七年级下册第一章同底数幂的乘法除法及幂的乘方与积的乘方、整式的乘法
七年级数学下期培优学案(1)-同底数幂的乘除法、幂的乘方、积的乘方
![七年级数学下期培优学案(1)-同底数幂的乘除法、幂的乘方、积的乘方](https://img.taocdn.com/s3/m/32202f8e71fe910ef12df850.png)
七年级下期数学培优学案(1)同底数幂的乘(除)法、幂的乘方、积的乘方一、同底数幂的乘法1.公式及其推广:m n p m n p a a a a++= 2.公式顺用:例1、计算(1)21n n n aa a ++ (2)232()()x x x -••- (3)432111()()()101010--(4)34(2)(2)(2)x y x y y x --- (5)2132()()()n n a a a ++---练习 231022(1),13m m x x x m m -=-+=若则整式 2(2)2(8)2128,n n n +•-•=-=若则33(3)m a +可以写成(4)2122)2(2)n n n +-+-=为正整数,( 3.公式的逆用例2.2+14=6435(1)a x x x +=-a 若,解关于的方程:2二、幂的乘方1.公式的应用例3.计算 (1)(34()x - (2)34[()]x -练习:计算下列各题253(1)()x x - 2844(2)()()x x 2332222(3)()()(2)y y y y +-2.公式的逆用32231313694.(1)2,3)()2102,103,103253,4324)(),n n n n a b a b x y m n x y x y x y x y x y m n +-+====+=••=+例已知,求(的值()已知求的值()若求的值()若(求的值三、积的乘方1.公式的顺用例5.125计算:()(-x b) 322(2)(2)()ab ab23(3)3()x x --练习:计算2233(1)()()(5)ab a b ab -- 122(2)()()n n n c dc d -452342102533(3)()()()()()a a a a a a a --•+----2.公式的逆用例6.计算10010223(1)()()32- (2) 200320011(0.75)(1)3-练习:22(1)2,3,)n n n x y x y ==已知求(的值 2430,216x y x y +-=•()已知求的值四、拓展100751.23比较与的大小2.试判断10825⨯是几位数?2004200523⨯的个位数字是多少?3.阅读下列材料:为了求1+2+22+23+…+22011的值,可令S=1+2+22+23+…+22011①,则 2S=2+22+23+…+22012②,②﹣①得 2S ﹣S=22012﹣1,即S=22012﹣1,∴1+2+22+23+…+22011=22012﹣1仿照以上推理,请计算:1+4+42+43 (42011)4.几个相同的数码摆成一个数,并且不用任何数学运算符号(含括号),如果要使摆成的数尽可能的大,该怎样摆呢?如用3个1按上述要求摆成一个数,有如下四种形式:①111;②111;③111; ④.显然,111是这四个数中的最大的数.那么3个2有几种摆法?请找出其中的最大数.5.已知2a =3,2b =5,求23a+2b+2的值6.32)1,x x x +-=已知(求整数的值。
同底数幂、幂的乘方、积的乘方知识点及习题
![同底数幂、幂的乘方、积的乘方知识点及习题](https://img.taocdn.com/s3/m/adfe09c7daef5ef7ba0d3c64.png)
幂的运算1、同底数幂的乘法同底数幂相乘,底数不变,指数相加.公式表示为:()mnm na a am n +⋅=、为正整数同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即()m n p m m p a a a a m n p ++⋅⋅=、、为正整数注意:(1)同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数.(2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.例1: 计算列下列各题 (1) 34a a ⋅; (2) 23b b b ⋅⋅ ; (3) ()()()24c c c -⋅-⋅-练习:简单 一选择题1. 下列计算正确的是( )A.a2+a3=a5B.a2·a3=a5C.3m +2m =5mD.a2+a2=2a42. 下列计算错误的是( )A.5x2-x2=4x2B.am +am =2amC.3m +2m =5mD.x·x2m-1= x2m3. 下列四个算式中①a3·a3=2a3 ②x3+x3=x6 ③b3·b·b2=b5④p 2+p 2+p 2=3p 2正确的有( )A.1个B.2个C.3个D.4个4. 下列各题中,计算结果写成底数为10的幂的形式,其中正确的是( )A.100×102=103B.1000×1010=103C.100×103=105D.100×1000=104二、填空题1. a4·a4=_______;a4+a4=_______。
2、 b 2·b ·b 7=________。
3、103·_______=10104、(-a)2·(-a)3·a5=__________。
5、a5·a( )=a2·( ) 4=a186、(a+1)2·(1+a)·(a+1)5=__________。
同底数幂的乘法及幂的乘方与积的乘方
![同底数幂的乘法及幂的乘方与积的乘方](https://img.taocdn.com/s3/m/e700a67db90d6c85ec3ac65b.png)
同底数幂的乘法及幂的乘方与积的乘方知识要点一、同底数幂的乘法2. 幂的运算法则(重点) :同底数幂相乘,底数不变,指数相加。
即:a m·a n=a m+n(都是正整数)二、幂的乘方与积的乘方1、幂的乘方2、积的乘方(a m)n=a m n (m、n都是正整数)幂的乘方,底数a,指数mn。
(ab)n=a n b n(N是正整数)。
积的乘方等于每个因式分别乘方后的积。
例题1、计算:(1)741010⨯; (2) -25x x •(3)3()()x x ⋅-- (4) 1m m yy ⋅+例2、例3、例4、例5、已知a m =2,a n =3,求a m+n 的值。
例6、已知x +y =a ,求(x +y )3(2x +2y )3(3x +3y )3的值.练习一、二、填空题:1. 111010m n +-=________,456(6)-=______.2. 234x x xx -=________,25()()x y x y --=_________________.3. =___________.4. 若34m a a a ,则m=________;若416a x x x ,则a=__________;若2345y xx x x x x ,则y=______;若25()x a a a ,则x=_______. 5. 若2,5m n a a ,则m n a =________.三、解答题:(每题8分,共40分)1、计算下列各题:31010010100100100100001010⨯⨯⨯⨯⨯⨯-+(1)x ·x ·x 3 (2) (a+b)(a+b)2(a+b)3(3)2x 3(-x)-x(-x)4 (4)x ·x m-1+x ·x m-2(5)(x-y)2(x-y)3(y-x)2(y-x)3; 6)(a-b-c)(b-a-c)2(c-a+b)3;(7)(-x)2(-x)3+2x(-x)4-(-x)x 4; (8)x ·x m-1·x 2·x m-2。
七年级下册数学各章知识点总结
![七年级下册数学各章知识点总结](https://img.taocdn.com/s3/m/875ca2322b160b4e767fcf87.png)
北师大版《数学》(七年级下册)知识点总结第一章整式的运算单项式 整 式 多项式同底数幂的乘法 幂的乘方 积的乘方幂运算 同底数幂的除法 零指数幂 负指数幂 整式的加减 单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式一、单项式、单项式的次数:只含有数字与字母的积的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
二、多项式1、多项式、多项式的次数、项 几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式:单项式和多项式统称为整式。
四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。
五、幂的运算性质: 1、同底数幂的乘法:a m﹒a n =am+n(m,n 都是正整数);2、幂的乘方:(am)n=amn(m,n 都是正整数); 3、积的乘方:(ab )n=a n bn(n 都是正整数);4、同底数幂的除法:am÷a n=am-n(m,n 都是正整数,a ≠0) ;整 式 的 运算六、零指数幂和负整数指数幂: 1、零指数幂:a=1(a ≠0);2、负整数指数幂:p 是正整数。
七、整式的乘除法:1、单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数、p 是正整数相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。
2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
3、多项式乘以多项式: 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
七年级下册数学第一章 整式的乘除 第一课:幂
![七年级下册数学第一章 整式的乘除 第一课:幂](https://img.taocdn.com/s3/m/e725f81fcc7931b765ce156e.png)
第一章 整式的乘除第一课:幂学习目标:1、 同底数幂的乘法 2 幂的乘方与积的乘方 3 同底数幂的除法【知识点一】同底数幂的乘法法则:同底数幂相乘,底数 ,指数 。
a m .a n =a n m +(n m ,都是正整数)【注意底数可以是多项式或单项式。
】(1) 102×103 (2)105×108 (3) 10m ×10n (m 、n 都是正整数)2m ×2n =_________________;11()()77m n ⨯=_________________(m 、n 都是正整数)例1 计算(1) 76(3)(3)-⨯- (2) 311()()1010⨯ (3) 221m m b b +⋅ (4) 35x x -⋅1、计算:(1) 11c c ⋅ (2) 32()()b b -⋅- (3) 32b b -⋅2、下面的计算是否正确?如果有错误请改正(1) 326a a a ⋅= (2) 4442b b b ⋅= (3) 5510x x x += (4) 78y y y ⋅=2、已知a m =2,a n =8,求a m+n (提示:请认真考虑a m+n 的意义,或者说它是怎样得到的?)4、练习(1)25()()()a a a -⋅-⋅-(2)34()a a -⋅-(3)22n n x x x +⋅- (4)35()()()a b b a a b -⋅-⋅-【知识点二】幂的乘方法则:幂的乘方,底数 ,指数 。
mn n m a a =)((n m ,都是正整数)例2、=-25)3( 幂的乘方法则可以逆用:即m n n m m n a a a )()(== 例5:=64 =2、你会计算:23(10)吗?下面的各式你能计算吗?说说你是怎样算的(1) (62)4(2) (a 2)3 (3) (a m )2 (4) (a m )n例2计算( (1) (102)3(2) (b 5)5 (3) (a n )3(4) –(x 2)m (5) (y 2)3y ⋅ (6) 2(a 2)6-(a 3)4练习:1、下面的计算是否正确?如有错误请改正(1) (x 3)3=x 6(2) a 6424a a ⋅= 2、计算 (1) 321[()]3(2) (a 4)2 (3)-(b 5)2(3) (y 2)2n(5) (b n )3 (6) (x 3)3n3、计算(1) 4()p p -⋅-(2) 2332()()a a ⋅(3) 2()m t t ⋅(4) 4638()()x x -【知识点三】积的乘方法则:等于把积的每一个因式分别 ,再把所得的幂相乘。
第一章 整式的乘除(单元小结)七年级数学下册(北师大版)
![第一章 整式的乘除(单元小结)七年级数学下册(北师大版)](https://img.taocdn.com/s3/m/57f685fbb8f3f90f76c66137ee06eff9aff84975.png)
考点专练
【要点指导】幂的运算包括同底数幂的乘法、幂的乘方、 积的乘方、同底数幂的除法以及零指数幂、负整数指数 幂的运算, 计算时, 要熟练掌握各自的运算法则, 并能灵活 运用这些运算法则进行计算. 幂的运算法则还可以逆用.
考2y2-xy)-y(x2-x3y)]×3x2y,其中x=1,y=3. 解:原式=(x3y2-x2y-x2y+x3y2) ×3x2y
=(2x3y2-2x2y) ×3x2y = 6x5y3-6x4y2 . 当x=1,y=3时,原式=6×27-6×9=108.
谢谢~
新课标 北师大版 七年级下册
第一章 整式的乘除
单元小结
本章知识架构
整式的乘法
同底数幂的乘法,幂的乘方,积的乘方 单项式乘以单项式 单项式乘以多项式 多项式乘以多项式 (平方差公式,完全平方公式)
整式的除法
同底数幂的除法(零指数,负指数次幂,科学计数法) 单项式除以单项式 多项式除以单项式
知识专题
知识专题
1.零指数幂. 任何不等于0的数的零次幂都等于1.
a0=1 (a≠0)
2.负指数幂.
a≠0,p是正整数
知识专题
3.科学记数法 一般地,一个绝对值小于1的数可以用科学记数法表示为:
a×10-n(其中1≤|a|<10,n是整数) 注意: (1) 1≤|a|<10 ,
(2) n从左起第一个非零数前零的个数.
(三)积的乘方. 积的乘方等于把积的每一个因式分别乘方,再把 所得的幂相乘,即, (ab)n=anbn(n是正整数).
知识专题
(四)同底数幂的除法. 同底数幂相除,底数不变,指数相减.即 am÷an=am-n (a≠0,m,n都是正整数,m>n). 注:(1)底数必须相同. (2)适用于两个或两个以上的同底数幂相除. (3)逆运用常考am-n= am÷an
七年级下册数学课本目录
![七年级下册数学课本目录](https://img.taocdn.com/s3/m/233232cb76eeaeaad1f330ed.png)
七年级下册数学课本目录第一章整式的乘除
1.同底数幂的乘法
2.幂的乘方与积的乘方
3.同底数幂的除法
4.整式的乘法
5.平方差公式
6.完全平方公式
7.整式的除法
第二章相交线与平行线
1.两条直线的位置关系
2.探索直线平行的条件
3.平行线的性质
4.用尺规作角
第三章三角形
1.认识三角形
2.图形的全等
3.探索三角形全等的条件
4.用尺规作三角形
5.利用三角形全等测距离
第四章变量之间的关系
1.用表格表示的变量间关系
2.用关系式表示的变量间关系
3.用图像表示的变量间关系第五章生活中的轴对称
1.轴对称现象
2.探索轴对称的性质
3.简单的轴对称图形
4.利用轴对称进行设计
第六章概率初步
1.感受可能性
2.频率的稳定性
3.等可能事件的概率。
同底数幂的乘法、幂的乘方和积的乘方、同底数幂的除法
![同底数幂的乘法、幂的乘方和积的乘方、同底数幂的除法](https://img.taocdn.com/s3/m/4dd2ddd550e2524de5187ede.png)
例1 计算 (1)82004×0.1252004; (2)(-8)2005×0.1252004.
随堂练习
0.2520×240-32003·( )2002+
类型四积的乘方在生活中的应用
例1地球可以近似的看做是球体,如果用V、r分别代表球的体积和半径,那么V= πr3。地球的半径约为 千米,它的体积大约是多少立方千米?
知识点一
同底数幂的乘法法则:同底数幂相乘
am·an=(m、n都是正整数)
当三个或三个以上同底数幂相乘时,也具有这一性质,用公式表示为
am·an·ap= am+n+p(m、n、p都是正整数)
知识点精讲
1.同底数幂相乘法则要注重理解“同底、相乘、不变、相加”这八个字.
2.解题时要注意a的指数是1.
3.解题时,是什么运算就应用什么法则.同底数幂相乘,就应用同底数幂的乘法法则;整式加减就要合并同类项,不能混淆.
4.-a2的底数a,不是-a.计算-a2·a2的结果是-(a2·a2)=-a4,而不是(-a)2+2=a4.
5.若底数是多项式时,要把底数看成一个整体进行计算
4、拓展:
(1)已知n为正整数,且x2n=4.求(3x3n)2-13(x2)2n的值.
(2)已知xn=5,yn=3,求(xy)2n的值
(3)若m为正整数,且x2m=3,求(3x3m)2-13(x2)2m的值.
知识点四
同底数幂相除, 底数,指数.
即:am÷an=( ,m,n都是正整数,并且m>n)
规定:a0=1(a≠0)即:任何非0的数的0次幂都等于1
典型例题讲解
例一、填一填
⒈ =;
⒉ =;
⒊ ;
1.1-1.2同底数幂乘法,幂的乘方,积的乘方-北师大版七年级数学下册教案
![1.1-1.2同底数幂乘法,幂的乘方,积的乘方-北师大版七年级数学下册教案](https://img.taocdn.com/s3/m/4abceba4951ea76e58fafab069dc5022aaea46f0.png)
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《同底数幂乘法,幂的乘方,积的乘方》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算相同底数的幂相乘的情况?”(如计算相同货币单位累加的总额)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索幂运算的奥秘。
其次,幂的乘方法则对学生来说是一个新的挑战。虽然通过案例分析,他们能够理解指数相乘的概念,但在实际操作中,一些学生还是会犯指数相加的错误。这可能是因为他们对幂的乘方运算的本质理解不够深入,我需要在以后的课堂上继续加强这方面的讲解和练习。
关于积的乘方法则,我发现学生们在处理多个因子时容易出现重复计算的问题。这可能是因为他们在分解积的乘方时,没有清晰地认识到每个因子只需要乘方一次。在以后的教学中,我需要设计更多的练习题,帮助学生巩固这一知识点。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解同底数幂乘法的基本概念。同底数幂乘法是指当底数相同时,幂的乘法可以通过指数相加来进行计算。这一概念在数学运算中非常重要,它可以帮助我们简化计算过程,提高解题效率。
2.案例分析:接下来,我们来看一个具体的案例。例如,计算2^3•2^4,通过同底数幂乘法法则,我们可以得出2^(3+4)=2^7,从而简化计算。
(3)积的乘方法则在涉及多个因子时的应用,尤其是当积的乘方中包含相同因子时,如何避免重复计算。
难点举例:计算(2×2×3)^2,学生应能识别2是重复因子,得出2^2×2^2×3^2=4×4×9。
在教学过程中,教师要针对这些重点和难点内容,通过实例讲解、互动提问、练习巩固等多种方式,帮助学生深入理解和掌握本节课的核心知识。同时,要关注学生的个别差异,对于理解上存在困难的学生给予个别指导和鼓励,确保每位学生都能透彻理解并灵活运用所学知识。
同底数幂的乘法,幂的乘方,积的乘方
![同底数幂的乘法,幂的乘方,积的乘方](https://img.taocdn.com/s3/m/8f49dab669dc5022aaea00bc.png)
幂的运算一1.同底数幂的乘法:a m·a n=a m+n (m, n是自然数)同底数幂的乘法法则是本章中的第一个幂的运算法则,也是整式乘法的主要依据之一。
学习这个法则时应注意以下几个问题:(1)先弄清楚底数、指数、幂这三个基本概念的涵义。
(2)它的前提是“同底”,而且底可以是一个具体的数或字母,也可以是一个单项式或多项式,如:(2x+y)2·(2x+y)3=(2x+y)5,底数就是一个二项式(2x+y)。
(3)指数都是正整数(4)这个法则可以推广到三个或三个以上的同底数幂相乘,即a m·a n·a p....=a m+n+p+... (m, n, p都是自然数)。
(5)不要与整式加法相混淆。
乘法是只要求底数相同则可用法则计算,即底数不变指数相加,如:x5·x4=x5+4=x9;而加法法则要求两个相同;底数相同且指数也必须相同,实际上是幂相同系数相加,如-2x5+x5=(-2+1)x5=-x5,而x5+x4就不能合并。
例1.计算:(1) (- )(- )2(- )3 (2) -a4·(-a)3·(-a)5解:(1) (- )(- )2(- )3分析:①(- )就是(- )1,指数为1=(- )1+2+3②底数为- ,不变。
=(- )6③指数相加1+2+3=6= ④乘方时先定符号“+”,再计算的6次幂解:(2) -a4·(-a)3·(-a)5分析:①-a4与(-a)3不是同底数幂=-(-a)4·(-a)3·(-a)5可利用-(-a)4=-a4变为同底数幂=-(-a)4+3+5②本题也可作如下处理:=-(-a)12-a4·(-a)3·(-a)5=-a4(-a3)(-a5)=-a12=-(a4·a3·a5)=-a12例2.计算(1) (x-y)3(y-x)(y-x)6解:(x-y)3(y-x)(y-x)6分析:(x-y)3与(y-x)不是同底数幂=-(x-y)3(x-y)(x-y)6 可利用y-x=-(x-y), (y-x)6=(x-y)6=-(x-y)3+1+6变为(x-y)为底的同底数幂,再进行计算。
同底数幂的乘法、幂的乘方和积的乘方、同底数幂的除法
![同底数幂的乘法、幂的乘方和积的乘方、同底数幂的除法](https://img.taocdn.com/s3/m/ccf1fd9583c4bb4cf6ecd100.png)
例1计算
⑴(54)3⑵-(a2)3⑶⑷[(a+b)2]4
随堂练习
(1)(a4)3+m; (2)[(-)3]2;⑶[-(a+b)4]3
类型二幂得乘方公式得逆用
例1已知ax=2,ay=3,求a2x+y;ax+3y
随堂练习
(1)已知ax=2,ay=3,求ax+3y
(2)如果,求x得值
随堂练习
3。积得乘方得推广(abc)n=(n就是正整数).
例题精讲
类型一积得乘方得计算
例1计算
(1)(2b2)5;(2)(-4xy2)2(3)-(-ab)2(4)[-2(a—b)3]5.
随堂练习
(1)(2)(3)(-xy2)2(4)[-3(n-m)2]3、
类型二幂得乘方、积得乘方、同底数幂相乘、整式得加减混合运算
(2)[—(-x)5]2·(—x2)3=________;(xm)3·(—x3)2=________。
(3)(—a)3·(an)5·(a1—n)5=________;-(x-y)2·(y—x)3=________.
(4)x12=(x3)(_______)=(x6)(_______)、
(5)x2m(m+1)=()m+1。若x2m=3,则x6m=________、
2、解题时要注意a得指数就是1.
3、解题时,就是什么运算就应用什么法则.同底数幂相乘,就应用同底数幂得乘法法则;整式加减就要合并同类项,不能混淆.
4、-a2得底数a,不就是—a.计算—a2·a2得结果就是—(a2·a2)=—a4,而不就是(—a)2+2=a4。
5.若底数就是多项式时,要把底数瞧成一个整体进行计算
2、若(x2)n=x8,则m=_____________。
第1讲 同底数幂的乘法、幂的乘方与积的乘方(解析版)
![第1讲 同底数幂的乘法、幂的乘方与积的乘方(解析版)](https://img.taocdn.com/s3/m/39a8051515791711cc7931b765ce0508763275ec.png)
第1讲 同底数幂的乘法、幂的乘方与积的乘方【知识点拨】考点1:同底数幂的乘法性质+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即m n p m n p a a a a ++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。
即m n m n a a a +=⋅(,m n 都是正整数).考点2:幂的乘方法则()=m n mn a a (其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.(1)公式的推广:(())=m n p mnp a a(0≠a ,,,m n p 均为正整数) (2)逆用公式: ()()n m mn m n aa a ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题. 考点3:积的乘方法则()=⋅n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.(1)公式的推广:()=⋅⋅n n n nabc a b c (n 为正整数).(2)逆用公式:()n n n a b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭考点4:注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏.(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方.(5)灵活地双向应用运算性质,使运算更加方便、简洁.(6)带有负号的幂的运算,要养成先化简符号的习惯.【考点精讲】考点1:同底数幂的乘法【例1】(2021秋•西湖区校级月考)下列四个算式:①a6•a6=a6;②m3+m2=m5;③x2•x•x8=x10;④y2+y2=y4.其中计算正确的有()A.0个B.1个C.2个D.3个【解答】解:①a6•a6=a6,底数不变指数相加,故①错误;②m3+m2=m5,不是同底数幂的乘法指数不能相加,故②错误;③x2•x•x8=x11,底数不变指数相加,故③错误;④y2+y2=y4,不是同底数幂的乘法指数不能相加,故④错误;故选:A.【例2】(2021春•青羊区期末)已知a m=4,a n=5,则a m+n的值是20.【解答】解:a m+n=a m•a n=4×5=20,故答案为:20.【变式训练1】(2021秋•邓州市期中)若a x=3,a y=2,则a2x+y等于()A.6 B.7 C.8 D.18【解答】解:∵a x=3,a y=2,∴a2x+y=(a x)2×a y=32×2=18.故选:D.【变式训练2】(2021秋•松江区校级月考)已知10a=3,10β=5,10γ=7,试把105写成底数是10的幂的形式10α+β+γ.【解答】解:105=3×5×7,而3=10a,5=10β,7=10γ,∴105=10γ•10β•10α=10α+β+γ;故应填10α+β+γ.【变式训练3】(2021春•建平县期末)若23n+1•22n﹣1=,则n=﹣1.【解答】解:23n+1•22n﹣1=,25n=2﹣5,则5n=﹣5,故n=﹣1,故答案为:﹣1.【变式训练4】(2021秋•浦东新区月考)已知x a+b•x2b﹣a=x9,求(﹣3)b+(﹣3)3.【解答】解:∵x a+b•x2b﹣a=x9,∴a+b+2b﹣a=9,解得:b=3,(﹣3)b+(﹣3)3=(﹣3)3+(﹣3)3=﹣27﹣27=﹣54.【变式训练5】已知a3•a m•a2m+1=a25(a≠1,a≠0),求m的值7.【解答】解:∵a3•a m•a2m+1=a25(a≠1,a≠0),∴a3+m+2m+1=a25,∴3+m+2m+1=25,解得m=7,故填7.【变式训练6】(2021秋•南安市期中)已知两个单项式a m+2n b与﹣2a4b k是同类项,求2m•4n•8k的值.【解答】解:∵由已知可得:,∴2m•4n•8k=2m•22n•8k=2m+2n•8k=24×8=128.【变式训练7】(2021春•丹阳市校级月考)基本事实:若a m=a n(a>0且a≠1,m、n是正整数),则m =n.试利用上述基本事实分别求下列各等式中x的值:①2×8x=27;②2x+2+2x+1=24.【解答】解:①原方程可化为,2×23x=27,∴23x+1=27,3x+1=7,解得x=2;②原方程可化为,2×2x+1+2x+1=24,∴2x+1(2+1)=24,∴2x+1=8,∴x+1=3,解得x=2.考点2:幂的乘方与积的乘方【例1】(2021秋•松江区期末)下列计算正确的是()A.(3a)2=3a2B.(﹣2a)3=﹣8a3C.(ab2)3=a3b5D.(a)2=a2【解答】解:A、(3a)2=9a2,原计算错误,故此选项不符合题意;B、(﹣2a)3=﹣8a3,原计算正确,故此选项符合题意;C、(ab2)3=a3b6,原计算错误,故此选项不符合题意;D、(a)2=a2,原计算错误,故此选项不符合题意.故选:B.【例2】(2021秋•松北区期末)下列代数式的运算,一定正确的是()A.3a2﹣a2=2 B.(3a)2 =9a2C.(a3)4=a7D.a2+b2=(a+b)(a﹣b)【解答】解:∵3a2﹣a2=2a2,∴选项A不符合题意;∵(3a)2 =9a2 ,∴选项B符合题意;∵(a3)4=a12,∴选项C不符合题意;∵a2+b2≠(a+b)(a﹣b),a2﹣b2=(a+b)(a﹣b),∴选项D不符合题意.故选:B.【变式训练1】(2021秋•原州区期末)若x m=3,x n=2,则x2m+3n=72•【解答】解:∵x m=3,x n=2,∴x2m+3n=(x m)2×(x n)3=32×23=72.故答案为:72.【变式训练2】(2021春•东台市期中)314×(﹣)7=﹣1.【解答】解:314×(﹣)7=(32)7×(﹣)7=(﹣×9)7=(﹣1)7=﹣1,故答案为:﹣1.【变式训练3】(2021春•邗江区期中)x3•(x n)5=x13,则n=2.【解答】解:∵x3•(x n)5=x13,∴3+5n=13,解得:n=2.故答案为:2.【变式训练4】(2021秋•路北区期中)比较3555,4444,5333的大小.【解答】解:∵3555=35×111=(35)111=243111,4444=44×111=(44)111=256111,5333=53×111=(53)111=125111,又∵256>243>125,∴256111>243111>125111,即4444>3555>5333.【变式训练5】(2021春•李沧区期中)阅读下列两则材料,解决问题:材料一:比较322和411的大小.解:∵411=(22)11=222,且3>2∴322>222,即322>411小结:指数相同的情况下,通过比较底数的大小,来确定两个幂的大小材料二:比较28和82的大小解:∵82=(23)2=26,且8>6∴28>26,即28>82小结:底数相同的情况下,通过比较指数的大小,来确定两个幂的大小【方法运用】(1)比较344、433、522的大小(2)比较8131、2741、961的大小(3)已知a2=2,b3=3,比较a、b的大小(4)比较312×510与310×512的大小【解答】解;(1)∵344=(34)11=8111,433=(43)11=6411,522=(52)11=2511,∵81>64>25,∴8111>6411>2511,即344>433>522;(2)∵8131=(34)31=3124,2741=(33)41=3123,961=(32)61=3122,∵124>123>122,∴3124>3123>3122,即8131>2741>961;(3)∵a2=2,b3=3,∴a6=8,b6=9,∵8<9,∴a6<b6,∴a<b;(4)∵312×510=(3×5)10×32,310×512=(3×5)10×52,又∵32<52,∴312×510<310×512.【变式训练6】(2021秋•静安区月考)35×84×.【解答】解:原式=﹣35×212×=﹣.【课后巩固】一.选择题1.(2021春•锦江区期末)如果x m=2,x n=,那么x m+n的值为()A.2 B.8 C.D.2【解答】解:如果x m=2,x n=,那么x m+n=x m×x n=2×=.故选:C.2.(2021•成都模拟)下列计算正确的是()A.x3+x2=x5B.x3•x2=x5C.x6÷x2=x3D.(x3)2=x5【解答】解:A、x3与x2不是同类项,不能合并,原计算错误,故此选项不符合题意;B、x3•x2=x5,原计算正确,故此选项符合题意;C、x6÷x2=x4,原计算错误,故此选项不符合题意;D、(x3)2=x6,原计算错误,故此选项不符合题意.故选:B.3.(2021春•西湖区校级月考)已知关于与x,y的方程组,则下列结论中正确的是()①当x,y的值互为相反数时,a=20;②当2x•2y=16时,a=18;③当不存在一个实数a,使得x=y.A.①②B.①③C.②③D.①②③【解答】解:已知关于与x,y的方程组,则下列结论中正确的是(①②③)①当x,y的值互为相反数时,a=20;解得:∵x,y的值互为相反数,∴x+y=0∴25﹣a+15﹣a=0解得:a=20故①正确;②当2x•2y=16时,a=18;∵2x•2y=2 x+y=24∴x+y=25﹣a+15﹣a=4解得:a=18故②正确;③当不存在一个实数a,使得x=y.若x=y,得25﹣a=15﹣a此方程无解.∴不存在一个实数a,使得x=y.故③正确.故选:D.4.(2021秋•海珠区校级期中)下列各项中,两个幂是同底数幂的是()A.x2与a2B.(﹣a)5与a3C.(x﹣y)2与(y﹣x)2D.﹣x2与x2【解答】解:对于A:x2的底数是x,a2的底数是a;对于B:(﹣a)5的底数是﹣a,a3的底数是a;对于C:(x﹣y)2的底数是(x﹣y),(y﹣x)2的底数是(y﹣x);对于D:﹣x2的底数是x,x2的底数也是x.故选:D.5.(2021秋•松江区期末)下列计算正确的是()A.(3a)2=3a2B.(﹣2a)3=﹣8a3C.(ab2)3=a3b5D.(a)2=a2【解答】解:A、(3a)2=9a2,原计算错误,故此选项不符合题意;B、(﹣2a)3=﹣8a3,原计算正确,故此选项符合题意;C、(ab2)3=a3b6,原计算错误,故此选项不符合题意;D、(a)2=a2,原计算错误,故此选项不符合题意.故选:B.6.(2021秋•松北区期末)下列代数式的运算,一定正确的是()A.3a2﹣a2=2 B.(3a)2 =9a2C.(a3)4=a7D.a2+b2=(a+b)(a﹣b)【解答】解:∵3a2﹣a2=2a2,∴选项A不符合题意;∵(3a)2 =9a2 ,∴选项B符合题意;∵(a3)4=a12,∴选项C不符合题意;∵a2+b2≠(a+b)(a﹣b),a2﹣b2=(a+b)(a﹣b),∴选项D不符合题意.故选:B.7.(2021秋•辛集市期末)下列等式中正确的个数是()①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.A.0个B.1个C.2个D.3个【解答】解:①∵a5+a5=2a5,故①的答案不正确;②∵(﹣a)6•(﹣a)3•a=﹣a10故②的答案不正确;③∵﹣a4•(﹣a)5=a9,故③的答案不正确;④25+25=2×25=26.所以正确的个数是1,故选:B.8.(2021秋•泉港区期中)若a=(99×99×99)9,b=999,则下列结论正确的是()A.a<b B.a=b C.a>b D.ab=1【解答】解:∵a=(99×99×99)9,b=999,两个数均大于1∴D选项:ab=1错误;∵====•∵1<<227<945∴0<•<1∴0<<1∴a<b∴选项B,C不正确.故选:A.二.填空题9.(2021秋•洮北区期末)如果10m=12,10n=3,那么10m+n=36.【解答】解:10m+n=10m•10n=12×3=36.故答案为:36.10.(2021秋•岳麓区校级期中)已知a m=3,a n=5,则a m+n的值为15.【解答】解:∵a m×a n=a m+n,∴a m+n=a m×a n=3×5=15.故答案为:15.11.(2021春•顺德区校级期末)计算:﹣b3•b2=﹣b5.【解答】解:原式=﹣b3+2=﹣b5,故答案为:﹣b512.(2021•博兴县模拟)若x m=2,x n=3,则x m+2n的值为18.【解答】解:∵x m=2,x n=3,∴x m+2n=x m x2n=x m(x n)2=2×32=2×9=18;故答案为:18.13.(2021秋•丛台区校级期末)用科学记数法表示(2.5)8(0.4)10= 1.6×10﹣1.【解答】解:(2.5)8(0.4)10====18×0.16=1.6×10﹣1.故答案为:1.6×10﹣1.14.(2021秋•延边州期末)如果a c=b,那么我们规定(a,b)=c,例如:因为23=8,所以(2,8)=3.若(3,5)=a,(3,6)=b,(3,m)=2a﹣b,则m=.【解答】解:由于(3,5)=a,(3,6)=b,(3,m)=2a﹣b,根据新规定的运算可得,3a=5,3b=6,m=32a﹣b,∴m=32a﹣b===,故答案为:.15.(2021秋•浦东新区校级月考)若a n=2,a m=5,则a m+n=10.若2m=3,23n=5,则8m+2n=675.【解答】解:∵a n=2,a m=5,∴a m+n=a m•a n=5×2=10;∵2m=3,23n=5,∴8m+2n=(23)m+2n=23m+6n=23m×26n=(2m)3×(23n)2=33×52=27×25=675.故答案为:10;675.16.(2021春•薛城区期末)若3×9m=311,则m的值为5.【解答】解:已知等式整理得:3×32m=32m+1=311,可得2m+1=11,解得:m=5,故答案为:5三.解答题17.(2021春•镇江期末)已知关于x、y的方程组.(1)求代数式2x+y的值;(2)若x<3,y≤﹣2,求k的取值范围;(3)在(2)的条件下,若满足x y=1,则符合条件的k的值为1或3.【解答】解:(1)∵,∴①+②得:3x=3k﹣6,∴x=k﹣2,将x=k﹣2代入②得:y=﹣k﹣1,∴x+y=k﹣2﹣k﹣1=﹣3,∴2x+y=2﹣3=.(2)由(1)可知:,解得:1≤k<5.(3)由于x<3,y≤﹣2,x y=1,当x=1时,此时k=3,y=﹣4,满足x y=1,当x=﹣1时,此时k=1,y=﹣2,满足x y=1,所以k=3或1,故答案为:3或1.18.(2021秋•虹口区校级月考)我们规定2×2=22,2×2×2=23,可得22×23=(2×2)×(2×2×2)=25.请你试一试,完成以下题目:(1)53×52=(5×5×5)×(5×5)=55;(2)a3•a4═a7;(3)计算:a m•a n;(4)若x m=4,x n=5,则求x m+n的值.【解答】解:(1)(1)53×52=(5×5×5)×(5×5)=55;故答案为:5;(2)a3•a4=(a•a•a)•(a•a•a•a)=a7;故答案为:7;(3)a m•a n=a m+n;(4)x m+n=x m•x n=4×5=20.19.(2021春•张家港市校级月考)若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.【解答】解:(a m+1b n+2)(a2n﹣1b2n)=a m+1×a2n﹣1×b n+2×b2n=a m+1+2n﹣1×b n+2+2n=a m+2n b3n+2=a5b3.∴m+2n=5,3n+2=3,解得:n=,m=,m+n=.20.(2021秋•涧西区校级期中)已知27b=9×3a+3,16=4×22b﹣2,求a+b的值.【解答】解:∵27b=9×3a+3,16=4×22b﹣2,∴(33)b=32×3a+3,24=22×22b﹣2,∴33b=3a+5,24=22b,∴,解得,,∴a+b=1+2=3.21.(2021秋•东莞市校级期中)①若a m=2,a n=3,求a2m+n的值.②已知x2n=2,求(3x3n)2﹣4(x2)2n的值.【解答】解:①∵a m=2,a n=3,∴a2m+n=a2m•a n=(a m)2•a n=22×3=4×3=12;②∵x2n=2,∴(3x3n)2﹣4(x2)2n=9x6n﹣4x4n=9(x2n)3﹣4(x2n)2=9×23﹣4×22=9×8﹣4×4=72﹣16=56.22.(2021秋•大石桥市期中)完成下列各题.(1)已知(9a)2=38,求a的值;(2)已知a m=3,a n=4,求a2m+n的值为多少.【解答】解:(1)∵(9a)2=38,∴(32a)2=38,∴4a=8,a=2;(2)∵a m=3,a n=4,∴a2m+n=a2m•a n=(a m)2•a n=32•4=36.23.(2021春•江阴市期中)(1)已知m+4n﹣3=0,求2m•16n的值.(2)已知n为正整数,且x2n=4,求(x3n)2﹣2(x2)2n的值.【解答】解:(1)∵m+4n﹣3=0∴m+4n=3原式=2m•24n=2m+4n=23=8.(2)原式=(x2n)3﹣2(x2n)2,=43﹣2×42,=32,24.(2021春•沙坪坝区校级月考)已知x2n=4,求(x3n)2﹣x n的值.(其中x为正数,n为正整数)【解答】解:∵x2n=4,x为正数,n为正整数,∴x n=2,∴(x3n)2﹣x n=(x n)6﹣x n=26﹣2=62.25.(2021春•泉山区校级期中)基本事实:若a m=a n(a>0,且a≠1,m、n都是正整数),则m=n.试利用上述基本事实解决下面的两个问题吗?试试看,相信你一定行!①如果2×8x×16x=222,求x的值;②如果2x+2+2x+1=24,求x的值.【解答】解:①∵2×8x×16x=2×23x×24x=21+3x+4x=21+7x=222,∴1+7x=22,∴x=3;②∵2x+2+2x+1=24,∴2x(22+2)=24,∴2x=4,∴x=2.26.(2021春•东海县期末)规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(5,25)=2,(5,1)=0,(3,)=﹣2.(2)小明在研究这种运算时发现一个特征:(3n,4n)=(3,4),(3)小明给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n所以3x=4,即(3,4)=x,所以(3n,4n)=(3,4).试解决下列问题:①计算(8,1000)﹣(32,100000)②请你尝试运用这种方法证明下面这个等式:(3,20)﹣(3,4)=(3,5)【解答】解:(1)∵52=25,∴(5,25)=2;∵50=1,∴(5,1)=0;∵3﹣2=,∴(3,)=﹣2;故答案为2,0,﹣2;(3)①(8,1000)﹣(32,100000)=(23,103)﹣(25,105)=(2,10)﹣(2,10)=0;②设3x=4,3y=5,则3x•3y=3x+y=4×5=20,所以(3,4)=x,(3,5)=y,(3,20)=x+y,∴(3,20)﹣(3,4)=x+y﹣x=y=(3,5),即:(3,20)﹣(3,4)=(3,5)27.(2021春•相城区期中)如果a c=b,那么我们规定(a,b)=c,例如:因为23=8,所以(2,8)=3 (1)根据上述规定,填空:(3,27)=3,(4,1)=0(2,0.25)=﹣2;(2)记(3,5)=a,(3,6)=b,(3,30)=c.求证:a+b=c.【解答】解:(1)(3,27)=3,(4,1)=0,(2,0.25)=﹣2,故答案为:3,0,﹣2;(2)证明:∵(3,5)=a,(3,6)=b,(3,30)=c,∴3a=5,3b=6,3c=30,∴3a×3b=30,∴3a×3b=3c,∴a+b=c.28.(2021春•潍坊期中)一般地,n个相同的因数a相乘a•a•…•a,记为a n,如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算下列各对数的值:log24=2;log216=4;log264=6.(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义说明上述结论.【解答】解:(1)log24=2;log216=4;log264=6,故答案为:2;4;6;(2)∵4×16=64,∴log24+log216=log264;(3)log a M+log a N=log a MN;(4)设M=a m,N=a n,∵=m,=n,=m+n,∴+=,∴+=log a MN.。
七年级数学下册全部知识点归纳
![七年级数学下册全部知识点归纳](https://img.taocdn.com/s3/m/2d130dde58f5f61fb6366617.png)
3、尺规作图中直尺的功能是:
(1)在两点间连接一条线段;
(2)将线段向两方延长。
4、尺规作图中圆规的功能是:
(1)以任意一点为圆心,任意长为半径作一个圆;
(2)以任意一点为圆心,任意长为半径画一段弧;
5、熟练掌握以下作图语言:
(1)作射线××;
2、余角、补角只有数量上的关系,与其位置无关。
3、同位角、内错角、同旁内角只有位置上的关系,与其数量无关。
4、对顶角既有数量关系,又有位置关系。
五、平行线的判定方法
1、同位角相等,两直线平行。
2、内错角相等,两直线平行。
3、同旁内角互补,两直线平行。
4、在同一平面内,如果两条直线都平行于第三条直线,那么这两条直线平行。
(2)在射线上截取××=××;
(3)在射线××上依次截取××=××=××;
(4)以点×为圆心,××为半径画弧,交××于点×;
(5)分别以点×、点×为圆心,以××、××为半径作弧,两弧相交于点×;
(6)过点×和点×画直线××(或画射线××);
(7)在∠×××的外部(或内部)画∠×××=∠×××;
6、在作较复杂图形时,涉及基本作图的地方,不必重复作图的详细过程,只用一句话概括叙述就可以了。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式
1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
七、积的乘方
北师大版七年级数学下册全部知识点归纳
![北师大版七年级数学下册全部知识点归纳](https://img.taocdn.com/s3/m/089de4d2284ac850ad0242cb.png)
(a
b)2
2ab
(a
b)2
2ab
1 2
[(a
b)2
(a
b)2 ]
(2) (a b)2 (a b)2 4ab
(3)
ab
1 4
[(a
b)2
(a
b)2
]
4、完全平方式:我们把形如: a2 2ab b2 , a2 2ab b2 , 的二次三项式称作完全平方式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是 1 或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是 0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式
1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
1
4、整式不一定是多项式。 5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。 四、整式的加减 1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。 2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。 3、几个整式相加减的一般步骤:
(1)列出代数式:用括号把每个整式括起来,再用加减号连接。 (2)按去括号法则去括号。 (3)合并同类项。 4、代数式求值的一般步骤: (1)代数式化简。 (2)代入计算 (3)对于某些特殊的代数式,可采用“整体代入”进行计算。 五、同底数幂的乘法 1、n 个相同因式(或因数)a 相乘,记作 an,读作 a 的 n 次方(幂),其中 a 为底数,n 为指数,an 的结 果叫做幂。 2、底数相同的幂叫做同底数幂。 3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。 4、此法则也可以逆用,即:am+n = am﹒an。 5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。 六、幂的乘方 1、幂的乘方是指几个相同的幂相乘。(am)n 表示 n 个 am 相乘。 2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n =amn。 3、此法则也可以逆用,即:amn =(am)n=(an)m。 七、积的乘方 1、积的乘方是指底数是乘积形式的乘方。 2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab) n=anbn。 3、此法则也可以逆用,即:anbn =(ab)n。 八、三种“幂的运算法则”异同点 1、共同点: (1)法则中的底数不变,只对指数做运算。 (2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。 (3)对于含有 3 个或 3 个以上的运算,法则仍然成立。 2、不同点: (1)同底数幂相乘是指数相加。 (2)幂的乘方是指数相乘。 (3)积的乘方是每个因式分别乘方,再将结果相乘。 九、同底数幂的除法 1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:am÷an=am-n(a≠0)。 2、此法则也可以逆用,即:am-n = am÷an(a≠0)。 十、零指数幂 1、零指数幂的意义:任何不等于 0 的数的 0 次幂都等于 1,即:a0=1(a≠0)。 十一、负指数幂
北师大版七年级数学下册 第一章 整式的乘除 知识点考点汇总
![北师大版七年级数学下册 第一章 整式的乘除 知识点考点汇总](https://img.taocdn.com/s3/m/05437ce0561252d381eb6e30.png)
第一章 整式的乘除1 同底数幂的乘法2 幂的乘方与积的乘方3 同底数幂的除法4 整式的乘法5 平方差公式6 完全平方公式7 整式的除法一. 同底数幂的乘法※同底数幂的乘法法则: n m n m a a a +=⋅(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n m a a a a ++=⋅⋅(其中m 、n 、p 均为正数);⑤公式还可以逆用:n m n m a a a ⋅=+(m 、n 均为正整数)。
二.幂的乘方与积的乘方※1. 幂的乘方法则:mn n m a a =)((m,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.※2.),()()(都为正数n m a a a mn m n n m ==. ※3. 底数有负号时,运算时要注意,底数是a 与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a )3化成-a 3⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n※4.底数有时形式不同,但可以化成相同。
※5.要注意区别(ab )n 与(a+b )n 意义是不同的,不要误以为(a+b )n =a n +b n(a 、b 均不为零)。
※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即n n n b a ab =)((n 为正整数)。
※7.幂的乘方与积乘方法则均可逆向运用。
三. 同底数幂的除法※1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n m a a a -=÷ (a ≠0,m 、n 都是正数,且m>n).※2. 在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a ≠0.②任何不等于0的数的0次幂等于1,即)0(10≠=a a ,如1100=,(-2.50=1),则00无意义. ③任何不等于0的数的-p 次幂(p 是正整数),等于这个数的p 的次幂的倒数,即p p a a1=- ( a ≠0,p 是正整数), 而0-1,0-3都是无意义的;当a>0时,a -p 的值一定是正的; 当a<0时,a -p 的值可能是正也可能是负的,如()()812,41232=-=--- ④运算要注意运算顺序. 四. 整式的乘法※1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
北师大版七年级数学下册第一章整式的乘除同底数幂的乘法、幂的乘方PPT课件
![北师大版七年级数学下册第一章整式的乘除同底数幂的乘法、幂的乘方PPT课件](https://img.taocdn.com/s3/m/dcd9ffe9a8114431b80dd8cc.png)
(6)a2·a3- a3·a2 = 0 ( √ )
(7)x3·y5=(xy)8 ( × ) 对于计算出错的题目,你能分
析出错的原因吗?试试看!
(8) x7+x7=x14 ( × )
练一练
判断对错:
(1)(am )n amn
(2)a2 • a5 a10
等于什么呢?
(2)(a ) a a a a (m是正整数) = · = = 例七2年已级知数2学x+下5(y-BS3)=0,m求24x·32y的m值. m
m+m
2m
= a7 ·a3 =a10
请你观察上述结果的底数与指数有何变化?你能 am·an=am+n (m,n都是正整数)
am·an·ap = am+n+p (m、n、p都是正整数) (×)
指数
底数
103
=10×10×10
幂
3个10相乘
( 2 )10×10×10×10×10可以写成什么形式? 10×10×10×10×10=105
导入新课
问题引入 我国国防科技大学成功研制的“天河二号”超
级计算机以每秒33.86千万亿(3.386×1016)次运算. 问:它工作103s可进行多少次运算?
一个正方体的棱长是102,则它的体积是
多x 少?
y
2x 5y
am·an·ap = am+n+p (m、n、p都是正整数)
提醒:计算同底数幂的乘法时,要注意算式里面的负号是属于幂的还是属于底数的.
(5)(y2)3·y; 七年级数学下(BS)
=22x·25y=22x+5y=23=8.
×(5×5×5 ×…×5)
七年级数学下册第一章知识点总结
![七年级数学下册第一章知识点总结](https://img.taocdn.com/s3/m/f9719b8f360cba1aa811da5e.png)
第一章 整式的乘除水塘中学 李学英知识小结一、幂的运算性质1、同底数幂相乘:底数不变,指数相加。
mn m n a a a +=• 2、幂的乘方:底数不变,指数相乘。
nm m n a a =)(3、积的乘方:把积中的每一个因式各自乘方,再把所得的幂相乘。
nn n b a ab =)( 4、零指数幂:任何一个不等于0的数的0次幂等于1。
10=a (0≠a ) 注意00没有意义。
5、负整数指数幂:pp a a 1=- (p 正整数,0≠a )6、同底数幂相除:底数不变,指数相减。
mn m n a a a -=÷注意:以上公式的正反两方面的应用。
常见的错误:632a a a =•,532)(a a =,33)(ab ab =,326a a a =÷,4222a a a =+ 二、单项式乘以单项式:系数相乘,相同的字母相乘,只在一个因式中出现的字母则连同它的指数作为积的一个因式。
三、单项式乘以多项式:运用乘法的分配率,把这个单项式乘以多项式的每一项。
四、多项式乘以多项式:连同各项的符号把其中一个多项式的各项乘以另一个多项式的每一项。
()()bn bm an am n m b a +++=++五、平方差公式两数的和乘以这两数的差,等于这两数的平方差。
即:一项符号相同,另一项符号相反,等于符号相同的平方减去符号相反的平方。
()()22b a b a b a -=-+六、完全平方公式两数的和(或差)的平方,等于这两数的平方和再加上(或减去)两数积的2倍。
()ab b a b a 2222++=+ ()ab b a b a 2222-+=-常见错误:()222b a b a +=+ ()222b a b a -=-七、单项除以单项式:把单项式的系数相除,相同的字母相除,只在被除式中出现的字母则连同它的指数作为商的一个因式。
八、多项式除以单项式:连同各项的符号,把多项式的各项都除以单项式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同底数幂的乘法除法及幂的乘方与积的乘方、整式的乘法
一、选择题
1. 等于()
A. B. C.
D.
2. 等于()
A. B. C.
D. a
3. 等于()
A. B. C.
D.
4. ,则值为()
A. –2
B.
C. 675
D. 225
5. 的运算结果是()
A. B. C.
D.
6. 计算的结果是()
A. B. C.
同底数幂的乘法除法及幂的乘方与积的乘方、整式的乘法
D.
7. 若,则m、n、k为()
A. 6,3,1
B. 3,6,1
C. 3,1,1
D. 2,1,1
8. 若(x+2)(x-5),则常数p、q的值为()
A. p=- 3 ,q=10
B. p=-3,q=-10
C. p=7,q=-10
D. p=7,q=10
9. 如果的乘积中不含x的二次项,那么常数m 的值为()
A. 0
B.
C.
- D.
二、填空题
1. =(),()=
2. 当y()时,
3. 若,若=(),=()
4. (1.3)=(),=()
同底数幂的乘法除法及幂的乘方与积的乘方、整式的乘法
5. =()
6. ()=,=()
7. =(),=()(用科
学记数法表示)
三、计算
1.
2.
3.
4.
5.
6.
7. 如果,求m的值
8. 化简求值,其中,a=-2,b=。
9. 解方程(3x+8)(2x-1)=3x(2x+5)
【试题答案】
一、选择题
1. B
2. B
3. A
4. B
5. A
同底数幂的乘法除法及幂的乘方与积的乘方、整式的乘法
6. D
7. A
8. B
9. C
二、填空题
1. 4
2. ≠-1
3. ,
4. -1.69,
5. 6. -3a
7.
三、计算
1. 2. 3.
4.
5.
6.
7. m=-2
8. 0
9. x=-4。