数学建模实验(一)

合集下载

数学建模实验报告

数学建模实验报告

湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日目录实验一 初等模型........................................................................ 错误!未定义书签。

实验二 优化模型........................................................................ 错误!未定义书签。

实验三 微分方程模型................................................................ 错误!未定义书签。

实验四 稳定性模型.................................................................... 错误!未定义书签。

实验五 差分方程模型................................................................ 错误!未定义书签。

实验六 离散模型........................................................................ 错误!未定义书签。

实验七 数据处理........................................................................ 错误!未定义书签。

实验八 回归分析模型................................................................ 错误!未定义书签。

实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。

实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。

数学建模实验报告

数学建模实验报告

数学建模实验报告1.流⽔问题问题描述:⼀如下图所⽰的容器装满⽔,上底⾯半径为r=1m,⾼度为H=5m,在下地⾯有⼀⾯积为B0.001m2的⼩圆孔,现在让⽔从⼩孔流出,问⽔什么时候能流完?解题分析:这个问题我们可以采⽤计算机模拟,⼩孔处的⽔流速度为V=sqrt[2*g*h],单位时间从⼩孔流出的⽔的体积为V*B,再根据⼏何关系,求出⽔⾯的⾼度H,时间按每秒步进,记录点(H,t)并画出过⽔⾯⾼度随时间的变化图,当⽔⾯⾼度⼩于0.001m 时,可以近似认为⽔流完了。

程序代码:Methamatic程序代码:运⾏结果:(5)结果分析:计算机仿真可以很直观的表现出所求量之间的关系,从图中我们可以很⽅便的求出要求的值。

但在实际编写程序中,由于是初次接触methamatic 语⾔,对其并不是很熟悉,加上个⼈能⼒有限,所以结果可能不太精确,还请见谅。

2.库存问题问题描述某企业对于某种材料的⽉需求量为随机变量,具有如下表概率分布:每次订货费为500元,每⽉每吨保管费为50元,每⽉每吨货物缺货费为1500元,每吨材料的购价为1000元。

该企业欲采⽤周期性盘点的),(S s 策略来控制库存量,求最佳的s ,S 值。

(注:),(S s 策略指的是若发现存货量少于s 时⽴即订货,将存货补充到S ,使得经济效益最佳。

)问题分析:⽤10000个⽉进⾏模拟,随机产⽣每个⽉需求量的概率,利⽤计算机编程,将各种S 和s 的取值都遍历⼀遍,把每种S,s的组合对应的每⽉花费保存在数组cost数组⾥,并计算出平均⽉花费average,并⽤类answer来记录,最终求出对应的S和s。

程序代码:C++程序代码:#include#include#include#include#define Monthnumber 10000int Need(float x){int ned = 0;//求每个⽉的需求量if(x < 0.05)ned = 50;else if(x < 0.15)ned = 60;else if(x < 0.30)ned = 70;else if(x < 0.55)ned = 80;else if(x < 0.75)ned = 90;else if(x < 0.85)ned = 100;else if(x < 0.95)ned = 110;else ned = 120;return ned;}class A{public:int pS;int ps;float aver;};int main(){A answer;answer.aver=10000000;//int cost[Monthnumber+1]={0}; float average=0;int i;float x;int store[Monthnumber];//srand((int)time(0));for(int n=6;n<=12;n++){// int n=11;int S=10*n;for(int k=5;k{// int k=5;int s=k*10;average=0;int cost[Monthnumber+1]={0};for(i=1;i<=Monthnumber;i++){store[i-1]=S;srand(time(0));x=(float)rand()/RAND_MAX; //产⽣随机数//cout<<" "<//cout<int need=Need(x);if(need>=store[i-1]){cost[i]= 1000*S + (need - store[i-1])*1500 + 500;store[i]=S;}else if(need>=store[i-1]-s){cost[i]=1000*(need+S-store[i-1]) + 50*(store[i-1]-need) + 500; store[i]=S;}else{cost[i]=(store[i-1]-need)*50;store[i]=store[i-1]-need;}average=cost[i]+average;}average=average/Monthnumber;cout<<"n="<cout<<"花费最少时s应该为:"<cout<<"平均每⽉最少花费为:"<}运⾏结果:结果分析:⽤计算机模拟的结果和⽤数学分析的结果有⼀定的差异,由于计算机模拟时采⽤的是随机模型⽽我⽤time函数和rand函数产⽣真随机数,所以在每次的结果上会有所差异,但对于⼀般的⽣产要求亦可以满。

数学建模实验报告

数学建模实验报告

数学建模实验报告一、实验目的1、通过具体的题目实例,使学生理解数学建模的基本思想和方法,掌握数学建模分析和解决的基本过程。

2、培养学生主动探索、努力进取的的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。

二、实验题目(一)题目一1、题目:电梯问题有r个人在一楼进入电梯,楼上有n层。

设每个乘客在任何一层楼出电梯的概率相同,试建立一个概率模型,求直到电梯中的乘客下完时,电梯需停次数的数学期望。

2、问题分析(1)由于每位乘客在任何一层楼出电梯的概率相同,且各种可能的情况众多且复杂,难于推导。

所以选择采用计算机模拟的方法,求得近似结果。

(2)通过增加试验次数,使近似解越来越接近真实情况。

3、模型建立建立一个n*r的二维随机矩阵,该矩阵每列元素中只有一个为1,其余都为0,这代表每个乘客在对应的楼层下电梯(因为每个乘客只会在某一层下,故没列只有一个1)。

而每行中1的个数代表在该楼层下的乘客的人数。

再建立一个有n个元素的一位数组,数组中只有0和1,其中1代表该层有人下,0代表该层没人下。

例如:给定n=8;r=6(楼8层,乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为:m =0 0 1 0 0 01 0 0 0 0 00 0 0 0 0 00 1 0 0 0 00 0 0 0 0 00 0 0 0 0 10 0 0 0 1 00 0 0 1 0 0c = 1 1 0 1 0 1 1 14、解决方法(MATLAB程序代码):n=10;r=10;d=1000;a=0;for l=1:dm=full(sparse(randint(1,r,[1,n]),1:r,1,n,r));c=zeros(n,1);for i=1:nfor j=1:rif m(i,j)==1c(j)=1;break;endcontinue;endends=0;for x=1:nif c(x)==1s=s+1;endcontinue;enda=a+s;enda/d5、实验结果ans = 6.5150 那么,当楼高11层,乘坐10人时,电梯需停次数的数学期望为6.5150。

数学建模基础实验报告(3篇)

数学建模基础实验报告(3篇)

第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。

通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。

二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。

表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。

1. 数据准备:将数据整理成表格形式,并输入到计算机中。

2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。

3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。

4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。

5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。

三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。

将数据输入到计算机中,为后续分析做准备。

2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。

3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。

具体步骤如下:(1)选择合适的统计软件,如MATLAB。

(2)输入数据,进行数据预处理。

(3)编写线性回归分析程序,计算回归系数。

(4)输出回归系数、截距等参数。

4. 模型检验对模型进行检验,包括残差分析、DW检验等。

(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。

(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。

5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。

四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。

2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。

数学建模实验报告

数学建模实验报告

《数学建模实验》实验报告学院名称数学与信息学院专业名称提交日期课程教师实验一:数学规划模型AMPL求解实验内容1. 用AMPL求解下列问题并作灵敏度分析:一奶制品加工厂用牛奶生产A1和A2两种奶制品,1桶牛奶可以在甲类设备上用12小时加工成3公斤A1或者在乙类设备上用8小时加工成4公斤A2,且都能全部售出,且每公斤A1获利24元,每公斤A2获利16元。

先加工厂每天能得到50桶牛奶的供应,每天工人总的劳动时间为480小时,并且甲类设备每天至多加工100公斤A1,乙类设备的加工能力没有限制,试为该厂制定一个计划,使每天的获利最大。

(1)建立模型文件:milk.modset Products ordered;param Time{i in Products }>0;param Quan{i in Products}>0;param Profit{i in Products}>0;var x{i in Products}>=0;maximize profit: sum{i in Products} Profit [i]* Quan [i]*x[i];subject to raw: sum{i in Products}x[i] <=50;subject to time:sum{i in Products}Time[i]*x[i]<=480;subject to capacity: Quan[first(Products)]*x[first(Products)]<=100;(2)建立数据文件milk.datset Products:=A1 A2;param Time:=A1 12 A2 8;param Quan:=A1 3 A2 4;param Profit:=A1 24 A2 16;(3) 建立批处理文件milk.runmodel milk.mod;data milk.dat;option solver cplex;solve;display x;(4)运行运行结果:CPLEX 11.0.0: optimal solution; objective 33602 dual simplex iterations (1 in phase I)x [*] :=A1 20A2 30;(5)灵敏度分析:model milk.mod;data milk.dat;option solver cplex;option cplex_options 'sensitivity';solve;display x;display x.rc, x.down, x.up;display raw, time, capacity;display raw.down, raw.up,raw.current, raw.slack;得到结果:【灵敏度分析】: x.rc x.down x.up:=A1 -3.55271e-15 64 96A2 0 48 72;raw = 48time = 2capacity = 0raw.down = 43.3333raw.up = 60raw.current = 50raw.slack = 0某公司有6个建筑工地,位置坐标为(a i, b i)(单位:公里),水泥日用量d i (单位:吨)1) 现有j j j吨,制定每天的供应计划,即从A, B两料场分别向各工地运送多少吨水泥,使总的吨公里数最小。

数学建模实验答案

数学建模实验答案

14.5714
第86页例3
>> c=[2;3;1];
>> a=[1,4,2;3,2,0];
>> b=[8;6];
>> [x,y]=linprog(c,-a,-b,[],[],zeros(3,1))
Optimization terminated.
x =
0.8066
-2.2943
rint =
-4.0390 4.0485
-3.2331 6.2555
-5.3126 1.9707
-6.5603 3.1061
-4.5773 5.0788
-0.5623 8.4132
-6.0767 3.1794
25.1698
0.0000
20.0000
14.8302
40.0000
y =
574.8302
实验报告三、 第二部分
data=[0,0.8,1.4,2.0,2.4,3.2,4.0,4.8,5.4,6.0,7.0,8.0,10.0;0,0.74,2.25,5.25,8.25,15,21.38,26.25,28.88,30.6,32.25,33,35];
b =
62.4054
1.5511
0.5102
0.1019
-0.1441
bint =
-99.1786 223.9893
-0.1663 3.2685
-1.1589 2.1792
-1.6385 1.8423
x5 = [1.62 1.79 1.51 1.60 1.61 1.31 1.02 1.08 1.02 0.82 1.03 1.08 0.92 0.79 0.86 1.27 1.10]';

数学建模的实验报告

数学建模的实验报告

数学建模实验报告姓名:学院:专业班级:学号:数学建模实验报告(一)——用最小二乘法进行数据拟合一.实验目的:1.学会用最小二乘法进行数据拟合。

2.熟悉掌握matlab软件的文件操作和命令环境。

3.掌握数据可视化的基本操作步骤。

4.通过matlab绘制二维图形以及三维图形。

二.实验任务:来自课本64页习题:用最小二乘法求一形如y=a+b x2的多项式,使之与下列数据拟合:三.实验过程:1.实验方法:用最小二乘法解决实际问题包含两个基本环节:先根据所给出数据点的变化趋势与问题的实际背景确定函数类;然后按照最小二乘法原则求最小二乘解来确定系数。

即要求出二次多项式: y=a+b x2的系数。

2.程序:x=[19 25 31 38 44]y=[19.0 32.3 49.0 73.3 97.8]ab=y/[ones(size(x));x.^2];a=ab(1),b=ab(2)xx=19:44;plot(xx,a+b*xx.^2,x,y,'.')3.上机调试得到结果如下:x = 19 25 31 38 44y=19.0000 32.3000 49.0000 73.3000 97.8000a = 0.9726b = 0.0500图形:四.心得体会通过本次的数学模型的建立与处理,我们学习并掌握了用最小二乘法进行数据拟合,及多项式数据拟合的方法,进一步学会了使用matlab软件,加深了我们的数学知识,提高了我们解决实际问题的能力,为以后深入学习数学建模打下了坚实的基础。

数学建模实验报告(二)——用Newton法求方程的解一.实验目的1.掌握Newton法求方程的解的原理和方法。

2.利用Matlab进行编程求近似解。

二.实验任务来自课本109页习题4-2:用Newton法求f(x)=x-cosx=0的近似解三.实验过程1.实验原理:把f(x)在x0点附近展开成泰勒级数f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +… 取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x-x0)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。

数学建模实验报告

数学建模实验报告

内江师范学院中学数学建模实验报告册编制数学建模组审定牟廉明专业:班级:级班学号:姓名:数学与信息科学学院2016年3月说明1.学生在做实验之前必须要准备实验,主要包括预习与本次实验相关的理论知识,熟练与本次实验相关的软件操作,收集整理相关的实验参考资料,要求学生在做实验时能带上充足的参考资料;若准备不充分,则学生不得参加本次实验,不得书写实验报告;2.要求学生要认真做实验,主要是指不得迟到、早退和旷课,在做实验过程中要严格遵守实验室规章制度,认真完成实验内容,极积主动地向实验教师提问等;若学生无故旷课,则本次实验成绩不合格;3.学生要认真工整地书写实验报告,实验报告的内容要紧扣实验的要求和目的,不得抄袭他人的实验报告;4.实验成绩评定分为优秀、合格、不合格,实验只是对学生的动手能力进行考核,跟据所做的的情况酌情给分。

根据实验准备、实验态度、实验报告的书写、实验报告的内容进行综合评定。

实验名称:数学规划模型(实验一)指导教师:实验时数: 4 实验设备:安装了VC++、mathematica、matlab的计算机实验日期:年月日实验地点:实验目的:掌握优化问题的建模思想和方法,熟悉优化问题的软件实现。

实验准备:1.在开始本实验之前,请回顾教科书的相关内容;2.需要一台准备安装Windows XP Professional操作系统和装有数学软件的计算机。

实验内容及要求原料钢管每根17米,客户需求4米50根,6米20根,8米15根,如何下料最节省?若客户增加需求:5米10根,由于采用不同切割模式太多,会增加生产和管理成本,规定切割模式不能超过3种,如何下料最节省?实验过程:摘要:生活中我们常常遇到对原材料进行加工、切割、裁剪的问题,将原材料加工成所需大小的过程,称为原料下料问题。

按工艺要求,确定下料方案,使用料最省,或利润最大是典型的优化问题。

以此次钢管下料问题我们采用数学中的线性规划模型.对模型进行了合理的理论证明和推导,然后借助于解决线性规划的专业软件Lingo 对题目所提供的数据进行计算从而得出最优解。

高中教育数学必修第二册湘教版《6.2 数学建模案例1 烧开水问题》教学课件

高中教育数学必修第二册湘教版《6.2 数学建模案例1 烧开水问题》教学课件

检验与改进 1.取旋钮39°的位置,烧一壶开水,记录所得实际用气量是不是 0.121 8 m3.如果基本吻合,就可以依此作结论了.如果相差太大,特 别是当用气量大于0.121 8 m3时,最小值点就肯定不是39°,说明上 述三组数据取得不好,可以换另外的点重新计算,然后再检验,直到
结果与实际比较接近就可以了. 实际上,如果我们取(18,0.130),(36,0.122),(54,0.139),求出
评价与推广 该模型建立过程中的假设条件太强.该模型只考虑通过改变阀门位 置来达到节约燃气用量的目的,有一定的局限性,实际过程中也可以 考虑通过控制阀门大小,每次只烧半壶水,分两次完成烧水的方法来 实现节约燃气用量的目的.阀门位置改变时,燃气量的变化与阀门本 身设计也有关,而在该模型中没有讨论.
2.在选好的五个位置上,分别记录烧开一壶水所需的时间和所用的 燃气量,得到了几组实验数据,如下表:
位置项目
18° 36° 54° 72° 90°
开始时燃气 读表数/m3
9.080 8.958 8.819 8.670 8.498
水开时燃气 读表数/m3
9.210 9.080 8.958 8.819 8.670
1.给定燃气灶和一只水壶,选择燃气灶旋钮的五个位置(当然多选 一些更好,这里由于是粗略地寻找一个最佳位置,故只选择五个位置, 在要求精度较高的情况下,可以探究更多的位置).因为关闭时,燃 气旋钮的位置为竖直方向,我们把这个位置定为0°,燃气开到最大 时,旋钮转了90°.为了方便计算,将0°~90°五等分,如图,分别 以18°,36°,54°,72°,90°来确定五个位置(其他位置选取方 法,同学们可以自己进行尝试).
所需燃气量 /m3 0.130 0.122 0.139 0.149 0.172

数学建模 -实验报告1

数学建模 -实验报告1
推导出了动力学方程
������������⁄������������ = ������������(1 − (������ + ������)) − ������1������∗������,
(4 − 3)
������������∗⁄������������ = −������1������∗������ + ������2������
二、 问题分析
建立肿瘤细胞增长模型时,我们可以从自由增长模型开始分析,引进 Logistic 阻滞增长模型,构成肿瘤细胞增长初步框架。再者肿瘤细胞不同于普 通细胞,其生长受到人体自身免疫系统的制约。于是综合考虑正常细胞转化,癌 细胞增殖,癌细胞死亡,癌细胞被效应细胞消除等情况,建立动力学方程。并对 模型进行适当简化求解。在放射治疗方案的设计中,我们可以引入放射生物学中 广泛接受的 LQ 模型对问题进行分析,由于放疗对人体伤害相当大,因此我们采 取分次逐次放疗的方式进行治疗。我们具体分两种情形进行讨论,一是在总剂量 一定的条件下,不同的分次剂量组合对生物效应的影响;二是在产生相同生物效 应的情况下,分析最优的分次剂量组合。
易算出癌细胞转入活动期已有 300 多天,故如何在早期发现癌症是攻克癌症的关键之一 (2)手术治疗常不能割去所有癌细胞,故有时需进行放射疗法。射线强度太小无法杀
死癌细胞,太强病人身体又吃不消且会使病人免疫功能下降。一次照射不可能杀死全部癌细 胞,请设计一个可行的治疗方案(医生认为当体内癌细胞数小于 100000 个时即可凭借体内 免疫系统杀灭)。
进一步简化,根据(4-4),(4-5)式可知,效应细胞������∗和复合物������有出有进.假 设出入保持平衡,则有
������ + ������∗ = C (C 为常数)

数学建模计算实验

数学建模计算实验
1)计算均值、标准差、极差、偏度、峰度,画出直方图; 解:方法一:Analyze->Descriptive Statistics-> Descriptives->把成绩y 放到Variable中选择最下面的一项->选择Options->选择 Mean,std.deviation,Range,Kurtosis,Skewness ->Continue->返回界面 后OK 则有如图
学时:4学时 实验目的:掌握用Lindo求解线性规划问题的方法,能够阅读Lindo结果 报告。
实验内容:
解:
实例2:求解书本上P130的习题1。列出线性规划模型,然后用
Lindo求解,根据结果报告得出解决方案。
投资规划问题
某银行经理计划用一笔资金进行有价证券的投资,可供购进的证券
以及其信用等级、到期年限、收益如下表所示。按照规定,市政证券的
解:设投资证券A,B,C,D的金额分别为
(百万元),按照
规定限制1000万元的资金约束,则线性规划模型为:
0.043 +0.054*0.5 +0.050*0.5 +0.044*0.5 +0.045
实验三:用Lingo求解非线性规划问题
学时:2学时 实验目的:掌握用Lingo求解非线性规划问题的方法。 实验内容:
考虑如下的在线DVD租赁问题。顾客缴纳一定数量的月费成为会 员,订购DVD租赁服务。会员对哪些DVD有兴趣,只要在线提交订 单,网站就会通过快递的方式尽可能满足要求。会员提交的订单包括多 张DVD,这些DVD是基于其偏爱程度排序的。网站会根据手头现有的 DVD数量和会员的订单进行分发。每个会员每个月租赁次数不得超过2 次,每次获得3张DVD。会员看完3张DVD之后,只需要将DVDa放进网 站提供的信封里寄回(邮费由网站承担),就可以继续下次租赁。请考 虑以下问题:

数学建模与数学实验课后习题答案

数学建模与数学实验课后习题答案

P594•学校共1002名学生,237人住在A 宿舍,333人住在B 宿舍,432 人住在C 宿舍。

学生要组织一个10人的委员会,使用Q 值法分配各 宿舍的委员数。

解:设P 表示人数,N 表示要分配的总席位数。

i 表示各个宿舍(分别取 A,B,C ), p i 表 示i 宿舍现有住宿人数, n i 表示i 宿舍分配到的委员席位。

首先,我们先按比例分配委员席位。

23710 A 宿舍为:n A ==2.365 1002 333"0 B 宿舍为:n B =3.323 1002 432X0 C 宿舍为:n C =4.3111002现已分完9人,剩1人用Q 值法分配。

经比较可得,最后一席位应分给 A 宿舍。

所以,总的席位分配应为: A 宿舍3个席位,B 宿舍3个席位,C 宿舍4个席位。

QA23722 3= 9361.5 Q B33323 4 = 9240.7 Q C4322 4 5=9331.2商人们怎样安全过河傻麴删舫紬削< I 11山名畝臥蹄峨颂禮训鋤嫌邂 韻靖甘讹岸讎鞍輯毗匍趾曲展 縣確牡GH 錚俩軸飙奸比臥鋪謎 smm 彌鯉械即第紘麵觎岸締熾 x^M 曲颁M 删牘HX …佛讪卜过樹蘇 卜允棘髒合 岡仇卅毘冋如;冋冋1卯;砰=口 於广歎煙船上觸人敦% V O J U;xMmm朗“…他1曲策D 咿川| thPl,2卜允隸策集合 刼為和啊母紳轉 多步贱 就匚叫=1入“山使曲并按 腿翻律由汩3』和騒側),模型求解 -穷举法〜编程上机 ■图解法S={(x ?jOI x=o, j-0,1,2,3;X =3? J =0,1,2,3; X =»*=1,2}J规格化方法,易于推广考虑4名商人各带一随从的情况状态$=(xy¥)~ 16个格点 允许状态〜U )个。

点 , 允许决策〜移动1或2格; k 奇)左下移;&偶,右上移. 右,…,必I 给出安全渡河方案评注和思考[廿rfn片,rfl12 3xmm賤縣臓由上题可求:4个商人,4个随从安全过河的方案。

淮阴工学院数学建模实验报告1

淮阴工学院数学建模实验报告1

淮阴工学学院
数理学院 数学建模与实验课程 实验报告
实验名称 一、Matlab 程序设计与绘图 实验地点 26#114 日期 2012-09-12
姓名 张磊磊 仇素涛 班级 计科1101 学号 1104101130 1104101129 成绩 [1] 熟悉MATLAB 绘图命令;
[2] 掌握MATLAB 图形处理命令。

[3] 掌握MATLAB 语言的几种循环、条件和开关选择结构。

通过该实验的学习,使学生能灵活应用MATLAB 软件解决一些简单问题。

【实验要求】
[1]独立完成各个实验任务;
[2]实验的过程保存成 .m 文件,以备检查;
[3]完成实验报告。

【实验内容】
一、绘图
1、作出分段函数33cos ,0,(),03,9,3x x x h x e x x e x ≤⎧⎪=<≤⎨⎪+-≥⎩
的图形.
2、. 画出曲面
z =
,在xy 平面投影是单位圆,并且去掉该曲面的1/4部分。

二、编程
1. 随机产生一个1到100的45⨯矩阵,编程求出其最大值及其所处的位置.
5、求三角形的面积。

程序要求:
(1) 通过屏幕输入三角形的三条边.
(2) 如果构成三角形, 计算其面积,如果构不成三角形,则在屏幕上显示“不能构成一个三角形,请重新输入三角形的三条边”。

此时,要求重新输入三角形的三条边。

(3) 如果连续3次输入的三角形的三条边都够不成三角形,则在屏幕上显示“你的输入
不合法,程序终止”, 此时终止程序。

简单数学建模实例

简单数学建模实例

简单数学建模实例随着社会和科技的发展,数学建模已经越来越成为各个领域的重要手段。

而简单数学建模实例的模拟与实验,也成为了学生学习数学和拓展实际应用的重要方式。

在此,我们将为大家介绍一些简单的数学建模实例。

(一)瓶子里的气体假设一个恒定体积的瓶子装满的气体,其中含有 x % 的氮气,y % 的氧气和 z % 的二氧化碳。

现在在瓶子中加入一定量的氧气,使得瓶子中氮气的百分比降至 v %。

问原瓶子中氧气的百分比是多少?这个问题只需要列出守恒方程即可:氧气的质量与氮气和二氧化碳的质量之和等于瓶子中气体的总质量。

再加上一个初始状态的方程,就可以得到两个关于 y 和 z 的一元二次方程,解它们即可。

(二)小球的弹性碰撞两个小球,一个重量为 m1,在速度为 v1 的情况下运动;另一个球的重量为 m2,在速度为 v2 的情况下静止。

两个小球弹性碰撞后,速度分别为 u1 和 u2。

问 u1 和 u2 在什么情况下相等?这个问题需要利用动能守恒和动量守恒的规律,分别列出两个守恒方程,然后解方程即可。

其中,动能守恒方程是指碰撞前后的总动能是守恒的;动量守恒方程是指碰撞前后的总动量也是守恒的。

(三)植物生长的模拟植物的生长是与光、水、温度等因素有关的,而光照强度、水分充足和温度适宜是保证植物生长的基本条件。

因此,我们可以利用数学方法,建立植物生长与光照强度、水分和温度之间的关系模型。

具体地说,我们可以将光照强度、水分和温度三个因素定量化,例如化学计量法,然后建立该物种的生长速度与光照强度、水分和温度之间的函数关系。

最后,可以通过改变各个因素来预测植物的生长速度。

(四)自然灾害预测自然灾害如洪水、地震、气象灾害等都是由物理或化学规律导致的,因此可以利用数学方法,预测或模拟这些自然灾害。

例如,可以通过建立地震发生的概率模型,分析地震的分布规律和发生的时间等信息,从而预警或预测地震。

在预测洪水方面,我们可以通过搜集洪水历史数据、雨量和地下水位等信息,建立预警模型。

大学生数学建模:作业-线性规划的实验

大学生数学建模:作业-线性规划的实验

实验课题:(一)线性规划问题1.用lingo求解下列线性规划问题:2. 某班男同学30人、女同学20人,植树。

工作效率(个/人、天)如下表。

如何安排,植树最多?3.某牧场饲养一批动物,平均每头动物至少需要 700g 蛋白质、30g 矿物质和100g 维生素。

现有A、B、C、D、E五种饲料可供选用,每千克饲料的营养成分(单位:g)与价格(单位:元/kg)如下表所示:试求能满足动物生长营养需求又最经济的选用饲料方案。

4.在以色列,为分享农业技术服务和协调农业生产,常常由几个农庄组成一个公共农业社区。

在本课题中的这个公共农业社区由三个农庄组成,我们称之为南方农庄联盟。

南方农庄联盟的全部种植计划都由技术协调办公室制订。

当前,该办公室正在制订来年的农业生产计划。

南方农庄联盟的农业收成受到两种资源的制约。

一是可灌溉土地的面积,二是灌溉用水量。

这些数据由下表给出。

注:英亩-英尺是水容积单位,1英亩-英尺就是面积为1英亩,深度为1英尺的体积;1英亩-英尺≈1233.48立方米。

南方农庄联盟种植的作物是甜菜、棉花和高粱,这三种作物的纯利润及耗水量不同。

农业管理部门根据本地区资源的具体情况,对本联盟农田种植规划制定的最高限额数据由下表给出。

三家农庄达成协议:各家农庄的播种面积与其可灌溉耕地面积之比相等;各家农庄种植何种作物并无限制。

所以,技术协调办公室面对的任务是:根据现有的条件,制定适当的种植计划帮助南方农庄联盟获得最大的总利润,现请你替技术协调办公室完成这一决策。

对于技术协调办公室的上述安排,你觉得有何缺陷,请提出建议并制定新的种植计划。

5.有一艘货轮,分前、中、后三个舱位,它们的容积与最大允许载重量如下表所示:前舱中舱后舱最大允许载重量(t)2000 3000 1000容积(m3)4000 5400 1000现有三种货物待运,已知有关数据如下表所示:商品数量(件)每件体积(m3/件)每件重量(t/件)运价(元/件)A 600 10 8 1000B 1000 5 6 700C 800 7 5 600又为了航运安全,要求前、中、后舱在实际载重量上大体保持各舱最大允许载重量的比例关系。

线性代数数学建模案例1

线性代数数学建模案例1
网络分析要解决的问题是:在部分信息(如 网络的输入量)已知的情况下,确定每一分支中 的流量。
案例1 交通网络流量分析问题
城市道路网中每条道路、每个交叉 路口的车流量调查,是分析、评价及改 善城市交通状况的基础。根据实际车流 量信息可以设计流量控制方案,必要时 设置单行线,以免大量车辆长时间拥堵。
下图为某城市的局部单行示意图
【模型假设】假设不考虑价格变动等其他因素.
【模型建立】设煤矿, 电厂, 铁路分别产出x元, y元, z元刚好满足需求. 则有下表
产出(1元)
产出



煤0
0.6 0.5
x
分配 0.6y + 0.5z
订单 60000
消 电 0.3 0.1 0.1
y

0.3x + 0.1y + 0.1z 100000
几条道路的流量统计? (3) 当x4 = 350时, 确定x1, x2, x3的值. (4) 若x4 = 200, 则单行线应该如何改动才合
理? 。
【模型假设】: (1) 每条道路都是单行线 (2) 每个交叉路口进入和离开的车辆数目相等.
【模型建立】 根据图3和上述假设, 在①, ②, ③, ④ 四个路口进出车辆数目分别满足:
【模型分析】
(1) 由(A, b)的行最简形可见, 上述方程组中的最
后一个方程是多余的. 这意味着最后一个方程中的
数据“300”x可1 以x4不1用00统计.
(2)由

x2

x4

600
可得
x3 x4 300
x2 x1 500

x3

x1

200

数学建模实验报告1

数学建模实验报告1

数学建模实验报告1桂林电⼦科技⼤学2017-2018学年第1学期数学建模⼀、实验⽬的1. 熟悉MATLAB 软件的⽤户环境;2. 了解MATLAB 软件的⼀般命令;3. 掌握MATLAB 向量、数组、矩阵操作与运算函数;4. 掌握MATLAB 软件的基本绘图命令;5. 掌握MATLAB 语⾔的⼏种循环、条件和开关选择结构及其编程规范。

⼆、实验内容1. MATLAB 软件的矩阵输⼊和操作2. ⽤MA TLAB 语⾔编写命令M ⽂件和函数M ⽂件3. 直接使⽤MATLAB 软件进⾏作图练习;三、实验任务1. 有⼀个4×5的矩阵,编程求出其元素最⼤值及其所在的位置。

Jm.m ⽂件代码: clear;a=input('请输⼊⼀个4*5矩阵'); max=a(1,1); maxi=0; maxj=0; for i=1:4 for j=1:5if a(i,j)>max max=a(i,j); maxi=i; maxj=j;end end endfprintf('最⼤值为:%d 位置:o%d %d \n',max,maxi,maxj); 实验结果:2. 有⼀函数f(x,y)=x 2+sin xy+2y,写⼀程序,输⼊⾃变量的值,输出函数值。

Jm_5.m ⽂件代码: function f=Jm_5(x,y) f=x.^2+sin(x*y)+2*y;实验结果:3.⽤surf,mesh绘制曲⾯z=2x2+y2。

Jm5.m代码:x=-3:0.1:3;y=1:0.1:5;[X,Y]=meshgrid(x,y);Z=2*X.^2+Y.^2;subplot(1,2,1);surf(X,Y,Z);title('surf(x,y)');subplot(1,2,2);mesh(X,Y,Z);title('mesh(x,y)');实验结果:4.在同⼀平⾯的两个窗⼝中分别画出⼼形线和马鞍⾯。

初中数学建模实验报告(3篇)

初中数学建模实验报告(3篇)

第1篇一、实验背景随着科学技术的飞速发展,数学建模作为一种重要的科学研究方法,越来越受到人们的重视。

初中数学建模实验旨在培养学生运用数学知识解决实际问题的能力,提高学生的创新思维和团队协作能力。

本实验以某市居民出行方式选择为研究对象,通过建立数学模型,分析不同因素对居民出行方式的影响。

二、实验目的1. 理解数学建模的基本概念和步骤。

2. 学会运用数学知识分析实际问题。

3. 培养学生的创新思维和团队协作能力。

4. 提高学生运用数学知识解决实际问题的能力。

三、实验方法1. 收集数据:通过网络、调查问卷等方式收集某市居民出行方式选择的相关数据。

2. 数据处理:对收集到的数据进行整理、清洗和分析,为建立数学模型提供依据。

3. 建立模型:根据数据分析结果,选择合适的数学模型,如线性回归模型、多元回归模型等。

4. 模型求解:运用数学软件或编程工具求解模型,得到预测结果。

5. 模型验证:将预测结果与实际数据进行对比,验证模型的准确性。

四、实验过程1. 数据收集:通过问卷调查的方式,收集了500份某市居民的出行方式选择数据,包括出行距离、出行时间、出行目的、出行方式等。

2. 数据处理:对收集到的数据进行整理和清洗,剔除无效数据,得到有效数据490份。

3. 建立模型:根据数据分析结果,选择多元回归模型作为本次实验的数学模型。

4. 模型求解:利用SPSS软件对多元回归模型进行求解,得到以下结果:- 模型方程:Y = 0.05X1 + 0.03X2 + 0.02X3 + 0.01X4 + 0.005X5 + 0.002X6 + 0.001X7 + 0.0005X8- 其中,Y为居民出行方式选择概率,X1至X8分别为出行距离、出行时间、出行目的、出行方式、天气状况、交通拥堵状况、收入水平、家庭人口数量等自变量。

5. 模型验证:将模型预测结果与实际数据进行对比,结果显示模型具有较高的预测准确性。

五、实验结果与分析1. 模型预测结果:根据模型预测,出行距离、出行时间、出行目的、出行方式、天气状况、交通拥堵状况、收入水平、家庭人口数量等因素对居民出行方式选择有显著影响。

Matlab数学建模实验报告

Matlab数学建模实验报告

数学实验报告实验序号:实验一日期:实验序号:实验二日期:实验序号: 实验三 日期:班级 姓名 学号实验 名称架设电缆的总费用问题背景描述:一条河宽1km ,两岸各有一个城镇A 与B ,A 与B 的直线距离为4km ,今需铺设一条电缆连接A 于B ,已知地下电缆的铺设费用是2万元/km ,水下电缆的修建费用是4万元/km 。

实验目的:通过建立适当的模型,算出如何铺设电缆可以使总花费最少。

数学模型:如图中所示,A-C-D-B 为铺设的电缆路线,我们就讨论a=30度,AE (A 到河岸的距离)=0.5km ,则图中:DG=4-AC cos b -1/tan c ; BG=0.5km AC=AE/sin bCD=EF/sin c=1/sin c BD=BG D 22G则有总的花费为:W=2*(AC+BD )+4*CD ;我们所要做的就是求最优解。

实验所用软件及版本:Matlab 7.10.0实验序号: 实验四 日期:班级 姓名 学号实验 名称慢跑者与狗问题背景描述:一个慢跑者在平面上沿曲线25y x 22=+以恒定的速度v 从(5,0)起逆时钟方向跑步,一直狗从原点一恒定的速度w ,跑向慢跑者,在运动的过程中狗的运动方向始终指向慢跑者。

实验目的:用matlab 编程讨论不同的v 和w 是的追逐过程。

数学模型:人的坐标为(manx,many ),狗的坐标为(dogx,dogy ),则时间t 时刻的人的坐标可以表示为manx=R*cos(v*t/R); many=R*sin(v*t/R);sin θ=| (many-dogy)/sqrt((manx-dogx)^2+(many-dogy)^2)|;cos θ=| (manx-dogx)/sqrt((manx-dogx)^2+(many-dogy)^2)|;则可知在t+dt 时刻狗的坐标可以表示为:dogx=dogx(+/-)w* cos θ*dt; dogy=dogy(+/-)w* sin θ*dt; (如果manx-dogx>0则为正号,反之则为负号)实验所用软件及版本:Matlab 7.10.0实验序号:实验五日期:班级姓名学号两圆的相对滚动实验名称问题背景描述:有一个小圆在大圆内沿着大圆的圆周无滑动的滚动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学建模》实验指导书
实验报告的格式
姓名: 学号: 班级 (按小组)
实验名称 实验目的 实验内容 模型 程序 结果
结果的分析
实验一:Matlab 微分方程的数值解
学时:2学时
实验目的:掌握用matlab 进行微分方程的数值解。

实验内容:
1. 对传染病模型⎪⎪⎩⎪⎪⎨⎧=-==-=00
)0(,)0(,s s si dt
ds i i i si dt
di
λμλ进行数值计算输出结果,并在同一坐标系中画
出i (t ), s (t ) 的图形。

再画出i ~ s 的图形。

从数值结果和图形中分别可以得到什么结论?
function y=ill(t,x) a=1;b=0.3;
y=[a*x(1)*x(2)-b*x(1),-a*x(1)*x(2)]'
ts=0:50;
x0=[0.02,0.98];
[t,x]=ode45('ill',ts,x0);[t,x] plot(t,x(:,1),t,x(:,2)),grid,pause plot(x(:,2),x(:,1)),grid,
2. 在传染病模型中,估计最终未被感染的健康者的比例∞s 与传染达到高峰时的m i ()1

>
s 。

给定不同的00,,,i s μλ,分别用
0ln
1
00=+
-+∞∞s s s i s σ
(1)
)ln 1(1
000s i s i m σσ
+-
+= (2)
并分析所得结果。

填下面的表格
求∞s 与m i 可以用matlab 中解一般方程的语句.dsolve。

相关文档
最新文档