+4=6,a3=2+4+6=12,…,∴a n =2+4+…+2n= =n(n+1).故答案为:n(n+1).【分析】设第n个图案中正方形的总个数为a n,根据给定图案写出部分a n的值,根据数据的变化找出变换规律“a n=n(n+1)”,由此即可得出结论.本题考查了规律型中的图形的变化类,解题的关键是找出变换规律“a n=n(n+1)”.本题属于基础题,难度不大,根据给定图案写出部分图案中正方形的个数,根据数据的变化找出变化规律是关键.2、【答案】63;m(n+1)【考点】探索数与式的规律【解析】【解答】解:观察,发现规律:3=1×(2+1),15=3×(4+1),35=5×(6+1),∴x=7×(8+1)=63,y=m(n+1).故答案为:63;m(n+1).【分析】观察给定图形,发现右下的数字=右上数字×(左下数字+1),依此规律即可得出结论.本题考查了规律型中的图形的变化类以及数字的变化类,解题的关键是找出变换规律“右下的数字=右上数字×(左下数字+1)”.本题属于基础题,难度不大,解决该题型题目时,根据图形中数字的变化找出变化规律是关键.2、【答案】77【考点】等腰三角形的性质,坐标与图形变化-旋转【解析】【解答】解:由题意可得,每翻转三次与初始位置的形状相同,15÷3=5,故第15次翻转后点C的横坐标是:(5+5+6)×5﹣3=77,故答案为:77.【分析】根据题意可知每翻折三次与初始位置的形状相同,第15次于开始时形状相同,故以点B 为参照点,第15次的坐标减去3即可的此时点C的横坐标.本题考查坐标与图形变化﹣旋转,等腰三角形的性质,解题的关键是发现其中的规律,每旋转三次为一个循环.2、【答案】【考点】等腰直角三角形【解析】【解答】解:∵点A1(2,2),A1B1∥y轴交直线y= x于点B1,∴B1(2,1)∴A1B1=2﹣1=1,即△A1B1C1面积= ×12= ;∵A1C1=A1B1=1,∴A2(3,3),又∵A2B2∥y轴,交直线y= x于点B2,∴B2(3,),∴A2B2=3﹣= ,即△A2B2C2面积= ×()2= ;以此类推,A3B3= ,即△A3B3C3面积= ×()2= ;A4B4= ,即△A4B4C4面积= ×()2= ;…∴A n B n=()n﹣1,即△A n B n C n的面积= ×[()n﹣1]2= .故答案为:【分析】先根据点A1的坐标以及A1B1∥y轴,求得B1的坐标,进而得到A1B1的长以及△A1B1C1面积,再根据A2的坐标以及A2B2∥y轴,求得B2的坐标,进而得到A2B2的长以及△A2B2C2面积,最后根据根据变换规律,求得A n B n的长,进而得出△A n B n C n的面积即可.本题主要考查了一次函数图象上点的坐标特征以及等腰直角三角形的性质,解决问题的关键是通过计算找出变换规律,根据A n B n的长,求得△A n B n C n的面积.解题时注意:直线上任意一点的坐标都满足函数关系式y=kx+b.三、综合题2、【答案】(1)解:分情况讨论:①当0≤x≤3时,设线段AB对应的函数表达式为y=kx+b;把A(0,0),B(3,4)代入得,解得:,∴y=﹣2x+10;②当x>3时,设y= ,把(3,4)代入得:m=3×4=12,∴y= ;综上所述:当0≤x≤3时,y=﹣2x+10;当x>3时,y=(2)解:能;理由如下:令y= =1,则x=12<15,故能在15天以内不超过最高允许的1.0mg/L【考点】一次函数的应用【解析】【分析】(1)分情况讨论:①当0≤x≤3时,设线段AB对应的函数表达式为y=kx+b;把A(0,0),B(3,4)代入得出方程组,解方程组即可;②当x>3时,设y= ,把(3,4)代入求出m的值即可;(2)令y= =1,得出x=12<15,即可得出结论.本题考查了方程式的应用、反比例函数的应用;根据题意得出函数关系式是解决问题的关键.2、【答案】(1)解:若k=2,b=﹣4,y=2x﹣4,取x1=3,则x2=2,x3=0,x4=﹣4,…取x1=4,则x2x3=x4=4,…取x1=5,则x2=6,x3=8,x4=12,…由此发现:当x1<4时,随着运算次数n的增加,运算结果x n越来越小.当x1=4时,随着运算次数n的增加,运算结果x n的值保持不变,都等于4.当x1>4时,随着运算次数n的增加,运算结果x n越来越大(2)解:当x1>时,随着运算次数n的增加,x n越来越大.当x1<时,随着运算次数n的增加,x n越来越小.当x1= 时,随着运算次数n的增加,x n保持不变.理由:如图1中,直线y=kx+b与直线y=x的交点坐标为(,),当x1>时,对于同一个x的值,kx+b>x,∴y1>x1∵y1=x2,∴x1<x2,同理x2<x3<…<x n,∴当x1>时,随着运算次数n的增加,x n越来越大.同理,当x1<时,随着运算次数n的增加,x n越来越小.当x1= 时,随着运算次数n的增加,x n保持不变(3)解:①在数轴上表示的x1, x2, x3如图2所示.随着运算次数的增加,运算结果越来越接近.②由(2)可知:﹣1<k<1且k≠0,由消去y得到x=∴由①探究可知:m= .【考点】一次函数的性质【解析】【分析】(1)分x1<4,x1=4,x1>4三种情形解答即可.(2)分x1>,x1<,x1= 三种情形解答即可.(3)①如图2中,画出图形,根据图象即可解决问题,x n的值越来越接近两直线交点的横坐标.②根据前面的探究即可解决问题.本题考查一次函数综合题以及性质,解题的关键是学会从一般到特殊探究规律,学会利用规律解决问题,属于中考常考题型.2、【答案】(1)解:由题意知第5个数a= = ﹣(2)解:∵第n个数为,第(n+1)个数为,∴ + = (+ )= ×= ×= ,即第n个数与第(n+1)个数的和等于(3)解:∵1﹣= <=1,= <<=1﹣,﹣= <<= ﹣,…﹣= <<= ﹣,﹣= <<= ﹣,∴1﹣<+ + +…+ + <2﹣,即<+ + +…+ + <,∴【考点】分式的混合运算,探索数与式的规律【解析】【分析】(1)由已知规律可得;(2)先根据已知规律写出第n、n+1个数,再根据分式的运算化简可得;(3)将每个分式根据﹣= <<= ﹣,展开后再全部相加可得结论.本题主要考查分式的混合运算及数字的变化规律,根据已知规律= ﹣得到﹣= <<= ﹣是解题的关键.2、【答案】(1)解:如图,(2)2;该函数有最大值【考点】函数的概念【解析】【解答】解:①x=4对应的函数值y约为2;②该函数有最大值.故答案为2,该函数有最大值.【分析】本题考查了函数的定义:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应.(1)按照自变量由小到大,利用平滑的曲线连结各点即可;(2)①在所画的函数图象上找出自变量为4所对应的函数值即可;②利用函数图象有最高点求解.。

中考数学一轮复习《二次函数的图像与性质》练习题(含答案)

中考数学一轮复习《二次函数的图像与性质》练习题(含答案)

中考数学一轮复习《二次函数的图像与性质》练习题(含答案)课时1二次函数图象与性质、抛物线与系数a、b、c的关系(建议答题时间:20分钟)1. (2017长沙)抛物线y=2(x-3)2+4的顶点坐标是()A. (3,4)B. (-3,4)C. (3,-4)D. (2,4)2. (2017金华)对于二次函数y=-(x-1)2+2的图象与性质,下列说法正确的是()A. 对称轴是直线x=1,最小值是2B. 对称轴是直线x=1,最大值是2C. 对称轴是直线x=-1,最小值是2D. 对称轴是直线x=-1,最大值是23. (2017连云港)已知抛物线y=ax2(a>0)过A(-2,y1)、B(1,y2)两点,则下列关系式一定正确的是()A. y1>0>y2B. y2>0>y1C. y1>y2>0D. y2>y1>04. (人教九上41页第6题改编)对于二次函数y=-3x2-12x-3,下面说法错误的是()A. 抛物线的对称轴是x=-2B. x=-2时,函数存在最大值9C. 当x>-2时,y随x增大而减小D. 抛物线与x轴没有交点5. (2017眉山)若一次函数y=(a+1)x+a的图象过第一、三、四象限,则二次函数y=ax2-ax()A. 有最大值a4B. 有最大值-a4C. 有最小值a4D. 有最小值-a46. (2017广州)a≠0,函数y=ax与y=-ax2+a在同一直角坐标系中的大致图象可能是()7. (2017重庆巴蜀月考)已知二次函数y=a2x+bx+c(a≠0)的图象如图所示,对称轴为直线x=1,下列结论中正确的是()A. abc>0B. b=2aC. a+c>D. 4a+2b+c>0第7题图第9题图第11题图8. (2017乐山)已知二次函数y=x2-2mx(m为常数),当-1≤x≤2时,函数值y的最小值为-2,则m的值是()A. 32B. 2 C.32或 2 D. -32或 29. (2017日照)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a-b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A. ①②③B. ③④⑤C. ①②④D. ①④⑤10. (2017广州)当x=________时,二次函数y=x2-2x+6有最小值________.11. (2017兰州)如图,若抛物线y=ax2+bx+c上的P(4,0),Q两点关于它的对称轴x=1对称,则点Q的坐标为________.课时2 抛物线的平移、解析式的确定、与方程(不等式)的关系(建议答题时间:20分钟)1. (2017重庆南开模拟)将二次函数y =(x -1)2+2的图象向左平移2个单位,再向下平移3个单位,则新的二次函数解析式为( )A . y =(x -3)2-1B . y =(x +1)2+5C . y =(x +1)2-1D . y =(x -3)2+52. (2017徐州)若函数y =x 2-2x +b 的图象与坐标轴有三个交点,则b 的取值范围是( )A . b <1且b ≠0B . b >1C . 0<b <1D . b <13. (2017苏州)二次函数y =ax 2+1的图象经过点(-2,0),则关于x 的方程a (x -2)2+1=0的实数根为( )A . x 1=0,x 2=4B . x 1=-2,x 2=6C . x 1=32,x 2=52D . x 1=-4,x 2=04. (2017绵阳)将二次函数y =x 2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y =2x +b 的图象有公共点,则实数b 的取值范围是( )A . b >8B . b >-8C . b ≥8D . b ≥-85. (2017天津)已知抛物线y =x 2-4x +3与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M ,平移该抛物线,使点M 平移后的对应点M ′落在x 轴上,点B 平移后的对应点B ′落在y 轴上,则平移后的抛物线解析式为( )A . y =x 2+2x +1B . y =x 2+2x -1C . y =x 2-2x +1D . y =x 2-2x -16. (2017随州)对于二次函数y =x 2-2mx -3,下列结论错误的是( )A . 它的图象与x 轴有两个交点B . 方程x 2-2mx =3的两根之积为-3C . 它的图象的对称轴在y 轴的右侧D . x <m 时,y 随x 的增大而减小7. (2018原创)在-2,-1,0,1,2五个数字中,任取一个作为a ,使不等式组⎩⎨⎧x +a ≥01-x >x +2无解,且函数y =ax 2+(a +2)x +12a +1的图象与x 轴只有一个交点,那么a 的值为( )A . 0B . 0或-2C . 2或-2D . 0,2或-28. (2017青岛)若抛物线y =x 2-6x +m 与x 轴没有交点,则m 的取值范围是________.9. 注重开放探究(2017上海)已知一个二次函数的图像开口向上,顶点坐标为(0,-1),那么这个二次函数的解析式可以是________.(只需写一个)10. (2017武汉)已知关于x 的二次函数y =ax 2+(a 2-1)x -a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3,则a 的取值范围是________.11. (2017鄂州)已知正方形ABCD 中A (1,1)、B (1,2)、C (2,2)、D (2,1),有一抛物线y =(x +1)2向下平移m 个单位(m >0)与正方形ABCD 的边(包括四个顶点)有交点,则m 的取值范围是________.12. (2017杭州)在平面直角坐标系中,设二次函数y 1=(x +a )(x -a -1),其中a ≠0.(1)若函数y 1的图象经过点(1,-2),求函数y 1的表达式;(2)若一次函数y 2=ax +b 的图象与y 1的图象经过x 轴上同一点,探究实数a ,b 满足的关系式;(3)已知点P (x 0,m )和Q (1,n )在函数y 1的图象上.若m <n ,求x 0的取值范围.答案第1课时 二次函数图象与性质,抛物线与系数a 、b 、c 的关系1. A2. B3. C 【解析】画出抛物线y =ax 2(a >0)的草图如解图,根据图象可知,y 1>0,y 2>0,且y 1>y 2.第3题解图4. D 【解析】由y =-3x 2-12x -3=-3(x +2)2+9,可知对称轴是x =-2,选项A 正确;抛物线的开口向下,顶点坐标是(-2,9),当x =-2时,y 存在最大值9,选项B 正确;开口向下,当x >-2时,图象处于对称轴的右边,y 随x 增大而减小,选项C 正确;当y =0时,一元二次方程-3x 2-12x -3=0有实数解,所以抛物线与x 轴有交点,选项D 错误.5. B 【解析】∵一次函数y =(a +1)x +a 的图象过第一、三、四象限,∴⎩⎨⎧a +1>0a <0,解得-1<a <0,∵二次函数y =ax 2-ax =a (x -12)2-a 4,又∵-1<a <0,∴二次函数y =ax 2-ax 有最大值,且最大值为-a 4.6. D 【解析】如果a >0,则反比例函数y =a x 图象在第一、三象限,二次函数y=-ax 2+a 图象开口向下,排除A ;二次函数图象与y 轴交点(0,a )在y 轴正半轴,排除B ;如果a <0,则反比例函数y =a x图象在第二、四象限,二次函数y =-ax 2+a 图象开口向上,排除C ;故选D .7. D 【解析】观察函数图象,抛物线开口向下,则a <0.对称轴在y 轴右边,则a 、b 异号,∴b >0.抛物线与y 轴的交点在x 轴上方,则c >0,∴abc <0,选项A 错误;由抛物线的对称轴x =-b 2a =1,∴b =-2a ,选项B 错误;当x =-1时,y =a -b +c <0,∴a +c <b ,选项C 错误;根据对称性可知,当x =2时,y=4a +2b +c >0,选项D 正确.8. D 【解析】因为二次函数的对称轴为x =m ,所以对称轴不确定,因此需要讨论研究x 的范围与对称轴的位置关系,①当m ≥2时,此时-1≤x ≤2落在对称轴的左边,当x =2时y 取得最小值-2,即-2=22-2m ×2,解得m =32<2(舍);②当-1<m <2时,此时在对称轴x =m 处取得最小值-2,即-2=m 2-2m ·m ,解得m =-2或m =2,又-1<m <2,故m =2;③当m ≤-1时,此时-1≤x ≤2落在对称轴的右边,当x =-1时y 取得最小值-2,即-2=(-1)2-2m ×(-1),解得m =-32,综上所述,m =-32或 2.9. C 【解析】∵抛物线与x 轴交于(4,0),对称轴为x =2,∴抛物线与x 轴的另一个交点为(0,0).故①正确;∵抛物线经过原点,∴c =0.∵抛物线的对称轴为x =2,即-b 2a =2,∴4a +b =0,∴4a +b +c =0,故②正确;当x =-1时,抛物线的函数图象在x 轴上方,∴a (-1)2+(-1)b +c >0,即a -b +c >0,故③错误;∵c =0,4a +b =0,∴抛物线的解析式为y =-b 4x 2+bx =-b 4(x -2)2+b ,∴抛物线的顶点坐标为(2,b ),故④正确;由图象可知,抛物线开口向上,对称轴为x =2,当x <2时,y 随x 的增大而减小.故⑤错误.综上所述,①②④正确.10. 1,5 11.(-2,0)第2课时 抛物线的平移、解析式的确定、与方程(不等式)的关系1. C2. A3. A 【解析】∵二次函数y =ax 2+1的图象经过点(-2,0),∴代入得a (-2)2+1=0,解得a =-14,∴所求方程为-14(x -2)2+1=0,解方程得x 1=0,x 2=4.4. D 【解析】将二次函数y =x 2的图象先向下平移1个单位,再向右平移3个单位,得到的函数为y =(x -3)2-1,与一次函数联立得⎩⎨⎧y =(x -3)2-1y =2x +b ,整理得x 2-8x +8-b =0,∵两个函数图象有公共点,∴方程x 2-8x +8-b =0有解,则(-8)2-4(8-b )≥0,解得b ≥-8.5. A 【解析】∵抛物线与x 轴交于A 、B 两点,∴令y =0,即x 2-4x +3=0,解得,x 1=1,x 2=3,∴A (1,0),B (3,0),∵y =x 2-4x +3=(x -2)2-1,∴M (2,-1).∵要使平移后的抛物线的顶点在x 轴上,需将图象向上平移1个单位,要使点B 平移后的对应点落在y 轴上,需向左平移3个单位,∴M ′(-1,0),则平移后二次函数的解析式为y =(x +1)2,即y =x 2+2x +1.6. C 【解析】∵Δ=(-2m )2-4×1×(-3)=4m 2+12>0,∴图象与x 轴有两个交点,A 正确;令y =0得:x 2-2mx -3=0,方程的解即抛物线与x 轴交点的横坐标,由A 知图象与x 轴有两个交点,故方程有两个根,再根据一元二次方程根与系数的关系可得两根之积为c a =-31=-3,B 正确;根据抛物线对称轴公式可得对称轴为x =-b 2a =--2m 2=m ,∵m 的值不能确定,故对称轴是否在y 轴的右侧不能确定,C 错误;∵a =1>0,抛物线开口向上,∴对称轴的左侧的函数值y 随x 的增大而减小,由C 知抛物线对称轴为x =m ,∴当x <m 时,y 随x 的增大而减小,D 正确,故选C .7. B 【解析】解不等式x +a ≥0得x ≥-a ,解不等式1-x >x +2得x <-12,因为不等式组无解,故-a ≥-12,解得a ≤12;当a ≠0时,b 2-4ac =(a +2)2-4a (12a +1)=0,解得a =2或-2,当a =0时,函数是一次函数,图象与x 轴有一个交点,所以当a =0,2或-2时,图象与x 轴只有一个交点,但a ≤12,∴a =0或-2.8. m >9 9. y =x 2-1(答案不唯一)10. 13<a <12或3<a <-2 【解析】令y =0,即ax 2+(a 2-1)x -a =0,(ax -1)(x+a )=0,∴关于x 的二次函数y =ax 2+(a 2-1)x -a 的图象与x 轴的交点为(1a ,0)和(-a ,0),即m =1a 或m =-a ,又∵2<m <3,则13<a <12或-3<a <-2.11. 2≤m ≤8 【解析】∵将抛物线y =(x +1)2向下平移m 个单位,得到抛物线y =(x +1)2-m ,由平移后抛物线与正方形ABCD 的边有交点,则当点B 在抛物线上时,m 取最小值,此时(1+1)2-m =2,解得m =2,当点D 在抛物线上时,m 取最大值,此时(2+1)2-m =1,解得m =8,综上所述,m 的取值范围是2≤m ≤8.12. 解:(1)由题意知(1+a )(1-a -1)=-2,即a (a +1)=2,∵y 1=x 2-x -a (a +1),∴y1=x2-x-2;(2)由题意知,函数y1的图象与x轴交于点(-a,0)和(a+1,0),当y2的图象过点(-a,0)时,得-a2+b=0;当y2的图象过点(a+1,0)时,得a2+a+b=0;(3)由题意知,函数y1的图象的对称轴为直线x=12,所以点Q(1,n)与点(0,n)关于直线x=12对称.因为函数y1的图象开口向上,所以当m<n时,0<x0<1.。

中考专题20 多边形内角和定理的应用(练透)-【讲通练透】中考数学一轮(全国通用)(学生版)

中考专题20 多边形内角和定理的应用(练透)-【讲通练透】中考数学一轮(全国通用)(学生版)

专题20 多边形内角和定理的应用一、单选题1.(2022·四川资阳市·中考真题)下列命题正确的是( )A .每个内角都相等的多边形是正多边形B .对角线互相平分的四边形是平行四边形C .过线段中点的直线是线段的垂直平分线D .三角形的中位线将三角形的面积分成1∶2两部分2.(2022·四川眉山·)正八边形中,每个内角与每个外角的度数之比为( ) A .1:3 B .1:2 C .2:1 D .3:1 3.(2022·湖南岳阳·中考真题)下列命题是真命题的是( )A .五边形的内角和是720︒B .三角形的任意两边之和大于第三边C .内错角相等D .三角形的重心是这个三角形的三条角平分线的交点4.(2022·辽宁)若正多边形的一个内角是144︒,则这个正多边形的边数为( ) A .12 B .10 C .8 D .7 5.(2022·浙江)正六边形的每个内角的度数是( )A .120︒B .135︒C .135︒D .以上都不正确 6.(2022·山东济宁·中考真题)如图,正五边形ABCDE 中,CAD ∠的度数为( )A .72︒B .45︒C .36︒D .35︒ 7.(2022·台湾)如图,四边形ABCD 中,1∠、2∠、3∠分别为A ∠、B 、C ∠的外角.判断下列大小关系何者正确?( )A .1+3=+ABC D ∠∠∠∠B .1+3ABCD ∠∠<∠+∠ C .123360∠+∠+∠=︒ D .123360∠+∠+∠>︒8.(2022·石家庄市第四十中学九年级)如图,五边形ABCDE 中,80B ∠=︒,110C ∠=︒,1∠、2∠、3∠分别是BAE ∠、AED ∠、EDC ∠的外角,则123∠+∠+∠等于( )A .90︒B .190︒C .210︒D .180︒9.(2022·厦门市第九中学九年级)一个n 边形的内角和为360︒,则n 等于( ) A .2 B .3 C .4 D .510.(2022·湖南新田县·九年级期中)已知一个多边形的内角和比外角和的3倍还多180°,则这个多边形是( )A .七边形B .八边形C .九边形D .十边形二、填空题11.(2022·四川雅安·中考真题)如图,ABCDEF 为正六边形,ABGH 为正方形,连接CG ,则∶BCG +∶BGC =______.12.(2022·福建省同安第一中学九年级)一个多边形的每一个内角都是144︒,那么这个多边形是_____边形.13.(2022·浙江温州·九年级期中)如果一个正n 边形的每个内角是140°,则n =________. 14.(2022·山东济南·中考真题)如图,正方形AMNP 的边AM 在正五边形ABCDE 的边AB 上,则PAE ∠=__________︒.15.(2022·福建厦门双十中学思明分校)已知正n 边形的一个内角为135︒,则n 的值是_____________.三、解答题16.(2022·广东)若一个多边形的内角和的14比一个四边形的内角和多90°,那么这个多边形的边数是多少? 17.(2017·揭西县第三华侨中学九年级月考)如图,在四边形ABCD 中,∶A =∶BCD =90°,BC =DC ,延长AD 到E ,使DE =AB .(1)求证:∶ABC =∶EDC ;(2)求证:∶ABC∶∶EDC .18.(2018·浙江九年级月考)若n 边形的内角和等于它外角和的3倍,求边数n. 19.(2019·河北邢台三中九年级月考)如图,以正六边形ABCDEF 的边AB 为边,在形内作正方形ABMN ,连接MC .求∶BCM 的大小.20.(2020·福建九年级月考)如图,已知点O 是正六边形ABCDEF 的对称中心,,G H 分别是边,AF BC 上的点,且.AG BH =求证:OG OH =.21.(2022·全国九年级专题练习)探索归纳:(1)如图1,已知∶ABC 为直角三角形,∶A=90°,若沿图中虚线剪去∶A ,则∶1+∶2等于______;(2)如图2,已知∶ABC 中,∶A=40°,剪去∶A 后成四边形,则∶1+∶2=______;(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想∶1+∶2与∶A 的关系是______;(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究∶1+∶2与∶A 的关系并说明理由.22.(2020·浙江嘉兴市·九年级学业考试)定义:每个内角都相等的八边形叫做等角八边形.容易知道,等角八边形的内角都等于135°.下面,我们来研究它的一些性质与判定:(1)如图1,等角八边形ABCDEFGH中,连结BF.∶请直接写出∶ABF+∶GFB的度数.∶求证:AB∶EF.∶我们把AB与EF称为八边形的一组正对边.由∶同理可得:BC与FG,CD与GH,DE与HA这三组正对边也分别平行.请模仿平行四边形性质的学习经验,用一句话概括等角八边形的这一性质.(2)如图2,等角八边形ABCDEFGH中,如果有AB=EF,BC=FG,则其余两组正对边CD与GH,DE与HA分别相等吗?证明你的结论.(3)如图3,八边形ABCDEFGH中,若四组正对边分别平行,则显然有∶A=∶E,∶B=∶F,∶C=∶G,∶D=∶H.请探究:该八边形至少需要已知几个内角为135°,才能保证它一定是等角八边形?23.(2022·全国)(1)如图∶,求∶A+∶B+∶C+∶D+∶E+∶F的度数;(2)如图∶,求∶A+∶B+∶C+∶D+∶E+∶F+∶G+∶H的度数;(3)如图∶,求∶A+∶B+∶C+∶D+∶E+∶F+∶G的度数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识改变命运
三角形的基本概念
知识点1.折叠中的边与角:
例1.如图,把一张矩形纸片ABCD 沿对角线AC 对折,使点B 落在点E 处,AE 交DC 于点F .
(1)若︒=∠30DCE ,求FAC ∠的度数;
(2)若84==AB AD ,,求A C F △的面积
.
知识点2.外角的性质:
例2.如图,在ABC △中,点E 在AC 上,ABC AEB ∠=∠.
(1)图1中,作BAC ∠的角平分线AD ,分别交BE CB 、于F D 、两点,求证:ADC EFD ∠=∠;(2)图2中,作ABC △的外角BAG ∠的角平分线AD ,分别交BE CB 、延长线于F D 、两点,求证:ADC EFD ∠=∠
.
图 1
图2
A
B
D
E
F
知识改变命运
知识点3.对顶三角形:
例3.如图,Q P 、分别是等边ABC △边BC AB 、延长线上的动点,P 从顶点Q A ,从顶点B 同时出发,且它们的运动速度相同,连接CP AQ 、交于点M .
(1)求证:CAP ABQ ≌△△;(2)求QMC ∠的度数
.
基础训练: 一、解答题:
1.如图,在ABC △中,CD BE 、相交于点E ,设
︒=∠︒=∠=∠143
2762,ACD A ,求1∠和DBE ∠的度数
.
2.如图,已知D 是ABC △边BC 延长线上一点,AB DF ⊥于点F ,交AC 于点E ,︒=∠︒=∠4235D A ,.
(1)求ACD ∠的度数;(2)求AEF ∠的度数.
知识改变命运
3.将ABC △纸片沿DE 折叠,C B ∠=∠.
(1)如图1,点C 落在BC 边上的点F 处,求证:DF AB //;(2)如图2,点C 落在四边形ABCD 内部的G 处,求证:212∠+∠=∠B
.
4.如图,ACG CBF ∠∠、是ABC △的外角,ACG ∠的平分线所在的直线分别与CBF ABC ∠∠、的平分线BD 、BE 交于点E D 、.
(1)求D B E ∠的度数;(2)若︒=∠70A ,求D ∠的度数;(3)试判断E ∠与A ∠的数量关系,并说明理由
.
5.如图,ADE ABC 、△△是等边三角形,D C B 、、在同一直线上.
.
(1)求证:DC
∠60
ECD
=;(2)求证:︒
AC
CE+
=
能力训练:
6.“丽水半程马拉松竞赛”在莲都举行,某运动员从起点万地广场西门出发,途经紫金大桥,沿比赛路线跑回终点万地广场西门,设该运动员离开起点的路程()
t之间的函数关系如图,其
min
km
S与跑步时间()
中从起点到紫金大桥的平均速度是min
35,组委会在
/
3.0km,用时min
距离起点km
1.2处设立一个拍摄点C,该运动员从第一次经过C点到第二次经过经过C点所用的时间为min
68.
(1)求图中a的值;(2)求AB所在直线的函数解析式;(3)求该运动员跑完赛程的时间.
知识改变命运
知识改变命运
挑战压轴题:
7.如图,四边形OABC 的边OC OA 、分别在x 轴、y 轴的正半轴上,顶点在B 点的抛物线交x 轴于点D A 、,交y 轴于点E ,连结BE AE AB 、、,
3
1
tan =∠CBE ,()03,A ,()()3001,,,E D -.
(1)求这个抛物线的解析式及顶点B 的坐标;(2)求证:CB 是ABE

知识改变命运
外接圆的切线;(3)在坐标轴上,是否存在一点P ,使得P E D 、、为顶点的三角形与ABE △相似,若存在,求点P 的坐标;若不存在,请说明理由;(4)设AOE △沿x 轴正方向平移()30≤<t t 个单位长度时,
AOE
△与ABE △重叠部分的面积为S ,求S 与t 的函数关系式,并写出t
的取值范围
.
沁园春·雪 <毛泽东>
北国风光,千里冰封,万里雪飘。

望长城内外,惟余莽莽;
大河上下,顿失滔滔。

山舞银蛇,原驰蜡象,
欲与天公试比高。

须晴日,看红装素裹,分外妖娆。

江山如此多娇,引无数英雄竞折腰。

惜秦皇汉武,略输文采;
唐宗宋祖,稍逊风骚。

一代天骄,成吉思汗,
只识弯弓射大雕。

俱往矣,数风流人物,还看今朝。

知识改变命运。

相关文档
最新文档