《数学建模实验》

合集下载

数学建模实验报告

数学建模实验报告

湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日目录实验一 初等模型........................................................................ 错误!未定义书签。

实验二 优化模型........................................................................ 错误!未定义书签。

实验三 微分方程模型................................................................ 错误!未定义书签。

实验四 稳定性模型.................................................................... 错误!未定义书签。

实验五 差分方程模型................................................................ 错误!未定义书签。

实验六 离散模型........................................................................ 错误!未定义书签。

实验七 数据处理........................................................................ 错误!未定义书签。

实验八 回归分析模型................................................................ 错误!未定义书签。

实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。

实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。

数学建模实验报告

数学建模实验报告

数学建模实验报告一、实验目的和背景本次实验旨在运用数学建模方法,解决一个与实际生活相关的问题。

通过建立数学模型,分析问题,提出解决方案,并通过实验数据验证模型的可行性和准确性。

二、实验内容本次实验的题目是“公司送货员最优路径规划”。

公司有多名送货员需要在城市中进行货物的配送工作。

公司希望通过合理的路径规划,使得送货员能够在最短的时间内完成所有的配送任务。

在实验中,需要考虑的主要因素包括送货员之间的配送范围、道路交通状况、道路长度等。

三、实验步骤1.收集相关数据:收集城市道路网络的地理数据,包括道路长度、道路交通状况等信息。

2.确定目标函数和约束条件:由于目标是使得送货员在最短的时间内完成配送任务,因此可以将送货员的路径总长度作为目标函数,并设置配送时间限制作为约束条件。

3.建立数学模型:根据收集到的数据和确定的目标函数、约束条件,建立数学模型,将问题转化为一个最优化问题。

4.进行求解:使用数学建模常见的求解方法,如遗传算法、模拟退火算法等,对数学模型进行求解,得到最优的路径规划方案。

5.实验验证:将求解得到的路径规划方案应用于实际情境中,通过实践进行验证,观察实际效果与模型预测结果的一致性。

四、实验结果与分析通过对数学模型进行求解,得到了送货员的最优路径规划方案。

将该方案应用于实际情境中,观察实际效果与模型预测结果的一致性。

通过与其他非最优路径规划方案进行对比,可以发现,最优路径规划方案能够使得送货员在最短的时间内完成配送任务,提高工作效率。

五、结论和展望本次实验成功地运用了数学建模方法,解决了公司送货员最优路径规划问题。

通过建立数学模型,可以快速地得到最优的路径规划方案,提高了送货员的工作效率。

未来可以进一步改进模型,考虑更多实际情况,如车辆限行、路况实时变化等因素,提供更加精确和实用的路径规划方案。

总结:本次实验通过对公司送货员最优路径规划问题的建模和求解,展示了数学建模的应用价值和解决问题的能力。

数学建模基础实验报告(3篇)

数学建模基础实验报告(3篇)

第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。

通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。

二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。

表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。

1. 数据准备:将数据整理成表格形式,并输入到计算机中。

2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。

3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。

4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。

5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。

三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。

将数据输入到计算机中,为后续分析做准备。

2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。

3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。

具体步骤如下:(1)选择合适的统计软件,如MATLAB。

(2)输入数据,进行数据预处理。

(3)编写线性回归分析程序,计算回归系数。

(4)输出回归系数、截距等参数。

4. 模型检验对模型进行检验,包括残差分析、DW检验等。

(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。

(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。

5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。

四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。

2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。

《数学建模与实验》教学大纲

《数学建模与实验》教学大纲

《数学建模与实验》教学大纲一、课程的基本信息二、目的与要求目的:通过向学生展示各种不同实际领域中的数学问题和数学建模方法,通过对一系列来自不同领域的实际问题的提出、分析、建模和求解的学习与训练,激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,开拓知识面,培养创新精神,提高学生分析问题、解决问题和计算机应用的能力。

要求:1.学会Matlab这一功能强大的数学软件的基本用法,能够根据已学知识独立编写简单小程序。

2.学会一些常用的解决实际问题的方法,包括数值计算、优化方法、数理统计、计算机模拟。

3.要求学生上实验课前对所学知识做好预习,上课时第一段时间听老师讲解该次实验所需相关知识及布置题目,剩下时段学生编写程序、运行程序、记录运行结果,根据结果分析实验结论等,实验课后学生完成相关实验报告的编写(允许纸质格式和电子格式)。

三、内容与时间安排1. 内容(1) Matlab软件初步MATLAB的基本操作,基本运算处理,基本图形绘制,M函数文件,函数的极限,函数的导数和偏导数,积分,微分方程,级数,数组和矩阵的计算,线性方程组的求解,概率论中各量的分析与计算,统计分析,随机模拟。

(2)基础实验空中电缆的长度问题,波音公司飞机最佳定价策略问题,路灯更换策略问题。

(3)数值问题插值问题,拟合问题,数值积分与数值微分,线性方程组的数值解,非线性方程数值解,黄河小浪底调水调沙问题。

(4)综合实验线性代数在经济分析中的应用,营销策略问题,数学规划问题。

2. 时间安排时间共两周。

(1)Matlab软件初步; 2.0天(2)基础实验; 3.0天(3)数值问题; 2.0天(4)综合实验。

3.0天四、作业(报告)要求实验作业(报告)填写要认真,报告要按照数学建模要求及步骤,并把实验过程中的数据和结果要认真记录,必须要有源程序,并能运行出结果。

作业中的图形和表格要规范使用。

模型假设要合理,计算要准确,模型应易于推广。

数学建模实验

数学建模实验

数学建模实验项目一梯子问题一、实验目的与意义:1、进一步熟悉数学建模步骤;2、练习Matlab优化工具箱函数;3、进一步熟悉最优化模型的求解过程。

二、实验要求:1、较能熟练应用Matlab工具箱去求解常规的最优化模型;2、注重问题分析与模型建立,熟悉建模小论文的写作过程;3、提高Matlab的编程应用技能。

三、实验学时数:2学时四、实验类别:综合性五、实验内容与步骤:一幢楼房的后面是一个很大的花园。

在花园中紧靠着楼房建有一个温室,温室高10英尺,延伸进花园7英尺。

清洁工要打扫温室上方的楼房的窗户。

他只有借助于梯子,一头放在花园中,一头靠在楼房的墙上,攀援上去进行工作。

他只有一架20米长的梯子,你认为他能否成功?能满足要求的梯子的最小长度是多少?步骤:1.先进行问题分析,明确问题;2.建立模型,并运用Matlab函数求解;3.对结果进行分析说明;4.设计程序画出图形,对问题进行直观的分析和了解(主要用画线函数plot,line)5.写一篇建模小论文。

数学建模实验项目二养老基金问题一、实验目的与意义:1、练习初等问题的建模过程;2、练习Matlab基本编程命令;二、实验要求:3、较能熟练应用Matlab基本命令和函数;4、注重问题分析与模型建立,了解建模小论文的写作过程;5、提高Matlab的编程应用技能。

三、实验学时数:1学时四、实验类别:综合性五、实验内容与步骤:某大学青年教师从31岁开始建立自己的养老基金,他把已有的积蓄10000元也一次性地存入,已知月利率为0.001(以复利计),每月存入700元,试问当他60岁退休时,他的退休基金有多少?又若,他退休后每月要从银行提取1000元,试问多少年后他的基金将用完?微分方程实验项目一狐狸与野兔问题一、实验目的与意义:1、认识微分方程的建模过程;2、认识微分方程的数值解法。

二、实验要求:1、熟练应用Matlab 的符号求解工具箱求解常微分方程;2、掌握机理分析建立微分方程的方法和步骤;3、提高Matlab 的编程应用技能。

数学建模的实验报告

数学建模的实验报告

数学建模实验报告姓名:学院:专业班级:学号:数学建模实验报告(一)——用最小二乘法进行数据拟合一.实验目的:1.学会用最小二乘法进行数据拟合。

2.熟悉掌握matlab软件的文件操作和命令环境。

3.掌握数据可视化的基本操作步骤。

4.通过matlab绘制二维图形以及三维图形。

二.实验任务:来自课本64页习题:用最小二乘法求一形如y=a+b x2的多项式,使之与下列数据拟合:三.实验过程:1.实验方法:用最小二乘法解决实际问题包含两个基本环节:先根据所给出数据点的变化趋势与问题的实际背景确定函数类;然后按照最小二乘法原则求最小二乘解来确定系数。

即要求出二次多项式: y=a+b x2的系数。

2.程序:x=[19 25 31 38 44]y=[19.0 32.3 49.0 73.3 97.8]ab=y/[ones(size(x));x.^2];a=ab(1),b=ab(2)xx=19:44;plot(xx,a+b*xx.^2,x,y,'.')3.上机调试得到结果如下:x = 19 25 31 38 44y=19.0000 32.3000 49.0000 73.3000 97.8000a = 0.9726b = 0.0500图形:四.心得体会通过本次的数学模型的建立与处理,我们学习并掌握了用最小二乘法进行数据拟合,及多项式数据拟合的方法,进一步学会了使用matlab软件,加深了我们的数学知识,提高了我们解决实际问题的能力,为以后深入学习数学建模打下了坚实的基础。

数学建模实验报告(二)——用Newton法求方程的解一.实验目的1.掌握Newton法求方程的解的原理和方法。

2.利用Matlab进行编程求近似解。

二.实验任务来自课本109页习题4-2:用Newton法求f(x)=x-cosx=0的近似解三.实验过程1.实验原理:把f(x)在x0点附近展开成泰勒级数f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +… 取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x-x0)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。

数学建模实验报告

数学建模实验报告

数学建模实验报告一、实验目的1.通过具体的题目实例, 使学生理解数学建模的基本思想和方法, 掌握数学建模分析和解决的基本过程。

2、培养学生主动探索、努力进取的的学风, 增强学生的应用意识和创新能力, 为今后从事科研工作打下初步的基础。

二、实验题目(一)题目一1.题目: 电梯问题有r个人在一楼进入电梯, 楼上有n层。

设每个乘客在任何一层楼出电梯的概率相同, 试建立一个概率模型, 求直到电梯中的乘客下完时, 电梯需停次数的数学期望。

2.问题分析(1)由于每位乘客在任何一层楼出电梯的概率相同, 且各种可能的情况众多且复杂, 难于推导。

所以选择采用计算机模拟的方法, 求得近似结果。

(2)通过增加试验次数, 使近似解越来越接近真实情况。

3.模型建立建立一个n*r的二维随机矩阵, 该矩阵每列元素中只有一个为1, 其余都为0, 这代表每个乘客在对应的楼层下电梯(因为每个乘客只会在某一层下, 故没列只有一个1)。

而每行中1的个数代表在该楼层下的乘客的人数。

再建立一个有n个元素的一位数组, 数组中只有0和1,其中1代表该层有人下, 0代表该层没人下。

例如:给定n=8;r=6(楼8层, 乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为:m =0 0 1 0 0 01 0 0 0 0 00 0 0 0 0 00 1 0 0 0 00 0 0 0 0 00 0 0 0 0 10 0 0 0 1 00 0 0 1 0 0c = 1 1 0 1 0 1 1 14.解决方法(MATLAB程序代码):n=10;r=10;d=1000;a=0;for l=1:dm=full(sparse(randint(1,r,[1,n]),1:r,1,n,r));c=zeros(n,1);for i=1:nfor j=1:rif m(i,j)==1c(j)=1;break;endcontinue;endends=0;for x=1:nif c(x)==1s=s+1;endcontinue;enda=a+s;enda/d5.实验结果ans = 6.5150 那么, 当楼高11层, 乘坐10人时, 电梯需停次数的数学期望为6.5150。

数学建模计算实验

数学建模计算实验
1)计算均值、标准差、极差、偏度、峰度,画出直方图; 解:方法一:Analyze->Descriptive Statistics-> Descriptives->把成绩y 放到Variable中选择最下面的一项->选择Options->选择 Mean,std.deviation,Range,Kurtosis,Skewness ->Continue->返回界面 后OK 则有如图
学时:4学时 实验目的:掌握用Lindo求解线性规划问题的方法,能够阅读Lindo结果 报告。
实验内容:
解:
实例2:求解书本上P130的习题1。列出线性规划模型,然后用
Lindo求解,根据结果报告得出解决方案。
投资规划问题
某银行经理计划用一笔资金进行有价证券的投资,可供购进的证券
以及其信用等级、到期年限、收益如下表所示。按照规定,市政证券的
解:设投资证券A,B,C,D的金额分别为
(百万元),按照
规定限制1000万元的资金约束,则线性规划模型为:
0.043 +0.054*0.5 +0.050*0.5 +0.044*0.5 +0.045
实验三:用Lingo求解非线性规划问题
学时:2学时 实验目的:掌握用Lingo求解非线性规划问题的方法。 实验内容:
考虑如下的在线DVD租赁问题。顾客缴纳一定数量的月费成为会 员,订购DVD租赁服务。会员对哪些DVD有兴趣,只要在线提交订 单,网站就会通过快递的方式尽可能满足要求。会员提交的订单包括多 张DVD,这些DVD是基于其偏爱程度排序的。网站会根据手头现有的 DVD数量和会员的订单进行分发。每个会员每个月租赁次数不得超过2 次,每次获得3张DVD。会员看完3张DVD之后,只需要将DVDa放进网 站提供的信封里寄回(邮费由网站承担),就可以继续下次租赁。请考 虑以下问题:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学建模》上机作业信科05-3韩亚0511010305实验1 线性规划模型一、实验名称:线性规划模型—设备的最优配备问题。

二、实验目的:掌握线性规划模型的建模方法,并能用数值算法或MATLAB 库函数求解。

三、实验题目:某商店拟制定某种商品7—12月的进货、售货计划,已知商店仓库最大容量为1500件,6月底已存货300件,年底的库存以不少于300件为宜,以后每月初进货一次,假设各月份该商品买进、售出单价如下表。

四、实验要求:1、若每件每月的库存费用为0.5元,问各月进货、售货各为多少件,才能使净收益最多?建立数学模型。

2、利用相应的数值方法求解此问题的数学模型。

3、谈一谈你对这类线性规划问题的理解。

4、举一个简单的二维线性规划问题,并针对此问题将你所了解的线性规划的求解方法作出总结。

5、用软件lindo 或lingo 求解上述问题。

(选做题)6、编写单纯形算法的MATLAB 程序。

(选做题) 五、实验内容:解:设第i 个月进货xi 件,销售yi 件,则下半年总收益为销售收入减去进货费和仓库储存费之和,所以目标函数为:1211109871211109711109871211109875.232427252628252528262729)2345(5.0)2345)300(6(5.07x x x x x x y y y y y y y y y y y x x x x x x z y ------+++++++++++++++++-=整理后得:90024255.28275.2831255.25295.27295.31121110987121110987-------+++++=x x x x x x y y y y y y z由于仓库的容量为1500件,每个月的库存量大于0,小于1500,所以有如下约束条件150030001500300015003000150030001500300015003000111210119108978710119108978791089787897877877≤-+-+-+-+-++≤≤-+-+-+-++≤≤-+-+-++≤≤-+-++≤≤-++≤≤+≤y x y x y x y x y x x y x y x y x y x x y x y x y x x y x y x x y x x x又有年底库存量不少于300则:300300121112101191089787≥--+-+-+-+-++y y x y x y x y x y x x化为抽象的线性规划模型为:90024255.28275.2831255.25295.27295.31max 121110987121110987-------+++++=x x x x x x y y y y y y z ,;12,,8,7;0,0120030012003001200300120030012003001200300121112101191089787111210119108978710119108978791089787897877877 =≥≥--+-+-+-+-+≤-+-+-+-+-+≤-≤-+-+-+-+≤-≤-+-+-+≤-≤-+-+≤-≤-+≤-≤≤-i y x y y x y x y x y x y x x y x y x y x y x y x x y x y x y x y x x y x y x y x x y x y x x y x x x STi i线性规划目标函数的系数:f = [31; 28.5; 27; 28.5;25;24;-31.5;-29;-27.5;-29;-25.5;-25]; 约束方程的系数及右端项: A=[1,0,0,0,0,0,0,0,0,0,0,0 1,1,0,0,0,0,-1,0,0,0,0,0 1,1,1,0,0,0,-1,-1,0,0,0,0 1,1,1,1,0,0,-1,-1,-1,0,0,0 1,1,1,1,1,0,-1,-1,-1,-1,0,0 1,1,1,1,1,1,-1,-1,-1,-1,-1,0 -1,0,0,0,0,0,0,0,0,0,0,0 -1,-1,0,0,0,0,1,0,0,0,0,0 -1,-1,-1,0,0,0,1,1,0,0,0,0 -1,-1,-1,-1,0,0,1,1,1,0,0,0 -1,-1,-1,-1,-1,0,1,1,1,1,0,0 -1,-1,-1,-1,-1,-1,1,1,1,1,1,0 -1,-1,-1,-1,-1,-1,1,1,1,1,1,1];b=[1200;1200;1200;1200;1200;1200; 300; 300; 300; 300; 300; 300;0]; lb=zeros(12,1);[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb);实验2 非线性规划模型一、实验名称:非线性规划模型。

二、实验目的:掌握非线性规划模型的建模方法,并能用数值算法或MATLAB 库函数求解。

三、实验题目:某厂生产一种产品,其需求量)(1kg x 可用下式来估算:3.0212098012600x p x +-=,其中p 为产品单价(元/kg ),2x 为广告费(元),产品的生产成本w (元)由下式确定:212150012.0x x x w ++=。

四、实验要求:1、问该厂生产的产品、产品的单价、和广告费应为多少,方能使该厂获得的利润最多?建立数学模型。

2、利用相应的数值方法求解此问题的数学模型。

3、谈一谈你对这类这类规划问题的理解。

4、将你所了解的非线性规划的求解方法作出总结。

五、实验内容:1、设在产品的单价为)kg /(元p ,广告费为元2x 的情况下,获得利润为p 则:23.0223.023.021)2098012600(5)2098012600(0012.0)2098012600(x x p x p p x p wp x p -+--+--+-=-=若求利润最大,就相当于求模型中的p 的最大值: 2、利用matlab 的无约束优化问题的 建立函数myfun function f = myfun(x)f=(12600-980*x(1)+20*x(2)^0.3)*(-1)*x(1)+0.0012*(12600-980*x(1)+20*x(2)^0.3)^2+5*(12600-980*x(1)+20*x(2)^0.3)+x(2); 用MATLAB 的库函数求解: fminsearch(@myfun,[100,300])ans = 11.955 30.3846myfun([11.0955 30.3846])ans =-7.0214e+003所以定价为11元,广告费为:30.3元,最大收益为7021.元 3、此类规划属于无约束条件的非线性规划模型,4、对于非线性问题的解法,如果是无约束条件的可以利用求导解法求出最优解,如果是有约束的并且是二维的可以利用图解法计算。

此外也可以利用数学软件计算,但是在计算过程中对初始值的要求比较苛刻。

实验3 一阶常微分方程模型一、实验名称:一阶常微分方程模型—人口模型与预测。

二、实验目的:掌握常微分方程模型的建模方法,并能用数值算法或MATLAB 库函数求解。

三、实验题目:下表列出了中国1982-1998年的人口统计数据,取1982年为起始年(0=t ),1016540=N 万人,200000=m N 万人。

四、实验要求:1、建立中国人口的指数增长模型,并用该模型进行预测,与实际人中数据进行比较。

2、建立中国人口的Logistic 模型,并用该模型进行预测,与实际人中数据进行比较。

3、在图1中标出中国人口的实际统计数据,并画出两种模型的预测曲线。

4、在图2中画出两种预测模型的误差比较图,并分别标出其误差(可以是平方误差)。

五、实验内容: 1、指数增长模型:建立中国人口的指数增长模型,并用该模型进行预测,与实际人中数据进行比较。

假设:在人口自然增长过程中,单位时间内人口的增长与人口总数成正比.记时刻t 的人口数量为N(t),考虑t 到t t ∆+时间内人口的增长量,根据Malthus 理论,有t t rN t N t t N ∆=-∆+)()()(,其中r 为比例系数,而增长量与t ∆成正比.在上式中令0→∆t ,有rN dtdN=, 从而有Malthus 人口模型⎪⎩⎪⎨⎧=>=,)(,0,00N t N r rN dt dN其中0N 为0t t =时的人口数. 容易求得此微分方程的解为.)()(00t t r e N t N -=用最小二乘法曲线拟合求出方程的系数 在控制窗口输入 x=1:17;y=[101654,103008,104357,105851,107507,109300,111026,112704,114333,115823,117171,118517,119850,121121,122389,123626,124810];输入曲线拟合命令cftool 进入Curve Fitting Tool 界面,出入控制命令cftool 进入curv fitting tool Xdata 选择x ,Ydata 选择y ;点击creat data set 再点击fitting 再type of setting 中选择Exponential 后,在下面窗口中选择y=a*exp(b*x);点OK 再回到Fitting 点击Apply 得到result得到拟合的结果为: General model Exp1: f(x) = a*exp(b*x)Coefficients (with 95% confidence bounds): a=1.022e+005(1.016e+005, 1.029e+005)b = 0.01303 (0.01243, 0.01363)Goodness of fit: SSE: 6.193e+006 R-square: 0.9932 Adjusted R-square: 0.9927 RMSE: 642.5 exp(0.01303) ans =1.0131所以中国的人口年增长率1.31%Logistic 模型建立中国人口的Logistic 模型,并用该模型进行预测,与实际人中数据进行比较。

假设引入常数max N (简记为m N ),用来表示自然资源和环境条件下能容许的最大人口数量.m N 亦称为环境的最大容量.将Malthus 模型中的假设条件“人口自然增长率为常数”修正为人口自然增长率为,0),)(1(>-r N t N r m从而有如下模型⎪⎩⎪⎨⎧=⎪⎪⎭⎫⎝⎛-=.)(,)(100N t N N t N r Ndt dN m 即⎪⎩⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛-=.)(,)(100N t N N N t N r dt dN m 这个模型称为Logistic.其解为)(0011)(t t r m me N N N t N --⎪⎪⎭⎫ ⎝⎛-+=用最小二乘法曲线拟合求出方程的系数 在控制窗口输入 x=1:17;y=[101654,103008,104357,105851,107507,109300,111026,112704,114333,115823,117171,118517,119850,121121,122389,123626,124810];3.出入控制命令cftool进入curv fitting tool Xdata选择x,Ydata选择y;点击creat data set 再点击fitting 再type of setting 中选择Custom Equations点New Equation 选择Genreal Equations Equations函数选择y=a/(1+(a/b-1)*exp(-c*x)); 初始拟合值为:a=4.00e+05,b=1.00e+05,c=1.00e-02(这非常关键,如果错误拟合结果会同真是结果相差很大,很大)如图:点OK 再回到Fitting点击Apply得到resultGeneral model:f(x) =a/(1+(a/b-1)*exp(-c*x))Coefficients (with95% confidencebounds):a =1.563e+005(1.468e+005,1.658e+005)b = 1.012e+005 (1.008e+005, 1.015e+005)c = 0.04842 (0.04047, 0.05637)Goodness of fit:SSE: 8.004e+005R-square: 0.9991Adjusted R-square: 0.999RMSE: 239.1拟合的图像为:人口最大值为15.6亿,拟合的曲线同原数据差值为:239.1,并且有拟合图形可知,logistic 显然比指数拟合好的多实验4 高阶常微分方程模型一、实验名称:高阶常微分方程模型—饿狼追兔问题。

相关文档
最新文档