大学物理学第二章刚体力学基础自学练习题
《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析一、选择题1.刚体对轴的转动惯量,与哪个因素无关 [ C ](A)刚体的质量(B)刚体质量的空间分布(C)刚体的转动速度(D)刚体转轴的位置2.有两个力作用在一个有固定轴的刚体上. [ B ](1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A)只有(1)是正确的;(B) (1)、(2) 正确, (3)、(4)错误;(C) (1)、(2)、(3)都正确, (4)错误;(D) (1)、(2)、(3)、(4)都正确.3.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的[ A ](A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.4.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,小球和地球所组成的系统,下列哪些物理量守恒( C )(A)动量守恒,角动量守恒(B)动量和机械能守恒(C)角动量和机械能守恒(D)动量,角动量,机械能守恒5.一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同,速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L以及圆盘的角速度ω则有( B )(A)L不变,ω增大(B)L不变,ω减小(C)L变大,ω不变(D)两者均不变6.一花样滑冰者,开始自转时,其动能为20021ωJ E =。
然后他将手臂收回,转动惯量减少为原来的1/3,此时他的角速度变为ω,动能变为E ,则下列关系正确的是( D ) (A )00,3E E ==ωω (B )003,31E E ==ωω (C )00,3E E ==ωω (D )003,3E E ==ωω1C 2.B ,3.A ,4.C ,5.B ,6.D二、填空1.当刚体受到的合外力的力矩为零时,刚体具有将保持静止的状态或_____________状态,把刚体的这一性质叫刚体___________。
《刚体力学基础习题》课件

03 刚体的转动惯量
CHAPTER
转动惯量的定义与计算
转动惯量的定义
转动惯量是描述刚体转动惯性大小的物理量,其大小与刚体的质量分布和转轴的 位置有关。
转动惯量的计算
对于给定的刚体,可以通过积分计算其转动惯量,对于规则刚体,也可以通过公 式直接计算。
刚体的动量矩
动量矩的定义
动量矩是描述刚体转动动量的物理量 ,其大小等于刚体的动量与转动轴到 质心距离的乘积。
转动惯量与动量矩习题解析
转动惯量
01
描述物体转动惯性大小的物理量,与物体的质量分布和旋转轴
的位置有关。
动量矩
02
描述物体转动动量大小的物理量,等于物体质量与速度矢量的
乘积。
动量矩守恒
03
在没有外力矩作用的情况下,物体的动量矩保持不变。
谢谢
THANKS
04 刚体的动力学应用
CHAPTER
刚体的平动与转动
刚体的平动
刚体在空间中沿某一确定直线作等距离的移动,这种运动称为刚体的平动。
刚体的转动
刚体绕某一定点转动,这种运动称为刚体的转动。
刚体的定点运动
01
刚体的定点运动是指刚体绕通过 某一定点的转轴转动,其上任意 一点都绕该转轴作圆周运动。
02
刚体的定点运动可以分为定轴转 动、定平面转动和定点转动三种 类型。
转动动力学方程
T=Iβ(其中T为扭矩,I为转动惯量,β为角加速度)
复合运动动力学方程
需要将平动和转动动力学方程联立求解。
02 刚体转动的基本定理
CHAPTER
角动量定理
总结词
描述刚体转动时,力矩与角动量变化 量之间的关系。
详细描述
精选-《大学物理学》第二章 刚体力学基础 自学练习题

第二章 刚体力学基础 自学练习题一、选择题4-1.有两个力作用在有固定转轴的刚体上:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3)当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4)当这两个力对轴的合力矩为零时,它们的合力也一定是零; 对上述说法,下述判断正确的是:( )(A )只有(1)是正确的; (B )(1)、(2)正确,(3)、(4)错误; (C )(1)、(2)、(3)都正确,(4)错误; (D )(1)、(2)、(3)、(4)都正确。
【提示:(1)如门的重力不能使门转动,平行于轴的力不能提供力矩;(2)垂直于轴的力提供力矩,当两个力提供的力矩大小相等,方向相反时,合力矩就为零】4-2.关于力矩有以下几种说法:(1)对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度; (2)一对作用力和反作用力对同一轴的力矩之和必为零;(3)质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同。
对上述说法,下述判断正确的是:( )(A )只有(2)是正确的; (B )(1)、(2)是正确的; (C )(2)、(3)是正确的; (D )(1)、(2)、(3)都是正确的。
【提示:(1)刚体中相邻质元间的一对内力属于作用力和反作用力,作用点相同,则对同一轴的力矩和为零,因而不影响刚体的角加速度和角动量;(2)见上提示;(3)刚体的转动惯量与刚体的质量和大小形状有关,因而在相同力矩的作用下,它们的运动状态可能不同】3.一个力(35)F i j N =+v v v 作用于某点上,其作用点的矢径为m j i r )34(ϖϖϖ-=,则该力对坐标原点的力矩为 ( )(A )3kN m -⋅v ; (B )29kN m ⋅v ; (C )29kN m -⋅v ; (D )3kN m ⋅v。
【提示:(43)(35)4302092935i j kM r F i j i j k k k =⨯=-⨯+=-=+=v v v v v v v v v v v v v 】4-3.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴 转动,如图所示。
大学物理习题及解答(刚体力学)

1 如图所示,质量为m 的小球系在绳子的一端,绳穿过一铅直套管,使小球限制在一光滑水平面上运动。
先使小球以速度0v 。
绕管心作半径为r D 的圆周运动,然后向下慢慢拉绳,使小球运动轨迹最后成为半径为r 1的圆,求(1)小球距管心r 1时速度大小。
(2)由r D 缩到r 1过程中,力F 所作的功。
解 (1)绳子作用在小球上的力始终通过中心O ,是有心力,以小球为研究对象,此力对O 的力矩在小球运动过程中始终为零,因此,在绳子缩短的过程中,小球对O 点的角动量守恒,即10L L =小球在r D 和r 1位置时的角动量大小 1100r mv r mv = 100r r v v =(2)可见,小球的速率增大了,动能也增大了,由功能定理得力所作的功 ⎥⎦⎤⎢⎣⎡-=-=-=1)(21 21)(21 21212102020210202021r r mv mv r r mv mv mv W2 如图所示,定滑轮半径为r ,可绕垂直通过轮心的无摩擦水平轴转动,转动惯量为J ,轮上绕有一轻绳,一端与劲度系数为k 的轻弹簧相连,另一端与质量为m 的物体相连。
物体置于倾角为θ的光滑斜面上。
开始时,弹簧处于自然长度,物体速度为零,然后释放物体沿斜面下滑,求物体下滑距离l 时,物体速度的大小。
解 把物体、滑轮、弹簧、轻绳和地球为研究系统。
在物体由静止下滑的过程中,只有重力、弹性力作功,其它外力和非保守内力作功的和为零,故系统的机械能守恒。
设物体下滑l 时,速度为v ,此时滑轮的角速度为ω则 θωsin 2121210222mgl mv J kl -++= (1)又有 ωr v = (2) 由式(1)和式(2)可得 m r J kl mgl v +-=22sin 2θ本题也可以由刚体定轴转动定律和牛顿第二定律求得,读者不妨一试。
3 如右图所示,一长为l 、质量为m '的杆可绕支点O 自由转动,一质量为m 、速率为v 的子弹射入杆内距支点为a 处,使杆的偏转为︒30。
大学物理刚体力学测试题答案

T
的角加速度方向为正方向,运用牛顿定律
和转动定理,得
T
m 'g ? T ? m 'a
(1)
a
m' g
TR ? J ? ? 1 mR 2? (2)
2
a ? R?
(3)
(3)式代入(2)式得 T ? m a
一.选择题 1.两个匀质圆盘 A、B 密度分别为 ? A , ? B ,若 ? A ? ? B ,但质量和厚
度相同 ,两圆盘的旋转轴都通过盘心并垂直盘面, 则转动惯量: (C )
(A) J A ? J B
(B) J A ? J B (C) J A ? J B (D)不一定
均匀圆盘的转动惯量
J ? 1 mR2 2
4.花样滑冰一运动员可绕通过脚尖的垂直轴旋转, 当他伸长两臂旋转
时的转动惯量为 J 0 ,角速度为 ? 0 ,当他突然收臂使转动惯量减少
2
为 3 J 0 时,则角速度为 ( A )
(A)
3 2
?
0
(B)
2 3
?
0
(C)
3?
2
0
(D)
2?
3
0
合外力矩为零,系统角动量守恒
J 0? 0
?
2 3
J
0?
?
?
?
3 2
?
0
5.有一小球,置于一光滑的水平桌面上,用细绳拴住小球,绳的另一
端穿过桌面中心的孔 O,该小球以角速度 ? 在半径为 R 的圆周上运
动,如图所示,今将绳从小孔往下拉,则小球 ( C )
(A)动量大小不变,动能变,角动量变
(B)动量大小变,动能不变,角动量变 (C )动量大小与动能都变,角动量不变
大学物理上练习册 第2章《刚体定轴转动》答案-2013

第2章 刚体定轴转动一、选择题1(B),2(B),3(C),4(C),5(C) 二、填空题(1). 62.5 1.67s (2). 4.0 rad/ (3). 0.25 kg ·m 2(4). mgl μ21参考解:M =⎰M d =()mgl r r l gm l μμ21d /0=⎰(5). 2E 0三、计算题1. 如图所示,半径为r 1=0.3 m 的A 轮通过皮带被半径为r 2=0.75 m 的B 轮带动,B 轮以匀角加速度π rad /s 2由静止起动,轮与皮带间无滑动发生.试求A 轮达到转速3000 rev/min 所需要的时间.解:设A 、B 轮的角加速度分别为βA 和βB ,由于两轮边缘的切向加速度相同, a t = βA r 1 = βB r 2则 βA = βB r 2 / r 1 A 轮角速度达到ω所需时间为 ()75.03.060/2300021⨯π⨯π⨯===r r t B A βωβωs =40 s2.一砂轮直径为1 m 质量为50 kg ,以 900 rev / min 的转速转动.撤去动力后,一工件以 200 N 的正压力作用在轮边缘上,使砂轮在11.8 s 内停止.求砂轮和工件间的摩擦系数.(砂轮轴的摩擦可忽略不计,砂轮绕轴的转动惯量为21mR 2,其中m 和R 分别为砂轮的质量和半径).解:R = 0.5 m ,ω0 = 900 rev/min = 30π rad/s ,根据转动定律 M = -J β ① 这里 M = -μNR ②μ为摩擦系数,N 为正压力,221mR J =. ③ 设在时刻t 砂轮开始停转,则有: 00=+=t t βωω从而得 β=-ω0 / t ④将②、③、④式代入①式,得 )/(2102t mR NR ωμ-=- ∴ m =μR ω0 / (2Nt )≈0.5r1. 有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量221mR J =,其中m 为圆形平板的质量)解:在r 处的宽度为d r 的环带面积上摩擦力矩为r r r R mgM d 2d 2⋅π⋅π=μ总摩擦力矩 mgR M M R μ32d 0==⎰故平板角加速度 β =M /J设停止前转数为n ,则转角 θ = 2πn由 J /Mn π==4220θβω可得 g R MJ n μωωπ16/342020=π=2. 一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为ω0.设它所受阻力矩与转动角速度成正比,即M =-k ω (k 为正的常数),求圆盘的角速度从ω0变为021ω时所需的时间.解:根据转动定律: J d ω / d t = -k ω ∴ t J kd d -=ωω两边积分:⎰⎰-=t t J k02/d d 100ωωωω得 ln2 = kt / J∴ t =(J ln2) / k5.一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示).解:设绳子对物体(或绳子对轮轴)的拉力为T ,则根据牛顿运动定律和转动定律得:mg T =ma ① T r =J β ② 由运动学关系有: a = r β ③ 由①、②、③式解得: J =m ( g -a ) r 2 / a ④ 又根据已知条件 v 0=0 ∴ S =221at , a =2S / t 2 ⑤将⑤式代入④式得:J =mr 2(Sgt 22-1)3.如图所示,设两重物的质量分别为m 1和m 2,且m 1>m 2,定滑轮的半径为r ,对转轴的转动惯量为J ,轻绳与滑轮间无滑动,滑轮轴上摩擦不计.设开始时系统静止,试求t 时刻滑轮的角速度. 解:作示力图.两重物加速度大小a 相同,方向如图.m 1g -T 1=m 1a T 2-m 2g =m 2a 设滑轮的角加速度为β,则 (T 1-T 2)r =J β 且有 a =r β 由以上四式消去T 1,T 2得: ()()J r m m gr m m ++-=22121β 开始时系统静止,故t 时刻滑轮的角速度.()()Jrm m grt m m t ++-==22121 βω7.一根放在水平光滑桌面上的匀质棒,可绕通过其一端的竖直固定光滑轴O 转动.棒的质量为m = 1.5 kg ,长度为l = 1.0 m ,对轴的转动惯量为J = 231ml .初始时棒静止.今有一水平运动的子弹垂直地射入棒的另一端,并留在棒中,如图所示.子弹的质量为m '= 0.020 kg ,速率为v = 400 m ·s -1.试问:(1) 棒开始和子弹一起转动时角速度ω有多大?(2) 若棒转动时受到大小为M r = 4.0 N ·m 的恒定阻力矩作用,棒能转过多大的角度θ?解:(1) 角动量守恒:ω⎪⎭⎫ ⎝⎛'+='2231l m ml l m v ∴ l m m m ⎪⎭⎫ ⎝⎛'+'=31vω=15.4 rad ·s -1(2) 由转动定律,得: -M r =(231ml +2l m ')β0-ω 2=2βθ∴ rM l m m 23122ωθ⎪⎭⎫ ⎝⎛'+==15.4 rad8.如图所示,A 和B 两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 J =10 kg ·m 2 和 J =20 kg ·m 2.开始时,A 轮转速为600 rev/min ,B 轮静止.C 为摩擦啮合器,其转动惯量可忽略不计.A 、B 分别与C 的左、右两个组件相连,当C 的左右组件啮合时,B 轮得到加速而A 轮减速,直到两轮的转速相等为止.设轴光滑,求: mm , lOm '(1) 两轮啮合后的转速n ; (2) 两轮各自所受的冲量矩.解:(1) 选择A 、B 两轮为系统,啮合过程中只有内力矩作用,故系统角动量守恒J A ωA +J B ωB = (J A +J B )ω,又ωB =0得: ω ≈ J A ωA / (J A +J B ) = 20.9 rad / s 转速 ≈n 200 rev/min (2) A 轮受的冲量矩⎰t M A d = J A (J A +J B ) = -4.19×10 2N ·m ·s 负号表示与A ω方向相反. B 轮受的冲量矩⎰t MBd = J B (ω - 0) = 4.19×102 N ·m ·s方向与A ω相同.4.一匀质细棒长为2L ,质量为m ,以与棒长方向相垂直的速度v 0在光滑水平面内平动时,与前方一固定的光滑支点O 发生完全非弹性碰撞.碰撞点位于棒中心的一侧L 21处,如图所示.求棒在碰撞后的瞬时绕O 点转动的角速度ω.(细棒绕通过其端点且与其垂直的轴转动时的转动惯量为231ml ,式中的m 和l 分别为棒的质量和长度.)解:碰撞前瞬时,杆对O 点的角动量为L m L x x x x L L 0202/002/30021d d v v v v ==-⎰⎰ρρρ式中ρ为杆的线密度.碰撞后瞬时,杆对O 点的角动量为ωωω2221272141234331mL L m L m J =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=因碰撞前后角动量守恒,所以 L m mL 022112/7v =ω ∴ ω = 6v 0 / (7L)10. 空心圆环可绕光滑的竖直固定轴AC 自由转动,转动惯量为J 0,环的半径为R ,初始时环的角速度为ω0.质量为m 的小球静止在环内最高处A 点,由于某种微小干扰,小球沿环向下滑动,问小球滑到与环心O 在同一高度的B 点和环的最低处的C 点时,环的角速度及小球相对于环的速度各为多大?(设环的内壁和小球都是光滑的,小球可视为质点,环截面半径r <<R .)解:选小球和环为系统.运动过程中所受合外力矩为零,角动量守恒.对地球、小球和环系统机械能守恒.取过环心的水平面为势能零点.小球到B 点时: J 0ω0=(J 0+mR 2)ω ①2121()222220212121BRmJmgRJ v++=+ωωω②式中v B表示小球在B点时相对于地面的竖直分速度,也等于它相对于环的速度.由式①得:ω=J0ω 0 / (J0 + mR2) 1分代入式②得2222Jm RRJgRB++=ωv当小球滑到C点时,由角动量守恒定律,系统的角速度又回复至ω0,又由机械能守恒定律知,小球在C的动能完全由重力势能转换而来.即:()RmgmC2212=v, gRC4=v四研讨题1. 计算一个刚体对某转轴的转动惯量时,一般能不能认为它的质量集中于其质心,成为一质点,然后计算这个质点对该轴的转动惯量?为什么?举例说明你的结论。
刚体力学基础-习题-解答

衡水学院 理工科专业 《大学物理B 》 刚体力学基础 习题命题教师:郑永春 试题审核人:张郡亮一、填空题(每空1分)1、三个质量均为m 的质点,位于边长为a 的等边三角形的三个顶点上。
此系统对通过三角形中心并垂直于三角形平面的轴的转动惯量J 0=__ ma 2 _,对通过三角形中心且平行于其一边的轴的转动惯量为J A =__12ma 2_,对通过三角形中心和一个顶点的轴的转动惯量为J B =__21ma 2。
2、两个质量分布均匀的圆盘A 和B 的密度分别为ρA 和ρB (ρA >ρB ),且两圆盘的总质量和厚度均相同。
设两圆盘对通过盘心且垂直于盘面的轴的转动惯量分别为J A 和J B ,则有J A < J B 。
3、 一作定轴转动的物体,对转轴的转动惯量J =3.0 kg ·m 2,角速度ω0=6.0 rad/s .现对物体加一恒定的制动力矩M =-12 N ·m ,当物体的角速度减慢到ω=2.0 rad/s 时,物体已转过了角度∆θ=__4.0rad4、两个滑冰运动员的质量各为70 kg ,均以6.5 m/s 的速率沿相反的方向滑行,滑行路线间的垂直距离为10 m ,当彼此交错时,各抓住一10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量L =__2275 kg·m 2·s 1 _;它们各自收拢绳索,到绳长为5 m 时,各自的速率υ =__13 m·s 1_。
5、有一质量均匀的细棒,可绕垂直于棒的一端的水平轴转动。
如将此棒放在水平位置,然后任其下落,则在下落过程中的角速度大小将 变大 ,角加速度大小将 变小 。
二、单项选择题(每小题2分)( A )1、有两个力作用在一个有固定转轴的刚体上,下列说法正确的是:A.这两个力都平行于轴作用时,它们对轴的合力矩一定是零;B.这两个力都垂直于轴作用时,它们对轴的合力矩一定是零;C.当这两个力的合力为零时,它们对轴的合力矩也一定是零;D.当这两个力对轴的合力矩为零时,它们的合力也一定是零。
大学物理刚体力学基础习题思考题与答案

习题55-1.如图,一轻绳跨过两个质量为m、半径为r的均匀圆盘状定滑轮,绳的两端分别挂着质量为2m和m的重物,绳与滑轮间无相对滑动,滑轮轴光滑,两个定2滑轮的转动惯量均为m r/2,将由两个定滑轮以及质量为2m和m的重物组成的系统从静止释放,求重物的加速度和两滑轮之间绳内的张力。
解:受力分析如图,可建立方程:2mgT22ma┄①T1┄②mgmaT(TT)rJ┄③2(TT)1rJ┄④a,r2Jmr┄⑤/2 1联立,解得:ag411,Tmg8。
5-2.如图所示,一均匀细杆长为l,质量为m,平放在摩擦系数为的水平桌面上,设开始时杆以角速度0绕过中心O且垂直与桌面的轴转动,试求:(1)作用于杆的摩擦力矩;(2)经过多长时间杆才会停止转动。
解:(1)设杆的线密度为:ml,在杆上取一小质元dmdx,有微元摩擦力:dfdmggdx,微元摩擦力矩:dMgxdx,考虑对称性,有摩擦力矩:l1M2gxdxmgl;24(2)根据转动定律MJJ ddt,有:tMdtJd,112mgltml,∴0 412 t30lg。
或利用:MtJJ,考虑到0,12 Jml,12有:0t3 l g 。
5-3.如图所示,一个质量为m的物体与绕在定滑轮上的绳子相联,绳子的质量可以忽略,它与定滑轮之间无滑动。
假设定滑轮质量为M、半径为2R,其转动惯量为M R/2,试求该物体由静止开始下落的过程中,下落速度与时间的关系。
解:受力分析如图,可建立方程:mgTma┄①TR┄②JaR,12 JmR┄③22mgMmg联立,解得:aT,,M2m M2m考虑到a dvdt,∴vt2mgdvdt00M2m,有:v2m gtM2m。
5-4.轻绳绕过一定滑轮,滑轮轴光滑,滑轮的质量为M/4,均匀分布在其边缘上,绳子A端有一质量为M的人抓住了绳端,而在绳的另一端B系了一质量为M/4的重物,如图。
已知滑轮对O2轴的转动惯量J/4,设人从静止开始以相对绳匀速向上爬MR时,绳与滑轮间无相对滑动,求B端重物上升的加速度?解一:分别对人、滑轮与重物列出动力学方程Mg T1人MaAMMT2ga物B44T1RTRJ滑轮22由约束方程:aaRJ,解上述方程组A和MR/4B得到g a. 2解二:选人、滑轮与重物为系统,设u为人相对绳的速度,v为重du物上升的速度,注意到u 为匀速,0dt,系统对轴的角动量为:1M32LMvRM(uv)R(R)MvRMu 442R(B 物体)(人)(A 物体)而力矩为: M13 MgRMgRMgR , 44根据角动量定理dL3d3 M 有:MgR(MvRMuR),∴dt4dt2 g a 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 刚体力学基础 自学练习题一、选择题4-1.有两个力作用在有固定转轴的刚体上:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3)当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4)当这两个力对轴的合力矩为零时,它们的合力也一定是零; 对上述说法,下述判断正确的是:( )(A )只有(1)是正确的; (B )(1)、(2)正确,(3)、(4)错误; (C )(1)、(2)、(3)都正确,(4)错误; (D )(1)、(2)、(3)、(4)都正确。
【提示:(1)如门的重力不能使门转动,平行于轴的力不能提供力矩;(2)垂直于轴的力提供力矩,当两个力提供的力矩大小相等,方向相反时,合力矩就为零】4-2.关于力矩有以下几种说法:(1)对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度; (2)一对作用力和反作用力对同一轴的力矩之和必为零;(3)质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同。
对上述说法,下述判断正确的是:( )(A )只有(2)是正确的; (B )(1)、(2)是正确的; (C )(2)、(3)是正确的; (D )(1)、(2)、(3)都是正确的。
【提示:(1)刚体中相邻质元间的一对内力属于作用力和反作用力,作用点相同,则对同一轴的力矩和为零,因而不影响刚体的角加速度和角动量;(2)见上提示;(3)刚体的转动惯量与刚体的质量和大小形状有关,因而在相同力矩的作用下,它们的运动状态可能不同】3.一个力(35)F i j N =+v v v 作用于某点上,其作用点的矢径为m j i r )34(ϖϖϖ-=,则该力对坐标原点的力矩为 ( )(A )3kN m -⋅v ; (B )29kN m ⋅v ; (C )29kN m -⋅v ; (D )3kN m ⋅v。
【提示:(43)(35)4302092935i j kM r F i j i j k k k =⨯=-⨯+=-=+=v v v v v v v v v v v v v 】4-3.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴 转动,如图所示。
今使棒从水平位置由静止开始自由下落,在棒摆 到竖直位置的过程中,下述说法正确的是:( ) (A )角速度从小到大,角加速度不变; (B )角速度从小到大,角加速度从小到大;(C )角速度从小到大,角加速度从大到小; (D )角速度不变,角加速度为零。
【提示:棒下落的过程中,越来越快,则角速度变大;力矩变小,则角加速度变小】5. 圆柱体以80rad /s 的角速度绕其轴线转动,它对该轴的转动惯量为24m kg ⋅。
由于恒力矩的作用,在10s 内它的角速度降为40rad /s 。
圆柱体损失的动能和所受力矩的大小为:( ) (A )80J ,80m N ⋅;(B )800J ,40m N ⋅;(C )4000J ,32m N ⋅;(D )9600J ,16m N ⋅。
【提示:损失的动能: 22011960022k E J J ωω∆=-=;由于是恒力矩,可利用0t ωωα=+求得4α=-,再利用M J α=得16MN m =-⋅】6. 一匀质圆盘状飞轮质量为20kg ,半径为30cm ,当它以每分钟60转的速率旋转时,其动能为: ( )(A )22.16π J ; (B )21.8πJ ; (C )1.8J ; (D )28.1πJ 。
【圆盘转动惯量:210.92J mR ==;角速度:2260n πωπ==;动能:221 1.82k E J ωπ∆==】 4-5.假设卫星绕地球中心作椭圆运动,则在运动过程中,卫星对地球中心的( ) (A )角动量守恒,动能守恒; (B )角动量守恒,机械能守恒; (C )角动量不守恒,机械能守恒; (D )角动量不守恒,动能也不守恒。
【提示:因为万有引力是指向圆心的有心力,所以提供的力矩为零,满足角动量守恒定律;又因为万有引力是保守力,所以满足机械能守恒定律】4--1.如图所示,一均匀细杆,质量为m ,长度为l ,一端固定, 由水平位置自由下落,则在最开始时的水平位置处,其质心 的加速度为:( )(A )g ; (B )0; (C )34g ; (D )12g 。
【提示:均匀细杆质心位置在l /2处。
利用转动定律M J α=→2123l mg ml α⋅=⋅有最开始时的质心加速度:324Cl a g α=⋅=】4--2.如图所示,两个质量均为m ,半径均为R 的匀质圆盘状 滑轮的两端,用轻绳分别系着质量为m 和2m 的物体,若 系统由静止释放,则两滑轮之间绳内的张力为:( ) (A )118m g ; (B )32m g ; (C )m g ; (D )12m g 。
【提示:均匀细杆质心位置在l /2处。
利用转动定律M J α=→2123l mg ml α⋅=⋅,有最开始时的质心加速度:324Cl a g α=⋅=】4--3.一花样滑冰者,开始时两臂伸开,转动惯量为0J ,自转时,其动能为200012E J ω=,然后他将手臂收回,转动惯量减少至原来的13,此时他的角速度变为ω,动能变为E ,则有关系:( )(A )03ωω=,0E E =; (B )013ωω=,03E E =; (C)0ω,0E E =; (D )03ωω=,03E E =。
【提示:利用角动量守恒定律有:00J J ωω=→03ωω=,则20132E J E ω==】11. 一根质量为m 、长度为L 的匀质细直棒,平放在水平桌面上。
若它与桌面间的滑动摩擦系数为μ,在t =0时,使该棒绕过其一端的竖直轴在水平桌面上旋转,其初始角速度为0ω,则棒停止转动所需时间为 ( )(A )023L g ωμ; (B )03L g ωμ; (C ) 043L g ωμ; (D ) 06Lgωμ。
【提示:摩擦力产生的力矩为012L m g xd x mgL L μμ=⎰(或考虑摩擦力集中于质心有12f M mg L μ=-⋅);取213J mL =;利用角动量定律0f M t J J ωω⋅=- →023L t g ωμ=】 12. 一质量为60kg 的人站在一质量为60kg 、半径为l m 的匀质圆盘的边缘,圆盘可绕与盘面相垂直的中心竖直轴无摩擦地转动。
系统原来是静止的,后来人沿圆盘边缘走动,当人相对圆盘的走动速度为2m /s 时,圆盘角速度大小为 ( ) (A ) 1rad/s ;(B )2rad/s ; (C )23rad/s ; (D ) 43rad/s 。
【提示:匀质圆盘的转动惯量2112J mR =,人的转动惯量22J mR =;利用系统的角动量守恒定律: 1121()J J ωωω=∆-→12433ωω∆==】13. 如图所示,一根匀质细杆可绕通过其一端O 的水平轴在竖直平面内自由转动,杆长53m 。
今使杆从与竖直方向成60o 角由静止 释放(g 取10m /s 2),则杆的最大角速度为: ( )(A )3 rad/s ; (B )π rad/s ;(C;(D【提示:棒的转动惯量取213J mL =,重力产生的力矩考虑集中于质心, 有:1sin 2M mg L θ=⋅);利用机械能守恒定律:22312Md J ππθω=⎰→232g L ω=→ 3ω=】 4-4. 对一个绕固定水平轴O 匀速转动的转盘,沿图示的同一水平直线从相反方向射入两颗质量相同、速率相等的子弹,并停留在盘中,则子弹射入后转盘的角速度应: ( ) (A ) 增大; (B )减小; (C )不变;(D )无法确定。
【提示:两子弹和圆盘组成的系统在射入前后系统的角动量守恒,但对于转盘而言两子弹射入后转盘的转动惯量变大,利用角动量 守恒定律:知转盘的角速度应减小】15.一根长为l 、质量为M 的匀质棒自由悬挂于通过其上端 的光滑水平轴上。
现有一质量为m 的子弹以水平速度0v 射向 棒的中心,并以02v 的水平速度穿出棒,此后棒的最大偏转角恰为90o,则0v 的大小为 :( )(A(B(C(D )22163M glm。
【提示:(1)应用角动量守恒定律:2200/21232/2v l l mv Ml m l ω⎛⎫⋅=⋅+⋅ ⎪⎝⎭,可得:034mv M l ω=;(2)应用机械能守恒定律:2211232lMl Mg ω⋅=⋅,得:0v =二、填空题1.半径为 1.5r m =的飞轮,初角速度010/rad s ω=,角加速度25/rad s β=-,若初始时刻角位移为零,则在t = 时角位移再次为零,而此时边缘上点的线速度v = 。
【提示:由于角加速度是常数,可用公式2012t t θωβ=+,当0θ=时,有02t ωβ=-=4s ;再由0t ωωβ=+得:10/rad s ω=-,有v = 15/m s -】2.某电动机启动后转速随时间变化关系为0(1)te τωω-=-,则角加速度随时间的变化关系为 。
【提示:求导,有α=0te τωτ-】3.一飞轮作匀减速运动,在5s 内角速度由40πrad /s 减到10πrad /s ,则飞轮在这5s 内总共转过了 圈,飞轮再经 的时间才能停止转动。
【提示:由于是匀减速,可用公式02t ωωθ+∆=⋅,则024n t ωωθππ+∆==⋅=62.5圈;角加速度可由0tωωβ-=求得,为6βπ=-,再由 0t ωβ=+∆得:t ∆=53s 】 4--4.在质量为m 1,长为l /2的细棒与质量为m 2长为l /2的细棒中间,嵌有一质量为m 的小球,如图所示,则该系统2•212对棒的端点O 的转动惯量J = 。
【2J r dm =⎰,考虑123J J J J =++有:2/222120/2/22/2l l l m m l J r dr m r drl l ⎛⎫=⋅++⋅ ⎪⎝⎭⎰⎰,求得:22212732232m m l l l J m ⎛⎫⎛⎫⎛⎫=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2123712m m m l ++】 4--5.在光滑的水平环形沟槽内,用细绳将两个质量分别为m 1和m 2的小球系于一轻弹簧的两端,使弹簧处于压缩状态,现将绳烧断,两球向相反方向在沟槽内运动,在两球相遇之前的过程 中系统的守恒量是: 。
【提示:水平环形沟槽光滑则不考虑摩擦力;弹簧力是系统内力所以提供的力矩为零,满足(1)角动量守恒;又因弹性力是保守力,所以满足(2)机械能守恒】4--6.如图所示,在光滑的水平桌面上有一长为l ,质量为m 的均匀细棒以与棒长方向相垂直的速度v 向前平动,与一固定 在桌子上的钉子O 相碰撞,碰撞后,细棒将绕点O 转动,则 转动的角速度ω= 。