人教A版高中数学必修三 复习参考题A组练习课件
人教A版高中同步学案数学选择性必修第三册精品习题课件 第七章条件概率与全概率公式7.1.1 条件概率
2题者评为“智答能手”.设甲评为“智答能手”为事件,乙评为“智答能手”为事件,若
(|) = (),则下列结论正确的是() ABD
A.(|) = ()
B.(|) =
1
15
16
C.甲、乙至多有一人评为“智答能手”的概率为
() = ( ∪ ∪ ) = () + () + () =
C610
C620
C510 C110
+ 6
C20
C410 C210
+ 6
C20
() = (),() = (),
故(|) = (|) + (|) =
13
58
故获得优秀成绩的概率为 .
()
()
()
+
()
=
210
C6
20
12 180
C6
20
+
2 520
C6
20
12 180
C6
20
=
13
.
58
=
12 180
,
C620
B级 关键能力提升练
7.某社区活动中心打算周末去照看养老院的老人,现有四个志愿者服务小组甲、乙、丙、
丁和有4个需要帮助的养老院可供选择,每个志愿者小组只去一个养老院,设事件 =“4
C.(|) =
5
72
2
D.事件与事件相互独立
5
[解析]抛掷一枚质地均匀的骰子两次,基本事件总共有36个,
事件A为“两次向上的点数之和大于7”则共有(, ),(, ),(, ),(, ),(, ),(, ),
【高中数学】组合数课件 高二下学期数学人教A版(2019)选择性必修第三册
43
∙
33
34
3
,所以4,
= 3
3
同样地,求“从n个不同元素中取出m个元素的排列数A mn ”,可以看作
由以下两个步骤得到:
第1步,从n个不同元素中取出m个元素,共有 C m
种不同的取法;
n
m
A
第2步,将取出的m个元素作全排列,共有 m 种不同的排法.
abc bac cab acb
bca cba
abd
abd bad dab adb
bda dba
acd
acd cad dac adc
cda dca
bcd
bcd cbd dbc bdc
cdb dcb
系了吗?
探究新知
组合
排列
abc
abc bac cab acb bca cba
abd
abd bad dab adb bda dba
3 21 21
8 7 6
5 4
3
2
(4) 3C8 2C5 3
2
168 20 148 .
3 21
21
2
6
课本P25
m 1 m 1
2. 求证:C
C n 1 .
n1
m
n
m 1 m 1 m 1
( n 1)!
m 1
( n 1) n !
解:(1)C42 = 6;(2)C43 = 4;(3)C53 = 10;
(4)C54 = 5;(5)C64 = 15
追问:观察练习1的计算结果,你有什么发现和猜想?能否证明
和解释你的猜想?
C42 + C43 = C53
人教A版高中数学必修3课后习题PPT版
第二步,输入一个成绩r,判断与6.8的大小.若r≥6.8,则执行 下一步;若r<6.8,则输出r,并执行下一步.
第三步,使n的值增加1,仍用n表示.
第四步,判断n与成绩个数9的大小.若n≤9,则返回第二步; 若n>9,则结束算法.
程序框图:
开始 n=1 输入r r≥6.8? 是 n=n+1 否 输出r
INPUT“a,b=”;a,b
sum=a+b diff=a-b pro=a﹡b PRINT sum,diff,pro,quo END
3.将图1.1—7中的程序框图转化为程序。 开始 输入a,b,c INPUT“a,b,c”;a,b,c
p=(a+b+c)/2
s=SQR(p﹡(p-a) ﹡(p-b) ﹡(p-c))
a
开始
输入精确度d
i=1
将 2的到小数点后第 i位的不足近似值记为 a 将 2的到小数点后第 i位的不足近似值记为 b
m 5 5
b a
i i 1
否 m<d? 是 输出5a 结束
第20页
习题1.1
A组
1.找一个实际生活中的分段函数,设计一个求该函数值的 算法,并画出程序框图。 下面是关于城市居民生活用水收费的问题。 为了加强居民的节水意识,某市制定了以下生活用水收费 标准:每月每户用水未超过7m3时,每立方米收费1.0元, 并加收0.2元的城市污水处理费;超过7m3的部分,每立方 米收费1.5元,并加收0.4元的城市污水处理费。 设某户每月用水量为xm3,应缴纳水费y元,那么y与x之间 的函数关系为
第一步,给出精确度 d , 令i 1.
第二步,取出 2的到小数点i后第i位的不足近似值,赋 给a; 取出 2的到小数点i后第i位的过剩近似值,赋给 b.
人教A版高中同步学案数学选择性必修第三册精品习题课件 第八章 综合训练
的学生体重为. ,故C错误;这些学生的身高每增加. ,其体重约
增加. × . = . (),故D错误.
故选B.
4.下列关于回归分析的说法错误的是( D )
A.经验回归直线一定过点(, )
6.某校为了解学生“玩手机游戏”和“学习成绩”是否有关,随机抽取了100名学生,运用
2 × 2列联表进行独立性检验,经计算得到 2 = 3.936,所以判定玩手机游戏与学习成绩
有关系,那么这种判断犯错误的概率不大于() B
பைடு நூலகம்
0.10
0.05
0.01
0.005
0.001
2.706
3.841
6.635
7.某公司为了确定下一年投入某种产品的宣传费,需了解年宣传费(单位:万元)对年
销售量(单位:千件)的影响.现收集了近5年的年宣传费(单位:万元)和年销售量
− 8.2,则
(单位:千件)的数据,其数据如下表所示,且关于的经验回归方程为ො =
下列结论错误的是() C
4
6
8
10
12
性别
喜欢攀岩
不喜欢攀岩
合计
男生
.
.
女生
.
.
合计
.
.
所以参与调查的学生中喜欢攀岩的男生人数比喜欢攀岩的女生人数多,参与调查的
女生中喜欢攀岩的人数比不喜欢攀岩的人数少,故A正确,B错误;
零假设为 :喜欢攀岩和性别无关联.由列联表中的数据,计算得到
第八章
综合训练
一、选择题(本题共8小题,在每小题给出的四个选项中,只有一项是符合题
6.2.3 组合的综合应用(习题课) 课件25张-人教A版(2019)高中数学选择性必修第三册
15
分组、分配问题 例 3 按以下要求分配6本不同的书,各有几种方法? (1)平均分配给甲、乙、丙3人,每人2本; (2)平均分成3份,每份2本; (3)甲、乙、丙3人中,一人得1本,一人得2本,一人得3本; (4)分给甲、乙、丙3人,一人4本,其余2人每人1本.
6
关键能力 互动探究 课时规范训练
反思感悟 有限制条件的抽(选)取问题,主要有两类
(1)“含”与“不含”问题,其解法常用直接分步法,即“含”的先取 出,“不含”的可把所指元素去掉再取,分步计数.
(2)“至多”“至少”问题,其解法常有两种解决思路:一是直接分类 法,但要注意分类要不重不漏;二是间接法,注意找准对立面,确保不重 不漏.
9
关键能力 互动探究 课时规范训练
题型二 与几何有关的组合应用题
例 2 (链接教材P26习题T6)如图,在以AB为直径的半圆周上,有异于A, B的六个点C1,C2,…,C6,线段AB上有异于A,B的四个点D1,D2,D3,D4.
(1)以这10个点中的3个点为顶点可作多少个三角形?其中含C1点的有多少 个?
7
关键能力 互动探究 课时规范训练
跟踪训练
1.某中学高一·5班现有10名学生代表,其中男生6名. (1)从中选2名代表,必须有女生的不同选法有多少种? (2)从中选4人,若男生中的甲与女生中的乙至少有1人在内,则有多少种 选法? 解:(1)法一:(直接法)必须有女生可分两类:第 1 类,只有一名女生,共 有 C16C14=24(种); 第 2 类,有 2 名女生,共有 C24=6(种). 根据分类加法计数原理,必须有女生的不同选法有 C16C14+C24=30(种). 法二:(间接法)C210-C26=45-15=30(种).
【人教A版】2019学年高中数学必修三练习全集(Word版,含答案)
分层训练·进阶冲关A组基础练(建议用时20分钟)1.下列关于算法的说法中正确的个数有 ( B )①求解某一类问题的算法是唯一的;②算法必须在有限步骤操作之后停止;③x2-x>2 019是一个算法;④算法执行后一定产生确定的结果.A.1B.2C.3D.42.下列所给问题中,不能设计一个算法求解的是 ( D )A.用“二分法”求方程x2-3=0的近似解(精确度0.01)B.解方程组C.求半径为2的球的体积D.求S=1+2+3+…的值3.( B )A.输出a=10B.赋值a=10C.判断a=10D.输入a=14.如图所示的程序框图,已知a1=3,输出的结果为7,则a2的值是( C )A.9B.10C.11D.125.如图所示的流程图,当输入的值为-5时,输出的结果是 ( D )A.-3B.-2C.-1D.26.根据如图所示的程序框图,使得当成绩不低于60分时,输出“及格”,当成绩低于60分时,输出“不及格”,则 ( A )A.框1中填“是”,框2中填“否”B.框1中填“否”,框2中填“是”C.框1中填“是”,框2中可填可不填D.框2中填“否”,框1中可填可不填7.下面是某人出家门先打车去火车站,再坐火车去北京的一个算法,请补充完整.第一步,出家门.第二步, 打车去火车站.第三步,坐火车去北京.8.使用配方法解方程x2-4x+3=0的算法的步骤是②①④③(填序号).①配方得(x-2)2=1;②移项得x2-4x=-3;③解得x=1或x=3;④开方得x-2=±1.9.执行如图所示的程序框图,则输出的S= 0.99.10.执行如图所示的程序框图,如果输入的x,t均为2,则输出的S= 7.11.设计求1+3+5+7+…+31的算法,并画出相应的程序框图.【解析】第一步:S=0;第二步:i=1;第三步:S=S+i;第四步:i=i+2;第五步:若i不大于31,返回执行第三步,否则执行第六步;第六步:输出S值.程序框图如图.12.设计一个算法求满足10<x2<1 000的所有正整数,并画出程序框图.【解析】算法步骤如下:第一步,x=1.第二步,如果x2>10,那么执行第三步;否则执行第四步.第三步,如果x2<1 000,那么输出x;否则结束程序.第四步,x=x+1,转到第二步.程序框图如图:13.执行如图所示的程序框图,若输入n=8,则输出的k= ( B )14.如图所示的程序框图所表示的算法的功能是 ( C )A.计算1+++…+的值B.计算1+++…+的值C.计算1+++…+的值D.计算1+++…+的值15.执行如图所示的程序框图,运行相应的程序,最后输出的结果为16.若框图所示程序运行的输出结果为S=132,那么判断框中应填入的关于k的判断条件是k≤10?或k<11?.17.已知直线l1:3x-y+12=0和直线l2:3x+2y-6=0,设计一个算法,求l1和l2及y轴所围成的三角形的面积.【解析】算法如下:第一步,解方程组得l1,l2的交点为P(-2,6).第二步,在方程3x-y+12=0中,令x=0,得y=12,从而得到l1与y轴的交点为A(0,12).第三步,在方程3x+2y-6=0中,令x=0,得y=3,从而得到l2与y轴的交点为B(0,3).第四步,求出△ABP的边长AB=12-3=9.第五步,求出△ABP的边AB上的高h=2.第六步,根据三角形的面积公式计算S=·AB·h=×9×2=9.第七步,输出S.18.利用梯形的面积公式计算上底为4,下底为6,面积为15的梯形的高.请设计出该问题的算法及程序框图.【解析】根据梯形的面积公式S=(a+b)h,得h=,其中a是上底,b是下底,h是高,S是面积,只要令a=4,b=6,S=15,代入公式即可.算法如下:第一步,输入梯形的两底a,b与面积S的值.第二步,计算h=.第三步,输出h.该算法的程序框图如图所示:C组培优练(建议用时15分钟)19.执行如图所示的程序框图所表达的算法,如果最后输出的S值为,那么判断框中实数a的取值范围是[2 015,2 016).20.运行如图所示的程序框图.(1)若输入x的值为2,根据该程序的运行过程完成下面的表格,并求输出的i与x的值.(2)若输出i的值为2,求输入x的取值范围.【解析】(1)因为162<168,486>168,所以输出的i的值为5,x的值为486.(2)由输出i的值为2,则程序执行了循环体2次,即解得<x≤56.所以输入x的取值范围是.分层训练·进阶冲关A组基础练(建议用时20分钟)1.下列给出的输入、输出语句正确的是 ( D )①INPUT a;b;c ②INPUT x=3③PRINT A=4 ④PRINT20,3A.①②B.②③C.③④D.④2.下列所给的运算结果正确的有 ( B )①ABS(-5)=5; ②SQR(4)=±2;③5/2=2.5;④5/2=2;⑤5MOD2=2.5;⑥3^ 2=9.A.2个B.3个C.4个D.5个3.条件语句的一般形式为:IF A THEN B ELSE C,其中B表示的是( A )A.满足条件时执行的内容B.条件语句C.条件D.不满足条件时,执行的内容4.阅读下面程序:若输入x=5,则输出结果x为 ( B )A.-5B.5C.0D.不确定5.给出如图所示的程序:执行该程序时,若输入的x为3,则输出的y值是 ( B )A.3B.6C.9D.276.下列语句执行完后,A,B的值各为6,10.7.下列程序执行后结果为3,则输入的x值为±1.8.如图所示的程序运行后,输出的值为44.9.运行程序:在两次运行中分别输入8,4和2,4,则两次运行程序的输出结果分别为4,2.10.读如图所示的判断输入的任意整数x的奇偶性的程序,并填空.11.下面程序的算法功能是:判断任意输入的数x,若是正数,则输出它的平方值;若不是正数,则输出它的相反数.12.下面两个程序最后输出的“S”分别等于21,17.13.阅读下列程序:如果输入的t∈[-1,3],则输出的S∈ ( A )A.[-3,4]B.[-5,2]C.[-4,3]D.[-2,5]14.如图所示,如果下面程序中输入的r=,f(r)是用来求圆内接正方形边长a的一个函数,则输出的结果为 ( C )A.4B.6.28C.2.28D.3.1415.读程序,写出程序的意义:16.执行下面的程序,如果输入N=4,那么输出的S=17.某代销点出售《无线电》《计算机》《看世界》三种杂志,它们的定价分别为1.20元、1.55元、2.00元,编写一个程序,求输入杂志的订购数后,立即输出所付金额.【解析】程序如下:18.某城市出租车公司规定在城区内搭乘出租车的收费标准为:不超过3公里收7元,超过3公里的里程每公里收1.5元,另每车次超过3公里收燃油附加费1元(不考虑其他因素).请画出计算出租车费用的程序框图,并写出程序.【解析】设x为出租车行驶的公里数,y为收取的费用,则y=即y=程序框图如图所示:y=1.5C组培优练(建议用时15分钟) 19.用UNTIL语句写出计算12+22+32+…+n2的值的程序.【解析】20.如图所示,在边长为16的正方形ABCD的边上有一动点P,点P沿边线由B→C→D→A(B为起点,A为终点)运动.若设P运动的路程为x,△APB的面积为y,试写出程序,根据输入的x值,输出相应的y值.【解析】由题意可得函数关系式为:y=显然需利用条件语句的嵌套或叠加编写程序.程序如下:分层训练·进阶冲关A组基础练(建议用时20分钟)1.在对16和12求最大公约数时,整个操作如下:16-12=4,12-4=8,8-4=4.由此可以看出12和16的最大公约数是( A )A.4B.12C.16D.82.在m=nq+r(0≤r<n)中,若k是n,r的公约数,则k m,n的公约数.( A )A.—定是B.不一定是C.一定不是D.不能确定3.有关辗转相除法下列说法正确的是 ( C )A.它和更相减损术一样是求多项式值的一种方法B.基本步骤是用较大的数m除以较小的数n得到除式m=nq+r,直至r<n为止C.基本步骤是用较大的数m除以较小的数n得到除式m=nq+r(0≤r<n),反复进行,直到r=0为止D.以上说法皆错4.已知7 163=209×34+57,209=57×3+38,57=38×1+19,38=19×2.根据上述一系列等式,可确定7 163和209的最大公约数是( C )A.57B.3C.19D.345.把389化为四进制数,则该数的末位是 ( A )A.1B.2C.3D.46.用秦九韶算法求n次多项式f(x)=a n x n+a n-1x n-1+…+a1x+a0的值,当x=x0时,求f(x0)需要算乘方、乘法、加法的次数分别为( C )A.,n,nB.n,2n,nC.0,n,nD.0,2n,n7.用更相减损术求36与134的最大公约数时,第一步应为先除以2,得到18与67.8.用辗转相除法求294和84的最大公约数时,需要做除法的次数是2.9.三位七进制数表示的最大的十进制数是342.10.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n,x的值分别为3,3,则输出v的值为48.11.将1234(5)转化为八进制数.【解析】先将1234(5)转化为十进制数:1234(5)=1×53+2×52+3×51+4×50=194.再将十进制数194转化为八进制数:所以1234(5)=302(8).12.用秦九韶算法计算多项式f(x)=x6-12x5+60x4-160x3+240x2-192x+64,当x=2时的值.【解析】将f(x)改写为f(x)=(((((x-12)x+60)x-160)x+240)x-192)x+64, v0=1,v1=1×2-12=-10,v2=-10×2+60=40,v3=40×2-160=-80,v4=-80×2+240=80,v5=80×2-192=-32,v6=-32×2+64=0.所以f(2)=0,即x=2时,原多项式的值为0.B组提升练(建议用时20分钟)13.下列各数中最小的数为 ( A )A.101011(2)B.1210(3)C.110(8)D.68(12)14.《九章算术》是中国古代的数学专著,其中的一段话“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之”用程序框图表示如图,那么这个程序的作用是( B )A.求两个正数a,b的最小公倍数B.求两个正数a,b的最大公约数C.判断其中一个正数是否能被另一个正数整除D.判断两个正数a,b是否相等15.用秦九韶算法求多项式f(x)=1+2x+x2-3x3+2x4在x=-1时的值,v2的结果是 ( D )A.-4B.-1C.5D.616.396与270的最大公约数与最小公倍数分别为18,5 940.17.已知一个k进制的数123(k)与十进制的数38相等,求k的值. 【解析】由123(k)=1×k2+2×k1+3×k0=k2+2k+3,得k2+2k+3=38,所以k2+2k-35=0,所以k=5或k=-7(舍),所以k=5.18.用秦九韶算法求多项式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6,当x=-4时,v4的值.【解析】依据秦九韶算法有v0=a6=3,v1=v0x+a5=3×(-4)+5=-7,v2=v1x+a4=-7×(-4)+6=34,v3=v2x+a3=34×(-4)+79=-57,v4=v3x+a2=-57×(-4)+(-8)=220.C组培优练(建议用时15分钟)19.阅读程序框图,利用秦九韶算法计算多项式f(x)=a n x n+a n-1x n-1+…+a1x+a0的值,当x=x0时,框图中A处应填入a n-k.20.三个数168,54,264的最大公约数为6.单元质量评估(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是( B )A.算法就是某个问题的解题过程B.算法执行后可以产生不同的结果C.解决某一个具体问题算法不同,则结果不同D.算法执行步骤的次数不可以很大,否则无法实施2.在程序框图中,算法中间要处理数据或计算,可以分别写在不同的( A )A.处理框内B.判断框内C.输入、输出框内D.起、止框内3.早上从起床到出门需要洗脸刷牙(5 min)、刷水壶(2 min)、烧水(8 min)、泡面(3 min)、吃饭(10 min)、听广播(8 min)几个过程.从下列选项中选出最好的一种算法 ( C )A.第一步,洗脸刷牙.第二步,刷水壶.第三步,烧水.第四步,泡面.第五步,吃饭.第六步,听广播B.第一步,刷水壶.第二步,烧水同时洗脸刷牙.第三步,泡面.第四步,吃饭.第五步,听广播C.第一步,刷水壶.第二步,烧水同时洗脸刷牙.第三步,泡面.第四步,吃饭同时听广播D.第一步,吃饭同时听广播.第二步,泡面.第三步,烧水同时洗脸刷牙.第四步,刷水壶4.将51化为二进制数得( C )A.11001(2)B.101001(2)C.110011(2)D.10111(2)5.下列是流程图中的一部分,表示恰当的是( A )6.如图所示的程序框图,下列说法正确的是( D )A.该框图只含有顺序结构、条件结构B.该框图只含有顺序结构、循环结构C.该框图只含有条件结构、循环结构D.该框图包含顺序结构、条件结构、循环结构7.如图所示的程序框图,其功能是 ( C )A.输入a,b的值,按从小到大的顺序输出它们的值B.输入a,b的值,按从大到小的顺序输出它们的值C.求a,b的最大值D.求a,b的最小值8.(2018·哈尔滨高二检测)程序框图如图所示,若输入p=200,则输出结果是 ( B )A.9B.8C.7D.69.如图所示的程序框图的算法思路源于世界数学名题“3x+1问题”.执行该程序框图,若输入的N=3,则输出的i= ( C )A.6B.7C.8D.910.下面的程序运行后的输出结果为( C )A.17B.19C.21D.2311.我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n= ( A )A.4B.5C.2D.312.执行如图所示的程序框图,若输出的结果为43,则判断框内应填入的条件是 ( A )A.z≤42?B.z≤20?C.z≤50?D.z≤52?二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.程序框图如图所示.若输出结果为15,则①处的执行框内应填的是x=3.14.如图所示的程序框图所表示的算法,输出的结果是2.15.如图程序执行后输出的结果是990.16.用秦九韶算法求多项式f(x)=x6+2x5+3x4+4x3+5x2+6x,当x=2时f(x)的值为240.三、解答题(本大题共6小题,共70分.解答时应写出文字说明,证明过程或演算步骤)17.(10分)10x1(2)=y02(3),求数字x,y的值.【解析】因为10x1(2)=1×20+x×21+0×22+1×23=9+2x,y02(3)=2×30+y ×32=9y+2,所以9+2x=9y+2且x∈{0,1},y∈{0,1,2},所以x=1,y=1.18.(12分)分别用辗转相除法和更相减损术求779与209的最大公约数.【解析】(1)辗转相除法:779=209×3+152,209=152×1+57,152=57×2+38,57=38×1+19,38=19×2.所以779与209的最大公约数为19.(2)更相减损术:779-209=570,570-209=361,361-209=152,209-152=57,152-57=95,95-57=38,57-38=19,38-19=19.所以779和209的最大公约数为19.19.(12分)有一堆桃子不知数目,猴子第一天吃掉一半,觉得不过瘾,又多吃了一个.第二天照此办法,吃掉剩下桃子的一半另加一个.天天如此,到第十天早上,猴子发现只剩一个桃子了.问这堆桃子原来有多少个?请写出算法步骤、程序框图和程序.【解析】算法如下:第一步,a1=1.第二步,i=9.第三步,a0=2×(a1+1).第四步,a1=a0.第五步,i=i-1.第六步,若i=0,执行第七步,否则执行第三步.第七步,输出a0的值.程序框图和程序如图所示:20.(12分)设计程序框图,求出××××…×的值.【解析】程序框图如图所示:21.(12分)给出30个数:1,2,4,7,11,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3……以此类推,要计算这30个数的和,现在已知该问题的算法的程序框图如图所示.(1)请在图中判断框和处理框内填上合适的语句,使之能实现该题的算法功能.(2)根据程序框图写出程序.【解析】(1)该算法使用了当型循环结构,因为是求30个数的和,所以循环体应执行30次,其中i是计数变量,因此判断框内的条件就是限制计数变量i的,故应为“i≤30?”.算法中的变量p实质是表示参与求和的数,由于它也是变化的,且满足第i个数比其前一个数大i-1,第i+1个数比其前一个数大i,故处理框内应为p=p+i.故①处应填i≤30?;②处应填p=p+i.(2)根据程序框图,可设计如下程序:22.(12分)已知某算法的程序框图如图所示,若将输出的(x,y)值依次记为(x1,y1),(x2,y2),…,(x n,y n),…(1)若程序运行中输出的一个数组是(9,t),求t的值.(2)程序结束时,共输出(x,y)的组数为多少?(3)写出程序框图的程序语句.【解析】(1)由程序框图知,当x=1时,y=0;当x=3时,y=-2;当x=9时,y=-4,所以t=-4.(2)当n=1时,输出一对,当n=3时,又输出一对,…,当n=2 017时,输出最后一对,共输出(x,y)的组数为1 009.(3)程序框图的程序语句如下:分层训练·进阶冲关A组基础练(建议用时20分钟)1.某校有40个班,每班50人,每班选派3人参加“学代会”,在这个问题中样本容量是( C )A.40B.50C.120D.1502.为了解600名学生的视力情况,采用系统抽样的方法,从中抽取容量为20的样本,则需要分成几个小组进行抽取( A )A.20B.30C.40D.503.某客运公司有200辆客车,为了解客车的耗油情况,现采用系统抽样的方法按1∶10的比例抽取一个样本进行检测,将客车依次编号为1,2,…,200,则其中抽取的4辆客车的编号可能是( C )A.3,23,63,102B.31,61,87,127C.103,133,153,193D.57,68,98,1084.下列抽样中,适合用抽签法的是 ( B )A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验5.某大学数学系共有本科生1 000人,其中一、二、三、四年级的人数比为4∶3∶2∶1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为 ( B )A.80B.40C.60D.206.高三某班有学生56人, 现将所有同学随机编号,用系统抽样的方法,抽取一个容量为4的样本,已知5号、33号、47号学生在样本中,则样本中还有一个学生的编号为( C )A.13B.17C.19D.217.为了了解1 203名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,现采用选取的号码间隔一样的系统抽样方法来确定所选取的样本,则抽样间隔k= 30.8.一个总体分为A,B两层,用分层抽样的方法从总体中抽取一个容量为10的样本.已知B层中每个个体被抽到的概率都为,则总体中的个体数为120.9.某校高三年级共有30个班,学校心理咨询师为了解同学们的心理状况,将每个班编号,依次为1到30,现用系统抽样的方法抽取6个班进行调查,若抽到的编号之和为87,则抽到的最小编号为2. 10.某学校三个兴趣小组的学生人数分布如下表(每名学生只参加一个小组)(单位:人).学校要对这三个小组的活动效果进行抽样调查,按小组分层抽样的方法,从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a的值为30.11.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?(2)用分层抽样的方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?【解析】(1)因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目.所以,经直观分析,收看新闻节目的观众与年龄是有关的.(2)应抽取大于40岁的观众×5=×5=3(名).12.某批产品共有1 564件,产品按出厂顺序编号,号码从1到1 564,检测员要从中抽取15件产品做检测,请你给出一个系统抽样方案. 【解析】(1)先从1 564件产品中,用简单随机抽样的方法抽出4件产品,将其剔除.(2)将余下的1 560件产品编号:1,2,3,…,1 560.(3)取k==104,将总体平均分为15组,每组含104个个体.(4)从第一组,即1号到104号利用简单随机抽样法抽取一个编号s.(5)按编号把s,104+s,208+s,…,1 456+s共15个编号选出,这15个编号所对应的产品组成样本.B组提升练(建议用时20分钟)13.将参加夏令营的600名学生编号为001,002,…,600,采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300住在第Ⅰ营区,从301到495住在第Ⅱ营区,从496到600住在第Ⅲ营区,三个营区被抽中的人数依次为 ( B )A.26,16,8B.25,17,8C.25,16,9D.24,17,914.某服装加工厂某月生产A,B,C三种产品共4 000件,为了保证产品质量,进行抽样检验,根据分层抽样的结果,企业统计员制作了如下的统计表格:由于不小心,表格中A,C产品的有关数据已被污染看不清楚,统计员记得A产品的样本容量比C产品的样本容量多10,根据以上信息,可得C产品的数量是( B )A.80B.800C.90D.90015.已知某种型号的产品共有N件,且40<N<50,现需要利用系统抽样抽取样本进行质量检测,若样本容量为7,则不需要剔除;若样本容量为8,则需要剔除1个个体,则N= 49.16.某企业三个分厂生产同一种电子产品,三个分厂产量分布如图所示,现在用分层抽样方法从三个分厂生产的该产品中共抽取100件做使用寿命的测试,则第一分厂应抽取的件数为50;由所得样品的测试结果计算出一、二、三分厂取出的产品的使用寿命平均值分别为1 020小时、980小时、1 030小时,估计这个企业所生产的该产品的平均使用寿命为 1 015小时.17.某中学共有学生2 000名,各年级男、女生人数如下表:已知高二女生占全校学生总数的19%.(1)求x的值;(2)现用分层抽样的方法在全校抽取48名学生,问应从高三抽取多少名?【解析】(1)因为=0.19,所以x=380.(2)高三学生人数为y+z=2 000-(373+377+380+370)=500,现用分层抽样的方法在全校抽取48名学生,则应从高三抽取×48=12(名).18.为了适应新高考改革,尽快推行不分文理科教学,对比目前文理科学生考试情况进行分析,决定从80名文科同学中抽取10人,从300名理科同学中抽取50人进行分析.由于本题涉及文科生和理科生的混合抽取,你能选择合适的方法设计抽样方案吗?试一试.【解析】文科生抽样用抽签法,理科生抽样用随机数表法,抽样过程如下:(1)先抽取10名文科同学:①将80名文科同学依次编号为1,2,3, (80)②将号码分别写在形状、大小均相同的纸片上,制成号签;③把80个号签放入一个不透明的容器中,搅拌均匀,每次从中不放回地抽取一个号签,连续抽取10次;④与号签上号码相对应的10名同学的考试情况就构成一个容量为10的样本.(2)再抽取50名理科同学:①将300名理科同学依次编号为001,002, (300)②从随机数表中任选一数字作为开始数字,任选一方向作为读数方向,比如从随机数表的第4行第1列的数字1开始向右读(如图所示).每次读取三位,凡不在001~300范围内以及重复的数都跳过去,得到号码125,210,142,188,264,…;③这50个号码所对应的同学的考试情况就构成一个容量为50的样本.C组培优练(建议用时15分钟)19.我国古代数学名著《九章算术》有“米谷粒分”题:发仓募粮,所募粒中秕不百三则收之(不超过3%),现抽样取米一把,取得235粒米中夹秕n粒,若这批米合格,则n不超过( B )A.6粒B.7粒C.8粒D.9粒20.某合资企业有150名职工,要从中随机抽出20人去参观学习.请用抽签法和随机数法进行抽取,并写出过程.(随机数表见课本附表) 【解析】方法一(抽签法):先把150名职工编号:1,2,3,…,150,把编号分别写在相同的小纸片上,揉成小球,放入一个不透明的袋子中,充分搅拌均匀后,从中逐个不放回地抽取20个小球,这样就抽出了去参观学习的20名职工.方法二(随机数法):第一步,先把150名职工编号:001,002,003, (150)第二步,从随机数表中任选一个数,如第10行第4列数0.第三步,从数字0开始向右连续读数,每3个数字为一组,在读取的过程中,把大于150的数和与前面重复的数去掉,这样就得到20个号码如下:086,027,079,050,074,146,148,093,077,119,022,025,042,045,12 8,121,038,130,125,033.(答案不唯一)分层训练·进阶冲关A组基础练(建议用时20分钟)1.画样本频率分布直方图时,决定组数的正确方法是( C )A.任意确定B.一般分为5~12组C.由决定D.根据经验法则,灵活掌握2.一个容量为32的样本,已知某组样本的频率为0.25,则该组样本的频数为 ( B )A.4B.8C.12D.163.一个容量为35的样本数据,分组后,组距与频数如下:[5,10),5;[10,15),12;[15,20),7;[20,25),5;[25,30),4;[30,35),2.则样本在区间[20,+∞)上的频率约为 ( C )A.20%B.69%C.31%D.27%4.如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为( B )A.0.2B.0.4C.0.5D.0.65.为了解学生“阳光体育”活动的情况,随机统计了n名学生的“阳光体育”活动时间(单位:分钟),所得数据都在区间[10,110]内,其频率分布直方图如图所示.已知活动时间在[10,35)内的频数为80,则n 的值( B )A.700B.800C.850D.9006.某高校进行自主招生,先从报名者中筛选出400人参加笔试,再按笔试成绩择优选出100人参加面试,现随机调查了24名笔试者的成绩,如下表所示:据此估计允许参加面试的分数线大约是( B )A.75B.80C.85D.907.如图是100位居民月平均用水量的频率分布直方图,则月平均用水量为[2,2.5)范围内的居民数有25人.8.为了普及环保知识,增强环保意识,某大学有300名员工参加环保知识测试,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50),得到的频率分布直方图如图所示.现在要从第1,3,4组中用分层抽样的方法抽取16人,则在第4组中抽取的人数为6.9.已知样本:7 10 14 8 7 12 11 10 8 1013 10 8 11 8 9 12 9 13 12那么这组样本数据落在范围8.5~11.5内的频率为0.4.10.空气质量指数(Air Quality Ind,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI大小分为六级,0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;大于300为严重污染.一环保人士从当地某年的AQI记录数据中,随机抽取10个,用茎叶图记录如图.根据该统计数据,估计此地该年AQI大于100的天数约为146.(该年为365天)11.某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;【解析】(1)这20名工人年龄的众数为30;这20名工人年龄的极差为40-19=21.(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图如下:12.张掖市旅游局为了了解大佛寺景点在大众中的熟知度,随机对15~65岁的人群抽取n 人,问题是“大佛寺是几A 级旅游景点?”统计结果如下图表.(1)分别求出a,b,x,y的值;(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人.【解析】(1)由频率表中第4组数据可知,第4组总人数为=25,结合频率分布直方图可知n==100,所以a=100×0.01×10×0.5=5,b=100×0.03×10×0.9=27,x==0.9,y==0.2.(2)因为第2,3,4组回答正确的共有54人,所以利用分层抽样在54人中抽取6人,每组分别抽取的人数为第2组:×6=2(人);第3组:×6=3(人);第4组:×6=1(人).B组提升练(建议用时20分钟)13.AQI是表示空气质量的指数,AQI越小,表明空气质量越好,当AQI 不大于100时称空气质量为“优良”.如图是某地4月1日到12日AQI的统计数据,图中点A表示4月1日的AQI为201.则下列叙述不正确的是 ( C )A.这12天中有6天空气质量为“优良”B.这12天中空气质量最好的是4月9日C.这12天的AQI的中位数是90D.从4日到9日,空气质量越来越好14.某公司10个销售店某月销售某产品数量(单位:台)的茎叶图如下:分组成[10,20),[20,30),[30,39]时,所作的频率分布直方图是( B )。
高中数学必修3(人教A版)第一章算法初步1.1知识点总结含同步练习及答案
描述:例题:高中数学必修3(人教A版)知识点总结含同步练习题及答案第一章 算法初步 1.1 算法与程序框图一、学习任务1. 了解算法的含义,了解算法的基本思想,能用自然语言描述解决具体问题的算法.2. 了解设计程序框图表达解决问题的过程,了解算法和程序语言的区别;了解程序框图的三种基本逻辑结构,会用程序框图表示简单的常见问题的算法.二、知识清单算法 程序框图三、知识讲解1.算法算法(algorithm)是指按照一定规则解决某一类问题的明确和有限的步骤 .可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.描述算法可以有不同的方式.例如,可以用自然语言和数学语言加以描述,也可以借助形式语言(算法语言)给出精确的说明,也可以用框图直观地显示算法的全貌.算法的要求:(1)写出的算法,必须能解决一类问题,并且能重复使用;(2)算法过程要能一步一步执行,每一步执行的操作必须确切,不能含混不清,而且经过有限步后能得到结果.下列对算法的理解不正确的是( )A.一个算法应包含有限的步骤,而不能是无限的B.算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的C.算法中的每一个步骤都应当是有效地执行,并得到确定的结果D.一个问题只能设计出一种算法解:D算法的有限性是指包含的步骤是有限的,故 A 正确;算法的确定性是指每一步都是确定的,故 B正确;算法的每一步都是确定的,且每一步都应有确定的结果,故 C 正确;对于同一个问题可以有不同的算法,故 D 错误.下列叙述能称为算法的的个数为( )描述:2.程序框图程序框图简称框图,是一种用程序框、流程线及文字说明来表示算法的图形.其中,起、止框是任何流程不可少的,表明程序的开始和结束.输入和输出框可用在算法中任何需要输入、输出的位置.算法中间要处理数据或计算,可分别写在不同的处理框内.一个算法步骤到另一个算法步骤用流程线连接.如果一个框图需要分开来画,要在断开处画上连接点,并标出连接的号码.①植树需要运苗、挖坑、栽苗、浇水这些步骤;②依次进行下列运算:,,,,;③从枣庄乘火车到徐州,从徐州乘飞机到广州;④ ;⑤求所有能被 整除的正整数,即 .A. B. C. D.解:B①、②、③为算法.1+1=22+1=33+1=4⋯99+1=1003x >x +133,6,9,12,⋯2345写出解方程组的一个算法.解:方法一:代入消元法. 第一步,由 得 ;第二步,将 代入 ,得 ,解得 ;第三步,将 代入方程 ,得 ;第四步,得到方程组的解为 .方法二:加减消元法.第一步,方程 两边同乘以 ,得 ;第二步,将第一步所得的方程与方程 作差,消去 ,得 ,解得 ;第三步,将 代入方程 ,得 ,解得 ;第四步,得到方程组的解为 .{2x +y =74x +5y =112x +y =7y =7−2x y =7−2x 4x +5y =114x +5(7−2x )=11x =4x =4y =7−2x y =−1{x =4y =−12x +y =7510x +5y =354x +5y =11y 6x =24x =4x =42x +y =72×4+y =7y =−1{x =4y =−1例题:画程序框图的规则(1)使用标准的图形符号.(2)框图一般按从上到下、从左到右的方向画.(3)除判断框外,大多数流程图符号只有一个进入点和一个退出点.判断框是具有超过一个退出点的惟一符号.(4)判断框分两大类,一类判断框是“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果.(5)在图形符号内描述的语言要非常简练清楚.算法的三种基本逻辑结构顺序结构:语句与语句之间,框与框之间按从上到下的顺序进行.条件分支结构:在一个算法中,经常会遇到一些条件的判断,算法的流程条件是否成立有不同的流向,条件结构就是处理这种过程的结构.循环结构:在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.下列程序框图分别是解决什么问题的算法.解:(1)已知圆的半径,求圆的面积的算法.(2)求两个实数加法的算法.执行如图的程序框图,输出的 ______ .解:T =30四、课后作业 (查看更多本章节同步练习题,请到快乐学)某程序框图如图所示,若输出的 ,则判断框内为( )A. B. C. D.解:AS =57k >4?k >5?k >6?k >7?已知函数 ,对每次输入的一个值,都得到相应的函数值,画出程序框图.解:f (x )={2x +3,3−x ,x 2x ⩾0x <0x答案:1. 关于算法的说法中,正确的是 A .算法就是某个问题的解题过程B .算法执行后可以产生不确定的结果C .解决某类问题的算法不是唯一的D .算法可以无限地操作下去不停止C()答案:解析:2. 下列运算不属于我们所讨论算法范畴的是 A .已知圆的半径求圆的面积B .随意抽 张扑克牌算到二十四点的可能性C .已知坐标平面内两点求直线方程D .加减乘除法运算法则B注意算法需按照一定的顺序进行.()4答案:解析:3. 执行如图所示的程序框图,如果输入的 ,则输出的 属于 .A .B .C .D .D取 ,得输出的 ,即可判断.t ∈[−2,2]S ()[−6,−2][−5,−1][−4,5][−3,6]t =−2S =64. 某批发商按客户订单数额的大小分别给予不同的优惠折扣.计算客户应付货款的算法步骤如下: :输入订单数额 (单位:件);输入单价 (单位:元);:若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;:计算应付货款 (单位:元);:输出应付货款 .S 1x A S 2x <250d =0250⩽x <500d =0.05500⩽x <1000d =0.10x ⩾1000d =0.15S 3T =Ax (1−d )S 4T。
【高中数学】组合、 组合数课件 高二下学期数学人教A版(2019)选择性必修第三册
由列举法可知有3种
问题3:上述两个问题的区别是什么?
问题1有顺序,是排列问题
问题2没有顺序
将具体背景舍去,问题2可以概括为从3个不同元素中取出2
个元素作为一组,一共有多少个不同的组?
这就是我们要研究的组合问题
新知探索
组合: 一般地,从n个不同元素中取出m(m≤n)个元素
3
abd adb bad bda dab dba 4 种不同的取法;
acd
acd adc cad cda dac dca
bcd
bcd bdc cbd cdb dbc dcb
abc
第2步, 将取出的3个元
3
素做全排列, 共有3 种不
同的取法.
于是,根据分布乘法计数原理有 = ,即 =
=
!
.
!(−)!
0
另外,我们规定
= 1.
能否用
阶乘表示
判断正误.
√)
(1)1,2,3与3,2,1是同一组合.(
(2)两个组合相同的充要条件是其中的元素完全相同.(
√)
(3)从,,三个不同的元素中任取两个元素的一个组合是
×)
32 .(
√
(4)从1,3,5,7中任取两个数相乘可得42 个积.( )
练习巩固
现有1,3,7,13这4个数,
(1)从这4个数中任取2个相加,可以得到多少个
不相等的和?
(2)从这4个数中任取2个相减,可以得到多少个
不相等的差?
6.2.4 组合数
复习回顾
什么是排列数?排列数公式是什么?
1、排列数:从n个不同的元素中取出m(m ≤ n)个元素
人教A版高中同步学案数学选择性必修第三册精品习题课件 第七章 二项分布与超几何分布 超几何分布
显的两类,故B错误.
2.在100张奖券中,有4张能中奖,从中任取2张,则2张都能中奖的概率是( C
1
50
1
25
1
1
D.
825 4 950
A. B. C.
[解析]若记为抽出的2张奖劵中的中奖数,则( = ) =
=
.
)
3.在10个排球中,有6个正品,4个次品.从中抽取4个,则正品数比次品数少的概率为
的2个红球、3个白球的袋子中随机地摸出2个球,若摸出的“2个都是红球”出现了3次,
则获得200分;若摸出的“2个都是红球”出现了1次或2次,则获得20分;若摸出的“2个都是
红球”出现了0次,则扣除10分(即获得−10分).
(1)设每轮游戏中摸出的“2个都是红球”出现的次数为,求的分布列;
C22
解 设每轮游戏得分为.
由(1)知,的分布列为
−10
20
200
729
1 000
270
1 000
1
1 000
() = −10 ×
729
1 000
+ 20 ×
270
1 000
+ 200 ×
1
1 000
= −1.69.
因为每轮游戏获得的分数的均值为负,所以多次游戏之后,与最初的分数相比,分
数没有增加,反而减少了.
故所求概率为
+
=
.
=
=
.
=
;
4.一个盒子里装有大小相同的10个黑球,12个红球,4个白球,从中任取2个,其中白
人教A版高中同步学案数学选择性必修第三册精品习题课件 第七章 条件概率与全概率公式 全概率公式
7.1 条件概率与全概率公式
7.1.2 全概率公式
A级 必备知识基础练
1.在某班学生考试成绩中,数学不及格的占15%,语文不及格的占5%,两门都不及格的占
3%.已知一名学生数学不及格,则他语文也不及格的概率是() A
A.0.2
B.0.33
C.0.5
[解析]设事件A为“数学不及格”,事件B为“语文不及格”,(|) =
A.0.59
B.0.41
C.0.48
D.0.64
[解析]设 =“从第一个盒子中取得标有字母A的球”,
=“从第一个盒子中取得标有字母B的球”,
=“第二次取出的球是红球”,
,()
= ,
则() =
(|)
=
,(|)
= ,
() = (|)() + (|)() = ×
丙盒中黑球的个数为% × = ,白球的个数为 ;
记“从三个盒子中各取一个球,取到的球都是黑球”为事件,
所以() = . × . × . = . ;
记“将三个盒子混合后取出一个球,是白球”为事件,
黑球总共有 + + = 个,白球共有 个,所以() =
= .
6.某次社会实践活动中,甲、乙两个班的同学共同在一社区进行民意调查.参加活动的
3
1
甲、乙两班的人数之比为5: 3,其中甲班中女生占 ,乙班中女生占 .求该社区居民遇到一
5
3
位进行民意调查的同学恰好是女生的概率.
解记“居民所遇到的一位同学是甲班的”为事件,“居民所遇到的一位同学是乙班的”
人教A版高中同步学案数学选择性必修第三册精品习题课件 第八章第1课时 一元线性回归模型和经验回归方程
季两个流行高峰.某幼儿园将去年春季该园患流感的小朋友按照年龄与人数统计,得
到如下数据:
年龄
2
3
4
5
6
患病人数
22
22
17
14
10
(1)求关于的经验回归方程;
解 由题意,可得 =
5
∑ ( −)( −)
= =1 5
∑ ( −)2
=
2+3+4+5+6
5
= 4, =
22+22+17+14+10
= × ( + . + + . + ) = ,
则 = − . = − . × = ,故A正确;
= . > ,所以变量,呈正相关关系,故B正确;
由经验回归方程可知,
若的值增加1,则的值约增加. ,故C正确;
2024年对应的年份代码为8,令 = ,则ෝ
= . × + . = . ,
故预测2024年留学生回国人数为63.14万.
故选A.
7.某品牌服装专卖店为了解保暖衬衣的销售量(单位:件)与平均气温
(单位:℃)——之间的关系,随机统计了连续四旬的销售量与当旬平均气温,其数
3.由一组观测数据(1 , 1 ),(2 , 2 ),⋅ ,( , ),经分析可得经验回归方程为
−2.5
ො = 3 + ,若
ො
= 1.5, = 2,则ො =______.
ෝ,
[解析]因为 = . , = ,经验回归方程为ෝ
= +
ෝ,解得ෝ
所以 = × . +
人教A版高中同步学案数学选择性必修第三册精品习题课件 第六章 综合训练
三、填空题(本题共3小题)
12.将5位志愿者分成3组,其中两组各2人,另一组1人,分赴某大型展览会的三个不同场馆服务,不同的分配方案有____种.
90
[解析]先分组,再把三组分配到三个不同的场馆,得共有不同的分配方案(种).
A
A.320 B.160 C.96 D.60
[解析]根据分步计算原理,区域①有5种颜色可供选择,区域③有4种颜色可供选择,区域②和区域④只要不选择区域③的颜色即可,故各有4种颜色可供选择,所以根据分步乘法计数原理,得不同涂色方法有(种).
8.某学校实行新课程改革,即除语文、数学、外语三科为必考科目外,还要在物理、化学、生物、历史、地理、思想政治六科中选择三科作为选考科目.已知某生的高考志愿为某大学环境科学专业,按照该大学上一年高考招生选考科目要求,物理、化学必选,为该生安排课表(上午四节、下午四节,每门课每天至少一节),已知该生某天最后两节为自习课,且数学不排下午第一节,语文、外语不相邻(上午第四节和下午第一节不算相邻),则该生该天课表有( )
C
A.18 B.24 C.30 D.36
[解析]由于选出的3名学生中男女生都有,所以可分成两类:第1类,3人中是1男2女,共有(种)不同的选法;第2类,3人中是2男1女,共有(种)不同的选法.所以男女生都有的不同的选法种数是.
4.已知,则实数的值为()
D
A.15 B.20 C.40 D.60
[解析]的展开式的通项为,令,则,解得, 则.
[解析]若任意选择三门课程,选法种数为,故A错误;若物理和化学至少选一门,选法种数为,故B错误;若物理和历史不能同时选,选法种数为,故C正确;若物理和化学至少选一门,且物理和历史不能同时选,选法种数为,故D错误.故选.
人教a版高中数学必修3一课一练全册汇编含答案
人教A版高中数学必修3《一课一练》全册汇编含答案目录《1.1 算法与程序框图》一课一练1《1.1 算法与程序框图》一课一练2《1.2 基本算法语句》一课一练1《1.2 基本算法语句》一课一练2《1.3 算法案例》一课一练1《1.3 算法案例》一课一练2《2.1 随机抽样》一课一练1《2.1 随机抽样》一课一练2《2.2 用样本估计总体》一课一练1《2.2 用样本估计总体》一课一练2《2.3 变量间的相关关系》一课一练1《2.3 变量间的相关关系》一课一练2《3.1 随机事件的概率》一课一练1《3.1 随机事件的概率》一课一练2《3.2 古典概型》一课一练1《3.2 古典概型》一课一练2《3.3 几何概型》一课一练1《3.3 几何概型》一课一练21.1 算法与程序框图一、选择题1、在程序框图中,算法中间要处理的数据或者计算,可分别写在不同的( ) A 、处理框内 B 、判断框内 C 、输入输出框内 D 、循环框内2、在程序框图中,一个算法的步骤到另一个算法的步骤地联结用( ) A 、连接点 B 、判断框 C 、流程线 D 、处理框3、在画程序框图时,如果一个框图要分开画,要在断开出画上( ) A 、流程线 B 、注释框 C 、判断框 D 、连接点4、下图给出的是计算0101614121+⋅⋅⋅+++的值的一个程序框图,其中判断框内应填入的条件是A 、i>100B 、i<=100C 、i>50D 、i<=50二、填空题5、在程序框图中,图形符号的名称是___________表示的意义____________第4题6、在程序框图中,图形符号的名称是___________表示的意义____________7、在画程序框图时,框图一般按_________、________的方向画。
8、求a 、b 、c 中最大值的算法最多要有___________次赋值过程,才能输出最大值。
三、解答题9、设y 为年份,按照历法的规定,如果y 为闰年,那么或者y 能被4整除不能被100整除,或者y 能被400整除。
高中数学人教A版 选择性必修第三册 排列、组合的综合应用 课件
练习3:(1)某社区服务站将5位志愿者分成3组,其中两组各2人,另一组 1人,分别去三个不同的社区宣传肾脏日的主题:“尽快行动,尽快预 防”,则不同的分配方案有__9_0_种(用数字作答).
解:C15·AC2422·C22·A33=90(种).
(2)将12枝相同颜色的鲜花放入编号为1,2,3,4的花瓶中,要求每个花瓶 中的鲜花的数量不小于其编号数,则不同的放法种数为1_0____.
第二类:甲不入选,可分两步: 第一步,从只会英语的6人中选1人,有6种选法;第二步,从只会日 语的2人中选1人,有2种选法. 由分步乘法计数原理知,有6×2=12(种)不同的选法. 综上,共有8+12=20(种)不同的选法.
反思与总结2
解决多面手问题时,依据多面手参加的人数和从事的工作进行分 类,将问题细化为较小的问题后再处理.
反思与总结1
有限制条件的抽(选)取问题,主要有两类 (1)“含”与“不含”问题,其解法常用直接分步法,即“含”的 先取出,“不含”的可把所指元素去掉再取,分步计数. (2)“至多”“至少”问题,其解法常有两种解决思路:一是直接 分类法,但要注意分类要不重不漏;二是间接法,注意找准对立 面,确保不重不漏.
(2)至多有两名女生当选;
解:至多有2名女生当选含有三类: 有2名女生当选;只有1名女生当选;没有女生当选, 所以共有 C25C38+C15C48+C58=966(种)选法.
(3)既要有队长,又要有女生当选.
解:分两类: 第一类:女队长当选,有 C412=495(种)选法; 第二类:女队长没当选,有 C14C37+C24C27+C34C17+C44=295(种)选法, 所以共有495+295=790(种)选法.
练习1:
(1)某食堂每天中午准备4种不同的荤菜,7种不同的蔬菜,用餐者可
人教A版高中数学选择性必修第三册 组合与组合数 (课件)
(1)以其中2个点为端点的有向线段共有多少条?
(2)以其中2个点为端点的线段共有多少条?
分析:(1)确定一条有向线段,不仅要确定两个端点,还要考虑他们的顺序是排列问题;
(2)确定一条线段,只需确定两个端点,而不需要考虑它们的顺序是组合问题.
解:(1)一条有向线段的两个端点,要分起点和终点,以平面内4个点中的2个为端
概念辨析
1.校门口停放着9辆共享自行车,其中黄色、红色和绿色的各有3辆,下面的问题是排列
问题,还是组合问题?
(1)从中选3辆,有多少种不同的方法?
(2)从中选2辆给3位同学有多少种不同的方法?
(1)与顺序无关,是组合问题;
(2)选出2辆给3位同学是有顺序的,是排列问题。
典例解析
例5.平面内有A,B,C,D共4个点.
跟踪训练
98
199
跟踪训练 1. (1)计算:①3C83 -2C52 + C88 ;②C100
+ C200
.
+1
(2)求证:C+1 + C-1 +2C = C+2
m!
=
n!
,这里 n,m∈N*,
m!(n-m)!
典例解析
例6.计算:
3
10
0
7
(1)10
;(2)10
;(3)10
;(4)10
.
解:根据组合数公式,可得
3
(1) C10
7
(2) C10
(3)
10
C10
=
A310
A33
=
10!
7! 10−7 !
=
A10
10
A10
10
人教A版高中同步学案数学选择性必修第三册精品习题课件 第七章 综合训练
故选A.
D.36
2.已知离散型随机变量的概率分布如下表,则其均值()等于() D
1
3
5
0.5
0.2
A.1B.0.6C.2 + 3 D.2.4
[解析]依题意,. + + . = ,解得 = . ,
故() = × . + × . + × . = . .
B.事件发生的概率
C.事件不发生的条件下事件发生的概率
D.事件,同时发生的概率
[解析] 由题图可知,涂色部分的面积表示“事件B不发生条件下事件A发生的概率”与
“事件B发生条件下事件A发生的概率”的和事件,
即涂色部分的面积表示事件A发生的概率.
2
5.甲、乙两人进行羽毛球比赛,假设每局比赛甲胜的概率是 ,各局比赛是相互独立
(− ≤ ≤ ) = − ,故选项C正确;
对于选项D,击中目标的次数为, ∼ (, . ),
+
令
⋅ . ⋅ . − ≥
⋅ . + ⋅ . − ,
−
且
⋅ . ⋅ . − ≥
⋅ . − ⋅ . − ,
8.小明与另外2名同学进行“手心手背”游戏,规则如下:3人同时随机等可能选择手心
或手背中的一种手势,规定相同手势人数多者每人得1分,其余每人得0分.现3人共进
行了4次游戏,每次游戏互不影响,记小明4次游戏得分之和为,则的均值为
() C
A.1
B.2
C.3
D.4
[解析]进行“手心手背”游戏,小明与另外2名同学选择手势的所有可能情况为
解 记事件:该球为红球,事件1 :取甲箱,事件2 :取乙箱,事件3 :取丙箱.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、通过小结与复习,梳理本章知识内容,强化知 识间的内在联系,提高综合运用知识解决问题的 能力,掌握随机现象中的必然事件、不可能事件、 随机事件的概念;掌握互斥事件、对立事件的概 念;掌握古典概型、几何概型的特点及概率公式 算法。
ห้องสมุดไป่ตู้2、通过例题讲解、讨论和进一步的训练,提高灵 活运用本章知识解决问题的能力。
练习巩固
1、甲、乙两人下棋,两人下成和棋的概率是
1 2
, 乙获胜的概
1
5
1
率是 3 ,则乙不输的概率是__6_ ,甲获胜的概率是__6_,
2
甲不输的概率是__3_.
2、某个制药厂正在测试一种减肥新药的疗效,有 500名志愿者服用此药,结果如下:
体重变化 体重减轻 体重不变 体重增加
人数
274
93
3
1
8
4
4、某单位有职工130人,对他们进行年龄状况和 受教育程度的调查,其结果如下:
本科
研究生 合计
35岁以下
50
35
85
35-50岁
20
13
33
50岁以上
10
2
12
随机地抽取一人,求下列事件的概率:(8 1)
具有本科学历;(2)35岁以下具有研究生学历;
7
6
(3)50岁以上。
13 26 65
5、甲袋中有1只白球,2只红球,3只黑 球;乙袋中有2只白球,3只红球,1只黑 球,现从两袋中各抽取一球,求两球颜色 相同的概率。
4、极大似然法: “使得样本出现的可能性最大”判断问题的
方法
二、概率的基本性质 (一)、事件的关系与运算 1、基本概念: 如果事件A发生,则事件B一定发生,则称 事件的包含关系: 事件B包含事件A(或事件A含于事件B)
相等关系: 若两个事件同时发生或同时不发生,则称事 件A等于事件B。
某事件发生当且仅当事件A发生或事件B发 生
11、诚实是成功者最珍贵的品格。 21. 吃别人所不能吃的苦,忍别人所不能忍的气,做别人所不能做的事,就能享受别人所不能享受的一切 1. 不要被教条所限,不要活在别人的观念里。 4、一个能从别人的观念来看事情,能了解别人心灵活动的人永远不必为自己的前途担心。 77、只有想不到的事,没有做不到的事。 1. 不要被教条所限,不要活在别人的观念里。 15. 人生之路多坎坷,摔个跟头别难过,爬起来,掸掸土,前方就是一片乐土 4. 管好自己的嘴,讲话不要图一时痛快、信口开河,“良言一句三冬暖,伤人一语六月寒”,说话要用脑子,敏事慎言,话多无益,不扬人恶, 自然就能化敌为友。
60、你送别人一束玫瑰,你的手中也留有清香。 24、乐观的人能重整旗鼓东山再起,悲观的人因缺乏自信,往往一败涂地。 5、生活中其实没有绝境。绝境在于你自己的心没有打开。你把自己的心封闭起来,使它陷于一片黑暗,你的生活怎么可能有光明!封闭的心 ,如同没有窗户的房间,你会处在永恒的黑暗中。但实际上四周只是一层纸,一捅就破,外面则是一片光辉灿烂的天空。
1、基本概念:(1)几何概率模型:
如果每个事件发生的概率只与构成该事件区域的
长度(面积或体积)成比例,则称这样的概率模
型为几何概率模型;简称几何概型。(2)几何
概型的特点:1)实验中基本事件的个数是
2)每个基本事件出现的可
性
.(2)几何概型的概率公式:
P(A)=
无限的
相等
构成事件 A的区域长度、角度(面 积或体积) 实验全部结果所构成的 区域长度、角度(面积 或体积)
率,简0称,1为A的概率.
1、频率是 随机的 在试验前无法确定
2、概率是 一个定值 与实验次数无关
3、频率是概率的近似值,频率可以用来估计
概率
二、概率的意义1、概率是度量
事件发生的可能性的大小
2、任何一次实验中,事件A发生的可
能性都 ,不受 的影响。
相等
实验次数
3、小概率事件: 几乎不可能发生的事件
P( A) 11 36
6、有2个人在一座7层大楼的底层进入电 梯,假设每一个人自第二层开始在每一层离 开电梯是等可能的,求2个人在不同层离开 的概率。
5
6
作业:P146 B组1、2、3
65、目标和信念是战胜困难和不幸的利剑,可以使人发挥出超常的潜能。 63、一个人除非自己有信心,否则无法带给别人信心。 8、凝聚产生力量,团结孕育希望。 23. 天上最美的是星星,人间最美的是真情 21、站在巨人的肩上是为了超过巨人。 100、世上所有美好的感情加在一起,也抵不上一桩高尚的行动。 5、生活中其实没有绝境。绝境在于你自己的心没有打开。你把自己的心封闭起来,使它陷于一片黑暗,你的生活怎么可能有光明!封闭的心 ,如同没有窗户的房间,你会处在永恒的黑暗中。但实际上四周只是一层纸,一捅就破,外面则是一片光辉灿烂的天空。
确定事件
(一)、事件的分类
随机事件
(二)频率与概率的定义: 在相同的条件S下重复n次试 验,事件A发生的次数为
对于称给事定件的A出随现机的事比件例Af,n(经A)过= 大nn量A为的事重件复A试出验现后的,频随率着;
试验次数的增加,事件A发生的频率P(A)会逐渐稳定在 区间 中的某个常数上,把这个常数记为事件A的概
133
如果另有一人服用此药,估计下列事件发生的概率:
(1) 此人体重减轻;
P( A) 274 0.548 500
(2) 此人体重不变;P(B) 93 0.186
500
(3) 此人体重增加。P(c) 133 0.266
500
3、将一枚质地均匀的硬币连续投掷4次, 出现“2次正面朝上,2次反面朝上”和 “3次正面朝上,1次反面朝上”的概率各 是多少?
个基本事件
特点
1、任何两个基本事件是互斥的 2、任何事件除(不可能事件外)都可以
表示成几个基本事件的和
2、古典概型的特点:基本事件的个数是 有限的
每个基本事件出现的的可能性是 相等的
3、古典概型求概率公式:
求出事件A所包含的基本事件数,然后利用公式 P(A)= 事件A所包含的基本事件的个 数
基本事件的总个数
4、概率的基本性质 (3)当事件A与B互斥时,满足加法公式: P(A∪B)= P(A)+P(B); 若事件A与B为对立事件,P(A∪B)= P(A)+P(B)=1 于是有P(A)=1-P(B) (4)必然事件概率为 1 ,不可能事件概率 为 0 ,因此0≤P(A)≤1;
1、基本事件的定义:一次实验中可能出现的每一次结果,都称为一
某事件发生,当且仅当事件A发生且事件B发生
2、互斥事件
(1)若A∩B为 不可能事件 ,即A∩B=
,那么
称事件A与事件B互斥;即
事件A与事件B不能同时发生
3、对立事件 (2)若A∩B为 不可能事件 ,A∪B为 必然事件 , 那么称事件A与事件B互为对立事件;即
事件A与事件B不能同时发生,但其中有一个必 需发生