自动控制原理孟华第章习题解答
自动控制原理课后习题答案
第1章控制系统概述【课后自测】1-1 试列举几个日常生活中的开环控制和闭环控制系统,说明它们的工作原理并比较开环控制和闭环控制的优缺点。
解:开环控制——半自动、全自动洗衣机的洗衣过程。
工作原理:被控制量为衣服的干净度。
洗衣人先观察衣服的脏污程度,根据自己的经验,设定洗涤、漂洗时间,洗衣机按照设定程序完成洗涤漂洗任务。
系统输出量(即衣服的干净度)的信息没有通过任何装置反馈到输入端,对系统的控制不起作用,因此为开环控制。
闭环控制——卫生间蓄水箱的蓄水量控制系统和空调、冰箱的温度控制系统。
工作原理:以卫生间蓄水箱蓄水量控制为例,系统的被控制量(输出量)为蓄水箱水位(反应蓄水量)。
水位由浮子测量,并通过杠杆作用于供水阀门(即反馈至输入端),控制供水量,形成闭环控制。
当水位达到蓄水量上限高度时,阀门全关(按要求事先设计好杠杆比例),系统处于平衡状态。
一旦用水,水位降低,浮子随之下沉,通过杠杆打开供水阀门,下沉越深,阀门开度越大,供水量越大,直到水位升至蓄水量上限高度,阀门全关,系统再次处于平衡状态。
开环控制和闭环控制的优缺点如下表1-2 自动控制系统通常有哪些环节组成各个环节分别的作用是什么解:自动控制系统包括被控对象、给定元件、检测反馈元件、比较元件、放大元件和执行元件。
各个基本单元的功能如下:(1)被控对象—又称受控对象或对象,指在控制过程中受到操纵控制的机器设备或过程。
(2)给定元件—可以设置系统控制指令的装置,可用于给出与期望输出量相对应的系统输入量。
(3)检测反馈元件—测量被控量的实际值并将其转换为与输入信号同类的物理量,再反馈到系统输入端作比较,一般为各类传感器。
(4)比较元件—把测量元件检测的被控量实际值与给定元件给出的给定值进行比较,分析计算并产生反应两者差值的偏差信号。
常用的比较元件有差动放大器、机械差动装置和电桥等。
(5)放大元件—当比较元件产生的偏差信号比较微弱不足以驱动执行元件动作时,可通过放大元件将微弱信号作线性放大。
自动控制原理(孟华)第8章习题答案070520
第八章 非线性控制系统习题答案8-1 解:由原方程得:2225.03)5.03(),(x x x x x x x x x x f x--+-=----== ,令0==x x,得:0)1(2=+=+x x x x ,解出奇点为:1,0-=x 。
在0=x 处,特征根为:984.025.02,1j s ±=,显然为不稳定的焦点。
在1-=x 处,特征根为:225.45.02,1±=s ,显然为鞍点。
概略画出奇点附近的相轨迹如下:-1习题8-1相轨迹图8-2解:原方程可改写为:⎩⎨⎧=-+≥=++0II 0Ix x x x x x x x 0,:0,:系统的特征方程及特征根为:⎪⎩⎪⎨⎧+-==+±-==++)(618.0,618.1,01II )(2321,01I 2,122,12鞍点-:稳定焦点:s s s js s s 推导等倾线方程:xx dx xd --==1α,则有:x x xβα=+-=11 ,即: ⎪⎪⎩⎪⎪⎨⎧-=≥--=0,11II 0,11I x x βαβα::,画出系统相平面如下:习题8-2相平面图8-3 (1)解:相平面上任一点的相轨迹斜率为:x xxdxx dsin+-=,由=dxx d,得:),2,1,0(±±==kkxπ,因此在相平面的x轴上,),2,1,0(±±==kkxπ的点均为奇点。
在x轴上满足),2,1,0(2±±==kkxπ的所有奇点附近,由泰勒级数展开来验证这类奇点为稳定焦点。
在x轴上满足),2,1,0()12(±±=+=kkxπ的所有奇点附近,由泰勒级数展开来验证这类奇点为鞍点。
绘制相轨迹如下图所示:习题8-3(1)相轨迹图(2)解:原方程可改写为:⎩⎨⎧=-≥=+IIIxxxxxx0,:0,:系统的特征方程及特征根为:⎪⎩⎪⎨⎧±==±==+)(1,01II)(,01I2,122,12鞍点-:中心点:ssjss推导等倾线方程:⎪⎪⎩⎪⎪⎨⎧≥11xxxxxx,=,-=αα,画出系统相平面如下:习题8-3(2)相轨迹图(3)解:令0==xx,得0sin=x,得出系统的奇点:,2,,0ππ±±=x当,2,1,02±±==kx,κπ时,令2xx+=κπ,可以验证奇点,2,1,02±±==kx,κπ为中心点。
自动控制原理习题答案详解
自动控制原理习题答案详解自动控制原理习题详解(上册)第一章习题解答1-2日常生活中反馈无处不在。
人的眼、耳、鼻和各种感觉、触觉器官都是起反馈作用的器官。
试以驾车行驶和伸手取物过程为例,说明人的眼、脑在其中所起的反馈和控制作用。
答:在驾车行驶和伸手取物过程的过程中,人眼和人脑的作用分别如同控制系统中的测量反馈装置和控制器。
在车辆在行驶过程中,司机需要观察道路和行人情况的变化,经大脑处理后,不断对驾驶动作进行调整,才能安全地到达目的地。
同样,人在取物的过程中,需要根据观察到的人手和所取物体间相对位置的变化,调整手的动作姿势,最终拿到物体。
可以想象蒙上双眼取物的困难程度,即使物体的方位已知。
1-3 水箱水位控制系统的原理图如图1-12所示,图中浮子杠杆机构的设计使得水位达到设定高度时,电位器中间抽头的电压输出为零。
描述图1-12所示水位调节系统的工作原理,指出系统中的被控对象、输出量、执行机构、测量装置、给定装置等。
图1-12 水箱水位控制系统原理图答:当实际水位和设定水位不相等时,电位器滑动端的电压不为零,假设实际水位比设定水位低,则电位器滑动端的电压大于零,误差信号大于零(0e >),经功率放大器放大后驱动电动机M 旋转,使进水阀门开度加大,当进水量大于出水量时(12Q Q >),水位开始上升,误差信号逐渐减小,直至实际水位与设定水位相等时,误差信号等于零,电机停止转动,此时,因为阀门开度仍较大,进水量大于出水量,水位会继续上升,导致实际水位比设定水位高,误差信号小于零,使电机反方向旋转,减小进水阀开度。
这样,经反复几次调整后,进水阀开度将被调整在一适当的位置,进水量等于出水量,水位维持在设定值上。
在图1-12所示水位控制系统中,被控对象是水箱,系统输出量水位高,执行机构是功率放大装置、电机和进水阀门,测量装置浮子杠杆机构,给定和比较装置由电位器来完成。
1-4 工作台位置液压控制系统如图1-13所示,该系统可以使工作台按照给定电位器设定的规律运动。
自动控制原理习题1(含答案)
《自动控制原理》习题解答第一章习题及答案1—1 根据题1—1图所示的电动机速度控制系统工作原理图(1) 将a ,b 与c,d 用线连接成负反馈状态;(2) 画出系统方框图。
解 (1)负反馈连接方式为:d a ↔,c b ↔;(2)系统方框图如图解1—1 所示.1—2 题1-2图是仓库大门自动控制系统原理示意图。
试说明系统自动控制大门开闭的工作原理,并画出系统方框图。
题1-2图 仓库大门自动开闭控制系统解 当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。
与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。
反之,当合上关门开关时,电动机带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。
系统方框图如图解1-2所示。
1—3 题1-3图为工业炉温自动控制系统的工作原理图。
分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图.题1-3图 炉温自动控制系统原理图解 加热炉采用电加热方式运行,加热器所产生的热量与调压器电压c u 的平方成正比,c u 增高,炉温就上升,c u 的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。
炉子的实际温度用热电偶测量,输出电压f u 。
f u 作为系统的反馈电压与给定电压r u 进行比较,得出偏差电压e u ,经电压放大器、功率放大器放大成a u 后,作为控制电动机的电枢电压。
在正常情况下,炉温等于某个期望值T °C ,热电偶的输出电压f u 正好等于给定电压r u .此时,0=-=f r e u u u ,故01==a u u ,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使c u 保持一定的数值。
这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。
(完整版)自动控制原理课后习题及答案
第一章绪论1-1 试比较开环控制系统和闭环控制系统的优弊端.解答: 1 开环系统(1)长处 :构造简单,成本低,工作稳固。
用于系统输入信号及扰动作用能早先知道时,可获得满意的成效。
(2)弊端:不可以自动调理被控量的偏差。
所以系统元器件参数变化,外来未知扰动存在时,控制精度差。
2闭环系统⑴长处:不论因为扰乱或因为系统自己构造参数变化所惹起的被控量偏离给定值,都会产生控制作用去消除此偏差,所以控制精度较高。
它是一种按偏差调理的控制系统。
在实质中应用宽泛。
⑵弊端:主要弊端是被控量可能出现颠簸,严重时系统没法工作。
1-2什么叫反应?为何闭环控制系统常采纳负反应?试举例说明之。
解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反应。
闭环控制系统常采纳负反应。
由1-1 中的描绘的闭环系统的长处所证明。
比如,一个温度控制系统经过热电阻(或热电偶)检测出目前炉子的温度,再与温度值对比较,去控制加热系统,以达到设定值。
1-3试判断以下微分方程所描绘的系统属于何种种类(线性,非线性,定常,时变)?2 d 2 y(t)3 dy(t ) 4y(t ) 5 du (t ) 6u(t )(1)dt 2 dt dt(2) y(t ) 2 u(t)(3)t dy(t) 2 y(t) 4 du(t) u(t ) dt dtdy (t )u(t )sin t2 y(t )(4)dtd 2 y(t)y(t )dy (t ) (5)dt 2 2 y(t ) 3u(t )dt(6)dy (t ) y 2 (t) 2u(t ) dty(t ) 2u(t ) 3du (t )5 u(t) dt(7)dt解答: (1)线性定常(2)非线性定常 (3)线性时变(4)线性时变(5)非线性定常(6)非线性定常(7)线性定常1-4 如图 1-4 是水位自动控制系统的表示图, 图中 Q1,Q2 分别为进水流量和出水流量。
控制的目的是保持水位为必定的高度。
自动控制原理答案(孟版)2006a_
σ % = e−πξ /
tp =
1−ξ 2
× 100% = = 0.1
π ωn 1 − ξ 2
1.3 − 1 ×100% 1
5
解得:
ω n = 33.71 ξ = 0.358
所以,开环传递函数为:
G(s) =
3-3 解: (1) K = 10 s 时:
−1
1136 47.1 = s ( s + 24.1) s (0.041s + 1)
开(闭) 门 的位置 门实际 位置
受控量:门的位置 测量比较元件:电位计
电位器
_
放大器
电动机
绞盘
大门Leabharlann 仓库大门自动控制开(闭)的职能方框图 1-5 解: 系统的输出量:电炉炉温 给定输入量:加热器电压 被控对象:电炉
1
放大元件:电压放大器,功率放大器,减速器 比较元件:电位计 测量元件:热电偶 职能方框图:
要使过渡时间减小到原来的 0.1 倍,要保证总的放大系数不变,则: (原放大系数为 10,时 间常数为 0.2)
⎧ 10 K 0 = 10 ⎧ K 0 = 10 ⎪ ⇒⎨ ⎨1 + 10 K H ⎪1 + 10 K = 10 ⎩ K H = 0.9 H ⎩
, “已知系统开环传递函数” ) 3-2 解:系统为欠阻尼二阶系统(书上改为“单位负反馈……”
绘制上式各子方程的方块如下图: X2(s) R(s) C(s) X5(s) X3(s) N(s) N(s) s T X5(s) K X1(s) R(s) s τ X2(s) X1(s) X3(s)
1 s +1
1 Ts + 1
X4(s)
X4(s)
自动控制原理 孟华第3章习题解答
3.1.已知系统的单位阶跃响应为)0(2.1.0)(16≥-+=--t e e t c tt 0021试求:(1)系统的闭环传递函数Φ(s)=?(2) 阻尼比ζ=?无自然振荡频率ωn =? 解:(1)由c (t )得系统的单位脉冲响应为t te et g 10601212)(--+-=600706006011210112)]([)(2++=+-+==Φs s s s t g L s (2)与标准2222)(nn ns s ωζωω++=Φ对比得: 5.24600==n ω,429.1600270=⨯=ζ3.2.设图3.36 (a )所示系统的单位阶跃响应如图3.36 (b )所示。
试确定系统参数,1K 2K 和a 。
(a) (b)图3.36 习题3.2图解:系统的传递函数为22212212112)(1)()(nn n s K K as s K K K a s s K a s s K s W ωζωω++=++=+++= 又由图可知:超调量 43133p M -== 峰值时间 ()0.1p t s =代入得⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧==-==--221121.01312K K eK n n ζωπωζζπ 解得:213ln ζζπ-=;33.0≈ζ,3.331102≈-=ζπωn ,89.110821≈=nK ω, 98.213.3333.022≈⨯⨯≈=n a ζω,32==K K 。
3.3. 给定典型二阶系统的设计性能指标:超调量p σ5≤%,调节时间 s t 3<s ,峰值时间1<p t s ,试确定系统极点配置的区域,以获得预期的响应特性。
解:设该二阶系统的开环传递函数为()()22nn G s s s ωξω=+ 则满足上述设计性能指标:⎪⎪⎪⎩⎪⎪⎪⎨⎧<-=<=≤=--113305.0212ζωπζωσζζπn p ns p t t e得:69.0≥ζ,1>n ζωπζω>-21n由上述各不等式得系统极点配置的区域如下图阴影部分所示:3.4.设一系统如图3.37所示。
自动控制原理(孟华)第7章习题解答(含过程)
习 题7-1 根据定义*()e()enTsn E s nT ∞-==∑试求下列函数的E *(s )和闭合形式的E (z )。
(1) e (t ) = t ; (2) 2)(1)(a s s E +=解 (1) e (t ) = t 求解过程可分为以下三个步骤进行:① 求()e t 的采样函数*()e t :由()()|,0,1,2,t nT e nT e t nT n ==== ,得斜坡函数()e t 在各采样时刻的值()e nT 。
故采样函数为*00()(0)()()()()()()()()n n e t e t e T t T e nT t nT e nT t nT nT t nT δδδδδ∞=∞==+-++-+=-=-∑∑② 求*()e t 的拉氏变换式*()E s :*()e t 的拉氏变换式为*()E s*0223'2'''2()()02[][(1)]1111(1)nTsnTsn n Ts TsnTsTs TsTsnTsTsTsTsnTs TsTs Ts Ts Ts E s e nT enTeTe TenTe e e eeeeeeTe e e e e ∞∞--==-------------===+++++=-+++++=-+++++⎡⎤⎡⎤=-=-=⎢⎥⎢⎥---⎣⎦⎣⎦∑∑③ 求()E z :由*1ln ()()|s znE z E s ==,得2()(1)Tz E z z =-(2) 2)(1)(a s s E +=① 求()e t :()ate t te -=② 求*()e t*0()()(),()()|anTt nTn e t e nT t nT e nT e t nTeδ∞-===-==∑所以 *0()()anTn e t nTet nT δ∞-==-∑③ 求*()E s*()()nTsanTnTsn n E s e nT enTee∞∞---====∑∑④ 求()E s*1ln 012()()|[()2()()]anTns zn Tat atatnE s E s nTeze z e z n e z T∞--==---===++++∑令1()at e z y -=,则2123''2()(123)()1(1)n nE y y y nyyT y y y y yTy Ty yT y y -=+++++=+++++⎛⎫== ⎪--⎝⎭将1()at y e z -=代入上式,可得()E z 为 1122()()[1()]()ataT at aTT e z Tze E z e z z e----==--7-2 求下列函数的Z 变换X (z )。
自动控制原理(孟华)第5章习题解答
137习 题5-1 某系统的单位阶跃响应为c (t ) = 1-e -t +e -2t- e -4t ,试求系统的频率特性。
解:238s+8G(s)(1)(2)(4)s s s s +=+++,将s =j ω代入,得23()8+8()(1)(2)(4)j j G j j j j ωωωωωω+=+++5-2 设系统传递函数为1)1()()(12++=s T s T K s R s C 当输入信号r (t )=A sin ωt 时,试求系统的稳态输出。
解:系统的稳态输出为21()arc tan -arc tan )ss C t t T T ωωω=+5-3画出下列传递函数的Bode 图。
(1) G (s )=1121++s T s T , ( T 1 > T 2 > 0 ) ; (2) G (s )=1121+-s T s T , ( T 1 > T 2 > 0 )(3) G (s )=1121++-s T s T , ( T 1 > T 2 > 0 )解:答案见胡寿松主编《自动控制原理习题集》Page709,B5-13。
5-4画出下列传递函数对数幅频特性的渐近线和相频特性曲线。
(1) G (s )=)18)(12(2++s s ; (2) G (s )=)16)(1(5022+++s s s s(3) G (s )=)1.0()2.0(102++s s s ; (4) G (s )=)254)(1()1.0(822+++++s s s s s s解:对数幅频特性的渐近线和相频特性曲线如习题5-4(1)~ 5-4(4)答案图所示。
M a g n i t u d e (d B )1010101010P h a s e (d e g )Frequency (rad/sec)M a g n i t u d e (d B )101010101010P h a s e (d e g )Frequency (rad/sec)习题5-4(1)答案图 习题5-4(2)答案图138M a g n i t u d e (d B )10101010P h a s e (d e g )Frequency (rad/sec)M a g n i t u d e (d B )10101010101010P h a s e (d e g )Frequency (rad/sec)习题5-4(3)答案图 习题5-4(4)答案图5-5系统开环传递函数如下。
自动控制原理-课后习题答案
第1章控制系统概述【课后自测】1-1 试列举几个日常生活中的开环控制和闭环控制系统,说明它们的工作原理并比较开环控制和闭环控制的优缺点。
解:开环控制——半自动、全自动洗衣机的洗衣过程。
工作原理:被控制量为衣服的干净度。
洗衣人先观察衣服的脏污程度,根据自己的经验,设定洗涤、漂洗时间,洗衣机按照设定程序完成洗涤漂洗任务。
系统输出量(即衣服的干净度)的信息没有通过任何装置反馈到输入端,对系统的控制不起作用,因此为开环控制。
闭环控制——卫生间蓄水箱的蓄水量控制系统和空调、冰箱的温度控制系统。
工作原理:以卫生间蓄水箱蓄水量控制为例,系统的被控制量(输出量)为蓄水箱水位(反应蓄水量)。
水位由浮子测量,并通过杠杆作用于供水阀门(即反馈至输入端),控制供水量,形成闭环控制。
当水位达到蓄水量上限高度时,阀门全关(按要求事先设计好杠杆比例),系统处于平衡状态。
一旦用水,水位降低,浮子随之下沉,通过杠杆打开供水阀门,下沉越深,阀门开度越大,供水量越大,直到水位升至蓄水量上限高度,阀门全关,系统再次处于平衡状态。
开环控制和闭环控制的优缺点如下表1-2 自动控制系统通常有哪些环节组成各个环节分别的作用是什么解:自动控制系统包括被控对象、给定元件、检测反馈元件、比较元件、放大元件和执行元件。
各个基本单元的功能如下:(1)被控对象—又称受控对象或对象,指在控制过程中受到操纵控制的机器设备或过程。
(2)给定元件—可以设置系统控制指令的装置,可用于给出与期望输出量相对应的系统输入量。
(3)检测反馈元件—测量被控量的实际值并将其转换为与输入信号同类的物理量,再反馈到系统输入端作比较,一般为各类传感器。
(4)比较元件—把测量元件检测的被控量实际值与给定元件给出的给定值进行比较,分析计算并产生反应两者差值的偏差信号。
常用的比较元件有差动放大器、机械差动装置和电桥等。
(5)放大元件—当比较元件产生的偏差信号比较微弱不足以驱动执行元件动作时,可通过放大元件将微弱信号作线性放大。
自动控制原理习题及答案
第一章 习题答案1-1 根据题1-1图所示的电动机速度控制系统工作原理图(1) 将a ,b 与c ,d 用线连接成负反馈状态;(2) 画出系统方框图。
解 (1)负反馈连接方式为:d a ↔,c b ↔;(2)系统方框图如图解1-1 所示。
1-2 题1-2图是仓库大门自动控制系统原理示意图。
试说明系统自动控制大门开闭的工作原理,并画出系统方框图。
题1-2图 仓库大门自动开闭控制系统解 当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。
与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。
反之,当合上关门开关时,电动机带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。
系统方框图如图解1-2所示。
1-3 题1-3图为工业炉温自动控制系统的工作原理图。
分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图。
题1-3图 炉温自动控制系统原理图解 加热炉采用电加热方式运行,加热器所产生的热量与调压器电压c u 的平方成正比,c u 增高,炉温就上升,c u 的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。
炉子的实际温度用热电偶测量,输出电压f u 。
f u 作为系统的反馈电压与给定电压r u 进行比较,得出偏差电压e u ,经电压放大器、功率放大器放大成a u 后,作为控制电动机的电枢电压。
在正常情况下,炉温等于某个期望值T °C ,热电偶的输出电压f u 正好等于给定电压r u 。
此时,0=-=f r e u u u ,故01==a u u ,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使c u 保持一定的数值。
这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。
当炉膛温度T °C 由于某种原因突然下降(例如炉门打开造成的热量流失),则出现以下的控制过程:控制的结果是使炉膛温度回升,直至T °C 的实际值等于期望值为止。
自动控制原理 (孟华 著) 机械工业出版社 课后答案 第2章习题
化,试导出 Δh 关于 ΔQr 的线性化方程。 解 将 h 在 h0 处展开为泰勒级数并取一次近似
后
代入原方程可得
在平衡工作点处系统满足
式(2) , (3)相减可得 Δh 的线性化方程
课
h = h0 +
d (h0 + Δh) α 1 1 + ( h0 + ⋅ Δh) = (Qr 0 + ΔQr ) dt S S 2 h0
da
w.
(1) (2)
4 ⎤ ⎡ −1 k (t ) = L−1 [G ( s )] = L−1 ⎢ = 4e − 2 t − e − t + ⎥ s 1 s 2 + + ⎣ ⎦
s 2 C ( s ) + s + 3sC ( s ) + 3 + 2C ( s ) =
课
∴
后
s 2 + 3s − 2 1 4 2 C ( s) = − = − + 2 s( s + 3s + 2) s s + 1 s + 2 c(t ) = 1 − 4e −t + 2e −2t
da
w.
co
m
解
由图可得
2 C ( s) 2 s + 2s + 1 = = 2 R( s) ( s + 1)( S + 3) 1+ 2 ( s + 1) s + 2s + 1
2
又有
R(s) =
则
C ( s) =
即
解
2-12 试绘制图 2-11 所示信号流图对应的系统结构图。
课
后
答
案
自动控制原理第二版孟华课后答案
自动控制原理第二版孟华课后答案【篇一:自动控制原理_孟华_习题答案】t>第二章2.1 试分别写出图2.68中各无源电路的输入ur(t)与输出uc(t)之间的微分方程。
图2.68 习题2.1图解:(a)ur?ucu?r?u?c)?i2,i1?i2?c?i1,c(ur1r2,r1r2rrr2?c?uc?12cu?r?cuurr1?r2r1?r2r1?r2(b)?r?u?c)?i1,c1(uur?u1?1,uc?i1r2?u1, ?i2,i1?i2?c2ur1??c?(r1c1?r1c2?r2c1)u?c?uc?r1r2c1c2u??r?(r1c1?r2c1)u?r?u r r1r2c1c2u(c)uur?uc?i1,c1(ur?u1)?i2,i1?i2?1r1r2,uc?1i1dt?u1, ?c2??c?(rc????r1r2c1c2u12?r2c2?r2c1)uc?uc?r1r2c1c2ur?(r2c2?r2c1)ur?ur2.2 试证明图2.69(a)所示电路与图2.69(b)所示的机械系统具有相同的微分方程。
图2.69(b)中xr(t)为输入,xc(t)为输出,均是位移量。
(a)(b)图2.69 习题2.2图(a)1ur?uc?r?u?c)?i2,i1?i2?i,uc??i1,c1(uidt?ir2,r1c2???c?(r1c1?r1c2?r2c2)u?c?uc?r1r2c1c2u??r?(r1c1?r2c2)u?r?u r r1r2c1c2u(b)?c?x?1)?k2x1,b1(x?r?x?c)?k1(xr?xc)?b2(x?c?x?1), b2(xb1b2bbbbbbb??c?(1?2?2)x?c?xc?12??r?(1?2)x?r?xrxxk1k2k1k2k1k1k2k1k22.3 试分别求出图2.70中各有源电路的输入ur(t)与输出uc(t)之间的微分方程。
(a) (b)(c)图2.70 习题2.3图解:(a)uur?r??c?cur1r2,uc?r???r2cur2ur r1(b)uurr?c,r2cu?c?uc??2ur ??c?cur1r2r1uc??ur1u?c??r2cu?r?ur r2??rdt,r1cur1cr1(c)2.4 某弹簧的力-位移特性曲线如图2.71所示。
自动控制原理_课后习题答案
系统方框图如图解 1-5 所示。 1-6 摄像机角位置自动跟踪系统如图 1-20 所示。当光点显示器对准某个方向时,摄像 机会自动跟踪并对准这个方向。试分析系统的工作原理,指出被控对象、被控量及给定量, 画出系统方框图。
图 1-20 摄像机角位置随动系统原理图
解 控制系统的任务是使摄像机自动跟踪光点显示器指示的方向。
器吸取的热量,形成稳定的热平衡状态,温度保持恒定。
当炉膛温度T °C 由于某种原因突然下降(例如炉门打开造成的热量流失),则出现以
2
下的控制过程:
控制的结果是使炉膛温度回升,直至T °C 的实际值等于期望值为止。 → T ° C ↓ → u f ↓ → ue ↑ → u1 ↑ → ua ↑ →θ ↑ → uc ↑ → T ° C ↑
图(a)系统,当 u 低于给定电压时,其偏差电压经放大器 K 放大后,驱动电机 D 转动, 经减速器带动电刷,使发电机 F 的激磁电流 I j 增大,发电机的输出电压会升高,从而使偏
差电压减小,直至偏差电压为零时,电机才停止转动。因此,图(a)系统能保持 110 伏不变。
图(b)系统,当 u 低于给定电压时,其偏差电压经放大器 K 后,直接使发电机激磁电流
图 2-33 系统原理图
解. (a)以平衡状态为基点,对质块 m 进行受力分析(不再
自动控制原理习题及答案.doc
第一章 习题答案1-1 根据题1-1图所示的电动机速度控制系统工作原理图(1) 将a ,b 与c ,d 用线连接成负反馈状态;(2) 画出系统方框图。
解 (1)负反馈连接方式为:d a ↔,c b ↔;(2)系统方框图如图解1-1 所示。
1-2 题1-2图是仓库大门自动控制系统原理示意图。
试说明系统自动控制大门开闭的工作原理,并画出系统方框图。
题1-2图仓库大门自动开闭控制系统解当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。
与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。
反之,当合上关门开关时,电动机带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。
系统方框图如图解1-2所示。
1-3 题1-3图为工业炉温自动控制系统的工作原理图。
分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图。
题1-3图炉温自动控制系统原理图解加热炉采用电加热方式运行,加热器所产生的热量与调压器电压c u的平方成正比,c u增高,炉温就上升,c u的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。
炉子的实际温度用热电偶测量,输出电压f u。
f u作为系统的反馈电压与给定电压u进行比较,得出偏差电压e u,经电压放大器、功率放大器放大成a u r后,作为控制电动机的电枢电压。
在正常情况下,炉温等于某个期望值T°C,热电偶的输出电压f u正好等于给定电压r u 。
此时,0=-=f r e u u u ,故01==a u u ,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使c u 保持一定的数值。
这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。
当炉膛温度T °C 由于某种原因突然下降(例如炉门打开造成的热量流失),则出现以下的控制过程:控制的结果是使炉膛温度回升,直至T °C 的实际值等于期望值为止。
(完整版)自动控制原理课后习题答案
(完整版)自动控制原理课后习题答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第1章控制系统概述【课后自测】1-1 试列举几个日常生活中的开环控制和闭环控制系统,说明它们的工作原理并比较开环控制和闭环控制的优缺点。
解:开环控制——半自动、全自动洗衣机的洗衣过程。
工作原理:被控制量为衣服的干净度。
洗衣人先观察衣服的脏污程度,根据自己的经验,设定洗涤、漂洗时间,洗衣机按照设定程序完成洗涤漂洗任务。
系统输出量(即衣服的干净度)的信息没有通过任何装置反馈到输入端,对系统的控制不起作用,因此为开环控制。
闭环控制——卫生间蓄水箱的蓄水量控制系统和空调、冰箱的温度控制系统。
工作原理:以卫生间蓄水箱蓄水量控制为例,系统的被控制量(输出量)为蓄水箱水位(反应蓄水量)。
水位由浮子测量,并通过杠杆作用于供水阀门(即反馈至输入端),控制供水量,形成闭环控制。
当水位达到蓄水量上限高度时,阀门全关(按要求事先设计好杠杆比例),系统处于平衡状态。
一旦用水,水位降低,浮子随之下沉,通过杠杆打开供水阀门,下沉越深,阀门开度越大,供水量越大,直到水位升至蓄水量上限高度,阀门全关,系统再次处于平衡状态。
1-2 自动控制系统通常有哪些环节组成各个环节分别的作用是什么解:自动控制系统包括被控对象、给定元件、检测反馈元件、比较元件、放大元件和执行元件。
各个基本单元的功能如下:(1)被控对象—又称受控对象或对象,指在控制过程中受到操纵控制的机器设备或过程。
(2)给定元件—可以设置系统控制指令的装置,可用于给出与期望输出量相对应的系统输入量。
(3)检测反馈元件—测量被控量的实际值并将其转换为与输入信号同类的物理量,再反馈到系统输入端作比较,一般为各类传感器。
(4)比较元件—把测量元件检测的被控量实际值与给定元件给出的给定值进行比较,分析计算并产生反应两者差值的偏差信号。
常用的比较元件有差动放大器、机械差动装置和电桥等。
自动控制原理_孟华_习题答案
自动控制原理课后习题答案第二章2.1 试分别写出图2.68中各无源电路的输入u r(t)与输出u c(t)之间的微分方程。
图2.68 习题2.1图解:(a)11r cu uiR-=,2()r cC u u i-=&&,122cui iR+=,12122121212c c r rR R R R RCu u Cu uR R R R R R+=++++&&(b)11()r cC u u i-=&&,121ru uiR-=,1221i i C u+=&,121cu i R u=+,121211122112121121()()c c c r r rR R C C u R C R C R C u u R R C C u R C R C u u++++=+++&&&&&&(c)11r cu uiR-=,112()rC u u i-=,1122ui iR+=,1121cu i dt uC=+⎰,121212222112122221()()c c c r r rR R C C u R C R C R C u u R R C C u R C R C u u++++=+++&&&&&&2.2 试证明图2.69(a)所示电路与图2.69(b)所示的机械系统具有相同的微分方程。
图2.69(b)中X r(t)为输入,X c(t)为输出,均是位移量。
(a) (b)图2.69 习题2.2图解:(a)11r cu uiR-=,12()r cC u u i-=&&,12i i i+=,221cu idt iRC=+⎰,121211122212121122()()c c c r r rR R C C u R C R C R C u u R R C C u R C R C u u++++=+++&&&&&&(b)2121()cB x x K x-=&&,1121()()()r c r c cB x x K x x B x x-+-=-&&&&,121221212121211212()()c c c r r rB B B B B B B B Bx x x x x xK K K K K K K K K++++=+++&&&&&&2.3 试分别求出图2.70中各有源电路的输入u r (t )与输出u c (t )之间的微分方程。
孟华《自动控制原理》ch4-11
则特征方程: 1 kP(s) 0
Q(等s) 效开环
Q(s)
传递函数
展成多项式: Q(s) kP(s) 0
用不含待讨论参数的各项除方程两端,得
1 G1(s)H1(s)
1
k' P'(s) Q'(s)
ห้องสมุดไป่ตู้
0
例4-9 系统如图。参数Ks为速度反馈系 数。试绘制以Ks为参变量的根轨迹。
解: s 2 (2 10K s )s 10 0 s 2 2s 10 10 K s s 0
198o 108o
90o
d
[G1
(
s)H1(
d1s s
s)1]0K0s s 2 2s
10
0
s 10 3.12 1 Gn 1(s)H1(s) 0
112340...K实分画s求G轴离出1复(jims上点开11)数Hs的和s环极1(根会pz零s点i)j 轨合、的迹点s极s出21分。点0射p21布K分ss角ss。s布1p0图2
检验点s1= 1.5+j2.5是否
s(s 2)(s 6.6)
在根轨迹上; 并确定与其相对应的 k 值。
解:满足幅角条件的点是根轨迹上的点,所以
1)利用幅角条件 (s1 z1) (s1 p1) (s1 p2 ) (s1 p3)
45 -120 - 79 - 26 180
S1
k=12.15
j12.8
k=26896
s4
由s3d[(s
s2
1)12n(81s0614741(2dlmsj181))(s312364535502j1或k8)]3120355
k
分 离 点 -1
解得ss10上式16得s73 j31231ps5n32j0s1106mk1i76154z1ski 1631s2,3104111 j12.17
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4-1如果单位反馈控制系统的开环传递函数1)(+=s K s G 试用解析法绘出K 从零向无穷大变化时的闭环根轨迹图,并判断下列点是否在根轨迹上: (-2,j 0),(0+j 1),( -3+j 2)。
解:根轨迹如习题4-1答案图所示。
(-2,+j 0)在根轨迹上;(0,+j 1), (-3, +j 2) 不在根轨迹上。
习题4-1答案图4-2设单位反馈控制系统的开环传递函数。
)12()13()(++=s s s K s G 试用解析法给出开环增益K 从零增加到无穷时的闭环根轨迹图。
解: 解析法:K =0时:s =-1/2,0;K =1:s =-1±2/2;K =-∞:s =-∞,-1/3。
根轨迹如习题4-2答案图所示。
习题4-2答案图4-3 已知系统的开环传递函数)1()1()()(-+=s s s K s H s G ,试按根轨迹规则画出该系统的根轨迹图,并确定使系统处于稳定时的K 值范围。
解:分离点:0.414;会合点:-2.414 ;与虚轴交点:±j 。
稳定的K 值范围:K >1。
根轨迹如习题4-3答案图所示。
习题4-3答案图4-4已知一单位反馈系统的开环传递函数为2*)4)(1)(1()(+-+=s s s K s G (1)试粗略画出K *由0到∞的根轨迹图;(2)分析该系统的稳定性。
解:稳定性分析:系统不稳定。
根轨迹如习题4-4答案图所示。
Root LocusReal AxisI m a g i n a r y A x i s习题4-4答案图4-5 设控制系统的开环传递函数为)164)(1()1()()(2*++-+=s s s s s K s H s G ,试绘制系统根轨迹图,并确定使系统稳定的开环增益范围。
解:渐近线:θ =±60°,180°;σ =-2/3;复数极点出射角55°;分离会合点0.46和-2.22;与虚轴交点1.57和2.56;使系统稳定的开环增益为1.46 <K <2.23 (即23.4 <K *<35.7)。
习题4-5答案图4-6 已知系统的特征方程为0)4()3)(1)(3)(1(2=++--++s K s s s s试概略绘出K 由0→∞时的根轨迹(计算出必要的特征参数)。
解:渐近线:θ =±90°,σ =0;分离点±2,相应K =1.88;会合点±j 3.46,相应K =34.14;复数零点入射角90°;无论K 为何值系统均不稳定。
习题4-6答案图4-7反馈系统的特征方程为0)160(123234=+-+++K s K s s s作出0< K <∞的根轨迹,并求出系统稳定时所对应的K 值范围。
解:渐近线:θ =±60°,180°;σ =-2/3;复数极点出射角 63°;分离点:1.6 ,会合点:-3.43。
由图可知系统在任何K 值下都是不稳定的。
习题4-7答案图4-8 已知闭环系统的特征方程为0)1()(2=+++s K a s s 。
(1)画出a =10时的根轨迹,并说明系统的过渡过程为单调变化和阻尼振荡时K 的取值范围;(2)确定根轨迹具有一个非零分离点的a 值,并画出相应的根轨迹;(3)在(2)中确定的a 值下,求闭环传递函数具有二重极点时所对应的K 值;(4)画出a =5时的根轨迹。
当K =12时,已知一个闭环极点为-s 1= -2,问该系统能否等效为一个二阶系统?解:(1)渐近线:θ =±90°,σ =-4.5;会合点:-2.5,分离点:-4。
阻尼振荡时K 的取值范围为(0,31.3)(32,∞),呈单调变化时K 的取值范围为(31.3,32)。
习题4-8(1)答案图(2)具有一个非零分离点的a=9。
习题4-8(2)答案图(3)a =9时,闭环二重极点s 1,2=-3对应的K =27。
(4)渐近线:θ =±90°,σ =-2;不能等效。
画出a =5时的根轨迹。
-5-4-3-2-1Root LocusReal AxisI m a g i n a r y A x i s习题4-8(4)答案图4-9设单位反馈系统的开环传递函数为)()(a s s Ks G +=试绘出K 和a 从零变到无穷大时的根轨迹簇;当K = 4时,绘出以a 为参变量的根轨迹。
解:令a =0 绘制K 为参变量的根轨迹如习题4-9答案图之一所示。
习题4-9答案图之一当K 取不同值时,绘出a 变化的根轨迹簇如习题4-9答案图之二所示。
当K = 4时,画a 从零到无穷大时的根轨迹如图中粗线示。
习题4-9答案图之二4-10设单位反馈系统的开环传递函数为)1)(1()(++=s T s s Ks G α其中开环增益K 可自行选定,试分析时间常数T a 对系统性能的影响。
解:重做该题。
等效开环传递函数[]2'2(1)()T s s G s s s K α+=++当K ≤0.25⎫ [ G (s )] ’具有实数极点。
取任何正实数T a 系统都是稳定的。
选择K =0.1画根轨迹如习题4-10TH⎭K 所示。
Root LocusReal AxisI m a g i n a r y A x i s习题4-10答案图之一当K >0.25⎫ [ G (s )] ’具有复数极点。
取K =0.5,1,2,画根轨迹如习题4-10TH⎭K 二所示。
当0<K ≤ 1时,取任何正实数T a 都是稳定的;当T a ≥ 1时,K <2,否则系统不稳定。
Root LocusReal AxisI m a g i n a r y A x i sRoot LocusReal AxisI m a g i n a r y A x i sRoot LocusReal AxisI m a g i n a r y A x i s习题4-10答案图之二4-11设控制系统中)1()(2+=s s Ks G ,1)(=s H 。
该系统在增益K 为任何正值时,均不稳定。
试画出该系统的根轨迹图。
利用作出的根轨迹图,说明在负实轴上加一个零点,将G (s )改变为G 1(s ),即)10()1()()(21≤≤++=a s s a s K s G可以使系统稳定下来。
解:(1)渐近线:θ =±60°,180°;σ =-1/3。
画出根轨迹如习题4-11答案图之一所示。
(2)取a =0.5,渐近线:θ =±90°,σ =(a -1)/2。
画出根轨迹如习题4-11答案图之二所示。
从图中可以看出 增加开环零点后使得根轨迹向s 左半平面弯曲,从而使得闭环系统的稳定性得到提高。
习题4-11TH⎭K 习题4-11TH⎭K4-12 设控制系统开环传递函数为)4)(2()1()(2+++=s s s s K s G ,试分别画出正反馈系统和负反馈系统的根轨迹图,并指出它们的稳定情况有何不同。
解:负反馈系统:渐近线:θ =±60°,180°;σ =-5/3;与虚轴交点s =±1.414,K =12。
根轨迹如习题4-12答案图之一所示。
正反馈系统:渐近线:θ =0°,±120°;σ =-5/3;根轨迹如习题4-12答案图之二所示。
稳定情况的不同:正反馈系统恒不稳定,负反馈系统条件稳定,稳定范围0<K <12。
习题4-12TH⎭K ⎺4-12TH⎭K4-13已知系统如图4.23所示。
画出其根轨迹,并求出当闭环共轭复数极点呈现阻尼比ζ=0.707时,系统的单位阶跃响应。
图4.23 习题4-13图解:ζ =0.707时系统的闭环极点为s 1,2 =-2±j 2,s 3 =-2。
此时,K =2。
根轨迹如习题4-13答案图所示。
当闭环共轭复数极点呈现阻尼比为0.707时系统的单位阶跃响应为-2-2()12e 2e cos(245)t t c t t =-++习题4-13TH⎭画一张响应曲线图:求c (t )。
已知16()(2)(22)(22)C s s s s j s j =++++-4-14系统的开环传递函数为)5.0)(2()52()()(2-++-=s s s s K S H s G 。
(1)绘制系统的根轨迹图;(2)确定系统稳定时K 的取值范围;(3)若要求系统单位阶跃响应的超调量为16.3%,确定相应的K 值。
解:(1)分离点:-0.41,K =0.24;复数零点入射角±200°;与虚轴交点±j 1.25。
根轨迹如习题4-14答案图所示。
(2)稳定时的k 的范围是:0.2<K <0.75。
(3)单位阶跃响应的超调量为16.3%时K 的值为0.311。
习题4-14TH⎭4-15已知系统的信号流图如图4.24所示。
且可变系数α ≥0 (1)证明该系统实轴以外部分的参数根轨迹为半圆周。
(2)完整准确地画出系统的参数根轨迹。
(3)以根轨迹为依据,求出满足系统阻尼比ζ =0.5时的α 值。
图4.24 习题4-15图解:(1)证明略。
(2)会合点s =-1;复数极点出射角±180°;根轨迹如习题4-15TH⎭≅: (3)ζ =0.5时的α =0.999。
习题4-15TH⎭4-16设控制系统如图4.25所示,试概略绘出K t =0,0<K t <1,K t >1时的根轨迹和单位阶跃响应曲线。
若取K t =0.5,试求出K =∞时的闭环零极点,并估算出系统的动态性能。
图4.25 习题4-16图解:(1)K t =0时的根轨迹和单位阶跃响应曲线如习题4-16TH⎭K 所示。
习题4-16答案图之一 ⊆⎰↵ ⎤已知2()()KC s s s s K =++,请选K =0.5做响应曲线。
此时ζ =0.707。
(2)0<K t <1,取K t =0.5时,根轨迹和单位阶跃响应曲线如习题4-16TH⎭K 二所示。
习题4-16答案图之二 ⊆⎰↵ ⎤已知2()(05)KC s s s s K +.Ks =++,请选K =1做响应曲线。
(3)K t >1,取K t =2时,根轨迹和单位阶跃响应曲线如习题4-16TH⎭K 三所示。
习题4-16答案图之三 ⊆⎰↵重画已知2()(2)KC s s s s K +Ks =++,请选K =1做响应曲线。
(4)闭环极点:-2;闭环零点:无;可等效为一阶系统,时间常数T =0.5。
估算系统性能:σ %≈0% t s ≈3T =1.5s4-17系统结构如图4.26所示。