量子力学基本概念复习要点

合集下载

量子力学基本概念总结

量子力学基本概念总结

量子力学基本概念总结量子力学是一门描述微观粒子行为的物理学分支,它提供了一种理论框架,用于解释和预测原子、分子和基本粒子的现象。

以下是一些量子力学的基本概念的总结。

1. 波粒二象性(Wave-particle duality)量子力学中的一个重要概念是波粒二象性,即微观粒子既可以表现出粒子特性也可以表现出波动特性。

例如,电子可以像波一样传播,但也可以被当作是粒子来计算。

2. 不确定性原理(Heisenberg's Uncertainty Principle)不确定性原理是由波粒二象性导致的。

它表明在粒子的位置和动量之间存在一种固有的不确定性。

换句话说,我们无法同时准确知道一个粒子的位置和动量,只能知道它们之间的不确定性。

3. 玻尔模型(Bohr model)玻尔模型是描述原子结构的经典模型之一。

它基于量子力学中能级的概念,认为电子围绕着原子核在不同的能级轨道上运动。

这个模型解释了原子光谱、电离能和跃迁等现象。

4. 波函数(Wave function)波函数是量子力学中用来描述粒子状态的数学函数。

它包含了所有关于粒子位置、动量和能量等信息。

根据波函数,我们可以计算出粒子的一些物理性质。

5. 测量与观测(Measurement and Observation)量子力学强调测量和观测对系统产生影响。

在测量时,波函数将塌缩到某个确定的状态,并给出对应的测量结果。

这种波函数塌缩导致了一系列奇特的现象,如量子纠缠和量子隐形。

6. 量子纠缠(Quantum Entanglement)量子纠缠是量子力学中的一个非常奇特的现象。

当两个或更多粒子处于纠缠状态时,它们的态无法独立地描述,而必须考虑整个系统的态。

当一个粒子的状态发生改变时,纠缠粒子的状态也会瞬间发生变化,即使它们之间的距离很远。

7. 施特恩-盖拉赫实验(Stern-Gerlach Experiment)施特恩-盖拉赫实验是证明电子具有自旋的经典实验之一。

量子力学基础知识

量子力学基础知识

量子力学基础知识量子力学是一门研究微观世界的物理学科,它揭示了微观粒子的性质和行为,与经典力学有着本质的区别。

本文将介绍量子力学的基础知识,包括波粒二象性、不确定性原理、量子态和测量等重要概念。

1. 波粒二象性量子力学的起源可以追溯到20世纪初,当时物理学家们发现光既可以表现出波动性,又可以表现出粒子性。

这一观察结果引发了对物质微粒也具有波粒二象性的思考。

根据波粒二象性,微观粒子既可以被视为粒子,也可以被视为波动。

例如,电子和光子既可以像粒子一样在空间中传播,又可以像波动一样干涉和衍射。

2. 不确定性原理不确定性原理是量子力学的核心概念之一,由德国物理学家海森堡提出。

它指出,在测量一个粒子的位置和动量时,这两个物理量的精确测量是不可能的。

简而言之,我们无法同时准确地知道粒子的位置和动量。

这意味着测量的结果是随机的,存在一定的误差。

3. 量子态量子力学中,量子态描述了一个系统的所有信息。

量子态可以用波函数表示,波函数是描述粒子在空间中分布和运动的数学函数。

根据波函数的模的平方,我们可以得到一个粒子出现在空间中某个位置的概率。

量子态还包括诸如自旋、能量等其他信息。

4. 测量问题在量子力学中,测量是一个重要的概念。

测量会导致量子态的塌缩,即系统从一个可能的量子态跃迁到一个确定的量子态。

然而,测量结果是随机的,我们只能得到一定的概率性结果。

这与经典物理学中的确定性测量有所不同。

5. 薛定谔方程薛定谔方程是量子力学的基本方程,由奥地利物理学家薛定谔提出。

它描述了量子体系的演化规律,可以用于求解系统的量子态和能量。

薛定谔方程是量子力学的数学基础,可以解释波粒二象性、不确定性原理和量子态等现象。

总结:量子力学是一门奇特而又挑战性的学科,它已经对人类的科学认知产生了深远的影响。

本文简要介绍了量子力学的基础知识,包括波粒二象性、不确定性原理、量子态和测量等重要概念。

了解和理解这些基础知识对于进一步深入学习量子力学以及应用量子技术具有重要意义。

量子力学的知识点

量子力学的知识点

量子力学的知识点量子力学是一门研究微观世界的物理学分支,它描述了微观粒子的行为和相互作用。

本文将介绍一些量子力学的基本概念和知识点。

1. 波粒二象性:量子力学中最基本的概念之一是波粒二象性。

根据波粒二象性,微观粒子既可以表现出波动性,也可以表现出粒子性。

例如,电子和光子既可以像粒子一样被探测到,也可以像波一样干涉和衍射。

2. 不确定性原理:不确定性原理是量子力学的核心原理之一,由海森堡提出。

它指出,在某一时刻,无法同时准确测量一个粒子的位置和动量。

换句话说,粒子的位置和动量不能同时被完全确定。

3. 波函数和量子态:波函数是量子力学中描述微观粒子的数学工具。

它可以用来计算粒子的概率分布和状态。

量子态则是描述粒子的完整信息,包括波函数和其他相关信息。

4. 叠加态和量子叠加:叠加态是指一个粒子处于多个可能状态的叠加状态。

量子叠加是指粒子在没有被观测之前,可以同时处于多个可能状态,直到被观测时才会坍缩到其中一个确定的状态。

5. 纠缠态和量子纠缠:纠缠态是指多个粒子之间存在相互关联的状态。

量子纠缠是指两个或多个粒子之间的状态相互依赖,无论它们之间有多远的距离。

6. 测量和量子测量:量子测量是指对一个量子系统进行观测,以获取它的某个性质的数值。

量子测量会导致波函数坍缩,从而确定粒子的状态。

7. 哥本哈根解释:哥本哈根解释是量子力学最广泛接受的解释之一,由波尔和海森堡等人提出。

它强调了观察者在量子系统中的重要性,认为观测会导致波函数坍缩,从而决定粒子的状态。

8. 量子力学的应用:量子力学在现代科学和技术中有广泛的应用。

例如,量子力学在原子物理学、核物理学、凝聚态物理学和量子计算等领域发挥着重要作用。

总结起来,量子力学是一门研究微观世界的物理学分支,它涉及到波粒二象性、不确定性原理、波函数和量子态、叠加态和量子叠加、纠缠态和量子纠缠、测量和量子测量、哥本哈根解释以及量子力学的应用等知识点。

通过深入了解这些知识点,我们可以更好地理解微观世界的奥秘,并应用于相关领域的研究和技术发展中。

考研物理学量子力学基础知识总结

考研物理学量子力学基础知识总结

考研物理学量子力学基础知识总结量子力学是现代物理学中的一门基础学科,它研究微观领域中物质和能量的行为。

考研中的物理学科通常包括量子力学的基础知识,下面是对考研物理学量子力学基础知识的总结。

一、波粒二象性量子力学中最基本的概念之一是波粒二象性。

它表明微观粒子既可以表现为粒子,有时又可以表现为波动。

根据不同实验条件下的观测结果,物理学家引入了波函数来描述粒子的行为。

二、波函数和薛定谔方程波函数是用来描述量子体系的数学函数,它可以通过薛定谔方程来求解。

薛定谔方程是量子力学的核心方程之一,它描述了量子体系中粒子的运动和演化。

三、量子力学的不确定性原理量子力学的不确定性原理是由海森堡提出的。

它指出,在量子体系中,不能同时准确测量粒子的位置和动量,以及能量和时间。

这意味着在微观尺度下,对粒子的测量是具有一定的不确定性的。

四、量子力学的态和算符在量子力学中,态是用来描述物理体系的状态的概念。

态矢量可以用来表示具体的态。

算符则是量子力学中非常重要的概念,它用来描述物理量的操作和测量。

五、量子力学中的量子数和量子态量子力学中的量子数是用来描述量子体系性质和状态的数字。

电子的自旋、原子的能级等都可以用量子数来描述。

量子态是由一系列量子数确定的。

六、量子力学的叠加态和纠缠态量子力学中的叠加态是多个量子态的线性组合,这意味着量子体系可以同时处于多种状态之间。

纠缠态则是指两个或多个粒子之间存在特殊的量子关联,纠缠态的测量结果是彼此相关的。

七、量子力学的量子力学动力学量子力学动力学用来描述量子体系的时间演化。

在量子力学动力学中,态矢量的演化是由薛定谔方程和哈密顿算符确定的。

八、量子力学中的定态和本征态在量子力学中,定态是永不改变的态,本征态是表示具有确定取值的物理量的态。

本征态对应的物理量取值就是相应的本征值。

九、量子力学中的量子隧穿和量子纠缠量子隧穿是指粒子在能量低于势垒的情况下仍然能够穿过势垒。

量子纠缠是指两个或多个粒子之间存在特殊的量子关联,纠缠态的测量结果是彼此相关的。

第一章量子力学基础知识.doc

第一章量子力学基础知识.doc

第一章 量子力学基础知识1.1 微观粒子的运动特征基本内容一、微观子的能量量子化1. 黑体辐射黑体:是理想的吸收体和发射体.Plank 假设:黑体中原子或分子辐射能量时作简谐振动,它只能发射或吸收频率为ν,数值为ε=hν整数倍的电磁波,及频率为ν的振子发射的能量可以等于:0hν,1 hν,2 hν,3 hν,…..,n hν.由此可见,黑体辐射的频率为ν的能量,其数值是不连续的,只能为hν的倍数,称为能量量子化。

2. 光电效应和光子光电效应:是光照射在金属样品表面上,使金属发射出电子的现象。

金属中的电子从光获得足够的能量而逸出金属,称为光电子。

光电效应的实验结果:(1) 只有当照射光的频率超过某个最小频率ν时金属才能发射光电子,不同金属的ν值也不同。

(2) 随着光强的增加,发射的电子数也增加,但不影响光电子的动能。

(3) 增加光的频率,光电子的动能也随之增加。

光子学说的内容如下:(1) 光是一束光子流,每一种频率的光的能量都有一个最小单位称为光子,光子的能量与光子的频率成正比即:νεh =0(2) 光子不但有能量,还有质量(m ),但光子的静止质量为零。

按相对论质能联系定律,20mc =ε,光子的质量为:c h c m νε==2,所以不同频率的光子有不同的质量。

(3) 光子具有一定的动量(p) p=mc=c h ν=λh(4) 光子的强度取决于单位体积内光子的数目即光子密度:ττρτd dNN =∆∆=→∆0lim将频率为ν的光照射到金属上,当金属中的一个电子受到一个光子撞击时,产生光电效应,并把能量hν转移给电子。

电子吸收的能量,一部分用于克服金属对它的束缚力,其余部分则表现为光电子动能。

2021mv h E w h k +=+=νν 当νh <w 时,光子没有足够的能量,使电子逸出金属,不发生光电效应,当νh =w 时,这时的频率时产生光电效应的临阈频率0ν,当νh >w 时从金属中发射的电子具有一定的动能,它随ν的增加而增加,阈光强无关。

量子力学基础 知识点

量子力学基础 知识点

量子物理知识点小结一、普朗克能量子假说1、黑体辐射的实验定律2、普朗克能量子假说2)维恩位移定律:T λm = b1)斯特藩-玻耳兹曼定律: M (T ) = σT 4对频率为ν 的谐振子, 最小能量 ε 为: ⋅⋅⋅⋅⋅⋅,,,3,2,εεεεn νh =ε谐振子的能量不能取任意值,只能是某一最小能量ε 的整数倍,二、爱因斯坦光量子假说1、光量子假说 W m h νm+=221v 2、光电效应方程: 光具有“波粒二象性”光子的动量: λhp =光子的能量: h ν=ε碰撞过程中能量守恒: 2200mc h νc m h ν+=+v m e h e h n +=λλ00碰撞过程中动量守恒:波长的偏移量:)cos 1(0θλλλλ-=-=∆c nm 00243.0m 10432120=⨯⋅≈=-cm h c λ康普顿波长: 三、康普顿效应(X 射线光子与自由电子碰撞)四、玻尔氢原子理论一切实物粒子都具有波粒二象性 2)角动量量子化条件假设; 1)定态假设; 3)频率条件假设h νmc E ==2λh m p ==v ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥∆⋅∆≥∆⋅∆≥∆⋅∆222 z y x p z p y p x 2≥∆⋅∆t Ε五、德布罗意假说六、不确定性关系:七、波函数2、波函数满足的条件1、波函数的统计意义1)归一化条件t 时刻,粒子在空间r 处的单位体积中出现的概率, 与波函数模的平方成正比。

*2),(ΨΨt r ΨdVdW w === 概率密度: 12=⎰⎰⎰dV Ψ粒子在整个空间出现的总概率等于 1 , 即: 2)标准化条件:单值、连续、有限一维情况: 1)(2=⎰+∞∞-dx x Ψ八、定态薛定谔方程1、定态:若粒子的势能 E P (x ) 与 t 无关,仅是坐标的函数, 微观粒子在各处出现的概率与时间无关2、一维定态薛定谔方程: 0)()()(=-+x E E 2m dx x d P 222ψψ九、氢原子,3,2,1,1)8(22204=⋅-=n nh me E n ε1、能量量子化和主量子数n 2、角动量量子化和角量子数l)1(2)1(+=+=l l h l l L π1,,3,2,1,0-=n l 3、角动量空间量子化和磁量子数m ll m m L l l z ±±±==,,2,1,0, 4、自旋角动量和自旋量子数 21,)1(=+=s s s S 21,±==s s z m m S十、原子的电子壳层结构1、原子中电子状态由四个量子数(n 、l 、m l 、 m s )决定用 K , L , M , N , O , P , …. 表示 2、原子的壳层结构主量子数 n 相同的电子属于同一壳层壳层n = 1 , 2 , 3 , 4 , 5 , 6 , …. 同一壳层中( n 相同),l 相同的电子组成同一分壳层 支壳层 用 s , p , d , f , … , 表示l = 0, 1 , 2 , 3 , … , n -13、原子的壳层结构中电子的填充原则1) 泡利不相容原理2) 能量最小原理。

量子力学复习资料

量子力学复习资料

量子力学复习资料一、基本概念1、波粒二象性这是量子力学的核心概念之一。

它表明微观粒子既具有粒子的特性,如位置和动量,又具有波动的特性,如波长和频率。

例如,电子在某些实验中表现出粒子的行为,如碰撞和散射;而在另一些实验中,如双缝干涉实验,又表现出波动的行为。

2、量子态量子态是描述微观粒子状态的方式。

与经典物理学中可以精确确定粒子的位置和动量不同,在量子力学中,粒子的状态通常用波函数来描述。

波函数的平方表示在某个位置找到粒子的概率密度。

3、不确定性原理由海森堡提出,指出对于一个微观粒子,不能同时精确地确定其位置和动量,或者能量和时间。

即:\(\Delta x \cdot \Delta p \geq \frac{\hbar}{2}\),\(\Delta E \cdot \Delta t \geq \frac{\hbar}{2}\),其中\(\hbar\)是约化普朗克常数。

二、数学工具1、薛定谔方程这是量子力学中的基本方程,类似于经典力学中的牛顿运动方程。

对于一个质量为\(m\)、势能为\(V(x)\)的粒子,其薛定谔方程为:\(i\hbar\frac{\partial \Psi(x,t)}{\partial t} =\frac{\hbar^2}{2m}\frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x)\Psi(x,t)\)。

2、算符在量子力学中,物理量通常用算符来表示。

例如,位置算符\(\hat{x}\)、动量算符\(\hat{p}\)等。

算符作用在波函数上,得到相应物理量的可能取值。

三、常见量子力学系统1、一维无限深势阱粒子被限制在一个宽度为\(a\)的区域内,势能在区域内为零,在区域外为无穷大。

其能量本征值为\(E_n =\frac{n^2\pi^2\hbar^2}{2ma^2}\),对应的本征函数为\(\Psi_n(x) =\sqrt{\frac{2}{a}}\sin(\frac{n\pi x}{a})\)。

量子力学基本概念复习要点

量子力学基本概念复习要点

量子力学基本概念复习要点量子力学基本概念复习要点1.波函数的性质完整描述微观粒子的状态概率密度几率流密度波函数的归一化重要例子: 德布罗意平面波能够描述自由粒子的状态2.薛定谔方程描述了状态随时间的变化3.定态概念定态的性质(定态下的概率密度和几率流密度)4.定态薛定谔方程(能量本征方程)的求解(无限深势阱问题)定解条件(波函数的三大标准条件、周期性条件)5.书上常见力学量的算符形式(在坐标或动量表象下,坐标算符、动量算符、动能算符、势能算符、角动量算符、哈密顿算符等等)不是所有算符都有经典对应(例如自旋算符)6.算符本征态、本征值的概念、物理含义(量子力学基本假定P56)7.厄米算符的定义、算符是否为厄米算符的判断证明(PPT第三章第一节相关例题)厄米算符的本征值8.熟练掌握氢原子的状态、能级的性质,三个量子数(n、l、m)的物理含义及它们之间的关系。

简并度的计算结合氢原子能级公式解决能量跃迁问题9.掌握厄米算符本征函数的正交归一性以及有关定理的证明常见本征函数的正交归一式10.厄米算符本征函数构成完备系波函数展开系数的物理含义(量子力学基本假定P84)会计算力学量的平均值、可能值和相应的概率(典型例题P102 3.6 3.9 PPT上有关例题)11.会计算两个算符之间的对易关系算符对易的物理含义(掌握有关定理并会证明)、书上常见算符的对易式不对易式和测不准关系式之间的关系(典型例题PPT 讲义例题例一、例三)12.知道表象变换的含义态的列矩阵表示知道矩阵元的含义13.算符的矩阵表示(矩阵元,厄米矩阵、自身表象下矩阵形式)14.知道幺正变换的定义及它在表象变换中所起的作用(态的变换和算符的变换),知道并会证明其性质(不改变量子力学的规律, 例如迹、本征值)15.常见本征矢封闭性和正交归一性的狄拉克符号表示法16.应用微扰论求解简单的微扰问题(典型例题P173 5.3,幻灯片例题)适用条件(以氢原子为例)数学要求:常用的简单积分公式和积分方法(分部积分法、换元法)常用的三角函数公式(倍、半、和角公式等等)。

量子力学知识点

量子力学知识点

量子力学知识点量子力学是20世纪初发展起来的一种物理学理论,它主要描述微观粒子如原子、电子等的行为。

量子力学的核心概念包括波函数、量子态、不确定性原理、量子纠缠等。

以下是量子力学的一些主要知识点总结:1. 波函数:量子力学中,一个粒子的状态由波函数描述,波函数是一个复数函数,其模的平方给出了粒子在某个位置被发现的概率密度。

2. 薛定谔方程:这是量子力学中描述粒子波函数随时间演化的基本方程。

薛定谔方程是量子力学的核心,它是一个偏微分方程,能够预测粒子的行为。

3. 量子态:量子系统的状态可以由波函数表示,这些状态是离散的,并且遵循一定的量子数规则。

4. 量子叠加原理:量子系统可以同时处于多个可能的状态,这些状态的叠加构成了系统的总状态。

5. 不确定性原理:由海森堡提出,指出无法同时精确测量粒子的位置和动量。

这是量子力学与经典力学的一个根本区别。

6. 量子纠缠:两个或多个粒子可以处于一种特殊的相关状态,即使它们相隔很远,一个粒子的状态改变也会立即影响到另一个粒子的状态。

7. 量子隧道效应:粒子有可能穿过一个经典力学中不可能穿越的势垒,这是量子力学中的一个非直观现象。

8. 波粒二象性:量子力学中的粒子既表现出波动性也表现出粒子性,这种性质由德布罗意提出。

9. 量子力学的诠释:包括哥本哈根诠释、多世界诠释等,不同的诠释试图解释量子力学中观察到的现象。

10. 量子计算:利用量子力学原理进行信息处理的技术,量子计算机能够执行某些特定类型的计算任务,速度远超传统计算机。

11. 量子纠缠与量子通信:量子纠缠是量子通信的基础,可以实现安全的信息传输。

12. 量子退相干:量子系统与环境相互作用,导致量子态的相干性丧失,是量子系统向经典系统过渡的过程。

13. 量子场论:将量子力学与相对论结合起来,描述粒子的产生和湮灭过程。

14. 量子信息:研究量子系统在信息处理中的应用,包括量子密码学、量子通信等。

15. 量子测量:量子力学中的测量问题涉及到波函数的坍缩,即测量过程会导致量子态的不确定性减少。

量子力学知识的总结归纳

量子力学知识的总结归纳

量子力学知识的总结归纳量子力学是20世纪初由诺贝尔物理学家波尔、玻恩、海森堡等人发展起来的一门基础物理学理论。

它描述了微观世界中的粒子行为,涉及到微观粒子的波粒二象性、不确定性原理以及量子态叠加等概念。

本文将对量子力学的重要知识进行总结归纳,帮助读者更好地理解量子力学的基本原理。

一、波粒二象性在经典物理学中,我们将物质看作是粒子,具有确定的位置和动量。

然而,通过许多实验观察发现,微观粒子如电子、光子等却同时表现出粒子和波的性质。

这就是波粒二象性的基本概念。

根据德布罗意的物质波假设,每个物质粒子都与波动现象相对应。

粒子的波长和动量之间存在关系,称为德布罗意关系:λ = h / p其中,λ表示波长,h表示普朗克常数,p表示动量。

二、量子力学的基本原理1.波函数和薛定谔方程在量子力学中,用波函数(Ψ)来描述粒子的状态。

波函数的平方(|Ψ|^2)给出了在空间中找到粒子的概率。

薛定谔方程是描述波函数随时间演化的方程。

它是一个偏微分方程,其解决了波函数随时间的变化,从而可以预测粒子的行为。

2.不确定性原理由海森堡提出的不确定性原理是量子力学的重要概念之一。

它表明,无法同时准确地确定粒子的位置和动量。

不确定性原理可以用数学形式表示为:Δx * Δp >= h / 2π其中,Δx表示位置的不确定度,Δp表示动量的不确定度,h为普朗克常数。

3.量子态叠加和测量在量子力学中,粒子的状态可以叠加为多个态的线性组合。

这种叠加被称为叠加原理。

当我们对粒子进行观测时,测量结果只能是某个确定态,而不是叠加态。

测量之后,粒子的波函数将塌缩到某个确定态,概率由波函数的平方给出。

三、量子力学的应用量子力学不仅仅是一门理论学科,它也有着广泛的应用。

以下是量子力学的一些重要应用领域。

1.原子物理学量子力学解释了原子结构、电子轨道和元素周期表等现象。

它的应用使我们能够理解和探索原子和分子之间的相互作用,进而推动材料科学和化学的发展。

物理学的量子力学知识点总结

物理学的量子力学知识点总结

物理学的量子力学知识点总结量子力学是现代物理学的重要分支,它探讨了微观领域中物质和能量的行为规律。

在本文中,我们将对量子力学的一些基本知识点进行总结。

1. 波粒二象性量子力学的一个核心概念是波粒二象性。

根据波粒二象性,微观粒子既可以表现出波动性质,也可以表现出粒子性质。

例如,光既可以被视为波动的电磁波,也可以被视为由光子组成的粒子流。

2. 不确定性原理不确定性原理是量子力学的另一个重要概念,由海森堡提出。

它表明,在测量某个量(如位置和动量)时,我们无法同时精确地知道这两个量的值。

这意味着,精确测量一个粒子的位置将导致动量的不确定性增大,反之亦然。

3. 波函数和量子态波函数是量子力学中描述微观粒子状态的数学函数。

它包含了关于粒子位置、动量和能量等信息。

根据波函数的模的平方,我们可以计算出粒子在某个位置上的概率分布。

量子态则是描述粒子整体状态的概念,可以用波函数来表示。

4. 叠加原理和干涉叠加原理指出,当存在多个可能的量子态时,系统可以同时处于这些态的叠加态。

这意味着,微观粒子可以同时处于多个位置或状态。

干涉现象是叠加原理的重要应用,它描述了波动性质导致的波的叠加和相消的现象。

5. 测量和观测量子力学中的测量过程是一个重要的概念。

测量会导致系统从叠加态坍缩到一个确定的态,这被称为量子态的坍缩。

观测结果是测量的物理量的一个确定值,它是通过与系统相互作用来得到的。

6. 量子纠缠量子纠缠是一种特殊的量子态,其中两个或多个粒子之间的状态是相互关联的。

当两个纠缠粒子之一发生测量时,另一个粒子的状态会立即坍缩,无论它们之间的距离有多远。

这种纠缠关系被广泛应用于量子通信和量子计算领域。

7. 施特恩-盖拉赫实验施特恩-盖拉赫实验是对量子力学基本原理的重要验证。

该实验通过将束缚电子通过磁场进行分离,观察到了电子的自旋量子态分裂成两个不同方向的束缚束缚态,从而证明了电子具有自旋的概念。

8. 薛定谔方程薛定谔方程是量子力学的基本方程之一,描述了量子态随时间演化的规律。

量子力学复习资料

量子力学复习资料

量⼦⼒学复习资料第⼀章知识点:1. ⿊体:能吸收射到其上的全部辐射的物体,这种物体就称为绝对⿊体,简称⿊体.2. 处于某⼀温度 T 下的腔壁,单位⾯积所发射出的辐射能量和它所吸收的辐射能量相等时,辐射达到热平衡状态。

3. 实验发现:热平衡时,空腔辐射的能量密度,与辐射的波长的分布曲线,其形状和位置只与⿊体的绝对温度 T 有关⽽与⿊体的形状和材料⽆关。

4. 光电效应---光照射到⾦属上,有电⼦从⾦属上逸出的现5. 光电效应特点:1.临界频率ν0 只有当光的频率⼤于某⼀定值ν0时,才有光电⼦发射出来.若光频率⼩于该值时,则不论光强度多⼤,照射时间多长,都没有电⼦产⽣.光的这⼀频率ν0称为临界频率。

2.光电⼦的能量只是与照射光的频率有关,与光强⽆关,光强只决定电⼦数⽬的多少(爱因斯坦对光电效应的解释)3. 当⼊射光的频率⼤于ν0时,不管光有多么的微弱,只要光⼀照上,⽴即观察到光电⼦(10-9s )6. 光的波粒⼆象性:普朗克假定a.原⼦的性能和谐振⼦⼀样,以给定的频率ν振荡;b.⿊体只能以 E = h ν为能量单位不连续的发射和吸收能量,⽽不是象经典理论所要求的那样可以连续的发射和吸收能量.7. 总结光⼦能量、动量关系式如下:把光⼦的波动性和粒⼦性联系了起来8.波长增量 Δλ=λ′–λ随散射⾓增⼤⽽增⼤.这⼀现象称为康普顿效应.散射波的波长λ′总是⽐⼊射波波长长(λ′ >λ)且随散射⾓θ增⼤⽽增⼤。

9.波尔假定:1.原⼦具有能量不连续的定态的概念. 2.量⼦跃迁的概念. 10.德布罗意:假定:与⼀定能量 E 和动量 p 的实物粒⼦相联系的波(他称之为“物质波”)的频率和波长分别为:E = h ν ? ν= E/h ? P = h/λ ? λ= h/p ? 该关系称为de. Broglie 关系.德布罗意波:ψde Broglie 关系:ν= E/h ?ω = 2πν= 2πE/h = E/ λ= h/p ?k = 1/ = 2π /λ = p/n k h k n n h n C h n C E p h E ==========πλπλνων22其中波长。

量子力学主要知识点复习资料

量子力学主要知识点复习资料

大学量子力学主要知识点复习1能量量子化辐射黑体中分子和原子的振动可视为线性谐振子,这些线性谐振子可以发射和吸收辐射能。

这些谐振子只能处于某些分立的状态,在这些状态下,谐振子的能量不能取任意值,只能是某一最小能量ε 的整数倍 对频率为ν 的谐振子, 最小能量ε为: 2.波粒二象性波粒二象性(wave-particle duality )是指某物质同时具备波的特质及粒子的特质。

波粒二象性是量子力学中的一个重要概念。

在经典力学中,研究对象总是被明确区分为两类:波和粒子。

前者的典型例子是光,后者则组成了我们常说的“物质”。

1905年,爱因斯坦提出了光电效应的光量子解释,人们开始意识到光波同时具有波和粒子的双重性质。

1924年,德布罗意提出“物质波”假说,认为和光一样,一切物质都具有波粒二象性。

根据这一假说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。

德布罗意公式3.波函数及其物理意义在量子力学中,引入一个物理量:波函数 ,来描述粒子所具εεεεεn ,,4,3,2,⋅⋅⋅νh =εh νmc E ==2λh m p ==v有的波粒二象性。

波函数满足薛定格波动方程粒子的波动性可以用波函数来表示,其中,振幅表示波动在空间一点(x ,y,z )上的强弱。

所以,应该表示 粒子出现在点(x,y,z )附件的概率大小的一个量。

从这个意义出发,可将粒子的波函数称为概率波。

自由粒子的波函数波函数的性质:可积性,归一化,单值性,连续性 4. 波函数的归一化及其物理意义常数因子不确定性设C 是一个常数,则 和 对粒子在点(x,y,z )附件出现概率的描述是相同的。

相位不定性如果常数 ,则 和 对粒子在点(x,y,z )附件出现概率的描述是相同的。

表示粒子出现在点(x,y,z )附近的概率。

表示点(x,y,z )处的体积元中找到粒子的概率。

这就是波函数的统计诠释。

自然要求该粒子在空间各点概率之总和为1 必然有以下归一化条件 5. 力学量的平均值既然 表示 粒子出现在点 0),()](2[),(22=-∇+∂∂t r r V mt r t i ψψ)](exp[Et r p i A k -⋅=ψ=ψ2|(,,)|x y z ψ2|(,,)|x y z x y z ψ∆∆∆x y zτ∆=∆∆∆2|(,,)|1x y z dxdydz ψ∞=⎰(,,)x y z ψ(,,)c x y z ψαi e C =(,,)i e x y z αψ(,,)x y z ψ22|()||(,,)|r x y z ψψ=),,(z y x r =23*3|()|()(),x r xd r r x r d r ψψψ+∞+∞-∞-∞==⎰⎰附件的概率,那么粒子坐标的平均值,例如x 的平均值x __,由概率论,有 又如,势能V是 的函数:,其平均值由概率论,可表示为 再如,动量 的平均值为: 为什么不能写成因为x 完全确定时p 完全不确定,x 点处的动量没有意义。

完整版)量子力学总结

完整版)量子力学总结

完整版)量子力学总结量子力学基础(概念)量子力学是一种描述微观粒子在微观尺度下运动的力学,使用不连续物理量来描述微观粒子。

量子的英文解释为“afixed amount”(一份份、不连续),因此量子力学的特征就是不连续性。

量子力学描述的对象是微观粒子,而微观特征量则以原子中电子的特征量为例。

这包括精细结构常数、原子的电子能级、原子尺寸等。

例如,原子的电子能级大约在数10eV数量级。

同时,原子尺寸可以用玻尔半径来估算,一般原子的半径为1Å。

角动量是量子力学中的基本概念之一,它可以用来描述微观粒子的运动。

在量子力学中,有多种现象和假设被用来解释微观粒子的行为,如光电效应、康普顿效应、波尔理论和XXX假设。

XXX假设认为任何物体的运动都伴随着波动,因此物体若以大小为P的动量运动时,则伴随有波长为λ的波动。

德布罗意波关系则是用来描述物质波的关系,其中λ为波长,h为普朗克常数,P为动量。

波粒二象性是量子力学中的一个重要概念。

电子衍射实验是证实电子波动性的重要实验之一,由XXX和革末于1926年进行。

他们观察到了电子在镍单晶表面的衍射现象,并求出电子的波长为0.167nm。

根据上式,发现光子出现的概率与光波的电场强度的平方成正比,这是XXX在1907年对光辐射的量子统计解释。

同样地,电子也会产生类似的干涉条纹,几率大的地方会出现更多的电子形成明条波,而几率小的地方出现的电子较少,形成暗条纹。

玻恩将||2解释为给定时间,在一定空间间隔内发生一个粒子的几率,他指出“对应空间的一个状态,就有一个由伴随这状态的德布罗意波确定的几率”,这也是他获得1954年诺贝尔物理奖的原因。

根据态迭加原理,非征态可以表示成本征态的迭加,其中|Cn|2代表总的几率,也就是态中本征态n的相对强度(成分),即态部分地处于n的相对几率。

在态中力学量F的取值n的几率可以表示为|Cn|2,这就是对波函数的普遍物理诠释。

如果是归一化的,即积分结果为1,则|Cn|2的总和为1,代表总的几率。

量子力学复习

量子力学复习
光具有粒子性, 一束光是一束以光速运 这种粒子称为光子。 频率为 的光子的能量为 动缚于阴极金属板物质 与入射光子相互作用( 完全吸收一个入射光子 表面势垒,逸出表面, 原子中的一个电子, 完全非弹性碰撞), 的能量,克服金属 成为光电子。
5、 康普顿效应本质:
ms s 1 2 )
1 2
.决定电子自旋角动量 在外磁场方向的分量:
S
Sz ms .
12、 重要公式:
1 ) 光电效应方程: h E k A 2 ) 康普顿散射: 0 反冲电子动能: h m0 c E k (m m0 ) c
2
1 2
D
I
I
I
o
(C )
U
o
U
( A)
o
2
2
(B )
U
I
光 强 同 : n1 h 1 n 2 h
2 1 n 2 n1 I s I s .
1
o
1
另外
2
1 Ek
2
Ek Ua
1
2
Ua .
(D)
U
5. 以一定频率的单色光照射到某金属,测出其光电流的曲线如图 中实线所示, 然后保持频率不变,增大光强, 测出其光电流的曲线 如图中的虚线所示. 则满足题意的图是 [ ]
(2) 若入射光的频率都大于一给定金属的红限, 则该金属分别受到 不同频率的光照射时,释出的光电子的最大初动能也不同. (3) 若入射光的频率都大于一给定金属的红限, 则该金属分别受到 不同频率,但强度相等的光照射时, 单位时间释出的光电子数一定 相等.
(4) 若入射光的频率都大于一给定金属的红限, 则当入射光的频率 不变,而强度增大一倍时,该金属的饱和光电流也增大一倍.

生僻知识点总结

生僻知识点总结

生僻知识点总结量子力学是20世纪最重要的科学理论之一,在物理学、化学、材料科学和信息技术等领域取得了巨大的成就。

本文将对量子力学的基本概念、发展历程以及应用进行系统的总结。

一、量子力学的基本概念1. 波粒二象性20世纪早期,科学家们发现了微粒在一些实验中表现出波动性质,而在另一些实验中表现出粒子性质。

经典力学无法解释这种现象,因此量子力学提出了波粒二象性概念,即微粒既可以表现为粒子,也可以表现为波动。

2. 不确定性原理根据量子力学的不确定性原理,无法准确测定微观粒子的位置和动量。

即使在完美的实验条件下,我们也无法同时准确测定一个粒子的位置和动量,这是量子世界的固有特性。

3. 波函数在量子力学中,波函数是描述微观粒子状态的数学工具。

波函数的平方代表了粒子出现在某一位置的概率,而波函数本身则包含了粒子的全部信息。

波函数的演化遵循薛定谔方程,描述了粒子在外势场中的运动规律。

4. 波粒对应量子力学中,波动方程和粒子方程之间存在着对应关系,即波动方程描述了粒子的波动性质,而粒子方程描述了粒子的运动规律。

薛定谔方程就是典型的波动方程,描述了微观粒子的波动性质;而德布罗意方程则是粒子方程,描述了波粒二象性中粒子的动力学特性。

二、量子力学的发展历程1. 量子力学的萌芽量子力学的开始可以追溯到19世纪末的黑体辐射问题。

玻尔基于普朗克的量子假设对黑体辐射的能量分布进行了解释,提出了能级分立的概念,为量子力学的诞生奠定了基础。

2. 波恩和海森堡的矩阵力学1925年,波恩和海森堡分别提出了矩阵力学和矩阵力学的基本原理。

他们认为运动的粒子是不能同时具有确定的位置和动量的,而是以一种非常规的方式运动。

这两种力学的理论形式不同,但给出的结果是等价的,进一步推动了量子力学的发展。

3. 薛定谔的波动力学1926年,薛定谔提出了波动力学,这被认为是现代量子力学的基石。

他通过薛定谔方程描述了微观粒子的波动性质,成功解释了原子的能级结构和光谱现象,为量子力学的发展奠定了坚实的理论基础。

量子力学复习提纲

量子力学复习提纲

量子力学复习提纲第一章 绪论 1.德布罗意关系, E h νω==(1)h p n k λ==(2)2.微观粒子的波粒二象性.3. 电子被V 伏电压加速,则电子的德布罗意波长为12.25hA λ=≈(3)第二章 波函数和薛定谔方程 1.波函数的统计解释:波函数在空间某一点的强度()2,r t ψ 和在该处找到粒子的几率成正比,描写粒子的波是几率波. 其中2w*=ψψ=ψ代表几率密度.2.态叠加原理:如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加1122c c ψ=ψ+ψ,也是体系的一个可能状态.3. 薛定谔方程和定态薛定谔方程薛定谔方程()(),ˆ,r t i H r t t∂ψ=ψ∂(4)定态薛定谔方程()()ˆH r E r ψ=ψ (5)其中()22ˆ2H U r μ=-∇+ (6)为哈密顿算符,又称为能量算符,4. 波函数的标准条件: 有限性,连续性(包括ψ及其一阶导数)和单值性.5. 波函数的归一化,1d τ*∞ψψ=⎰(9)6.求解一维薛定谔方程的几个例子.一维无限深势阱及其变种, 一维线性谐振子; 势垒贯穿.第三章 量子力学中的力学量1. 坐标算符, 动量算符及角动量算符;构成量子力学力学量的法则;2. 本征值方程,本征值,本征函数的概念ˆF ψλψ= (10)3. 厄密算符的定义,性质及与力学量的关系.ˆF dx ψφ*=⎰()ˆF dx ψφ*⎰(11)实数性: 厄密算符的本征值是实数.正交性: 厄密算符的属于不同本征值的两个本征函数 相互正交.完全性: 厄密算符ˆF的本征函数()n x φ和()x λφ组成完全系, 即任一函数()x ψ可以按()n x φ和()x λφ展开为级数:()()()n n nx c x c x d λλψφφλ=+∑⎰ (12)展开系数: ()()nnc x x dx φψ*=⎰, (13)()()c x x dx λλφψ*=⎰. (14)2nc 是在()x ψ态中测量力学量F 得到nλ的几率,2c d λλ是在()x ψ态中测量力学量F ,得到测量结果在λ到d λλ+范围内的几率.4. 2ˆL 和ˆZL 算符的本征值方程,本征值和本征函数. ()22ˆ1L l l ψψ=+ , ˆzL m ψψ= 本征函数 (),lm Y θφ.5. 氢原子的哈密顿算符及其本征值,本征函数nlm ψ的数学结构, ()()(),,,nlmnl lm r R r Y ψθφθφ= (15)主量子数n ,角量子数l 和磁量子数m 的取值范围,简并态的概念.6. 氢原子的能级公式和能级的简并度.422,1,2,3,...2s n e E n nμ=-= (16)不考虑电子的自旋是2n 度简并的;考虑电子的自旋是22n 度简并的.7. 给定电子波函数的表达式,根据电子在(),,r θφ点周围的体积元内的几率()22,,sin nlm r r drd d ψθφθθφ(17)计算电子几率的径向分布和角分布.计算在半径r 到r dr +的球壳内找到电子的几率. 8. 给定态函数,计算力学量平均值,平均值的计算公式.()()ˆF x F x dx ψψ*=⎰(18) 注意(11)式对波函数所在的空间作积分. 9. 算符的对易关系及测不准关系.(1) 如果一组算符相互对易,则这些算符所表示的力学量同时具有确定值(即对应的本征值), 这些算符有组成完全系的共同的本征函数.例如: 氢原子的哈密顿算符ˆH ,角动量平方算符2ˆL 和角动量算符ˆz L 相互对易, 则(i) 它们有共同的本征函数nlm ψ, (ii) 在态nlm ψ中,它们同时具有确定值:4222s n e E n μ=-,()21l l + , m .(2) 测不准关系:如果算符ˆF和ˆG 不对易,则一般来说它们不能同时有确定值. 设ˆFˆG -ˆG ˆF =ˆik 则算符ˆF和ˆG 的均方偏差满足:()_______2ˆF ∆⋅()_______22ˆ4k G ∆≥(19)其中 ()()________________________2222222F F F F FF F F F ∆=-=-+=-()__________222F F F ∆=-, ()__________222G G G ∆=-(a) 利用测不准关系估计氢原子的基态能量, 线性谐振子的零点能等.(b) 给定态函数ψ,计算两个力学量ˆF和ˆG 的均方偏差的乘积()_______2ˆF∆⋅()_______2ˆ?G ∆=(20)第四章 态和力学量的表象 1. 对表象的理解(1) 状态ψ: 态矢量(2) Q 表象:力学量Q 的本征函数 ()()()12,,...,...n u x u x u x构成无限维希耳伯特空间(坐标系)的基矢量 (4) 将态矢量按照上述基矢量展开:()()(),n n nx t a t u x ψ=∑()()()12,,...,...n a t a t a t 是态矢量ψ在Q 表象中沿各基矢量的分量.(5) ()2n a t 是在(),x t ψ所描写的态中,测量力学量Q 得到结果为n Q 的几率. 2. 算符在Q 表象中的表示(i)算符ˆF在Q 表象中是一个矩阵, nm F 称为矩阵元 ()(),nm nm F u x F x u x dx i x *∂⎛⎫≡ ⎪∂⎝⎭⎰(ii) 算符在自身表象中是一个对角矩阵,其对角矩阵元为该算符对应的本征值. 3. 量子力学公式的矩阵表述 (1) 平均值公式:†F F =ψψ (21)(2) 本征值方程 → 久期方程()()()()()()1111121222122212 ... ... ... ... : : : ... ... : : :m m n n nm mm a t a t F F F a t a t F F F F F F a t a t λ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭→ 111212122212 ... ... ... ... 0... ... ..............................n n n n nn F F F F F F F F F λλλ--=-(3) 薛定谔方程的矩阵形式 di H dtψ=ψ(22) 4. 么正变换的概念(1) 么正变换是两个表象基矢量之间的变换矩阵. (2) 么正变换的矩阵元由两个表象的基矢量共同确定,()()()(),.n n m m S x x dx S x x dx ββααψϕψϕ***⎫=⎪⎬=⎪⎭⎰⎰(3) 态矢量由A 表象变换到B 表象的公式1b S a -= (23)(4) 力学量ˆF由A 表象变换到B 表象的公式: 1F S FS -'= (24)5. 么正变换的性质(i) 么正变换不改变算符的本征值; (ii) 么正变换不改变矩阵F 的迹; (iii) 么正变换不改变力学量的平均值.第五章 微扰理论(I) 求解非简并定态微扰问题 (1) 确定微扰的哈密顿算符ˆH'. ()0ˆˆˆHH H '=+, 及与()0ˆH对应的零级近似能量()n E 和零级近似波函数()0nψ;(2) 计算能量的一级修正:()()()100ˆn nn E H d ψψτ*'=⎰ (25)(3) 计算波函数的一级修正:()()()()10'00mn n m mn mH E E ψψ'=-∑(26) (4) 计算能量的二级修正:()()()22'0nln ln l H E E E '=-∑ (27)(II) 求解非简并定态微扰问题 (只要求能量的一级修正) 求解步骤(1) 确定微扰的哈密顿算符ˆH'. (2) 确定微扰算符的矩阵元:ˆliH '=ˆl i H d φφτ*'⎰(28)(3) 求解久期方程得到能量的一级修正()()()111121121222112.........................................................n k n k kkkkn H E H H H H E H H H H E '''-'''-='''- (29)(III) 变分法不作要求 (IV) 含时微扰论 (1) 基本步骤设0ˆH 的本征函数为n φ为已知:0ˆn n nH φεφ=(30)将ψ按照0ˆH 的定态波函数n it n n e εφ-Φ=展开:()n nna t ψ=Φ∑(31)展开系数的表达式:()01mk ti t m mka t H e dt i ω'''=⎰(32)其中ˆmn m n H H d φφτ*''=⎰(33)是微扰矩阵元,()1m nmnωεε=-(34)为体系由n ε能级跃迁到m ε能级的玻尔频率. 在t 时刻发现体系处于m Φ态的几率是()2m a t , 体系在微扰的作用下,由初态k Φ跃迁到终态m Φ的几率为()2k m m W a t →= (35)(2) 用于周期微扰()()ˆˆi t i t H t F e e ωω-'=+得到()()()11mk mk i t i t mk m mk mk F e e a t ωωωωωωωω''+-⎡⎤--=-+⎢⎥+-⎣⎦(36)由(36)式,讨论并理解发生跃迁的条件是mkωω=±或m k m k εεω=± (37)(i) 表明只有外界的微扰含有频率mk ω时,体系才能从k Φ态跃迁到m Φ态,这时体系吸收和发射的能量是mk ω ;(ii)跃迁是一个共振现象.(3) 能量时间的测不准关系的含义E t ∆∆ (38)(4) 了解原子的跃迁几率和三个爱因斯坦系数:mk A , mkB 和km B 及相互关系. (5) 了解用含时微扰理论计算爱因斯坦发射和吸收系数(6) 记住对角量子数和磁量子数的选择定则1,0, 1.l l l m m m '∆=-=±⎫⎬'∆=-=±⎭(39) 第六章 散射只要求理解微分散射截面的概论, 不作计算要求.第七章 自旋与全同粒子1. 电子的自旋角动量S ,它在空间任何方向的投影只能取 2z S =± (40) 2. 自旋算符的矩阵形式 01ˆ210x S ⎛⎫= ⎪ ⎪⎝⎭ , 0ˆ20y i S i ⎛⎫-= ⎪ ⎪⎝⎭ , 10ˆ201z S ⎛⎫= ⎪ ⎪-⎝⎭(41) 3.泡利矩阵 01ˆ10x σ⎛⎫= ⎪ ⎪⎝⎭, 0ˆ0y i i σ⎛⎫-= ⎪ ⎪⎝⎭, 10ˆ01z σ⎛⎫= ⎪ ⎪-⎝⎭ (42)(1) 求力学量在某个自旋态的平均值和均方偏差.†G G =ψψ (43)()11121†1222122G G G G G G **⎛⎫ψ⎛⎫=ψψ=ψψ ⎪ ⎪ ⎪ψ⎝⎭⎝⎭ (44) (2)求解自旋角动量算符的本征值方程, 本征值和本征函数4. 自旋与轨道角动量的耦合及产生光谱的精细结构的原因.5. 全同性原理的表述6. 描写全同粒子体系状态的波函数只能是对称或反对称的,它们的对称性不随时间改变.实验证明,微观粒子按照其波函数的对称性可以分为两类: (I) 费米子: 波函数是反对称的;(II) 玻色子: 波函数是对称的.7.泡利不相容原理:不能有两个或两个以上的费米子处于同一状态.。

大学物理易考知识点量子力学的基本概念和理论

大学物理易考知识点量子力学的基本概念和理论

大学物理易考知识点量子力学的基本概念和理论量子力学(Quantum mechanics)是研究微观领域中物质和辐射的行为的物理学理论,也是现代物理学的基石之一。

量子力学的基本概念和理论涵盖了很多方面,本文将介绍大学物理易考的量子力学知识点,帮助读者更好地理解相关内容。

一、波粒二象性(Wave-particle duality)波粒二象性是指微观粒子既具有粒子性质,也具有波动性质。

在量子力学中,粒子的行为既可以用粒子模型解释,也可以用波动模型解释。

这一概念首先由德布罗意(Louis de Broglie)提出,并在实验中得到了验证。

1. 德布罗意假设德布罗意提出,与粒子相对应的波动特性可以用波长(也称为德布罗意波长)来描述,其公式为λ = h/p,其中λ 是波长,h 是普朗克常量,p 是粒子的动量。

这一假设为量子力学奠定了基础。

2. 实验验证实验中,例如双缝干涉实验和扫描隧道显微镜实验,通过观察到物质波的干涉和衍射现象,验证了波粒二象性的存在。

这些实验结果对量子力学的发展产生了深远的影响。

二、波函数和薛定谔方程(Wave function and Schrödinger equation)波函数是量子力学中用来描述粒子状态的数学函数。

在波函数的框架下,薛定谔方程描述了波函数随时间的演化规律,是量子力学的基本方程之一。

1. 波函数的概念波函数用Ψ 表示,其表示了粒子在空间中的分布。

波函数的模长的平方|Ψ|^2 表示了粒子在某个位置被观测到的概率密度。

2. 薛定谔方程薛定谔方程是描述量子力学体系演化的基本方程,可以写作HΨ = EΨ,其中 H 是哈密顿算符,Ψ 是波函数,E 是体系的能量。

薛定谔方程将量子力学问题转化为一个本征值问题,解这个方程可以得到体系的能级和波函数。

三、量子力学的观测和不确定性原理(Observation and uncertainty principle)量子力学中的观测和不确定性原理是描述微观领域的探测和测量所面临的限制。

总结量子力学知识点

总结量子力学知识点

总结量子力学知识点量子力学的基本概念量子力学的基本概念包括量子化、波粒二象性、不确定性原理等。

量子化是指在量子力学中,能量不是连续的,而是呈现为离散的能级。

在经典力学中,能量是连续的,可以取任意值,而在量子力学中,能量是量子化的,只能取特定的离散值。

这一现象对于原子、分子等微观粒子的行为有着重要影响,如玻尔模型中的电子能级。

波粒二象性是指微观粒子既具有粒子性质又具有波动性质。

根据德布罗意假设,所有物质都具有波动性质,且波长和动量之间存在着一种关系。

实验表明,电子、中子等微观粒子都可以表现出干涉、衍射等波动现象,这证实了它们具有波动性质。

而在实验中,这些微观粒子又具有粒子性质,如能够具有确定的位置和动量。

不确定性原理是由海森堡在1927年提出的,它指出对于某一微观粒子,无论是位置还是动量,都无法同时确定其精确数值,只能得到它们的概率分布。

这一原理揭示了微观世界的一种本质特征,也为量子力学的发展打下了基础。

量子力学的发展历程量子力学的发展历程可以分为早期量子力学、矩阵力学和波动力学、量子力学的标准理论等阶段。

早期量子力学是在20世纪初由普朗克、爱因斯坦、玻尔等人提出的,他们试图解决原子光谱、黑体辐射等实验事实所暴露出的问题。

其中,普朗克提出了能量量子化的假设,爱因斯坦用光的波粒二象性解释了光电效应,而玻尔运用量子条件解释了氢原子光谱。

这些理论为量子力学的建立提供了坚实的基础。

矩阵力学和波动力学是量子力学的两大分支,分别由海森堡和薛定谔于1925-1926年提出。

在矩阵力学中,物理量用矩阵来描述,而波动力学则是用波函数描述各种物理量。

这两者虽然表述方式不同,但实质上是等价的。

这一阶段的成果进一步完善了量子力学的理论框架。

量子力学的标准理论是在1926-1927年由海森堡、薛定谔等人提出的,这一时期形成了量子力学的标准形式。

其中,海森堡提出了量子力学的基本原理,即不确定性原理,而薛定谔提出了薛定谔方程。

量子力学知识点

量子力学知识点

量子力学知识点量子力学是描述微观世界中物质和能量行为的理论框架,是现代物理学中最重要的分支之一。

早在20世纪初,物理学家们就开始探索微观世界的奥秘,并提出了量子力学的理论基础。

本文将为您介绍一些关于量子力学的基本知识点。

一、光的粒子性和波动性在经典物理学中,光被视为电磁波,具有波动性质。

然而,在实验中发现光也具有粒子性,即光子。

根据光的粒子性和波动性,量子力学引入了波粒二象性的概念。

二、波函数和不确定原理波函数是量子力学中用来描述粒子行为的数学函数。

它包含了粒子的位置、动量、能量等信息。

根据不确定原理,无法同时准确确定粒子的位置和动量,这是量子力学中的基本原理之一。

三、叠加原理和量子纠缠量子力学中的叠加原理指出,处于未观测状态的粒子可以同时存在于多个可能状态之中。

当进行观测时,波函数会坍缩为某一确定状态。

这种现象被称为量子纠缠,即两个或多个粒子之间的状态相互依赖,无论它们之间有多远。

四、量子力学的定态和非定态在量子力学中,定态表示粒子处于稳定状态,其波函数不随时间变化。

非定态则表示粒子的状态会随时间演化。

通过薛定谔方程,我们可以描述粒子在不同状态下的演化过程。

五、测量和观测量子力学中的测量和观测与经典物理学中有所不同。

测量过程会导致波函数坍缩,粒子的状态被确定下来。

而在观测之前,粒子处于叠加态,可能处于多个不同状态。

六、量子力学的应用量子力学的应用涉及到许多领域。

在材料科学中,量子力学可以解释材料的电子结构和导电性质。

在计算机科学中,量子计算机的发展有望在处理复杂问题上实现超高速计算。

此外,量子力学还在量子通信、量子密码等领域有重要应用。

七、量子纠缠和量子隐形传态量子纠缠是量子力学中的一个重要概念,也是量子计算和量子通信的基础。

量子隐形传态则指通过纠缠态将信息传递到另一个位置,实现“隐形传输”。

结语量子力学作为一门复杂而深奥的学科,对我们理解微观世界的本质和开展科学研究具有重要意义。

本文对量子力学的一些基本知识点进行了梳理和介绍,希望能对读者理解量子力学产生帮助,并引发对这一领域更深入的探索与思考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

量子力学基本概念复习要点
1.波函数的性质
完整描述微观粒子的状态概率密度几率流密度波函数的归一化
重要例子: 德布罗意平面波能够描述自由粒子的状态
2.薛定谔方程描述了状态随时间的变化
3.定态概念定态的性质(定态下的概率密度和几率流密度)
4.定态薛定谔方程(能量本征方程)的求解(无限深势阱问题)
定解条件(波函数的三大标准条件、周期性条件)
5.书上常见力学量的算符形式(在坐标或动量表象下,坐标算符、
动量算符、动能算符、势能算符、角动量算符、哈密顿算符等等)不是所有算符都有经典对应(例如自旋算符)
6.算符本征态、本征值的概念、物理含义(量子力学基本假定P56)
7.厄米算符的定义、算符是否为厄米算符的判断证明(PPT第三章
第一节相关例题)厄米算符的本征值
8.熟练掌握氢原子的状态、能级的性质,三个量子数(n、l、m)的
物理含义及它们之间的关系。

简并度的计算结合氢原子能级公式解决能量跃迁问题
9.掌握厄米算符本征函数的正交归一性以及有关定理的证明常见
本征函数的正交归一式
10.厄米算符本征函数构成完备系波函数展开系数的物理含义
(量子力学基本假定P84)
会计算力学量的平均值、可能值和相应的概率(典型例题
P102 3.6 3.9 PPT上有关例题)
11.会计算两个算符之间的对易关系算符对易的物理含义(掌握
有关定理并会证明)、书上常见算符的对易式不对易式和测不准关系式之间的关系(典型例题PPT 讲义例题例一、例三)
12.知道表象变换的含义态的列矩阵表示知道矩阵元的含义
13.算符的矩阵表示(矩阵元,厄米矩阵、自身表象下矩阵形式)
14.知道幺正变换的定义及它在表象变换中所起的作用(态的变换和
算符的变换),知道并会证明其性质(不改变量子力学的规律, 例如迹、本征值)
15.常见本征矢封闭性和正交归一性的狄拉克符号表示法
16.应用微扰论求解简单的微扰问题(典型例题P173 5.3,幻灯片例
题)适用条件(以氢原子为例)
数学要求:常用的简单积分公式和积分方法(分部积分法、换元法)常用的三角函数公式(倍、半、和角公式等等)。

相关文档
最新文档