圆锥曲线大题专题训练答案和题目
圆锥曲线综合试题(全部大题目)含答案
1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB的交点为Q 。
(1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112||||PC PD PQ +=.2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==⋅ (1)动点N 的轨迹方程;(2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=⋅AB OB OA 且,求直线l 的斜率k 的取值范围.3. 如图,椭圆134:221=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积相等,求直线PD 的斜率及直线CD 的倾斜角.4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||22PM PN -=.记动点P 的轨迹为W .(Ⅰ)求W 的方程;(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ⋅的最小值.5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围;(Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。
6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN +=(1)求点P 的轨迹方程; (2)若2·1cos PM PN MPN-∠=,求点P 的坐标.7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线1222=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3MON π∠=,双曲线的焦距为4。
(完整版)圆锥曲线大题20道(含标准答案)
1.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.解:(Ⅰ)设双曲线方程为12222=-by a x ).0,0(>>b a由已知得.1,2,2,32222==+==b b ac a 得再由故双曲线C 的方程为.1322=-y x (Ⅱ)将得代入13222=-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得⎪⎩⎪⎨⎧>-=-+=∆≠-.0)1(36)31(36)26(,0312222k k k k即.13122<≠k k 且①设),(),,(B B A A y x B y x A ,则 ,22,319,312622>+>⋅--=-=+B A B A B A B A y y x x OB OA kx x k k x x 得由 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x.1373231262319)1(22222-+=+-+--+=k k k k k k k于是解此不等式得即,01393,213732222>-+->-+k k k k .3312<<k ② 由①、②得.1312<<k故k 的取值范围为).1,33()33,1(⋃-- 2..已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设=λ.(Ⅰ)证明:λ=1-e 2;(Ⅱ)确定λ的值,使得△PF 1F 2是等腰三角形.(Ⅰ)证法一:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是2222222.,,1,).,0(),0,(b a c c b y c x b y ax a ex y a e a +=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=-这里得由. 所以点M 的坐标是(a b c 2,-). 由).,(),(2a eaa b e a c AB AM λλ=+-=得即221e a ab e ac e a-=⎪⎪⎩⎪⎪⎨⎧==-λλλ解得证法二:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是).,0(),0,(a ea-设M 的坐标是00(,),x y00(,)(,),a aAM AB x y a e eλλ=+=u u u u r u u u r 由得所以⎪⎩⎪⎨⎧=-=.)1(00a y e a x λλ因为点M 在椭圆上,所以,122220=+by a x即.11)1(,1)()]1([22222222=-+-=+-e e b a a e aλλλλ所以 ,0)1()1(2224=-+--λλe e解得.1122e e -=-=λλ即(Ⅱ)解法一:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即.||211c PF = 设点F 1到l 的距离为d ,由,1||1|0)(|||21221c eec a e a c e d PF =+-=+++-==得.1122e ee =+-所以.321,3122=-==e e λ于是即当,32时=λ△PF 1F 2为等腰三角形. 解法二:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|, 设点P 的坐标是),(00y x ,则0000010.22y x ce y x c e a -⎧=-⎪+⎪⎨+-⎪=+⎪⎩,2022023,12(1).1e x c e e a y e ⎧-=⎪⎪+⎨-⎪=⎪+⎩解得由|PF 1|=|F 1F 2|得,4]1)1(2[]1)3([2222222c e a e c e c e =+-+++- 两边同时除以4a 2,化简得.1)1(2222e e e =+- 从而.312=e 于是32112=-=e λ 即当32=λ时,△PF 1F 2为等腰三角形. 3.设R y x ∈,,j i ρρ、为直角坐标平面内x 轴、y 轴正方向上的单位向量,若j y i x b j y i x a ρρρρϖρ)3( ,)3(-+=++=,且4=+b a ϖϖ.(Ⅰ)求点),(y x P 的轨迹C 的方程;(Ⅱ)若A 、B 为轨迹C 上的两点,满足MB AM =,其中M (0,3),求线段AB 的长. [启思]4.已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. (Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R ∈+=μλμλ,证明22μλ+为定值. 解:本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分.(1)解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+ 则直线AB 的方程为c x y -=,代入12222=+b y a x ,化简得02)(22222222=-+-+b a c a cx a x b a .令A (11,y x ),B 22,(y x ),则.,22222222122221b a b a c a x x b a c a x x +-=+=+ 由OB OA a y y x x OB OA +-=++=+),1,3(),,(2121与共线,得,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴ 即232222cba c a =+,所以36.32222a b a c b a =-=∴=, 故离心率.36==a c e (II )证明:(1)知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ),(y x M Θ在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ① 由(1)知.21,23,23222221c b c a c x x ===+ [变式新题型3]抛物线的顶点在原点,焦点在x 轴上,准线l 与x 轴相交于点A(–1,0),过点A 的直线与抛物线相交于P 、Q 两点.(1)求抛物线的方程;(2)若FP •FQ =0,求直线PQ 的方程;(3)设=λAQ (λ>1),点P 关于x 轴的对称点为M ,证明:FM =-λFQ ..6.已知在平面直角坐标系xoy 中,向量32),1,0(的面积为OFP ∆=,且,3OF FP t OM j ⋅==+u u u r u u u r u u u u r u u ur r .(I )设4t OF FP θ<<u u u r u u u r求向量与 的夹角的取值范围;(II )设以原点O 为中心,对称轴在坐标轴上,以F 为右焦点的椭圆经过点M ,且||,)13(,||2c t c 当-==取最小值时,求椭圆的方程.7.已知(0,2)M -,点A 在x 轴上,点B 在y 轴的正半轴,点P 在直线AB 上,且满足,AP PB =-u u u r u u u r ,0MA AP ⋅=u u ur u u u r . (Ⅰ)当点A 在x 轴上移动时,求动点P 的轨迹C 方程;(Ⅱ)过(2,0)-的直线l 与轨迹C 交于E 、F 两点,又过E 、F 作轨迹C 的切线1l 、2l ,当12l l ⊥,求直线l 的方程.8.已知点C 为圆8)1(22=++y x 的圆心,点A (1,0),P 是圆上的动点,点Q 在圆的半径CP 上,且.2,0AM AP AP MQ ==⋅(Ⅰ)当点P 在圆上运动时,求点Q 的轨迹方程; (Ⅱ)若直线12++=k kx y 与(Ⅰ)中所求点Q的轨迹交于不同两点F ,H ,O 是坐标原点,且4332≤⋅≤OH OF ,求△FOH 的面积已知椭圆E 的中心在坐标原点,焦点在坐标轴上,且经过()2,0A -、()2,0B 、31,2C ⎛⎫ ⎪⎝⎭三点.(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l :()1y k x =-(0k ≠)与椭圆E 交于M 、N 两点,证明直线AM 与直线BN 的交点在直线4x =上.10.如图,过抛物线x 2=4y 的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点。
圆锥曲线综合训练题(分专题,含答案)
圆锥曲线综合训练题一、求轨迹方程:1、(1)已知双曲线1C 与椭圆2C :2213649x y +=有公共的焦点,并且双曲线的离心率1e 与椭圆的离心率2e 之比为73,求双曲线1C 的方程. (2)以抛物线28y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程. (1)解:1C 的焦点坐标为(0,13).±213e =由1273e e =得113e =设双曲线的方程为22221(,0)y x a b a b -=>则2222213139a b a b a ⎧+=⎪⎨+=⎪⎩ 解得229,4a b == 双曲线的方程为22194y x -= (2)解:设点00(,),(,)M x y P x y ,则00622x x y y +⎧=⎪⎪⎨⎪=⎪⎩,∴00262x x y y =-⎧⎨=⎩.代入2008y x =得:2412y x =-.此即为点P 的轨迹方程.2、(1)ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,建立适当的坐标系求此三角形重心G 的轨迹和顶点A 的轨迹.(2)△ABC 中,B(-5,0),C(5,0),且sinC-sinB=53sinA,求点A 的轨迹方程.解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其方程为()013610022≠=+y y x .设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ①由题意有⎪⎪⎩⎪⎪⎨⎧='='33yy x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).(2)分析:由于sinA 、sinB 、sinC 的关系为一次齐次式,两边乘以2R (R 为外接圆半径),可转化为边长的关系. 解:sinC-sinB=53sinA 2RsinC-2RsinB=53·2RsinA ∴BC AC AB 53=- 即6=-AC AB (*)∴点A 的轨迹为双曲线的右支(去掉顶点) ∵2a=6,2c=10 ∴a=3, c=5, b=4所求轨迹方程为116922=-y x (x>3) 点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支) 3、如图,两束光线从点M (-4,1)分别射向直线y = -2上两点P (x 1,y 1)和Q (x 2,y 2)后,反射光线恰好通过椭圆C :12222=+by a x (a >b >0)的两焦点,已知椭圆的离心率为21,且x 2-x 1=56,求椭圆C 的方程. 解:设a =2k ,c =k ,k ≠0,则b =3k ,其椭圆的方程为1342222=-ky k x . 由题设条件得:114)2(120x x k ----=--+, ①224)2(120x x k ----=--+, ②x 2-x 1=56, ③ 由①、②、③解得:k =1,x 1=511-,x 2=-1,所求椭圆C 的方程为13422=+y x . 4、在面积为1的PMN ∆中,21tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为焦点且过P 点的椭圆方程.∴所求椭圆方程为1315422=+y x 解:以MN 的中点为原点,MN 所在直线为x 轴建立直角坐标系,设),(y x P .则⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-=-.1,21,2cy c x yc x y∴⎪⎪⎩⎪⎪⎨⎧===233435c c y c x 且即)32,325(P ∴⎪⎪⎩⎪⎪⎨⎧=-=+,43,13412252222b a ba 得⎪⎩⎪⎨⎧==.3,41522b a (1)求线段PQ 的中点的轨迹方程;(2)设∠POQ 的平分线交PQ 于点R (O 为原点),求点R 的轨迹方程.解:(1)设线段PQ 的中点坐标为M (x ,y ),由Q (4,0)可得点P (2x -4,2y ),代入圆的方程x 2+y 2=4可得(2x -4)2+(2y )2=4,整理可得所求轨迹为(x -2)2+y 2=1.(2)设点R (x ,y ),P (m ,n ),由已知|OP |=2,|OQ |=4,∴21||||=OQ OP ,由角平分线性质可得||||||||RQ PR OQ OP ==21,又∵点R 在线段PQ 上,∴|PR |=21|RQ |,∴点R 分有向线段PQ 的比为21,由定比分点坐标公式可得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=32211021342211421n n y m m x ,即⎪⎪⎩⎪⎪⎨⎧=-=23243y n x m ,∴点P 的坐标为⎪⎭⎫ ⎝⎛-23 ,243y x ,代入圆的方程x 2+y 2=4可得42324322=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-y x , 即234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0). ∴点R 的轨迹方程为234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0).6、已知动圆过定点()1,0,且与直线1x =-相切.(1) 求动圆的圆心轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=uu u v uuu v若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设M 为动圆圆心, F ()1,0,过点M 作直线1x =-的垂线,垂足为N ,由题意知:MF MN =, 即动点M 到定点F 与定直线1x =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中()1,0F 为焦点,1x =-为准线, ∴ 动点R 的轨迹方程为x y 42=(2)由题可设直线l 的方程为(1)(0)x k y k =-≠, 由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+=△216160k =->,11k k <->或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =由0OP OQ ⋅=u u u r u u u r ,即 ()11,OP x y =u u u r ,()22,OQ x y =u u u r,于是12120x x y y +=,即()()21212110ky y y y --+=,2221212(1)()0k y y k y y k +-++=,2224(1)40k k k k k +-+=g ,解得4k =-或0k =(舍去),又41k =-<-, ∴ 直线l 存在,其方程为440x y +-=7、设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2.(I )求此双曲线的渐近线l l 12、的方程;(II )若A 、B 分别为l l 12、上的点,且2512||||AB F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线;(III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP OQ →→=·0.若存在,求出直线l 的方程;若不存在,说明理由.解:(I )Θe c a =∴=2422, Θc a a c 22312=+∴==,,∴-=双曲线方程为y x 2231,渐近线方程为y x =±334分(II )设A x y B x y ()()1122,,,,AB 的中点()M x y ,[]Θ2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y ,即则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分) (III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[]ΘOP OQ x x y y x x k x x x x k x x x x i →→=∴+=∴+--=∴+-++=·00110101212122121221212()()()()由得则,y k x y x k x k x k x x k k x x k k ii =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222由(i )(ii )得k 230+= ∴k 不存在,即不存在满足条件的直线l .8、设M 是椭圆22:1124x y C +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N 为椭圆C 上异于M 的另一点,且MN⊥MQ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y ≠则111111(,),(,),(,),P x y Q x y T x y ----……1分221122221,(1)124 1.(2)124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩L L L L L L L L ………3分 由(1)-(2)可得1.3MN QN k k •=-…6分又MN⊥MQ,111,,MN MQ MN x k k k y ⋅=-=-所以11.3QN y k x =直线QN 的方程为1111()3yy x x y x =+-,又直线PT 的方程为11.x y x y =-从而得1111,.22x x y y ==-所以112,2.x x y y ==-代入(1)可得221(0),3x y xy +=≠此即为所求的轨迹方程. 9、已知:直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。
圆锥曲线综合训练题(分专题-含答案)
圆锥曲线综合训练题一、求轨迹方程:1、(1)已知双曲线1C 与椭圆2C :2213649x y +=有公共的焦点,并且双曲线的离心率1e 与椭圆的离心率2e 之比为73,求双曲线1C 的方程.(2)以抛物线28y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程.(1)解:1C 的焦点坐标为(0,13).±213e =由1273e e =得113e =设双曲线的方程为22221(,0)y x a b a b -=>则2222213139a b a b a ⎧+=⎪⎨+=⎪⎩ 解得229,4a b == 双曲线的方程为22194y x -=(2)解:设点00(,),(,)M x y P x y ,则00622x x y y +⎧=⎪⎪⎨⎪=⎪⎩,∴00262x x y y =-⎧⎨=⎩.代入2008y x =得:2412y x =-.此即为点P 的轨迹方程. 2、(1)ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,建立适当的坐标系求此三角形重心G 的轨迹和顶点A 的轨迹.(2)△ABC 中,B(-5,0),C(5,0),且sinC-sinB=53sinA,求点A 的轨迹方程.解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其方程为()013610022≠=+y y x .设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ①由题意有⎪⎪⎩⎪⎪⎨⎧='='33y y x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点). (2)分析:由于sinA 、sinB 、sinC 的关系为一次齐次式,两边乘以2R (R 为外接圆半径),可转化为边长的关系. 】解:sinC-sinB=53sinA 2RsinC-2RsinB=53·2RsinA∴BC AC AB 53=- 即6=-AC AB (*)∴点A 的轨迹为双曲线的右支(去掉顶点) ∵2a=6,2c=10 ∴a=3, c=5, b=4所求轨迹方程为116922=-y x (x>3) 点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支)3、如图,两束光线从点M (-4,1)分别射向直线y = -2上两点P (x 1,y 1)和Q (x 2,y 2)后,反射光线恰好通过椭圆C :12222=+b y a x (a >b >0)的两焦点,已知椭圆的离心率为21,且x 2-x 1=56,求椭圆C 的方程.解:设a =2k ,c =k ,k ≠0,则b =3k ,其椭圆的方程为1342222=-k y k x . ,由题设条件得:114)2(120x x k ----=--+, ①224)2(120x x k ----=--+, ②x 2-x 1=56, ③由①、②、③解得:k =1,x 1=511-,x 2=-1,所求椭圆C 的方程为13422=+y x . 4、在面积为1的PMN ∆中,21tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为∴所求椭圆方程为1315422=+yx 解:以MN 的中点为原点,MN 所在直线为x 轴建立直角坐标系,设),(y x P .则⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-=-.1,21,2cy c x yc x y∴⎪⎪⎩⎪⎪⎨⎧===233435c c y c x 且即(1)求线段PQ 的中点的轨迹方程;(2)设∠POQ 的平分线交PQ 于点R (O 为原点),求点R 的轨迹方程. — 解:(1)设线段PQ 的中点坐标为M (x ,y ),由Q (4,0)可得点P (2x -4,2y ),代入圆的方程x 2+y 2=4可得(2x -4)2+(2y )2=4,整理可得所求轨迹为(x -2)2+y 2=1. (2)设点R (x ,y ),P (m ,n ),由已知|OP |=2,|OQ |=4,∴21||||=OQ OP ,由角平分线性质可得||||||||RQ PR OQ OP ==21,又∵点R 在线段PQ 上,∴|PR |=21|RQ |,∴点R 分有向线段PQ 的比为21,由定比分点坐标公式可得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=32211021342211421n n y m m x ,即⎪⎪⎩⎪⎪⎨⎧=-=23243y n x m ,∴点P 的坐标为⎪⎭⎫ ⎝⎛-23 ,243y x ,代入圆的方程x 2+y 2=4可得42324322=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-y x , 即234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0). ∴点R 的轨迹方程为234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0).6、已知动圆过定点()1,0,且与直线1x =-相切.(1) 求动圆的圆心轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设M 为动圆圆心, F ()1,0,过点M 作直线1x =-的垂线,垂足为N ,由题意知:MF MN =, 即动点M 到定点F 与定直线1x =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中()1,0F 为焦点,1x =-为准线, ∴ 动点R 的轨迹方程为x y 42=(2)由题可设直线l 的方程为(1)(0)x k y k =-≠, 由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+=△216160k =->,11k k <->或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =由0OP OQ ⋅=,即 ()11,OP x y =,()22,OQ x y =,于是12120x x y y +=,<即()()21212110k y y y y --+=,2221212(1)()0k y y k y y k +-++=, 2224(1)40k k k k k +-+=,解得4k =-或0k =(舍去), 又41k =-<-, ∴ 直线l 存在,其方程为440x y +-=7、设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2.(I )求此双曲线的渐近线l l 12、的方程;(II )若A 、B 分别为l l 12、上的点,且2512||||AB F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线;(III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP OQ →→=·0.若存在,求出直线l 的方程;若不存在,说明理由.解:(I ) e c a =∴=2422,c a a c 22312=+∴==,,∴-=双曲线方程为y x 2231,渐近线方程为y x =±33 4分(II )设A x y B x y ()()1122,,,,AB 的中点()M x y ,[]2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y ,即;则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分)(III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[] OP OQ x x y y x x k x x x x k x x x x i →→=∴+=∴+--=∴+-++=·00110101212122121221212()()()()由得则,y k x y x k x k x k x x k k x x k k ii =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222由(i )(ii )得k 230+= ∴k 不存在,即不存在满足条件的直线l .8、设M 是椭圆22:1124x y C +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N 为椭圆C 上异于M 的另一点,且MN ⊥MQ ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y ≠则111111(,),(,),(,),P x y Q x y T x y ----……1分221122221,(1)124 1.(2)124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩………3分 由(1)-(2)可得1.3MN QN k k •=-…6分又MN ⊥MQ ,111,,MN MQ MN x k k k y ⋅=-=-所以11.3QN y k x =直线QN 的方程为1111()3yy x x y x =+-,又直线PT 的方程为11.x y x y =-从而得1111,.22x x y y ==-所以112,2.x x y y ==-代入(1)可得221(0),3x y xy +=≠此即为所求的轨迹方程. ,9、已知:直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。
圆锥曲线大题专题及答案
解析几何大题专题第一类题型 弦长面积问题1.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率是2,且过点P .直线2y x m =+与椭圆C 相交于,A B 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)求PAB △的面积的最大值;(Ⅲ)设直线,PA PB 分别与y 轴交于点,M N .判断||PM ,||PN 的大小关系,并加以证明.2. (本小题14分) 已知椭圆22:13+=x y C m m,直线:20+-=l x y 与椭圆C 相交于P ,Q 两点,与x 轴交于点B ,点,P Q 与点B 不重合.(Ⅰ)求椭圆C 的离心率;(Ⅱ)当2∆=OPQ S 时,求椭圆C 的方程;(Ⅲ)过原点O 作直线l 的垂线,垂足为.N 若λ=PN BQ ,求λ的值.3.(本小题共14分)已知椭圆2222:1(0)x yC a ba b+=>>离心率等于12,(2,3)P、(2,3)Q-是椭圆上的两点.(Ⅰ)求椭圆C的方程;(Ⅱ),A B是椭圆上位于直线PQ两侧的动点,若直线AB的斜率为12,求四边形APBQ面积的最大值.4.(本小题满分14分)已知椭圆C:2231(0)mx my m+=>的长轴长为O为坐标原点.(Ⅰ)求椭圆C的方程和离心率;(Ⅱ)设点(3,0)A,动点B在y轴上,动点P在椭圆C上,且P在y轴的右侧,若||||BA BP=,求四边形OPAB面积的最小值.5.(本小题共14分)已知椭圆C:2214xy+=,F为右焦点,圆O:221x y+=,P为椭圆C上一点,且P位于第一象限,过点P作PT与圆O相切于点T,使得点F,T在OP两侧.(Ⅰ)求椭圆C的焦距及离心率;(Ⅱ)求四边形OFPT面积的最大值.6.(本小题13分)已知抛物线C:y2=2px经过点P(2,2),A,B是抛物线C上异于点O的不同的两点,其中O为原点.(I)求抛物线C的方程,并求其焦点坐标和准线方程;(II)若OA OB,求△AOB面积的最小值.第二类题型 圆过定点问题( 包括点在圆上 点在圆外 点在圆内)1.(本小题满分14 分)已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,椭圆C 与y 轴交于A , B 两点,且|AB |=2.(Ⅰ)求椭圆C 的方程;(Ⅱ)设点P 是椭圆C 上的一个动点,且直线PA ,PB 与直线x =4分别交于M , N两点.是否存在点P 使得以MN 为直径的圆经过点(2,0)?若存在,求出点P 的横坐标;若不存在,说明理由。
高考数学圆锥曲线专题训练(附答案解析)
高中数学圆锥曲线专题*注意事项:1、填写答题卡的内容用2B铅笔填写2、提前xx 分钟收取答题卡阅卷人一、单选题(共10题;共20分)得分1. ( 2分) 波罗尼斯(古希腊数学家,的公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k(k>0,且k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.现有椭圆=1(a>b>0),A,B为椭圆的长轴端点,C,D为椭圆的短轴端点,动点M满足=2,△MAB面积的最大值为8,△MCD面积的最小值为1,则椭圆的离心率为()A. B. C. D.2. ( 2分) 古希腊数学家阿波罗尼奥斯的著作圆锥曲线论中给出了圆的另一种定义:平面内,到两个定点A、B距离之比是常数的点M的轨迹是圆若两定点A、B的距离为3,动点M满足,则M点的轨迹围成区域的面积为A. B. C. D.3. ( 2分) 已知、为双曲线的左、右焦点,过右焦点的直线,交的左、右两支于、两点,若为线段的中点且,则双曲线的离心率为()A. B. C. D.4. ( 2分) 已知双曲线的右焦点为,点,为双曲线左支上的动点,且周长的最小值为16,则双曲线的离心率为()A. 2B.C.D.5. ( 2分) 关于曲线:性质的叙述,正确的是()A. 一定是椭圆B. 可能为抛物线C. 离心率为定值D. 焦点为定点6. ( 2分) 古希腊数学家阿波罗尼奧斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,他证明过这样一个命题:平面内与两定点距离的比为常数k(k>0,k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.在平面直角坐标系中,设A(﹣3,0),B(3,0),动点M满足=2,则动点M的轨迹方程为()A. (x﹣5)2+y2=16B. x2+(y﹣5)2=9C. (x+5)2+y2=16D. x2+(y+5)2=97. ( 2分) 已知是双曲线上一点,且在轴上方,,分别是双曲线的左、右焦点,,直线的斜率为,的面积为,则双曲线的离心率为()A. 3B. 2C.D.8. ( 2分) 在正四面体中,点为所在平面上的动点,若与所成角为定值,则动点的轨迹是()A. 圆B. 椭圆C. 双曲线D. 抛物线9. ( 2分) 已知,及抛物线方程为,点在抛物线上,则使得为直角三角形的点个数为()A. 1个B. 2个C. 3个D. 4个10. ( 2分) 已知双曲线的左、右焦点分别为,,若双曲线上存在点P使,则离心率的取值范围是()A. B. C. D.阅卷人二、填空题(共10题;共10分)得分11. ( 1分) 已知正实数是的等比中项,则圆锥曲线=1的离心率为________12. ( 1分) 设抛物线的焦点为F,过点F的直线l与抛物线交于A,B两点,且,则弦长________.13. ( 1分) 已知双曲线:(,)的左,右焦点分别为,,过右支上一点作双曲线的一条渐近线的垂线,垂足为.若的最小值为,则双曲线的离心率为________.14. ( 1分) 若椭圆的离心率为,则的短轴长为________.15. ( 1分) 从抛物线图象上一点作抛物线准线的垂线,垂足为,且,设为抛物线的焦点,则的面积为________.16. ( 1分) 设抛物线的焦点为,过点的直线与抛物线交于,两点,且,点是坐标原点,则的面积为________17. ( 1分) 已知双曲线的下焦点为,虚轴的右端点为,点在的上支,为坐标原点,直线和直线的倾斜角分别为,,若,则的最小值为________.18. ( 1分) 已知为椭圆的左焦点,过点的直线交椭圆于两点,若,则直线的斜率为________.19. ( 1分) 椭圆的左、右焦点分别为、,点P在椭圆C上,已知,则________.20. ( 1分) 已知椭圆的右顶点为A,左,右焦点为F1,F2,过点F2与x轴垂直的直线与椭圆的一个交点为B.若|F1F2|=2,|F2B| ,则点F1到直线AB的距离为________.阅卷人三、解答题(共30题;共280分)得分21. ( 10分) 已知椭圆E:=1(a>b>0)的上、下焦点分别为F1,F2,点D在椭圆上,DF2⊥F1F2,△F1F2D的面积为2 ,离心率e= ,抛物线C:x2=2py(p>0)的准线l经过D点.(1)求椭圆E与抛物线C的方程;(2)过直线l上的动点P作抛物线的两条切线,切点为A,B,直线AB交椭圆于M,N两点,当坐标原点O落在以MN为直径的圆外时,求点P的横坐标t的取值范围.22. ( 10分) 椭圆C1:+y2=1,椭圆C2:(a>b>0)的一个焦点坐标为(,0),斜率为1的直线l与椭圆C2相交于A、B两点,线段AB的中点H的坐标为(2,﹣1).(1)求椭圆C2的方程;(2)设P为椭圆C2上一点,点M、N在椭圆C1上,且,则直线OM与直线ON的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.23. ( 10分) 已知A(1,)是离心率为的椭圆E:+ =1(a>b>0)上的一点,过A作两条直线交椭圆于B、C两点,若直线AB、AC的倾斜角互补.(1)求椭圆E的方程;(2)试证明直线BC的斜率为定值,并求出这个定值;(3)△ABC的面积是否存在最大值?若存在,求出这个最大值?若不存在,说明理由.24. ( 10分) 设抛物线C1:y2=8x的准线与x轴交于点F1,焦点为F2.以F1,F2为焦点,离心率为的椭圆记为C2.(Ⅰ)求椭圆C2的方程;(Ⅱ)设N(0,﹣2),过点P(1,2)作直线l,交椭圆C2于异于N的A、B两点.(ⅰ)若直线NA、NB的斜率分别为k1、k2,证明:k1+k2为定值.(ⅱ)以B为圆心,以BF2为半径作⊙B,是否存在定⊙M,使得⊙B与⊙M恒相切?若存在,求出⊙M的方程,若不存在,请说明理由.25. ( 10分) 在平面直角坐标系xOy中,椭圆:的离心率为,y轴于椭圆相交于A、B两点,,C、D是椭圆上异于A、B的任意两点,且直线AC、BD相交于点M,直线AD、BC相交于点N.(1)求椭圆的方程;(2)求直线MN的斜率.26. ( 10分) 已知椭圆C:(a>b>0)的离心率为,左、右焦点分别为F1,F2,点G在椭圆C上,且• =0,△GF1F2的面积为2.(1)求椭圆C的方程;(2)直线l:y=k(x﹣1)(k<0)与椭圆Γ相交于A,B两点.点P(3,0),记直线PA,PB的斜率分别为k1,k2,当最大时,求直线l的方程.27. ( 10分) 已知椭圆的中心在原点,焦点在轴上,左右焦点分别为,,且,点在椭圆上.(1)求椭圆的方程;(2)过的直线与椭圆相交于两点,且的面积为,求以为圆心且与直线相切的圆的方程.28. ( 10分) 设椭圆+ =1(a>b>0)的左焦点为F,右顶点为A,离心率为.已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为.(Ⅰ)求椭圆的方程和抛物线的方程;(Ⅱ)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于A),直线BQ与x轴相交于点D.若△APD的面积为,求直线AP的方程.29. ( 10分) 如图,在平面直角坐标系中,已知椭圆的左、右顶点分别为,,过右焦点的直线与椭圆交于,两点(点在轴上方).(1)若,求直线的方程;(2)设直线,的斜率分别为,.是否存在常数,使得?若存在,求出的值;若不存在,请说明理由.30. ( 10分) 已知抛物线y2=2px(p>0)的焦点为F与椭圆C的一个焦点重合,且抛物线的准线与椭圆C 相交于点.(1)求抛物线的方程;(2)过点F是否存在直线l与椭圆C交于M,N两点,且以MN为对角线的正方形的第三个顶点恰在y轴上?若存在,求出直线l的方程;若不存在,请说明理由.31. ( 10分) 已知椭圆的长轴长为4,离心率为.(I)求C的方程;(II)设直线交C于A,B两点,点A在第一象限, 轴,垂足为M, 连结BM并延长交C于点N.求证:点A在以BN为直径的圆上.32. ( 10分) 已如椭圆E:()的离心率为,点在E上.(1)求E的方程:(2)斜率不为0的直线l经过点,且与E交于P,Q两点,试问:是否存在定点C,使得?若存在,求C的坐标:若不存在,请说明理由33. ( 5分) 已知点P(x,y)满足条件.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)直线l与圆O:x2+y2=1相切,与曲线C相较于A,B两点,若,求直线l的斜率.34. ( 5分) 设直线l:y=k(x+1)(k≠0)与椭圆3x2+y2=a2(a>0)相交于A、B两个不同的点,与x轴相交于点C,记O为坐标原点.(Ⅰ)证明:a2>;(Ⅱ)若,求△OAB的面积取得最大值时的椭圆方程.35. ( 15分) 已知点在抛物线上,是直线上的两个不同的点,且线段的中点都在抛物线上.(Ⅰ)求的取值范围;(Ⅱ)若的面积等于,求的值.36. ( 5分) 如图,曲线Γ由曲线C1:(a>b>0,y≤0)和曲线C2:(a>0,b>0,y>0)组成,其中点F1,F2为曲线C1所在圆锥曲线的焦点,点F3,F4为曲线C2所在圆锥曲线的焦点,(Ⅰ)若F2(2,0),F3(﹣6,0),求曲线Γ的方程;(Ⅱ)如图,作直线l平行于曲线C2的渐近线,交曲线C1于点A、B,求证:弦AB的中点M必在曲线C2的另一条渐近线上;(Ⅲ)对于(Ⅰ)中的曲线Γ,若直线l1过点F4交曲线C1于点C、D,求△CDF1面积的最大值.37. ( 5分) 已知椭圆的离心率为,,分别是椭圆的左右焦点,过点的直线交椭圆于,两点,且的周长为12.(Ⅰ)求椭圆的方程(Ⅱ)过点作斜率为的直线与椭圆交于两点,,试判断在轴上是否存在点,使得是以为底边的等腰三角形若存在,求点横坐标的取值范围,若不存在,请说明理由.38. ( 10分) 如图,已知点F为抛物线C:()的焦点,过点F的动直线l与抛物线C交于M,N两点,且当直线l的倾斜角为45°时,.(1)求抛物线C的方程.(2)试确定在x轴上是否存在点P,使得直线PM,PN关于x轴对称?若存在,求出点P的坐标;若不存在,请说明理由.39. ( 10分) 已知椭圆过点,且离心率为.(1)求椭圆的标准方程;(2)若点与点均在椭圆上,且关于原点对称,问:椭圆上是否存在点(点在一象限),使得为等边三角形?若存在,求出点的坐标;若不存在,请说明理由.40. ( 5分) 已知椭圆E: 过点(0,1)且离心率.(Ⅰ)求椭圆E的方程;(Ⅱ)设动直线l与两定直线l1:x﹣y=0和l2:x+y=0分别交于P,Q两点.若直线l总与椭圆E有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.41. ( 10分) 已知抛物线,抛物线与圆的相交弦长为4. (1)求抛物线的标准方程;(2)点为抛物线的焦点,为抛物线上两点,,若的面积为,且直线的斜率存在,求直线的方程.42. ( 10分) 设椭圆的左、右焦点分别为,、,,点在椭圆上,为原点.(1)若,,求椭圆的离心率;(2)若椭圆的右顶点为,短轴长为2,且满足为椭圆的离心率).①求椭圆的方程;②设直线:与椭圆相交于、两点,若的面积为1,求实数的值.43. ( 10分) 已知椭圆C:(a>b>0)的右焦点为F(1,0),且点P在椭圆C上,O为坐标原点.(1)求椭圆C的标准方程;(2)设过定点T(0,2)的直线l与椭圆C交于不同的两点A,B,且∠AOB为锐角,求直线l的斜率k的取值范围.44. ( 10分) 在圆上任取一点,过点作轴的垂线段,为垂足,当点在圆上运动时,点在线段上,且,点的轨迹为曲线.(1)求曲线的方程;(2)过抛物线:的焦点作直线交抛物线于,两点,过且与直线垂直的直线交曲线于另一点,求面积的最小值,以及取得最小值时直线的方程.45. ( 10分) 已知点,分别是椭圆的长轴端点、短轴端点,为坐标原点,若,.(1)求椭圆的标准方程;(2)如果斜率为的直线交椭圆于不同的两点(都不同于点),线段的中点为,设线段的垂线的斜率为,试探求与之间的数量关系.46. ( 10分) 已知椭圆E:+ =1(a>b>0)过点,且离心率e为.(1)求椭圆E的方程;(2)设直线x=my﹣1(m∈R)交椭圆E于A,B两点,判断点G 与以线段AB为直径的圆的位置关系,并说明理由.47. ( 10分) 已知椭圆C:=1(a>b>0),圆Q:(x﹣2)2+(y﹣)2=2的圆心Q在椭圆C 上,点P(0,)到椭圆C的右焦点的距离为.(1)求椭圆C的方程;(2)过点P作互相垂直的两条直线l1,l2,且l1交椭圆C于A,B两点,直线l2交圆Q于C,D两点,且M为CD的中点,求△MAB的面积的取值范围.48. ( 10分) 已知椭圆C:+ =1(a>b>0)的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.(1)求椭圆C的方程;(2)已知动直线y=k(x+1)与椭圆C相交于A、B两点.①若线段AB中点的横坐标为﹣,求斜率k的值;②若点M(﹣,0),求证:• 为定值.49. ( 10分) 已知椭圆的焦距为分别为椭圆的左、右顶点,为椭圆上的两点(异于),连结,且斜率是斜率的倍.(1)求椭圆的方程;(2)证明:直线恒过定点.50. ( 10分) 如图,中心为坐标原点O的两圆半径分别为,,射线OT与两圆分别交于A、B两点,分别过A、B作垂直于x轴、y轴的直线、,交于点P.(1)当射线OT绕点O旋转时,求P点的轨迹E的方程;(2)直线l:与曲线E交于M、N两点,两圆上共有6个点到直线l的距离为时,求的取值范围.答案解析部分一、单选题1.【答案】D【考点】椭圆的简单性质【解析】【解答】设A(-a,0),B(a,0),M(x,y).∵动点M满足=2,则 =2,化简得.∵△MAB面积的最大值为8,△MCD面积的最小值为1,∴,解得,∴椭圆的离心率为.故答案为:D.【分析】设A(-a,0),B(a,0),M(x,y).∵动点M满足=2,则利用两点距离公式得出,∵△MAB面积的最大值为8,△MCD面积的最小值为1,利用三角形面积公式求出a,b的值,再利用椭圆中a,b,c三者的关系式结合离心率公式变形求出椭圆的离心率。
(完整版)圆锥曲线经典题目(含答案)
圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2•=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4•=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE|•|PF|=2.。
圆锥曲线大题
绝密★启用前数学组卷圆锥大题学校:___________姓名:___________班级:___________考号:___________ 注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一.解答题(共40小题)1.(2019•新课标Ⅰ)已知点A ,B 关于坐标原点O 对称,|AB |=4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,|MA |﹣|MP |为定值?并说明理由.2.(2019•新课标Ⅰ)已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若AP →=3PB →,求|AB |. 3.(2018•新课标Ⅰ)设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB .4.(2018•新课标Ⅰ)设抛物线C :y 2=2x ,点A (2,0),B (﹣2,0),过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:∠ABM =∠ABN . 5.(2017•新课标Ⅰ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3(﹣1,√32),P 4(1,√32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为﹣1,证明:l 过定点.6.(2017•新课标Ⅰ)设A ,B 为曲线C :y =x 24上两点,A 与B 的横坐标之和为4. (1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.7.(2016•新课标Ⅰ)设圆x 2+y 2+2x ﹣15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (Ⅰ)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.8.(2016•新课标Ⅰ)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (Ⅰ)求|OH||ON|;(Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由. 9.(2015•新课标Ⅰ)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点.(Ⅰ)当k =0时,分別求C 在点M 和N 处的切线方程.(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?(说明理由) 10.(2015•新课标Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x ﹣2)2+(y ﹣3)2=1交于点M 、N 两点.(1)求k 的取值范围;(2)若OM →•ON →=12,其中O 为坐标原点,求|MN |. 11.(2014•新课标Ⅰ)已知点A (0,﹣2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,F 是椭圆的右焦点,直线AF 的斜率为2√33,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程. 12.(2014•新课标Ⅰ)已知点P (2,2),圆C :x 2+y 2﹣8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.13.(2013•新课标Ⅰ)已知圆M :(x +1)2+y 2=1,圆N :(x ﹣1)2+y 2=9,动圆P 与圆M 外切并与圆N 内切,圆心P 的轨迹为曲线C . (Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.14.(2012•新课标)设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A ∈C ,已知以F 为圆心,F A 为半径的圆F 交l 于B ,D 两点;(1)若∠BFD =90°,△ABD 的面积为4√2,求p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.15.(2011•新课标)在平面直角坐标系xOy 中,已知点A (0,﹣1),B 点在直线y =﹣3上,M 点满足MB →∥OA →,MA →⋅AB →=MB →•BA →,M 点的轨迹为曲线C . (Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处的切线,求O 点到l 距离的最小值.16.(2011•新课标)在平面直角坐标系xOy 中,曲线y =x 2﹣6x +1与坐标轴的交点都在圆C 上.(Ⅰ)求圆C 的方程;(Ⅱ)若圆C 与直线x ﹣y +a =0交与A ,B 两点,且OA ⊥OB ,求a 的值. 17.(2010•全国新课标)设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过F 1的直线l 与E 相交于A 、B 两点,且|AF 2|,|AB |,|BF 2|成等差数列. (Ⅰ)求|AB |;(Ⅱ)若直线l 的斜率为1,求b 的值.18.(2009•全国卷Ⅰ)如图,已知抛物线E :y 2=x 与圆M :(x ﹣4)2+y 2=r 2(r >0)相交于A 、B 、C 、D 四个点. (Ⅰ)求r 的取值范围;(Ⅱ)当四边形ABCD 的面积最大时,求对角线AC 、BD 的交点P 的坐标.19.(2008•海南)在直角坐标系xOy 中,椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2.F 2也是抛物线C 2:y 2=4x 的焦点,点M 为C 1与C 2在第一象限的交点,且|MF 2|=53. (Ⅰ)求C 1的方程;(Ⅱ)平面上的点N 满足MN →=MF 1→+MF 2→,直线l ∥MN ,且与C 1交于A ,B 两点,若OA →⋅OB →=0,求直线l 的方程.20.(2007•海南)在平面直角坐标系xOy 中,已知圆x 2+y 2﹣12x +32=0的圆心为Q ,过点P (0,2)且斜率为k 的直线与圆Q 相交于不同的两点A ,B . (Ⅰ)求k 的取值范围;(Ⅱ)是否存在常数k ,使得向量OA →+OB →与PQ →共线?如果存在,求k 值;如果不存在,请说明理由.21.(2007•陕西)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为√63,短轴一个端点到右焦点的距离为√3. (Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为√32,求△AOB 面积的最大值.22.(2006•全国卷Ⅱ)已知抛物线x 2=4y 的焦点为F ,A 、B 是抛物线上的两动点,且AF →=λFB →(λ>0).过A 、B 两点分别作抛物线的切线,设其交点为M . (Ⅰ)证明FM →.AB →为定值;(Ⅱ)设△ABM 的面积为S ,写出S =f (λ)的表达式,并求S 的最小值.23.(2006•福建)已知椭圆x 22+y 2=1的左焦点为F ,O 为坐标原点.(I )求过点O 、F ,并且与椭圆的左准线l 相切的圆的方程;(II )设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.24.(2019•新课标Ⅱ)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为C上的点,O 为坐标原点.(1)若△POF 2为等边三角形,求C 的离心率;(2)如果存在点P ,使得PF 1⊥PF 2,且△F 1PF 2的面积等于16,求b 的值和a 的取值范围.25.(2019•新课标Ⅱ)已知点A (﹣2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G . (i )证明:△PQG 是直角三角形; (ii )求△PQG 面积的最大值.26.(2018•新课标Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程. 27.(2017•新课标Ⅱ)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP →=√2NM →. (1)求点P 的轨迹方程;(2)设点Q 在直线x =﹣3上,且OP →•PQ →=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .28.(2016•新课标Ⅱ)已知椭圆E :x 2t+y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t =4,|AM |=|AN |时,求△AMN 的面积; (Ⅱ)当2|AM |=|AN |时,求k 的取值范围. 29.(2016•新课标Ⅱ)已知A 是椭圆E :x 24+y 23=1的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (I )当|AM |=|AN |时,求△AMN 的面积 (II )当2|AM |=|AN |时,证明:√3<k <2. 30.(2015•陕西)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点A (0,﹣1),且离心率为√22. (Ⅰ)求椭圆E 的方程;(Ⅱ)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 斜率之和为2.31.(2015•新课标Ⅱ)椭圆C :x 2a 2+y 2b 2=1,(a >b >0)的离心率√22,点(2,√2)在C 上.(1)求椭圆C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM 的斜率与l 的斜率的乘积为定值.32.(2014•大纲版)已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF |=54|PQ |. (Ⅰ)求C 的方程;(Ⅱ)过F 的直线l 与C 相交于A 、B 两点,若AB 的垂直平分线l ′与C 相交于M 、N 两点,且A 、M 、B 、N 四点在同一圆上,求l 的方程. 33.(2014•陕西)如图,曲线C 由上半椭圆C 1:y 2a 2+x 2b 2=1(a >b >0,y ≥0)和部分抛物线C 2:y =﹣x 2+1(y ≤0)连接而成,C 1与C 2的公共点为A ,B ,其中C 1的离心率为√32. (Ⅰ)求a ,b 的值;(Ⅱ)过点B 的直线l 与C 1,C 2分别交于点P ,Q (均异于点A ,B ),若AP ⊥AQ ,求直线l 的方程.34.(2014•新课标Ⅱ)设F 1,F 2分别是C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,M 是C上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b . 35.(2019•新课标Ⅲ)已知曲线C :y =x 22,D 为直线y =−12上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点.(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.36.(2019•新课标Ⅲ)已知曲线C :y =x 22,D 为直线y =−12上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点;(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.37.(2018•新课标Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0). (1)证明:k <−12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0→.证明:|FA →|,|FP →|,|FB →|成等差数列,并求该数列的公差.38.(2018•新课标Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0). (1)证明:k <−12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0→,证明:2|FP →|=|FA →|+|FB →|. 39.(2017•新课标Ⅲ)在直角坐标系xOy 中,曲线y =x 2+mx ﹣2与x 轴交于A 、B 两点,点C 的坐标为(0,1),当m 变化时,解答下列问题: (1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A 、B 、C 三点的圆在y 轴上截得的弦长为定值.40.(2017•新课标Ⅲ)已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆. (1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,﹣2),求直线l 与圆M 的方程.数学组卷参考答案与试题解析一.解答题(共40小题)1.(2019•新课标Ⅰ)已知点A ,B 关于坐标原点O 对称,|AB |=4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,|MA |﹣|MP |为定值?并说明理由.【分析】(1)由条件知点M 在线段AB 的中垂线x ﹣y =0上,设圆的方程为⊙M 的方程为(x ﹣a )2+(y ﹣a )2=R 2(R >0),然后根据圆与直线x +2=0相切和圆心到直线x +y =0的距离,半弦长和半径的关系建立方程组即可;(2)设M 的坐标为(x ,y ),然后根据条件的到圆心M 的轨迹方程为y 2=4x ,然后根据抛物线的定义即可得到定点.【解答】解:∵⊙M 过点A ,B 且A 在直线x +y =0上, ∴点M 在线段AB 的中垂线x ﹣y =0上,设⊙M 的方程为:(x ﹣a )2+(y ﹣a )2=R 2(R >0),则 圆心M (a ,a )到直线x +y =0的距离d =√2, 又|AB |=4,∴在Rt △OMB 中, d 2+(12|AB |)2=R 2,即(|2a|√2)2+4=R 2① 又∵⊙M 与x =﹣2相切,∴|a +2|=R ② 由①②解得{a =0R =2或{a =4R =6,∴⊙M 的半径为2或6;(2)∵线段AB 为⊙M 的一条弦O 是弦AB 的中点,∴圆心M 在线段AB 的中垂线上, 设点M 的坐标为(x ,y ),则|OM |2+|OA |2=|MA |2, ∵⊙M 与直线x +2=0相切,∴|MA |=|x +2|, ∴|x +2|2=|OM |2+|OA |2=x 2+y 2+4, ∴y 2=4x ,∴M 的轨迹是以F (1,0)为焦点x =﹣1为准线的抛物线,∴|MA |﹣|MP |=|x +2|﹣|MP | =|x +1|﹣|MP |+1=|MF |﹣|MP |+1,∴当|MA |﹣|MP |为定值时,则点P 与点F 重合,即P 的坐标为(1,0), ∴存在定点P (1,0)使得当A 运动时,|MA |﹣|MP |为定值.【点评】本题考查了直线与圆的关系和抛物线的定义,考查了待定系数法和曲线轨迹方程的求法,属难题.2.(2019•新课标Ⅰ)已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若AP →=3PB →,求|AB |.【分析】(1)根据韦达定理以及抛物线的定义可得.(2)若AP →=3PB →,则y 1=﹣3y 2,⇒x 1=﹣3x 2+4t ,再结合韦达定理可解得t =1,x 1=3,x 2=13,再用弦长公式可得.【解答】解:(1)设直线l 的方程为y =32(x ﹣t ),将其代入抛物线y 2=3x 得:94x 2﹣(92t +3)x +94t 2=0,设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=92t+394=2t +43,①,x 1x 2=t 2②,由抛物线的定义可得:|AF |+|BF |=x 1+x 2+p =2t +43+32=4,解得t =712, 直线l 的方程为y =32x −78.(2)若AP →=3PB →,则y 1=﹣3y 2,∴32(x 1﹣t )=﹣3×32(x 2﹣t ),化简得x 1=﹣3x 2+4t ,③由①②③解得t =1,x 1=3,x 2=13, ∴|AB |=√1+94√(3+13)2−4=4√133. 【点评】本题考查了抛物线的性质,属中档题. 3.(2018•新课标Ⅰ)设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB .【分析】(1)先得到F 的坐标,再求出点A 的方程,根据两点式可得直线方程, (2)分三种情况讨论,根据直线斜率的问题,以及韦达定理,即可证明. 【解答】解:(1)c =√2−1=1, ∴F (1,0), ∵l 与x 轴垂直, ∴x =1,由{x =1x 22+y 2=1,解得{x =1y =√22或{x =1y =−√22,∴A (1.√22),或(1,−√22),∴直线AM 的方程为y =−√22x +√2,y =√22x −√2,证明:(2)当l 与x 轴重合时,∠OMA =∠OMB =0°,当l 与x 轴垂直时,OM 为AB 的垂直平分线,∴∠OMA =∠OMB , 当l 与x 轴不重合也不垂直时,设l 的方程为y =k (x ﹣1),k ≠0, A (x 1,y 1),B (x 2,y 2),则x 1<√2,x 2<√2, 直线MA ,MB 的斜率之和为k MA ,k MB 之和为k MA +k MB =y 1x 1−2+y2x 2−2, 由y 1=kx 1﹣k ,y 2=kx 2﹣k 得k MA +k MB =2kx 1x 2−3k(x 1+x 2)+4k(x 1−2)(x 2−2),将y =k (x ﹣1)代入x 22+y 2=1可得(2k 2+1)x 2﹣4k 2x +2k 2﹣2=0,∴x 1+x 2=4k 22k 2+1,x 1x 2=2k 2−22k 2+1,∴2kx 1x 2﹣3k (x 1+x 2)+4k =12k 2+1(4k 3﹣4k ﹣12k 3+8k 3+4k )=0从而k MA +k MB =0, 故MA ,MB 的倾斜角互补, ∴∠OMA =∠OMB , 综上∠OMA =∠OMB .【点评】本题考查了直线和椭圆的位置关系,以韦达定理,考查了运算能力和转化能力,属于中档题.4.(2018•新课标Ⅰ)设抛物线C :y 2=2x ,点A (2,0),B (﹣2,0),过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:∠ABM =∠ABN .【分析】(1)当x =2时,代入求得M 点坐标,即可求得直线BM 的方程;(2)设直线l 的方程,联立,利用韦达定理及直线的斜率公式即可求得k BN +k BM =0,即可证明∠ABM =∠ABN .【解答】解:(1)当l 与x 轴垂直时,x =2,代入抛物线解得y =±2, 所以M (2,2)或M (2,﹣2),直线BM 的方程:y =12x +1,或:y =−12x ﹣1.(2)证明:设直线l 的方程为l :x =ty +2,M (x 1,y 1),N (x 2,y 2), 联立直线l 与抛物线方程得{y 2=2x x =ty +2,消x 得y 2﹣2ty ﹣4=0,即y 1+y 2=2t ,y 1y 2=﹣4,则有k BN +k BM =y 1x 1+2+y 2x 2+2=(y 222×y 1+y 122×y 2)+2(y 1+y 2)(x 1+2)(x 2+2)=(y 1+y 2)(y 1y22+2)(x 1+2)(x 2+2)=0,所以直线BN 与BM 的倾斜角互补, ∴∠ABM =∠ABN .【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查韦达定理,直线的斜率公式,考查转化思想,属于中档题. 5.(2017•新课标Ⅰ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3(﹣1,√32),P 4(1,√32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为﹣1,证明:l 过定点.【分析】(1)根据椭圆的对称性,得到P 2(0,1),P 3(﹣1,√32),P 4(1,√32)三点在椭圆C 上.把P 2(0,1),P 3(﹣1,√32)代入椭圆C ,求出a 2=4,b 2=1,由此能求出椭圆C 的方程.(2)当斜率不存在时,不满足;当斜率存在时,设l :y =kx +t ,(t ≠1),联立{y =kx +tx 2+4y 2−4=0,得(1+4k 2)x 2+8ktx +4t 2﹣4=0,由此利用根的判别式、韦达定理、直线方程,结合已知条件能证明直线l 过定点(2,﹣1).【解答】解:(1)根据椭圆的对称性,P 3(﹣1,√32),P 4(1,√32)两点必在椭圆C 上, 又P 4的横坐标为1,∴椭圆必不过P 1(1,1), ∴P 2(0,1),P 3(﹣1,√32),P 4(1,√32)三点在椭圆C 上. 把P 2(0,1),P 3(﹣1,√32)代入椭圆C ,得: {1b 2=11a 2+34b2=1,解得a 2=4,b 2=1, ∴椭圆C 的方程为x 24+y 2=1.证明:(2)①当斜率不存在时,设l :x =m ,A (m ,y A ),B (m ,﹣y A ), ∵直线P 2A 与直线P 2B 的斜率的和为﹣1, ∴k P 2A +k P 2B =y A −1m +−y A −1m =−2m=−1, 解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足. ②当斜率存在时,设l :y =kx +t ,(t ≠1),A (x 1,y 1),B (x 2,y 2), 联立{y =kx +tx 2+4y 2−4=0,整理,得(1+4k 2)x 2+8ktx +4t 2﹣4=0, x 1+x 2=−8kt 1+4k 2,x 1x 2=4t 2−41+4k2, 则k P 2A +k P 2B =y 1−1x 1+y 2−1x 2=x 2(kx 1+t)−x 2+x 1(kx 2+t)−x 1x 1x 2=8kt 2−8k−8kt 2+8kt1+4k 24t 2−41+4k2=8k(t−1)4(t+1)(t−1)=−1,又t ≠1,∴t =﹣2k ﹣1,此时△=﹣64k ,存在k ,使得△>0成立, ∴直线l 的方程为y =kx ﹣2k ﹣1, 当x =2时,y =﹣1, ∴l 过定点(2,﹣1).【点评】本题考查椭圆方程的求法,考查椭圆、直线方程、根的判别式、韦达定理、直线方程位置关系等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是中档题.6.(2017•新课标Ⅰ)设A ,B 为曲线C :y =x 24上两点,A 与B 的横坐标之和为4. (1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.【分析】(1)设A (x 1,x 124),B (x 2,x 224),运用直线的斜率公式,结合条件,即可得到所求;(2)设M (m ,m 24),求出y =x 24的导数,可得切线的斜率,由两直线平行的条件:斜率相等,可得m ,即有M 的坐标,再由两直线垂直的条件:斜率之积为﹣1,可得x 1,x 2的关系式,再由直线AB :y =x +t 与y =x 24联立,运用韦达定理,即可得到t 的方程,解得t 的值,即可得到所求直线方程.【解答】解:(1)设A (x 1,x 124),B (x 2,x 224)为曲线C :y =x 24上两点,则直线AB 的斜率为k =x 124−x 224x 1−x 2=14(x 1+x 2)=14×4=1; (2)设直线AB 的方程为y =x +t ,代入曲线C :y =x 24, 可得x 2﹣4x ﹣4t =0,即有x 1+x 2=4,x 1x 2=﹣4t , 再由y =x 24的导数为y ′=12x , 设M (m ,m 24),可得M 处切线的斜率为12m ,由C 在M 处的切线与直线AB 平行,可得12m =1, 解得m =2,即M (2,1), 由AM ⊥BM 可得,k AM •k BM =﹣1,即为x 124−1x 1−2•x 224−1x 2−2=−1,化为x 1x 2+2(x 1+x 2)+20=0, 即为﹣4t +8+20=0, 解得t =7.则直线AB 的方程为y =x +7.【点评】本题考查直线与抛物线的位置关系,注意联立直线方程和抛物线的方程,运用韦达定理,考查直线的斜率公式的运用,以及化简整理的运算能力,属于中档题. 7.(2016•新课标Ⅰ)设圆x 2+y 2+2x ﹣15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (Ⅰ)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【分析】(Ⅰ)求得圆A 的圆心和半径,运用直线平行的性质和等腰三角形的性质,可得EB =ED ,再由圆的定义和椭圆的定义,可得E 的轨迹为以A ,B 为焦点的椭圆,求得a ,b ,c ,即可得到所求轨迹方程;(Ⅱ)设直线l :x =my +1,代入椭圆方程,运用韦达定理和弦长公式,可得|MN |,由PQ ⊥l ,设PQ :y =﹣m (x ﹣1),求得A 到PQ 的距离,再由圆的弦长公式可得|PQ |,再由四边形的面积公式,化简整理,运用不等式的性质,即可得到所求范围. 【解答】解:(Ⅰ)证明:圆x 2+y 2+2x ﹣15=0即为(x +1)2+y 2=16, 可得圆心A (﹣1,0),半径r =4, 由BE ∥AC ,可得∠C =∠EBD , 由AC =AD ,可得∠D =∠C , 即为∠D =∠EBD ,即有EB =ED , 则|EA |+|EB |=|EA |+|ED |=|AD |=4, 故E 的轨迹为以A ,B 为焦点的椭圆,且有2a =4,即a =2,c =1,b =√a 2−c 2=√3, 则点E 的轨迹方程为x 24+y 23=1(y ≠0);(Ⅱ)椭圆C 1:x 24+y 23=1,设直线l :x =my +1,由PQ ⊥l ,设PQ :y =﹣m (x ﹣1),由{x =my +13x 2+4y 2=12可得(3m 2+4)y 2+6my ﹣9=0, 设M (x 1,y 1),N (x 2,y 2), 可得y 1+y 2=−6m 3m 2+4,y 1y 2=−93m 2+4,则|MN |=√1+m 2•|y1﹣y 2|=√1+m 2•√36m 2(3m 2+4)2+363m 2+4 =√1+m 2•√36(4m 2+4)3m 2+4=12•1+m 23m 2+4,A 到PQ 的距离为d =√1+m 2=√1+m 2,|PQ |=2√r 2−d 2=2√16−4m 21+m2=√2√1+m 2, 则四边形MPNQ 面积为S =12|PQ |•|MN |=12•4√3m 2+4√1+m 2•12•1+m 23m 2+4=24•√1+m 2√3m 2+4=24√13+11+m 2, 当m =0时,S 取得最小值12,又11+m2>0,可得S <24•√33=8√3, 即有四边形MPNQ 面积的取值范围是[12,8√3).【点评】本题考查轨迹方程的求法,注意运用椭圆和圆的定义,考查直线和椭圆方程联立,运用韦达定理和弦长公式,以及直线和圆相交的弦长公式,考查不等式的性质,属于中档题.8.(2016•新课标Ⅰ)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (Ⅰ)求|OH||ON|;(Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由. 【分析】(Ⅰ)求出P ,N ,H 的坐标,利用|OH||ON|=|y H ||y N |,求|OH||ON|;(Ⅱ)直线MH 的方程为y =p2tx +t ,与抛物线方程联立,消去x 可得y 2﹣4ty +4t 2=0,利用判别式可得结论.【解答】解:(Ⅰ)将直线l 与抛物线方程联立,解得P (t 22p,t ),∵M 关于点P 的对称点为N , ∴x N +x M2=t 22p,y N +y M2=t ,∴N (t 2p,t ), ∴ON 的方程为y =ptx , 与抛物线方程联立,解得H (2t 2p,2t )∴|OH||ON|=|y H ||y N |=2;(Ⅱ)由(Ⅰ)知k MH =p 2t, ∴直线MH 的方程为y =p2tx +t ,与抛物线方程联立,消去x 可得y 2﹣4ty +4t 2=0, ∴△=16t 2﹣4×4t 2=0,∴直线MH 与C 除点H 外没有其它公共点.【点评】本题考查直线与抛物线的位置关系,考查学生的计算能力,正确联立方程是关键.9.(2015•新课标Ⅰ)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点.(Ⅰ)当k =0时,分別求C 在点M 和N 处的切线方程.(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?(说明理由)【分析】(I )联立{y =ay =x 24,可得交点M ,N 的坐标,由曲线C :y =x 24,利用导数的运算法则可得:y ′=x2,利用导数的几何意义、点斜式即可得出切线方程.(II )存在符合条件的点(0,﹣a ),设P (0,b )满足∠OPM =∠OPN .M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为:k 1,k 2.直线方程与抛物线方程联立化为x 2﹣4kx ﹣4a =0,利用根与系数的关系、斜率计算公式可得k 1+k 2=k(a+b)a.k 1+k 2=0⇔直线PM ,PN 的倾斜角互补⇔∠OPM =∠OPN .即可证明.【解答】解:(I )联立{y =ay =x 24,不妨取M (2√a ,a),N (−2√a ,a),由曲线C :y =x 24可得:y ′=x 2, ∴曲线C 在M 点处的切线斜率为2√a 2=√a ,其切线方程为:y ﹣a =√a(x −2√a),化为√ax −y −a =0.同理可得曲线C 在点N 处的切线方程为:√ax +y +a =0. (II )存在符合条件的点(0,﹣a ),下面给出证明:设P (0,b )满足∠OPM =∠OPN .M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为:k 1,k 2.联立{y =kx +a y =x 24,化为x 2﹣4kx ﹣4a =0,∴x 1+x 2=4k ,x 1x 2=﹣4a . ∴k 1+k 2=y 1−b x 1+y 2−b x 2=2kx 1x 2+(a−b)(x 1+x 2)x 1x 2=k(a+b)a. 当b =﹣a 时,k 1+k 2=0,直线PM ,PN 的倾斜角互补, ∴∠OPM =∠OPN . ∴点P (0,﹣a )符合条件.【点评】本题考查了导数的运算法则、利用导数的几何意义研究切线方程、直线与抛物线相交问题转化为方程联立可得根与系数的关系、斜率计算公式,考查了推理能力与计算能力,属于中档题.10.(2015•新课标Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x ﹣2)2+(y ﹣3)2=1交于点M 、N 两点.(1)求k 的取值范围;(2)若OM →•ON →=12,其中O 为坐标原点,求|MN |.【分析】(1)由题意可得,直线l 的斜率存在,用点斜式求得直线l 的方程,根据圆心到直线的距离等于半径求得k 的值,可得满足条件的k 的范围.(2)由题意可得,经过点M 、N 、A 的直线方程为y =kx +1,根据直线和圆相交的弦长公式进行求解.【解答】(1)由题意可得,直线l 的斜率存在,设过点A (0,1)的直线方程:y =kx +1,即:kx ﹣y +1=0. 由已知可得圆C 的圆心C 的坐标(2,3),半径R =1. 故由√k 2<1,故当4−√73<k <4+√73,过点A (0,1)的直线与圆C :(x ﹣2)2+(y ﹣3)2=1相交于M ,N 两点.(2)设M (x 1,y 1);N (x 2,y 2),由题意可得,经过点M 、N 、A 的直线方程为y =kx +1,代入圆C 的方程(x ﹣2)2+(y ﹣3)2=1,可得 (1+k 2)x 2﹣4(k +1)x +7=0, ∴x 1+x 2=4(1+k)1+k 2,x 1•x 2=71+k2, ∴y 1•y 2=(kx 1+1)(kx 2+1)=k 2x 1x 2+k (x 1+x 2)+1=71+k 2•k 2+k •4(1+k)1+k 2+1=12k 2+4k+11+k2, 由OM →•ON →=x 1•x 2+y 1•y 2=12k 2+4k+81+k2=12,解得 k =1, 故直线l 的方程为 y =x +1,即 x ﹣y +1=0. 圆心C 在直线l 上,MN 长即为圆的直径. 所以|MN |=2.【点评】本题主要考查直线和圆的位置关系的应用,以及直线和圆相交的弦长公式的计算,考查学生的计算能力.11.(2014•新课标Ⅰ)已知点A (0,﹣2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,F 是椭圆的右焦点,直线AF 的斜率为2√33,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程. 【分析】(Ⅰ)通过离心率得到a 、c 关系,通过A 求出a ,即可求E 的方程; (Ⅱ)设直线l :y =kx ﹣2,设P (x 1,y 1),Q (x 2,y 2)将y =kx ﹣2代入x 24+y 2=1,利用△>0,求出k 的范围,利用弦长公式求出|PQ |,然后求出△OPQ 的面积表达式,利用换元法以及基本不等式求出最值,然后求解直线方程.【解答】解:(Ⅰ) 设F (c ,0),由条件知2c=2√33,得c =√3又ca=√32, 所以a =2,b 2=a 2﹣c 2=1,故E 的方程x 24+y 2=1.….(5分)(Ⅱ)依题意当l ⊥x 轴不合题意,故设直线l :y =kx ﹣2,设P (x 1,y 1),Q (x 2,y 2) 将y =kx ﹣2代入x 24+y 2=1,得(1+4k 2)x 2﹣16kx +12=0,当△=16(4k 2﹣3)>0,即k 2>34时,x 1,2=8k±2√4k 2−31+4k2 从而|PQ|=√k 2+1|x 1−x 2|=4√k 2+1⋅√4k 2−31+4k2又点O 到直线PQ 的距离d =√k +1,所以△OPQ 的面积S △OPQ=12d|PQ|=4√4K 2−31+4K 2, 设√4k 2−3=t ,则t >0,S △OPQ =4t t 2+4=4t+4t≤1, 当且仅当t =2,k =±√72等号成立,且满足△>0, 所以当△OPQ 的面积最大时,l 的方程为:y =√72x ﹣2或y =−√72x ﹣2.…(12分)【点评】本题考查直线与椭圆的位置关系的应用,椭圆的求法,基本不等式的应用,考查转化思想以及计算能力.12.(2014•新课标Ⅰ)已知点P (2,2),圆C :x 2+y 2﹣8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.【分析】(1)由圆C 的方程求出圆心坐标和半径,设出M 坐标,由CM →与MP →数量积等于0列式得M 的轨迹方程;(2)设M 的轨迹的圆心为N ,由|OP |=|OM |得到ON ⊥PM .求出ON 所在直线的斜率,由直线方程的点斜式得到PM 所在直线方程,由点到直线的距离公式求出O 到l 的距离,再由弦心距、圆的半径及弦长间的关系求出PM 的长度,代入三角形面积公式得答案. 【解答】解:(1)由圆C :x 2+y 2﹣8y =0,得x 2+(y ﹣4)2=16, ∴圆C 的圆心坐标为(0,4),半径为4.设M (x ,y ),则CM →=(x ,y −4),MP →=(2−x ,2−y).由题意可得:CM →⋅MP →=0. 即x (2﹣x )+(y ﹣4)(2﹣y )=0. 整理得:(x ﹣1)2+(y ﹣3)2=2.∴M 的轨迹方程是(x ﹣1)2+(y ﹣3)2=2.(2)由(1)知M 的轨迹是以点N (1,3)为圆心,√2为半径的圆, 由于|OP |=|OM |,故O 在线段PM 的垂直平分线上, 又P 在圆N 上, 从而ON ⊥PM . ∵k ON =3,∴直线l 的斜率为−13.∴直线PM 的方程为y −2=−13(x −2),即x +3y ﹣8=0. 则O 到直线l 的距离为√122=4√105.又N 到l 的距离为√10=√105, ∴|PM |=2√2−(√105)2=4√105. ∴S △POM =12×4√105×4√105=165. 【点评】本题考查圆的轨迹方程的求法,训练了利用向量数量积判断两个向量的垂直关系,训练了点到直线的距离公式的应用,是中档题.13.(2013•新课标Ⅰ)已知圆M :(x +1)2+y 2=1,圆N :(x ﹣1)2+y 2=9,动圆P 与圆M 外切并与圆N 内切,圆心P 的轨迹为曲线C . (Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.【分析】(I )设动圆的半径为R ,由已知动圆P 与圆M 外切并与圆N 内切,可得|PM |+|PN |=R +1+(3﹣R )=4,而|NM |=2,由椭圆的定义可知:动点P 的轨迹是以M ,N 为焦点,4为长轴长的椭圆,求出即可;(II )设曲线C 上任意一点P (x ,y ),由于|PM |﹣|PN |=2R ﹣2≤4﹣2=2,所以R ≤2,当且仅当⊙P 的圆心为(2,0)R =2时,其半径最大,其方程为(x ﹣2)2+y 2=4.分①l 的倾斜角为90°,此时l 与y 轴重合,可得|AB |.②若l 的倾斜角不为90°,由于⊙M 的半径1≠R ,可知l 与x 轴不平行,设l 与x 轴的交点为Q ,根据|QP||QM|=R r 1,可得Q (﹣4,0),所以可设l :y =k (x +4),与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【解答】解:(I )由圆M :(x +1)2+y 2=1,可知圆心M (﹣1,0);圆N :(x ﹣1)2+y 2=9,圆心N (1,0),半径3. 设动圆的半径为R ,∵动圆P 与圆M 外切并与圆N 内切,∴|PM |+|PN |=R +1+(3﹣R )=4,而|NM |=2,由椭圆的定义可知:动点P 的轨迹是以M ,N 为焦点,4为长轴长的椭圆, ∴a =2,c =1,b 2=a 2﹣c 2=3. ∴曲线C 的方程为x 24+y 23=1(x ≠﹣2).(II )设曲线C 上任意一点P (x ,y ),由于|PM |﹣|PN |=2R ﹣2≤3﹣1=2,所以R ≤2,当且仅当⊙P 的圆心为(2,0)R =2时,其半径最大,其方程为(x ﹣2)2+y 2=4.①l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=2√3.②若l 的倾斜角不为90°,由于⊙M 的半径1≠R ,可知l 与x 轴不平行, 设l 与x 轴的交点为Q ,则|QP||QM|=R r 1,可得Q (﹣4,0),所以可设l :y =k (x +4),由l 于M 相切可得:√1+k 2=1,解得k =±√24.当k =√24时,联立{y =√24x +√2x 24+y23=1,得到7x 2+8x ﹣8=0.∴x 1+x 2=−87,x 1x 2=−87.∴|AB |=√1+k 2|x 2−x 1|=√1+(24)2√(−87)2−4×(−87)=187由于对称性可知:当k =−√24时,也有|AB |=187. 综上可知:|AB |=2√3或187.【点评】本题综合考查了两圆的相切关系、直线与圆相切问题、椭圆的定义及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、弦长公式等基础知识,需要较强的推理能力和计算能力及其分类讨论的思想方法.14.(2012•新课标)设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A ∈C ,已知以F 为圆心,F A 为半径的圆F 交l 于B ,D 两点;(1)若∠BFD =90°,△ABD 的面积为4√2,求p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.【分析】(1)由对称性知:△BFD 是等腰直角△,斜边|BD |=2p 点A 到准线l 的距离d =|FA|=|FB|=√2p ,由△ABD 的面积S △ABD =4√2,知12×BD ×d =12×2p ×√2p =4√2,由此能求出圆F 的方程.(2)由对称性设A(x 0,x 022p )(x 0>0),则F(0,p2)点A ,B 关于点F 对称得:B(−x 0,p −x 022p )⇒p −x 022p =−p 2⇔x 02=3p 2,得:A(√3p ,3p 2),由此能求出坐标原点到m ,n 距离的比值.【解答】解:(1)由对称性知:△BFD 是等腰直角△,斜边|BD |=2p 点A 到准线l 的距离d =|FA|=|FB|=√2p , ∵△ABD 的面积S △ABD =4√2, ∴12×BD ×d =12×2p ×√2p =4√2,解得p =2,所以F 坐标为(0,1), ∴圆F 的方程为x 2+(y ﹣1)2=8.(2)由题设A(x 0,x 022p )(x 0>0),则F(0,p2),∵A ,B ,F 三点在同一直线m 上,又AB 为圆F 的直径,故A ,B 关于点F 对称.由点A ,B 关于点F 对称得:B(−x 0,p −x 022p )⇒p −x 022p =−p 2⇔x 02=3p 2得:A(√3p ,3p2),直线m :y =3p 2−p 2√3p+p 2⇔x −√3y +√3p 2=0,x 2=2py ⇔y =x 22p⇒y′=x p =√33⇒x =√33p ⇒切点P(√3p 3,p6) 直线n :y −p 6=√33(x −√3p 3)⇔x −√3y −√36p =0 坐标原点到m ,n 距离的比值为√3p 2:√3p6=3.【点评】本题考查抛物线与直线的位置关系的综合应用,具体涉及到抛物线的简单性质、圆的性质、导数的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化. 15.(2011•新课标)在平面直角坐标系xOy 中,已知点A (0,﹣1),B 点在直线y =﹣3上,M 点满足MB →∥OA →,MA →⋅AB →=MB →•BA →,M 点的轨迹为曲线C . (Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处的切线,求O 点到l 距离的最小值.【分析】(Ⅰ)设M (x ,y ),由已知得B (x ,﹣3),A (0,﹣1)并代入MB →∥OA →,MA →⋅AB →=MB →•BA →,即可求得M 点的轨迹C 的方程;(Ⅱ)设P (x 0,y 0)为C 上的点,求导,写出C 在P 点处的切线方程,利用点到直线的距离公式即可求得O 点到l 距离,然后利用基本不等式求出其最小值. 【解答】解:(Ⅰ)设M (x ,y ),由已知得B (x ,﹣3),A (0,﹣1). 所MA →=(﹣x ,﹣1﹣y ),MB →=(0,﹣3﹣y ),AB →=(x ,﹣2). 再由题意可知(MA →+MB →)•AB →=0,即(﹣x ,﹣4﹣2y )•(x ,﹣2)=0. 所以曲线C 的方程式为y =14x 2−2.(Ⅱ)设P (x 0,y 0)为曲线C :y =14x 2−2上一点,因为y ′=12x ,所以l 的斜率为12x 0,因此直线l 的方程为y ﹣y 0=12x 0(x ﹣x 0),即x 0x ﹣2y +2y 0﹣x 02=0. 则o 点到l 的距离d =002√4+x 0.又y 0=14x 02−2,所以d =12x 2+4√4+x 0=12(√x 02+4√4+x 0)≥2,所以x 02=0时取等号,所以O 点到l 距离的最小值为2.【点评】此题是个中档题.考查向量与解析几何的交汇点命题及代入法求轨迹方程,以及导数的几何意义和点到直线的距离公式,综合性强,考查了同学们观察、推理以及创造性地分析问题、解决问题的能力.16.(2011•新课标)在平面直角坐标系xOy 中,曲线y =x 2﹣6x +1与坐标轴的交点都在圆C 上.(Ⅰ)求圆C的方程;(Ⅱ)若圆C与直线x﹣y+a=0交与A,B两点,且OA⊥OB,求a的值.【分析】(Ⅰ)法一:写出曲线与坐标轴的交点坐标,利用圆心的几何特征设出圆心坐标,构造关于圆心坐标的方程,通过解方程确定出圆心坐标,进而算出半径,写出圆的方程;法二:可设出圆的一般式方程,利用曲线与方程的对应关系,根据同一性直接求出参数,(Ⅱ)利用设而不求思想设出圆C与直线x﹣y+a=0的交点A,B坐标,通过OA⊥OB 建立坐标之间的关系,结合韦达定理寻找关于a的方程,通过解方程确定出a的值.【解答】解:(Ⅰ)法一:曲线y=x2﹣6x+1与y轴的交点为(0,1),与x轴的交点为(3+2√2,0),(3﹣2√2,0).可知圆心在直线x=3上,故可设该圆的圆心C为(3,t),则有32+(t﹣1)2=(2√2)2+t2,解得t=1,故圆C的半径为√32+(t−1)2=3,所以圆C的方程为(x﹣3)2+(y﹣1)2=9.法二:圆x2+y2+Dx+Ey+F=0x=0,y=1有1+E+F=0y=0,x2﹣6x+1=0与x2+Dx+F=0是同一方程,故有D=﹣6,F=1,E=﹣2,即圆方程为x2+y2﹣6x﹣2y+1=0(Ⅱ)设A(x1,y1),B(x2,y2),其坐标满足方程组{x−y+a=0(x−3)2+(y−1)2=9,消去y,得到方程2x2+(2a﹣8)x+a2﹣2a+1=0,由已知可得判别式△=56﹣16a﹣4a2>0.在此条件下利用根与系数的关系得到x1+x2=4﹣a,x1x2=a 2−2a+12①,由于OA⊥OB可得x1x2+y1y2=0,又y1=x1+a,y2=x2+a,所以可得2x1x2+a(x1+x2)+a2=0②由①②可得a=﹣1,满足△=56﹣16a﹣4a2>0.故a=﹣1.【点评】本题考查圆的方程的求解,考查学生的待定系数法,考查学生的方程思想,直线与圆的相交问题的解决方法和设而不求的思想,考查垂直问题的解决思想,考查学生分析问题解决问题的能力,属于直线与圆的方程的基本题型.17.(2010•全国新课标)设F1,F2分别是椭圆E:x2+y 2b2=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.。
(完整版)圆锥曲线练习题含标准答案(最新整理)
当 0 m 1 时,
y2 1
x2 1
1, e2
a2 b2 a2
1m
3,m 4
1 ,a2 4
1 m
4, a
2
m
20. x2 y2 1 20 5
设双曲线的方程为 x2 4 y2 , ( 0) ,焦距 2c 10, c2 25
5 /9
当
0 时,
x2
y2
1,
4
25,
20 ;
4
当
0
时,
y2
x2
1,
(
)
4
25,
20
4
21. (, 4) (1, ) (4 k)(1 k) 0, (k 4)(k 1) 0, k 1,或k 4
22. x 3 2 p 6, p 3, x p 3
2
22
23.1
焦点在 y 轴上,则 y2 x2 1, c2 5 1 4, k 1
28. ( 7, 0) 渐近线方程为 y m x ,得 m 3, c 7 ,且焦点在 x 轴上 2
29. b2 a2
设A( x1 ,y1), NhomakorabeaB(x2 ,
y2
)
,则中点
M
(
x1
2
x2
,
x
, 2
x2
8x
4
0,
x1
x2
8,
y1
y2
x1
x2
4
4
中点坐标为 ( x1 x2 , y1 y2 ) (4, 2)
2
2
27. , 2
t2 设 Q(
,t) ,由
PQ
a
t2 得(
圆锥曲线大题综合(含答案)
圆锥曲线大题综合1.(2022秋·广东江门·高二台山市第一中学校考期中)求适合下列条件的圆锥曲线的标准方程:(1)以直线y =为渐近线,焦点是()3,0-,()3,0的双曲线;(2)离心率为45,短轴长为6的椭圆.2.(2022秋·广东江门·高二校考期中)已知抛物线22(0)y px p =>的焦点F 到其准线的距离为4.(1)求p 的值;(2)过焦点F 且斜率为1的直线与抛物线交于A ,B 两点,求||AB .3.(2022秋·广东深圳·高二深圳市南头中学校考期中)椭圆C 的中心在坐标原点O ,焦点在x 轴上,椭圆C经过点()0,1且长轴长为(1)求椭圆C 的标准方程;(2)过点()1,0M 且斜率为1的直线l 与椭圆C 交于A ,B 两点,求弦长AB .4.(2022秋·广东江门·高二校考期中)椭圆C :22221(0)x y a b a b +=>>2.(1)求椭圆C 的标准方程;(2)经过点A (2,3)且倾斜角为π4的直线l 与椭圆交于M ,N 两点,求|MN |.5.(2022秋·广东江门·高二校考期中)已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,2a =.(1)求椭圆C 的标准方程;(2)经过点(2,3)A 且倾斜角为π4的直线l 与椭圆交于M ,N 两点,求线段MN 的长.6.(2022秋·广东梅州·高二校考期中)已知P 为椭圆E :22221x y a b+=(0)a b >>上任意一点,F 1,F 2为左、右焦点,M 为PF 1中点.如图所示:若1122OM PF +=,离心率e =(1)求椭圆E 的标准方程;(2)已知直线l 倾斜角为135°,经过(2,1)-且与椭圆交于A ,B 两点,求弦长|AB|的值.7.(2022秋·广东广州·高二校联考期中)已知椭圆的中心在原点,离心率为12,一个焦点是(,0)F m -(m 是大于0的常数).(1)求椭圆的方程;(2)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M .若||2||MQ QF =,求直线l 的斜率.8.(2022秋·广东深圳·高二深圳市南头中学校考期中)已知椭圆C :()222210x y a b a b+=>>过点()2,1P ,且离心率2e =.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点,若AB =l 方程.9.(2022秋·广东深圳·高二深圳外国语学校校考期中)已知点()11,0F -,圆()222116F x y -+=:,点Q 在圆2F 上运动,1QF 的垂直平分线交2QF 于点P .(1)求动点P 的轨迹C 的方程;(2)直线l 与曲线C 交于M N 、两点,且MN 中点为()1,1,求直线l 的方程.10.(2022秋·广东广州·高二校联考期中)已知两定点()4,0A -,()1,0B -,动点P 满足2PA PB =,直线:l ()()211530m x m y m +++--=.(1)求动点P 的轨迹方程,并说明轨迹的形状;(2)记动点P 的轨迹为曲线E ,把曲线E 向右平移1个单位长度,向上平移1个单位长度后得到曲线E ',求直线l 被曲线E '截得的最短的弦长;(3)已知点M 的坐标为()5,3,点N 在曲线E '上运动,求线段MN 的中点H 的轨迹方程.11.(2022秋·广东江门·高二台山市第一中学校考期中)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,且经过点31,2P ⎛⎫⎪⎝⎭.(1)求椭圆C 的方程;(2)若直线y kx m =+与椭圆C 交于M N 、两点,O 为坐标原点,直线OM ON 、的斜率之积等于34-,试探求OMN 的面积是否为定值,并说明理由.12.(2022秋·广东江门·高二校考期中)动点N (x ,y )与定点F (1,0)的距离和N 到定直线2x =的距离的比是常数22.(1)求动点N 的轨迹C 的方程;(2)过点F 的直线l 与曲线C 交于A ,B 两点,点(2,0)M ,设直线MA 与直线MB 的斜率分别为1k ,2k .随着直线l 的变化,12k k +是否为定值?请说明理由.13.(2022秋·广东广州·高二校考期中)已知椭圆2222:1(0)x y a b a b Γ+=>>的右顶点坐标为(2,0)A ,左、右焦点分别为12,F F ,且122F F =,(1)求椭圆Γ的方程;(2)若直线L 与椭圆Γ相切,求证:点12,F F 到直线L 的距离之积为定值.14.(2022秋·广东广州·高二校联考期中)如图,已知圆22:430M x x y -++=,点()1,P t -为直线:1l x =-上一动点,过点P 引圆M 的两条切线,切点分别为A ,B(1)求直线AB 的方程,并写出直线AB 所经过的定点的坐标;(2)求线段AB 中点的轨迹方程;15.(2022秋·广东江门·高二校考期中)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,点在椭圆C 上,点F 是椭圆C 的右焦点.(1)求椭圆C 的方程;(2)过点F 的直线l 与椭圆C 交于M ,N 两点,则在x 轴上是否存在一点P ,使得直线l 绕点F 无论怎样转动都有0PM PN k k +=?若存在,求出点P 的坐标;若不存在,请说明理由.16.(2022秋·广东广州·高二南海中学校考期中)在平面直角坐标系xOy 中,已知点()4,0A -,()4,0B ,M 是一个动点,且直线AM ,BM 的斜率之积是34-,记M 的轨迹为E .(1)求E 的方程;(2)若过点()2,0F 且不与x 轴重合的直线l 与E 交于P ,Q 两点,点P 关于x 轴的对称点为1P (1P 与Q 不重合),直线1PQ 与x 轴交于点G ,求点G 的坐标.17.(2022春·广东汕头·高二校考期中)已知椭圆C :()222210x y a b a b +=>>过点()2,1P ,且离心率2e =.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点.求PAB 面积的最大值.18.(2022春·广东广州·高二华南师大附中校考期中)如图,已知圆2222:1(0)x y C a b a b+=>>的左顶点(2,0)A -,过右焦点F 的直线l 与椭圆C 相交于M ,N 两点,当直线l x ⊥轴时,||3MN =.(1)求椭圆C 的方程;(2)记,AMF ANF 的面积分别为12,S S ,求12S S 的取值范围.19.(2022春·广东广州·高二二师番禺附中校考期中)已知点A的坐标为()-,点B的坐标为(),且动点M 到点A 的距离是8,线段MB 的垂直平分线交线段MA 于点P .(1)求动点P 的轨迹C 的方程;(2)已知(2,1)D -,过原点且斜率为k (0k >)的直线l 与曲线C 交于E 、F 两点,求DEF 面积的最大值.20.(2022春·广东深圳·高二深圳市龙岗区龙城高级中学校考期中)已知椭圆C :22221(0)x y a b a b+=>>的焦距为2,点31,2P ⎛⎫⎪⎝⎭在椭圆C 上.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两个动点,O 为坐标原点,且直线PM ,PN 的倾斜角互补,求OMN 面积的最大值.21.(2022春·广东深圳·高二校考期中)已知抛物线()2:20C x py p =>的焦点为F ,过F 的直线与抛物线C 交于A ,B 两点,当A ,B 两点的纵坐标相同时,4AB =.(1)求抛物线C 的方程;(2)若P ,Q 为抛物线C 上两个动点,()0PQ m m =>,E 为PQ 的中点,求点E 纵坐标的最小值.22.(2022秋·广东深圳·高二校考期中)已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为2,短轴顶点分别为M 、N ,四边形12MF NF 的面积为32.(1)求椭圆C 的标准方程;(2)直线l 交椭圆C 于A ,B 两点,若AB 的中点坐标为()2,1-,求直线l 的方程.23.(2022秋·广东广州·高二校联考期中)已知椭圆221:1164x y E +=,()22222:10,4x y E a b a a b+=>><的离心率相同.点()00,P x y 在椭圆1E 上,()11,A x y 、()22,B x y 在椭圆2E 上.(1)若2OP OQ =,求点Q 的轨迹方程;(2)设1E 的右顶点和上顶点分别为1A 、1B ,直线1AC 、1B D 分别是椭圆2E 的切线,C 、D 为切点,直线1AC 、1B D 的斜率分别是1k 、2k ,求2212k k ⋅的值;(3)设直线PA 、PB 分别与椭圆2E 相交于E 、F 两点,且()AB tEF t =∈R,若M 是AB 中点,求证:P 、O 、M 三点共线(O 为坐标原点).24.(2022秋·广东广州·高二校联考期中)如图,中心在原点O 的椭圆Γ的右焦点为()F ,长轴长为8.椭圆Γ上有两点P 、Q ,连接OP 、OQ ,记它们的斜率为OP k 、OQ k ,且满足14OP OQ k k ⋅=-.(1)求椭圆Γ的标准方程;(2)求证:22OP OQ +为一定值,并求出这个定值;(3)设直线OQ与椭圆Γ的另一个交点为R ,直线RP 和PQ 分别与直线x =M 、N ,若PQR 和PMN 的面积相等,求点P 的横坐标.25.(2022秋·广东·高二校联考期中)设椭圆Γ:()222210x y a b a b +=>>,1F ,2F 是椭圆Γ的左、右焦点,点A ⎛ ⎝⎭在椭圆Γ上,点()4,0P 在椭圆Γ外,且24PF =-(1)求椭圆Γ的方程;(2)若1,B ⎛ ⎝⎭,点C 为椭圆Γ上横坐标大于1的一点,过点C 的直线l 与椭圆有且仅有一个交点,并与直线PA ,PB 交于M ,N 两点,O 为坐标原点,记OMN ,PMN 的面积分别为1S ,2S ,求221122S S S S -+的最小值.26.(2022秋·广东阳江·高二统考期中)已知椭圆()2222:10y x C a b a b+=>>的上、下焦点分别为1F ,2F ,左、右顶点分别为1A ,2A ,且四边形1122A F A F 是面积为8的正方形.(1)求C 的标准方程.(2)M ,N 为C 上且在y 轴右侧的两点,12//MF NF ,2MF 与1NF 的交点为P ,试问12PF PF +是否为定值?若是定值,求出该定值;若不是,请说明理由.27.(2022春·广东广州·高二广东番禺中学校考期中)已知定点)P,圆Q :(2216x y +=,N 为圆Q 上的动点,线段NP 的垂直平分线和半径NQ 相交于点M .(1)求点M 的轨迹Γ的方程;(2)直线l :x ky n =+与曲线Γ相交于A ,B 两点,且以线段AB 为直径的圆经过点C (2,0),求ABC 面积的最大值.28.(2022春·广东广州·高二广州科学城中学校考期中)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为其短轴的两个端点与右焦点的连线构成正三角形.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设过点(0,2)P -的动直线l 与椭圆C 相交于M ,N 两点,当OMN 的面积最大时,求l 的方程.29.(2022秋·广东深圳·高二深圳市高级中学校考期中)曲线Γ上动点M 到A (﹣2,0)和到B (2,0)的斜率之积为﹣14.(1)求曲线Γ的轨迹方程;(2)若点P (x 0,y 0)(y 0≠0)为直线x =4上任意一点,PA ,PB 交椭圆Γ于C ,D 两点,求四边形ACBD 面积的最大值.30.(2022春·广东汕头·高二金山中学校考期中)已知椭圆()2222:10,0x y C a b a b+=>>的焦距为,经过点()2,1P -.(1)求椭圆C 的标准方程;(2)设O 为坐标原点,在椭圆短轴上有两点M ,N 满足OM NO =,直线PM PN ,分别交椭圆于A ,B .PQ AB ⊥,Q 为垂足.是否存在定点R ,使得QR 为定值,说明理由.圆锥曲线大题综合答案1.(2022秋·广东江门·高二台山市第一中学校考期中)求适合下列条件的圆锥曲线的标准方程:(1)以直线y =为渐近线,焦点是()3,0-,()3,0的双曲线;(2)离心率为45,短轴长为6的椭圆.(1)求p 的值;(2)过焦点F 且斜率为1的直线与抛物线交于A ,B 两点,求||AB .则直线AB 的方程为2,y x =-设()()1122,,,A x y B x y ,联立228y x y x=-⎧⎨=⎩,整理可得21240xx -+=,所以1212x x +=,由抛物线的性质可得12||12416AB x x p =++=+=.3.(2022秋·广东深圳·高二深圳市南头中学校考期中)椭圆C 的中心在坐标原点O ,焦点在x 轴上,椭圆C 经过点()0,1且长轴长为(1)求椭圆C 的标准方程;(2)过点()1,0M 且斜率为1的直线l 与椭圆C 交于A ,B 两点,求弦长AB .(1)求椭圆C 的标准方程;(2)经过点A (2,3)且倾斜角为π4的直线l 与椭圆交于M ,N 两点,求|MN |.(1)求椭圆C 的标准方程;(2)经过点(2,3)A 且倾斜角为π4的直线l 与椭圆交于M ,N 两点,求线段MN 的长.6.(2022秋·广东梅州·高二校考期中)已知P 为椭圆E :221x y a b+=(0)a b >>上任意一点,F 1,F 2为左、右焦点,M 为PF 1中点.如图所示:若1122OM PF +=,离心率e =(1)求椭圆E 的标准方程;(2)已知直线l 倾斜角为135°,经过(2,1)-且与椭圆交于A ,B 两点,求弦长|AB|的值.7.(2022秋·广东广州·高二校联考期中)已知椭圆的中心在原点,离心率为12,一个焦点是(,0)F m -(m 是大于0的常数).(1)求椭圆的方程;(2)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M .若||2||MQ QF =,求直线l 的斜率.8.(2022秋·广东深圳·高二深圳市南头中学校考期中)已知椭圆C :()222210x y a b a b+=>>过点()2,1P ,且离心率2e =.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B两点,若AB =l 方程.9.(2022秋·广东深圳·高二深圳外国语学校校考期中)已知点1,圆2,点在圆2F 上运动,1QF 的垂直平分线交2QF 于点P .(1)求动点P 的轨迹C 的方程;(2)直线l 与曲线C 交于M N 、两点,且MN 中点为()1,1,求直线l 的方程.:l ()()211530m x m y m +++--=.(1)求动点P 的轨迹方程,并说明轨迹的形状;(2)记动点P 的轨迹为曲线E ,把曲线E 向右平移1个单位长度,向上平移1个单位长度后得到曲线E ',求直线l 被曲线E '截得的最短的弦长;(3)已知点M 的坐标为()5,3,点N 在曲线E '上运动,求线段MN 的中点H 的轨迹方程.11.(2022秋·广东江门·高二台山市第一中学校考期中)已知椭圆22:1(0)x y C a b a b+=>>的离心率为12,且经过点31,2P ⎛⎫⎪⎝⎭.(1)求椭圆C 的方程;(2)若直线y kx m =+与椭圆C 交于M N 、两点,O 为坐标原点,直线OM ON 、的斜率之积等于34-,试探求OMN 的面积是否为定值,并说明理由.的比是常数2.(1)求动点N 的轨迹C 的方程;(2)过点F 的直线l 与曲线C 交于A ,B 两点,点(2,0)M ,设直线MA 与直线MB 的斜率分别为1k ,2k .随着直线l的变化,12k k +是否为定值?请说明理由.13.(2022秋·广东广州·高二校考期中)已知椭圆2222:1(0)x y a b a bΓ+=>>的右顶点坐标为(2,0)A ,左、右焦点分别为12,F F ,且122F F =,(1)求椭圆Γ的方程;(2)若直线L 与椭圆Γ相切,求证:点12,F F 到直线L 的距离之积为定值.【详解】(1)因为12||22F F c ==,则c =1,因为2222,3a b a c ==-=,所以椭圆Γ的方程22143x y +=;(2)证明:椭圆Γ的左、右焦点分别为12(1,0),(1,0)F F -,①当直线l 垂直于x 轴时,因为直线l 与椭圆Γ相切,所以直线l 的方程为2x =±,此时点12,F F 到直线l 的距离一个为11d =,另一个为23d =,所以123d d =,②当直线l 不垂直于x 轴时,设直线l 的方程为y =kx +b ,联立2234120y kx b x y =+⎧⎨+-=⎩,消去y ,整理得222(34)84120k x kbx b +++-=,所以,222222644(34)(412)16(9123)k x k b k b ∆=-+-=+-,因为直线l 与椭圆Γ相切,Δ=0,所以,2234b k =+,因为1(1,0)F -到直线l 的距离为12||1-=+k b d k ,2(1,0)F 到直线l 的距离为22||1+=+k b d k ,所以,222221222222|||||||(34)||33|311111k b k b k b k k k d d k k k k k-+--++=⋅====+++++,所以点12,F F 到直线l 的距离之积为定值,且定值为3.14.(2022秋·广东广州·高二校联考期中)如图,已知圆22:430M x x y -++=,点()1,P t -为直线:1l x =-上一动点,过点P 引圆M 的两条切线,切点分别为A ,B(1)求直线AB 的方程,并写出直线AB 所经过的定点的坐标;(2)求线段AB 中点的轨迹方程;【详解】(1)因为PA ,PB 为圆M 的切线,所以90PBM PAM ∠=∠=︒,设PM 的中点为N ,所以点A ,B 在以PM 为直径的圆N 上,又点A ,B 在圆M 上,所以线段AB 为圆N 和圆M 的公共弦,因为圆22:430M x x y -++=①,AB的中点设为F点,由HF始终垂直干当P点在x轴上时,F点与H点的重合,M,得HM的中点坐标为⎛(2,0)⎝圆去掉点M,圆C上,点F是椭圆C的右焦点.(1)求椭圆C的方程;(2)过点F的直线l与椭圆C交于M,N两点,则在x轴上是否存在一点P,使得直线l绕点F无论怎样转k k+=?若存在,求出点P的坐标;若不存在,请说明理由.动都有0PM PN,M 是一个动点,且直线AM ,BM 的斜率之积是34-,记M 的轨迹为E .(1)求E 的方程;(2)若过点()2,0F 且不与x 轴重合的直线l 与E 交于P ,Q 两点,点P 关于x 轴的对称点为1P (1P 与Q 不重合),直线1PQ 与x 轴交于点G ,求点G 的坐标.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点.求PAB 面积的最大值.18.(2022春·广东广州·高二华南师大附中校考期中)如图,已知圆22:1(0)x y C a b a b+=>>的左顶点(2,0)A -,过右焦点F 的直线l 与椭圆C 相交于M ,N 两点,当直线l x ⊥轴时,||3MN =.(1)求椭圆C 的方程;(2)记,AMF ANF 的面积分别为12,S S ,求12S S 的取值范围.且动点M 到点A 的距离是8,线段MB 的垂直平分线交线段MA 于点P .(1)求动点P 的轨迹C 的方程;(2)已知(2,1)D -,过原点且斜率为k (0k >)的直线l 与曲线C 交于E 、F 两点,求DEF 面积的最大值.20.(2022春·广东深圳·高二深圳市龙岗区龙城高级中学校考期中)已知椭圆C :221(0)a b a b+=>>的焦距为2,点31,2P ⎛⎫⎪⎝⎭在椭圆C 上.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两个动点,O 为坐标原点,且直线PM ,PN 的倾斜角互补,求OMN 面积的最大值.交于A ,B 两点,当A ,B 两点的纵坐标相同时,4AB =.(1)求抛物线C 的方程;(2)若P ,Q 为抛物线C 上两个动点,()0PQ m m =>,E 为PQ 的中点,求点E 纵坐标的最小值.22.(2022秋·广东深圳·高二校考期中)已知椭圆C :()2210a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为22,短轴顶点分别为M 、N ,四边形12MF NF 的面积为32.(1)求椭圆C 的标准方程;(2)直线l 交椭圆C 于A ,B 两点,若AB 的中点坐标为()2,1-,求直线l 的方程.23.(2022秋·广东广州·高二校联考期中)已知椭圆1:1164x y E +=,()222:10,4E a b a a b +=>><的离心率相同.点()00,P x y 在椭圆1E 上,()11,A x y 、()22,B x y 在椭圆2E 上.(1)若2OP OQ =,求点Q 的轨迹方程;(2)设1E 的右顶点和上顶点分别为1A 、1B ,直线1AC 、1B D 分别是椭圆2E 的切线,C 、D 为切点,直线1AC 、1B D 的斜率分别是1k 、2k ,求2212k k ⋅的值;(3)设直线PA 、PB 分别与椭圆2E 相交于E 、F 两点,且()AB tEF t =∈R,若M 是AB 中点,求证:P 、O 、M 三点共线(O 为坐标原点).8.椭圆Γ上有两点P 、Q ,连接OP 、OQ ,记它们的斜率为OP k 、OQ k ,且满足14OP OQ k k ⋅=-.(1)求椭圆Γ的标准方程;(2)求证:22OP OQ +为一定值,并求出这个定值;(3)设直线OQ 与椭圆Γ的另一个交点为R ,直线RP 和PQ 分别与直线x =M 、N ,若PQR 和PMN 的面积相等,求点P 的横坐标.25.(2022秋·广东·高二校联考期中)设椭圆Γ:()2210a b a b +=>>,1F ,2F 是椭圆Γ的左、右焦点,点A ⎛ ⎝⎭在椭圆Γ上,点()4,0P 在椭圆Γ外,且24PF =-(1)求椭圆Γ的方程;(2)若1,2B ⎛- ⎝⎭,点C 为椭圆Γ上横坐标大于1的一点,过点C 的直线l 与椭圆有且仅有一个交点,并与直线PA ,PB 交于M ,N 两点,O 为坐标原点,记OMN ,PMN 的面积分别为1S ,2S ,求221122S S S S -+的最小值.26.(2022秋·广东阳江·高二统考期中)已知椭圆()22:10y x C a b a b+=>>的上、下焦点分别为1F ,2F ,左、右顶点分别为1A ,2A ,且四边形1122A F A F 是面积为8的正方形.(1)求C 的标准方程.(2)M ,N 为C 上且在y 轴右侧的两点,12//MF NF ,2MF 与1NF 的交点为P ,试问12PF PF +是否为定值?若是定值,求出该定值;若不是,请说明理由.)27.(2022春·广东广州·高二广东番禺中学校考期中)已知定点P ,圆Q :216x y +=,N 为圆Q 上的动点,线段NP 的垂直平分线和半径NQ 相交于点M .(1)求点M 的轨迹Γ的方程;(2)直线l :x ky n =+与曲线Γ相交于A ,B 两点,且以线段AB 为直径的圆经过点C (2,0),求ABC 面积的最大值.(1)因为N 为圆Q 上的动点,线段NP 的垂直平分线和半径NQ 相交于点M ,28.(2022春·广东广州·高二广州科学城中学校考期中)已知椭圆22:1(0)x y C a b a b+=>>的焦距为其短轴的两个端点与右焦点的连线构成正三角形.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设过点(0,2)P -的动直线l 与椭圆C 相交于M ,N 两点,当OMN 的面积最大时,求l 的方程.(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.29.(2022秋·广东深圳·高二深圳市高级中学校考期中)曲线Γ上动点M到A(﹣2,0)和到B(2,0)的斜率之积为﹣1 4.(1)求曲线Γ的轨迹方程;(2)若点P(x0,y0)(y0≠0)为直线x=4上任意一点,PA,PB交椭圆Γ于C,D两点,求四边形ACBD 面积的最大值.【点睛】熟练掌握直线与圆锥曲线位置关系及函数单调性是解题关键30.(2022春·广东汕头·高二金山中学校考期中)已知椭圆()22:10,0x y C a b a b+=>>的焦距为,经过点()2,1P -.(1)求椭圆C 的标准方程;(2)设O 为坐标原点,在椭圆短轴上有两点M ,N 满足OM NO =,直线PM PN ,分别交椭圆于A ,B .PQ AB ⊥,Q 为垂足.是否存在定点R ,使得QR 为定值,说明理由.。
圆锥曲线求方程真题练习(解析版)
圆锥曲线求方程真题练习(解析版)学校:___________姓名:___________班级:___________考号:___________一、解答题1.设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =.(1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.2.已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫ ⎪⎝⎭两点. (1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.3.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为(2,0)F ,渐近线方程为y =. (1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点()()1122,,,P x y Q x y 在C 上,且1210,0x x y >>>.过P 且斜率为Q M .从下面①①①中选取两个作为条件,证明另外一个成立:①M 在AB 上;①PQ AB ∥;①||||MA MB =.注:若选择不同的组合分别解答,则按第一个解答计分.4.已知点(2,1)A 在双曲线2222:1(1)1x y C a a a -=>-上,直线l 交C 于P ,Q 两点,直线,AP AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =6.在平面直角坐标系xOy 中,已知点()1F 、)2122F MF MF -=,,点M 的轨迹为C .(1)求C 的方程;(2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.(1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.8.已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12 ,(1)求C 的方程;(2)点N 为椭圆上任意一点,求①AMN 的面积的最大值.9.已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB 面积的最大值.10.抛物线C 的顶点为坐标原点O .焦点在x 轴上,直线l :1x =交C 于P ,Q 两点,且OP OQ ⊥.已知点()2,0M ,且M 与l 相切.(1)求C ,M 的方程;(2)设123,,A A A 是C 上的三个点,直线12A A ,13A A 均与M 相切.判断直线23A A 与M 的位置关系,并说明理由.【答案】(1)抛物线2:C y x =,M 方程为22(2)1x y -+=;(2)相切,理由见解析11.已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.12.已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.13.已知椭圆222:1(05)25x y C m m +=<<A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.14.已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点:(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.15.已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ①x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG 是直角三角形;(ii )求PQG 面积的最大值.(1C 上. (①)求C 的方程;(①)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.17.设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .【答案】(1)222x y +=;(2)见解析.18.已知点()0,2A -,椭圆E :22221(0)x y a b a b +=>>F 是椭圆的焦点,直线AFO 为坐标原点. (1)求E 的方程; (2)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ △的面积最大时,求l 的方程.19.平面直角坐标系xOy 中,过椭圆 M :22221x y a b +=( 0a b >>)右焦点的直线0x y +交 M 于A ,B 两点,P 为AB 的中点,且 OP 的斜率为12.(①)求椭圆M 的方程; (①)C , D 为M 上的两点,若四边形ACBD的对角线 CD AB ⊥,求四边形ACBD 面积的最大值.20.已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,长轴长为4,离心率为12.过点(4,0)Q 的直线l 与椭圆C 交于A ,B 两点.(1)求椭圆C 的标准方程;(2)设直线,AF BF 的斜率分别为()122,0k k k ≠,求证:12k k 为定值.。
圆锥曲线综合试题(全部大题目)含答案
1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB的交点为Q 。
(1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112||||PC PD PQ +=.2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==⋅ (1)动点N 的轨迹方程;(2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=⋅AB OB OA 且,求直线l 的斜率k 的取值范围.3. 如图,椭圆134:221=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积相等,求直线PD 的斜率及直线CD 的倾斜角.4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||22PM PN -=.记动点P 的轨迹为W .(Ⅰ)求W 的方程;(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ⋅的最小值.5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围;(Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。
6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN +=(1)求点P 的轨迹方程; (2)若2·1cos PM PN MPN-∠=,求点P 的坐标.7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线1222=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3MON π∠=,双曲线的焦距为4。
2024届高考数学复习:精选好题专项(圆锥曲线的综合运用大题)练习(附答案)
2024届高考数学复习:精选好题专项(圆锥曲线的综合运用大题)练习1.[2023ꞏ新课标Ⅰ卷]在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点⎝⎛⎭⎫0,12 的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD 的周长大于33 .2.[2023ꞏ新课标Ⅱ卷]已知双曲线C 的中心为坐标原点,左焦点为(-25 ,0),离心率为5 .(1)求C 的方程;(2)记C 的左、右顶点分别为A 1,A 2,过点(-4,0)的直线与C 的左支交于M ,N 两点,M 在第二象限,直线MA 1与NA 2交于点P .证明:点P 在定直线上.3.[2023ꞏ全国乙卷(理)]已知椭圆C :y 2a 2 +x 2b 2 =1(a >b >0)的离心率为5 ,点A (-2,0)在C 上.(1)求C 的方程;(2)过点()-2,3 的直线交C 于P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.4.[2022ꞏ全国甲卷(理),20]设抛物线C :y 2=2px (p >0)的焦点为F ,点D (p ,0),过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,|MF |=3.(1)求C 的方程;(2)设直线MD ,ND 与C 的另一个交点分别为A ,B ,记直线MN ,AB 的倾斜角分别为α,β.当α-β取得最大值时,求直线AB 的方程.5.[2023ꞏ全国甲卷(理)]已知直线x -2y +1=0与抛物线C :y 2=2px (p >0)交于A ,B 两点,|AB |=415 .(1)求p ;(2)设F 为C 的焦点,M ,N 为C 上两点,且FM → ꞏFN →=0,求△MFN 面积的最小值.6.[2022ꞏ新高考Ⅱ卷,21]已知双曲线C :x 2a 2 -y 2b 2 =1(a >0,b >0)的右焦点为F (2,0),渐近线方程为y =±3 x .(1)求C 的方程.(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点P (x 1,y 1),Q (x 2,y 2)在C 上,且x 1>x 2>0,y 1>0.过P 且斜率为-3 的直线与过Q 且斜率为3 的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立.①M 在AB 上;②PQ ∥AB ;③|MA |=|MB |.注:若选择不同的组合分别解答,则按第一个解答计分.7.[2022ꞏ全国乙卷(理),20]已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A (0,-2),B (32 ,-1)两点.(1)求E 的方程;(2)设过点P (1,-2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT → =TH →.证明:直线HN 过定点.8.[2022ꞏ新高考Ⅰ卷,21]已知点A(2,1)在双曲线C:x2a2-y2a2-1=1(a>1)上,直线l交C于P,Q两点,直线AP,AQ的斜率之和为0.(1)求l的斜率;(2)若tan ∠P AQ=22,求△P AQ的面积.参考答案1.答案解析:(1)设点P 的坐标为(x ,y ),依题意得|y |=x 2+(y -12)2 ,化简得x 2=y -14 , 所以W 的方程为x 2=y -14 .(2)设矩形ABCD 的三个顶点A ,B ,C 在W 上, 则AB ⊥BC ,矩形ABCD 的周长为2(|AB |+|BC |).设B (t ,t 2+14 ),依题意知直线AB 不与两坐标轴平行,故可设直线AB 的方程为y -(t 2+14 )=k (x -t ),不妨设k >0,与x 2=y -14 联立,得x 2-kx +kt -t 2=0, 则Δ=k 2-4(kt -t 2)=(k -2t )2>0,所以k ≠2t . 设A (x 1,y 1),所以t +x 1=k ,所以x 1=k -t ,所以|AB |=1+k 2 |x 1-t |=1+k 2 |k -2t |=1+k 2 |2t -k |,|BC |=1+(1-1k )2 |-1k -2t |=1+k 2k |1k +2t |=1+k 2k 2 |2kt +1|,且2kt +1≠0,所以2(|AB |+|BC |)=21+k 2k 2 (|2k 2t -k 3|+|2kt +1|). 因为|2k 2t -k 3|+|2kt +1|=⎩⎪⎨⎪⎧(-2k 2-2k )t +k 3-1,t ≤-12k(2k -2k 2)t +k 3+1,-12k <t ≤k 2(2k 2+2k )t -k 3+1,t >k 2,当2k -2k 2≤0,即k ≥1时,函数y =(-2k 2-2k )t +k 3-1在(-∞,-12k ]上单调递减,函数y =(2k -2k 2)t +k 3+1在(-12k ,k2 ]上单调递减或是常函数(当k =1时是常函数),函数y =(2k 2+2k )t -k 3+1在(k2 ,+∞)上单调递增,所以当t =k2 时,|2k 2t -k 3|+|2kt +1|取得最小值,且最小值为k 2+1,又k ≠2t ,所以2(|AB |+|BC |)>21+k 2k 2 (k 2+1)=2(1+k 2)32k2. 令f (k )=2(1+k 2)32k2,k ≥1, 则f ′(k )=2(1+k 2)12(k +2)(k -2)k 3, 当1≤k <2 时,f ′(k )<0,当k >2 时,f ′(k )>0,所以函数f (k )在[1,2 )上单调递减,在(2 ,+∞)上单调递增, 所以f (k )≥f (2 )=33 ,所以2(|AB |+|BC |)>2(1+k 2)32k2≥33 .当2k -2k 2>0,即0<k <1时,函数y =(-2k 2-2k )t +k 3-1在(-∞,-12k ]上单调递减,函数y =(2k -2k 2)t +k 3+1在(-12k ,k 2 ]上单调递增,函数y =(2k 2+2k )t -k 3+1在(k 2 ,+∞)上单调递增,所以当t =-12k 时,|2k 2t -k 3|+|2kt +1|取得最小值,且最小值为k 3+k =k (1+k 2),又2kt +1≠0,所以2(|AB |+|BC |)>21+k 2k 2 k (k 2+1)=2(1+k 2)32k. 令g (k )=2(1+k 2)32k,0<k <1, 则g ′(k )=2(1+k 2)12(2k 2-1)k 2, 当0<k <22 时,g ′(k )<0,当22 <k <1时,g ′(k )>0,所以函数g (k )在(0,22 )上单调递减,在(22 ,1)上单调递增,所以g (k )≥g (2)=33 ,所以2(|AB |+|BC |)>2(1+k 2)32k ≥33 . 综上,矩形ABCD 的周长大于33 .2.答案解析:(1)设双曲线C 的方程为x 2a 2 -y 2b 2 =1(a >0,b >0),c 为双曲线C 的半焦距,由题意可得⎩⎪⎨⎪⎧c =25ca=5c 2=a 2+b2,解得⎩⎪⎨⎪⎧c =25a =2b =4 . 所以双曲线C 的方程为x 24 -y 216 =1.(2)方法一 设M (x 1,y 1),N (x 2,y 2),直线MN 的方程为x =my -4, 则x 1=my 1-4,x 2=my 2-4.联立得⎩⎪⎨⎪⎧x =my -4x 24-y216=1,得(4m 2-1)y 2-32my +48=0. 因为直线MN 与双曲线C 的左支交于M ,N 两点,所以4m 2-1≠0,且Δ>0.由根与系数的关系得⎩⎨⎧y 1+y 2=32m4m 2-1y 1y 2=484m 2-1,所以y 1+y 2=2m3 y 1y 2. 因为A 1,A 2分别为双曲线C 的左、右顶点, 所以A 1(-2,0),A 2(2,0).直线MA 1的方程为y 1x 1+2 =y x +2 ,直线NA 2的方程为y 2x 2-2 =yx -2,所以y 1x 1+2y 2x 2-2 =yx +2y x -2,得(x 2-2)y 1(x 1+2)y 2 =x -2x +2 ,(my 2-6)y 1(my 1-2)y 2 =my 1y 2-6y 1my 1y 2-2y 2 =x -2x +2 .因为my 1y 2-6y 1my 1y 2-2y 2 =my 1y 2-6(y 1+y 2)+6y 2my 1y 2-2y 2=my 1y 2-6ꞏ2m3y 1y 2+6y 2my 1y 2-2y 2=-3my 1y 2+6y 2my 1y 2-2y 2=-3,所以x -2x +2=-3,解得x =-1, 所以点P 在定直线x =-1上.方法二 由题意得A 1(-2,0),A 2(2,0).设M (x 1,y 1),N (x 2,y 2),直线MN 的方程为x =my -4, 则x 21 4 -y 21 16 =1,即4x 21 -y 21 =16.如图,连接MA 2,kMA 1ꞏkMA 2=y 1x 1+2 ꞏy 1x 1-2 =y 21 x 21 -4 =4x 21 -16x 21 -4 =4 ①. 由x 24 -y 216 =1,得4x 2-y 2=16,4[(x -2)+2]2-y 2=16, 4(x -2)2+16(x -2)+16-y 2=16,4(x -2)2+16(x -2)-y 2=0.由x =my -4,得x -2=my -6,my -(x -2)=6,16 [my -(x -2)]=1.4(x -2)2+16(x -2)ꞏ16 [my -(x -2)]-y 2=0,4(x -2)2+83 (x -2)my -83 (x -2)2-y 2=0,两边同时除以(x -2)2,得43 +8m 3 ꞏy x -2 -⎝⎛⎭⎫y x -2 2 =0,即⎝⎛⎭⎫y x -2 2 -8m 3 ꞏy x -2 -43 =0. kMA 2=y 1x 1-2 ,kNA 2=y 2x 2-2, 由根与系数的关系得kMA 2ꞏkNA 2=-43 ②. 由①②可得kMA 1=-3kNA 2.lMA 1:y =kMA 1(x +2)=-3kNA 2(x +2),lNA 2:y =kNA 2(x -2). 由⎩⎪⎨⎪⎧y =-3kNA 2(x +2)y =kNA 2(x -2) ,解得x =-1. 所以点P 在定直线x =-1上.3.答案解析:(1)因为点A (-2,0)在C 上,所以4b 2 =1,得b 2=4.因为椭圆的离心率e =c a =53 ,所以c 2=59 a 2,又a 2=b 2+c 2=4+59 a 2,所以a 2=9,c 2=5,故椭圆C 的方程为y 29 +x 24 =1.(2)由题意知,直线PQ 的斜率存在且不为0, 设l PQ :y -3=k (x +2),P (x 1,y 1),Q (x 2,y 2),由⎩⎪⎨⎪⎧y -3=k (x +2),y 29+x24=1,得(4k 2+9)x 2+(16k 2+24k )x +16k 2+48k =0, 则Δ=(16k 2+24k )2-4(4k 2+9)(16k 2+48k )=-36×48k >0,故x 1+x 2=-16k 2+24k 4k 2+9 ,x 1x 2=16k 2+48k4k 2+9 . 直线AP :y =y 1x 1+2(x +2), 令x =0,解得y M =2y 1x 1+2 ,同理得y N =2y 2x 2+2 , 则y M +y N =2y 1(x 2+2)+y 2(x 1+2)(x 1+2)(x 2+2)=2(kx 1+2k +3)(x 2+2)+(kx 2+2k +3)(x 1+2)(x 1+2)(x 2+2)=22kx 1x 2+(4k +3)(x 1+x 2)+8k +12x 1x 2+2(x 1+x 2)+4=22k (16k 2+48k )+(4k +3)(-16k 2-24k )+(8k +12)(4k 2+9)16k 2+48k +2(-16k 2-24k )+4(4k 2+9)=2×10836 =6.所以MN 的中点的纵坐标为y M +y N2 =3, 所以MN 的中点为定点(0,3).4.答案解析:(1)方法一 由题意可知,当x =p 时,y 2=2p 2.设M 点位于第一象限,则点M 的纵坐标为2 p ,|MD |=2 p ,|FD |=p2 .在Rt △MFD 中,|FD |2+|MD |2=|FM |2,即⎝⎛⎭⎫p 2 2 +(2 p )2=9,解得p =2.所以C 的方程为y 2=4x .方法二 抛物线的准线方程为x =-p2 . 当MD 与x 轴垂直时,点M 的横坐标为p .此时|MF |=p +p2 =3,所以p =2. 所以抛物线C 的方程为y 2=4x .(2)设直线MN 的斜率为k 1,直线AB 的斜率为k 2,则k 1=tan α,k 2=tan β. 由题意可得k 1≠0,k 2≠0.设M (x 1,y 1),N (x 2,y 2),y 1>0,y 2<0,A (x 3,y 3),B (x 4,y 4),y 3<0,y 4>0.设直线AB 的方程为y =k 2(x -m ),m 为直线AB 与x 轴交点的横坐标,直线MN 的方程为y =k 1(x -1),直线MD 的方程为y =k 3(x -2),直线ND 的方程为y =k 4(x -2).联立得方程组⎩⎪⎨⎪⎧y =k 1(x -1),y 2=4x , 所以k 21 x 2-(2k 21 +4)x +k 21 =0,则x 1x 2=1.联立得方程组⎩⎪⎨⎪⎧y =k 2(x -m ),y 2=4x ,所以k 22 x 2-(2mk 22 +4)x +k 22 m 2=0,则x 3x 4=m 2.联立得方程组⎩⎪⎨⎪⎧y =k 3(x -2),y 2=4x ,所以k 23 x 2-(4k 23 +4)x +4k 23 =0,则x 1x 3=4.联立得方程组⎩⎪⎨⎪⎧y =k 4(x -2),y 2=4x ,所以k 24 x 2-(4k 24 +4)x +4k 24 =0,则x 2x 4=4.所以M (x 1,2x 1 ),N (1x 1 ,-2x 1 ),A (4x 1 ,-4x 1),B (4x 1,4x 1 ).所以k 1=2x 1x 1-1 ,k 2=x 1x 1-1,k 1=2k 2,所以tan (α-β)=tan α-tan β1+tan αtan β =k 1-k 21+k 1k 2 =k 21+2k 22=11k 2+2k 2. 因为k 1=2k 2,所以k 1与k 2同号,所以α与β同为锐角或钝角.当α-β取最大值时,tan (α-β)取得最大值.所以k 2>0,且当1k 2=2k 2,即k 2=22 时,α-β取得最大值.易得x 3x 4=16x 1x 2=m 2,又易知m >0,所以m =4.所以直线AB 的方程为x -2 y -4=0. 5.答案解析:(1)设A (x 1,y 1),B (x 2,y 2),把 x =2y -1代入y 2=2px ,得y 2-4py +2p =0,由Δ1=16p 2-8p >0,得p >12 .由根与系数的关系,可得y 1+y 2=4p ,y 1y 2=2p ,所以|AB |=1+1⎝⎛⎭⎫122 ꞏ(y 1+y 2)2-4y 1y 2 =5 ꞏ16p 2-8p =415 ,解得p =2或p =-32 (舍去),故p =2.(2)设M (x 3,y 3),N (x 4,y 4),由(1)知抛物线C :y 2=4x ,则点F (1,0).因为FM → ꞏFN →=0,所以∠MFN =90°,则S △MFN =12 |MF ||NF |=12 (x 3+1)(x 4+1)=12 (x 3x 4+x 3+x 4+1) (*).当直线MN 的斜率不存在时,点M 与点N 关于x 轴对称, 因为∠MFN =90°,所以直线MF 与直线NF 的斜率一个是1,另一个是-1. 不妨设直线MF 的斜率为1,则MF :y =x -1, 由⎩⎪⎨⎪⎧y =x -1,y 2=4x ,得x 2-6x +1=0, 得⎩⎨⎧x 3=3-22,x 4=3-22 或⎩⎨⎧x 3=3+22,x 4=3+22.代入(*)式计算易得,当x 3=x 4=3-22 时,△MFN 的面积取得最小值,为4(3-22 ). 当直线MN 的斜率存在时,设直线MN 的方程为y =kx +m . 由⎩⎪⎨⎪⎧y =kx +m ,y 2=4x , 得k 2x 2-(4-2km )x +m 2=0,Δ2=(4-2km )2-4m 2k 2>0, 则⎩⎨⎧x 3+x 4=4-2kmk 2,x 3x 4=m 2k 2,y 3y 4=(kx 3+m )(kx 4+m )=k 2x 3x 4+mk (x 3+x 4)+m 2=4mk . 又FM → ꞏ FN →=(x 3-1,y 3)ꞏ(x 4-1,y 4)=x 3x 4-(x 3+x 4)+1+y 3y 4=0,所以m 2k 2 -4-2kmk 2 +1+4m k =0,化简得m 2+k 2+6km =4.所以S △MFN =12 (x 3x 4+x 3+x 4+1)=m 2+k 2-2km +42k 2 =m 2+k 2+2km k 2=⎝⎛⎭⎫m k 2 +2⎝⎛⎭⎫m k +1.令t =mk ,则S △MFN =t 2+2t +1,因为m 2+k 2+6km =4,所以⎝⎛⎭⎫m k 2 +6⎝⎛⎭⎫m k +1=4k 2 >0, 即t 2+6t +1>0,得t >-3+22 或t <-3-22 , 从而得S △MFN =t 2+2t +1>12-82 =4(3-22 . 故△MFN 面积的最小值为4(3-22 ).6.答案解析:(1)由题意可得⎩⎪⎨⎪⎧b a =3, a 2+b 2=2,解得⎩⎨⎧a =1,b =3.所以C 的方程为x 2-y 23 =1.(2)当直线PQ 斜率不存在时,x 1=x 2,但x 1>x 2>0,所以直线PQ 斜率存在,所以设直线PQ 的方程为y =kx +h (k ≠0).联立得方程组⎩⎪⎨⎪⎧y =kx +h ,x 2-y 23=1. 消去y 并整理,得(3-k 2)x 2-2khx -h 2-3=0.则x 1+x 2=2kh3-k 2 ,x 1x 2=h 2+3k 2-3, x 1-x 2=(x 1+x 2)2-4x 1x 2 =23(h 2+3-k 2)|3-k 2|. 因为x 1>x 2>0,所以x 1x 2=h 2+3k 2-3>0,即k 2>3. 所以x 1-x 2=23(h 2+3-k 2)k 2-3. 设点M 的坐标为(x M ,y M ),则y M -y 2=3 (x M -x 2),y M -y 1=-3 (x M -x 1), 两式相减,得y 1-y 2=23 x M -3 (x 1+x 2). 因为y 1-y 2=(kx 1+h )-(kx 2+h )=k (x 1-x 2), 所以23 x M =k (x 1-x 2)+3 (x 1+x 2),解得x M =k h 2+3-k 2-khk 2-3.两式相加,得2y M -(y 1+y 2)=3 (x 1-x 2).因为y 1+y 2=(kx 1+h )+(kx 2+h )=k (x 1+x 2)+2h , 所以2y M =k (x 1+x 2)+3 (x 1-x 2)+2h ,解得y M =3h 2+3-k 2-3h k 2-3=3k x M .所以点M 的轨迹为直线y =3k x ,其中k 为直线PQ 的斜率. 选择①②.因为PQ ∥AB ,所以k AB =k .设直线AB 的方程为y =k (x -2),并设点A 的坐标为(x A ,y A ),点B 的坐标为(x B ,y B ),则⎩⎨⎧y A =k (x A -2),y A =3x A ,解得x A =2k k -3 ,y A =23k k -3 . 同理可得x B =2k k +3 ,y B =-23kk +3 . 此时x A +x B =4k 2k 2-3,y A +y B =12kk 2-3 .因为点M 在AB 上,且其轨迹为直线y =3k x , 所以⎩⎪⎨⎪⎧y M=k (x M -2),y M =3k x M . 解得x M =2k 2k 2-3=x A +x B 2 ,y M =6kk 2-3 =y A +y B 2 , 所以点M 为AB 的中点,即|MA |=|MB |. 选择①③.当直线AB 的斜率不存在时,点M 即为点F (2,0),此时点M 不在直线y =3k x 上,与题设矛盾,故直线AB 的斜率存在.当直线AB 的斜率存在时,设直线AB 的方程为y =m (x -2)(m ≠0),并设点A 的坐标为(x A ,y A ),点B 的坐标为(x B ,y B ),则⎩⎨⎧y A =m (x A -2),y A =3x A,解得x A =2m m -3 ,y A =23mm -3. 同理可得x B =2m m +3 ,y B =-23mm +3 . 此时x M =x A +x B 2 =2m 2m 2-3,y M =y A +y B 2 =6m m 2-3 .由于点M 同时在直线y =3k x 上,故6m =3k ꞏ2m 2,解得k =m ,因此PQ ∥AB .选择②③.因为PQ ∥AB ,所以k AB =k .设直线AB 的方程为y =k (x -2),并设点A 的坐标为(x A ,y A ),点B 的坐标为(x B ,y B ), 则⎩⎨⎧y A =k (x A -2),y A =3x A ,解得x A =2k k -3 ,y A =23k k -3 . 同理可得x B =2k k +3 ,y B =-23kk +3. 设AB 的中点为C (x C ,y C ),则x C =x A +x B 2 =2k 2k 2-3,y C =y A +y B 2 =6kk 2-3 .因为|MA |=|MB |,所以点M 在AB 的垂直平分线上,即点M 在直线y -y C =-1k (x -x C )上.将该直线方程与y =3k x 联立,解得x M =2k 2k 2-3=x C ,y M =6k k 2-3 =y C ,即点M 恰为AB 的中点,所以点M 在直线AB 上.7.答案解析:(1)设椭圆E 的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ).将点A (0,-2),B (32 ,-1)的坐标代入,得⎩⎪⎨⎪⎧4n =1,94m +n =1, 解得⎩⎨⎧m =13,n =14. 所以椭圆E 的方程为x 23 +y 24 =1.(2)证明:(方法一)设M (x 1,y 1),N (x 2,y 2).由题意,知直线MN 与y 轴不垂直,设其方程为x -1=t (y +2).联立得方程组⎩⎪⎨⎪⎧x -1=t (y +2),x 23+y 24=1. 消去x 并整理,得(4t 2+3)y 2+(16t 2+8t )y +16t 2+16t -8=0,所以y 1+y 2=-16t 2+8t 4t 2+3 ,y 1y 2=16t 2+16t -84t 2+3. 设T (x 0,y 1).由A ,B ,T 三点共线,得y 1+2x 0 =y 1+1x 0-32,得x 0=32 y 1+3. 设H (x ′,y ′).由MT → =TH → ,得(32 y 1+3-x 1,0)=(x ′-32 y 1-3,y ′-y 1),所以x ′=3y 1+6-x 1,y ′=y 1,所以直线HN 的斜率k =y 2-y ′x 2-x ′ =y 2-y 1x 2+x 1-(3y 1+6)=y 2-y 1t (y 1+y 2)-3y 1+4t -4 , 所以直线HN 的方程为y -y 2=y 2-y 1t (y 1+y 2)-3y 1+4t -4ꞏ(x -x 2). 令x =0,得y =y 2-y 1t (y 1+y 2)-3y 1+4t -4ꞏ(-x 2)+y 2 =(y 1-y 2)(ty 2+2t +1)t (y 1+y 2)-3y 1+4t -4+y 2 =(2t -3)y 1y 2+(2t -5)(y 1+y 2)+6y 1t (y 1+y 2)-3y 1+4t -4=(2t -3)ꞏ16t 2+16t -84t 2+3+(5-2t )ꞏ16t 2+8t 4t 2+3+6y 1-t (16t 2+8t )4t 2+3-3y 1+4t -4 =-2.所以直线NH 过定点(0,-2).(方法二)由A (0,-2),B (32 ,-1)可得直线AB 的方程为y =23 x -2.a .若过点P (1,-2)的直线的斜率不存在,则其直线方程为x =1.将直线方程x =1代入x 23 +y 24 =1,可得N (1,263 ),M (1,-263 ).将y =-263 代入y =23 x -2,可得T (3-6 ,-263 ).由MT → =TH → ,得H (5-26 ,-263 ).此时直线HN 的方程为y =(2+263 )(x -1)+263 ,则直线HN 过定点(0,-2).b .若过点P (1,-2)的直线的斜率存在,设此直线方程为kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).联立得方程组⎩⎪⎨⎪⎧kx -y -(k +2)=0,x 23+y 24=1. 消去y 并整理,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0.所以⎩⎪⎨⎪⎧x 1+x 2=6k (2+k )3k 2+4,x 1x 2=3k (4+k )3k 2+4, 则⎩⎪⎨⎪⎧y 1+y 2=-8(2+k )3k 2+4,y 1y 2=4(4+4k -2k 2)3k 2+4, 且x 1y 2+x 2y 1=-24k 3k 2+4.① 联立得方程组⎩⎪⎨⎪⎧y =y 1,y =23x -2,可得T (3y 12 +3,y 1). 由MT → =TH → ,得H (3y 1+6-x 1,y 1).则直线HN 的方程为y -y 2=y 1-y 23y 1+6-x 1-x 2(x -x 2). 将点(0,-2)的坐标代入并整理,得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0.② 将①代入②,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立. 综上可得,直线HN 过定点(0,-2).8.答案解析:(1)∵点A (2,1)在双曲线C :x 2a 2 -y 2a 2-1=1(a >1)上,∴4a 2 -1a 2-1 =1,解得a 2=2.∴双曲线C 的方程为x 22 -y 2=1.显然直线l 的斜率存在,可设其方程为y =kx +m . 联立得方程组⎩⎪⎨⎪⎧y =kx +m ,x 22-y 2=1. 消去y 并整理,得(1-2k 2)x 2-4kmx -2m 2-2=0.Δ=16k 2m 2+4(1-2k 2)(2m 2+2)=8m 2+8-16k 2>0.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4km 1-2k 2 ,x 1x 2=-2m 2-21-2k 2. 由k AP +k AQ =0,得y 1-1x 1-2 +y 2-1x 2-2=0, 即(x 2-2)(kx 1+m -1)+(x 1-2)(kx 2+m -1)=0.整理,得2kx 1x 2+(m -1-2k )(x 1+x 2)-4(m -1)=0, 即2k ꞏ-2m 2-21-2k2 +(m -1-2k )ꞏ4km 1-2k 2 -4(m -1)=0, 即(k +1)(m +2k -1)=0.∵直线l 不过点A ,∴k =-1.(2)设∠P AQ =2α,0<α<π2 ,则tan 2α=22 ,∴2tan α1-tan 2α=22 ,解得tan α=22 (负值已舍去). 由(1)得k =-1,则x 1x 2=2m 2+2>0,∴P ,Q 只能同在双曲线左支或同在右支.当P ,Q 同在左支时,tan α即为直线AP 或AQ 的斜率.设k AP =22 . ∵2 为双曲线一条渐近线的斜率,∴直线AP 与双曲线只有一个交点,不成立.当P ,Q 同在右支时,tan (π2 -α)=1tan α 即为直线AP 或AQ 的斜率.设k AP =122=2 ,则k AQ =-2 , ∴直线AP 的方程为y -1=2 (x -2),即y =2 x -22 +1.联立得方程组⎩⎪⎨⎪⎧y =2x -22+1,x 22-y 2=1. 消去y 并整理,得3x 2-(16-42 )x +20-82 =0,则x P ꞏ2=20-823 ,解得x P =10-423. ∴|x A -x P |=|2-10-423 |=4(2-1)3. 同理可得|x A -x Q |=4(2+1)3. ∵tan 2α=22 ,0<2α<π,∴sin 2α=223 ,∴S △P AQ =12 |AP |ꞏ|AQ |ꞏsin 2α=12 ×3 ×|x A -x P |×3 ×|x A -x Q |×sin 2α=12 ×3×169×223 =1629 .。
(完整版)圆锥曲线大题综合测试(含详细答案)
圆锥曲线1.设椭圆222:12x y M a +=(a >的右焦点为1F ,直线2:22-=a a x l 与x 轴交于点A ,若112OF F A =u u u r u u u r(其中O为坐标原点).(1)求椭圆M 的方程;(2)设P 是椭圆M 上的任意一点,EF 为圆()12:22=-+y x N 的任意一条直径(E 、F 为直径的两个端点),求⋅的最大值.2 . 已知椭圆E :()222210x y a b a b +=>>的一个焦点为()1F ,而且过点12H ⎫⎪⎭.(Ⅰ)求椭圆E 的方程;(Ⅱ)设椭圆E 的上下顶点分别为12,A A ,P 是椭圆上异于12,A A 的任一点,直线12,PA PA 分别交x 轴于点,N M ,若直线OT 与过点,M N 的圆G 相切,切点为T .证明:线段OT 的长为定值,并求出该定值.3、已知圆O:222=+y x 交x 轴于A,B 两点,曲线C 是以AB 为长轴,离心率为22的椭圆,其左焦点为F,若P 是圆O上一点,连结PF,过原点O 作直线PF 的垂线交直线x=-2于点Q.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若点P 的坐标为(1,1),求证:直线PQ 与圆O 相切; (Ⅲ)试探究:当点P 在圆O 上运动时(不与A 、B 重合),直线PQ 与圆O 是否保持相切的位置关系?若是,请证明;若不是,请说明理由.4设)0(1),(),,(22222211>>=+b a b x x y y x B y x A 是椭圆上的两点,满足0),(),(2211=⋅a y b x a y b x ,椭圆的离心率,23=e 短轴长为2,0为坐标原点.(1)求椭圆的方程; (2)若直线AB 过椭圆的焦点F (0,c ),(c 为半焦距),求直线AB 的斜率k 的值;(3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.5 、直线l :y = mx + 1,双曲线C :3x 2 - y 2 = 1,问是否存在m 的值,使l 与C 相交于A , B 两点,且以AB 为直径的圆过原点6 已知双曲线C :22221(0,0)x y a b a b-=>>的两个焦点为F 1(-2,0),F 2(2,0),点P 在曲线C 上。
圆锥曲线专题40大题练习(含答案)
圆锥曲线44道特训221.已知双曲线C:「-仁=1的离心率为心,点(V3,o)是双曲线的一个顶点.a-b'(1)求双曲线的方程;(2)经过的双曲线右焦点旦作倾斜角为30°直线/,直线/与双曲线交于不同的A,3两点,求A3的长.22[2.如图,在平面直角坐标系xOy中,椭圆、+与=1(。
〉力〉0)的离心率为一,过椭圆右a2b22焦点F作两条互相垂直的弦A3与CQ.当直线A3斜率为0时,AB+CD=7.(1)求椭圆的方程;(2)求AB+CD的取值范围.3.已知椭圆C:「+「=1(。
〉力〉0)的一个焦点为尸(1,0),离心率为土.设P是椭圆Zr2C长轴上的一个动点,过点P且斜率为1的直线/交椭圆于A,B两点.(1)求椭圆C的方程;(2)求|PA|2+|PB|2的最大值.224.已知椭圆C:「+七=1(0〉力〉0)的右焦点为『(L°),短轴的一个端点B到F的距离a'd等于焦距.(1)求椭圆。
的方程;(2)过点万的直线/与椭圆C交于不同的两点M,N,是否存在直线/,使得△3加与△B月V的面积比值为2?若存在,求出直线/的方程;若不存在,说明理由..2,25.已知椭圆C:=■+%■=1(a>b>0)过点p(—1,—1)-c为椭圆的半焦距,且c=姻b.过a"b~点P作两条互相垂直的直线L,L与椭圆C分别交于另两点M,N.(1)求椭圆C的方程;(2)若直线L的斜率为一1,求APMN的面积;第1页共62页(3)若线段MN的中点在x轴上,求直线MN的方程.6.已知椭圆E的两个焦点分别为(-1,0)和(1,0),离心率e=—.2(1)求椭圆£*的方程;(2)若直线l:y=kx+m(人主0)与椭圆E交于不同的两点A、B,且线段的垂直平分线过定点P(|,0),求实数女的取值范围.Ji7.已知椭圆E的两个焦点分别为(-1,0)和(1,0),离心率e.2(1)求椭圆E的方程;(2)设直线l-.y=x+m(m^O)与椭圆E交于A、3两点,线段A3的垂直平分线交x 轴于点T,当hi变化时,求面积的最大值.8.已知椭圆错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线大题专题训练1.如图,曲线G 的方程为22(0)y x y =≥.以原点为圆心.以(0)t t >为半径的圆分别 与曲线G 和y 轴的正半轴相交于点A 与点B .直线AB 与x 轴相交于点C . (Ⅰ)求点A 的横坐标a 与点C 的横坐标 c 的关系式(Ⅱ)设曲线G 上点D 的横坐标为2a +, 求证:直线CD 的斜率为定值. 1.解:(Ⅰ)由题意知,(A a .因为OA t =,所以222a a t +=.由于0t >由点(0)(0)B t C c ,,,的坐标知,直线BC 的方程为1c t+=. 又因点A 在直线BC 上,故有1a c +=,将(1)代入上式,得1a c =, 解得2c a =+(Ⅱ)因为(2D a +,所以直线CD 的斜率为1CD k ====-.所以直线CD 的斜率为定值.2.设F 是抛物线2:4G x y =的焦点.(I )过点(04)P -,作抛物线G 的切线,求切线方程;(II )设A B ,为抛物线G 上异于原点的两点,且满足0FA FB =,延长AF ,BF 分别交抛物线G 于点C D ,,求四边形ABCD 面积的最小值.2.解:(I )设切点2004x Q x ⎛⎫ ⎪⎝⎭,.由2xy '=,知抛物线在Q 点处的切线斜率为02x ,故所求切线方程为2000()42x x y x x -=-. 即20424x x y x =-. 因为点(0)P -4,在切线上.所以2044x -=-,2016x =,04x =±.所求切线方程为24y x =±-.(II )设11()A x y ,,22()C x y ,.由题意知,直线AC 的斜率k 存在,由对称性,不妨设0k >.因直线AC 过焦点(01)F ,,所以直线AC 的方程为1y kx =+.点A C ,的坐标满足方程组214y kx x y =+⎧⎨=⎩,,得2440x kx --=,由根与系数的关系知121244.x x k x x +=⎧⎨=-⎩,24(1)AC k ===+.因为AC BD ⊥,所以BD 的斜率为1k -,从而BD 的方程为11y x k=-+. 同理可求得22214(1)41k BD k k ⎛⎫+⎛⎫=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭. 2222218(1)18(2)322ABCDk S AC BD k k k +===++≥. 当1k =时,等号成立.所以,四边形ABCD 面积的最小值为32.3.如图,有一块半椭圆形钢板,其长半轴长为2r ,短半轴长为r ,计划将此钢板切割成等腰梯形的形状,下底AB 是半椭圆的短轴,上底CD 的端点在椭圆上,记2CD x =,梯形面积为S . (I )求面积S 以x 为自变量的函数式,并写出其定义域; (II )求面积S 的最大值. 3.解:(I )依题意,以AB 的中点O 为原点建立直角坐标系 O xy -(如图),则点C 的横坐标为x . 点C 的纵坐标y 满足方程22221(0)4x y y r r+=≥,解得)y x r =<< 222()x r r x =+-,其定义域为{}0x x r <<.(II )记222()4()()0f x x r r x x r =+-<<,, 则2()8()(2)f x x r r x '=+-. 令()0f x '=,得12x r =. 当02r x <<时,()0f x '>;当2rx r <<时,()0f x '<,所以12f r ⎛⎫⎪⎝⎭是()f x 的最大值. 因此,当12x r =时,S2=.即梯形面积S2. 4.如图,矩形ABCD 的两条对角线相交于点(20)M ,,AB 边所在直线的方程为360x y --=点(11)T -,在AD 边所在直线上. (I )求AD 边所在直线的方程; (II )求矩形ABCD 外接圆的方程;(III )若动圆P 过点(20)N -,,且与矩形ABCD 外接圆外切,求动圆P 的圆心轨迹方程.4.解:(I )因为AB 边所在直线的方程为360x y --=,且AD 与AB 垂直,所以直线AD 的斜率为3-.又因为点(11)T -,在直线AD 上,所以AD 边所在直线的方程为13(1)y x -=-+.即320x y ++=.(II )由36032=0x y x y --=⎧⎨++⎩,解得点A 的坐标为(02)-,,因为矩形ABCD 两条对角线的交点为(20)M ,.所以M 为矩形ABCD 外接圆的圆心.又AM ==ABCD 外接圆方程为22(2)8x y -+=.(III )因为动圆P 过点N ,所以PN 是该圆的半径,又因为动圆P 与圆M 外切,所以PM PN =+PM PN -=故点P 的轨迹是以M N ,为焦点,实轴长为因为实半轴长a =2c =.所以虚半轴长b ==从而动圆P的圆心的轨迹方程为221(22x y x -=≤. 5.已知函数y kx =与22(0)y x x =+≥的图象相交于11()A x y ,,22()B x y ,,1l ,2l 分别是22(0)y x x =+≥的图象在A B ,两点的切线,M N ,分别是1l ,2l 与x 轴的交点. (I )求k 的取值范围;(II )设t 为点M 的横坐标,当12x x <时,写出t 以1x 为自变量的函数式,并求其定义域和值域; (III )试比较OM 与ON 的大小,并说明理由(O 是坐标原点).5.解:(I )由方程22y kx y x =⎧⎨=+⎩,消y 得220x kx -+=. ①依题意,该方程有两个正实根,故212800k x x k ⎧∆=->⎨+=>⎩,,解得k > (II )由()2f x x '=,求得切线1l 的方程为1112()y x x x y =-+,由2112y x =+,并令0y =,得1112x t x =- 1x ,2x 是方程①的两实根,且12x x <,故1x ==k > 1x 是关于k 的减函数,所以1x的取值范围是(0.t 是关于1x的增函数,定义域为(0,所以值域为()-∞,0,(III )当12x x <时,由(II )可知1112x OM t x ==-+. 类似可得2212x ON x =-.1212122x x x x OM ON x x ++-=-+. 由①可知122x x =.从而0OM ON -=.当21x x <时,有相同的结果0OM ON -=.所以OM ON =.6.如图,已知(10)F ,,直线:1l x =-,P 为平面上的动点,过点P 作l 的垂线,垂足为点Q ,且QP QF FP FQ =. (Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)过点F 的直线交轨迹C 于A B ,两点,交直线l 于点M(1)已知1MA AF λ=,2MB BF λ=,求12λλ+的值; (2)求MA MB 的最小值.6.解:(Ⅰ)设点()P x y ,,则(1)Q y -,,由QP QF FP =(10)(2)(1)(2)x y x y y +-=--,,,,,化简得2:4C y x =.(Ⅱ)(1)设直线AB 的方程为:1(0)x my m =+≠.设11()A x y ,,22()B x y ,,又21M m ⎛⎫-- ⎪⎝⎭,, 联立方程组241y x x my ⎧=⎨=+⎩,,,消去x 得:2440y my --=,2(4)120m ∆=-+>,由1MA AF λ=,2MB BF λ=得:1112y y m λ+=-,2222y y mλ+=-1121my λ=--,2221my λ=--, 12122112m y y λλ⎛⎫∴+=--+ ⎪⎝⎭121222y y m y y +=--44m-解法二:(Ⅰ)由QP QF FP FQ =得:()0FQ PQ PF +=,()()0PQ PF PQ PF ∴-+=,220PQ PF ∴-=,PQ PF ∴=.所以点P 的轨迹C 是抛物线,由题意,轨迹C 的方程为:24y x =. (Ⅱ)(1)由已知1MA AF λ=,2MB BF λ=,得120λλ<. 则:12MA AF MBBFλλ=-.…………①过点A B ,分别作准线l 的垂线,垂足分别为1A ,1B , 则有:11MA AA AF MBBB BF==.…………②由①②得:12AFAF BF BFλλ-=,即120λλ+=. (Ⅱ)(2)解:由解法一,(2121M M MA MB y y y y =--2222114(2)4216m m m ⎛⎫=+++= ⎪ ⎪⎝⎭≥.当且仅当221m m =,即1m =±时等号成立,所以MA MB 最小值为16. 7.在平面直角坐标系xOy ,已知圆心在第二象限、半径为的圆C 与直线y x =相切于坐标原点O .椭圆22219x y a +=与圆C 的一个交点到椭圆两焦点的距离之和为10. (1)求圆C 的方程;(2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长,若存在,请求出点Q 的坐标;若不存在,请说明理由. 7.解:(1)圆C :22(2)(2)8x y ++-=;(2)由条件可知a=5,椭圆221259x y +=,∴F (4,0),若存在,则F 在OQ 的中垂线上,又O 、Q 在圆C 上,所以O 、Q 关于直线CF 对称;直线CF 的方程为y-1=1(1)3x --,即340x y +-=,设Q (x,y ),则334022yx x y ⎧=⎪⎪⎨⎪+-=⎪⎩,解得45125x y ⎧=⎪⎪⎨⎪=⎪⎩所以存在,Q 的坐标为412(,)55。
8.在平面直角坐标系xOy 中,经过点(0且斜率为k 的直线l 与椭圆2212x y +=有两个不同的交点P 和Q . (I )求k 的取值范围;(II )设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A B ,,是否存在常数k ,使得向量OP OQ +与AB 共线如果存在,求k 值;如果不存在,请说明理由. 8.解:(Ⅰ)由已知条件,直线l 的方程为y kx =+代入椭圆方程得22(12x kx +=.整理得221102k x ⎛⎫+++= ⎪⎝⎭① 直线l 与椭圆有两个不同的交点P 和Q 等价于2221844202k k k ⎛⎫∆=-+=->⎪⎝⎭, 解得2k <-或2k >.即k的取值范围为22⎛⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭,,∞∞. (Ⅱ)设1122()()P x y Q x y ,,,,则1212()OP OQ x x y y +=++,, 由方程①,12x x +=. ② 又1212()y y k x x +=++ ③而(01)(A B AB =-,,.所以OP OQ +与AB 共线等价于1212)x x y y +=+,将②③代入上式,解得2k =.由(Ⅰ)知k <或k >k . 9.在平面直角坐标系xOy 中,已知圆2212320x y x +-+=的圆心为Q ,过点(02)P ,且斜率为k 的直线与圆Q 相交于不同的两点AB ,. (Ⅰ)求k 的取值范围;(Ⅱ)是否存在常数k ,使得向量OA OB +与PQ 共线如果存在,求k 值;如果不存在,请说明理由.9.解:(Ⅰ)圆的方程可写成22(6)4x y -+=,所以圆心为(60)Q ,,过(02)P ,且斜率为k 的直线方程为2y kx =+.代入圆方程得22(2)12320x kx x ++-+=, 整理得22(1)4(3)360k x k x ++-+=. ①直线与圆交于两个不同的点AB ,等价于 2222[4(3)]436(1)4(86)0k k k k ∆=--⨯+=-->,解得304k -<<,即k 的取值范围为304⎛⎫- ⎪⎝⎭,. (Ⅱ)设1122()()A x y B x y ,,,,则1212()OA OB x x y y +=++,, 由方程①,1224(3)1k x x k-+=-+ ② 又1212()4y y k x x +=++. ③ 而(02)(60)(62)P Q PQ =-,,,,,. 所以OA OB +与PQ 共线等价于1212()6()x x y y +=+, 将②③代入上式,解得34k =-. 由(Ⅰ)知304k ⎛⎫∈ ⎪⎝⎭,,故没有符合题意的常数k . 10.在平面直角坐标系xOy 中,过定点(0)C p ,作直线与抛物线22x py =(0p >)相交于A B ,两点. (I )若点N 是点C 关于坐标原点O 的对称点,求ANB △面积的最小值;(II )是否存在垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长恒为定值若存在,求出l 的方程;若不存在,说明理由.10.解法1:(Ⅰ)依题意,点N 的坐标为(0)N p -,,可设1122()()A x y B x y ,,,,直线AB 的方程为y kx p =+,与22x py =联立得22x py y kx p ⎧=⎨=+⎩,.消去y 得22220x pkx p --=.由韦达定理得122x x pk +=,2122x x p =-.于是12122ABN BCN ACN S S S p x x =+=-△△△·.2p ==,∴当0k =时,2min ()ABN S =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y=AC 的中点为O ',l 与AC 为直径的圆相交于点P ,Q PQ ,的中点为H ,则O H PQ'⊥,Q '点的坐标为1122x y p +⎛⎫⎪⎝⎭,.12O P AC '===∵, 111222y p O H a a y p +'=-=--, 1()2p a y a p a ⎛⎫=-+- ⎪⎝⎭,22(2)PQ PH =∴14()2p a y a p a ⎡⎤⎛⎫=-+- ⎪⎢⎥⎝⎭⎣⎦.令02p a -=,得2p a =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2py =, x即抛物线的通径所在的直线.解法2:(Ⅰ)前同解法1,再由弦长公式得2=又由点到直线的距离公式得d=.从而112222ABNS d AB p===△···∴当0k=时,2min()ABNS=△.(Ⅱ)假设满足条件的直线l存在,其方程为y a=,则以AC为直径的圆的方程为11(0)()()()0x x x y p y y-----=,将直线方程y a=代入得211()()0x x x a p a y-+--=,则21114()()4()2px a p a y a y a p a⎡⎤⎛⎫=---=-+-⎪⎢⎥⎝⎭⎣⎦△.设直线l与以AC为直径的圆的交点为3344()()P x y Q x y,,,,则有34PQ x x=-==令02pa-=,得2pa=,此时PQ p=为定值,故满足条件的直线l存在,其方程为2py=,即抛物线的通径所在的直线.11.已知双曲线222x y-=的左、右焦点分别为1F,2F,过点2F的动直线与双曲线相交于A B,两点.(I)若动点M满足1111FM F A F B FO=++(其中O为坐标原点),求点M的轨迹方程;(II)在x轴上是否存在定点C,使CA·CB为常数若存在,求出点C的坐标;若不存在,请说明理由.11.解:由条件知1(20)F-,,2(20)F,,设11()A x y,,22()B x y,.解法一:(I)设()M x y,,则则1(2)FM x y=+,,111(2)F A x y=+,,1221(2)(20)F B x y FO=+=,,,,由1111FM F A F B FO=++得121226x x xy y y+=++⎧⎨=+⎩,即12124x x xy y y+=-⎧⎨+=⎩,于是AB 的中点坐标为422x y -⎛⎫⎪⎝⎭,. 当AB 不与x 轴垂直时,121224822yy y y x x x x -==----,即1212()8y y y x x x -=--. 又因为A B ,两点在双曲线上,所以22112x y -=,22222x y -=,两式相减得12121212()()()()x x x x y y y y -+=-+,即1212()(4)()x x x y y y --=-.将1212()8yy y x x x -=--代入上式,化简得22(6)4x y --=. 当AB 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程. 所以点M 的轨迹方程是22(6)4x y --=.(II )假设在x 轴上存在定点(0)C m ,,使CA CB 为常数.当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-≠±. 代入222x y -=有2222(1)4(42)0k x k x k -+-+=.则12x x ,是上述方程的两个实根,所以212241k x x k +=-,2122421k x x k +=-,于是21212()()(2)(2)CA CB x m x m k x x =--+--222222(12)2442(12)11m k m m m m k k -+-=+=-++--. 因为CA CB 是与k 无关的常数,所以440m -=,即1m =,此时CA CB =1-.当AB 与x 轴垂直时,点A B ,的坐标可分别设为(2,(2-,, 此时(12)(12)1CA CB =-=-,,. 故在x 轴上存在定点(10)C ,,使CA CB 为常数. 解法二:(I )同解法一的(I )有12124x x x y y y +=-⎧⎨+=⎩,当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-≠±.代入222x y -=有2222(1)4(42)0k x k x k -+-+=. 则12x x ,是上述方程的两个实根,所以212241k x x k +=-. 21212244(4)411k k y y k x x k k k ⎛⎫+=+-=-= ⎪--⎝⎭. 由①②③得22441k x k -=-.…………④ 241k y k =-.……………⑤ 当0k ≠时,0y ≠,由④⑤得,4x k y-=,将其代入⑤有 2222444(4)(4)(4)1x y x y y x x y y -⨯-==----.整理得22(6)4x y --=. 当0k =时,点M 的坐标为(40),,满足上述方程.当AB 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程.故点M 的轨迹方程是22(6)4x y --=.(II )假设在x 轴上存在定点点(0)C m ,,使CA CB 为常数, 当AB 不与x 轴垂直时,由(I )有212241k x x k +=-,2122421k x x k +=-. 以下同解法一的(II ).12.已知双曲线222x y -=的右焦点为F ,过点F 的动直线与双曲线相交于A B ,两点,点C 的坐标是(10),. (I )证明CA ·CB 为常数;(II )若动点M 满足CM CA CB CO =++(其中O 为坐标原点),求点M 的轨迹方程. 12.解:由条件知(20)F ,,设11()A x y ,,22()B x y ,. (I )当AB 与x 轴垂直时,可设点A B ,的坐标分别为(2,(2,, 此时(12)(12)1CA CB =-=-,,. 当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-≠±.代入222x y -=,有2222(1)4(42)0k x k x k -+-+=. 则12x x ,是上述方程的两个实根,所以212241k x x k +=-,2122421k x x k +=-, 于是212121212(1)(1)(1)(1)(2)(2)CA CB x x y y x x k x x =--+=--+--2222222(1)(42)4(21)4111k k k k k k k +++=-++--22(42)411k k =--++=-. 综上所述,CA CB 为常数1-.(II )解法一:设()M x y ,,则(1)CM x y =-,,11(1)CA x y =-,,22(1)CB x y =-,,(10)CO =-,,由CM CA CB CO =++得: 121213x x x y y y -=+-⎧⎨=+⎩,即12122x x x y y y+=+⎧⎨+=⎩, 于是AB 的中点坐标为222x y +⎛⎫ ⎪⎝⎭,. 当AB 不与x 轴垂直时,121222222yy y y x x x x -==+---,即1212()2y y y x x x -=--. 又因为A B ,两点在双曲线上,所以22112x y -=,22222x y -=,两式相减得12121212()()()()x x x x y y y y -+=-+,即1212()(2)()x x x y y y -+=-. 将1212()2y y y x x x -=--代入上式,化简得224x y -=. 当AB 与x 轴垂直时,122x x ==,求得(20)M ,,也满足上述方程.所以点M 的轨迹方程是224x y -=. 解法二:同解法一得12122x x x y y y+=+⎧⎨+=⎩,……………………………………①当AB 不与x 轴垂直时,由(I ) 有212241k x x k +=-.…………………② 21212244(4)411k k y y k x x k k k ⎛⎫+=+-=-= ⎪--⎝⎭.………………………③由①②③得22421k x k +=-.………④ 241ky k =-.……………⑤当0k ≠时,0y ≠,由④⑤得,2x k y +=,将其代入⑤有2222244(2)(2)(2)1x y x y y x x y y +⨯+==++--.整理得224x y -=.当0k =时,点M 的坐标为(20)-,,满足上述方程.当AB 与x 轴垂直时,122x x ==,求得(20)M ,,也满足上述方程.故点M 的轨迹方程是224x y -=.13.设动点P 到点(10)A -,和(10)B ,的距离分别为1d 和2d ,2APB θ∠=,且存在常数(01)λλ<<,使得212sin d d θλ=.(1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;(2)过点B 作直线交双曲线C 的右支于M N ,两点,试确定λ的范围,使OM ON =0,其中点O 为坐标原点.13.解法一:(1)在PAB △中,2AB =,即222121222cos 2d d d d θ=+-,2212124()4sin d d d d θ=-+,即122d d -==<(常数),故点P 的轨迹C 是以A B ,为焦点,实轴长2a =的双曲线. 方程为:2211x y λλ-=-.(2)设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.即2111101λλλλλ-=⇒+-=⇒=-,因为01λ<<,所以λ=.②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x λλ⎧-=⎪-⎨⎪=-⎩得:2222(1)2(1)(1)()0k x k x k λλλλλ⎡⎤--+---+=⎣⎦,由题意知:2(1)0k λλ⎡⎤--≠⎣⎦, 所以21222(1)(1)k x x k λλλ--+=--,2122(1)()(1)k x x k λλλλ--+=--. 于是:22212122(1)(1)(1)k y y k x x k λλλ=--=--. 因为0OM ON =,且M N ,在双曲线右支上,所以2121222122212(1)0(1)121011231001x x y y k x x k x x λλλλλλλλλλλλλλλ-⎧+=⎧-⎧=⎪>⎪⎪⎪+-+>⇒⇒⇒<<+--⎨⎨⎨⎪⎪⎪>+->>⎩⎩⎪-⎩.23λ<. 14.已知正三角形OAB 的三个顶点都在抛物线22y x =上,其中O 为坐标原点,设圆C 是OAB △的内接圆(点C 为圆心)(I )求圆C 的方程;(II )设圆M 的方程为22(47cos )(7sin )1x y θθ--+-=,过圆M 上任意一点P 分别作圆C 的两条切线PE PF ,,切点为E F ,,求CE CF 的最大值和最小值.14.(I )解法一:设A B ,两点坐标分别为2112y y ⎛⎫ ⎪⎝⎭,,2222y y ⎛⎫ ⎪⎝⎭,,由题设知== 解得221212y y ==,所以(6A,(6B -,或(6A -,,(6B . 设圆心C 的坐标为(0)r ,,则2643r =⨯=,所以圆C 的方程为 22(4)16x y -+=. ······················································································· 4分解法二:设A B ,两点坐标分别为11()x y ,,22()x y ,,由题设知22221122x y x y +=+.又因为2112y x =,2222y x =,可得22112222x x x x +=+.即1212()(2)0x x x x -++=.由10x >,20x >,可知12x x =,故A B ,两点关于x 轴对称,所以圆心C 在x 轴上.设C 点的坐标为(0)r ,,则A 点坐标为32r ⎛⎫ ⎪ ⎪⎝⎭,于是有2322r ⎫=⨯⎪⎪⎝⎭,解得4r =,所以圆C 的方程为22(4)16x y -+=. ······················································································· 4分(II )解:设2ECF a ∠=,则 2||||cos 216cos 232cos 16CE CF CE CF ααα===-. ·································· 8分在Rt PCE △中,4cos ||||x PC PC α==,由圆的几何性质得 ||||17PC MC +=≤18+=,||||1716PC MC -=-=≥, 所以12cos 23α≤≤,由此可得 1689CE CF --≤≤. 则CE CF 的最大值为169-,最小值为8-. 15.已知椭圆22132x y +=的左、右焦点分别为1F ,2F .过1F 的直线交椭圆于B D ,两点,过2F 的直线交椭圆于A C ,两点,且AC BD ⊥,垂足为P .(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<; (Ⅱ)求四边形ABCD 的面积的最小值.15.证明:(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200021132222y x y x ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=.设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+2212221(1)()4BD x x kx x x x ⎡=-=++-=⎣; 因为AC 与BC 相交于点P ,且AC 的斜率为1k-, 所以,2211132k AC k⎫+⎪⎝⎭==⨯+ 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =. 综上,四边形ABCD 的面积的最小值为9625. 16.在直角坐标系xOy 中,以O 为圆心的圆与直线4x =相切.(1)求圆O 的方程;(2)圆O 与x 轴相交于A B ,两点,圆内的动点P使PA PO PB ,,成等比数列,求PA PB 的取值范围.16.解:(1)依题设,圆O 的半径r 等于原点O 到直线4x =的距离,即 2r ==. 得圆O 的方程为224x y +=. (2)不妨设1212(0)(0)A x B x x x <,,,,.由24x =即得 (20)(20)A B -,,,.设()P x y ,,由PA PO PB ,,成等比数列,得2222(2)x x y -+=+, 即 222x y -=.由于点P 在圆O 内,故222242.x y x y ⎧+<⎪⎨-=⎪⎩, 由此得21y <. 所以PA PB 的取值范围为[20)-,.17.已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线:l y kx m =+与椭圆C 相交于A ,B 两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.17.(本小题满分12分)解:(Ⅰ)由题意设椭圆的标准方程为22221(0)x y a b a b+=>>, 由已知得:3a c +=,1a c -=,2a ∴=,1c =,2223b a c ∴=-=. ∴椭圆的标准方程为22143x y +=. (Ⅱ)设11()A x y ,,22()B x y ,,联立22 1.43y kx m x y =+⎧⎪⎨+=⎪⎩, 得222(34)84(3)0k x mkx m +++-=, 又22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -=++=+++=+, 因为以AB 为直径的圆过椭圆的右焦点(20)D ,,1AD BD k k ∴=-,即1212122y y x x =---, 1212122()40y y x x x x ∴+-++=,2222223(4)4(3)1640343434m k m mk k k k --∴+++=+++, 2291640m mk k ∴++=.解得:12m k =-,227k m =-,且均满足22340k m +->, 当12m k =-时,l 的方程为(2)y k x =-,直线过定点(20),,与已知矛盾;当227k m =-时,l 的方程为27y k x ⎛⎫=- ⎪⎝⎭,直线过定点207⎛⎫ ⎪⎝⎭,. 所以,直线l 过定点,定点坐标为207⎛⎫ ⎪⎝⎭,. 18.已知椭圆2222:1(0)x y C a b a b+=>>. (Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 交于A B ,两点,坐标原点O 到直线l,求AOB △面积的最大值. 18.解:(Ⅰ)设椭圆的半焦距为c,依题意3c a a ⎧=⎪⎨⎪=⎩1b ∴=,∴所求椭圆方程为2213x y +=. (Ⅱ)设11()A x y ,,22()B x y ,.(1)当AB x ⊥轴时,AB .(2)当AB 与x 轴不垂直时,设直线AB 的方程为y kx m =+.2=,得223(1)4m k =+. 把y kx m =+代入椭圆方程,整理得222(31)6330k x kmx m +++-=,122631km x x k -∴+=+,21223(1)31m x x k -=+. 2422212121233(0)34196123696k k k k k k=+=+≠+=++⨯+++≤. 当且仅当2219k k =,即k =时等号成立.当0k =时,AB = 综上所述max 2AB =.∴当AB 最大时,AOB △面积取最大值max 12S AB =⨯=.19.设1F 、2F 分别是椭圆1422=+y x 的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求1PF ·2PF 的最大值和最小值;(Ⅱ)设过定点)2,0(M 的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.19.解:(Ⅰ)解法一:易知2,1,a b c ===所以())12,F F ,设(),P x y ,则 因为[]2,2x ∈-,故当0x =,即点P 为椭圆短轴端点时,12PF PF ⋅有最小值2-当2x =±,即点P 为椭圆长轴端点时,12PF PF ⋅有最大值1解法二:易知2,1,a b c ===())12,F F ,设(),P x y ,则((22222211232x y x y x y ⎡⎤=++++-=+-⎢⎥⎣⎦(以下同解法一) (Ⅱ)显然直线0x =不满足题设条件,可设直线()()1222:2,,,,l y kx A x y B x y =-, 联立22214y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,整理得:2214304k x kx ⎛⎫+++= ⎪⎝⎭ ∴12122243,1144kx x x x k k +=-⋅=++ 由()2214434304k k k ⎛⎫∆=-+⨯=-> ⎪⎝⎭得:2k <或2k >- 又000090cos 000A B A B OA OB <∠<⇔∠>⇔⋅>∴12120OA OB x x y y ⋅=+>又()()()2121212122224y y kx kx k x x k x x =++=+++22223841144k k k k -=++++22114k k -+=+ ∵2223101144k k k -++>++,即24k < ∴22k -<<故由①、②得2k -<<或2k << 20.设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12F F A ,,是椭圆上的一点,212AF F F ⊥,原点O 到直线1AF 的距离为113OF .(Ⅰ)证明a =;(Ⅱ)求(0)t b ∈,使得下述命题成立:设圆222x y t +=上任意点00()M x y ,处的切线交椭圆于1Q ,2Q 两点,则12OQ OQ ⊥.20.(Ⅰ)证法一:由题设212AF F F ⊥及1(0)F c -,,2(0)F c ,,不妨设点()A c y ,,其中 0y >,由于点A 在椭圆上,有22221c y a b+=, 222221a b y a b-+=, 解得2b y a =,从而得到2b Ac a ⎛⎫ ⎪⎝⎭,, 直线2AF 的方程为2()2b y x c ac=+,整理得 2220b x acy b c -+=.由题设,原点O 到直线1AF 的距离为113OF ,即 23c =将222c a b =-代入原式并化简得222a b =,即a =.证法二:同证法一,得到点A 的坐标为2b c a ⎛⎫ ⎪⎝⎭,,过点O 作1OB AF ⊥,垂足为H ,易知112F BC F F A △∽△由椭圆定义得122AF AF a +=,又113BO OF =,所以2212132F A F A F A a F A==-, 解得22a F A =,而22b F A a =,得22b a a =,即a =. (Ⅱ)解法一:圆222x y t +=上的任意点00()M x y ,处的切线方程为200x x y y t +=.当(0)t b ∈,时,圆222x y t +=上的任意点都在椭圆内,故此圆在点A 处的切线必交椭圆于两个不同的点1Q 和2Q ,因此点111()Q x y ,,222()Q x y ,的坐标是方程组20022222x x y y t x y b ⎧+=⎪⎨+=⎪⎩ ① ②的解.当00y ≠时,由①式得 代入②式,得22220022t x x x b y ⎛⎫-+= ⎪⎝⎭,即22224220000(2)4220x y x t x x t b y +-+-=, 于是2012220042t x x x x y +=+,4220122200222t b y x x x y -=+ 4220220022t b x x y -=+. 若12OQ OQ ⊥,则42242242220000121222222200000022232()0222t b y t b x t b x y x x y y x y x y x y ---++=+==+++. 所以,42220032()0t b x y -+=.由22200x y t +=,得422320t b t -=.在区间(0)b ,内此方程的解为3t =. 当00y =时,必有00x ≠,同理求得在区间(0)b ,内的解为t =.另一方面,当t =时,可推出12120x x y y +=,从而12OQ OQ ⊥.综上所述,(0)t b =∈,使得所述命题成立.21.如图,直线y kx b =+与椭圆2214x y +=交于A B ,两点,记AOB △的面积为S . (I )求在0k =,01b <<的条件下,S 的最大值;(II )当2AB =,1S =时,求直线AB 的方程.21.(Ⅰ)解:设点A 的坐标为1()x b ,,点B 的坐标为2()x b ,, 由2214x b +=,解得12x =±, 所以1212S b x x =-221b b =-2211b b +-=≤. 当且仅当2b =时,S 取到最大值1. (Ⅱ)解:由2214y kx b x y =+⎧⎪⎨+=⎪⎩,,得22212104k x kbx b ⎛⎫+++-= ⎪⎝⎭, 2241kb ∆=-+,11||||AB x x =-22224214k b k -==+. ② 设O 到AB 的距离为d ,则21||S d AB ==,又因为d = 所以221b k =+,代入②式并整理,得 42104k k -+=,解得212k =,232b =,代入①式检验,0∆>, 故直线AB 的方程是y x =或y x =y x =+,或y x =- 22.如图,中心在原点O 的椭圆的右焦点为(30)F ,,右准线l 的方程为:12x =. (1)求椭圆的方程;(Ⅱ)在椭圆上任取三个不同点1P ,2P ,3P ,使122331PFP P FP P FP ==∠∠∠,证明:123111FP FPFP ++为定值,并求此定值. (第 题) 题(22)图22.解:(I )设椭圆方程为22221x y a b+=. 因焦点为(30)F ,,故半焦距3c =.又右准线l 的方程为2a x c=,从而由已知 221236a a c==,, 因此6a =,b ===. 故所求椭圆方程为2213627x y +=. (II )记椭圆的右顶点为A ,并设i i AFP α∠=(i =1,2,3),不失一般性, 假设1203απ<≤,且2123ααπ=+,3143ααπ=+. 又设点i P 在l 上的射影为i Q ,因椭圆的离心率12c e a ==,从而有 1(9cos )2i i FP α=- (123)i =,,. 解得1211cos 92i i FP α⎛⎫=+ ⎪⎝⎭(123)i =,,. 因此 11112311121243cos cos cos 9233FP FP FP ααα⎡⎤⎛ππ⎫⎛⎫⎛⎫++=+++++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦, 而11124cos cos cos 33αααππ⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭1111111cos cos cos 022ααααα=--+=, 故12311123FP FP FP ++=为定值. 23.如题21图倾斜角为α的直线经过抛物线28y x =且与抛物线交于AB ,两点. (Ⅰ)求抛物线的焦点F 的坐标及准线l 的方程;(Ⅱ)若α为锐角,作线段AB 的垂直平分线答(22)图m 交x 轴于点P ,证明cos2FP FP α-为定值,并求此定值.23.(I )解:设抛物线的标准方程为22y px =,则28p =,从而4p =. 因此焦点02p F ⎛⎫ ⎪⎝⎭,的坐标为(20),, 又准线方程的一般式为2p x =-. 从而所求准线的方程为2x =-.(II )解法一:如答21图作AC l ⊥,BD l ⊥,垂足分别为C D ,,则由抛物线的定义知 FA AC =,FB BD =.记A B ,的横坐标分别为A x ,B x , 则cos 222A p p p FA AC x FA α==+=++ cos 4FA α=+,解得41cos FA α=-. 类似地有4cos FB FB α=-,解得41cos FB α=+. 记直线m 与AB 的交点为E ,则1()22FA FB FE FA AE FA FA FB +=-=-=- 21444cos 21cos 1cos sin αααα⎛⎫=-= ⎪-+⎝⎭. 所以24cos sin FE FP αα==. 故222442sin cos 2(1cos 2)8sin sin FP FP ααααα-=-==·. 解法二:设()A A A x y ,,()B B B x y ,,直线AB 的斜率为tan k α=,则直线方程为(2)y k x =-.将此式代入28y x =得22224(2)40k x k x k -++=,故224(2)A B k x x k ++=. 记直线m 与AB 的交点为()E E E x y ,,则222(2)2A B E x x k x k +--=,4(2)E E y k x k=-=,故直线m 的方程为224124k y x k k k ⎛⎫+-=-- ⎪⎝⎭, 令0y =,得点P 的横坐标22244p k x k +=+,故2224(1)4sin P E k FP x x k α+=-==. 从而222442sin cos 2(1cos 2)8sin sin FP FP ααααα-=-==为定值.。