3.2.3互斥事件 教案(北师大版必修3)

合集下载

高中数学第三章概率2_3互斥事件教案北师大版必修3

高中数学第三章概率2_3互斥事件教案北师大版必修3

互斥事件整体设计教学分析教科书通过实例定义了互斥事件、对立事件的概念.教科书通过类比频率的性质,利用频率与概率的关系得到了概率的几个基本性质,要注意这里的推导并不是严格的数学证明,仅仅是形式上的一种解释,因为频率稳定在概率附近仅仅是一种描述,没有给出严格的定义,严格的定义,要到大学里的概率统计课程中才能给出.三维目标(1)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念;通过事件的关系、运算与集合的关系、运算进行类比学习,培养学生的类比与归纳的数学思想.(2)概率的几个基本性质:①必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;②当事件A 与B 互斥时,满足加法公式:P(A∪B)=P(A)+P(B);③若事件A 与B 为对立事件,则A∪B 为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1-P(B).(3)正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系,通过数学活动,了解数学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的情趣.重点难点教学重点:概率的加法公式及其应用.教学难点:事件的关系与运算.课时安排1课时教学过程导入新课思路1.体育考试的成绩分为四个等级:优、良、中、不及格,某班50名学生参加了体育考优85分及以上 9人 良75—84分 15人 中60—74分 21人 不及格 60分以下 5人在同一次考试中,某一位同学能否既得优又得良?从这个班任意抽取一位同学,那么这位同学的体育成绩为“优良”(优或良)的概率是多少?为解决这个问题,我们学习概率的基本性质,教师板书课题.思路2.(1)集合有相等、包含关系,如{1,3}={3,1},{2,4} {2,3,4,5}等;(2)在掷骰子试验中,可以定义许多事件如:C 1={出现1点},C 2={出现2点},C 3={出现1点或2点},C 4={出现的点数为偶数},….师生共同讨论:观察上例,类比集合与集合的关系、运算,你能发现事件的关系与运算吗?这就是本堂课要讲的知识概率的基本性质.思路 3.全运会中某省派两名女乒乓球运动员参加单打比赛,她们夺取冠军的概率分别是72和51,则该省夺取该次冠军的概率是72+51,对吗?为什么?为解决这个问题,我们学习概率的基本性质.推进新课新知探究提出问题在掷骰子试验中,可以定义许多事件如:C1={出现1点},C2={出现2点},C3={出现3点},C4={出现4点},C5={出现5点},C6={出现6点},D1={出现的点数不大于1},D2={出现的点数大于3},D3={出现的点数小于5},E={出现的点数小于7},F={出现的点数大于6},G={出现的点数为偶数},H={出现的点数为奇数},….类比集合与集合的关系、运算说明这些事件的关系和运算,并定义一些新的事件.(1)如果事件C1发生,则一定发生的事件有哪些?反之,成立吗?(2)如果事件C2发生或C4发生或C6发生,就意味着哪个事件发生?(3)如果事件D2与事件H同时发生,就意味着哪个事件发生?(4)事件D3与事件F能同时发生吗?(5)事件G与事件H能同时发生吗?它们两个事件有什么关系?活动:学生思考或交流,教师提示点拨,事件与事件的关系要判断准确,教师及时评价学生的答案.讨论结果:(1)如果事件C1发生,则一定发生的事件有D1,E,D3,H,反之,如果事件D1,E,D3,H分别成立,能推出事件C1发生的只有D1.(2)如果事件C2发生或C4发生或C6发生,就意味着事件G发生.(3)如果事件D2与事件H同时发生,就意味着C5事件发生.(4)事件D3与事件F不能同时发生.(5)事件G与事件H不能同时发生,但必有一个发生.由此我们得到事件A,B的关系和运算如下:①如果事件A发生,则事件B一定发生,这时我们说事件B包含事件A(或事件A包含于事件B),记为B⊇A(或A⊆B),不可能事件记为∅,任何事件都包含不可能事件.②如果事件A发生,则事件B一定发生,反之也成立,(若B⊇A同时B⊆A),我们说这两个事件相等,即A=B.如C1=D1.③如果某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与B的并事件(或和事件),记为A∪B或A+B.④如果某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与B的交事件(或积事件),记为A∩B或AB.⑤如果A∩B为不可能事件(A∩B=∅),那么称事件A与事件B互斥,即事件A与事件B在任何一次试验中不会同时发生.⑥如果A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件,即事件A 与事件B在一次试验中有且仅有一个发生.继续依次提出以下问题:(1)概率的取值范围是多少?(2)必然事件的概率是多少?(3)不可能事件的概率是多少?(4)互斥事件的概率应怎样计算?(5)对立事件的概率应怎样计算?活动:学生根据试验的结果,结合自己对各种事件的理解,教师引导学生,根据概率的意义:(1)由于事件的频数总是小于或等于试验的次数,所以,频率在0—1之间,因而概率的取值范围也在0—1之间.(2)必然事件是在试验中一定要发生的事件,所以频率为1,因而概率是1.(3)不可能事件是在试验中一定不发生的事件,所以频率为0,因而概率是0.(4)当事件A与事件B互斥时,A∪B发生的频数等于事件A发生的频数与事件B发生的频数之和,互斥事件的概率等于互斥事件分别发生的概率之和.(5)事件A与事件B互为对立事件,A∩B为不可能事件,A∪B为必然事件,则A∪B的频率为1,因而概率是1,由(4)可知事件B的概率是1与事件A发生的概率的差.讨论结果:(1)概率的取值范围是0—1之间,即0≤P(A)≤1.(2)必然事件的概率是1.如在掷骰子试验中,E={出现的点数小于7},因此P(E)=1.(3)不可能事件的概率是0,如在掷骰子试验中,F={出现的点数大于6},因此P(F)=0.(4)当事件A与事件B互斥时,A∪B发生的频数等于事件A发生的频数与事件B发生的频数之和,互斥事件的概率等于互斥事件分别发生的概率之和,即P(A∪B)=P(A)+P(B),这就是概率的加法公式,也称互斥事件的概率的加法公式.(5)事件A与事件B互为对立事件,A∩B为不可能事件,A∪B为必然事件,P(A∪B)=1.所以1=P(A)+P(B),P(B)=1-P(A),P(A)=1-P(B).如在掷骰子试验中,事件G={出现的点数为偶数}与H={出现的点数为奇数}互为对立事件,因此P(G)=1-P(H).上述这些都是概率的性质,利用这些性质可以简化概率的计算,下面我们看它们的应用. 应用示例思路1例1 在课本§2古典概型的例1中,随机地从2个箱子中各取1个质量盘,下面的事件A和事件B是否是互斥事件?(1)事件A=“总质量为20 kg”,事件B=“总质量为30 kg”;(2)事件A=“总质量为7.5 kg”,事件B=“总质量超过10 kg”;(3)事件A=“总质量不超过10 kg”,事件B=“总质量超过10 kg”;(4)事件A=“总质量为20 kg”,事件B=“总质量超过10 kg”.解:在(1)(2)(3)中,事件A与事件B不能同时发生,因此事件A与事件B是互斥事件.对于(4)中的事件A和事件B,随机地从2个箱子中各取1个质量盘,当总质量为20 kg时,事件A与事件B同时发生,因此,事件A与事件B不是互斥事件.点评:判断互斥事件和对立事件,要紧扣定义,搞清互斥事件和对立事件的关系,互斥事件是对立事件的前提.变式训练1.一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?事件A:命中环数大于7环;事件B:命中环数为10环;事件C:命中环数小于6环;事件D:命中环数为6、7、8、9、10环.活动:教师指导学生,要判断所给事件是对立事件还是互斥事件,首先将两个概念的联系与区别弄清楚,互斥事件是指不可能同时发生的两事件,而对立事件是建立在互斥事件的基础上,两个事件中一个不发生,另一个必发生.解:A与C互斥(不可能同时发生),B与C互斥,C与D互斥,C与D是对立事件(至少一个发生).2.从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数与次品件数,判断下列每件事件是不是互斥事件,如果是,再判断它们是不是对立事件.(1)恰好有1件次品和恰好有2件次品;(2)至少有1件次品和全是次品;(3)至少有1件正品和至少有1件次品;(4)至少有1件次品和全是正品.解:依据互斥事件的定义,即事件A 与事件B 在一定试验中不会同时发生,知(1)恰好有1件次品和恰好有2件次品不可能同时发生,因此它们是互斥事件,又因为它们的并不是必然事件,所以它们不是对立事件.同理可以判断:(2)中的2个事件不是互斥事件,也不是对立事件;(3)中的2个事件既不是互斥事件也不是对立事件;(4)中的2个事件既互斥又对立.例2 从一箱产品中随机地抽取一件产品,设事件A=“抽到的是一等品”,事件B=“抽到的是二等品”,事件C =“抽到的是三等品”,且已知P(A)=,P(B)=,P(C)=.求下列事件的概率:(1)事件D=“抽到的是一等品或三等品”;(2)事件E=“抽到的是二等品或三等品”.解:(1)事件D 即事件A+C,因为事件A=“抽到的是一等品”和事件C=“抽到的是三等品”是互斥事件,由互斥事件的概率加法公式,得P(D)=P(A+C)=P(A)+P(C)=+=.(2)事件E 即事件B+C,因为事件B=“抽到的是二等品”和事件C=“抽到的是三等品”是互斥事件,由互斥事件的概率加法公式,得P(E)=P(B+C)=P(B)+P(C)=+=.点评:容易看出,事件D+E 表示“抽到的产品是一等品或二等品或三等品”.事件D 和事件E 不是互斥事件,因此不满足互斥事件的概率加法公式.事实上,P(D+E)=P(A)+P(B)+P(C)=,而P(D)+P(E)=[P(A)+P(C)]+[P(B)+P(C)]=,“抽到的是三等品”的概率P(C)在P(D)和P(E)中各算了一次,因此,事件D+E 的概率P(D+E)不等于P(D)+P(E).例3 某地政府准备对当地的农村产业结构进行调整,为此政府进行了一次民意调查.100个人接受了调查,他们被要求在赞成调整、反对调整、对这次调整不发表看法中任选一项.调查结果如下表所示:男 女 总计 赞成 18 9 27 反对12 25 37 不发表看法20 16 36 总计 50 50 100解:用A 表示事件“对这次调整表示反对”,B 表示事件“对这次调整不发表看法”,则A 和B 是互斥事件,并且A+B 就表示事件“对这次调整表示反对或不发表看法”,由互斥事件的概率加法公式,得P(A+B)=P(A)+P(B)=100731003610037=+=, 因此,随机选取的一个被调查者对这次调整表示反对或不发表看法的概率是.点评:若事件C=“对这次调整表示赞成”,则其对立事件C=“对这次调整表示反对或不发表看法”,因此,随机选取一个被调查者,他对这次调整表示反对或不发表看法的概率还可以按如下方法计算:P(C )=1-P(C)=11007310027=-=. 变式训练1.某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止1个小组,具体情况如图1所示.随机选取1个成员:(1)他至少参加2个小组的概率是多少?(2)他参加不超过2个小组的概率是多少?图1 解:(1)从图1中可以看出,3个课外兴趣小组总人数为60.用A 表示事件“选取的成员只参加1个小组”,则A 就表示“选取的成员至少参加2个小组”,于是,P(A )=1-P(A)=153601086=++-=. 因此,随机选取的1个成员至少参加2个小组的概率是.(2)用B 表示事件“选取的成员参加3个小组”,则B 就表示“选取的成员参加不超过2个小组”,于是,P(B )=1-P(B)=15136081=-≈. 所以,随机选取的1个成员参加不超过2个小组的概率约等于.2.小明的自行车用的是密码锁,密码锁的四位数密码由4个数字2,4,6,8按一定顺序构成.小明不小心忘记了密码中4个数字的顺序,试问:随机地输入由2,4,6,8组成的一个四位数,不能打开锁的概率是多少?解:用A 表示事件“输入由2,4,6,8组成的一个四位数,不是密码”,A 比较复杂,可考虑它的对立事件,即“输入由2,4,6,8组成的一个四位数,恰是密码”,它只有一种结果.利用树状图可以列出输入由2,4,6,8组成的一个四位数的所有可能结果(如图2).从图中可以看出,所有可能结果数为24,并且每一种结果出现的可能性是相同的,这是一个古典概型.P(A )=241,因此,图2P(A)=1-P(A )=2423≈, 即小明随机地输入由2,4,6,8组成的一个四位数,不能打开锁的概率约为.思路2例1 抛掷一骰子,观察掷出的点数,设事件A 为“出现奇数点”,B 为“出现偶数点”,已知P(A)= 21,P(B)= 21,求出“出现奇数点或偶数点”的概率. 活动:学生思考或讨论,教师引导,抛掷骰子,事件“出现奇数点”和“出现偶数点”是彼此互斥的,并且是相互独立事件,可以运用概率的加法公式求解.解:记“出现奇数点或偶数点”为事件C,则C=A∪B,因为A 、B 是互斥事件,所以P(C)=P(A)+P(B)=21+21=1. 出现奇数点或偶数点的概率为1.变式训练抛掷一粒骰子,观察掷出的点数,设事件A 为出现奇数,事件B 为出现2点,已知P(A)= 21,P(B)=61,求出现奇数点或2点的概率之和. 解:“出现奇数点”的概率是事件A,“出现2点”的概率是事件B,“出现奇数点或2点”的概率之和为P(C)=P(A)+P(B)=326121=+. 例2 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为31,得到黑球或黄球的概率是125,得到黄球或绿球的概率也是125,试求得到黑球、得到黄球、得到绿球的概率各是多少?活动:学生阅读题目,交流讨论,教师点拨,利用方程的思想及互斥事件、对立事件的概率公式求解.解:从袋中任取一球,记事件“摸到红球”“摸到黑球”“摸到黄球”“摸到绿球”为A 、B 、C 、D,则有P(B∪C)=P(B)+P(C)=125,P(C∪D)=P(C)+P(D)=125,P(B∪C∪D)=1-P(A)=1-31=32,解得P(B)=41,P(C)=61,P(D)= 41, 即得到黑球、得到黄球、得到绿球的概率分别是41、61、41. 变式训练已知盒子中有散落的棋子15粒,其中6粒是黑子,9粒是白子,已知从中取出2粒都是黑子的概率是71,从中取出2粒都是白子的概率是3512,现从中任意取出2粒恰好是同一色的概率是多少?答案:从盒子中任意取出2粒恰好是同一色的概率恰为取2粒白子的概率与2粒黑子的概率的和,即为3517351271=+. 知能训练1.下列说法中正确的是( )A.事件A 、B 中至少有一个发生的概率一定比A 、B 中恰有一个发生的概率大B.事件A 、B 同时发生的概率一定比事件A 、B 恰有一个发生的概率小C.互斥事件一定是对立事件,对立事件不一定是互斥事件D.互斥事件不一定是对立事件,对立事件一定是互斥事件答案:D2.课本练习1—4.拓展提升1.从男女学生共有36名的班级中,任意选出2名委员,任何人都有同样的当选机会.如果选得同性委员的概率等于21,求男女生相差几名? 解:设男生有x 名,则女生有36-x 名.选得2名委员都是男性的概率为3536)1(⨯-x x , 选得2名委员都是女性的概率为3536)35)(36(⨯--x x . 以上两种选法是互斥的,又选得同性委员的概率等于21, 得3536)35)(36(3536)1(⨯--+⨯-x x x x =21. 解得x=15或x=21,即男生有15名,女生有36-15=21名,或男生有21名,女生有36-21=15名.总之,男女生相差6名. 血型A B AB O 该血型的人所占比/% 28 29 8 35AB 型血的人,其他不同血型的人不能互相输血.小明是B 型血,若小明因病需要输血,问:(1)任找一个人,其血可以输给小明的概率是多少?(2)任找一个人,其血不能输给小明的概率是多少?解:(1)对任一人,其血型为A,B,AB,O 型血的事件分别记为A′,B′,C′,D′,它们是互斥的. 由已知,有P(A′)=,P(B′)=,P(C′)=,P(D′)=.因为B,O 型血可以输给B 型血的人,故“可以输给B 型血的人”为事件B′+D′.根据互斥事件的加法公式,有P(B′+D′)=P(B′)+P(D′)=+=.(2)由于A,AB 型血不能输给B 型血的人,故“不能输给B 型血的人”为事件A′+C′,且P(A′+C′)=P(A′)+P(C′)=+=,即任找一人,其血可以输给小明的概率为,其血不能输给小明的概率为.注:第(2)问也可以这样解:因为事件“其血可以输给B 型血的人”与事件“其血不能输给B 型血的人”是对立事件,故由对立事件的概率公式,有P(''D B +)=1-P(B′+D′)==. 课堂小结1.概率的基本性质是学习概率的基础.不可能事件一定不出现,因此其概率为0,必然事件一定发生,因此其概率为1.当事件A 与事件B 互斥时,A∪B 发生的概率等于A 发生的概率与B 发生的概率的和,从而有公式P(A∪B)=P(A)+P(B);对立事件是指事件A 与事件B 有且仅有一个发生.2.在利用概率的性质时,一定要注意互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B 在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A 发生且事件B 不发生;(2)事件A 不发生且事件B 发生;(3)事件A 与事件B 同时不发生.而对立事件是指事件A 与事件B 有且仅有一个发生,其包括两种情形:(1)事件A 发生B 不发生;(2)事件B 发生事件A 不发生,对立事件是互斥事件的特殊情形.作业习题3—2 A 组 3.设计感想本堂课通过掷骰子试验,定义了许多事件,并根据集合的运算定义了事件的运算,给出了互斥事件和对立事件以及它们的概率运算公式,在运用时要切实注意它们的使用条件,不可模棱两可,搞清互斥事件和对立事件的关系,思路1和思路2都安排了不同层次的例题和变式训练,对刚学的知识是一个巩固和加强,同学们要反复训练,安排的题目既有层次性,又有趣味性,适合不同基础的学生,因此本节课授完后,同学们肯定受益匪浅.。

高中数学 3.2.3 互斥事件教学设计 北师大版必修3

高中数学 3.2.3 互斥事件教学设计 北师大版必修3

3.2.3 互斥事件一、教学目标:1、知识与技能:(1)理解互斥事件和对立事件的概念,并根据概率计算公式的应用范围和具体运算法则解决简单的概率问题。

(2)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念;(3)概率的几个基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)(4)正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系.2、过程与方法:通过引导学生判断互斥事件和互为对立事件两个概念的对比学习,提高学生的类比、归纳、探寻事物的能力。

通过不同形式的自主学习和探究活动,体验数学发现和创造的历程,提高学生的合作能力和创造的历程,提高学生的合作解题能力和利用数学知识解决实际应用问题的能力。

3、情感、态度与价值观:通过课堂上学生独立思考、合作讨论,有意识、有目的的培养学生自主学习的学习习惯与协作共进的团队精神;让学生体验成功,激发其求知欲,树立求真知的信心;培养学生的辩证唯物主义观点。

重点:互斥事件和对立事件的概念以及互斥事件的概率计算公式。

难点:互斥事件与对立事件的区别与联系。

二、教学过程:问题引入:一个盒子内放有10个大小相同的小球,其中有7个红球、2个绿球、1个黄球.从中任取 1个小球.求:(1)得到红球的概率;(2)得到绿球的概率;(3)得到红球或绿球的概率.设问:“得到红球”和“得到绿球”这两个事件之间有什么关系,可以同时发生吗?事件得到“红球或绿球”与上两个事件又有什么关系?它们的概率间的关系如何?我们把“从中摸出 1个球,得到红球”叫做事件A,“从中摸出1个球,得到绿球”叫做事件B,“从中摸出1个球,得到黄球”叫做事件C.三、新课讲解1.互斥事件的定义如果从盒中摸出的1个球是红球,即事件A发生,那么事件B就不发生;如果从盒中摸出的1个球是绿球,即事件B发生,那么事件A就不发生.就是说,事件A与B不可能同时发生。

北师大版高中数学必修3《三章 概率 2 古典概型 2.3互斥事件》优质课教案_16

北师大版高中数学必修3《三章 概率  2 古典概型  2.3互斥事件》优质课教案_16

互斥事件教材分析:【教学目标】1、知识与技能:通过实例,理解互斥事件和对立事件的概念,了解互斥事件的概率加法公式,并能简单应用.2、过程与方法:发现法教学,学生通过在抛骰子的试验中获取数据,归纳总结试验结果,发现规律,得到互斥事件的概率加法公式.通过正确的理解,准确利用公式求概率.3、情感态度与价值观:通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;体会数学思维的严密性,发展条理清晰的思考表达能力、提高分析能力、解决问题的能力.【重点与难点】互斥事件 概率的加法公式及其应用 【课时计划】2课时 【教学过程】第一课时一、复习旧知:(1)古典概型的概念:在随机试验中①试验中所有可能出现的基本事件只有有限个;②各基本事件的发生是等可能的,即它们发生的概率相同.我们称具有这两个特征的概率称为古典概率模型(classical models of probability )简称古典概型(2)求随机事件概率的方法:①通过大量重复试验;② 等可能性事件的概率,也可以直接通过分析来计算其概率. (3)求等可能性事件概率的步骤:①判断所构造的基本事件是否等可能; ②计算一次试验中可能出现的总结果数n ; ③计算事件A 所包含的结果数m ; ④代入公式nmA P)(计算;⑤小结作答. 二、引入新课: 问题1:(1)抛掷一骰子,观察掷出的点数,设事件A 为“出现奇数点”,B 为“出现4点”,C 事件A 与事件B 能否同时发生?(2)日常生活中,举出一些不能同时发生的事件 小结:1. 互斥事件:不可能同时发生的个事件叫做互斥事件.A 、B 互斥,即事件A 、B 不可能同时发生练习:抛掷一枚骰子一次,下面的事件A 与事件B 是互斥事件吗? (1)事件A=“点数为3”,事件B=“点数5” (2)事件A=“点数为偶数”,事件B=“点数为3” (3)事件A=“点数不超过3”,事件B=“点数超过3” (4)事件A=“点数为偶数”,事件B=“点数为3的倍数” 解:互斥事件: (1) (2) (3)但(4)不是互斥事件,当点为6时,事件A 和事件B 同时发生 2.用集合意义理解互斥事件;从集合角度来看,A 、B 两个事件互斥,则表示A 、B 这两个事件所含结果组成的集合的交集是空集.A 与B 有相交,则A 与B 不互斥. 3、事件和的意义:事件A 、B 的和记作B A +,表示事件A 、B 至少有一个发生.当A 、B 为互斥事件时,事件B A +是由“A 发生而B 不发生”以及“B 发生而A 不发生”构成的.4、事件B A +的概率满足加法公式:对例题 (1),(2)和(3)中每一对事件,完成下表学生自己完成表,自己发现P(A+B)与P(A)+P(B)有什么样大小关系. 得到概率加法公式:A 、B 互斥时 ()()()B P A P B A P +=+(4)事件A=“点数为5”,事件B=“点数超过3”,是否也有P(A+B)=P(A)+P(B)? 概率加法公式:A 、B 互斥,则P(A+B)=P(A)+P(B)拓展推广:一般地,如果事件A 1,A 2,…,A n 彼此互斥,那么事件发生(即A 1,A 2,…,A n 中有一个发生)的概率,等于这n 个事件分别发生的概率的和,即P (A 1+A 2+…A n )=P(A 1)+P(A 2)+…+P(A n )例如、事件A 表示“点数为奇数”,事件A 1表示“点数为1”,A 2表示“点数为3”,A 3表示“点数5”,A 1,A 2,A 3中任意两个是互斥事件P(A)=P(A 1+A 2+A 3)=P(A 1)+P(A 2)+P(A 3)三、课堂练习:例1、从一箱产品中随机地抽取一件产品,设A=“抽到的是一等品”,B=“抽到的是二等品”,C=“抽到的是三等品”.且P(A)=0.7,P(B)=0.1,P(C)=0.05 . 求下列事件的概率: ⑴事件D=“抽到的是一等品或三等品” ⑵事件E=“抽到的是二等品或三等品”思考交流:事件E D +表示什么事件? )()()(E P D P E D P +=+吗?为什么? (学生自己思考得出结论)注:用概率加法公式的前提:A 与B 是互斥事件 四、例题讲解:例2、某地政府准备对当地的农业产业结构进行调整,为此政府进行了一次民意调查,100个人接受了调查,他们被要求在赞成调整、反对调整、对调整不发表看法中任选一项,调查结果如表随机选取一个调查者,他对这次调整表示反对或不发表看法的概率是多少? 本例题目的:利用对立事件求概率,强调学生做题书写表达要清晰准确. 同步练习:如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A )的概率是41,取到方块(事件B )的概率是41,问: (1)取到红色牌(事件C )的概率是多少? (2)取到黑色牌(事件D )的概率是多少? 五、课堂练习:1.(课本第143页练习1)对飞机连续射击两次,每次发射一枚炮弹,记事件A :两次都击中飞机.事件B :两次都没有击中飞机. 事件C :恰有一次击中飞机.事件D :至少有一次击中飞机.其中互斥事件是 .2、已知A 、B 为互斥事件,P (A )=0.4,P(A+B)=0.7,P(B)=3、经统计,在某储蓄所一个营业窗口等候的人数为及相应概率如下:(1)至少1人排队等候的概率是多少? (2)有排队等候的概率是多少? 六、布置作业1、正式作业:课本第148页 第7、8、9题2、课外作业:《新新学案》配套题。

北师大版高中数学必修3《三章 概率 2 古典概型 2.3互斥事件》优质课教案_24

北师大版高中数学必修3《三章 概率  2 古典概型  2.3互斥事件》优质课教案_24
教学过程设计
教学流程
教师活动
学生活动
设计意图
情境引入
多媒体展现图片:“向左还是向右”、“今天去书店还是不去”,要求学生思考,这两个事件能不能同时发生?
要求学生举出生活中一些类似的例子。
学生思考后回答,两个事件不能同时发生。
学生讨论并举例。
通过观察事件的特点,引发学生关于“不能同时发生的两个事件”的思考,为学习互斥事件作铺垫,培养学生观察分析、总结和归纳的能力。
学情
分析
本节课的授课对象是本校高一(7)班全体同学,本班学生水平处于中等偏上,学生具有善于动手,踊跃交流的良好学习习惯,学习热情高涨,所以这节课的主要任务是让多数同学在积极参与课堂的过程中掌握概念及公式的使用。
学法指导
在本节课的教学过程中,本人引导学生的学法为思考问题、共同探讨、解决问题、简单应用,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习.
课标要求:通过实例,了解两个互斥事件的概率加法公式及对立事件的概率计算公式。
考纲要求:了解两个互斥事件的概率加法公式。
教学设计编写人杨蓉
课题
互斥事件
课型
新授
课时
1
教材
分析
在本节课之前,学生已经学习了随机事件和古典概型,教材这一节主要是针对事件A、B是互斥事件时,研究事件A+B的概率。教材中直接引用了前面课文中有关质量盘的例题,再对互斥事件进行讲解,我个人认为质量盘的例题比较冗长且不够直观,因此,我对教材内容作了一点调整,从学生生活中掷骰子事件出发,使学生既有兴趣又能很轻松的理解互斥事件,为下面的学习打好基础。
课堂练习
教师多媒体展示练习题,学生自主完成。
教师抽取学生的学习卡进行展示,共同解决问题。

2022年 高中数学新北师大版精品教案《北师大版高中数学必修3 2.3互斥事件》

2022年 高中数学新北师大版精品教案《北师大版高中数学必修3 2.3互斥事件》
教学重点难点
以及措施
教学重点:通过实例,了解互斥事件及对立事件的概念及概率加法公式;〔重点〕
教学难点:根据事件的关系、运算与集合的关系、运算进行类比学习;〔难点〕
根据教学内容的特点及高一年级学生的年龄、认知特征,紧紧抓住课堂知识的结构关系,遵循“直观认知――操作体会――感悟知识特征――应用知识〞的认知过程,设计出包括:观察、操作、思考、交流等内容的教学流程。
教学目标
1知识与技能:
〔1〕通过实例,了解互斥事件及对立事件的概念及概率加法公式;
〔2〕根据事件的关系、运算与集合的关系、运算进行类比学习;
2过程与方法:
通过自主探索、合作交流培养学生发现问题、分析问题、解决问题的能力,体会类比与归纳、特殊与一般的数学思想
3情感态度与价值观;
感知数学和生活的联系,体验学习数学的乐趣,体会数学的严谨性,培养团队合作精神
学习者分析
学生已学习了古典概型,初步具有抽象逻辑思维能力,能在教师的引导下独立地解决问题高一学生语言表达能力和数学应用意识依然有所欠缺,处理实际数学建模问题的能力还有待进一步提高但思维较活泼,能较好地解决实际问题
教法设计
问题情境引入法启发式教学法讲授法
学法指导
自主学习法练习稳固法讨论交流法
教学准备
t课件导学案
通过合作探究和自我的展示,鼓励学生合作学习的品质
例题讲解
当堂训练
1从一箱产品中随机地抽取一件产品,设事件A=“抽到的是一等品〞,事件B=“抽到的是二等品〞,事件C=“抽到的是三等品〞,且PA=,PB=,PC=
求以下事件的概率:
(1)事件D=“抽到的是一等品或三等品〞;
(2)事件E=“抽到的是二等品或三等品〞
1他至少参加2个小组的生建立相应的数学模型,分析问题

【教学设计】《互斥事件》(数学北师大必修3)

【教学设计】《互斥事件》(数学北师大必修3)

《互斥事件》互斥事件与对立事件是北师大版数学必修3第三章第2节的内容,新课标的要求是:理解互斥事件概念,掌握互斥事件和对立事件的区别和联系,为以后学习相互独立事件和次独立重复试验做好铺垫,因此这节课有着深化知识层面,拓展能力范围的作用,是本章的重要内容。

之 【知识与能力目标】理解互斥事件和对立事件的概念,并根据概率计算公式的应用范围和具体运算法则解决简单的概率问题。

【过程与方法目标】通过引导学生判断互斥事件和互为对立事件两个概念的对比学习,提高学生的类比、归纳、探寻事物的能力。

通过不同形式的自主学习和探究活动,体验数学发现和创造的历程,提高学生的合作能力和创造的历程,提高学生的合作解题能力和利用数学知识解决实际应用问题的能力。

【情感与态度目标】通过课堂上学生独立思考、合作讨论,有意识、有目的的培养学生自主学习的学习习惯与协作共进的团队精神;让学生体验成功,激发其求知欲,树立求真知的信心;培养学生的辩证唯物主义观点。

◆ 教材分析◆教学目标【教学重点】:互斥事件和对立事件的概念以及互斥事件的概率计算公式。

【教学难点】:互斥事件与对立事件的区别与联系。

多媒体课件一、互斥事件1.互斥事件的定义:不能同时发生的两个事件称为互斥事件例如,在一个盒子里放有大小相同的10个小球,其中有7个红球,2个绿球,1个黄球.从盒中摸出1个小球得到的结果可能是红球,也可能是绿球或黄球,并且只能是其中一种情况.我们把“从盒中摸出1个小球,得到红球”叫做事件A ,“从盒中摸出1个小球,得到绿球”叫做事件B ,“从盒中摸出1个小球,得到黄球”叫做事件C ,那么这里的事件A 、事件B 、事件C 中的任何两个是不可能同时发生的.事件A 与事件B 、事件B 与事件C 都是互斥事件.从集合的角度来看,事件A 与事件B 是互斥事件,则事件A 所包含的基本事件构成的集合与事件B 所包含的基本事件构成的集合的交集是空集.2.互斥事件有一个发生的概率设A 、B 为互斥事件,当事件A 、B 有一个发生时,我们把这个事件记作A+B .事件A+B 发生的概率等于事件A 、B 分别发生的概率的和,即P (A+B )=P (A )+P (B ),此公式也称概率和公式.例如上例中“从盒中摸出1个小球,得到红球”叫做事件A ,则P (A )=0.7;“从盒中摸出1个小球,得到绿球”叫做事件B ,则P (B )=0.2.若记“从盒中摸出1个小球,得到红球或绿球”为事件D ,则D=A+B ,此时P (D )=P (A +P (B )=0.7+0.2=0.9.3.一般地,如果事件A1,A2,…,An 中的任何两个都是互斥事件,就说事件A1,A2,…,An 彼此互斥.从集合的角度看,几个事件彼此互斥是指由各个事件所含的结果组成的集合彼此没有公共元素,即两两交集都是空集.一般地,如果事件A 1,A 2,…,A n 两两互斥,则P (A 1+A 2+…+A n )=P (A 1)+P (A 2)◆ 教学重难点 ◆ ◆ 课前准备◆◆ 教学过程+…+P (A n ).二、对立事件对立事件的定义:两个互斥事件必有一个发生,则称这两个事件为对立事件.事件A 的对立事件记为A .从集合的角度看,由事件A 的对立事件A 所含的结果组成的集合是全集中由事件A 所含的结果组成的集合的补集.此时,事件A 和它对立事件的交集为空集,而并集为全集.若对立事件A 与必有一个发生,则A+是必然事件,从而P (A )+P ()= P (A+)=1 .由此我们可以得到一个重要公式: P ()= 1- P (A ).由此可知,当从正面求一个事件的概率比较困难时,可以通过求其对立事件的概率来求解.例如,一枚硬币连掷3次,则出现正面的概率是多少?此题若从正面分析则有以下三种情况:三次都是正面;二次正面一次反面;一次正面二次反面.虽然它们是互斥事件,可以利用互斥事件有一个发生的概率公式来求解,但解题比较复杂.如果考虑其反面利用对立事件的概率来求解,则简单得多.解:出现正面的对立事件是出现的三次都是反面,由于三次都是反面的概率为 ,则出现正面的概率为1- =.三、互斥事件和对立事件的区别与联系两个事件若对立则必然互斥,且必有一个事件发生.因此,两个事件是对立事件需满足两个条件:①互斥,②两个事件中必有一个发生.两个事件若是对立事件则一定是互斥事件,但若是互斥事件则不一定是对立事件.四、互斥事件有一个发生的概率的求解步骤(1)确定这些事件是互斥事件;(2)这些事件有一个发生;(3)分别求每一个事件的概率,再相加.前两条是使用互斥事件有一个发生的概率的概率和公式的前提条件,如果不符合这一点就不能用概率和公式.三、布置作业 A A A A AP143【练习1】,P147【练习2】◆教学反思略。

2014高中数学 第九课时 §3.2.3互斥事件(二)教案 北师大版必修3

2014高中数学 第九课时 §3.2.3互斥事件(二)教案 北师大版必修3

第九课时§3.2.3互斥事件(二)课题 3.1.3 概率的基本性质三维教学目标知识与能力(1)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念;(2)概率的几个基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+P(B);3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+ P(B)=1,于是有P(A)=1—P(B)(AB层)正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系.过程与方法通过事件的关系、运算与集合的关系、运算进行类比学习,培养学生的类化与归纳的数学思想。

情感、态度、价值观通过数学活动,了解教学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的情趣。

教学内容分析教学重点概率的加法公式及其应用,教学难点事件的关系与运算。

教学流程与教学内容1、创设情境:(1)集合有相等、包含关系,如{1,3}={3,1},{2,4}С{2,3,4,5}等;(2)在掷骰子试验中,可以定义许多事件如:C1={出现1点},C2={出现2点},C3={出现1点或2点},C4={出现的点数为偶数}……师生共同讨论:观察上例,类比集合与集合的关系、运算,你能发现事件的关系与运算吗?2、基本概念:(1)事件的包含、并事件、交事件、相等事件见课本P115;(2)若A∩B为不可能事件,即A∩B=ф,那么称事件A与事件B互斥;(3)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件;(4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B).3、 例题分析:例1 一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?事件A :命中环数大于7环; 事件B :命中环数为10环;事件C :命中环数小于6环; 事件D :命中环数为6、7、8、9、10环.分析:要判断所给事件是对立还是互斥,首先将两个概念的联系与区别弄清楚,互斥事件是指不可能同时发生的两事件,而对立事件是建立在互斥事件的基础上,两个事件中一个不发生,另一个必发生。

3.2.3互斥事件教案(北师大版必修3)

3.2.3互斥事件教案(北师大版必修3)

2.3互斥事件●三维目标1.知识与技能.知识与技能使学生理解互斥事件和对立事件的概念;能利用公式解决简单的概率问题.使学生理解互斥事件和对立事件的概念;能利用公式解决简单的概率问题.2.过程与方法.过程与方法通过知识迁移,与集合中相关概念的对比;培养学生用对立统一思想分析问题并解决问题.题.3.情感、态度与价值观.情感、态度与价值观通过学生独立思考、分组讨论,培养学生自主学习的习惯、与人合作的团队精神.通过学生独立思考、分组讨论,培养学生自主学习的习惯、与人合作的团队精神. ●重点难点重点:理解互斥事件和对立事件概念的区别和联系.重点:理解互斥事件和对立事件概念的区别和联系.难点:灵活运用P (A +B )=P (A )+P (B )和P (A )=1-P (A )两个公式来解决问题.两个公式来解决问题.●教学建议以问题为主线,引导发现法,教师可以从学生生活掷骰子事件出发,逐步导出互斥事件,使学生既有兴趣又很轻松的理解互斥事件,为下面的学习打好理论基础.使学生既有兴趣又很轻松的理解互斥事件,为下面的学习打好理论基础.●教学流程创设情境,引入新课,以课本上的掷骰子为例探究各事件间的关系⇒总结出互斥和对立事件的概念并展现它们之间的区别与联系,给出概率加法公式⇒通过例1及变式训练,使学生明确,互斥和对立事件的关系掌握判断事件的方法⇒通过例2及变式训练,使学生掌握互斥事件概率的运算⇒通过对互斥事件和对立事件的理解完成例3及变式训练进一步体会概率加法公式⇒归纳总结,知识升华,使学生从整体上把握本节知识⇒完成当堂双基达标,巩固本节知识并进行反馈、矫正固本节知识并进行反馈、矫正课标解读 1.了解互斥事件的概念及概率加法公式(重点).2.掌握对立事件的概率及概率的计算公式(重点). 3.能利用互斥事件、对立事件的概率计算公式解决复杂的古典概率的计算问题(难点).4.理解互斥事件和对立事件的区别和联系.互斥事件 【问题导思】在掷骰子试验中,我们用集合形式定义如下事件:C 1={出现1点},C 2={出现2点},C 3={出现3点},C 4={出现4点},C 5={出现5点},C 6={出现6点},D 1={出现的点数不大于1},D 2={出现的点数大于4},D 3={出现的点数小于6},E ={出现的点数小于7},F ={出现的点数大于6},G ={出现的点数为偶数},H ={出现的点数为奇数}.1.事件D 3与事件F 能同时发生吗?能同时发生吗?【提示】 不能.2.如果事件“C 2发生或C 4发生或C 6发生”,就意味着哪个事件发生?发生”,就意味着哪个事件发生?【提示】 意味着事件G 发生.3.事件D 2与事件H 同时发生,意味着哪个事件发生?同时发生,意味着哪个事件发生?【提示】C5发生.1.互斥事件的定义在一个随机试验中,我们把一次试验中不能同时发生的两个事件A和B称作互斥事件.2.事件A与B至少有一个发生给定事件A,B,我们规定A+B为一个事件,事件A+B发生是指事件A和事件B至少有一个发生.少有一个发生.根据上述定义推广可得:事件A1+A2+…+A n表示在一次随机试验中,事件A1,事件A2,…,事件A n中至少有一个发生.中至少有一个发生.3.互斥事件的概率加法公式一般地,如果事件A,B互斥,那么事件A+B发生(即A,B中至少有一个发生)的概率等于事件A,B分别发生的概率的和,即P(A+B)=P(A)+P(B).这个公式称为互斥事件的概率加法公式.概率加法公式.如果事件A1,A2,…,A n彼此互斥,那么事件A1+A2+…+A n发生(即A1,A2,…,A n中至少有一个发生)的概率,等于这n个事件分别发生的概率的和,即P(A1+A2+…+A_n)=P(A1)+P(A2)+…+P(A n).对立事件及其概率的求法公式【问题导思】在知识1的问题导思中,事件G与事件H能同时发生吗?这两个事件有什么关系?能同时发生吗?这两个事件有什么关系?【提示】事件G与事件H不能同时发生,但必有一个发生.1.定义在每一次试验中,如果两个事件A与B不能同时发生,并且一定有一个发生,那么事件A与B称作是对立事件,事件A的对立事件记为A. 2.性质P(A)+P(A)=1,即P(A)=1-P(A).互斥事件与对立事件的判断从装有除颜色外其他均相同的5只白球和5只红球的袋中任意取出3只球,判断下列每对事件是否为互斥事件,是否为对立事件.断下列每对事件是否为互斥事件,是否为对立事件.(1)“取出2只红球和1只白球”与“取出1只红球和2只白球”;只白球”;(2)“取出3只红球”与“取出3只球中至少有1只白球”;只白球”;(3)“取出3只红球”与“取出3只球中至少有1只红球.”只红球.”【思路探究】根据对立事件和互斥事件的定义来判断.【自主解答】从袋中任意取出3只球有4种结果:3只白球;2只白球1只红球;1只白球2只红球;3只红球.(1)因为“取出2只红球1只白球”与“取出1只红球2只白球”不能同时发生,所以它们是互斥事件.当“取出3只白球”时,它们都没有发生,所以它们不是对立事件.(2)“取出3只球中至少有1只白球”包括三种结果:1只白球2只红球,2只白球1只红球,3只白球.因此它与“取出3只红球”不能同时发生,它们是互斥事件,且它们中必有一个发生,所以又是对立事件.(3)当取出的3只球都是红球时,它们同时发生,所以它们不是互斥事件,也不是对立事件.1.要判断两个事件是不是互斥事件,只需找出各个事件包含的所有结果,看它们之间能不能同时发生,若不能同时发生,能不能同时发生,若不能同时发生,则为互斥事件,在互斥的前提下,则为互斥事件,在互斥的前提下,则为互斥事件,在互斥的前提下,看两个事件中是否必看两个事件中是否必有一个发生,可判断是否为对立事件.2.判断事件的关系,尤其是互斥事件和对立事件在求概率时非常重要,它直接决定了求解是否正确.应注意互斥事件不能同时发生,应注意互斥事件不能同时发生,对立事件除不能同时发生外,对立事件除不能同时发生外,对立事件除不能同时发生外,其和事件为必其和事件为必然事件,这些也可类比集合进行理解.判断下列给出的每对事件,是否为互斥事件,是否为对立事件,并说明道理.判断下列给出的每对事件,是否为互斥事件,是否为对立事件,并说明道理.从40张扑克牌(红桃、黑桃、方块、梅花点数为1~10各10张)中,任取一张.中,任取一张.(1)“抽出红桃”与“抽出黑桃”;“抽出红桃”与“抽出黑桃”; (2)“抽出红色牌”与“抽出黑色牌”;“抽出红色牌”与“抽出黑色牌”;(3)“抽出牌点数为5的倍数”与“抽出的牌点数大于9”.”.【解】 (1)是互斥事件,不是对立事件.道理是:从40张扑克牌中任意抽取1张,“抽出红桃”和“抽出黑桃”是不可能同时发生的,所以是互斥事件,同时,不能保证其中必有一个发生,这是由于还可能抽出“方块”或者“梅花”,因此,二者不是对立事件.(2)是对立事件.道理是:从40张扑克牌中任意抽取1张,“抽出红色牌”与“抽出黑色牌”两个事件不可能同时发生,且其中必有一个发生,所以它们是对立事件,(3)不是互斥事件,也不是对立事件.道理是:从40张扑克牌中任意抽取1张.“抽出的牌的点数为5的倍数”与“抽出的牌的点数大于9”这两个事件可能同时发生.因此,二者不是互斥事件,当然不可能是对立事件.互斥事件的概率盒子里装有除颜色外其他均相同的各色球共12个,其中5红、4黑、2白、1绿,从中任取1球,记事件A 为“取出1个红球”,事件B 为“取出1个黑球”,事件C为“取出1个白球”,事件D 为“取出1个绿球”.已知P (A )=512,P (B )=13,P (C )=16,P (D )=112. 求(1)“取出1球为红球或黑球”的概率;球为红球或黑球”的概率;(2)“取出1球为红球或黑球或白球”的概率.球为红球或黑球或白球”的概率.【思路探究】 从12球中任取一球,取到红球、黑球、白球互斥,所以可用互斥事件概率的加法公式求解.【自主解答】 法一 (1)“取出1球为红球或黑球”的概率为P (A +B )=P (A )+P (B )=512+13=34. (2)“取出1球为红球或黑球或白球”的概率为P (A +B +C )=P (A )+P (B )+P (C )=512+13+16=1112. 法二 (1)“取出1球为红球或黑球”的对立事件为“取出1球为白球或绿球”,即A +B 的对立事件为C +D ,故“取出1球为红球或黑球”的概率为 P (A +B )=1-P (C +D )=1-(P (C )+P (D ))=1-(16+112)=34. (2)“取出1球为红球或黑球或白球”的对立事件为“取出1球为绿球”,即A +B +C 的对立事件为D ,所以“取出1球为红球或黑球或白球”的概率为P (A +B +C )=1-P (D )=1-112=1112. 1.解决本题的关键是明确取到不同颜色球不可能同时发生,即互斥.由此可知用概率加法公式.2.若随机试验中,涉及多个事件,应先分析判断这几个事件是否互斥(或对立),若是,可利用互斥事件概率的加法公式求解.当某一事件包含几个互斥的事件时,求该事件发生的概率也有上述规律.在数学考试中,小明的成绩在90分以上(含90分)的概率是0.18,在80分~89分的概率是0.51,在70分~79分的概率是0.15,在60分~69分的概率是0.09,在60分以下的概率是0.07. (1)求小明在数学考试中,取得80分以上(含80分)成绩的概率;成绩的概率;(2)求小明考试及格的概率.求小明考试及格的概率.【解】分别记小明的成绩“在90分以上”、“在80分~89分”、“在70分~79分”、“在60分~69分”为事件事件B、C、D、E,这四个事件彼此互斥.(1)小明的成绩在80分以上的概率是P(B+C)=P(B)+P(C)=0.18+0.51=0.69. (2)小明考试及格的概率是P(B+C+D+E)=P(B)+P(C)+P(D)+P(E)=0.18+0.51+0.15+0.09=0.93. 对立事件的概率某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21,0.23,0.25,0.28,计算这个射手在一次射击中:,计算这个射手在一次射击中:(1)射中10环或7环的概率;环的概率;(2)射中7环以下的概率.环以下的概率.【思路探究】求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的和;二是先去求其对立事件的概率,进而再求所求事件的概率.【自主解答】(1)记“射中10环”为事件A,记“射中7环”为事件B.由于在一次射击中,A与B不可能同时发生,故A与B是互斥事件.“射中10环或7环”的事件为A+B,故P(A+B)=P(A)+P(B)=0.21+0.28=0.49. (2)记“射中7环以下”为事件E,E的对立事件为E,则事件E为“射中7环或8环或9环或10环”.由“射中7环”、“射中8环”、“射中9环”、“射中10环”是彼此互斥事件,故P(E)=0.21+0.23+0.25+0.28=0.97,从而P(E)=1-P(E)=1-0.97=0.03. 所以射中10环或7环的概率为0.49,射中7环以下的概率为0.03. 1.必须分析清楚事件A,B是否互斥,只有互斥事件才可以用概率的加法公式.2.当直接求某一事件的概率较为复杂或根本无法求时,可先转化为求其对立事件的概率.经统计,在某储蓄所一个营业窗口等候人数及相应概率如下:经统计,在某储蓄所一个营业窗口等候人数及相应概率如下:排队人数012345人及以上人及以上概率0.10.160.30.30.10.04 (1)至多2人排队等候的概率是多少?人排队等候的概率是多少?(2)至少1人排队等候的概率是多少?人排队等候的概率是多少?【解】记事件“在窗口等候的人数为0,1,2,3,4,5人及以上”的事件分别为A,B,C,D,E,F,则它们彼此互斥.(1)至多2人排队等候的概率是:法一P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56. 法二P(A+B+C)=1-P(D+E+F)=0.56. (2)至少1人排队等候的概率是:对互斥事件概念理解有误点的概率都是16,记事件=1,=1,所以=1+1+1+1=2. 互斥事件和对立事件都是针对两个事件而言的,它们两者之间既有区别又有联系.一次试验中,两个互斥事件有可能都不发生,一次试验中,两个互斥事件有可能都不发生,也可能有一个发生,也可能有一个发生,也可能有一个发生,但不可能两个都发生;而但不可能两个都发生;而两个对立事件必有一个发生,但是不可能两个事件同时发生,也不可能两个事件都不发生.所以两个事件互斥,它们未必对立;反之两个事件对立,它们一定互斥.以两个事件互斥,它们未必对立;反之两个事件对立,它们一定互斥. 2.互斥事件的概率加法公式是一个很基本的计算公式,解题时要在具体的情景中判断各事件间是否互斥,只有互斥事件才能用概率加法公式,只有互斥事件才能用概率加法公式,如果事件不互斥,如果事件不互斥,那么公式就不能使用!使用!3.求复杂事件的概率通常有两种方法.求复杂事件的概率通常有两种方法方法一:将所求事件转化成彼此互斥事件的并事件;方法一:将所求事件转化成彼此互斥事件的并事件;方法二:先求其对立事件的概率,再求所求事件的概率.方法二:先求其对立事件的概率,再求所求事件的概率.如果采用方法一,一定要将事件分拆成若干互斥的事件,一定要将事件分拆成若干互斥的事件,不能重复和遗漏;不能重复和遗漏;如果采用方法二,一定要找准其对立事件,否则容易出现错误.法二,一定要找准其对立事件,否则容易出现错误.1.事件A 与B 是对立事件,且P (A )=0.6,则P (B )等于( ) A .0.4B .0.6C .0.5D .1 【解析】 由对立事件的性质知P (A )+P (B )=1,∴P (B )=1-0.6=0.4. 【答案】 A 2.某产品分甲、乙、丙三级,若生产中出现乙级品的概率为0.03,丙级品的概率为0.01,则对该产品抽查一件抽到甲级品的概率为( ) A .0.09 B .0.97 C .0.99 D .0.96 【解析】 产品共分三个等级,出现乙级品和丙级品的概率分别为0.03和0.01,则出现甲级品的概率为1-0.03-0.01=0.96. 【答案】 D 3.从一箱苹果中任取一个,从一箱苹果中任取一个,如果其重量小于如果其重量小于200克的概率为0.2,重量在[200,300]克的概率为0.5,那么重量超过300克的概率为( ) A .0.2 B .0.3 C .0.7 D .0.8 【解析】 设“重量小于200克”为事件A ,“重量在[200,300]克之间”为事件B ,“重量超过300克”为事件C ,则P (C )=1-P (A )-P (B )=1-0.2-0.5=0.3.故选B. 【答案】 B 4.甲、乙两人下棋,和棋的概率为12,乙获胜的概率为13,求:,求: (1)甲获胜的概率;(2)甲不输的概率.甲不输的概率. 【解】 甲、乙两人下棋,其结果有甲胜、和棋、乙胜三种,它们是互斥事件,“甲获胜”可看做是“和棋或乙胜”的对立事件.“甲不输”可看做是“甲胜”“和棋”这两个互斥事件的和事件,亦可看做“乙胜”的对立事件.于是,(1)“甲获胜”是“和棋或乙胜”的对立事件,所以“甲获胜”的概率P =1-12-13=16,即甲获胜的概率是16. (2)法一 设事件A 为“甲不输”,它可看做是“甲胜”“和棋”这两个互斥事件的和事件,所以P (A )=16+12=23. -1=2,一、选择题A.1B.3C.C.33D.99,故选-1=9,故选A.5 B.1 C.1 D.1 1;②第一次掷得正面,第二次1;③第一次掷得反面,第二次掷得正面,其概率为1的概率为1+1+1=5. 上述事件中,对立事件是( ) A .①.①B .②④.②④C .③.③D .①③.①③ 【解析】 互为对立事件的两个事件既不能同时发生又必有一个发生.故③是符合要求的.【答案】 C 二、解答题6.从一副混合后的扑克牌(52张)中随机抽取1张,事件A 为“抽得红桃K ”,事件B 为“抽得黑桃”,则概率P (A +B )=________. 【解析】 一副扑克牌中有1张红桃K,13张黑桃,事件A 与事件B 互斥,∴P (A +B )=P (A )+P (B )=152+1352=72626. . 【答案】 726图3-2-2 7.如图3-2-2所示,靶子由一个中心圆面Ⅰ和两个同心圆环Ⅱ、Ⅲ构成,射手命中Ⅰ、Ⅱ、Ⅲ的概率分别为0.35、0.30、0.25,则不命中靶的概率是________.【解析】 1-0.35-0.30-0.25=0.1. 【答案】 0.1 8.(2013·沈阳高一检测)一个口袋内装有大小相同的红球、白球和黑球,从中摸出一个球,摸出红球或白球的概率为0.58,摸出红球或黑球的概率为0.62,摸出红球的概率为________.【解析】 由题意知A =“摸出红球或白球”与B =“摸出黑球”是对立事件,又P (A )=0.58,∴P (B )=1-P (A )=0.42,又C =“摸出红球或黑球”与D =“摸出白球”为对立事件,P (C )=0.62,∴P (D )=0.38.设事件E =“摸出红球”,则P (E )=1-P (B ∪D ) =1-P (B )-P (D )=1-0.42-0.38=0.2. 【答案】 0.2 三、解答题9.从4名男生和2名女生中任选3人参加演讲比赛.人参加演讲比赛.(1)求所选3人中恰有1名女生的概率;名女生的概率;(2)求所选3人中至少有1名女生的概率.名女生的概率. 【解】 4名男生记为1,2,3,4,两名女生记为5,6,从这6个人中选3个人的方法有(1,2,3),(1,2,4),(1,2,5),(1,2,6),(2,3,4),(2,3,5),(2,3,6),(3,4,5),(3,4,6),(4,5,6),(1,3,4),(1,3,5),(1,3,6),(1,4,5),(1,4,6),(1,5,6),(2,4,5),(2,4,6),(2,5,6),(3,5,6)共20种方法.(1)所选3人中恰好有1名女生的情况有(1,2,5),(1,2,6),(2,3,5),(2,3,6),(3,4,5),(3,4,6),(1,3,5),(1,3,6),(1,4,5),(1,4,6),(2,4,5),(2,4,6)共12种方法.故所选3人中恰好有1名女生的概率为1220=35. (2)所选3人中恰好有2名女生的情况有(1,5,6),(2,5,6),(3,5,6),(4,5,6),共4种情况,则所选3人中至少有1名女生的情况共有12+4=16种.所以,所选3人中至少有1名女生的概率为1620=45(1-15=45). 10.某商场举行购物抽奖促销活动,规定每位顾客从装有编号为0,1,2,3四个相同小球的抽奖箱中,每次取出一球记下编号后放回,每次取出一球记下编号后放回,连续取两次,连续取两次,若取出的两个小球号码相加之和等于6,则中一等奖,等于5中二等奖,等于4或3中三等奖.中三等奖.(1)求中三等奖的概率;(2)求中奖的概率.求中奖的概率.【解】 设“中三等奖”为事件A ,“中奖”为事件B ,从四个小球中有放回地取两球有:(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3),共有16种不同的结果.(1)取出的两个小球号码相加之和等于4或3的取法有:(1,3),(2,2),(3,1),(0,3),(1,2),(2,1)(3,0),有7种结果,则中三等奖的概率为P (A )=716. (2)由(1)知两个小球号码相加之和等于3或4的取法有7种;两个小球号码相加之和等于5的取法有2种:(2,3),(3,2).两个小球号码相加之和等于6的取法有1种:(3,3).则中奖的概率为P (B )=7+2+116=58. 11.(2013·湖南高考) 图3-2-3 某人在如图3-2-3所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y (单位:kg)与它的“相近”作物株数X 之间的关系如下表所示:之间的关系如下表所示:X 1 2 3 4 Y 51 48 45 42 这里,两株作物“相近”是指它们之间的直线距离不超过1米.米.(1)完成下表,并求所种作物的平均年收获量:Y 51 48 45 42 频数4 (2)在所种作物中随机选取一株,求它的年收获量至少为48 kg 的概率.的概率.【解】 (1)所种作物的总株数为1+2+3+4+5=15,其中“相近”作物株数为1的作物有2株,“相近”作物株数为2的作物有4株,“相近”作物株数为3的作物有6株,“相近”作物株数为4的作物有3株,列表如下:Y 51 48 45 42 频数2 4 6 3 所种作物的平均年收获量为51×2+48×4+45×6+42×315=102+192+270+12615=69015=46. (2)由(1)知,P (Y =51)=215,P (Y =48)=415.故在所种作物中随机选取一株,它的年收获量至少为48 kg 的概率为P (Y ≥48)=P (Y =51)+P (Y =48)=215+415=25. (教师用书独具) 假设向三个相邻的军火库投掷一枚炸弹,炸中第一个军火库的概率为个小球,分别为红球、黑球、黄球、绿球,从中任取率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512,试求得到黑球、黄球、=14,=16,=14. 所以,得到黑球的概率为1,得到黄球的概率为1,得到绿球的概率为1. 。

北师大版高中必修32.3互斥事件教学设计

北师大版高中必修32.3互斥事件教学设计

北师大版高中必修32.3互斥事件教学设计
一、教学目标
•理解互斥事件及其概率公式的基本概念;
•掌握互斥事件的概率计算方法;
•培养学生分析问题和解决问题的能力。

二、教学重点和难点
教学重点
•互斥事件的基本概念;
•互斥事件的概率计算方法。

教学难点
•互斥事件的概率计算方法。

三、教学过程设计
第一步:引入
教师通过展示某个事件发生的概率,引出互斥事件的概率计算方法,激发学生的兴趣和好奇心。

第二步:讲解
•互斥事件的基本概念;
•互斥事件的概率计算方法。

第三步:概率计算方法的练习
将学生分成小组,在教师指导下进行互斥事件的概率计算方法的练习。

第四步:现实应用探究
教师引导学生探究互斥事件在现实生活中的应用,例如红绿灯的亮灭、上下楼梯的方式等,让学生深刻理解互斥事件的实际应用。

第五步:总结
教师带领学生总结所学内容,回答学生的问题,解决疑惑。

四、教学小贴士
•在解题过程中,要注意把握互斥事件的特征,及时求出概率。

•在应用中,要注意区分互斥事件和不互斥事件,正确应用互斥事件的概率计算方法。

五、教学反思
通过这节课的教学,学生更加深入地理解了互斥事件及其概率公式的基本概念和计算方法,培养了分析问题和解决问题的能力。

但是,在练习中发现部分学生没有掌握好互斥事件的计算方法,需要在后续教学中加强练习。

同时,应用探究中的案例可以再丰富一些,让学生更好的理解互斥事件在现实生活中的应用。

高中数学必修三北师大版 3.2.3 互斥事件 学案(Word版含答案)

高中数学必修三北师大版 3.2.3 互斥事件 学案(Word版含答案)

2.3 互斥事件预习课本P138~146,思考并完成以下问题(1)互斥事件的定义是什么?(2)对立事件的定义是什么?(3)互斥事件与对立事件有什么区别和联系?(4)互斥事件的概率加法公式是什么?[新知初探]1.互斥事件(1)定义:在一个试验中,我们把一次试验下不能同时发生的两个事件A 与B 称作互斥事件.(2)规定:事件A +B 发生是指事件A 和事件B 至少有一个发生.(3)公式:在一次随机试验中,如果随机事件A 和B 是互斥事件,那么有P (A +B )=P (A )+P (B ).(4)公式的推广:如果随机事件A 1,A 2,…,A n 中任意两个是互斥事件,那么有P (A 1+A 2+…+A n )=P (A 1)+P (A 2)+…+P (A n ).[点睛] (1)如果事件A 与B 是互斥事件,那么A 与B 两事件同时发生的概率为0. (2)从集合的角度看,记事件A 所含结果组成的集合为集合A ,事件B 所含结果组成的集合为集合B ,事件A 与事件B 互斥,则集合A 与集合B 的交集是空集,如图所示.2.对立事件(1)定义:在一次试验中,如果两个事件A 与B 不能同时发生,并且一定有一个发生,那么事件A 与B 称作对立事件,事件A 的对立事件记为A -.(2)性质:P (A )+P (A -)=1,即P (A )=1-P (A -).[点睛] 两个事件是对立事件,它们也一定是互斥事件;两个事件为互斥事件,它们未必是对立事件.[小试身手]1.判断正误.(正确的打“√”,错误的打“×”)(1)对立事件一定是互斥事件.( )(2)A ,B 为两个事件,则P (A +B )=P (A )+P (B ).( )(3)若事件A ,B ,C 两两互斥,则P (A )+P (B )+P (C )=1.( )(4)事件A ,B 满足P (A )+P (B )=1,则A ,B 是对立事件.( )答案:(1)√ (2)× (3)× (4)×2.一人在打靶中连续射击两次,事件“至少有一次中靶”的互斥事件是( )A .至多有一次中靶B .两次都中靶C .两次都不中靶D .只有一次中靶解析:选C 连续射击两次的结果有四种:①两次都中靶;②两次都不中靶;③第一次中靶,第二次没有中靶;④第一次没有中靶,第二次中靶.“至少有一次中靶”包含①③④三种结果,因此互斥事件是②.3.抽查10件产品,记事件A 为“至少有2件次品”,则A 的对立事件为( )A .至多有2件次品B .至多有1件次品C .至多有2件正品D .至少有2件正品解析:选B 至少有2件次品包含2,3,4,5,6,7,8,9,10件.共9种结果,故它的对立事件为含有1或0件次品,即至多有1件次品.4.甲乙两人下围棋比赛,已知比赛中甲获胜的概率为0.45,两人平局的概率为0.1,则甲输的概率为________.解析:记事件A =“甲胜乙”,B =“甲、乙战平”,C =“甲不输”,则C =A +B ,而A ,B 是互斥事件,故P (C )=P (A +B )=P (A )+P (B )=0.55.由于甲输与不输为对立事件,故甲输的概率为:1-P (C )=1-0.55=0.45.答案:0.45[典例] B 为“至少订一种报”,事件C为“至多订一种报”,事件D为“不订甲报”,事件E为“一种报也不订”.判断下列事件是否是互斥事件,如果是,判断它们是否是对立事件.(1)A与C;(2)B与E;(3)B与D;(4)B与C;(5)C与E.[解](1)由于事件C“至多订一种报”中可能只订甲报,即事件A与事件C有可能同时发生,故A与C不是互斥事件.(2)事件B“至少订一种报”与事件E“一种报也不订”是不可能同时发生的,故事件B与E是互斥事件.由于事件B和事件E必有一个发生,故B与E也是对立事件.(3)事件B“至少订一种报”中有可能只订乙报,即有可能不订甲报,也就是说事件B发生,事件D也可能发生,故B与D不是互斥事件.(4)事件B“至少订一种报”中有3种可能:“只订甲报”“只订乙报”“订甲、乙两种报”.事件C“至多订一种报”中有3种可能:“一种报也不订”“只订甲报”“只订乙报”.即事件B与事件C可能同时发生,故B与C不是互斥事件.(5)由(4)的分析可知,事件E“一种报也不订”仅仅是事件C的一种可能,事件C与事件E可能同时发生,故C与E不是互斥事件.判断两个事件是否为互斥事件,主要看它们在一次试验中能否同时发生,若不能同时发生,则这两个事件是互斥事件,若能同时发生,则这两个事件不是互斥事件;判断两个事件是否为对立事件,主要看在一次试验中这两个事件是否同时满足两个条件:一是不能同时发生;二是必有一个发生.这两个条件同时成立,那么这两个事件是对立事件,只要有一个条件不成立,那么这两个事件就不是对立事件.[活学活用]某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛.判断下列每对事件是不是互斥事件,如果是,再判断它们是不是对立事件.(1)恰有1名男生与恰有2名男生;(2)至少1名男生与全是男生;(3)至少1名男生与全是女生;(4)至少1名男生与至少1名女生.解:从3名男生和2名女生中任选2名同学有3类结果;两男或两女或一男一女.(1)因为恰有1名男生与恰有2名男生不可能同时发生,所以它们是互斥事件;当恰有2名女生时,它们都没有发生,所以它们不是对立事件.(2)当恰有2名男生时,至少1名男生与全是男生同时发生,所以它们不是互斥事件.(3)因为至少1名男生与全是女生不可能同时发生,所以它们是互斥事件;由于它们必有一个发生,所以它们是对立事件.(4)当选出的是1名男生1名女生时,至少1名男生与至少1名女生同时发生,所以它们不是互斥事件.互斥事件与对立事件概率公式的应用[典例]0.24,0.28,0.19,0.16,0.13.计算这个射手在一次射击中:(1)射中10环或9环的概率;(2)至少射中7环的概率;(3)射中8环以下的概率.[解]“射中10环”“射中9环”“射中8环”“射中7环”“射中7环以下”是彼此互斥的,可运用互斥事件的概率加法公式求解.记“射中10环”“射中9环”“射中8环”“射中7环”“射中7环以下”的事件分别为A,B,C,D,E,则(1)P(A+B)=P(A)+P(B)=0.24+0.28=0.52,所以射中10环或9环的概率为0.52.(2)法一:P(A+B+C+D)=P(A)+P(B)+P(C)+P(D)=0.24+0.28+0.19+0.16=0.87,所以至少射中7环的概率为0.87.法二:事件“至少射中7环”的对立事件是“射中7环以下”,其概率为0.13,则至少射中7环的概率为1-0.13=0.87.(3)P(D+E)=P(D)+P(E)=0.16+0.13=0.29,所以射中8环以下的概率为0.29.运用互斥事件的概率加法公式解题的一般步骤(1)确定各事件彼此互斥;(2)求各事件分别发生的概率,再求其和.值得注意的是:(1)是公式使用的前提条件,不符合这点,是不能运用互斥事件的概率加法公式的.[活学活用]在数学考试中,小明的成绩在90分及90分以上的概率是0.18,在80~89分(包括80分与89分,下同)的概率是0.51,在70~79分的概率是0.15,在60~69分的概率是0.09,60分以下的概率是0.07.计算下列事件的概率:(1)小明在数学考试中取得80分及80分以上的成绩;(2)小明考试及格.解:分别记小明的成绩在“90分及90分以上”,在“80~89分”,在“70~79分”,在“60~69分”为事件B,C,D,E,显然这四个事件彼此互斥.(1)小明的成绩在80分及80分以上的概率是P(B+C)=P(B)+P(C)=0.18+0.51=0.69.(2)法一:小明考试及格的概率是P(B+C+D+E)=P(B)+P(C)+P(D)+P(E)=0.18+0.51+0.15+0.09=0.93.法二:因为小明考试不及格的概率是0.07,所以小明考试及格的概率是1-0.07=0.93.互斥、对立事件与古典概型的综合应用[典例中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.[解]记事件A1={任取1球为红球};A2={任取1球为黑球};A3={任取1球为白球};A4={任取1球为绿球},则P(A1)=512,P(A2)=412,P(A3)=212,P(A4)=112.根据题意知,事件A1,A2,A3,A4彼此互斥,法一:由互斥事件概率公式,得(1)取出1球为红球或黑球的概率为P(A1+A2)=P(A1)+P(A2)=512+412=34.(2)取出1球为红球或黑球或白球的概率为P(A1+A2+A3)=P(A1)+P(A2)+P(A3)=512+412+212=1112.法二:(1)故取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A1+A2的对立事件为A3+A4.所以取得1球为红球或黑球的概率为P(A1+A2)=1-P(A3+A4)=1-P(A3)-P(A4)=1-212-112=912=34.(2)A1+A2+A3的对立事件为A4,所以P(A1+A2+A3)=1-P(A4)=1-112=11 12.求复杂事件的概率通常有两种方法(1)将所求事件转化成几个彼此互斥的事件的和事件;(2)若将一个较复杂的事件转化为几个互斥事件的和事件时,需要分类太多,而其对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”,它常用来求“至少……”或“至多……”型事件的概率.。

高中数学第三章概率2.3互斥事件学案北师大版必修3(2021学年)

高中数学第三章概率2.3互斥事件学案北师大版必修3(2021学年)

2017-2018版高中数学第三章概率2.3互斥事件学案北师大版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018版高中数学第三章概率 2.3 互斥事件学案北师大版必修3)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018版高中数学第三章概率 2.3 互斥事件学案北师大版必修3的全部内容。

2.3互斥事件学习目标 1。

通过实例了解互斥事件、事件A+B及对立事件的概念和实际意义.2。

能根据互斥事件和对立事件的定义辨别一些事件是否互斥、对立.3.学会用互斥事件概率加法公式计算一些事件的概率.知识点一互斥事件思考从一副去掉大小王的扑克牌中任抽一张,“抽到红桃"与“抽到方块”能否同时发生?梳理在一个随机试验中,我们把一次试验下________________的两个事件A与B称作互斥事件.知识点二事件A+B思考在知识点一的思考中,“抽到红色牌”包括哪些情形?梳理给定事件A,B,我们规定A+B为一个事件,事件A+B发生是指事件A和事件B________________。

知识点三互斥事件概率加法公式思考一粒均匀的骰子抽一次,记事件A=“向上的点数大于2”;B=“向上的点数大于3”;则P(A+B)是否等于P(A)+P(B)?梳理互斥事件概率加法公式(1)在一个随机试验中,如果随机事件A和事件B是互斥事件,那么有P(A+B)=________________;(2)如果随机事件A1,A2,…,A n中任意两个是互斥事件,那么有P(A1+A2+…+A n)=________________________.知识点四对立事件思考从一副去掉大小王的扑克牌中任抽一张,记A=“抽到红色牌”;B=“抽到黑色牌”,则A,B 的关系与知识点一思考中两事件关系有何异同?梳理在同一次试验中,________________且________________的两个事件叫作互为对立事件,事件A的对立事件记作____;对立事件概率公式P(错误!)=______.类型一事件的关系与判断例1 判断下列各对事件是不是互斥事件,并说明理由.某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,其中:(1)“恰有1名男生”和“恰有2名男生”;(2)“至少有1名男生”和“至少有1名女生”;(3)“至少有1名男生”和“全是男生”;(4)“至少有1名男生"和“全是女生”.反思与感悟如果A、B是两个互斥事件,反映在集合上,是表示A、B这两个事件所含结果组成的集合彼此互不相交.跟踪训练1 一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?事件A :命中环数大于7环; 事件B :命中环数为10环;事件C :命中环数小于6环;事件D :命中环数为6、7、8、9、10环.类型二概率的加法公式例2 从一箱产品中随机地抽取一件产品,设事件A=“抽到的是一等品",事件B=“抽到的是二等品”,事件C=“抽到的是三等品”,且P(A)=0.7,P(B)=0。

高中数学第3章概率22.3互斥事件学案北师大版必修3

高中数学第3章概率22.3互斥事件学案北师大版必修3

2.3 互斥事件一、互斥事件1.互斥事件的定义在一个随机试验中,我们把一次试验下不能同时发生的两个事件A与B称作互斥事件.2.事件A与B至少有一个发生给定事件A,B,我们规定A+B为一个事件,事件A+B发生是指事件A和事件B至少有一个发生.根据上述定义推广可得:事件A1+A2+…+A n表示在一次随机试验中,事件A1,事件A2,…,事件A n中至少有一个发生.3.互斥事件的概率加法公式一般地,如果事件A,B互斥,那么事件A+B发生(即A,B中至少有一个发生)的概率等于事件A,B分别发生的概率的和,即P(A+B)=P(A)+P(B).这个公式称为互斥事件的概率加法公式.如果事件A1,A2,…,A n彼此互斥,那么事件A1+A2+…+A n发生(即A1,A2,…,A n中至少有一个发生)的概率,等于这n个事件分别发生的概率的和,即P(A1+A2+…+A_n)=P(A1)+P(A2)+…+P(A n).二、对立事件及其概率的求法公式1.定义在每一次试验中,如果两个事件A与B不能同时发生,并且一定有一个发生,那么事件A 与B称作是对立事件,事件A的对立事件记为A.2.性质P(A)+P(A)=1,即P(A)=1-P(A).思考:(1)在掷骰子的试验中,事件A={出现的点数为1},事件B={出现的点数为奇数},事件A与事件B应有怎样的关系?(2)判断两个事件是对立事件的条件是什么?[提示] (1)因为1为奇数,所以A⊆B.(2)①看两个事件是不是互斥事件;②看两个事件是否必有一个发生.若满足这两个条件,则是对立事件;否则不是.1.对同一事件来说,若事件A是必然事件,事件B是不可能事件,则事件A与事件B的关系是( )A.互斥不对立B.对立不互斥C.互斥且对立D.不互斥、不对立C[必然事件与不可能事件不可能同时发生,但必有一个发生,故事件A与事件B的关系是互斥且对立.]2.从一批产品中取出三件产品,设A={三件产品全不是次品},B={三件产品全是次品},C={三件产品有次品,但不全是次品},则下列结论哪个是正确的( )A.A与C互斥B.B与C互斥C.任何两个都互斥D.任何两个都不互斥C[由题意可知,事件A,B,C两两不可能同时发生,因此两两互斥.]3.从1,2,3,…,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.在上述事件中,是对立事件的是( )A.① B.②④C.③ D.①③C[从1~9中任取两个数,有以下三种情况.(1)两个均为奇数,(2)两个均为偶数,(3)一个奇数和一个偶数,故③为对立事件.]4.从几个数中任取实数x,若x∈(-∞,-1]的概率是0.3,x是负数的概率是0.5,则x∈(-1,0)的概率是________.0.2[设“x∈(-∞,-1]”为事件A,“x是负数”为事件B,“x∈(-1,0)”为事件C,由题意知,A,C为互斥事件,B=A+C,∴P(B)=P(A)+P(C),P(C)=P(B)-P(A)=0.5-0.3=0.2.]对事件是不是互斥事件,如果是,再判断它们是不是对立事件.(1)恰有1名男生与恰有2名男生;(2)至少1名男生与全是男生;(3)至少1名男生与全是女生.[解] 从3名男生和2名女生中任选2名同学有3类结果:两男或两女或一男一女.(1)因为恰有1名男生与恰有2名男生不可能同时发生,所以它们是互斥事件但不是对立事件;(2)当恰有2名男生时,至少1名男生与全是男生同时发生,所以它们不是互斥事件.(3)因为至少1名男生与全是女生不可能同时发生,所以它们是互斥事件,由于它们必有一个发生,所以它们是对立事件.1.判断两个事件是否为互斥事件,主要看它们能否同时发生.若能同时发生,则这两个事件不是互斥事件;若不能同时发生,则这两个事件是互斥事件.2.判断两个事件是否为对立事件,主要看是否同时满足两个条件:一是不能同时发生;二是必有一个发生.这两个条件同时成立,那么这两个事件是对立事件,只要有一个条件不成立,那么这两个事件就不是对立事件.1.(1)抛掷一枚骰子,记事件A为“落地时向上的数是奇数”,事件B为“落地时向上的数是偶数”,事件C为“落地时向上的数是2的倍数”,事件D为“落地时向上的数是2或4”,则下列每对事件是互斥事件但不是对立事件的是( )A.A与B B.B与CC.A与D D.B与D(2)一个均匀正方体玩具的各个面上分别标有数字1,2,3,4,5,6.将这个玩具向上抛掷1次,设事件A表示向上的一面出现奇数点,事件B表示向上的一面出现的点数不超过3,事件C表示向上的一面出现的点数不小于4,则下列结论正确的序号为________.①A与B是互斥而非对立事件;②A与B是对立事件;③B与C是互斥而非对立事件;④B与C是对立事件.(3)从装有2个红球和2个白球(球除颜色外其他均相同)的口袋中任取2个球,观察红球个数和白球个数,判断下列每对事件是不是互斥事件,如果是,再判断它们是不是对立事件.①至少有1个白球,都是白球;②至少有1个白球,至少有一个红球;③至少有1个白球,都是红球.[解] (1)C (2)④[(1)A与D互斥,但不对立.(2)一个均匀正方体玩具的各个面上分别标有数字1,2,3,4,5,6.将这个玩具向上抛掷1次,所得到的基本事件有6种:得到的点数为1点、得到的点数为2点、得到的点数为3点、得到的点数为4点、得到的点数为5点、得到的点数为6点.事件A 包含的结果有得到的点数为1点、得到的点数为3点、得到的点数为5点, 事件B 包含的结果有得到的点数为1点、得到的点数为2点、得到的点数为3点, 事件C 包含的结果有得到的点数为4点、得到的点数为5点、得到的点数为6点,所以B 与C 是对立事件.故填④.](3)解:①不是互斥事件.因为“至少有1个白球”即“1个白球1个红球或两个白球”和“都是白球”可以同时发生,所以不是互斥事件.②不是互斥事件.因为“至少有1个白球”即“1个白球1个红球或2个白球”,“至少有1个红球”即“1个红球1个白球或2个红球”,两个事件可以同时发生,故不是互斥事件.③是互斥事件也是对立事件.因为“至少有1个白球”和“都是红球”不可能同时发生,且必有一个发生,所以是互斥事件也是对立事件.【例2】 袋中有12个相同的小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512.(1)求得到黑球、得到黄球及得到绿球的概率; (2)求得到的小球既不是黑球也不是绿球的概率.[思路探究] 从12球中任取一球,取到红球、黑球、白球互斥,所以可用互斥事件概率的加法公式求解.[解] (1)从袋中任取一球,记事件A 为“得到红球”,B 为“得到黑球”,C 为“得到黄球”,D 为“得到绿球”,则事件A ,B ,C ,D 两两互斥.由已知P (A )=13,P (B +C )=P (B )+P (C )=512, P (C +D )=P (C )+P (D )=512,∴P (B +C +D )=1-P (A )=1-13=23.∵B 与C +D ,B +C 与D 也互斥,∴P (B )=P (B +C +D )-P (C +D )=23-512=14,P (D )=P (B +C +D )-P (B +C )=23-512=14,P (C )=1-P (A +B +D )=1-(P (A )+P (B )+P (D ))=1-⎝⎛⎭⎪⎫13+14+14=1-56=16.故得到黑球、得到黄球、得到绿球的概率分别是14,16,14.(2)∵得到的球既不是黑球也不是绿球, ∴得到的球是红球或黄球,即事件A +C , ∴P (A +C )=P (A )+P (C )=13+16=12,故得到的小球既不是黑球也不是绿球的概率为12.1.解决本题的关键是明确取到不同颜色的球不可能同时发生,即互斥.由此可知用概率加法公式求解.2.若随机试验中,涉及多个事件,应先分析判断这几个事件是否互斥(或对立),若是,可利用互斥事件概率的加法公式求解.当某一事件包含几个互斥的事件时,求该事件发生的概率也用上述规律.2.(1)一个口袋内装有大小相同的红球、白球和黑球,从中摸出一个球,摸出红球或白球的概率为0.58,摸出红球或黑球的概率为0.62,那么摸出红球的概率为( )A .0.42B .0.38C .0.2D .0.8(2)向三个相邻的军火库投一枚炸弹,炸中第一个军火库的概率为0.2,炸中第二个军火库的概率为0.12,炸中第三个军火库的概率为0.28,三个军火库中,只要炸中一个另两个也会发生爆炸,求军火库发生爆炸的概率.[解] (1)C [记分别摸一个球为红球、白球和黑球为事件A ,B ,C ,则A ,B ,C 为互斥事件,且A +B +C 为必然事件,由题意知P (A )+P (B )=0.58,P (A )+P (C )=0.62,P (A )+P (B )+P (C )=1,解得P (A )=0.2.](2)设A ,B ,C 分别表示炸中第一、第二及第三个军火库这三个事件,事件D 表示军火库爆炸,已知P (A )=0.2,P (B )=0.12,P (C )=0.28.又因为只投掷了一枚炸弹,故不可能炸中两个及以上军火库,所以A ,B ,C 是互斥事件,且D =A +B +C ,所以P (D )=P (A +B +C )=P (A )+P (B )+P (C )=0.2+0.12+0.28=0.6,即军火库发生爆炸的概率为0.6.1.若令A =“小明考试及格”,A =“小明考试不及格”,则事件A 与事件A 能不能同时发生,或者都不发生?为什么?提示:不可能同时发生,由于事件A 与A 是互斥事件,所以不可能同时发生,事件A 与A 也不可能都不发生,因为一次考试中,小明的成绩要么及格,要么不及格,二者必居其一,故A 与A 必有一个发生.2.将一枚质地均匀的骰子随机抛掷一次,观察骰子向上一面的点数.设U =“出现点数的全体”,A =“出现的点数是偶数”,B =“出现的点数是奇数”,则A ,U 是互斥事件吗?A ,B 是互斥事件吗?B ,U 是互斥事件吗?”提示:A ,U 不是互斥事件,A ,B 是互斥事件,B ,U 不是互斥事件.【例3】 一盒中装有各色球12个,其中5个红球、4个黑球、2个白球、1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率; (2)取出1球是红球或黑球或白球的概率.[思路探究] 先设出有关的互斥事件,然后把所求事件的概率转化为求某些互斥事件和的概率,另外也可考虑用古典概型以及对立事件来解决.[解] 法一:利用等可能事件求概率.(1)从12个球中任取1球得红球有5种取法,得黑球有4种取法,得红球或黑球共有5+4=9(种)不同取法,任取1球有12种取法.所以任取1球得红球或黑球的概率为P 1=912=34.(2)从12个球中任取一球得红球有5种取法,得黑球有4种取法,得白球有2种取法.从而得红球或黑球或白球的概率为P 2=5+4+212=1112.法二:利用互斥事件求概率.记事件A 1={任取1球为红球};A 2={任取1球为黑球};A 3={任取1球为白球};A 4={任取1球为绿球},则P (A 1)=512,P (A 2)=412,P (A 3)=212,P (A 4)=112.根据题意知,事件A 1,A 2,A 3,A 4彼此互斥,由互斥事件概率公式,得 (1)取出1球为红球或黑球的概率为P(A1+A2)=P(A1)+P(A2)=512+412=34.(2)取出1球为红球或黑球或白球的概率为P(A1+A2+A3)=P(A1)+P(A2)+P(A3)=512+412+212=1112.法三利用对立事件求概率的方法.(1)由法二知,取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A1+A2的对立事件为A3+A4.所以取得1球为红球或黑球的概率为P(A1+A2)=1-P(A3+A4)=1-P(A3)-P(A4)=1-212-112=912=34.(2)A1+A2+A3的对立事件为A4,所以P(A1+A2+A3)=1-P(A4)=1-112=1112.求复杂事件的概率通常有两种方法:(1)将所求事件转化成几个彼此互斥的事件的和事件;(2)若将一个较复杂的事件转化为几个互斥事件的和事件时,需要分类太多,而其对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”.它常用来求“至少…”或“至多…”型事件的概率.3.据统计,某储蓄所一个窗口等候的人数及相应概率如下表:(2)求至少2人排队等候的概率.[解] 记在窗口等候的人数为0,1,2分别为事件A,B,C,则A,B,C两两互斥.(1)至多2人排队等候的概率是P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)至少2人排队等候的反面是“等候人数为0或1”,而等候人数为0或1的概率为P(A +B)=P(A)+P(B)=0.1+0.16=0.26,故至少2人排队等候的概率为1-0.26=0.74.1.互斥事件和对立事件既有区别又有联系.互斥未必对立;对立一定互斥.2.互斥事件的概率加法公式是一个很基本的计算公式,解题时要在具体的情景中判断各事件间是否互斥,只有互斥事件才能用概率加法公式P(A+B)=P(A)+P(B).3.求复杂事件的概率通常有两种方法: (1)将所求事件转化成彼此互斥事件的并事件; (2)先求其对立事件的概率,再求所求事件的概率.1.思考辨析(1)已知事件A 与事件B ,则P (A +B )=P (A )+P (B ). ( )(2)若三个事件A ,B ,C 两两互斥,则P (A )+P (B )+P (C )=1.( ) (3)事件A 与事件B 互斥,则事件A 与B 互为对立事件.( ) (4)事件A 与事件B 若满足P (A )+P (B )=1,则A ,B 是对立事件.( )[解析] (1)×,A 与B 互斥时,P (A +B )=P (A )+P (B ). (2)×,P (A )+P (B )+P (C )的值不确定. (3)×,A 与B 不一定对立.(4)×,例如a ,b ,c ,d 四个球,选中每个球的概率相同,事件A 为选中a ,b 两个球,则P (A )=12;事件B 为选中b ,c 两个球,则P (B )=12,则P (A )+P (B )=1,但A ,B 不是对立事件.[答案] (1)× (2)× (3)× (4)×2.某产品共有三个等级,分别为一等品、二等品和不合格品.从一箱产品中随机抽取1件进行检测,若“抽到一等品”的概率为0.65,“抽到二等品”的概率为0.3,则“抽到不合格品”的概率为________.0.05 [“抽到一等品”与“抽到二等品”是互斥事件, 所以“抽到一等品或二等品”的概率为0.65+0.3=0.95,“抽到不合格品”与抽到“一等品或二等品”是对立事件,故其概率为1-0.95=0.05.] 3.中国乒乓球队甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为37,乙夺得冠军的概率为14,那么中国队夺得乒乓球单打冠军的概率为________. 1928[由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以由互斥事件概率的加法公式得,中国队夺得女子乒乓球单打冠军的概率为37+14=1928.]4.在数学考试中,小明的成绩在90分以上(含90分)的概率是0.18,在80分~89分的概率是0.51,在70分~79分的概率是0.15,在60分~69分的概率是0.09,在60分以下的概率是0.07.(1)求小明在数学考试中,取得80分以上(含80分)成绩的概率;(2)求小明考试及格的概率(60分才及格).[解] 分别记小明的成绩“在90分以上”“在80分~89分”“在70分~79分”“在60分~69分”为事件B,C,D,E,这四个事件彼此互斥.(1)小明的成绩在80分以上的概率是P(B+C)=P(B)+P(C)=0.18+0.51=0.69.(2)小明考试及格的概率是P(B+C+D+E)=P(B)+P(C)+P(D)+P(E)=0.18+0.51+0.15+0.09=0.93.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3互斥事件●三维目标1.知识与技能使学生理解互斥事件和对立事件的概念;能利用公式解决简单的概率问题.2.过程与方法通过知识迁移,与集合中相关概念的对比;培养学生用对立统一思想分析问题并解决问题.3.情感、态度与价值观通过学生独立思考、分组讨论,培养学生自主学习的习惯、与人合作的团队精神.●重点难点重点:理解互斥事件和对立事件概念的区别和联系.难点:灵活运用P(A+B)=P(A)+P(B)和P(A)=1-P(A)两个公式来解决问题.●教学建议以问题为主线,引导发现法,教师可以从学生生活掷骰子事件出发,逐步导出互斥事件,使学生既有兴趣又很轻松的理解互斥事件,为下面的学习打好理论基础.●教学流程创设情境,引入新课,以课本上的掷骰子为例探究各事件间的关系⇒总结出互斥和对立事件的概念并展现它们之间的区别与联系,给出概率加法公式⇒通过例1及变式训练,使学生明确,互斥和对立事件的关系掌握判断事件的方法⇒通过例2及变式训练,使学生掌握互斥事件概率的运算⇒通过对互斥事件和对立事件的理解完成例3及变式训练进一步体会概率加法公式⇒归纳总结,知识升华,使学生从整体上把握本节知识⇒完成当堂双基达标,巩固本节知识并进行反馈、矫正在掷骰子试验中,我们用集合形式定义如下事件:C1={出现1点},C2={出现2点},C3={出现3点},C4={出现4点},C5={出现5点},C6={出现6点},D1={出现的点数不大于1},D2={出现的点数大于4},D3={出现的点数小于6},E={出现的点数小于7},F={出现的点数大于6},G={出现的点数为偶数},H={出现的点数为奇数}.1.事件D3与事件F能同时发生吗?【提示】不能.2.如果事件“C2发生或C4发生或C6发生”,就意味着哪个事件发生?【提示】意味着事件G发生.3.事件D2与事件H同时发生,意味着哪个事件发生?【提示】C5发生.1.互斥事件的定义在一个随机试验中,我们把一次试验中不能同时发生的两个事件A和B称作互斥事件.2.事件A与B至少有一个发生给定事件A,B,我们规定A+B为一个事件,事件A+B发生是指事件A和事件B至少有一个发生.根据上述定义推广可得:事件A1+A2+…+A n表示在一次随机试验中,事件A1,事件A2,…,事件A n中至少有一个发生.一般地,如果事件A,B互斥,那么事件A+B发生(即A,B中至少有一个发生)的概率等于事件A,B分别发生的概率的和,即P(A+B)=P(A)+P(B).这个公式称为互斥事件的概率加法公式.如果事件A1,A2,…,A n彼此互斥,那么事件A1+A2+…+A n发生(即A1,A2,…,A n中至少有一个发生)的概率,等于这n个事件分别发生的概率的和,即P(A1+A2+…+A_n)=P(A1)+P(A2)+…+P(A n).在知识1的问题导思中,事件G与事件H能同时发生吗?这两个事件有什么关系?【提示】事件G与事件H不能同时发生,但必有一个发生.1.定义在每一次试验中,如果两个事件A与B不能同时发生,并且一定有一个发生,那么事件A与B称作是对立事件,事件A的对立事件记为A.2.性质P(A)+P(A)=1,即P(A)=1-P(A).判断下列每对事件是否为互斥事件,是否为对立事件.(1)“取出2只红球和1只白球”与“取出1只红球和2只白球”;(2)“取出3只红球”与“取出3只球中至少有1只白球”;(3)“取出3只红球”与“取出3只球中至少有1只红球.”【思路探究】根据对立事件和互斥事件的定义来判断.【自主解答】从袋中任意取出3只球有4种结果:3只白球;2只白球1只红球;1只白球2只红球;3只红球.(1)因为“取出2只红球1只白球”与“取出1只红球2只白球”不能同时发生,所以它们是互斥事件.当“取出3只白球”时,它们都没有发生,所以它们不是对立事件.(2)“取出3只球中至少有1只白球”包括三种结果:1只白球2只红球,2只白球1只红球,3只白球.因此它与“取出3只红球”不能同时发生,它们是互斥事件,且它们中必有一个发生,所以又是对立事件.(3)当取出的3只球都是红球时,它们同时发生,所以它们不是互斥事件,也不是对立事件.1.要判断两个事件是不是互斥事件,只需找出各个事件包含的所有结果,看它们之间能不能同时发生,若不能同时发生,则为互斥事件,在互斥的前提下,看两个事件中是否必有一个发生,可判断是否为对立事件.2.判断事件的关系,尤其是互斥事件和对立事件在求概率时非常重要,它直接决定了求解是否正确.应注意互斥事件不能同时发生,对立事件除不能同时发生外,其和事件为必然事件,这些也可类比集合进行理解.判断下列给出的每对事件,是否为互斥事件,是否为对立事件,并说明道理.从40张扑克牌(红桃、黑桃、方块、梅花点数为1~10各10张)中,任取一张.(1)“抽出红桃”与“抽出黑桃”;(2)“抽出红色牌”与“抽出黑色牌”;(3)“抽出牌点数为5的倍数”与“抽出的牌点数大于9”.【解】 (1)是互斥事件,不是对立事件.道理是:从40张扑克牌中任意抽取1张,“抽出红桃”和“抽出黑桃”是不可能同时发生的,所以是互斥事件,同时,不能保证其中必有一个发生,这是由于还可能抽出“方块”或者“梅花”,因此,二者不是对立事件.(2)是对立事件.道理是:从40张扑克牌中任意抽取1张,“抽出红色牌”与“抽出黑色牌”两个事件不可能同时发生,且其中必有一个发生,所以它们是对立事件,(3)不是互斥事件,也不是对立事件.道理是:从40张扑克牌中任意抽取1张.“抽出的牌的点数为5的倍数”与“抽出的牌的点数大于9”这两个事件可能同时发生.因此,二者不是互斥事件,当然不可能是对立事件.4黑、2白、1绿,从中任取1球,记事件A 为“取出1个红球”,事件B 为“取出1个黑球”,事件C为“取出1个白球”,事件D 为“取出1个绿球”.已知P (A )=512,P (B )=13,P (C )=16,P (D )=112. 求(1)“取出1球为红球或黑球”的概率;(2)“取出1球为红球或黑球或白球”的概率.【思路探究】 从12球中任取一球,取到红球、黑球、白球互斥,所以可用互斥事件概率的加法公式求解.【自主解答】 法一 (1)“取出1球为红球或黑球”的概率为P (A +B )=P (A )+P (B )=512+13=34. (2)“取出1球为红球或黑球或白球”的概率为P (A +B +C )=P (A )+P (B )+P (C )=512+13+16=1112. 法二 (1)“取出1球为红球或黑球”的对立事件为“取出1球为白球或绿球”,即A +B 的对立事件为C +D ,故“取出1球为红球或黑球”的概率为P (A +B )=1-P (C +D )=1-(P (C )+P (D ))=1-(16+112)=34. (2)“取出1球为红球或黑球或白球”的对立事件为“取出1球为绿球”,即A +B +C 的对立事件为D ,所以“取出1球为红球或黑球或白球”的概率为P (A +B +C )=1-P (D )=1-112=1112.1.解决本题的关键是明确取到不同颜色球不可能同时发生,即互斥.由此可知用概率加法公式.2.若随机试验中,涉及多个事件,应先分析判断这几个事件是否互斥(或对立),若是,可利用互斥事件概率的加法公式求解.当某一事件包含几个互斥的事件时,求该事件发生的概率也有上述规律.在数学考试中,小明的成绩在90分以上(含90分)的概率是0.18,在80分~89分的概率是0.51,在70分~79分的概率是0.15,在60分~69分的概率是0.09,在60分以下的概率是0.07.(1)求小明在数学考试中,取得80分以上(含80分)成绩的概率;(2)求小明考试及格的概率.【解】分别记小明的成绩“在90分以上”、“在80分~89分”、“在70分~79分”、“在60分~69分”为事件事件B、C、D、E,这四个事件彼此互斥.(1)小明的成绩在80分以上的概率是P(B+C)=P(B)+P(C)=0.18+0.51=0.69.(2)小明考试及格的概率是P(B+C+D+E)=P(B)+P(C)+P(D)+P(E)=0.18+0.51+0.15+0.09=0.93.0.21,0.23,0.25,0.28,计算这个射手在一次射击中:(1)射中10环或7环的概率;(2)射中7环以下的概率.【思路探究】求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的和;二是先去求其对立事件的概率,进而再求所求事件的概率.【自主解答】(1)记“射中10环”为事件A,记“射中7环”为事件B.由于在一次射击中,A与B不可能同时发生,故A与B是互斥事件.“射中10环或7环”的事件为A+B,故P(A+B)=P(A)+P(B)=0.21+0.28=0.49.(2)记“射中7环以下”为事件E,E的对立事件为E,则事件E为“射中7环或8环或9环或10环”.由“射中7环”、“射中8环”、“射中9环”、“射中10环”是彼此互斥事件,故P(E)=0.21+0.23+0.25+0.28=0.97,从而P(E)=1-P(E)=1-0.97=0.03.所以射中10环或7环的概率为0.49,射中7环以下的概率为0.03.1.必须分析清楚事件A,B是否互斥,只有互斥事件才可以用概率的加法公式.2.当直接求某一事件的概率较为复杂或根本无法求时,可先转化为求其对立事件的概率.经统计,在某储蓄所一个营业窗口等候人数及相应概率如下:(1)(2)至少1人排队等候的概率是多少?【解】记事件“在窗口等候的人数为0,1,2,3,4,5人及以上”的事件分别为A,B,C,D,E,F,则它们彼此互斥.(1)至多2人排队等候的概率是:法一P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.法二P(A+B+C)=1-P(D+E+F)=0.56.(2)至少1人排队等候的概率是:法一 P (B +C +D +E +F )=P (B )+P (C )+P (D )+P (E )+P (F )=0.16+0.3+0.3+0.1+0.04=0.9.法二P (B +C +D +E +F )=1-P (A )=1-0.1=0.9.对互斥事件概念理解有误抛掷一枚质地均匀的骰子,向上的一面出现1点、2点、3点、4点、5点、6点的概率都是16,记事件A 为“出现奇数”,事件B 为“向上的点数不超过3”,求P (A +B ).【错解】 P (A +B )=P (A )+P (B )=1.【错因分析】 误认为事件A 、B 是互斥事件,所以错误地得出P (A )=12,P (B )=12,所以P (A +B )=P (A )+P (B )=1. 【防范措施】 运用公式时,要明确公式所使用的范围,否则容易出错.【正解】 记事件“出现1点”“出现2点”“出现3点”“出现5点”分别为A 1、A 2、A 3,A 4,由题意知这四个事件彼此互斥.故P (A +B )=P (A 1)+P (A 2)+P (A 3)+P (A 4)=16+16+16+16=23.1.互斥事件和对立事件都是针对两个事件而言的,它们两者之间既有区别又有联系.在一次试验中,两个互斥事件有可能都不发生,也可能有一个发生,但不可能两个都发生;而两个对立事件必有一个发生,但是不可能两个事件同时发生,也不可能两个事件都不发生.所以两个事件互斥,它们未必对立;反之两个事件对立,它们一定互斥.2.互斥事件的概率加法公式是一个很基本的计算公式,解题时要在具体的情景中判断各事件间是否互斥,只有互斥事件才能用概率加法公式,如果事件不互斥,那么公式就不能使用!3.求复杂事件的概率通常有两种方法方法一:将所求事件转化成彼此互斥事件的并事件;方法二:先求其对立事件的概率,再求所求事件的概率.如果采用方法一,一定要将事件分拆成若干互斥的事件,不能重复和遗漏;如果采用方法二,一定要找准其对立事件,否则容易出现错误.1.事件A 与B 是对立事件,且P (A )=0.6,则P (B )等于( )A .0.4B .0.6C .0.5D .1【解析】 由对立事件的性质知P (A )+P (B )=1,∴P (B )=1-0.6=0.4.【答案】 A2.某产品分甲、乙、丙三级,若生产中出现乙级品的概率为0.03,丙级品的概率为0.01,则对该产品抽查一件抽到甲级品的概率为( )A .0.09B .0.97C .0.99D .0.96【解析】 产品共分三个等级,出现乙级品和丙级品的概率分别为0.03和0.01,则出现甲级品的概率为1-0.03-0.01=0.96.【答案】 D3.从一箱苹果中任取一个,如果其重量小于200克的概率为0.2,重量在[200,300]克的概率为0.5,那么重量超过300克的概率为( )A .0.2B .0.3C .0.7D .0.8【解析】 设“重量小于200克”为事件A ,“重量在[200,300]克之间”为事件B ,“重量超过300克”为事件C ,则P (C )=1-P (A )-P (B )=1-0.2-0.5=0.3.故选B.【答案】 B4.甲、乙两人下棋,和棋的概率为12,乙获胜的概率为13,求: (1)甲获胜的概率;(2)甲不输的概率.【解】 甲、乙两人下棋,其结果有甲胜、和棋、乙胜三种,它们是互斥事件,“甲获胜”可看做是“和棋或乙胜”的对立事件.“甲不输”可看做是“甲胜”“和棋”这两个互斥事件的和事件,亦可看做“乙胜”的对立事件.于是,(1)“甲获胜”是“和棋或乙胜”的对立事件,所以“甲获胜”的概率P =1-12-13=16,即甲获胜的概率是16. (2)法一 设事件A 为“甲不输”,它可看做是“甲胜”“和棋”这两个互斥事件的和事件,所以P (A )=16+12=23.法二 设事件A 为“甲不输”,它可看做是“乙胜”的对立事件,所以P (A )=1-13=23,即甲不输的概率是23.一、选择题1.把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁4个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是( )A .对立事件B .不可能事件C .互斥但不对立事件D .以上答案都不对【解析】 “甲分得红牌”与“乙分得红牌”不能同时发生,但也不是必有一个发生,故选C.【答案】 C2.从一篮鸡蛋中取一个,如果其质量小于30克的概率为0.3,在[30,40]克的概率为0.5,则质量不小于30克的概率是( )A .0.3B .0.5C .0.8D .0.7【解析】 “不小于30克”与“小于30克”为对立事件,则概率为1-0.3=0.7.【答案】 D3.(2013·南昌检测)从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( )A.110B.310C.35D.910【解析】 法一 (直接法):所取3个球中至少有1个白球的取法可分为互斥的两类:两红一白有6种取法;一红两白有3种取法,而从5个球中任取3个球的取法共有10种,所以所求概率为910,故选D. 法二 (间接法):至少有一个白球的对立事件为所取3个球中没有白球,即只有3个红球,共1种取法,故所求概率为1-110=910,故选D. 【答案】 D4.掷一枚硬币,若出现正面记1分,出现反面记2分,则恰好得3分的概率为( ) A.58 B.18C.14D.12【解析】 有三种可能:①连续3次都掷得正面概率为18;②第一次掷得正面,第二次掷得反面,其概率为14;③第一次掷得反面,第二次掷得正面,其概率为14.因而恰好得3分的概率为18+14+14=58. 【答案】 A5.从1,2,3,…,9这9个数中任取两数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数;上述事件中,对立事件是( )A .①B .②④C .③D .①③【解析】 互为对立事件的两个事件既不能同时发生又必有一个发生.故③是符合要求的.【答案】 C二、解答题6.从一副混合后的扑克牌(52张)中随机抽取1张,事件A 为“抽得红桃K ”,事件B 为“抽得黑桃”,则概率P (A +B )=________.【解析】 一副扑克牌中有1张红桃K,13张黑桃,事件A 与事件B 互斥,∴P (A +B )=P (A )+P (B )=152+1352=726. 【答案】 726图3-2-27.如图3-2-2所示,靶子由一个中心圆面Ⅰ和两个同心圆环Ⅱ、Ⅲ构成,射手命中Ⅰ、Ⅱ、Ⅲ的概率分别为0.35、0.30、0.25,则不命中靶的概率是________.【解析】 1-0.35-0.30-0.25=0.1.【答案】 0.18.(2013·沈阳高一检测)一个口袋内装有大小相同的红球、白球和黑球,从中摸出一个球,摸出红球或白球的概率为0.58,摸出红球或黑球的概率为0.62,摸出红球的概率为________.【解析】 由题意知A =“摸出红球或白球”与B =“摸出黑球”是对立事件,又P (A )=0.58,∴P (B )=1-P (A )=0.42,又C =“摸出红球或黑球”与D =“摸出白球”为对立事件,P (C )=0.62,∴P (D )=0.38.设事件E =“摸出红球”,则P (E )=1-P (B ∪D )=1-P (B )-P (D )=1-0.42-0.38=0.2.【答案】 0.2三、解答题9.从4名男生和2名女生中任选3人参加演讲比赛.(1)求所选3人中恰有1名女生的概率;(2)求所选3人中至少有1名女生的概率.【解】 4名男生记为1,2,3,4,两名女生记为5,6,从这6个人中选3个人的方法有(1,2,3),(1,2,4),(1,2,5),(1,2,6),(2,3,4),(2,3,5),(2,3,6),(3,4,5),(3,4,6),(4,5,6),(1,3,4),(1,3,5),(1,3,6),(1,4,5),(1,4,6),(1,5,6),(2,4,5),(2,4,6),(2,5,6),(3,5,6)共20种方法.(1)所选3人中恰好有1名女生的情况有(1,2,5),(1,2,6),(2,3,5),(2,3,6),(3,4,5),(3,4,6),(1,3,5),(1,3,6),(1,4,5),(1,4,6),(2,4,5),(2,4,6)共12种方法.故所选3人中恰好有1名女生的概率为1220=35. (2)所选3人中恰好有2名女生的情况有(1,5,6),(2,5,6),(3,5,6),(4,5,6),共4种情况,则所选3人中至少有1名女生的情况共有12+4=16种.所以,所选3人中至少有1名女生的概率为1620=45(1-15=45). 10.某商场举行购物抽奖促销活动,规定每位顾客从装有编号为0,1,2,3四个相同小球的抽奖箱中,每次取出一球记下编号后放回,连续取两次,若取出的两个小球号码相加之和等于6,则中一等奖,等于5中二等奖,等于4或3中三等奖.(1)求中三等奖的概率;(2)求中奖的概率.【解】 设“中三等奖”为事件A ,“中奖”为事件B ,从四个小球中有放回地取两球有:(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3),共有16种不同的结果.(1)取出的两个小球号码相加之和等于4或3的取法有:(1,3),(2,2),(3,1),(0,3),(1,2),(2,1)(3,0),有7种结果,则中三等奖的概率为P (A )=716. (2)由(1)知两个小球号码相加之和等于3或4的取法有7种;两个小球号码相加之和等于5的取法有2种:(2,3),(3,2).两个小球号码相加之和等于6的取法有1种:(3,3).则中奖的概率为P (B )=7+2+116=58. 11.(2013·湖南高考)图3-2-3某人在如图3-2-3所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y (单位:kg)1米.(1)(2)【解】 (1)所种作物的总株数为1+2+3+4+5=15,其中“相近”作物株数为1的作物有2株,“相近”作物株数为2的作物有4株,“相近”作物株数为3的作物有6株,“相近”作物株数为4的作物有3株,列表如下:51×2+48×4+45×6+42×315 =102+192+270+12615=69015=46. (2)由(1)知,P (Y =51)=215,P (Y =48)=415.故在所种作物中随机选取一株,它的年收获量至少为48 kg 的概率为P (Y ≥48)=P (Y =51)+P (Y =48)=215+415=25.(教师用书独具)假设向三个相邻的军火库投掷一枚炸弹,炸中第一个军火库的概率为0.025,炸中其余两个的概率各为0.1,只要炸中一个,另两个也会发生爆炸,求军火库发生爆炸的概率.【自主解答】 设A 、B 、C 分别表示炸中第一、第二、第三个军火库这三个事件,则P (A )=0.025,P (B )=P (C )=0.1.又设D 表示军火库发生爆炸这个事件,则有D =A +B +C ,其中A 、B 、C 彼此互斥,所以P (D )=P (A )+P (B )+P (C )=0.025+0.1+0.1=0.225,则军火库发生爆炸的概率为0.225.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取1球,得到红球的概率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512,试求得到黑球、黄球、绿球的概率各是多少?【解】 从袋中任取1球,记事件A ={摸得红球},事件B ={摸得黑球},事件C ={摸得黄球},事件D ={摸得绿球},则有错误!解得P (B )=14,P (C )=16,P (D )=14. 所以,得到黑球的概率为14,得到黄球的概率为16,得到绿球的概率为14.。

相关文档
最新文档