2017届高考数学第一轮复习押题专练(19)含答案

合集下载

山东省2017届高考押题金卷数学(文)试卷(含答案)

山东省2017届高考押题金卷数学(文)试卷(含答案)

山东省2017高考押题金卷文科数学一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的1. 集合A={x|x2﹣a≤0},B={x|x<2},若A⊆B,则实数a的取值范围是()A.(﹣∞,4] B.(﹣∞,4)C. D.(0,4)2. 在△ABC中,M是BC的中点,AM=3,点P在AM上,且满足,则的值为()A.﹣4 B.﹣2 C.2 D.43. 设m、n是两条不同的直线,α、β、γ是三个不同的平面,则下列命题中正确的是()A.若α⊥β,m⊥α,则m∥βB.若m⊥α,n∥α,则m⊥nC.若m∥α,n∥α,则m∥n D.若α⊥γ,β⊥γ,则α∥β4. 函数y=Asin(ωx+ϕ)的部分图象如图所示,则其在区间上的单调递减区间是()A.和B.和C.和D.和5. 已知圆C的圆心为y=x2的焦点,且与直线4x+3y+2=0相切,则圆C的方程为()A. B.C.(x﹣1)2+y2=1 D.x2+(y﹣1)2=16某程序框图如图所示.该程序运行后输出的S的值是()A .1007B .2015C .2016D .30247. 数0,1,2,3,4,5,…按以下规律排列: …,则从2013到2016四数之间的位置图形为( )A .B .C .D .8. 设0>ω,函数)sin(ϕω+=x y )(πϕπ<<-的图象向左平移3π个单位后,得到下面的图像,则ϕω,的值为( )O ππ3211A .3,1πϕω-== B .3,2πϕω-==C .32,1πϕω== D.32,2πϕω==9. 已知抛物线C 的方程为212x y =,过点A ()1,0-和点()3,t B 的直线与抛物线C 没有公共点,则实数t 的取值范围是A. ()()+∞-∞-,11,YB. ⎪⎪⎭⎫ ⎝⎛+∞⎪⎪⎭⎫ ⎝⎛-∞-,2222,Y C. ()()+∞-∞-,,2222Y D. ()()+∞-∞-,,22Y10. 定义域是一切实数的函数()y f x =,其图象是连续不断的,且存在常数()R λλ∈使得()()0f x f x λλ++=对任意实数x 都成立,则称()f x 是一个“λ的相关函数”.有下列关于“λ的相关函数”的结论:①()0f x =是常数函数中唯一一个“λ的相关函数”;② 2()f x x =是一个“λ的相关函数”;③ “12的相关函数”至少有一个零点.其中正确结论的个数是( )A .1B .2C .3D .0二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置. 11. 已知数列{a n }满足a n ﹣a n+1=a n+1a n (n ∈N *),数列{b n }满足,且b 1+b 2+…+b 10=65,则a n = .12. 在ABC ∆中,34AE AB =u u u r u u u r ,23AF AC =u u u r u u u r,设,BF CE 交于点P ,且EP EC λ=u u u r u u u r ,FP FB μ=u u u r u u u r(,)R λμ∈,则λμ+的值为 .13. 设曲线y=在点(2,3)处的切线与直线ax+y+1=0垂直,则a= .14. 将某班参加社会实践编号为:1,2,3,…,48的48名学生,采用系统抽样的方法抽取一个容量为6的样本,已知5号,21号,29号,37号,45号学生在样本,则样本中还有一名学生的编号是 ____________. 15. 如图甲,在中,,,为.垂足,则,该结论称为射影定理.如图乙,在三棱锥中,平面,平面,为垂足,且在内,类比射影定理,探究、、这三者之间满足的关系是三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.16. (本小题满分12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosA(ccosB+bcosC)=a.(I)求A;(II)若△ABC的面积为,且c2+abcosC+a2=4,求a.17.(本小题满分12分)传统文化就是文明演化而汇集成的一种反映民族特质和风貌的民族文化,是民族历史上各种思想文化、观念形态的总体表征.教育部考试中心确定了2017年普通高考部分学科更注重传统文化考核.某校为了了解高二年级中国数学传统文化选修课的教学效果,进行了一次阶段检测,并从中随机抽取80名同学的成绩,然后就其成绩分为A、B、C、D、E五个等级进行数据统计如下:成绩人数A 9B 12C 31D 22E 6根据以上抽样调查数据,视频率为概率.(1)若该校高二年级共有1000名学生,试估算该校高二年级学生获得成绩为B的人数;(2)若等级A、B、C、D、E分别对应100分、80分、60分、40分、20分,学校要求“平均分达60分以上”为“教学达标”,请问该校高二年级此阶段教学是否达标?(3)为更深入了解教学情况,将成绩等级为A、B的学生中,按分层抽样抽取7人,再从中任意抽取2名,求恰好抽到1名成绩为A的概率.18. (本小题满分12分)已知数列{a n}的前n项和为S n,且S n=2n+1﹣2(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n=na n,求数列{b n}的前n项和T n.19. (本小题满分12分)如图,△ABC为边长为2的正三角形,AE∥CD,且AE⊥平面ABC,2AE=CD=2.(1)求证:平面BDE⊥平面BCD;(2)求三棱锥D﹣BCE的高.20. (本小题满分13分)已知a为常数,函数f(x)=x2+ax﹣lnx,g(x)=e x(其中e是自然数对数的底数).(1)过坐标原点O作曲线y=f(x)的切线,设切点P(x0,y0)为,求x0的值;(2)令,若函数F(x)在区间(0,1]上是单调函数,求a的取值范围.21. (本小题满分14分)平面直角坐标系xoy中,椭圆C1: +=1(a>b>0)的离心率为,过椭圆右焦点F作两条相互垂直的弦,当其中一条弦所在直线斜率为0时,两弦长之和为6.(1)求椭圆的方程;(2)A,B是抛物线C2:x2=4y上两点,且A,B处的切线相互垂直,直线AB与椭圆C1相交于C,D两点,求弦|CD|的最大值.山东省2017高考押题金卷数学文word版参考答案1【答案】B【解析】a=0时,A={0},满足题意;当a<0时,集合A=∅,满足题意;当a>0时,,若A⊆B,则,∴0<a<4,∴a∈(﹣∞,4),故选B.2【答案】A【解析】由题意可得,且,代入要求的式子化简可得答案.【解答】解:由题意可得:,且,∴===﹣4故选A3【答案】B【解析】A:直线m也可以在平面β内.B:根据线线垂直的判定可得结论是正确的.C:m与n可能平行也可能相交也可能异面.D:α与β也可以相交.可以举出墙角的例子.故选B.4【答案】B【解析】由函数y=Asin(ωx+ϕ)的部分图象可知,A=2, T=﹣(﹣)=,故T=π=,解得ω=2;由“五点作图法”得:2×+φ=,解得:φ=﹣.所以,y=2sin(2x﹣).由2kπ+≤2x﹣≤2kπ+(k∈Z)得:kπ+≤x≤kπ+(k∈Z).当k=0时,≤x ≤; 当k=1时,≤x ≤;综上所述,函数y=2sin (2x ﹣)在区间上的单调递减区间是[,]和[,]. 故选:B . 5【答案】D【解析】的焦点为(0,1),所以圆C 为,所以x 2+(y ﹣1)2=1, 故选:D . 6【答案】D【解析】模拟程序框图的运行过程,得出该程序运行后输出的算式: S=a 1+a 2+a 3+a 4+…+a 2013+a 2014+a 2015+a 2016=(0+1)+(﹣2+1)+(0+1)+(4+1)+…+(0+1)+(﹣2014+1)+(0+1)+ =6+…+6=6×=3024;所以该程序运行后输出的S 值是3024. 故选:D . 7【答案】B【解析】由排列可知,4个数字一循环,2014÷4=503×4+2,故2013的位置与1的位置相同,则2014的位置与2相同,2015的位置和3相同,2016的位置和4相同, 故选:B .8.【gkstk 答案】D 【gkstk 解析】试题分析:因为0>ω,函数)sin(ϕω+=x y )(πϕπ<<-的图象向左平移3π个单位后,得到sin ()sin()33y x x ππωφωωφ⎡⎤=++++⎢⎥⎣⎦,由函数的图像可知,2,,22362T T Tπππππω=+=∴=∴== 所以2sin(2)3y x πφ∴=++,又因为函数的图像过点5(,1)sin()1126ππφ-∴+=-,因为πφπ-<< 22,3πωφ==,应选D. 9【答案】 D 10【答案】A 11【答案】【解析】∵数列{a n }满足a n ﹣a n+1=a n+1a n (n ∈N *),∴﹣=1,即b n+1﹣b n =1,∴数列{b n }为等差数列,公差为1,又b 1+b 2+…+b 10=65, ∴10b 1+×1=65,解得b 1=2.∴b n =2+(n ﹣1)=n+1=,解得a n =.故答案为:.12【答案】75【解析】试题分析:由题设可得⎪⎩⎪⎨⎧-+=-+=)()(AF AB AF AP AE AC AE AP μλ,即⎪⎪⎩⎪⎪⎨⎧-+=-+=)32(32)43(43AC AB AC AP AB AC AB AP μλ,也即⎪⎪⎩⎪⎪⎨⎧+-=+-=AB AC AP AC AB AP μμλλ)1(32)1(43,所以⎪⎪⎩⎪⎪⎨⎧=-=-λμμλ)1(32)1(43,解之得⎪⎪⎩⎪⎪⎨⎧==3121μλ,故65=+μλ,应填65. 13【答案】﹣【解析】∵y=,∴y′=,∴曲线y=在点(2,3)处的切线的斜率k==﹣2,∵曲线y=在点(2,3)处的切线与直线直线ax+y+1=0垂直,∴直线ax+y+1=0的斜率k′=﹣a=,即a=﹣.故答案为:﹣.14【答案】13+=-=.【解析】系统抽样制取的样本编号成等差数列,因此还有一个编号为582181315【答案】【解析】因为作则,又有相同的底BC,所以,故答案为:16【解答】解:(I)由正弦定理可知,2cosA(sinBcosC+sinCcosB)=sinA,即2cosAsinA=sinA,因为A∈(0,π),所以sinA≠0,所以2cosA=1,即cosA=又A∈(0,π),所以A=;(II)∵△ABC的面积为,∴=,∴bc=1∵c2+abcosC+a2=4,∴3a2+b2+c2=8,∵a2=b2+c2﹣bc∴4a2=7,∴a=.17【解答】解:(1)由于这80人中,有12名学生成绩等级为B,所以可以估计该校学生获得成绩等级为B的概率为.…则该校高二年级学生获得成绩为B的人数约有1000×=150.…(2)由于这80名学生成绩的平均分为:(9×100+12×80+31×60+22×40+6×20)=59.…且59<60,因此该校高二年级此阶段教学未达标…(3)成绩为A、B的同学分别有9人,12人,所以按分层抽样抽取7人中成绩为A的有3人,成绩为B的有4人…则由题意可得:P(X=k)=,k=0,1,2,3.∴P(X=0)=,P(X=1)=,P(X=2)=,P(X=3)=.所以EX=0+1×+2×+3×=.10分)18【解答】解:(Ⅰ)由,当n=1时,,当n≥2,,则,当n=1时,a1=2满足上式,所以.(Ⅱ)由(Ⅰ),.则,所以,则==(1﹣n)2n+1﹣2.所以.19【解答】(1)证明:取BD边的中点F,BC的中点为G,连接AG,FG,EF,由题意可知,FG是△BCD的中位线所以FG∥AE且FG=AE,即四边形AEFG为平行四边形,所以AG∥EF由AG⊥平面BCD可知,EF⊥平面BCD,又EF⊂面BDE,故平面BDE⊥平面BCD;(2)解:过B做BK⊥AC,垂足为K,因为AE⊥平面ABC,所以BK⊥平面ACDE,且所以V四棱锥B﹣ACDE=×V三棱锥E﹣ABC=所以V三棱锥D﹣BCE=V四棱锥B﹣ACDE﹣V三棱锥E﹣ABC=因为AB=AC=2,AE=1,所以,又BC=2所以设所求的高为h,则由等体积法得=所以.20【解答】解:(1)f′(x)=2x+a﹣(x>0),过切点P(x0,y0)的切线的斜率k=2x0+a﹣==,整理得x02+lnx0﹣1=0,显然,x0=1是这个方程的解,又因为y=x2+lnx﹣1在(0,+∞)上是增函数,所以方程x2+lnx﹣1=0有唯一实数解.故x0=1;(2)F(x)==,F′(x)=,设h(x)=﹣x2+(2﹣a)x+a﹣+lnx,则h′(x)=﹣2x+++2﹣a,易知h'(x)在(0,1]上是减函数,从而h'(x)≥h'(1)=2﹣a;①当2﹣a≥0,即a≤2时,h'(x)≥0,h(x)在区间(0,1)上是增函数.∵h(1)=0,∴h(x)≤0在(0,1]上恒成立,即F'(x)≤0在(0,1]上恒成立.∴F(x)在区间(0,1]上是减函数.所以,a≤2满足题意;②当2﹣a<0,即a>2时,设函数h'(x)的唯一零点为x0,则h(x)在(0,x0)上递增,在(x0,1)上递减;又∵h(1)=0,∴h(x0)>0.又∵h(e﹣a)=﹣e﹣2a+(2﹣a)e﹣a+a﹣e a+lne﹣a<0,∴h(x)在(0,1)内有唯一一个零点x',当x∈(0,x')时,h(x)<0,当x∈(x',1)时,h(x)>0.从而F(x)在(0,x')递减,在(x',1)递增,与在区间(0,1]上是单调函数矛盾.∴a>2不合题意.综合①②得,a≤2.21【解答】解:(1)∵椭圆C1: +=1(a>b>0)的离心率为,过椭圆右焦点F作两条相互垂直的弦,当其中一条弦所在直线斜率为0时,两弦长之和为6,∴,解得a=2,b=c=,∴椭圆方程为.(2)设直线AB为:y=kx+m,A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),由,得x2﹣4kx﹣4m=0,则x1+x2=4k,x1x2=﹣4m,由x2=4y,得,故切线PA,PB的斜率分别为,k PB=,再由PA⊥PB,得k PA•k PB=﹣1,∴,解得m=1,这说明直线AB过抛物线C1的焦点F,由,得(1+2k2)x2+4kx﹣2=0,∴|CD|=•=≤3.当且仅当k=时取等号,∴弦|CD|的最大值为3.。

2017届高考数学第一轮复习押题专练(11)含答案

2017届高考数学第一轮复习押题专练(11)含答案

1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;1.正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则2.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .高频考点一 利用正弦定理、余弦定理解三角形例1、(1)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A .1个 B .2个 C .0个D .无法确定(2)在△ABC 中,已知sin A ∶sin B =2∶1,c 2=b 2+2bc ,则三内角A ,B ,C 的度数依次是________.(3)(2015·广东)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.答案 (1)B (2)45°,30°,105° (3)1解析 (1)∵b sin A =6×22=3,∴b sin A <a <b . ∴满足条件的三角形有2个.(2)由题意知a =2b ,a 2=b 2+c 2-2bc cos A , 即2b 2=b 2+c 2-2bc cos A , 又c 2=b 2+2bc , ∴cos A =22,A =45°,sin B =12,B =30°,∴C =105°. (3)因为sin B =12且B ∈(0,π),所以B =π6或B =5π6.又C =π6,B +C <π,所以B =π6,A =π-B -C =2π3.又a =3,由正弦定理得a sin A =b sin B ,即3sin 2π3=b sinπ6,解得b =1.【感悟提升】(1)判断三角形解的个数的两种方法①代数法:根据大边对大角的性质、三角形内角和公式、正弦函数的值域等判断. ②几何图形法:根据条件画出图形,通过图形直观判断解的个数.(2)已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数,用余弦定理时,可根据一元二次方程根的情况判断解的个数. 【变式探究】(1)已知在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是( ) A .x >2 B .x <2 C .2<x <2 2D .2<x <2 3(2)在△ABC 中,A =60°,AC =2,BC =3,则AB =________. 答案 (1)C (2)1高频考点二 和三角形面积有关的问题例2、(2015·浙江)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知A =π4,b2-a 2=12c 2.(1)求tan C 的值;(2)若△ABC 的面积为3,求b 的值.【感悟提升】(1)对于面积公式S=12ab sin C=12ac sin B=12bc sin A,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.【变式探究】四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(1)求C 和BD ;(2)求四边形ABCD 的面积.解 (1)由题设A 与C 互补及余弦定理得BD 2=BC 2+CD 2-2BC ·CD cos C =13-12cos C ,①高频考点三 正弦、余弦定理的简单应用例3、(1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若c b<cos A ,则△ABC 为( ) A .钝角三角形 B .直角三角形 C .锐角三角形D .等边三角形(2)在△ABC 中,cos 2B 2=a +c 2c(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( ) A .等边三角形 B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形 答案 (1)A (2)B解析 (1)已知c b <cos A ,由正弦定理,得sin Csin B<cos A ,即sin C <sin B cos A ,所以sin(A +B )<sin B cos A ,即sin B cos A +cos B sin A -sin B cos A <0,所以cos B sin A <0.又sin A >0,于是有cos B <0,B 为钝角,所以△ABC 是钝角三角形. (2)∵cos 2B 2=1+cos B 2,cos 2B 2=a +c 2c , ∴(1+cos B )·c =a +c ,∴a =cos B ·c =a 2+c 2-b 22a,∴2a 2=a 2+c 2-b 2, ∴a 2+b 2=c 2,∴△ABC 为直角三角形.【举一反三】(2015·课标全国Ⅱ)如图,在△ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍.(1)求sin B sin C ;(2)若AD =1,DC =22,求BD 和AC 的长.【感悟提升】(1)判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.②化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状,此时要注意应用A +B +C =π这个结论.(2)求解几何计算问题要注意①根据已知的边角画出图形并在图中标示; ②选择在某个三角形中运用正弦定理或余弦定理.【变式探究】(1)在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c ,若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形(2)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin∠BAC =223,AB =32,AD =3,则BD 的长为______.答案 (1)D (2) 3c=,【2016高考新课标1文数】△ABC的内角A、B、C的对边分别为a、b、c.已知a=2 2A=,则b=()cos3(A(B(C)2 (D)3【答案】D【解析】由余弦定理得3222452⨯⨯⨯-+=b b ,解得3=b (31-=b 舍去),故选D. 【2016高考山东文数】ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,已知22,2(1sin )b c a b A ==-,则A =( )(A )3π4(B )π3(C )π4(D )π6【答案】C【解析】由余弦定理得:()2222222cos 22cos 21cos a b c bc A b b A b A =+-=-=-,因为()2221sin a b A =-,所以cos sin A A =,因为cos 0A ≠,所以tan 1A =,因为()0,A ∈π,所以4A π=,故选C. 【2015高考广东,文5】设C ∆AB 的内角A ,B ,C 的对边分别为a ,b ,c .若2a =,c =,cos A =b c <,则b =( )A .2 C .D .3 【答案】B【解析】由余弦定理得:2222cos a b c bc =+-A ,所以(22222b b =+-⨯⨯,即2680b b -+=,解得:2b =或4b =,因为b c <,所以2b =,故选B .【2015高考福建,文14】若ABC ∆中,AC =045A =,075C =,则BC =_______.【2015高考重庆,文13】设ABC ∆的内角A ,B ,C 的对边分别为,,a b c ,且12,cos ,4a C ==-3sin 2sin A B =,则c=________. 【答案】4【解析】由3sin 2sin A B =及正弦定理知:32a b =,又因为2a =,所以2b =,由余弦定理得:22212cos 49223()164c a b ab C =+-=+-⨯⨯⨯-=,所以4c =;故填:4.【2015高考安徽,文12】在ABC ∆中,6=AB ,75=∠A ,45=∠B ,则=AC .【答案】2【解析】由正弦定理可知:45sin )]4575(180sin[AC AB =+-245sin 60sin 6=⇒=⇒AC AC【2015高考北京,文11】在C ∆A B 中,3a =,b =23π∠A =,则∠B= . 【答案】4π【解析】由正弦定理,得sin sin a b A B =,=所以sin 2B =,所以4B π∠=. 【2015高考山东,文17】 ABC ∆中,角A B C ,,所对的边分别为,,a b c .已知cos ()B A B ac =+==求sin A 和c 的值.【答案】3【2015高考天津,文16】(本小题满分13分)△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为12,cos ,4b c A -==- (I )求a 和sin C 的值; (II )求πcos 26A ⎛⎫+⎪⎝⎭的值.【答案】(I )a =8,sin C =(II .【2015高考新课标1,文17】(本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(I )若a b =,求cos ;B(II )若90B = ,且a 求ABC ∆的面积. 【答案】(I )14(II )1 【解析】(I )由题设及正弦定理可得22b ac =. 又a b =,可得2b c =,2a c =,由余弦定理可得2221cos 24a cb B ac +-==. (II )由(1)知22b ac =.因为B =90°,由勾股定理得222a cb +=.故222a c ac +=,得c a ==所以D ABC 的面积为1.【2015高考天津,文16】(本小题满分13分)△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为12,cos ,4b c A -==- (I )求a 和sin C 的值; (II )求πcos 26A ⎛⎫+⎪⎝⎭的值.【答案】(I )a =8,sin C =(II .(2014·湖北卷)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈上的最大值与最小值;(2)若f ⎝ ⎛⎭⎪⎫π2=0,f (π)=1,求a ,θ的值.(2014·四川卷)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫3x +π4. (1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝ ⎛⎭⎪⎫α3=45cos ⎝ ⎛⎭⎪⎫α+π4cos 2α,求cos α-sin α的值. 【解析】(1)因为函数y =sin x 的单调递增区间为⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z.所以,函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-π4+2k π3,π12+2k π3,k ∈Z. (2)由已知,得sin ⎝⎛⎭⎪⎫α+π4=45cos ⎝ ⎛⎭⎪⎫α+π4(cos 2α-sin 2α),所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎪⎫cos α cos π4-sin αsin π4(cos 2 α-sin 2α),1.在△ABC 中,若a =4,b =3,cos A =13,则B 等于( )A.π4B.π3C.π6D. 2π3答案 A解析 因为cos A =13,所以sin A =1-19=223, 由正弦定理,得4sin A =3sin B ,所以sin B =22, 又因为b <a ,所以B <π2,B =π4,故选A.2.设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,若b +c =2a,3sin A =5sin B ,则角C 等于( )A.2π3B.π3C.3π4D.5π6 答案 A解析 因为3sin A =5sin B ,所以由正弦定理可得3a =5b .因为b +c =2a ,所以c =2a -35a=75a .令a =5,b =3,c =7,则由余弦定理c 2=a 2+b 2-2ab cos C ,得49=25+9-2×3×5cos C ,解得cos C =-12,所以C =2π3.3.若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13,则△ABC ( ) A .一定是锐角三角形 B .一定是直角三角形 C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形 答案 C解析 由正弦定理asin A=bsin B=csin C=2R (R 为△ABC 外接圆半径)及已知条件sin A ∶sin B ∶sin C =5∶11∶13,可设a =5x ,b =11x ,c =13x (x >0). 则cos C = 5x 2+ 11x 2- 13x 22·5x ·11x =-23x2110x 2<0,∴C 为钝角.∴△ABC 为钝角三角形.4.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( ) A .3 B.932C.332D .3 3答案 C5.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c -b c -a =sin Asin C +sin B,则B 等于( ) A.π6 B.π4 C.π3 D.3π4 答案 C解析 根据正弦定理a sin A =b sin B =csin C =2R ,得c -b c -a =sin A sin C +sin B =ac +b, 即a 2+c 2-b 2=ac ,得cos B =a 2+c 2-b 22ac =12,故B =π3,故选C.6.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为________. 答案π3或2π3解析 由余弦定理,得a 2+c 2-b 22ac=cos B ,结合已知等式得cos B ·tan B =32, ∴sin B =32,∴B =π3或2π3. 7.在△ABC 中,若b =5,B =π4,tan A =2,则a =______.答案 2108.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________. 答案3解析 由正弦定理,可得(2+b )(a -b )=(c -b )·c . ∵a =2,∴a 2-b 2=c 2-bc ,即b 2+c 2-a 2=bc .由余弦定理,得cos A =b 2+c 2-a 22bc =12.∴sin A =32. 由b 2+c 2-bc =4,得b 2+c 2=4+bc . ∵b 2+c 2≥2bc ,即4+bc ≥2bc ,∴bc ≤4. ∴S △ABC =12bc ·sin A ≤3,即(S △ABC )max = 3.9.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a ≠b ,c =3,cos 2A -cos 2B =3sin A cos A -3sin B cos B . (1)求角C 的大小;(2)若sin A =45,求△ABC 的面积.10.如图,在△ABC中,B=π3,AB=8,点D在BC边上,且CD=2,cos∠ADC=17.(1)求sin∠BAD;(2)求BD、AC的长.解 (1)在△ADC 中, 因为cos∠ADC =17,所以sin∠ADC =437.所以sin∠BAD =sin(∠ADC -B ) =sin∠ADC cos B -cos∠ADC sin B =437×12-17×32=3314. (2)∵∠ADB +∠ADC =π, ∴sin∠ADB =sin∠ADC =437.在△ABD 中,由正弦定理得 BD =AB ·sin∠BADsin∠ADB =8×3314437=3.在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·c os B=82+(2+3)2-2×8×5×12=49.所以AC =7.11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a 2-(b -c )2=(2-3)bc ,sin A sin B =cos 2C2,BC 边上的中线AM 的长为7.(1)求角A 和角B 的大小; (2)求△ABC 的面积.。

2017年高考押题卷理科数学(一)含解析

2017年高考押题卷理科数学(一)含解析

理 科 数 学(一)本试题卷共6页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

第Ⅰ卷一、选择题:本题共12小题,每小题5分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知复数z 是一元二次方程2220x x -+=的一个根,则z 的值为( )A .1BC .0D .22.已知集合{}|14x x A =<<,集合{}|2,B y y x x A ==-∈,集合2|ln 1x C x y x -⎧⎫==⎨⎬+⎩⎭,则集合B C =( )A .{}|11x x -<<B .{}|11x x -≤≤C .{}|12x x -<<D .{}|12x x -<≤3.已知等差数列{}n a ,36S =,9111360a a a ++=,则13S 的值为( ) A .66B .42C .169D .1564.世界最大单口径射电望远镜FAST 于2016年9月25日在贵州省黔南州落成启用,它被誉为“中国天眼”,从选址到启用历经22年,FAST 选址从开始一万多个地方逐一审查.为了加快选址工作进度,将初选地方分配给工作人员.若分配给某个研究员8个地方,其中有三个地方是贵州省的,问:某月该研究员从这8个地方中任选2个地方进行实地研究,则这个月他能到贵州省的概率为( )A .328B .1528C .37D .9145.某几何体的三视图如图所示,则它的表面积是( )A .43B.7 C.5+D.7+(第5题图) (第6题图)6.如图,在三棱锥A BCD -中,AB ⊥面BCD ,45ACB ∠=︒,30ADB ∠=︒,120BCD ∠=︒,40CD =,则AB =( )A .10B .20C .30D .407.已知函数()y f x =,满足()y f x =-和()2y f x =+是偶函数,且()π13f =,设()()F x f x=+()f x -,则(3)F =( ) A .π3B .2π3C .πD .4π38.已知抛物线()220y px p =>,过点()4,0C -作抛物线的两条切线CA ,CB ,A 、B 为切点,若直线AB 经过抛物线22y px =的焦点,CAB △的面积为24,则以直线AB 为准线的抛物线标准方程是( ) A .24y x = B .24y x =- C .28y x =D .28y x =-9.根据右边流程图输出的值是( ) A .11B .31C .51D .7910.在长方体1111ABCD A B C D -中,11111,2AA A D a A B a ===,点P 在线段1AD 上运动,当异面直线CP 与1BA 所成的角最大时,则三棱锥11C PA D -的体积为( )A .34aB .33aC .32aD .3a (第9题图)11.已知函数()sin()f x x ωϕ=+π0,,02ωϕ⎛⎫⎡⎤>∈-⎪⎢⎥⎣⎦⎝⎭的周期为π,将函数()f x 的图像沿着y 轴向上平移一个单位得到函数()g x 图像.设()1g x <,对任意的ππ,312x ⎛⎫∈-- ⎪⎝⎭恒成立,当ϕ取得最小值时,π4g ⎛⎫⎪⎝⎭的值是( ) A .12B .1C .32D .212.已知函数()2ln xf x x x=-,有下列四个命题; ①函数()f x 是奇函数; ②函数()f x 在()(),00,-∞+∞是单调函数;③当0x >时,函数()0f x >恒成立; ④当0x <时,函数()f x 有一个零点, 其中正确的个数是( ) A .1B .2C .3D .4第Ⅱ卷本卷包括必考题和选考题两部分。

2017年高考数学第一轮复习测试题含答案.doc

2017年高考数学第一轮复习测试题含答案.doc

2017年高考数学第一轮复习测试题含答案现在高三学生已经着手开始2017年高考数学复习了,只有认真的进行数学复习才能在考试中轻松取得好成绩,为了帮助大家做好高考数学复习,下面为大家带来2017年高考数学第一轮复习测试题含答案这篇内容,希望高考生能够认真阅读。

第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。

)1.(2011合肥质检)集合A={1,2,3},B={xR|x2-ax+1=0,aA},则AB=B 时a的值是()A.2B.2或3C.1或3D.1或2[答案] D[解析]由AB=B知BA,a=1时,B={x|x2-x+1=0}=A;a=2时,B={x|x2-2x+1=0}={1}A;a=3时,B={x|x2-3x+1=0}={3+52,3-52}?A,故选D.2.(文)(2011合肥质检)在复平面内,复数i3-i(i是虚数单位)对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限[答案] B[解析]z=i3-i=i?3+i?3-?-1?=-14+34i的对应点-14,34在第二象限.(理)(2011蚌埠二中质检)如果复数2-bi1+2i(其中i为虚数单位,b为实数)的实部和虚部互为相反数,那么b等于()A.2B.23C.-23D.2[答案] C[解析]∵2-bi1+2i=?2-bi??1-2i?5=2-2b5+-b-45i的实部与虚部互为相反数,2-2b5+-b-45=0,b=-23,故选C.3.(文)(2011日照调研)若e1,e2是夹角为3的单位向量,且a=2e1+e2,b=-3e1+2e2,则ab等于()A.1B.-4C.-72D.72[答案] C[解析]e1e2=11cos3=12,ab=(2e1+e2)(-3e1+2e2)=-6e21+2e22+e1e2=-6+2+12=-72,故选C. (理)(2011河南豫州九校联考)若A、B是平面内的两个定点,点P为该平面内动点,且满足向量AB与AP夹角为锐角,|PB||AB|+PAAB=0,则点P的轨迹是()A.直线(除去与直线AB的交点)B.圆(除去与直线AB的交点)C.椭圆(除去与直线AB的交点)D.抛物线(除去与直线AB的交点) [答案] D[解析]以AB所在直线为x轴,线段AB中点为原点,建立平面直角坐标系,设A(-1,0),则B(1,0),设P(x,y),则PB=(1-x,-y),PA=(-1-x,-y),AB=(2,0),∵|PB||AB|+PAAB=0,2?1-x?2+?-y?2+2(-1-x)=0,化简得y2=4x,故选D.4.(2011黑龙江哈六中期末)为了了解甲,乙,丙三所学校高三数学模拟考试的情况,现采取分层抽样的方法从甲校的1260份,乙校的720份,丙校的900份模拟试卷中抽取试卷进行调研,如果从丙校抽取了50份,那么这次调研一共抽查的试卷份数为()A.150B.160C.200D.230[答案] B[解析]依据分层抽样的定义,抽样比为50900=118,故这次调研一共抽查试卷(1260+720+900)118=160份.5.(文)(2011福州市期末)设函数y=f(x)的定义域为实数集R,对于给定的正数k,定义函数fk(x)=f?x??f?x?k?k ?f?x?k?,给出函数f(x)=-x2+2,若对于任意的x(-,+),恒有fk(x)=f(x),则()A.k的最大值为2B.k的最小值为2C.k的最大值为1D.k的最小值为1[答案] B[解析]∵x(-,+)时,f(x)=-x2+22,且fk(x)=f(x)恒成立,且当f(x)k 时,fk(x)=k,故k的最小值为2.(理)(2011丰台区期末)用max{a,b}表示a,b两个数中的最大数,设f(x)=max{x2,x}(x14),那么由函数y=f(x)的图象、x轴、直线x=14和直线x=2所围成的封闭图形的面积是()A.3512B.5924C.578D.9112[答案] A[解析]如图,平面区域的面积为6.(2011北京丰台区期末)下面程序框图运行后,如果输出的函数值在区间[-2,12]内,则输入的实数x的取值范围是()A.(-,-1]B.[14,2]C.(-,0)[14,2]D.(-,-1][14,2][答案] D[解析]∵x0时,f(x)=2x(0,1),由02x12得,x-1;由-2log2x12x0得,14x2,故选D.7.(文)(2011潍坊一中期末)下列有关命题的说法错误的是()A.命题若x2-3x+2=0,则x=1的逆否命题为:若x1,则x2-3x+20B.x=1是x2-3x+2=0的充分不必要条件C.若pq为假命题,则p、q均为假命题D.对于命题p:xR使得x2+x+10,则綈p:xR,均有x2+x+10 [答案] C[解析]若pq为假命题,则p、q至少有一个为假命题,故C错误. (理)(2011巢湖质检)给出下列命题①设a,b为非零实数,则a②命题p:垂直于同一条直线的两直线平行,命题q:垂直于同一条直线的两平面平行,则命题pq为真命题;③命题xR,sinx1的否定为x0R,sinx01;④命题若x2且y3,则x+y5的逆否命题为若x+y5,则x2且y3,其中真命题的个数是()A.4个B.3个C.2个D.1个[答案] D[解析]①取a=-1,b=2满足a8.(文)(2011陕西宝鸡质检)若将函数y=cosx-3sinx的图象向左平移m(m0)个单位后,所得图象关于y轴对称,则实数m的最小值为() A.6 B.3C.23D.56[答案] C[解析]y=cosx-3sinx=2cosx+3左移m个单位得y=2cosx+m+3为偶函数,m+3=k,kZ.∵m0,m的最小值为23.(理)(2011咸阳模拟)将函数y=sin2x+4的图像向左平移4个单位,再向上平移2个单位,则所得图像的函数解析式是()A.y=2+sin2x+34B.y=2+sin2x-4C.y=2+sin2xD.y=2+cos2x[答案] A[解析]y=sin2x+4――――――――图象再向上平移4个单位用x+4代替xy=sin2x+4+4―――――――图象再向上平移2个单位用y-2代替y y-2=sin2x+4+4,即得y=sin2x+34+2,故选A.9.(2011陕西咸阳模拟)如图所示的程序框图,其输出结果是()A.341B.1364C.1365D.1366[答案] C[解析]程序运行过程依次为:a=1,a=41+1=5,a500满足a=45+1=21,a500仍满足a=421+1=85,a500满足a=485+1=341,a500满足a=4341+1=1365,a500不满足输出a的值1365后结束,故选C.[点评]要注意循环结束的条件和输出结果是什么.10.(文)(2011山东淄博一中期末)如图为一个几何体的三视图,左视图和主视图均为矩形,俯视图为正三角形,尺寸如图,则该几何体的全面积为()A.2723B.123C.24D.24+23[答案] D[解析]由三视图知,该几何体是底面边长为332=2,高为4的正三棱柱,故其全面积为3(24)+23422=24+23.(理)(2011山东日照调研)下图是某四棱锥的三视图,则该几何体的表面积等于()A.34+65B.6+65+43C.6+63+413D.17+65[答案] A[解析]由三视图知,该四棱锥底面是一个矩形,两边长分别为6和2,有一个侧面PAD与底面垂直,高为4,故其表面积S=62+1264+212242+32+12642+22=34+65.11.(2011陕西宝鸡质检)双曲线x2m-y2n=1(mn0)的离心率为2,有一个焦点与抛物线y2=4x的焦点重合,则mn的值为()A.83B.38C.316D.163[答案] C[解析]抛物线焦点F(1,0)为双曲线一个焦点,m+n=1,又双曲线离心率为2,1+nm=4,解得m=14n=34,mn=316.12.(文)(2011广东高州市长坡中学期末)方程|x-2|=log2x的解的个数为()A.0B.1C.2D.3[答案] C[解析]在同一坐标系中作出函数y=|x-2|与y=log2x的图象可知两图象有两个交点,故选C.(理)(2011山东实验中学期末)具有性质:f1x=-f(x)的函数,我们称为满足倒负变换的函数,下列函数:①y=x-1x,②y=x+1x,③y=x,?0 A.①② B.②③C.①③D.只有①[答案] C[解析]①对于函数f(x)=x-1x,∵f1x=1x-x=-x-1x=-f(x),①是倒负变换的函数,排除B;②对于函数f(x)=x+1x有f1x=1x+x=f(x)不满足倒负变换,排除A;对于③,当0第Ⅱ卷(非选择题共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上)13.(2011黑龙江哈六中期末)一个盒子里装有标号为1,2,3,4,5的5张标签,不放回地抽取2张标签,则2张标签上的数字为相邻整数的概率为________(用分数表示).[答案]25[解析](文)任取两张标签,所有可能取法有1,2;1,3;1,4;1,5;2,3;2,4;2,5;3,4;3,5;4,5;共10种,其中两数字相邻的有4种,所求概率p=410=25.(理)从5张标签中,任取2张,有C25=10种取法,两张标签上的数字为相邻整数的取法有4种,概率p=410=25.14.(2011浙江宁波八校联考)点(a,b)为第一象限内的点,且在圆(x+1)2+(y+1)2=8上,ab的最大值为________.[答案] 1[解析]由条件知a0,b0,(a+1)2+(b+1)2=8,a2+b2+2a+2b=6,2ab+4ab6,∵ab0,0[点评]作出图形可见,点(a,b)为⊙C在第一象限的一段弧,由对称性可知,当点(a,b)为直线y=x与⊙C的交点(1,1)时,ab取最大值1.15.(2011重庆南开中学期末)已知数列{an}的前n项和Sn满足Sn=2n-1,则当n2时,1a1+1a2++1an=________.[答案]2-12n-1[解析]a1=S1=1,n2时,an=Sn-Sn-1=2n-2n-1=2n-1,an=2n-1(nN*),1an=12n-1,1a1+1a2++1an=1-12n1-12=2-12n-1.16.(文)(2011北京学普教育中心)设函数f(x)的定义域为D,若存在非零实数l,使得对于任意xM(MD),有x+lD,且f(x+l)f(x),则称f(x)为M上的l高调函数.如果定义域为[-1,+)的函数f(x)=x2为[-1,+)上的m高调函数,那么实数m的取值范围是________.[答案][2,+)[解析]f(x)=x2(x-1)的图象如图所示,要使得f(-1+m)f(-1)=1,应有m2;故x-1时,恒有f(x+m)f(x),只须m2即可.(理)(2011四川资阳模拟)下图展示了一个由区间(0,1)到实数集R的映射过程:区间(0,1)中的实数m对应数轴上的点M,如图①;将线段AB围成一个圆,使两端点A、B恰好重合,如图②;再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为(0,1),在图形变化过程中,图①中线段AM的长度对应于图③中的弧ADM的长度,如图③.图③中直线AM与x轴交于点N(n,0),则m的象就是n,记作f(m)=n.给出下列命题:①f14=1;②f(x)是奇函数;③f(x)在定义域上单调递增,则所有真命题的序号是________.(填出所有真命题的序号)[答案]③[解析]由m的象是n的定义知,f140,故①假,随着m的增大,点N沿x轴向右平移,故n增大,③为真命题;由于m是线段AM的长度,故f(x)为非奇非偶函数,②假.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)(文)(2011淄博一中期末)已知a=(cosx-sinx,2sinx),b=(cosx+sinx,3cosx),若ab=1013,且x-4,6,求sin2x的值.[解析]∵ab=cos2x-sin2x+23sinxcosx=cos2x+3sin2x=2sin2x+6=1013,sin2x+6=513,∵x-4,6,2x+6-3,2,cos2x+6=1213,sin2x=sin2x+6-6=sin2x+6cos6-cos2x+6sin6=51332-121312=53-1226. (理)(2011四川广元诊断)在△ABC中,a、b、c分别为角A、B、C 的对边,向量m=(2a-c,b),n=(cosC,cosB),且m∥n.(1)求角B的大小;(2)若b=3,求a+c的最大值.[MVC:PAGE][解析](1)由题意知(2a-c)cosB=bcosC,(2a-c)a2+c2-b22ac=ba2+b2-c22ab,a2+c2-b2=ac,cosB=a2+c2-b22ac=12,B=3.(2)由(1)知a2+c2-b2=ac,b=3,a2+c2-ac=3,(a+c)2-3ac=3,(a+c)2-3a+c223,14(a+c)23,a+c23,即a+c的最大值为23.18.(本小题满分12分)(文)(2011重庆南开中学期末)设函数f(x)=-x2+2ax+m,g(x)=ax.(1)若函数f(x),g(x)在[1,2]上都是减函数,求实数a的取值范围;(2)当a=1时,设函数h(x)=f(x)g(x),若h(x)在(0,+)内的最大值为-4,求实数m的值.[解析](1)∵f(x),g(x)在[1,2]上都是减函数,a1a0,0实数a的取值范围是(0,1].(2)当a=1时,h(x)=f(x)g(x)=-x2+2x+mx=-x+mx+2;当m0时,显然h(x)在(0,+)上单调递减,h(x)无最大值;当m0时,h(x)=-x+mx+2=-x+?-m?x+2-2-m+2.当且仅当x=-m时,等号成立.h(x)max=-2-m+2,-2-m+2=-4m=-9.(理)(2011黑龙江哈六中期末)已知函数f(x)=lnx+2x,g(x)=a(x2+x).(1)若a=12,求F(x)=f(x)-g(x)的单调区间;(2)当a1时,求证:f(x)g(x).[解析](1)a=12,F(x)=lnx+2x-12(x2+x)(x0)F(x)=1x-x+32=2-2x2+3x2x=-?2x+1??x-2?2x,∵x0,当0F(x)的增区间为(0,2),减区间为(2,+).(2)令h(x)=f(x)-g(x)(x0)则由h(x)=f(x)-g(x)=1x+2-2ax-a=-?2x+1??ax-1?x=0,解得x=1a,∵h(x)在0,1a上增,在1a,+上减,当x=1a时,h(x)有最大值h1a=ln1a+2a-a1a2+1a=ln1a+1a-1,∵a1,ln1a0,1a-10,h(x)h1a0,所以f(x)g(x).19.(本小题满分12分)(文)(2011厦门期末)已知数列{an}是公差不为零的等差数列,a1=1,且a1,a2,a4成等比数列.(1)求通项an;(2)令bn=an+2an,求数列{bn}的前n项和Sn.[解析](1)设数列{an}的公关差为d,则d0,∵a1,a2,a4成等比数列,a22=a1a4,(a1+d)2=a1(a1+3d),整理得:a1=d,又a1=1,d=1,an=a1+(n-1)d=1+(n-1)1=n.即数列{an}的通项公式为an=n.(2)由(1)可得bn=an+2an=n+2n,Sn=b1+b2+b3++bn=(1+21)+(2+22)+(3+23)++(n+2n)=(1+2+3++n)+(21+22+23++2n)=n?n+1?2+2?1-2n?1-2=n?n+1?2+2(2n-1)=2n+1+12n2+12n-2.故数列{bn}的前n项和为Sn=2n+1+12n2+12n-2.(理)(2011河北冀州期末)设各项均为正数的数列{an}的前n项和为Sn,已知2a2=a1+a3,数列{Sn}是公差为d的等差数列.(1)求数列{an}的通项公式(用n,d表示);(2)设c为实数,对满足m+n=3k且mn的任意正整数m,n,k,不等式Sm+SncSk都成立,求c的最大值.[解析](1)由题意知:d0,Sn=S1+(n-1)d=a1+(n-1)d2a2=a1+a33a2=S33(S2-S1)=S3,3[(a1+d)2-a1]2=(a1+2d)2,化简得:a1-2a1d+d2=0,a1=d,a1=d2Sn=d+(n-1)d=nd,Sn=n2d2,当n2时,an=Sn-Sn-1=n2d2-(n-1)2d2=(2n-1)d2,适合n=1的情形. 故an=(2n-1)d2.(2)Sm+SncSkm2d2+n2d2ck2d2m2+n2ck2,c又m+n=3k且mn,2(m2+n2)(m+n)2=9k2m2+n2k292,故c92,即c的最大值为92.20.(本小题满分12分)(2011山西太原调研)已知椭圆方程为x2a2+y2b2=1(ab0),它的一个顶点为M(0,1),离心率e=63.(1)求椭圆的方程;(2)设直线l与椭圆交于A,B两点,坐标原点O到直线l的距离为32,求△AOB的面积的最大值.[解析](1)依题意得b=1e=ca=a2-b2a=63解得a=3,b=1,椭圆的方程为x23+y2=1.(2)①当ABx轴时,|AB|=3,②当AB与x轴不垂直时,设直线AB的方程为y=kx+m,A(x1,y1),B(x2,y2),由已知|m|1+k2=32得,m2=34(k2+1),把y=kx+m代入椭圆方程整理得,(3k2+1)x2+6kmx+3m2-3=0,x1+x2=-6km3k2+1,x1x2=3?m2-1?3k2+1.当k0时,|AB|2=(1+k2)(x2-x1)2=(1+k2)36k2m2?3k2+1?2-12?m2-1?3k2+1=12?1+k2??3k2+1-m2??3k2+1?2=3?k2+1??9k2+1??3k2+1?2=3+12k29k4+6k2+1=3+129k2+1k2+63+1223+6=4.当且仅当9k2=1k2,即k=33时等号成立,此时|AB|=2.当k=0时,|AB|=3.综上所述:|AB|max=2,此时△AOB面积取最大值S=12|AB|max32=32.21.(本小题满分12分)(文)一个多面体的三视图及直观图如图所示,M、N分别是A1B、B1C1的中点.(1)求证:MN∥平面ACC1A1;(2)求证:MN平面A1BC.[证明]由题意,这个几何体是直三棱柱,且ACBC,AC=BC=CC1.(1)由直三棱柱的性质知,四边形ABB1A1为矩形,对角线交点M又∵N为B1C1的中点,△AB1C1中,MN∥AC1.又∵AC1平面ACC1A1,MN平面ACC1A1.MN∥平面ACC1A1.(2)∵直三棱柱ABC-A1B1C1中,平面ACC1A1平面ABC,交线为AC,又ACBC,BC平面ACC1A1,又∵AC1平面ACC1A1,BCAC1.在正方形ACC1A1中,AC1A1C.又BCA1C=C,AC1平面A1BC,∵MN∥AC1,MN平面A1BC.[点评]将几何体的三视图与线面平行垂直的位置关系判断融合在一起是立体几何新的命题方向.解答这类问题首先要通过其三视图确定几何体的形状和主要几何量,然后利用几何体的性质进行推理或计算.请再练习下题:已知四棱锥P-ABCD的三视图如图,E是侧棱PC上的动点.(1)求四棱锥P-ABCD的体积;(2)若点F在线段BD上,且DF=3BF,则当PEEC等于多少时,有EF∥平面PAB?并证明你的结论;(3)试证明P、A、B、C、D五个点在同一球面上.[解析](1)由四棱锥的三视图可知,四棱锥P-ABCD的底面是边长侧棱PC底面ABCD,且PC=2.VP-ABCD=13S正方形ABCDPC=23.(2)当PEEC=13时,有EF∥平面PAB.连结CF延长交AB于G,连结PG,在正方形ABCD中,DF=3BF. 由△BFG∽△DFC得,GFFC=BFDF=13.在△PCG中,PEEC=13=GFFC,EF∥PG.又PG平面PAB,EF平面PAB,EF∥平面PAB.(3)证明:取PA的中点O.在四棱锥P-ABCD中,侧棱PC平面ABCD,底面ABCD为正方形,可知△PCA、△PBA、△PDA均是直角三角形,又O为PA中点,OA=OP=OB=OC=OD.点P、A、B、C、D在以点O为球心的球面上.(理)(2011湖南长沙一中期末)如图,在矩形ABCD中,AB=5,BC=3,沿对角线BD把△ABD折起,使A移到A1点,过点A1作A1O平面BCD,垂足O恰好落在CD上.(1)求证:BCA1D;(2)求直线A1B与平面BCD所成角的正弦值.[解析](1)因为A1O平面BCD,BC平面BCD,BCA1O,因为BCCD,A1OCD=O,BC平面A1CD.因为A1D平面A1CD,BCA1D.(2)连结BO,则A1BO是直线A1B与平面BCD所成的角.因为A1DBC,A1DA1B,A1BBC=B,A1D平面A1BC,∵A1C平面A1BC,A1DA1C.在Rt△DA1C中,A1D=3,CD=5,A1C=4.根据S△A1CD=12A1DA1C=12A1OCD,得到A1O=125,在Rt△A1OB中,sinA1BO=A1OA1B=1255=1225.所以直线A1B与平面BCD所成角的正弦值为1225.选做题(22至24题选做一题)22.(本小题满分12分)几何证明选讲(2011北京学普教育中心联考)如图,A、B是两圆的交点,AC是小圆的直径,D和E分别是CA和CB的延长线与大圆的交点,已知AC=4,BE=10,且BC=AD,求DE的长.[解析]设CB=AD=x,则由割线定理得:CACD=CBCE,即4(4+x)=x(x+10)化简得x2+6x-16=0,解得x=2或x=-8(舍去)即CD=6,CE=12.因为CA为直径,所以CBA=90,即ABE=90,则由圆的内接四边形对角互补,得D=90,则CD2+DE2=CE2,62+DE2=122,DE=63.23.(本小题满分12分)极坐标与参数方程(2011辽宁省实验中学期末)已知直线l经过点P12,1,倾斜角=6,圆C的极坐标方程为=2cos-4.(1)写出直线l的参数方程,并把圆C的方程化为直角坐标方程;(2)设l与圆C相交于两点A、B,求点P到A、B两点的距离之积. [解析](1)直线l的参数方程为x=12+tcos6y=1+tsin6即x=12+32ty=1+12t(t为参数)由=2cos-4得=cos+sin,所以2=cos+sin,∵2=x2+y2,cos=x,sin=y,x-122+y-122=12.(2)把x=12+32ty=1+12t代入x-122+y-122=12得t2+12t-14=0,|PA||PB|=|t1t2|=14.故点P到点A、B两点的距离之积为14.24.(本小题满分12分)不等式选讲(2011大连市联考)已知函数f(x)=|x-2|,g(x)=-|x+3|+m.(1)解关于x的不等式f(x)+a-10(aR);(2)若函数f(x)的图象恒在函数g(x)图象的上方,求m的取值范围. [解析](1)不等式f(x)+a-10,即|x-2|+a-10,当a=1时,解集为x2,即(-,2)(2,+);当a1时,解集为全体实数R;当a1时,∵|x-2|1-a,x-21-a或x-2故解集为(-,a+1)(3-a,+).(2)f(x)的图象恒在函数g(x)图象的上方,即为|x-2|-|x+3|+m对任意实数x恒成立,即|x-2|+|x+3|m恒成立.又对任意实数x恒有|x-2|+|x+3||(x-2)-(x+3)|=5,于是得m5,即m的取值范围是(-,5).为大家带来了2017年高考数学第一轮复习测试题含答案,高考数学复习对大家来说很重要,希望大家能够下功夫复习好数学这一科目,从而在高考中取得好的数学成绩。

2017届江西省高考原创押题卷(一)数学理.doc

2017届江西省高考原创押题卷(一)数学理.doc

2017年高考原创押题卷(一)数学(理科)时间:120分钟 满分:150分第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={(x ,y )|y 2<x },B ={(x ,y )|xy =-2,x ∈Z ,y ∈Z},则A ∩B =( ) A .∅ B .{(2,-1)}C .{(-1,2),(-2,1)}D .{(1,-2),(-1,2),(-2,1)}2.若2+a i 1+i =x +y i(a ,x ,y ∈R),且xy >1,则实数a 的取值范围是 ( )A .(22,+∞)B .(-∞,-22)∪(22,+∞)C .(-22,2)∪(22,+∞)D .(-∞,-2)∪(2,+∞)3.若sin x =2sin ⎝ ⎛⎭⎪⎫x +π2,则cos x cos ⎝⎛⎭⎪⎫x +π2= ( )A.25 B .-25 C.23 D .-23 4.图11为某市国庆节7天假期的楼房认购量与成交量的折线图,小明同学根据折线图对这7天的认购量(单位:套)与成交量(单位:套)作出如下判断:①日成交量的中位数是16;②日成交量超过日平均成交量的有2天;③认购量与日期正相关;④10月7日认购量的增幅大于10月7日成交量的增幅.则判断错误的个数为( )图11A .1B .2C .3D .45.已知梯形ABCD 中,∠ABC =∠BAD =π2,AB =BC =1,AD =2,P 是DC 的中点,则|+2|=( )A.822B .2 5C .4D .56.某几何体的三视图如图12所示,若该几何体的体积为2π3,则a 的值为( )图12A .1B .2C .2 2 D.327.执行如图13所示的程序框图,若输出的i =3,则输入的a (a >0)的值所在范围是( )图13A.[)9,+∞B.[]8,9C.[)8,144D.[)9,1448.狄利克雷函数是高等数学中的一个典型函数,若f ()x =⎩⎪⎨⎪⎧1,x ∈Q ,0,x ∈∁RQ ,则称f ()x 为狄利克雷函数.对于狄利克雷函数f ()x ,给出下面4个命题:①对任意x ∈R ,都有f =1;②对任意x ∈R ,都有f ()-x +f ()x =0;③对任意x 1∈R ,都有x 2∈Q ,f (x 1+x 2)=f ()x 1;④对任意a ,b ∈(-∞,0),都有{x |f ()x >a }={x |f ()x >b }.其中所有真命题的序号是( ) A .①④ B .③④ C .①②③ D .①③④9.已知△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若b c =cos A 1+cos C ,则sin ⎝⎛⎭⎪⎫2A +π6的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,12B.⎝ ⎛⎦⎥⎤-12,1C.⎝ ⎛⎦⎥⎤12,1D.⎣⎢⎡⎭⎪⎫-1,12 10.如图14所示,点O 为正方体ABCDA ′B ′C ′D ′的中心,点E 为棱B ′B 的中点,若AB =1,则下面说法正确的是( )图14A .直线AC 与直线EC ′ 所成角为45°B .点E 到平面OCD ′的距离为12C .四面体OEA ′B ′在平面ABCD 上的射影是面积为16的三角形D .过点O ,E ,C 的平面截正方体所得截面的面积为6211.已知椭圆D :x 2a 2+y 2b2=1(a >b >0)的长轴端点与焦点分别为双曲线E 的焦点与实轴端点,椭圆D 与双曲线E 在第一象限的交点在直线y =2x 上,则椭圆D 的离心率为( )A. 2-1B.3-2C.5-12 D.3-22212.若函数y =-e 2-x 的图像上任意一点关于点(1,0)的对称点都不在函数y =ln(m m x e)的图像上,则正整数m 的取值集合为( )A.{}1B.{}1,2C.{}2,3D.{}1,2,3第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答,第22题~第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13.(1-x )8+(1-x 2)4的展开式中x 6项的系数为________.14.已知不等式组⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0表示的平面区域为D ,若存在x 0∈D ,使得y =2x 0+mx 0||x 0,则实数m 的取值范围是________.15.已知圆E :x 2+y 2-2x =0,若A 为直线l :x +y +m =0上任意一点,过点A 可作两条直线与圆E 分别切于点B ,C ,且△ABC 为正三角形,则实数m 的取值范围是________.16.已知f ()x =sin 4ωx -cos 4ωx ()ω>0的值域为A ,若对任意a ∈R ,存在x 1,x 2∈R 且x 1<x 2,使得{y |y =f ()x ,a ≤x ≤a +2}==A ,设x 2-x 1的最小值为g ()ω,则g ()ω的值域为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知S n =na 1+(n -1)a 2+…+2a n -1+a n . (1)若{}a n 是等差数列,且S 1=5,S 2=18,求a n ; (2)若{}a n 是等比数列,且S 1=3,S 2=15,求S n . 18.(本小题满分12分)某互联网理财平台为增加平台活跃度决定举行邀请好友拿奖励活动,规则是每邀请一位好友在该平台注册,并购买至少1万元的12月定期,邀请人可获得现金及红包奖励,现金奖励为被邀请人理财金额的1%,且每邀请一位最高现金奖励为300元,红包奖励为每邀请一位奖励50元.假设甲邀请到乙、丙两人,且乙、丙两人同意在该平台注册,并进行理财,乙、丙两人分别购买1万元、2万元、3万元的12月定期的概率如下表:(2)若甲获得奖励为X 元,求X 的分布列与数学期望.19.(本小题满分12分)如图15所示,PA 与四边形ABCD 所在平面垂直,且PA =BC =CD =BD ,AB =AD ,PD ⊥DC . (1)求证:AB ⊥BC ;(2)若PA =3,E 为PC 的中点,设直线PD 与平面BDE 所成角为θ,求sin θ.图1520.(本小题满分12分)已知抛物线E :x 2=4y 的焦点为F ,过点F 的直线l 交抛物线于A ,B 两点.(1)若点M 在线段AB 上运动,原点O 关于点M 的对称点为C ,求四边形OACB 面积的最小值; (2)过A ,B 分别作抛物线E 的切线l 1,l 2,若l 1与l 2交于点P ,求的值.21.(本小题满分12分)已知函数f ()x =ln x +ax +1x.(1)若对任意x >0,f ()x <0恒成立,求实数a 的取值范围;(2)若函数f ()x 有两个不同的零点x 1,x 2(x 1<x 2),证明:x 21x 2+x 22x 1>2.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(本小题满分10分)选修44:坐标系与参数方程将圆x 2+y 2-2x =0向左平移一个单位长度,再把所得曲线上每一点的纵坐标保持不变,横坐标变为原来的3倍得到曲线C . (1)写出曲线C 的参数方程;(2)以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知直线l 的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ+π4=322,若A ,B 分别为曲线C 及直线l 上的动点,求||AB 的最小值.23.(本小题满分10分)选修45:不等式选讲已知f ()x =11+x .(1)解不等式f ()||x >||f ()2x ;(2)若0<x 1<1,x 2=f ()x 1,x 3=f ()x 2,求证:13||x 2-x 1<||x 3-x 2<12||x 2-x 1.参考答案·数学(理科)2017年高考原创押题卷(一)1.B 因为B ={(x ,y )|xy =-2,x ∈Z ,y ∈Z}={(1,-2),(-1,2),(2,-1),(-2,1)},(1,-2)∉A ,(-1,2)∉A ,(2,-1)∈A ,(-2,1)∉A ,所以A ∩B ={(2,-1)}.2.B 因为2+a i 1+i =()2+a i ()1-i 2=a 2+1+⎝ ⎛⎭⎪⎫a 2-1i ,所以x =a 2+1,y =a 2-1 , 所以由xy >1得a 24-1>1,即a 2>8,所以a <-22或a >22,故选B. 3.B 由sin x =2sin ⎝⎛⎭⎪⎫x +π2=2cos x ,得tan x =2,所以cos x cos ⎝⎛⎭⎪⎫x +π2=-cos x sin x =-cos x sin x sin 2x +cos 2x =-tan x tan 2x +1=-25. 4.D 日成交量的中位数是26,①错误;日平均成交量为13+8+32+16+26+38+1667≈43,日成交量超过日平均成交量的只有10月7日1天,②错误;认购量与日期不是正相关,③错误;10月7日认购量的增幅为276-112112≈146.4%,10月7日成交量的增幅为166-3838≈336.8%,④错误.故选D.5.A 取AB 中点Q ,连接PQ ,则PQ 是梯形ABCD 的中位线,所以PQ ⊥AB ,PQ =32,所以+2=++2=3+12-2×12=3-12,由PQ ⊥AB ,可得·=0,所以|+2|===9×94+14=822.6.B 由三视图可知该几何体是一个圆柱内挖去两个与圆柱同底的半球后剩余的部分,所以该几何体的体积V =V 圆柱-2V 半球=π×⎝ ⎛⎭⎪⎫a 22×a -2×12×4π3×⎝ ⎛⎭⎪⎫a 23=2π3,整理得a 3=8,故a =2.7.D 第1次循环,得M =144+a ,N =2a ,i =2,此时M >N ,故144+a >2a ,所以a <144.第2次循环,得M =144+2a ,N =2a 2,i =3,此时M ≤N ,退出循环,故144+2a ≤2a 2,即a 2-a -72≥0,解得a ≥9或a ≤-8(舍去).综上得9≤a <144,故选D.8.D 当x ∈Q 时,f =f ()1=1,当x ∈∁R Q 时,f =f ()0=1,所以①是真命题;由f ()-1+f ()1=1+1=2≠0,可知②是假命题;当x 1∈Q ,x 2∈Q 时,f (x 1+x 2)=f ()x 1=1,当x 1∈∁RQ ,x 2∈Q 时,f (x 1+x 2)=f (x 1)=0,所以③是真命题;对任意a ,b ∈(-∞,0),都有{x |f (x )>a }={x |f (x )>b }=R ,④是真命题.故选D.9.B b c =cos A 1+cos C ⇔sin B sin C =cos A1+cos C⇔sin B -cos A sin C +sin B cos C =0⇔sin(A +C )-cos A sin C +sin B cos C =0⇔cos C (sin A +sin B )=0,因为sin A >0,sin B >0,所以cos C =0,所以C =π2,故0<A <π2,所以π6<2A +π6<7π6,所以-12<sin2A +π6≤1,故选B.10.D 直线AC 与直线EC ′ 所成的角为∠A ′C ′E ,易知∠A ′C ′E ≠45°,故选项A 错误;点E 到平面OCD ′的距离就是点E 到平面A ′BCD ′的距离,即点E 到直线A ′B 的距离,该距离为 24,故选项B 错误;取AC 的中点为F ,则四面体OEA ′B ′在平面ABCD 上的射影是△FAB ,其面积为14,故选项C 错误;取DD ′中点为G ,则过点O ,E ,C 的平面截正方体所得截面为菱形A ′ECG ,面积为62,选项D 正确.11.B 由题知双曲线E 的方程为x 2a 2-b 2-y 2b 2=1.椭圆D 与双曲线E 的一个交点在直线y =2x上,设其坐标为(t ,2t ),则t 2a 2+4t 2b 2=1,t 2a 2-b 2-4t 2b 2=1,消去t 2得1a 2-b 2-1a 2=8b2.设a 2-b 2=c 2,则椭圆的离心率e =c a ,所以1c 2-1a 2=8a 2-c 2,即1a 2e 2-1a 2=8a 2-a 2e 2, 整理得()1-e 22=8e 2,由0<e <1得e =3-2,故选B.12.B y =-e 2-x 的图像与y =e x 的图像关于点()1,0对称,故问题可转化为y =e x的图像与函数y =ln m m x e 的图像无公共点,即方程e x -eln x =m ln m 无实根.设f ()x =e x -eln x ,则f ′()x =e x-e x,由f ′()x 在()0,+∞上是增函数,且f ′()1=0,可得f ()x 在()0,1上单调递减,在()1,+∞上单调递增,且当x →0时,f ()x →+∞,当x →+∞时,f ()x →+∞,所以要使方程e x-e ln x =m ln m 无实根,只需f ()1>m ln m ,即m ln m <e.设g ()m =m ln m ,则由g ()m <e ,可得0<m <e ,故选B.13.24 ()1-x 8+()1-x 24的展开式中x 6项的系数为C 68-C 34=28-4=24.14.[)-4,2 不等式组⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0表示的平面区域D 如图中阴影部分所示,其中A ()0,2,B (-2,-2),C (2,0),E (0,-1).当x >0时,y=2x +mx||x =2x +m, 把A ()0,2的坐标代入y =2x +m ,得m =2 ,把C ()2,0的坐标代入y =2x +m ,得m =-4,所以-4≤m <2;当x <0时,y =2x +mx|x |=2x -m, 把A ()0,2的坐标代入y =2x -m ,得m =-2,把E (0,-1)的坐标代入y =2x -m ,得m =1,所以-2<m <1.综上可得实数m 的取值范围是 圆E :x 2+y 2-2x =0的标准方程为(x -1)2+y 2=1,故圆E 是圆心为()1,0,半径为1的圆.因为过点A 可作两条直线与圆E 相切,所以直线l 与圆E 相离,所以圆心(1,0)到直线l 的距离d >r ,即||1+m 2>1,即m >2-1或m <-2-1.若△ABC为正三角形,则AE =2r =2,故d ≤2,即||1+m 2≤2,即-22-1≤m ≤22-1.综上可得,实数m 的取值范围是.16.(]0,1 f ()x =sin 4ωx -cos 4ωx =(sin 2ωx +cos 2ωx )(sin 2ωx -cos 2ωx )=sin 2ωx-cos 2ωx =-cos 2ωx ,其最小正周期T =2π2ω=πω.若对任意a ∈R ,{y |y =f (x ),a ≤x ≤a+2}=A ,则T ≤()a +2-a =2,即πω≤2,所以ω≥π2.由=A ,可得x 1,x 2分别是f ()x 的极小值点与极大值点,所以x 2-x 1的最小值g ()ω=T 2=π2ω.由ω≥π2,可得g ()ω的值域为(]0,1.17.解:(1)设{}a n 的公差为d ,则S 1=a 1=5,S 2=2a 1+a 2=10+a 2=18,所以a 2=8,所以d =a 2-a 1=3,所以a n =5+3(n -1)=3n +2.4分 (2)设{}a n 的公比为q ,则S 1=a 1=3,S 2=2a 1+a 2=6+a 2=15, 所以a 2=9,所以q =a 2a 1=3,所以a n =3×3n -1=3n,8分所以S n =n ×3+()n -1×32+…+2×3n -1+3n,①3S n =n ×32+()n -1×33+…+2×3n +3n +1,② ②-①,得2S n =-3n +(32+33+…+3n )+3n +1=-3n +32(1-3n -1)1-3+3n +1=-3n -92+3n +12+3n +1=3n +2-6n -92, 所以S n =3n +2-6n -94.12分18.解:(1)设乙、丙理财金额分别为ξ万元、η万元,则乙、丙理财金额之和不少于5万元的概率为P (ξ+η≥5)=P ()ξ=2P ()η=3+P ()ξ=3P ()η=2+P ()ξ=3P ()η=3=13×16+13×13+13×16=29.4分(2)X 的所有可能的取值为300,400,500,600,700.P ()X =300=P ()ξ=1P ()η=1=13×12=16,P ()X =400=P ()ξ=1P ()η=2+P (ξ=2)P (η=1)=13×13+13×12=518,P ()X =500=P ()ξ=1P ()η=3+P (ξ=3)·P (η=1)+P ()ξ=2P ()η=2=13×16+13×12+13×13=13, P ()X =600=P ()ξ=2P ()η=3+P (ξ=3)P (η=2)=13×16+13×13=16,P ()X =700=P (ξ=3)P (η=3)=13×16=118,所以X 的分布列为10分E (X )=300×16+400×518+500×13+600×16+700×118=14003.12分19.解:(1)证明:由PA ⊥平面ABCD ,AB =AD ,可得PB =PD , 又BC =CD ,PC =PC ,所以△PBC ≌△PDC ,所以∠PBC =∠PDC . 因为PD ⊥DC ,所以PB ⊥BC .3分因为PA ⊥平面ABCD ,BC ⊂平面ABCD , 所以PA ⊥BC .又PA ∩PB =P ,所以BC ⊥平面PAB . 因为AB ⊂平面PAB ,所以AB ⊥BC .5分(2)由BD =BC =CD ,AB ⊥BC ,可得∠ABD =30°, 又已知AB =AD ,BD =PA =3,所以AB =1.如图所示,分别以BC ,BA 所在直线为x ,y 轴,过B 且平行于PA 的直线为z 轴建立空间直角坐标系,则B (0,0,0),P (0,1,3),C (3,0,0),E (32,12,32),D (32,32,0),所以=(32,12,-3),=(32,12,32),=(32,32,0). 设平面BDE 的法向量n =(x ,y ,z ),8分则即⎩⎪⎨⎪⎧32x +12y +32z =0,32x +32y =0,取z =-2,得n =(3,-3,-2),10分所以sin θ==32×3-12×3+(-3)(-2)⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫122+(-3)2·32+(-3)2+(-2)2=338.12分20.解:(1)易知F (0,1).由题意可知,直线AB 的斜率存在,可设直线AB 的方程为y =kx +1,将直线AB 的方程与抛物线方程联立⎩⎪⎨⎪⎧y =kx +1,x 2=4y ⇒x 2-4kx -4=0,2分设Ax 1,x 214,Bx 2,x 224,则x 1+x 2=4k ,x 1x 2=-4.4分因为原点O 关于点M 的对称点为C ,所以S 四边形OACB =2S △AOB =2×12||OF |x 1-x 2|=|x 1-x 2|=(x 1+x 2)2-4x 1x 2=16k 2+16≥4,当k =0时,四边形OACB 的面积最小,最小值为4.6分 (2)由x 2=4y ,得y =x 24,则y ′=x2,所以l 1的方程为y -x 214 = x 12(x -x 1),即y =x 1x 2-x 214.① 同理可得l 2的方程为y =x 2x 2-x 224,②8分由①②得x =x 1+x 22=2k ,y =x 1x 24=-1,10分所以点P 的坐标为(2k ,-1), 所以=x 1x 2+⎝ ⎛⎭⎪⎫x 214-1⎝ ⎛⎭⎪⎫x 224-14k 2+4== -64+16-4(16k 2+8)+1664k 2+64=-1.12分21.解:(1)由f ()x =ln x +ax +1x =ln x x +a +1x ,得f ′()x =1-ln x x 2-1x 2=-ln xx2,2分所以f ()x 在()0,1上单调递增,在()1,+∞上单调递减,所以f ()x ≤f ()1=a +1,故a +1<0,即a <-1,所以实数a 的取值范围是(-∞,-1).4分(2)证明:由(1)知f ()x 在()0,1上单调递增,在(1,+∞)上单调递减,所以由函数f ()x 有两个不同的零点x 1,x 2(x 1<x 2),可知x 1∈()0,1,x 2∈()1,+∞,6分 ①若x 2∈()1,2,则2-x 2∈()0,1,设g ()x =f ()x -f ()2-x =ln x x +1x -ln ()2-x 2-x -12-x,则当x ∈()0,1时,g ′()x =-ln x x 2-ln (2-x )(2-x )2>-ln x x 2-ln ()2-x x 2=-ln ()2x -x 2x 2=-ln ⎣⎡⎦⎤-()x -12+1x 2>0,所以g ()x 在()0,1上是增函数,故g ()x <g ()1=0,即f ()x <f ()2-x , 所以f ()2-x 1>f ()x 1=f ()x 2,而2-x 1∈()1,2,x 2∈()1,2,所以根据f ()x 在()1,+∞上单调递减可得2-x 1<x 2,即x 1+x 2>2.9分②若x 2∈[)2,+∞,由x 1>0可知x 1+x 2>2也成立.10分又x 21x 2+x 2≥2x 21x 2·x 2=2x 1,同理可得x 22x 1+x 1≥2x 2,以上两式加得 x 21x 2+x 22x 1+x 1+x 2≥2()x 1+x 2, 所以x 21x 2+x 22x 1≥x 1+x 2>2.12分22.解:(1)圆x 2+y 2-2x =0的标准方程为(x -1)2+y 2=1,向左平移一个单位长度,所得曲线为x 2+y 2=1,2分把曲线x 2+y 2=1上每一点的纵坐标保持不变,横坐标变为原来的3倍得到曲线C :x 23+y2=1,故曲线C 的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).5分(2)由ρsin ⎝⎛⎭⎪⎫θ+π4=322,得ρcos θ+ρsin θ=3, 由x =ρcos θ,y =ρsin θ,可得直线l 的直角坐标方程为x +y -3=0,7分所以曲线C 上的点到直线l 的距离d =||3cos α+sin α-32=⎪⎪⎪⎪⎪⎪2sin ⎝ ⎛⎭⎪⎫α+π3-32≥12=22 ,当α=π6时取等号. 所以||AB ≥22,即||AB 的最小值为22.10分 23.解:(1) f ()||x >||f ()2x ,即11+|x |>1|1+2x |,所以⎩⎪⎨⎪⎧x ≠-12,||1+2x >1+||x ,2分当x ≥0时, ⎩⎪⎨⎪⎧x ≠-12,||1+2x >1+||x ,即⎩⎪⎨⎪⎧x ≥0,1+2x >1+x ,得x >0;当-12<x <0时,⎩⎪⎨⎪⎧x ≠-12,||1+2x >1+||x ,即⎩⎪⎨⎪⎧-12<x <0,1+2x >1-x ,该不等式组无解;当x <-12时,⎩⎪⎨⎪⎧x ≠-12,||1+2x >1+||x ,即⎩⎪⎨⎪⎧x <-12,-1-2x >1-x ,得x <-2.所以不等式f ()||x >||f ()2x 的解集为()-∞,-2∪()0,+∞.5分(2)证明:因为0<x 1<1,所以 x 2=f ()x 1=11+x 1>12, ()1+x 1()1+x 2=()1+x 1⎝ ⎛⎭⎪⎫1+11+x 1=2+x 1. 因为0<x 1<1,所以2<2+x 1<3,所以2<()1+x 1()1+x 2<3,所以13<1()1+x 1()1+x 2<12.8分 又||x 3-x 2=⎪⎪⎪⎪⎪⎪11+x 2-11+x 1=||x 2-x 1()1+x 1()1+x 2 , 所以13||x 2-x 1<||x 3-x 2<12||x 2-x 1.10分。

北京市2017届高考押题金卷数学(理)试卷(含答案)

北京市2017届高考押题金卷数学(理)试卷(含答案)

北京市2017高考押题金卷理科数学第一部分(选择题共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1已知全集U=R ,A={x|x 2﹣4x+3≤0},B={x|log 3x ≥1},则A ∩B=( )A .{3}B .{x|<x ≤1}C .{x|x <1}D .{x|0<x <1}2. 已知数列{a n }为等差数列,且满足a 1+a 5=90.若(1﹣x )m 展开式中x 2项的系数等于数列{a n }的第三项,则m 的值为( )A .6B .8C .9D .103已知单位向量,,满足,则与夹角的余弦值为( )A .B .C .D .4.设x R ∈,则“x>21”是“0122>-+x x ”的A.充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5. 如图,网格纸上正方形小格的边长为1,图中粗线画出的是某几何体的三视图,则该几何体的体积为( )A.B.C.D.46.已知函数,曲线上存在两个不同点,使得曲线在这两点处的切线都与轴垂直,则实数的取值范围是A. B. C. D.7.△ABC的内角A,B,C的对边分别为a,b,c,已知cosC=,a=1,c=2,则△ABC的面积为()A.B.C.D.8.已知函数,若m<n,且f(m)=f(n),则n﹣m的取值范围是()A.[3﹣2ln2,2)B.[3﹣2ln2,2] C.[e﹣1,2] D.[e﹣1,2)第Ⅱ卷(非选择题共110分)二、填空题(共6个小题,每题5分,共30分)9.若目标函数z=kx+2y在约束条件下仅在点(1,1)处取得最小值,则实数k的取值范围是.10若按如图所示的程序框图运行后,输出的结果是63,则判断框中的整数M的值是.11采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷B 的人数为.12.直线(t为参数)与圆C:(x+6)2+y2=25交于A,B两点,且,则直线l的斜率为.13.已知直线l:y=k(x﹣2)与抛物线C:y2=8x交于A,B两点,F为抛物线C的焦点,若|AF|=3|BF|,则直线l的倾斜角为.14.若函数,,则不等式的解集是______.三、解答题(共6小题,共80分.解答应写出文字说明,演算步骤或证明过程)15.(本小题满分13分)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asin C-ccos A.(1)求A;(2)若a=2,△ABC的面积为,求b,c.16. (本小题满分13分)某学校为了解高三年级学生寒假期间的学习情况,抽取甲、乙两班,调查这两个班的学生在寒假期间每天平均学习的时间(单位:小时),统计结果绘成频率分别直方图(如图).已知甲、乙两班学生人数相同,甲班学生每天平均学习时间在区间[2,4]的有8人.(Ⅰ)求直方图中a 的值及甲班学生每天平均学习时间在区间[10,12]的人数;(Ⅱ)从甲、乙两个班每天平均学习时间大于10个小时的学生中任取4人参加测试,设4人中甲班学生的人数为ξ,求ξ的分布列和数学期望.17.(本小题满分13分)如图,四棱锥中P ABCD -中,底面ABCD 是直角梯形,AB//CD ,60,2,DAB AB AD CD ∠===o 侧面PAD ⊥ABCD 底面,且PAD V为等腰直角三角形,90APD ∠=o . (Ⅰ)求证:;AD PB ⊥(Ⅱ)求平面PAD 与平面PBC 所成锐二面角的余弦值.18.(本小题满分13分)已知函数()()2=-33x f x x x e +的定义域为[]-2t ,,设()-2=f m ,()f t n =.(Ⅰ)试确定t 的取值范围,使得函数()f x 在[]-2t ,上为单调函数;(Ⅱ)求证:m n <; (Ⅲ)若不等式()()()72ln 1xf x x k x x k e +->-为正整数对任意正实数恒成立,求的最大值,并证明14ln.9x<(解答过程可参考使用以下数据ln7 1.95ln8 2.08≈≈,)19.(本题满分14分)已知椭圆E:的离心率为,其右焦点为F(1,0).(1)求椭圆E的方程;(2)若P、Q、M、N四点都在椭圆E上,已知与共线,与共线,且=0,求四边形PMQN的面积的最小值和最大值.20.(本小题满分 14 分)已知数列{a n}的前n项和为S n,且S n=2a n﹣2(n∈N*).(1)求{a n}的通项公式;(2)设,b1=8,T n是数列{b n}的前n项和,求正整数k,使得对任意n∈N*均有T k ≥T n恒成立;(3)设,R n是数列{c n}的前n项和,若对任意n∈N*均有R n<λ恒成立,求λ的最小值.试卷答案1A【分析】求出A,B中不等式的解集,找出A与B的交集即可.【解答】解:A={x|x2﹣4x+3≤0}={x|1≤x≤3},B={x|log3x≥1}={x|x≥3},则A∩B={3},故选:A2D【分析】利用等差数列的性质,求出a3=45,利用(1﹣x)m展开式中x2项的系数等于数列{a n}的第三项,可得=45,即可求出m.【解答】解:数列{a n}为等差数列,且满足a1+a5=2a3=90,∴a3=45,∵(1﹣x)m展开式中x2项的系数等于数列{a n}的第三项,∴=45,∴m=10,故选D.3D【分析】设单位向量,的夹角为θ,根据,得•(+2)=0,代入数据求出cosθ的值.【解答】解:设单位向量,的夹角为θ,∵,∴•(+2)=+2=0,即12+2×1×1×cosθ=0,解得cosθ=﹣,∴与夹角的余弦值为﹣.故选:D.4.A 5B【解答】解:如图所示,由三视图可知该几何体为:四棱锥P﹣ABCD.连接BD.其体积V=V B﹣PAD+V B﹣PCD==.故选:B.6D【解析】本题主要考查导数与导数的几何意义,考查了存在问题与逻辑思维能力.,因为曲线上存在两个不同点,使得曲线在这两点处的切线都与轴垂直,所以有两个不同的解,令,,由得x>2,由得x<2,所以当x=2时,函数取得极小值,所以a>7A【解答】解:由题意cosC=,a=1,c=2,那么:sinC=,cosC==,解得b=2.由,可得sinB=,那么△ABC的面积=故选A8A【解答】解:作出函数f(x)的图象如图:若m<n,且f(m)=f(n),则当ln(x+1)=1时,得x+1=e,即x=e﹣1,则满足0<n≤e﹣1,﹣2<m≤0,则ln(n+1)=m+1,即m=2ln(n+1)﹣2,则n﹣m=n+2﹣2ln(n+1),设h(n)=n+2﹣2ln(n+1),0<n≤e﹣1则h′(n)=1﹣==,当h′(x)>0得1<n≤e﹣1,当h′(x)<0得0<n<1,即当n=1时,函数h(n)取得最小值h(1)=1+2﹣2ln2=3﹣2ln2,当n=0时,h(0)=2﹣2ln1=2,当n=e﹣1时,h(e﹣1)=e﹣1+2﹣2ln(e﹣1+1)=1+e﹣2=e﹣1<2,则3﹣2ln2≤h(n)<2,即n﹣m的取值范围是[3﹣2ln2,2),故选:A9. 【gkstk答案】(﹣4,2)【分析】作出不等式对应的平面区域,利用线性规划的知识,确定目标取最优解的条件,即可求出k 的取值范围.【解答】解:作出不等式对应的平面区域,由z=kx+2y得y=﹣x+,要使目标函数z=kx+2y仅在点B(1,1)处取得最小值,则阴影部分区域在直线z=kx+2y的右上方,∴目标函数的斜率﹣大于x+y=2的斜率且小于直线2x﹣y=1的斜率即﹣1<﹣<2,解得﹣4<k<2,即实数k的取值范围为(﹣4,2),故答案为:(﹣4,2).10.6【解答】解:由图知运算规则是对S=2S+1,执行程序框图,可得A=1,S=1满足条件A<M,第1次进入循环体S=2×1+1=3,满足条件A<M,第2次进入循环体S=2×3+1=7,满足条件A<M,第3次进入循环体S=2×7+1=15,满足条件A<M,第4次进入循环体S=2×15+1=31,满足条件A<M,第5次进入循环体S=2×31+1=63,由于A的初值为1,每进入1次循环体其值增大1,第5次进入循环体后A=5;所以判断框中的整数M的值应为6,这样可保证循环体只能运行5次.故答案为:6.11.10【分析】由题意可得抽到的号码构成以9为首项、以30为公差的等差数列,求得此等差数列的通项公式为a n=9+(n﹣1)30=30n﹣21,由451≤30n﹣21≤750 求得正整数n的个数,即为所求.【解答】解:由960÷32=30,故由题意可得抽到的号码构成以9为首项、以30为公差的等差数列,且此等差数列的通项公式为a n=9+(n﹣1)30=30n﹣21.由 451≤30n﹣21≤750 解得 15.7≤n≤25.7.再由n为正整数可得 16≤n≤25,且 n∈z,故做问卷B的人数为10,故答案为:10.12.±【分析】直线(t为参数)与圆C:(x+6)2+y2=25联立,可得t2+12tcosα+11=0,|AB|=|t1﹣t2|=⇒(t1+t2)2﹣4t1t2=10,即可得出结论.【解答】解:直线(t为参数)与圆C:(x+6)2+y2=25联立,可得t2+12tcosα+11=0.t1+t2=﹣12cosα,t1t2=11.∴|AB|=|t1﹣t2|=⇒(t1+t2)2﹣4t1t2=10,⇒cos2α=,tanα=±,∴直线AB的斜率为±.故答案为±.13.或【分析】设A,B两点的抛物线的准线上的射影分别为E,F,过B作AE的垂线BC,在三角形ABC中,∠BAC等于直线AB的倾斜角,其正切值即为K值,在直角三角形ABC中,得出直线AB的斜率.【解答】解:如图,设A,B两点的抛物线的准线上的射影分别为E,F′,过B作AE的垂线BC,在三角形ABC中,∠BAC等于直线AB的倾斜角,其正切值即为K值,设|BF|=n,∵|AF|=3|BF|,∴|AF|=3n,根据抛物线的定义得:|AE|=3n,|BF′|=n,∴|AC|=2n,在直角三角形ABC中,tan∠BAC==,∴k AB=k AF=.∴直线l 的倾斜角为.根据对称性,直线l 的倾斜角为,满足题意.故答案为或.14. 【gkstk 答案】(1,2)15. 【gkstk 答案】(1)由c =3a sin C -c cos A 及正弦定理,得 3sin A sin C -cos A ·sin C -sin C =0, 由于sin C ≠0,所以sin ⎝⎛⎭⎫A -π6=12, 又0<A <π,所以-π6<A -π6<5π6,故A =π3.(2)△ABC 的面积S =12bc sin A =3,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8,解得b =c =2. 由于sin C ≠0,所以sin ⎝⎛⎭⎫A -π6=12, 又0<A <π,所以-π6<A -π6<5π6,故A =π3.(2)△ABC 的面积S =12bc sin A =3,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8,解得b =c =2.16.解:(1)由直方图知,(0.150+0.125+0.100+0.0875+a )×2=1,解得a=0.0375, 因为甲班学习时间在区间[2,4]的有8人,所以甲班的学生人数为.所以甲、乙两班人数均为40人,所以甲班学习时间在区间[10,12]的人数为40×0.0375×2=3(人). (2)乙班学习时间在区间[10,12]的人数为40×0.05×2=4(人).由(1)知甲班学习时间在区间[10,12]的人数为3人.在两班中学习时间大于10小时的同学共7人,ξ的所有可能取值为0,1,2,3.,,,.所以随机变量ξ的分布列为: ξ 0 1 2 3 P.17. 解:(Ⅰ)取AD 的中点G ,连结PG GB BD 、、.PA PD =Q ,PG AD ∴⊥……………………………2分AB AD =Q ,且60DAB ∠=︒, ABD ∴∆是正三角形,AD BG ⊥,又PG BG G =I ,AD ∴⊥平面PGB .AD PB ∴⊥. ……………………………5分(Ⅱ) ∵侧面PAD⊥底面ABCD ,又PG AD ⊥Q ,PG ∴⊥底面ABCD . PG BG ∴⊥.∴直线GA GB GP 、、两两互相垂直, 故以G 为原点,直线GA GB GP 、、所在直线为x 轴、y 轴和z 轴建立 如图所示的空间直角坐标系G xyz -.设PG a =,则可求得(0,0,),(,0,0),P a A a 3,0)B a ,(,0,0)D a -,)0,23,23(a a C -.…………………………………………………7分3(,,0)2BC a ∴=-u u u r.,)PB a ∴=-u u u r设000(,,)n x y z =r是平面PBC 的法向量,则0n BC ⋅=r u u u r 且0n PB ⋅=r u u u r .000030,20.ax az ⎧--=⎪∴⎨-=0000,.x y z ⎧=⎪⇒⎨⎪=⎩取0y =(n =-r. …………………………………………9分又Q 平面PAD的法向量1,0)n GB ==u r u u u r,设平面PAD 与平面PBC 所成锐二面角为θ,则11cos 13n n n n θ⋅===⋅r u r r u r , 所以平面PAD 与平面PBC.……………………13分 18. 解:(Ⅰ)因为xxxe x x e x e x x xf ⋅-=⋅-+⋅+-=')1()32()33()(2………………1分 令()0f x '>,得:1x >或0x <;令()0f x '<,得:01x <<所以()f x 在(,0),(1,)-∞+∞上递增,在(0,1)上递减………………………………3分 要使()f x 在[2,]t -为单调函数,则20t -<≤所以t 的取值范围为(2,0]- …………………………………………………4分 (Ⅱ)证:因为()f x 在(,0),(1,)-∞+∞上递增,在(0,1)上递减, 所以()f x 在1x =处取得极小值e 又213(2)f e e-=<,所以()f x 在[2,)-+∞的最小值为(2)f -………………………6分 从而当2t >-时,)()2(t f f <-,即m n < ………………………………………8分 (Ⅲ)()72(ln 1)xf x x k x x e+->-等价于241(ln 1)x x k x x ++>-即14ln 0k x k x x+++->………………………………………9分 记1()4ln k g x x k x x+=++-,则221(1)(1)()1k k x x k g x x x x++--'=--=, 由()0g x '=,得1x k =+,所以()g x 在(0,1)k +上单调递减,在(1,)k ++∞上单调递增, 所以()(1)6ln(1)g x g k k k ≥+=+-+()0g x >对任意正实数x 恒成立,等价于6ln(1)0k k +-+>,即61ln(1)0k k+-+>………………………………11分 记6()1ln(1)h k k k =+-+, 则261()01h x x x =--<+,所以()h x 在(0,)+∞上单调递减, 又(6)2ln 70h =->,13(7)ln807h =-<, 所以k 的最大值为6………………………………………12分 当6k =时,由2416(ln 1)x x x x ++>-令3x =,则14ln 39<………………………………………13分19解:(1)由椭圆的离心率公式可知:e==,由c=1,则a=,b 2=a 2﹣c 2=1, 故椭圆方程为;…(4分)(2)如图,由条件知MN 和PQ 是椭圆的两条弦,相交于焦点F (1,0),且PQ⊥MN,设直线PQ的斜率为k(k≠0),则PQ的方程为y=k(x﹣1),P(x1,y1),Q(x1,y1),则,整理得:(1+2k2)x2﹣4k2x+2k2﹣2=0,x1+x1=,x1x2=,则丨PQ丨=•,于是,…(7分)同理:.则S=丨PQ丨丨MN丨=,令t=k2+,T≥2,S=丨PQ丨丨MN丨==2(1﹣),当k=±1时,t=2,S=,且S是以t为自变量的增函数,当k=±1时,四边形PMQN的面积取最小值.当直线PQ的斜率为0或不存在时,四边形PMQN的面积为2.综上:四边形PMQN的面积的最小值和最大值分别为和2.20.解:(1)由S n=2a n﹣2,得S n+1=2a n+1﹣2两式相减,得a n+1=2a n+1﹣2a n∴a n+1=2a n数列{a n}为等比数列,公比q=2又S1=2a1﹣2,得a1=2a1﹣2,a1=2∴(2),方法一当n≤5时,≥0因此,T1<T2<T3<T4=T5>T6>…∴对任意n∈N*均有T4=T5≥T n,故k=4或5.方法二(两式相减,得,=(6﹣n)•2n+1﹣12,,当1≤n<4,T n+1>T n,当n=4,T4=T5,当n>4时,T n+1<T n,综上,当且仅当k=4或5时,均有T k≥T n(3)∵∴=∵对任意n∈N*均有成立,∴,所以λ的最小值为.。

2017届高考数学冲刺押题卷(理)有答案AlMwwn

2017届高考数学冲刺押题卷(理)有答案AlMwwn

绝密★启用前2017年高考冲刺押题卷理科数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的).1.设集合(){}2log 2A x y x ==-,{}2|320B x x x =-+<,则A B =ð( ) A .(,1)-∞ B .(,1]-∞C .(2,)+∞D .[2,)+∞2.在复平面内,复数23i32iz -++对应的点的坐标为()2,2-,则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.函数4lg ||||x x y x =的图象大致是( )4.如图网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为( )若任取,则满足的概率是( ) A .2eB .1eC .e 2e - D.e 1e- 6.已知ABC △中,sin 2sin cos 0A BC +=c =,则tan A 的值是( ) A B CD 7.若(),z f x y =称为二元函数,已知(),f x y ax by =+,()()()1,2501,1403,1100f f f --≤⎧⎪-≤⎨⎪-≥⎩,则()1,1z f =-的最大值等于( )A .2B .2-C .3D .3-8.已知双曲线22221(0,0)x y a b a b -=>>的左、右焦点分别为1F ,2F ,且焦点与椭圆221362x y +=的焦点相同,离心率为e =,若双曲线的左支上有一点M 到右焦点2F 的距离为18,N 为2MF 的中点,O 为坐标原点,则NO 等于( ) A .23B .1C .2D .49.运行如图所示的程序框图,若输出的结果为10082017,则判断框内可以填( )A .2016?k >B .2016?k ≥C .2017?k ≥D .2017?k >10.已知三棱锥P ABC -的各顶点都在同一球面上,且PA ⊥平面ABC ,若该棱锥的体积为233,2=AB ,1=AC ,ο60=∠BAC ,则此球的表面积等于( )A .5πB .20πC .8πD .16π 11.已知函数()22sin 22cos 148f x x x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭,把函数()f x 的图象向右平移8π个单位,得到函数()g x 的图象,若12,x x 是()0g x m -=在0,2π⎡⎤⎢⎥⎣⎦内的两根,则12sin()x x +的值为( )A 25B 5C .5-D .2512.若对0x ∀>,不等式()()22ln 112x x ax x a x +++-+>∈+R 恒成立,则a 的取值范围是( ) A .[)1,+?B .()1,+?C .[)2,+?D .()2,+?第Ⅱ卷本试卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分)13.已知132⎛= ⎝⎭a ,()2cos ,2sin αα=b ,a 与b 的夹角为60︒,则2-=a b ____________.14.“MN 是经过椭圆22221x y a b+=(a >b >0)的焦点的任一弦,若过椭圆中心O 的半弦OP MN ⊥,则2222111||||a MN OP a b +=+.”类比椭圆的性质,可得“MN 是经过双曲线22221x y a b -=(a >0,b >0)的焦点的任一弦(交于同支),若过双曲线中心O 的半弦OP MN ⊥,则 .”15.若点()00,P x y 为抛物线24y x =上一点,过点P 作两条直线,PM PN ,分别与抛物线相交于点M 和点N ,连接MN ,若直线PM ,PN ,MN 的斜率都存在且不为零,设其斜率分别为1k ,2k ,3k ,则123111k k k +-= . 16.以下四个命题中:①某地市高三理科学生有15000名,在一次调研测试中,数学成绩ξ服从正态分布2(100,)N σ,已知40.0)10080(=≤<ξP ,若按成绩分层抽样的方式抽取100份试卷进行分析,则应从120分以上(包括120分)的试卷中抽取15份;②已知命题:,sin 1p x x ∀∈≤R ,则p ⌝:,sin 1x x ∃∈>R ;③在[]4 3-,上随机取一个数m ,能使函数()22f x x =++在R 上有零点的概率为37; ④设,a b ∈R ,则“22log log a b >”是“21a b ->”的充要条件. 其中真命题的序号为 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知等差数列{}n a 中,公差0d ≠, 735S =,且2511,,a a a 成等比数列. (1)求数列{}n a 的通项公式; (2)若n T 为数列11{}n n a a +的前n 项和,且存在n *∈N ,使得10n n T a λ+-≥成立,求实数λ的取值范围.18.(本小题满分12分)如图,在四棱锥ABCD P -中, BC AD //,AD CD ⊥,Q 是AD 的中点,M 是棱PC 上的点,2==PD PA ,121==AD BC ,3=CD,PB =(1)求证:平面⊥PAD 底面ABCD ;(2)设tMC PM =,若二面角C BQ M --的平面角的大小为ο03,试确定t 的值. 19.(本小题满分12分)“中国人均读书4.3本(包括网络文学和教科书),比韩国的11本、法国的20本、日本的40本、犹太人的64本少得多,是世界上人均读书最少的国家.”这个论断被各种媒体反复引用.出现这样的统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天40名读书者进行调查,将他们的年龄分成6段:[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如图所示的频率分布直方图.问: (1)估计在40名读书者中年龄分布在[40,70)的人数; (2)求40名读书者年龄的平均数和中位数;(3)若从年龄在[20,40)的读书者中任取2名,求这两名读书者年龄在[30,40)的人数X 的分布列及数学期望.20.(本小题满分12分)已知椭圆22221(0)x y a b a b +=>>的左、右焦点分别为12,F F ,上、下顶点分别是12,B B ,点C 是12B F 的中点,若11122B F B F ⋅=u u u u r u u u u r,且112CFB F ⊥.(1)求椭圆C 的标准方程;(2)过2F 的直线l 与椭圆C 交于不同的两点A D 、,求1F AD △的面积的最大值. 21.(本小题满分12分)已知函数()2ln 2f x ax x =++.(1)若a ∈R ,讨论函数()f x 的单调性;(2)曲线()()2g x f x ax =-与直线l 交于()11,A x y ,()22,B x y 两点,其中12x x <,若直线l 斜率为k ,求证:121x x k<<. 请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分) 选修4-4:坐标系与参数方程在极坐标系中,曲线1C 的极坐标方程是244cos 3sin ρθθ=+,以极点为原点O ,极轴为x 轴正半轴(两坐标系取相同的单位长度)的直角坐标系xOy 中,曲线2C 的参数方程为:cos sin x y θθ=⎧⎨=⎩(θ为参数).(1)求曲线1C 的直角坐标方程与曲线2C 的普通方程;(2)将曲线2C 经过伸缩变换2x y y⎧'=⎪⎨'=⎪⎩后得到曲线3C ,若,M N 分别是曲线1C 和曲线3C 上的动点,求||MN 的最小值.23.(本小题满分10分)选修4-5:不等式选讲 设函数()|2||3|f x x x =--+. (1)求不等式()3f x <的解集;(2)若不等式()3f x a <+对任意x ∈R 恒成立,求实数a 的取值范围.理科数学参考答案。

2017年北京市高考数学押题卷试题含答案

2017年北京市高考数学押题卷试题含答案

2017年北京市高考数学押题卷试题含答案2017年高考数学押题卷试题【北京卷】命题人:北大地校区 董志华教师1.已知集合M={1,2,(m 2-3m-1)+(m 2-5m-6)i},N={-1,3},且M ∩N={3},则实数m 的值为( )A.4B.-1C.-1或4D.-1或62. 不等式组⎩⎪⎨⎪⎧|x +y |≤1|x -y |≤1表示的平面区域内整点的个数是( )A .0B .2C .4D .53.如图给出的是计算12+14+…+120的值的一个程序框图,其中判断框内应填入的条件是( )A .i >10B .i <10C .i >20D .i <204.命题“**,()n N f n N ∀∈∈且()f n n ≤的否定形式是()A.**,()n Nf n N ∀∈∈且()f n n >B.**,()n Nf n N ∀∈∈或()f n n >C.**00,()n N f n N ∃∈∈且00()f n n >D.**00,()n Nf n N ∃∈∈或00()f n n >5. 正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为( )6.若,,a b c 成等差数列,则二次函数()22f x ax bx c =-+的零点个数为()A.0B.1C.2D.1或2 7.把一颗骰子投掷两次,第一次出现的点数记为m ,第二次出现的点数记为n ,方程组⎩⎨⎧=+=+2323y x ny mx 只有一组解的概率是( ). A .27 B .1725 C .1817D .313 8. 已知函数22,5)2(3)(212->-+-=x x x x f 且,则( )A 、)x (f )x (f 21>B 、)x (f )x (f 21=C 、)x (f )x (f 21<D 、不能确定大小 二、填空题9.若二项式23nx x ⎛⎫- ⎪⎝⎭展开式的各项系数的和为64,则其展开式的所有二项式系数中最大的是 . (用数字作答)10已知圆C 的参数方程为2x y cos ,sin ,θθ⎧=⎨=+⎩(θ为参数), 以原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为1sin cos ρθρθ+=, 则直线l 截圆C 所得的弦长是 .11已知以F 为焦点的抛物线24y x =上的两点A 、B 满足3AF FB =u u u r u u u r,点A 在x 轴上方,则直线AB 的方程为12.已知双曲线22221(00)x y a b a b-=>>,的左、右焦点分别为1F ,2F ,P 是准线上一点,且12PF PF ⊥,124PF PF ab =g ,则双曲线的离心率是_________ 13.已知数列{}n a ,若114a =,123n n a a +=-(*n ∈N ),则使20n n a a +⋅<成立的n 的值是 .14.点P 是曲线2ln 0x y x --=上的任意一点,则点P 到直线2-=x y 的最小距离为__________.三、解答题15. 已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c = 3a sinC -c cosA (1) 求角A(2) 若a =2,△ABC 的面积为3,求b ,c.16. 某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测试了每件产品的质量指标值,得到下面试验结果:(Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以实验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)17. 如图,在四棱锥P-ABCD中,AB丄平面PAD,PD=AD, E为PB的中点,向量,点H在AD上,且(I)求证:EF//平面PAD.(II)若PH=3,AD=2, AB=2, CD=2AB,(1)求直线AF与平面PAB所成角的正弦值.(2)求平面PAD与平面PBC所成二面角的平面角的余弦值.18.已知函数()f x满足()()12log1aaf x x xa-=--,其中0>a,且1≠a。

2017年福建省高考押题理科数学试题及答案

2017年福建省高考押题理科数学试题及答案

普通高等学校招生全国统一考试(福建卷)(押题)数学 ( 理工农医类 )本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),第21题为选考题,其他题为必考题.本试卷共5页.满分150分,考试时间120分钟. 注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上. 2.考生作答时,将答案答在答题卡上.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.在草稿纸、试题卷上答题无效.3.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚.4.做选考题时、考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑.5.保持答题卡卡面清洁,不折叠、不破损.考试结束后,将本试卷和答题卡一并交回. 参考公式:样本数据x 1,x 2,…,x n 的标准差])()()[(122221x x x x x x ns n -++-+-=锥体体积公式Sh V 31=其中x 样本平均数; 柱体体积公式Sh V =其中S 为底面面积,h 为高;其中S 为底面面积,h 为高; 球的表面积、体积公式24S R π= 343V R π=其中R 为球的半径;第I 卷(选择题 共50分)一.选择题(本大题共10小题,每小题5分,共50分. 在每小题所给的四个答案中有且只有一个答案是正确的)1.已知全集R,U = 集合{}1,2,3,4,5A =,{|2}B x x =∈≥R ,分所表示的集合为A. {1} C. {1,2} D. {0,1,2} 2.命题“Q a ∈∀,a a ≥2”的否定..是( ) A. Q a ∉∀,a a ≥2 B. Q a ∉∀,a a <2 C. Q a ∈∃,a a ≥2 D.Q a ∈∃,a a <23.已知点M 是平面α内的动点,1F ,2F 是平面α内的两个定点,则“点M 到点1F ,2F 的距离之和为定值”是“点M 的轨迹是以1F ,2F 为焦点的椭圆”的( )开始 结束输入n 输出n i =0n 是奇数n =3n +1i<3i =i +12nn =是否A. 充分必要条件B. 充分而不必要条件C. 必要而不充分条件D. 既不充分也不必要条件 4.阅读如右图所示的程序框图,如果输入的n 的值为6,那么运行相应程序,输出的n 的值为A. 3B. 5C. 10D. 16 5.函数2e 1x y x =-的部分图象为( )C D 6.给出下列四个命题:①直线垂直于一个平面内的无数条直线是这条直线与这个平面垂直的充要条件;②过空间一定点有且只有一条直线与已知平面垂直;③不在一个平面内的一条直线和平面内的一条直线平行是这条直线和这个平面平行的充分条件;④一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角相等或互补. 其中真命题...的为( )A .①③B .②④C .②③D .③④7.一支足球队每场比赛获胜(得3分)的概率为a ,与对手踢平(得1分)的概率为b ,负于对手(得0分)的概率为c (a ,b ,c ∈(0,1)),已知该足球队进行一场比赛得分的期望是1,则ba 311+的最小值为( ) A .316 B .314 C .317D .3108.下列函数中,在(0,2π)上有零点的函数是( )A .f (x )=sin x -xB .f (x )=sin x -2πxC .f (x )=sin 2x -xD .f (x )=sin 2x -2πx9.抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形,阿基米德三角形有一些有趣的性质,如:若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上.设抛物线px y 22=p (>)0,弦AB 过焦点,△ABQ 为其阿基米德三角形,则△ABQ 的面积的最小值为( )A .22p B .2p C .22pD .24p10.若对于定义在R 上的连续函数()f x ,存在常数a (a ÎR ),使得()()0f x a af x ++=对任意的实数x 成立,则称()f x 是回旋函数,且阶数为a .现有下列4个命题: ①幂函数必定不是回旋函数;②若sin x ω(0ω≠)为回旋函数,则其最小正周期必不大于2; ③若指数函数为回旋函数,则其阶数必大于1;④若对任意一个阶数为[0,)a a ()??的回旋函数()f x ,方程()0f x =均有实数根。

2017届高考押题金卷(全国卷Ⅰ)数学(理)试卷(含答案)

2017届高考押题金卷(全国卷Ⅰ)数学(理)试卷(含答案)

绝密★启封前2017高考押题金卷(全国卷Ⅰ)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分.考试时间为120分钟 注意事项: 1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。

3.考试结束,监考员将试题卷、答题卡一并收回。

第Ⅰ卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

) 1.若集合2{|0},{|(0,1)},xM x x x N y y a a a R =-<==>≠表示实数集,则下列选项错误的是 A .M N M =I B .M N R =U C .R M C N ϕ=I D .R C M N R =U 2.复数12,z z 在复平面内对应的点关于直线y x =对称,且132z i =+,则12z z =() A .1251313i + B .1251313i -+ C .1251313i -- D .1251313i - 3.将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率P (A|B )是( )A. B. C. D.4.曲线y =sin x ,y =cos x 与直线x =0,x =π2所围成的平面区域的面积为( )A .⎠⎜⎛0π2 (sin x -cos x )d x B .2⎠⎜⎛0π4 (sin x -cos x )d xC .⎠⎜⎛0π2 (cos x -sin x)d x D .2⎠⎜⎛0π4 (cos x -sin x)d x5.按右图所示的程序框图,若输入110011a =,则输出的b =( )A. 45B. 47C. 49D. 516.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的锲体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l 丈为10尺,该锲体的三视图如图所示,则该锲体的体积为 A .10000立方尺 B .1 1000立方尺 C .12000立方尺D .13000立方尺7.设n S 是等差数列{a n }的前n 项和,若3184=S S ,则168S S 等于A.91B.103 C.31 D.81 8.已知O 是ABC △所在平面内一点,D 为BC 边中点,且02=++OC OB OA ,那么(A ) AO OD =u u u r u u u r (B ) 2AO OD =u u u r u u u r (C ) 3AO OD =u u u r u u u r D 2AO OD =u u u r u u u r把a 的右数第i 位数字赋给t是 否输入6?i >1i i =+输出b0b =1i =12i b b t -=+⋅9.已知点P (x,y)满足41x y y xx +≤⎧⎪≥⎨⎪≥⎩,过点P 的直线与圆2214x y +=相交于A 、B 两点,则||AB 的最小值为( )A .2B .26C .25D .410.已知12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点,P 是C 上一点,若212||||8PF PF a ⋅=,且12PF F ∆的最小内角为30o ,则双曲线C 的离心率是A.2B.2C.3D. 311数列{a n }的通项公式为an=11(1)n n++,关于{a n }有如下命题:P1:{a n }为先减后增数列;P2:{a n }为递减数列; P3:*,n n N a e ∀∈>P4:*,n n N a e ∃∈<其中正确的是A. P1,P3B. P1,P4C. P2,P3D. P2,P412.底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥. 已知同底的两个正三棱锥内接于同一个球. 已知两个正三棱锥的底面边长为a ,球的半径为R . 设两个正三棱锥的侧面与底面所成的角分别为α、β,则tan()αβ+的值是()AB.C.D.第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分,第13题—21题为必考题,每个试题考生都必须作答,第22题—23题为选考题,考生根据要求作答.二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上) 13. (4y x的展开式中33x y 的系数为。

2017届河北省衡水中学高三高考押题数学(理)试题(解析版) Word版 含答案

2017届河北省衡水中学高三高考押题数学(理)试题(解析版) Word版 含答案

河北省衡水中学2017届高三高考押题理数试题一、选择题1.已知集合4{|0}2x A x Z x -=∈≥+, 1{|24}4x B x =≤≤,则A B ⋂=( ) A. {|12}x x -≤≤ B. {}1,0,1,2- C. {}2,1,0,1,2-- D. {}0,1,2 【答案】B【解析】由题知{}1,0,1,2,3,4A =-, {|22}B x x -≤≤=,则{}1,0,1,2A B ⋂=-故本题答案选B .2.已知i 为虚数单位,若复数1i1it z -=+在复平面内对应的点在第四象限,则t 的取值范围为( )A. []1,1- B. ()1,1- C. (),1-∞- D. ()1,+∞ 【答案】B 【解析】由题()()()()1-ti 1-i 1-ti 1-t 1+tz===-i 1+i 1+i 1-i 22.又对应复平面的点在第四象限,可知110022t t-+>-<且,解得11t -<<.故本题答案选B . 3.下列函数中,既是偶函数,又在(),0-∞内单调递增的为( ) A. 42y x x =+ B. 2x y = C. 22x xy -=- D. 12log 1y x =-【答案】D【解析】42y x x =+为非奇非偶函数, A 排除; 2xy =为偶函数,但在(),0-∞内单调递减, B 排除; 22x xy -=-为奇函数, C 排除.故本题答案选D .4.已知双曲线1C : 2212x y -=与双曲线2C : 2212x y -=-,给出下列说法,其中错误的是( )A. 它们的焦距相等B. 它们的焦点在同一个圆上C. 它们的渐近线方程相同D. 它们的离心率相等 【答案】D【解析】由题知222:12x C y -=.则两双曲线的焦距相等且2c =,焦点都在圆223x y +=的圆上,其实为圆与坐标轴交点.渐近线方程都为y x =,由于实轴长度不同故离心率ce a=不同.故本题答案选D ,5.在等比数列{}n a 中,“4a , 12a 是方程2310x x ++=的两根”是“81a =±”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 【答案】A【解析】由韦达定理知4124123,1a a a a +=-=,则4120,0a a <<,则等比数列中4840a a q =<,则81a ==-.在常数列1n a =或1n a =-中, 412,a a 不是所给方程的两根.则在等比数列{}n a 中,“4a , 12a 是方程2310x x ++=的两根”是“81a =±”的充分不必要条件.故本题答案选A . 6.执行如图所示的程序框图,则输出的S 值为( )A. 1009B. -1009C. -1007D. 1008 【答案】B【解析】由程序框图则0,1;1,2;12,3;123,4S n S n S n S n =====-==-+=,由S 规律知输出123456...20152016201720181009S =-+-+-++-+-=-.故本题答案选B .【易错点睛】本题主要考查程序框图中的循环结构.循环结构中都有一个累计变量和计数变量,累计变量用于输出结果,计算变量用于记录循环次数,累计变量用于输出结果,计数变量和累计变量一般是同步执行的,累加一次计数一次,哪一步终止循环或不能准确地识别表示累计的变量,都会出现错误.计算程序框图的有关的问题要注意判断框中的条件,同时要注意循环结构中的处理框的位置的先后顺序,顺序不一样,输出的结果一般不会相同.7.已知一几何体的三视图如图所示,则该几何体的体积为( )A.163π+ B. 112π+ C. 1123π+ D. 143π+ 【答案】C【解析】观察三视图可知,几何体是一个圆锥的14与三棱锥的组合体,其中圆锥的底面半径为1,高为1.三棱锥的底面是两直角边分别为1,2的直角三角形,高为1.则几何体的体积21111π1π111213432123V =⨯⨯⨯⨯+⨯⨯⨯⨯=+.故本题答案选C. 8.已知函数()()sin (0,0,)f x A x A ωϕωϕπ=+>><的部分图象如图所示,则函数()()cos g x A x ϕω=+图象的一个对称中心可能为( )A. 5,02⎛⎫-⎪⎝⎭ B. 1,06⎛⎫⎪⎝⎭ C. 1,02⎛⎫- ⎪⎝⎭ D. 11,06⎛⎫- ⎪⎝⎭【答案】C【解析】由图象最高点与最低点的纵坐标知A =,又()6282T=--=,即2πT=16ω=,所以π8ω=.则()πi n 8f x x ϕ⎛⎫=+ ⎪⎝⎭,图象过点()6,0,则3πs i n 04ϕ⎛⎫+= ⎪⎝⎭,即3ππ4k ϕ+=,所以3ππ4k ϕ=-+,又ϕπ<,则π4ϕ=.故()ππ48g x x ⎛⎫=+ ⎪⎝⎭,令ππππ482x k +=+,得322x k =+,令1k =-,可得其中一个对称中心为1,02⎛⎫-⎪⎝⎭.故本题答案选C . 9.《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF AB ⊥,设AC a =, BC b =,则该图形可以完成的无字证明为( )A.0,0)2a ba b +≥>> B. 222(0,0)a b ab a b +≥>>C. 20,0)ab a b a b ≤>>+D. 0,0)2a b a b +≤>> 【答案】D【解析】令,AC a BC b ==,可得圆O 的半径2a br +=,又22a b a bOC OB BC b +-=-=-=,则()()2222222442a b a b a b FC OC OF -++=+=+=,再根据题图知FO FC ≤,即2a b +≤D. 10.为迎接中国共产党的十九大的到来,某校举办了“祖国,你好”的诗歌朗诵比赛.该校高三年级准备从包括甲、乙、丙在内的7名学生中选派4名学生参加,要求甲、乙、丙这3名同学中至少有1人参加,且当这3名同学都参加时,甲和乙的朗诵顺序不能相邻,那么选派的4名学生不同的朗诵顺序的种数为( ) A. 720 B. 768 C. 810 D. 816 【答案】B【解析】由题知结果有三种情况. ()1甲、乙、丙三名同学全参加,有1444C A =96种情况,其中甲、乙相邻的有123423C A A 48=种情况,所以甲、乙、丙三名同学全参加时,甲和乙的朗诵顺序不能相邻顺序有964848-=种情况; ()2甲、乙、丙三名同学恰有一人参加,不同的朗诵顺序有314434C C A 288=种情况; ()3甲、乙、丙三名同学恰有二人参加时,不同的朗诵顺序有224434432C C A =种情况.则选派的4名学生不同的朗诵顺序有28843248768++=种情况,故本题答案选B11.焦点为F 的抛物线C : 28y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当MA MF取得最大值时,直线MA 的方程为( )A. 2y x =+或2y x =--B. 2y x =+C. 22y x =+或22y x =-+D. 22y x =-+ 【答案】A【解析】过M 作MP 与准线垂直,垂足为P ,则11cos cos MA MA MFMPAMP MAF===∠∠,则当MA MF取得最大值时, MAF ∠必须取得最大值,此时直线AM 与抛物线相切,可设切线方程为()2y k x =+与28y x =联立,消去y 得28160ky y k -+=,所以264640k =-= ,得1k =±.则直线方程为2y x =+或2y x =--.故本题答案选A .点睛:抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离,抛物线上的点到准线的距离)进行等量转化,如果问题中涉及抛物线上的点到焦点或到准线的距离,那么用抛物线定义就能解决问题.本题就是将到焦点的距离MF 转化成到准线的距离MP ,将比值问题转化成切线问题求解.12.定义在R 上的函数()f x 满足()()22f x f x +=,且当[]2,4x ∈时,()()224,23,{12,34,x x x f x g x ax x x x-+≤≤==++<≤,对[]12,0x ∀∈-, []22,1x ∃∈-,使得()()21g x f x =,则实数a 的取值范围为( )A. 11,,88⎛⎫⎡⎫-∞-⋃+∞ ⎪⎪⎢⎝⎭⎣⎭B. 11,00,48⎡⎫⎛⎤-⋃⎪ ⎢⎥⎣⎭⎝⎦C. (]0,8 D. ][11,,48⎛⎫-∞-⋃+∞ ⎪⎝⎭【答案】D【解析】由题知问题等价于函数()f x 在[]2,0-上的值域是函数()g x 在[]2,1-上的值域的子集.当[]2,4x ∈时, ()()224,232,34{x x x x xf x --+≤≤+<≤=,由二次函数及对勾函数的图象及性质,得此时()93,2f x ⎡⎤∈⎢⎥⎣⎦,由()()22f x f x +=,可得()()()112424f x f x f x =+=+,当[]2,0x ∈-时, []42,4x +∈.则()f x 在[]2,0-的值域为39,48⎡⎤⎢⎥⎣⎦.当0a >时, ()[]21,1g x a a ∈-++,则有3214918{a a -+≤+≥,解得18a ≥,当0a =时, ()1g x =,不符合题意;当0a <时, ()[]1,21g x a a ∈+-+,则有3149218{a a +≤-+≥,解得14a ≤-.综上所述,可得a 的取值范围为 ][11,,48⎛⎫-∞-⋃+∞ ⎪⎝⎭.故本题答案选D .点睛:求解分段函数问题应对自变量分类讨论,讨论的标准就是自变量与分段函数所给出的范围的关系,求解过程中要检验结果是否符合讨论时的范围.讨论应该 不重复不遗漏.二、填空题13.已知()1,a λ=, ()2,1b = ,若向量2a b + 与()8,6c = 共线,则a 在b 方向上的投影为_________.【答案】5【解析】由题知()24,21a b λ+=+,又2a b + 与c 共线,可得()248210λ-+=,得1λ=,则a 在方向上的投影为a b b ⋅==. 14.已知实数x , y 满足不等式组20,{250,20,x y x y y --≤+-≥-≤且2z x y =-的最大值为a ,则2cos 2xa dx π⎰=__________. 【答案】3π。

2017年高考数学原创押题卷

2017年高考数学原创押题卷

2017年高考原创押题卷(一)参考公式样本数据x 1,x 2,…,x n 的方差s 2=1n ∑i =1n (x i -x )2,其中x =1n ∑i =1n x i .棱柱的体积V =Sh ,其中S 是棱柱的底面积,h 是高. 棱锥的体积V =13Sh ,其中S 是棱锥的底面积,h 是高.一、填空题(本大题共14小题,每小题5分,共70分.请把答案填写在题中横线上)1.设集合U ={1,2,3,4},A ={1,2},B ={2,4},则∁U (A ∩B )共有________个子集.8 [由已知得A ∩B ={2},所以∁U (A ∩B )={1,3,4},故∁U (A ∩B )共有8个子集.]2.已知b ∈R ,若(2+b i)(2-i)为纯虚数,则|1+b i|=________. 17 [(2+b i)(2-i)=4+b +(2b -2)i 为纯虚数, ∴⎩⎨⎧4+b =0,2b -2≠0,解得b =-4. 则|1+b i|=|1-4i|=12+(-4)2=17.] 3.双曲线x 2-y 22=1的离心率为________.【导学号:91632080】3 [双曲线x 2-y 22=1,a =1,b =2,∴c =3,∴双曲线x 2-y 22=1的离心率为e =c a =31= 3.]4.从3名男同学,2名女同学中任选2人参加知识竞赛,则选到的2名同学中至少有1名男同学的概率是________.910 [从3名男同学,2名女同学中任选2人参加知识竞赛,基本事件总数n =10,选到的2名同学中至少有1名男同学的对立事件是选到2名女同学,∴选到的2名同学中至少有1名男同学的概率:p =1-110=910.]5.已知变量x ,y 满足约束条件⎩⎨⎧4x +3y -12≤0,x -4y +4≤0,x -1≥0,则目标函数z =2x -y的最大值为________.4419[根据题意,作出不等式组⎩⎨⎧4x +3y -12≤0,x -4y +4≤0,x -1≥0,所表示的可行域如图中阴影部分所示,作出直线2x -y =0并平移,可知当直线平移至过点A 时,目标函数z =2x -y 取得最大值,由⎩⎨⎧4x +3y -12=0,x -4y +4=0,解得⎩⎪⎨⎪⎧x =3619,y =2819,故z =2x -y的最大值为2×3619-2819=4419.]6.如图1是一次摄影大赛上7位评委给某参赛作品打出的分数的茎叶图.记分员在去掉一个最高分和一个最低分后,算得平均分为91分,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若记分员计算无误,则数字x 应该是________.1 [若x >4,去掉一个最高分(90+x )和一个最低分86后,平均分为15(89+91+92+92+94)=91.6分,不合题意,故x ≤4,最高分是94;去掉一个最高分94和一个最低分86后,故平均分是15(89+92+90+x +91+92)=91,解得x =1.]7.执行下面的流程图,输出的T =________.图230 [执行流程图依次得⎩⎨⎧S =5,n =2,T =2,⎩⎨⎧S =10,n =4,T =6,⎩⎨⎧S =15,n =6,T =12,⎩⎨⎧S =20,n =8,T =20,⎩⎨⎧S =25,n =10,T =30.故输出T =30.]8.如图3,在平面四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点,若BE →=λBA →+μBD →(λ,μ∈R ),则λ+μ=________.图334 [∵BD →=2BO →,BE →=λBA →+μBD →, ∴BE →=λBA →+2μBO →.∵E 为线段AO 的中点,∴BE →=12(BA →+BO →),∴λ=12,2μ=12,解得μ=14,∴λ+μ=34.]9.已知P 1(x 1,x 2),P 2(x 2,y 2)是以原点O 为圆心的单位圆上的两点,∠P 1OP 2=θ(θ为钝角).若sin ⎝ ⎛⎭⎪⎫θ+π4=35,则x 1x 2+y 1y 2的值为________.-210 [由题意可得π2<θ<π,sin ⎝ ⎛⎭⎪⎫θ+π4=35>0,∴θ+π4是钝角,∴cos ⎝ ⎛⎭⎪⎫θ+π4=-45,∴⎩⎪⎨⎪⎧22cos θ+22sin θ=35,22cos θ-22sin θ=-45,∴cos θ=-210.∴OP 1→·OP 2→=x 1·x 2+y 1·y 2=|OP 1→|·|OP 2→|cos θ=1×1×⎝ ⎛⎭⎪⎫-210=-210.]10.四棱锥P -ABCD 中,P A ⊥底面ABCD ,底面ABCD 是矩形,AB =2,AD =3,P A =3,点E 为棱CD 上一点,则三棱锥E -P AB 的体积为________.图43 [∵底面ABCD 是矩形,E 在CD 上, ∴S △ABE =12AB ·AD =12×2×3=3. ∵P A ⊥底面ABCD ,∴V E -P AB =V P -ABE=13S △ABE ·P A =13×3×3= 3.]11.记等差数列{a n }的前n 项和为S n ,已知a 1=3,且数列{S n }也为等差数列,则a 11=________.63 [设等差数列{a n }的公差为d ,∵a 1=3,且数列{S n }也为等差数列,∴2S 2=a 1+S 3,∴26+d =3+9+3d ,化为d 2-12d +36=0,解得d =6,则a 11=3+10×6=63.]12.已知经过点P ⎝ ⎛⎭⎪⎫1,32的两个圆C 1,C 2都与直线l 1:y =12x ,l 2:y =2x 相切,则这两圆的圆心距C 1C 2等于________.459 [设圆心坐标为(x ,y ),由于圆与直线l 1:y =12x ,l 2:y =2x 都相切,根据点到直线的距离公式得:|x -2y |5=|2x -y |5,解得y =x ,∴圆心只能在直线y =x上.设C 1(a ,a ),C 2(b ,b ),则圆C 1的方程为(x -a )2+(y -a )2=a 25,圆C 2的方程为(x -b )2+(y -b )2=b 25,将⎝ ⎛⎭⎪⎫1,32代入,得 ⎩⎪⎨⎪⎧(1-a )2+⎝ ⎛⎭⎪⎫32-a 2=a 25,(1-b )2+⎝ ⎛⎭⎪⎫32-b 2=b 25,∴a ,b 是方程(1-x )2+⎝ ⎛⎭⎪⎫32-x 2=x25,即9x 25-5x +134=0的两根,∴a +b =259,ab =6536, ∴C 1C 2=(a -b )2+(a -b )2=2·(a +b )2-4ab =2·62581-659=459.]13.已知x >y >0,且x +y ≤2,则4x +3y +1x -y的最小值为________. 94 [由x >y >0,可得x +3y >0,x -y >0, [(x +3y )+(x -y )]⎝ ⎛⎭⎪⎫4x +3y +1x -y =5+4(x -y )x +3y +x +3yx -y ≥5+24(x -y )x +3y ·x +3yx -y=9, 可得4x +3y +1x -y ≥9(x +3y )+(x -y )=92(x +y )≥94. 当且仅当2(x -y )=x +3y ,即x =5y =53时,取得最小值94.]14.设函数f (x )=⎩⎨⎧3x -1,x <1,2x 2,x ≥1,则满足f (f (a ))=2(f (a ))2的a 的取值范围为________.【导学号:91632081】⎣⎢⎡⎭⎪⎫23,+∞∪⎩⎨⎧⎭⎬⎫12 [令f (a )=t ,则f (t )=2t 2, 若t <1时,由f (t )=2t 2得3t -1=2t 2,即2t 2-3t +1=0, 得t =1(舍)或t =12,当t ≥1时,2t 2=2t 2成立,即t ≥1或t =12,若a <1,由f (a )≥1,即3a -1≥1,解得a ≥23,且a <1;此时23≤a <1, 由f (a )=12,得3a -1=12,得a =12,满足条件, 若a ≥1,由f (a )≥1,即2a 2≥1, ∵a ≥1,∴此时不等式2a 2≥1恒成立, 由f (a )=12,得2a 2=12,得a =±12,不满足条件, 综上,23≤a <1或a ≥1,即a ≥23. 综上可得,a 的范围是a ≥23或a =12.]二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin A =35,tan(A -B )=-12.(1)求tan B 的值; (2)若b =5,求c .[解] (1)在锐角三角形ABC 中,由sin A =35,得 cos A =1-sin 2A =45,所以tan A =sin A cos A =34.3分由tan(A-B)=tan A-tan B1+tan A·tan B=-12,得tan B=2. 5分(2)在锐角三角形ABC中,由tan B=2,得sin B=255,cos B=55,8分所以sin C=sin(A+B)=sin A cos B+cos A sin B=11525,12分由正弦定理bsin B=csin C,得c=b sin Csin B=112. 14分16.(本小题满分14分)如图5,已知直三棱柱ABC-A1B1C1的侧面ACC1A1是正方形,点O是侧面ACC1A1的中心,∠ACB=π2,M是棱BC的中点.图5(1)求证:OM∥平面ABB1A1;(2)求证:平面ABC1⊥平面A1BC.[证明](1)在△A1BC中,因为O是A1C的中点,M是BC的中点,所以OM∥A1B. 3分又OM⊄平面ABB1A1,A1B⊂平面ABB1A1,所以OM∥平面ABB1A1. 5分(2)因为ABC-A1B1C1是直三棱柱,所以CC1⊥底面ABC,所以CC1⊥BC,又∠ACB=π2,即BC⊥AC,而CC1,AC⊂平面ACC1A1,且CC1∩AC=C,所以BC⊥平面ACC1A1. 10分而AC1⊂平面ACC1A1,所以BC⊥AC1,又ACC1A1是正方形,所以A1C⊥AC1,而BC,A1C⊂平面A1BC,且BC∩A1C =C,所以AC1⊥平面A1BC.又AC1⊂平面ABC1,所以平面ABC1⊥平面A1BC. 14分17.(本小题满分14分)如图6,有一景区的平面图是一半圆形,其中AB长为2 km ,C ,D 两点在半圆弧上,满足BC =CD ,设∠COB =θ.图6(1)现要在景区内铺设一条观光道路,由线段AB ,BC ,CD 和DA 组成,则当θ为何值时,观光道路的总长l 最长,并求l 最大值;(2)若要在景区内种植鲜花,其中在△AOD 和△BOC 内种满鲜花,在扇形COD 内种一半面积的鲜花,则当θ为何值时,鲜花种植面积S 最大.[解] (1)由题∠COB =θ,∠AOD =π-2θ,θ∈⎝ ⎛⎭⎪⎫0,π2,取BC 中点M ,连结OM ,则OM ⊥BC ,∠BOM =θ2, 所以BC =2BM =2sin θ2.同理可得 CD =2sin θ2,AD =2sin π-2θ2=2cos θ, 所以l =2+2sin θ2+2sin θ2+2cos θ=2⎝ ⎛⎭⎪⎫1-sin 2θ2+4sin θ2+2,3分即l =-4⎝ ⎛⎭⎪⎫sin θ2-122+5,θ∈⎝ ⎛⎭⎪⎫0,π2.所以当sin θ2=12,即θ=π3时,有l max =5.6分(2)S △BOC =12sin θ,S △AOD =12sin(π-2θ)=sin θcos θ,S 扇形COD =12θ. 所以S =12sin θ+sin θcos θ+14θ, 所以S ′=12cos θ+cos 2θ-sin 2θ+14=14(4cos θ+3)(2cos θ-1),10分因为θ∈⎝ ⎛⎭⎪⎫0,π2,由S ′=0得θ=π3,列表得所以当θ=π3时,有面积S 取得最大值.答:(1)当θ=π3时,观光道路的总长l 最长,最长为5 km ; (2)当θ=π3时,鲜花种植面积S 最大.14分18.(本小题满分16分)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,一个焦点到相应的准线的距离为3,圆N 的方程为(x -c )2+y 2=a 2+c 2(c 为半焦距),直线l :y =kx +m (k >0)与椭圆M 和圆N 均只有一个公共点,分别设为A ,B .(1)求椭圆方程和直线方程;(2)试在圆N 上求一点P ,使PBP A =2 2.[解](1)由题意知⎩⎪⎨⎪⎧c a =12,a 2c -c =3,解得a =2,c =1,所以b = 3.所以椭圆M 的方程为:x 24+y 23=1. 圆N 的方程为(x -1)2+y 2=5.3分由直线l :y =kx +m 与椭圆M 只有一个公共点,所以由⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +m ,得(3+4k 2)x 2+8kmx +4m 2-12=0,①所以Δ=64k 2m 2-4(3+4k 2)(4m 2-12)=0得m 2=3+4k 2,② 由直线l :y =kx +m 与N 只有一个公共点,得|k +m |1+k 2=5,即k 2+2km +m 2=5+5k 2,③ 将②代入③得km =1,④ 由②,④且k >0,得k =12,m =2. 所以直线l :y =12x +2.8分(2)将k =12,m =2代入①可得A ⎝ ⎛⎭⎪⎫-1,32, 又过切点B 的半径所在的直线l ′为y =-2x +2,所以得交点B (0,2), 10分设P (x 0,y 0),因为PBP A =22,则x 20+(y 0-2)2(x 0+1)2+⎝ ⎛⎭⎪⎫y 0-322=8,化简得:7x 20+7y 20+16x 0-20y 0+22=0,⑤ 又P (x 0,y 0)满足x 20+y 20-2x 0=4,⑥将⑤-7×⑥得:3x 0-2y 0+5=0,即y 0=3x 0+52.⑦将⑦代入⑥得:13x 20+22x 0+9=0,解得x 0=-1或x 0=-913, 所以P (-1,1)或P ⎝ ⎛⎭⎪⎫-913,1913.16分19.(本小题满分16分)设函数f (x )=x |x -1|+m ,g (x )=ln x . (1)当m >1时,求函数y =f (x )在[0,m ]上的最大值;(2)记函数p (x )=f (x )-g (x ),若函数p (x )有零点,求实数m 的取值范围. [解] (1)当x ∈[0,1]时,f (x )=x (1-x )+m =-x 2+x +m =-⎝ ⎛⎭⎪⎫x -122+m +14,当x =12时,f (x )max =m +14.当x ∈(1,m ]时,f (x )=x (x -1)+m =x 2-x +m =⎝ ⎛⎭⎪⎫x -122+m -14,5分因为函数y =f (x )在(1,m ]上单调递增,所以f (x )max =f (m )=m 2. 由m 2≥m +14,得m 2-m -14≥0,又m >1,所以m ≥1+22.所以当m ≥1+22时,f (x )max =m 2;当1<m <1+22时,f (x )max =m +14. 8分(2)函数p (x )有零点,即方程f (x )-g (x )=x |x -1|-ln x +m =0有解, 即m =ln x -x |x -1|有解.令h (x )=ln x -x |x -1|,当x ∈(0,1]时,h (x )=x 2-x +ln x .因为h ′(x )=2x +1x -1≥22-1>0,所以函数h (x )在(0,1]上是增函数,所以h (x )≤h (1)=0.当x ∈(1,+∞)时,h (x )=-x 2+x +ln x .10分因为h ′(x )=-2x +1x +1=-2x 2+x +1x =-(x -1)(2x +1)x<0, 所以函数h (x )在(1,+∞)上是减函数,所以h (x )<h (1)=0.12分 所以方程m =ln x -x |x -1|有解时m ≤0.即函数p (x )有零点时实数m 的取值范围是(-∞,0]. 16分 20.(本小题满分16分)已知数列{a n }满足a 1=m ,a n +1=⎩⎨⎧2a n ,n =2k -1,a n +r ,n =2k(k ∈N *,r ∈R ),其前n 项和为S n . (1)当m 与r 满足什么关系时,对任意的n ∈N *,数列{a n }都满足a n +2=a n?(2)对任意实数m ,r ,是否存在实数p 与q ,使得{a 2n +1+p }与{a 2n +q }是同一个等比数列?若存在,请求出p ,q 满足的条件;若不存在,请说明理由;(3)当m =r =1时,若对任意的n ∈N *,都有S n ≥λa n ,求实数λ的最大值.[解] (1)由题意,得a 1=m ,a 2=2a 1=2m ,a 3=a 2+r =2m +r ,首先由a 3=a 1,得m +r =0.3分 当m +r =0时,因为a n +1=⎩⎨⎧ 2a n ,n =2k -1,a n -m ,n =2k(k ∈N *), 所以a 1=a 3=…=m ,a 2=a 4=…=2m ,故对任意的n ∈N *,数列{a n }都满足a n +2=a n .即当实数m ,r 满足m +r =0时,题意成立.6分(2)依题意,a 2n +1=a 2n +r =2a 2n -1+r ,则a 2n +1+r =2(a 2n -1+r ),因为a1+r=m+r,所以当m+r≠0时,{a2n+1+r}是等比数列,且a2n+1+r=(a1+r)2n=(m+r)2n.为使{a2n+1+p}是等比数列,则p=r.同理,当m+r≠0时,a2n+2r=(m+r)2n,则欲{a2n+2r}是等比数列,则q =2r. 10分综上所述:①若m+r=0,则不存在实数p,q,使得{a2n+1+p}与{a2n+q}是等比数列;②若m+r≠0,则当p,q满足q=2p=2r时,{a2n+1+p}与{a2n+q}是同一个等比数列.(3)当m=r=1时,由(2)可得a2n-1=2n-1,a2n=2n+1-2,当n=2k时,a n=a2k=2k+1-2,S n=S2k=(21+22+…+2k)+(22+23+…+2k+1)-3k=3(2k+1-k-2),所以S na n=3⎝⎛⎭⎪⎫1-k2k+1-2,14分令c k=k2k+1-2,则c k+1-c k=k+12k+2-2-k2k+1-2=(1-k)2k+1-2(2k+2-2)(2k+1-2)<0,所以S na n≥32,λ≤32,当n=2k-1时,a n=a2k-1=2k-1,S n=S2k-a2k=3(2k+1-k-2)-(2k+1-2)=2k+2-3k-4,所以S na n=4-3k2k-1,同理可得S na n≥1,λ≤1,综上所述,实数λ的最大值为1. 16分。

高考数学猜题卷 理(含解析)-人教版高三全册数学试题

高考数学猜题卷 理(含解析)-人教版高三全册数学试题

2017年某某省某某中学高考数学猜题卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.己知集合Q={x|2x2﹣5x≤0,x∈N},且P⊆Q,则满足条件的集合P的个数是()A.3 B.4 C.7 D.82.已知i是虚数单位,复数的虚部为()A.﹣1 B.1 C.﹣i D.i3.某样本中共有5个个体,其中四个值分别为0,1,2,3,第五个值丢失,但该样本的平均值为1,则样本方差为()A.2 B.C.D.4.双曲线C:﹣=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C 的焦距等于()A.2 B.2 C.4 D.45.若不等式组表示的平面区域是一个直角三角形,则该直角三角形的面积是()A.B.C.D.或6.已知,则tan2α=()A.B.C.D.7.《九章算术》是中国古代数学名著,体现了古代劳动人民数学的智慧,其中第六章“均输”中,有一竹节容量问题,某教师根据这一问题的思想设计了如图所示的程序框图,若输出的m的值为35,则输入的a的值为()A.4 B.5 C.7 D.118.如图所示,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A、B,交其准线l′点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为()A.y2=9x B.y2=6x C.y2=3x D.9.已知以下三视图中有三个同时表示某一个三棱锥,则不是该三棱锥的三视图是()A.B.C.D.10.在△ABC中,AB=AC=2,BC•cos(π﹣A)=1,则cosA的值所在区间为()A.(﹣0.4,﹣0.3)B.(﹣0.2,﹣0.1)C.(﹣0.3,﹣0.2)D.(0.4,0.5)11.已知符号函数sgn(x)=,那么y=sgn(x3﹣3x2+x+1)的大致图象是()A. B. C.D.12.已知函数f(x)=﹣,若对任意的x1,x2∈[1,2],且x1≠x2时,[|f(x1)|﹣|f(x2)|](x1﹣x2)>0,则实数a的取值X围为()A.[﹣,] B.[﹣,] C.[﹣,] D.[﹣e2,e2]二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知,则的值是.14.已知一个公园的形状如图所示,现有3种不同的植物要种在此公园的A,B,C,D,E 这五个区域内,要求有公共边界的两块相邻区域种不同的植物,则不同的种法共有种.15.已知函数f(x)=sinx.若存在x1,x2,…,x m满足0≤x1<x2<…<x m≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1)﹣f(x m)|=12(m≥2,m∈N*),则m的最小值为.16.已知等腰直角△ABC的斜边BC=2,沿斜边的高线AD将△ABC折起,使二面角B﹣AD﹣C为,则四面体ABCD的外接球的表面积为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n=(﹣1)n﹣1,求数列{b n}的前n项和T n.18.如图,在四棱锥E﹣ABCD中,底面ABCD为正方形,AE⊥平面CDE,已知AE=DE=2,F为线段DF的中点.(I)求证:BE∥平面ACF;(II)求平面BCF与平面BEF所成锐二面角的余弦角.19.某某市龙虎山花语世界位于中国第八处世界自然遗产,世界地质公元、国家自然文化双遗产地、国家AAAAA级旅游景区﹣﹣龙虎山主景区排衙峰下,是一座独具现代园艺风格的花卉公园,园内汇集了3000余种花卉苗木,一年四季姹紫嫣红花香四溢.花园景观融合法、英、意、美、日、中六大经典园林风格,景观设计唯美新颖.玫瑰花园、香草花溪、台地花海、植物迷宫、儿童乐园等景点错落有致,交相呼应又自成一体,是世界园艺景观的大展示.该景区自2015年春建成试运行以来,每天游人如织,郁金香、向日葵、虞美人等赏花旺季日入园人数最高达万人.某学校社团为了解进园旅客的具体情形以及采集旅客对园区的建议,特别在2017年4月1日赏花旺季对进园游客进行取样调查,从当日12000名游客中抽取100人进行统计分析,结果如下:(表一)年龄频数频率男女[0,10)10 0.1 5 5[10,20)①②③④[20,30)25 0.25 12 13[30,40)20 0.2 10 10[40,50)10 0.1 6 4[50,60)10 0.1 3 7[60,70) 5 0.05 1 4[70,80) 3 0.03 1 2[80,90) 2 0.02 0 2合计100 1.00 45 55(1)完成表格一中的空位①﹣④,并在答题卡中补全频率分布直方图,并估计2017年4月1日当日接待游客中30岁以下人数.(2)完成表格二,并问你能否有97.5%的把握认为在观花游客中“年龄达到50岁以上”与“性别”相关?(3)按分层抽样(分50岁以上与50以下两层)抽取被调查的100位游客中的10人作为幸运游客免费领取龙虎山内部景区门票,再从这10人中选取2人接受电视台采访,设这2人中年龄在50岁以上(含)的人数为ξ,求ξ的分布列(表二)50岁以上50岁以下合计男生女生合计P(K2≥k)0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828 (参考公式:k2=,其中n=a+b+c+d)20.给定椭圆C: =1(a>b>0),称圆心在原点O,半径为的圆是椭圆C 的“准圆”.若椭圆C的一个焦点为F(,0),其短轴上的一个端点到F的距离为.(Ⅰ)求椭圆C的方程和其“准圆”方程;(Ⅱ)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.(ⅰ)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程并证明l1⊥l2;(ⅱ)求证:线段MN的长为定值.21.已知函数f(x)=x2﹣alnx(a∈R)(1)若函数f(x)在x=2处的切线方程为y=x+b,求a,b的值;(2)讨论方程f(x)=0解的个数,并说明理由.[选修4-4:坐标系与参数方程]22.已知曲线C的极坐标方程是ρ2=4ρcosθ+6ρsinθ﹣12,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数).(I)写出直线l的一般方程与曲线C的直角坐标方程,并判断它们的位置关系;(II)将曲线C向左平移2个单位长度,向上平移3个单位长度,得到曲线D,设曲线D经过伸缩变换得到曲线E,设曲线E上任一点为M(x,y),求的取值X围.[选修4-5:不等式选讲]23.设f(x)=|x﹣a|,a∈R(Ⅰ)当a=5,解不等式f(x)≤3;(Ⅱ)当a=1时,若∃x∈R,使得不等式f(x﹣1)+f(2x)≤1﹣2m成立,某某数m的取值X围.2017年某某省某某中学高考数学猜题卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.己知集合Q={x|2x2﹣5x≤0,x∈N},且P⊆Q,则满足条件的集合P的个数是()A.3 B.4 C.7 D.8【考点】18:集合的包含关系判断及应用.【分析】解出集合Q,再根据P⊆Q,根据子集的性质,求出子集的个数即为集合P的个数;【解答】解:集合Q={x|2x2﹣5x≤0,x∈N},∴Q={0,1,2},共有三个元素,∵P⊆Q,又Q的子集的个数为23=8,∴P的个数为8,故选D;2.已知i是虚数单位,复数的虚部为()A.﹣1 B.1 C.﹣i D.i【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则、虚部的定义即可得出.【解答】解:复数==i﹣2的虚部为1.故选:B.3.某样本中共有5个个体,其中四个值分别为0,1,2,3,第五个值丢失,但该样本的平均值为1,则样本方差为()A.2 B.C.D.【考点】BC:极差、方差与标准差.【分析】根据平均数公式先求出a,再计算它们的方差.【解答】解:设丢失的数据为a,则这组数据的平均数是×(a+0+1+2+3)=1,解得a=﹣1,根据方差计算公式得s2=×[(﹣1﹣1)2+(0﹣1)2+(1﹣1)2+(2﹣1)2+(3﹣1)2]=2.故选:A.4.双曲线C:﹣=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C 的焦距等于()A.2 B.2 C.4 D.4【考点】KC:双曲线的简单性质.【分析】根据双曲线的离心率以及焦点到直线的距离公式,建立方程组即可得到结论.【解答】解:∵:﹣=1(a>0,b>0)的离心率为2,∴e=,双曲线的渐近线方程为y=,不妨取y=,即bx﹣ay=0,则c=2a,b=,∵焦点F(c,0)到渐近线bx﹣ay=0的距离为,∴d=,即,解得c=2,则焦距为2c=4,故选:C5.若不等式组表示的平面区域是一个直角三角形,则该直角三角形的面积是()A.B.C.D.或【考点】7C:简单线性规划.【分析】依题意,三条直线围成一个直角三角形,可能会有两种情形,分别计算两种情形下三角形的顶点坐标,利用三角形面积公式计算面积即可.【解答】解:有两种情形:(1)由y=2x与kx﹣y+1=0垂直,则k=﹣,三角形的三个顶点为(0,0),(0,1),(,),三角形的面积为s=×1×=;(2)由x=0与kx﹣y+1=0形垂直,则k=0,三角形的三个顶点为(0.0),(0,1),(,1),三角形的面积为s=×1×=.∴该三角形的面积为或.故选:D.6.已知,则tan2α=()A.B.C.D.【考点】GU:二倍角的正切.【分析】将已知等式两边平方,利用二倍角公式,同角三角函数基本关系式即可化简求值得解.【解答】解:∵,∴,化简得4sin2α=3cos2α,∴,故选:C.7.《九章算术》是中国古代数学名著,体现了古代劳动人民数学的智慧,其中第六章“均输”中,有一竹节容量问题,某教师根据这一问题的思想设计了如图所示的程序框图,若输出的m的值为35,则输入的a的值为()A.4 B.5 C.7 D.11【考点】EF:程序框图.【分析】模拟程序框图的运行过程,求出运算结果即可.【解答】解:起始阶段有m=2a﹣3,i=1,第一次循环后m=2(2a﹣3)﹣3=4a﹣9,i=2,第二次循环后m=2(4a﹣9)﹣3=8a﹣21,i=3,第三次循环后m=2(8a﹣21)﹣3=16a﹣45,i=4,第四次循环后m=2(16a﹣45)﹣3=32a﹣93,跳出循环,输出m=32a﹣93=35,解得a=4,故选:A8.如图所示,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A、B,交其准线l′点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为()A.y2=9x B.y2=6x C.y2=3x D.【考点】K8:抛物线的简单性质.【分析】分别过点A,B作准线的垂线,分别交准线于点E,D,设|BF|=a,根据抛物线定义可知|BD|=a,进而推断出∠BCD的值,在直角三角形中求得a,进而根据BD∥FG,利用比例线段的性质可求得p,则抛物线方程可得.【解答】解:如图分别过点A,B作准线的垂线,分别交准线于点E,D,设|BF|=a,则由已知得:|BC|=2a,由定义得:|BD|=a,故∠BCD=30°,在直角三角形ACE中,∵|AE|=3,|AC|=3+3a,∴2|AE|=|AC|∴3+3a=6,从而得a=1,∵BD∥FG,∴=求得p=,因此抛物线方程为y2=3x.故选C.9.已知以下三视图中有三个同时表示某一个三棱锥,则不是该三棱锥的三视图是()A.B.C.D.【考点】L!:由三视图求面积、体积.【分析】由已知中的四个三视图,可知四个三视图,分别表示从前、后、左、右四个方向观察同一个棱锥,但其中有一个是错误的,根据A与C中俯视图正好旋转180°,故应是从相反方向进行观察,而其正视图和侧视图中三角形斜边倾斜方向相反,满足实际情况,可得A,C均正确,而根据AC可判断B正确,D错误.【解答】解:三棱锥的三视图均为三角形,四个答案均满足;且四个三视图均表示一个高为3,底面为两直角边分别为1,2的棱锥A与C中俯视图正好旋转180°,故应是从相反方向进行观察,而其正视图和侧视图中三角形斜边倾斜方向相反,满足实际情况,故A,C表示同一棱锥设A中观察的正方向为标准正方向,以C表示从后面观察该棱锥B与D中俯视图正好旋转180°,故应是从相反方向进行观察,但侧视图中三角形斜边倾斜方向相同,不满足实际情况,故B,D中有一个不与其它三个一样表示同一个棱锥,根据B中正视图与A中侧视图相同,侧视图与C中正视图相同,可判断B是从左边观察该棱锥故选D10.在△ABC中,AB=AC=2,BC•cos(π﹣A)=1,则cosA的值所在区间为()A.(﹣0.4,﹣0.3)B.(﹣0.2,﹣0.1)C.(﹣0.3,﹣0.2)D.(0.4,0.5)【考点】HR:余弦定理;HP:正弦定理.【分析】由题意求得cosA=﹣,再由余弦定理,得出关于﹣的方程,构造函数,利用函数零点的判断方法得出cosA的取值X围.【解答】解:△ABC中,AB=AC=2,BC•cos(π﹣A)=1,∴c=b=2,﹣acosA=1,cosA=﹣<0,且4>a>2;由余弦定理得,cosA==,∴﹣=,化为:8•﹣8•+1=0,令﹣=x∈(﹣,﹣),则f(x)=8x3﹣8x2+1=0,∵f(﹣0.4)=﹣1.4×1.28+1<0,f(﹣0.3)=0.064>0,∴cosA∈(﹣0.4,﹣0.3).故选:A.11.已知符号函数sgn(x)=,那么y=sgn(x3﹣3x2+x+1)的大致图象是()A. B. C.D.【考点】3O:函数的图象.【分析】构造函数f(x)=x3﹣3x2+x+1,可整理得f(x)=(x﹣1)(x2﹣2x﹣1)=(x﹣1)(x﹣1﹣)(x﹣1+),利用排除法即可得到答案.【解答】解:令f(x)=x3﹣3x2+x+1,则f(x)=(x﹣1)(x2﹣2x﹣1)=(x﹣1)(x﹣1﹣)(x﹣1+),∴f(,1)=0,f(1﹣)=0,f(1+)=0,∵sgn(x)=,∴sgn(f(1))=0,可排除A,B;又sgn(f(1﹣))=0,sgn(f(1﹣))=0,可排除C,故选D.12.已知函数f(x)=﹣,若对任意的x1,x2∈[1,2],且x1≠x2时,[|f(x1)|﹣|f(x2)|](x1﹣x2)>0,则实数a的取值X围为()A.[﹣,] B.[﹣,] C.[﹣,] D.[﹣e2,e2]【考点】6B:利用导数研究函数的单调性.【分析】由题意可知函数y=丨f(x)丨单调递增,分类讨论,根据函数的性质及对勾函数的性质,即可求得实数a的取值X围.【解答】解:由任意的x1,x2∈[1,2],且x1<x2,由[|f(x1)|﹣|f(x2)|](x1﹣x2)>0,则函数y=丨f(x)丨单调递增,当a≥0,f(x)在[1,2]上是增函数,则f(1)≥0,解得:0≤a≤,当a<0时,丨f(x)丨=f(x),令=﹣,解得:x=ln,由对勾函数的单调递增区间为[ln,+∞),故ln≤1,解得:﹣≤a<0,综上可知:a的取值X围为[﹣,],故选B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知,则的值是()2018.【考点】DB:二项式系数的性质.【分析】利用二项式定理,对等式中的x赋值﹣2,可求得a0=0,再令x=,即可求出答案.【解答】解:∵(x+1)2(x+2)2016=a0+a1(x+2)+a2(x+2)+…+a2018(x+2)2018,∴令x=﹣2,得a0=0再令x=﹣,得到a0+=(﹣+1)2(﹣+2)2016=()2018,∴=,故答案为:()2018,14.已知一个公园的形状如图所示,现有3种不同的植物要种在此公园的A,B,C,D,E 这五个区域内,要求有公共边界的两块相邻区域种不同的植物,则不同的种法共有18 种.【考点】D8:排列、组合的实际应用.【分析】根据题意,分2步进行分析:①、对于A、B、C区域,将3种不同的植物全排列,安排在A、B、C区域,由排列数公式可得其排法数目,②、对于D、E区域,分2种情况讨论:若A,E种的植物相同,若A,E种的植物不同;由加法原理可得D、E区域的排法数目,进而由分步计数原理计算可得答案.【解答】解:根据题意,分2步进行分析:①、对于A、B、C区域,三个区域两两相邻,种的植物都不能相同,将3种不同的植物全排列,安排在A、B、C区域,有A33=6种情况,②、对于D、E区域,分2种情况讨论:若A,E种的植物相同,则D有2种种法,若A,E种的植物不同,则E有1种情况,D也有1种种法,则D、E区域共有2+1=3种不同情况,则不同的种法共有6×3=18种;故答案为:18.15.已知函数f(x)=sinx.若存在x1,x2,…,x m满足0≤x1<x2<…<x m≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1)﹣f(x m)|=12(m≥2,m∈N*),则m的最小值为8 .【考点】H2:正弦函数的图象.【分析】由正弦函数的有界性可得,对任意x i,x j(i,j=1,2,3,…,m),都有|f(x i)﹣f(x j)|≤f(x)max﹣f(x)min=2,要使m取得最小值,尽可能多让x i(i=1,2,3,…,m)取得最高点,然后作图可得满足条件的最小m值.【解答】解:∵y=sinx对任意x i,x j(i,j=1,2,3,…,m),都有|f(x i)﹣f(x j)|≤f (x)max﹣f(x)min=2,要使m取得最小值,尽可能多让x i(i=1,2,3,…,m)取得最高点,考虑0≤x1<x2<…<x m≤6π,|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1)﹣f (x m)|=12,按下图取值即可满足条件,∴m的最小值为8.故答案为:8.16.已知等腰直角△ABC的斜边BC=2,沿斜边的高线AD将△ABC折起,使二面角B﹣AD﹣C 为,则四面体ABCD的外接球的表面积为.【考点】LG:球的体积和表面积.【分析】由题意,△BCD是等边三角形,边长为1,外接圆的半径为,AD=1,可得四面体ABCD的外接球的半径==,即可求出四面体ABCD的外接球的表面积.【解答】解:由题意,△BCD是等边三角形,边长为1,外接圆的半径为,∵AD=1,∴四面体ABCD的外接球的半径==,∴四面体ABCD的外接球的表面积为=,故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n=(﹣1)n﹣1,求数列{b n}的前n项和T n.【考点】8E:数列的求和;82:数列的函数特性;8H:数列递推式.【分析】(Ⅰ)利用等差数列与等比数列的通项公式及其前n项和公式即可得出;(Ⅱ)由(Ⅰ)可得b n=.对n分类讨论“裂项求和”即可得出.【解答】解:(Ⅰ)∵等差数列{a n}的公差为2,前n项和为S n,∴S n==n2﹣n+na1,∵S1,S2,S4成等比数列,∴,∴,化为,解得a1=1.∴a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1.(Ⅱ)由(Ⅰ)可得b n=(﹣1)n﹣1==.∴T n=﹣++…+.当n为偶数时,T n=﹣++…+﹣=1﹣=.当n为奇数时,T n=﹣++…﹣+=1+=.∴Tn=.18.如图,在四棱锥E﹣ABCD中,底面ABCD为正方形,AE⊥平面CDE,已知AE=DE=2,F为线段DF的中点.(I)求证:BE∥平面ACF;(II)求平面BCF与平面BEF所成锐二面角的余弦角.【考点】MT:二面角的平面角及求法;LS:直线与平面平行的判定.【分析】(1)连接BD和AC交于点O,连接OF,证明OF∥BE.然后证明BE∥平面ACF.(II)以D为原点,以DE所在直线为x轴建立如图所示的空间直角坐标系,求出相关点的坐标,求出平面BEF的一个法向量,平面BCF的一个法向量,设平面BCF与平面BEF所成的锐二面角为θ,利用数量积求解即可.【解答】解:(1)连接BD和AC交于点O,连接OF,因为四边形ABCD为正方形,所以O为BD的中点.因为F为DE的中点,所以OF∥BE.因为BE⊄平面ACF,OF⊂平面AFC,所以BE∥平面ACF.(II)因为AE⊥平面CDE,CD⊂平面CDE,所以AE⊥CD.因为ABCD为正方形,所以CD⊥AD.因为AE∩AD=A,AD,AE⊂平面DAE,所以CD⊥平面DAE.因为DE⊂平面DAE,所以DE⊥CD.所以以D为原点,以DE所在直线为x轴建立如图所示的空间直角坐标系,则E(2,0,0),F(1,0,0),A(2,0,2),D(0,0,0).因为AE⊥平面CDE,DE⊂平面CDE,所以AE⊥CD.因为AE=DE=2,所以.因为四边形ABCD为正方形,所以,所以.由四边形ABCD为正方形,得==(2,2,2),所以.设平面BEF的一个法向量为=(x1,y1,z1),又知=(0,﹣2,﹣2),=(1,0,0),由,可得,令y1=1,得,所以.设平面BCF的一个法向量为=(x2,y2,z2),又知=(﹣2,0,﹣2),=(1,﹣2,0),由,即:.令y2=1,得,所以.设平面BCF与平面BEF所成的锐二面角为θ,又cos===.则.所以平面BCF与平面BEF所成的锐二面角的余弦值为.19.某某市龙虎山花语世界位于中国第八处世界自然遗产,世界地质公元、国家自然文化双遗产地、国家AAAAA级旅游景区﹣﹣龙虎山主景区排衙峰下,是一座独具现代园艺风格的花卉公园,园内汇集了3000余种花卉苗木,一年四季姹紫嫣红花香四溢.花园景观融合法、英、意、美、日、中六大经典园林风格,景观设计唯美新颖.玫瑰花园、香草花溪、台地花海、植物迷宫、儿童乐园等景点错落有致,交相呼应又自成一体,是世界园艺景观的大展示.该景区自2015年春建成试运行以来,每天游人如织,郁金香、向日葵、虞美人等赏花旺季日入园人数最高达万人.某学校社团为了解进园旅客的具体情形以及采集旅客对园区的建议,特别在2017年4月1日赏花旺季对进园游客进行取样调查,从当日12000名游客中抽取100人进行统计分析,结果如下:(表一)年龄频数频率男女[0,10)10 0.1 5 5[10,20)①②③④[20,30)25 0.25 12 13[30,40)20 0.2 10 10[40,50)10 0.1 6 4[50,60)10 0.1 3 7[60,70) 5 0.05 1 4[70,80) 3 0.03 1 2[80,90) 2 0.02 0 2合计100 1.00 45 55(1)完成表格一中的空位①﹣④,并在答题卡中补全频率分布直方图,并估计2017年4月1日当日接待游客中30岁以下人数.(2)完成表格二,并问你能否有97.5%的把握认为在观花游客中“年龄达到50岁以上”与“性别”相关?(3)按分层抽样(分50岁以上与50以下两层)抽取被调查的100位游客中的10人作为幸运游客免费领取龙虎山内部景区门票,再从这10人中选取2人接受电视台采访,设这2人中年龄在50岁以上(含)的人数为ξ,求ξ的分布列(表二)50岁以上50岁以下合计男生 5 40 45女生15 40 55合计20 80 100P(K2≥k)0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828 (参考公式:k2=,其中n=a+b+c+d)【考点】CG:离散型随机变量及其分布列;BL:独立性检验.【分析】(1)由频率分布表的性质能完成表(一),从而能完成频率分布直方图,进而求出30岁以下频率,由此以频率作为概率,能估计2017年7月1日当日接待游客中30岁以下人数.(2)完成表格,求出K2=≈4.04<5.024,从而得到没有97.5%的把握认为在观花游客中“年龄达到50岁以上”与“性别”相关.(3)由分层抽样应从这10人中抽取50岁以上人数:10×0.2=2人,50岁以下人数ξ的取值可能0,1,2,分别求出相应的概率,由此能求出ξ的分布列.【解答】解:(1)完成表(一),如下表:年龄频数频率男女[0,10)10 0.1 5 5[10,20)15 0.15 7 8[20,30)25 0.25 12 13[30,40)20 0.2 10 10[40,50)10 0.1 6 4[50,60)10 0.1 3 7[60,70) 5 0.05 1 4[70,80) 3 0.03 1 2[80,90) 2 0.02 0 2合计100 1.00 45 55完成频率分布直方图如下:30岁以下频率为:0.1+0.15+0.25=0.5,以频率作为概率,估计2017年7月1日当日接待游客中30岁以下人数为:12000×0.5=6000.(2)完成表格,如下:50岁以上50岁以下合计男生 5 40 45女生15 40 55合计20 80 100K2==≈4.04<5.024,所以没有97.5%的把握认为在观花游客中“年龄达到50岁以上”与“性别”相关.(3)由分层抽样应从这10人中抽取50岁以上人数:10×0.2=2人,50岁以下人数ξ的取值可能0,1,2P(ξ=0)==,P(ξ=1)==,P(ξ=2)==.∴ξ的分布列为:ξ0 1 2P20.给定椭圆C: =1(a>b>0),称圆心在原点O,半径为的圆是椭圆C 的“准圆”.若椭圆C的一个焦点为F(,0),其短轴上的一个端点到F的距离为.(Ⅰ)求椭圆C的方程和其“准圆”方程;(Ⅱ)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.(ⅰ)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程并证明l1⊥l2;(ⅱ)求证:线段MN的长为定值.【考点】KH:直线与圆锥曲线的综合问题.【分析】(Ⅰ)利用已知椭圆的标准方程及其即可得出;(Ⅱ)(i)把直线方程代入椭圆方程转化为关于x的一元二次方程,利用直线与椭圆相切⇔△=0,即可解得k的值,进而利用垂直与斜率的关系即可证明;(ii)分类讨论:l1,l2经过点P(x0,y0),又分别交其准圆于点M,N,无论两条直线中的斜率是否存在,都有l1,l2垂直.即可得出线段MN为准圆x2+y2=4的直径.【解答】(Ⅰ)解:∵椭圆C的一个焦点为F(,0),其短轴上的一个端点到F的距离为.∴,,∴=1,∴椭圆方程为,∴准圆方程为x2+y2=4.(Ⅱ)证明:(ⅰ)∵准圆x2+y2=4与y轴正半轴的交点为P(0,2),设过点P(0,2)且与椭圆相切的直线为y=kx+2,联立得(1+3k2)x2+12kx+9=0.∵直线y=kx+2与椭圆相切,∴△=144k2﹣4×9(1+3k2)=0,解得k=±1,∴l1,l2方程为y=x+2,y=﹣x+2.∵,∴l1⊥l2.(ⅱ)①当直线l1,l2中有一条斜率不存在时,不妨设直线l1斜率不存在,则l1:,当l1:时,l1与准圆交于点,此时l2为y=1(或y=﹣1),显然直线l1,l2垂直;同理可证当l1:时,直线l1,l2垂直.②当l1,l2斜率存在时,设点P(x0,y0),其中.设经过点P(x0,y0)与椭圆相切的直线为y=t(x﹣x0)+y0,∴由得.由△=0化简整理得,∵,∴有.设l1,l2的斜率分别为t1,t2,∵l1,l2与椭圆相切,∴t1,t2满足上述方程,∴t1•t2=﹣1,即l1,l2垂直.综合①②知:∵l1,l2经过点P(x0,y0),又分别交其准圆于点M,N,且l1,l2垂直.∴线段MN为准圆x2+y2=4的直径,|MN|=4,∴线段MN的长为定值.21.已知函数f(x)=x2﹣alnx(a∈R)(1)若函数f(x)在x=2处的切线方程为y=x+b,求a,b的值;(2)讨论方程f(x)=0解的个数,并说明理由.【考点】6K:导数在最大值、最小值问题中的应用;54:根的存在性及根的个数判断;6H:利用导数研究曲线上某点切线方程.【分析】(1)求出导函数,利用f(x)在x=2处的切线方程为y=x+b,列出方程组求解a,b.(2)通过a=0,a<0,判断方程的解.a>0,求出函数的导数判断函数的单调性,求出极小值,分析出当a∈[0,e)时,方程无解;当a<0或a=e时,方程有惟一解;当a>e时方程有两解.【解答】解:(1)因为:(x>0),又f(x)在x=2处的切线方程为y=x+b所以解得:a=2,b=﹣2ln2…(2)当a=0时,f(x)在定义域(0,+∞)上恒大于0,此时方程无解;…当a<0时,在(0,+∞)上恒成立,所以f(x)在定义域(0,+∞)上为增函数.∵,,所以方程有惟一解.…当a>0时,因为当时,f'(x)>0,f(x)在内为减函数;当时,f(x)在内为增函数.所以当时,有极小值即为最小值…当a∈(0,e)时,,此方程无解;当a=e时,.此方程有惟一解.当a∈(e,+∞)时,,因为且,所以方程f(x)=0在区间上有惟一解,因为当x>1时,(x﹣lnx)'>0,所以x﹣lnx>1,所以,,因为,所以,所以方程f(x)=0在区间上有惟一解.所以方程f(x)=0在区间(e,+∞)上有惟两解.…综上所述:当a∈[0,e)时,方程无解;当a<0或a=e时,方程有惟一解;当a>e时方程有两解.…[选修4-4:坐标系与参数方程]22.已知曲线C的极坐标方程是ρ2=4ρcosθ+6ρsinθ﹣12,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数).(I)写出直线l的一般方程与曲线C的直角坐标方程,并判断它们的位置关系;(II)将曲线C向左平移2个单位长度,向上平移3个单位长度,得到曲线D,设曲线D经过伸缩变换得到曲线E,设曲线E上任一点为M(x,y),求的取值X围.【考点】Q4:简单曲线的极坐标方程;O7:伸缩变换.(I)直线l的参数方程消去数t,能求出直线l的一般方程,由ρcosθ=x,ρsinθ=y,【分析】ρ2=x2+y2,能求出曲线C的直角坐标方程,由圆心(2,3)到直线l的距离d=r,得到直线l和曲线C相切.(II)曲线D为x2+y2=1.曲线D经过伸缩变换,得到曲线E的方程为,从而点M的参数方程为(θ为参数),由此能求出的取值X围.【解答】解:(I)∵直线l的参数方程为(t为参数).∴消去数t,得直线l的一般方程为,∵曲线C的极坐标方程是ρ2=4ρcosθ+6ρsinθ﹣12,∴由ρcosθ=x,ρsinθ=y,ρ2=x2+y2,得曲线C的直角坐标方程为(x﹣2)2+(y﹣3)2=1.∵圆心(2,3)到直线l的距离d==r,∴直线l和曲线C相切.(II)曲线D为x2+y2=1.曲线D经过伸缩变换,得到曲线E的方程为,则点M的参数方程为(θ为参数),∴,∴的取值X围为[﹣2,2].[选修4-5:不等式选讲]23.设f(x)=|x﹣a|,a∈R(Ⅰ)当a=5,解不等式f(x)≤3;(Ⅱ)当a=1时,若∃x∈R,使得不等式f(x﹣1)+f(2x)≤1﹣2m成立,某某数m的取值X围.【考点】R2:绝对值不等式.【分析】(Ⅰ)将a=5代入解析式,然后解绝对值不等式,根据绝对值不等式的解法解之即可;(Ⅱ)先利用根据绝对值不等式的解法去绝对值,然后利用图象研究函数的最小值,使得1﹣2m大于等于不等式左侧的最小值即可.【解答】解:(I)a=5时原不等式等价于|x﹣5|≤3即﹣3≤x﹣5≤3,2≤x≤8,∴解集为{x|2≤x≤8};(II)当a=1时,f(x)=|x﹣1|,令,由图象知:当时,g(x)取得最小值,由题意知:,∴实数m的取值X围为.word。

江西省2017年高考数学理科押题卷及答案

江西省2017年高考数学理科押题卷及答案

泄露天机——2017年江西省高考押题 精粹数学理科本卷共60题,三种题型:选择题、填空题和解答题。

选择题36小题,填空题8小题,解答题18小题。

一、选择题(36个小题)1. 已知全集{}1,2,3,4,5U =, 集合{}3,4,5M =, {}1,2,5N =, 则集合{}1,2可以表示为( ) A .MN B .()U M N ð C .()U MN ð D .()()U U M N 痧 答案:B解析:有元素1,2的是,U M N ð,分析选项则只有B 符合。

2. 集合 {}{}{}1,2,3,4,5,1,2,3,|,A B C z z xy x A y B ====∈∈且,则集合C 中的元素个数为( )A .3B .4C .11D .12 答案:C解析:{1,2,3,4,5,6,8,9,10,12,15}C =,故选C 。

3. 设集合{}1,0,1,2,3A =-,{}220B x x x =->,则A B ⋂=( )A .{}3B .{}2,3C .{}1,3-D .{}0,1,2 答案:C解析:集合{}{}22020B x x x x x x =->=><或,{}1,3A B ⋂=-。

4. 若(1)z i i +=(其中i 为虚数单位),则||z 等于( )A .1 B. 32 C. 22D. 12答案:C 解析:化简得i z 2121+=,则||z =22,故选C 。

5. 若复数iia 213++(i R a ,∈为虚数单位)是纯虚数,则实数a 的值为( )A. 6-B. 2-C. 4D. 6答案:A 解析:3(3)(12)63212(12)(12)55a i a i i a a i i i i ++-+-==+++-,所以6320,0,655a aa +-=≠∴=-。

6. 复数21ii -在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限答案:D解析:根据复数的运算可知()()22121215521i i i i i i +==---,所以复数的坐标为21,55⎛⎫- ⎪⎝⎭,所以正确选项为D 。

2017天津市高考压轴卷数学(理)附答案解析

2017天津市高考压轴卷数学(理)附答案解析

2017天津市高考压轴卷理科数学一、选择题(每小题5分,共40分)1. 已知集合2{|1}M x x=<,{|1}N y y x ==-,则()R C M N =( )A.(0,2]B.[0,2]C.∅D.[1,2]2. 函数错误!未找到引用源。

()()1ln 52x f x e x =-- )A .错误!未找到引用源。

[0,+∞)B .错误!未找到引用源。

(-∞,2] C.错误!未找到引用源。

[0,2] D .错误!未找到引用源。

[0,2)3. 平行四边形中,,点在边上,则的最大值为A. B. C. D.4. 某几何体的三视图如图所示,在该几何体的体积是( )A .B .C .D .5. (x 3+x )3(﹣7+)的展开式x 3中的系数为( )A .3B .﹣4C .4D .﹣76. 已知椭圆+=1(m >0)与双曲线=1(n >0)有相同的焦点,则m+n 的最大值是( )A .3B .6C .18D .367. 已知数列{a n }中,前n 项和为S n ,且n n a 32n S +=,则1n n a a -的最大值为( )A .﹣3B .﹣1C .3D .18. 我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x 的不足近似值和过剩近似值分别为b a 和d c (a ,b ,c ,*d N ∈),则b da c++是x 的更为精确的不足近似值或过剩近似值.我们知道 3.14159π=…,若令31491015π<<,则第一次用“调日法”后得165是π的更为精确的过剩近似值,即3116105π<<,若每次都取最简分数,那么第四次用“调日法”后可得π的近似分数为( ) A .227 B .6320 C .7825D .10935 二、填空题:本大题共6小题,每小题5分,共30分.9.若复数z 满足(1﹣i )z=1﹣5i ,则复数z 的虚部为 .10. 阅读程序框图,如果输出的函数值y 在区间内,则输入的实数x 的取值范围是 .11设变量x 、y 满足约束条件:则z =x 2+y 2的最大值是__ __.12在平面直角坐标系xOy 中,点F 为抛物线x 2=8y 的焦点,则点F 到双曲线x 2﹣=1的渐近线的距离为 .13. 在平面直角坐标系中,已知直线l 的参数方程为11x s y s=+⎧⎨=-⎩,(s 为参数),曲线C 的参数方程为22x t y t=+⎧⎨=⎩,(t 为参数),若直线l 与曲线C 相交于A B ,两点,则AB =____. 14.设12,F F 是双曲线2222:1(0,0)x y C a b a b -=>>的两个焦点,P 是C 上一点,若216,PF PF a +=且12PF F ∆的最小内角为30,则C 的离心率为___。

2017年高考数学原创押题预测卷 01(江苏卷)(解析版)

2017年高考数学原创押题预测卷 01(江苏卷)(解析版)

f (x)e2x [ f (x) 1] 2e2x (e2x )2
f (x) 2 f (x) 2 e2x
0 ,故
函数 F(x)
f
(x) e2x
1

R
上单调递增,又因为
F
(0)
f
(0) e0
1
2018
1
2017
,所以当且仅当
x
0
时,
f
(x) 1 e2x
2017
,即当且仅当
x
0 时,
f
(x)
2017e2x
交点的横坐标分别为 x1 x2 x3 x4 .当 x 0 时,由对数函数的性质知 log2 x3 log2 x4 , x3x4 1,当
数学 第 5 页(共 22 页)
x 0 时,由 y x2 2x 的对称性知 x1 x2 2 ,又 x1 x2 0 ,则 x1 x2 0 ,(x1) (x2 ) 2 ,
在 CC1 上,且 CM
1 8
CC1

(1)求证: A1C ∥平面 AB1D ; (2)求证:平面 AB1D ⊥平面 ABM .
16.【答案】(1)详见解析 (2)详见解析 【解析】
试题解析:(1) 记 A1B AB1 O ,连接 OD . ∵四边形 AA1B1B 为矩形,∴ O 是 A1B 的中点, 又∵ D 是 BC 的中点,∴ A1C // OD .·······3 分 又∵ A1C 平面 AB1D , OD 平面 AB1D , ∴ A1C ∥平面 AB1D .·······6 分
n
1(n N*)

又 a1 1,∴ an n(n N*) .............................3 分

2017年高考押题卷文科数学(一)含解析

2017年高考押题卷文科数学(一)含解析

文 科 数 学(一)本试题卷共6页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

第Ⅰ卷一、选择题:本题共12小题,每小题5分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.集合{}|13A x x =<<,集合{}|2,B y y x x A ==-∈,则集合A B =( )A .{}|13x x <<B .{}|13x x -<<C .{}|11x x -<<D .∅2.已知复数在复平面对应点为()1,1-,则z =( ) A .1B .-1CD .03.sin2040°=( )A .12-B.C .12D4.世界最大单口径射电望远镜FAST 于2016年9月25日在贵州省黔南州落成启用,它被誉为“中国天眼”,从选址到启用历经22年.FAST 选址从开始一万多个地方逐一审查,最后敲定三个地方:贵州省黔南州、黔西南州和安顺市境内.现从这三个地方中任选两个地方重点研究其条件状况,则贵州省黔南州被选中的概率为( ) A .1B .12C .13D .235.《九章算术》中记载了一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),则该几何体的容积为( )立方寸.(π≈3.14) A .12.656B .13.667C .11.414D .14.3546.在等差数列{}n a 中,若35791145a a a a a ++++=,33S =-,那么5a 等于( ) A .4B .5C .9D .187.已知函数()2ln f x x x =-,则函数()y f x =的大致图象是( )A BC D 8.根据右边流程图输出的值是( ) A .11 B .31 C .51D .799.已知单位向量,a b 满足a b ⊥,向量21,m a t b n ta b =--=+,(t 为正实数),则m n ⋅的最小值为( )A .158B .52C .154D .010.若,y 满足约束条件13030x x y x y ⎧⎪+-⎨⎪--⎩≥≤≤,设224x y x ++的最大值点为A ,则经过点A 和B (2,3)--的直线方程为( )A .3590x y --=B .30x y +-=C .30x y --=D .5390x y -+=11.已知双曲线C 的中心在原点O,焦点()F -,点A 为左支上一点,满足|OA |=|OF |且|AF |=4,则双曲线C 的方程为( )A .221164x y -= B .2213616x y -= C .221416x y -= D .2211636x y -= 12.已知函数()2ln xf x x x=-,有下列四个命题, ①函数()f x 是奇函数; ②函数()f x 在()(),00,-∞+∞是单调函数;③当0x >时,函数()0f x >恒成立; ④当0x <时,函数()f x 有一个零点, 其中正确的个数是( ) A .1B .2C .3D .4第Ⅱ卷本卷包括必考题和选考题两部分。

2017年新课标Ⅰ高考数学试卷押题卷A含解析

2017年新课标Ⅰ高考数学试卷押题卷A含解析

2017新课标全国卷I数学押题卷A2017年考试大纲修订内容:1. 进一步加强对数学“双基”——即基本知识,基本技能的考查,强调数学思想方法的应用,注重数学能力的考查.2. 全国卷采用12个选择题,4道填空题,5道必选题,另外加后面的2选1(极坐标与参数方程,和绝对值不等式两道题目中选做其中一道),共150分,用时2个小时. 3. 2017年新考纲变化有:(1)注重数学文化的考查;(2)试卷最后的选做题由原的2选1变成2选1,删掉了平面几何的选考.一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.第1卷一、选择题(共7小题,每小题6分,满分42分) 1. 在选择题中常考查的知识点(1)基础题——集合与简易逻辑,充分必要条件,复数的引入,三视图,已经各种视图,数列,程序框图,函数图像及性质等(2)中档题——统计概率,三角函数,不等式与线性规划,直线与圆的位置关系,立体几何中的点,线,面的关系等。

(3)爬坡题——利用导数研究函数,圆锥曲线,以及函数综合问题.2. 本押题卷严格按照新课标Ⅰ要求的高考考点和题量、分值出题,严格遵照新考纲要求,体现考纲遍变化,注重双基考查,体现数学文化与数学能力的理解与应用。

出题新颖,部分题目为原创试题.1.已知集合,{|1}B x x =≥,则“x A ∈且x B ∉”成立的充要条件是( ) A. 11x -<≤B. 1x ≤C. 1x >-D.11x -<<【解析】由已知条件,可以得到“x A ∈且x B ∉”的等价条件,也就是充要条件. 【解答】若满足x A ∈,则1x >-,若x B ∉,则1x <-,所以满足题意的的范围是11x -<<.这也就是“x A ∈且x B ∉”的等价条件.故选择D 选项.【说明】本题考查集合和运算与充要条件.2.已知i 为虚数单位,复数z 满足()1i 1i z -=+,则z 的共轭复数是( ) A. 1B. 1-C. iD.i -【解析】由条件()1i 1i z -=+,根据复数的运算,可以得到复数,进一步得到其共轭复数.【解答】由题意得,()1111iz i i z i i+-=+⇒==-,则z 的共轭复数是i -,故选D. 【说明】本题考查复数的运算.3.在等差数列{}n a 中,()()1358102336a a a a a ++++=,则6a =( ) A. 8B. 6C. 4D. 3【解析】根据等差数列的基本性质,从而得到6,进一步得,2,于是得到. 【解答】由等差数列的性质可知:()()()13581039396662323326621236,3a a a a a a a a a a a a ++++=⨯+⨯=+=⨯==∴= .本题选择D 选项.【说明】本题考查等差数列的基本性质.4.假设小明订了一份报纸,送报人可能在早上6:30—7:30之间把报纸送到,小明离家的时间在早上7:00—8:00之间,则他在离开家之前能拿到报纸的概率()A.13B.18C.23D.78【解析】将送报人到达的时间与小明离家的时间作为点的坐标,该坐标(,y )充满一个区域,而满足条件“小明在离开家之前能拿到报纸”的点(,y )则在另一个区域,根据几何概型得到概率.【解答】设送报人到达的时间为,小明离家的时间为y ,记小明离家前能拿到报纸为事件A ;以横坐标表示报纸送到时间,以纵坐标表示小明离家时间,建立平面直角坐标系,小明离家前能得到报纸的事件构成区域如图示:由于随机试验落在方形区域内任何一点是等可能的,所以符合几何概型的条件.根据题意,只要点落到阴影部分,就表示小明在离开家前能得到报纸,即事件A 发生,所以()111117222118P A ⨯-⨯⨯==⨯故选C .【说明】此题为几何概型,将送报人时间和小明离家时间建立直角坐标系,分析可得试验的全部结果所构成的区域并求出其面积,同理可得时间A 所形成的区域和面积,然后由几何概型的公式即可解得答案5.已知圆22:1C x y +=,点P 为直线142x y+=上一动点,过点P 向圆C 引两条切线,,,PA PB A B 为切点,则直线AB 经过定点.( )A. 11,24⎛⎫⎪⎝⎭B. 11,42⎛⎫⎪⎝⎭C. ⎫⎪⎪⎝⎭D.⎛ ⎝⎭【解析】对于点,根据题意得到四点共圆,从而以PC 为直径的圆的方程为()()22222224m m x m y m ⎛⎫⎡⎤--+-=-+ ⎪⎣⎦⎝⎭,将该圆与圆22:1C x y +=联立,两式相减得到相交弦所在直线方程. 【解答】设()42,,,P m m PA PB -是圆C 的切线,,,CA PA CB PB AB ∴⊥⊥∴是圆C 与以PC 为直径的两圆的公共弦,可得以PC 为直径的圆的方程为()()22222224m m x m y m ⎛⎫⎡⎤--+-=-+ ⎪⎣⎦⎝⎭, ① 又221x y += , ② ①-②得():221AB m x my -+=,可得11,42⎛⎫⎪⎝⎭满足上式,即AB 过定点11,42⎛⎫⎪⎝⎭,故选B.【说明】本题考查直线与圆的位置关系,如直线与圆相切,以及两个圆相交的相交弦方程.6.已知某空间几何体的三视图如图所示,则该几何体的体积是 ( )A. 16B. 32C. 48D.144【解析】根据三视图恢复几何体的原貌,即可得到几何体的体积.【解答】由三视图知:几何体为四棱锥,且四棱锥的一条侧棱与底面垂直,如图:其中BC=2,AD=6,AB=6,SA ⊥平面ABCD ,SA=6,∴几何体的体积126664832V +=⨯⨯⨯=.故选:C.【说明】本题考查三视图以及几何体的体积.7.函数的图象大致是( )A. B.C. D.【解析】本题可以充分利用选项的渐近线以及函数在一定的区域上的符号即可以判断,如:当当时,恒有,故排除选项D 等等.【解答】因为,所以函数是奇函数,图象关于原点对称,故排除C ;当时,恒有,故排除D ;时,,故可排除B ;故选A.【说明】本题考查函数的图像.8.设1,0a b c >><,给出下列四个结论:①1c a >;②c c a b <;③()()log log b b a c b c ->-;④b c a c a a -->. 其中所有的正确结论的序号是( ) A. ①② B. ②③ C. ①②③ D. ②③④【解析】根据不同的比较,构造相关的函数,如需判断“c c a b <”的真假,可以构造函数cy x =,需判断“()()log log b b a c b c ->-”的真假,可以构造函数log b y x =.【解答】因为1,0a b c >><,所以①xy a =为增函数,故0c a a <=1,故错误②函数cy x =为减函数,故c c a b <,所以正确③函数log b y x =为增函数,故a c b c ->-,故log ()log ()b b a c b c ->-,故正确 ④函数xy a =为增函数,a c b c ->-,故b c a c a a --<,故错误【说明】本题考查幂函数,指数函数,对数函数的单调性以及相关图像性质9.当4n =时,执行如图所示的程序框图,输出的S 值为( )A. 6B. 8C. 14D. 30【解析】逐步执行框图中的循环体,直到跳出循环体,可以得到.【解答】第一次循环,2,2s k ==,第二次循环,6,3s k ==,第三次循环,14,4s k ==,第四次循环,30,5s k ==,54>结束循环,输出30s =,故选D .【说明】本题考查程序框图.10.已知双曲线22221(0,0)x y a b a b -=>>的左、右两个焦点分别为12,F F ,以线段12F F 为直径的圆与双曲线的渐近线在第一象限的交点为M ,若122MF MF b -=,该双曲线的离心率为e ,则2e =( )A. 2B.C.D.12【解析】由已知条件求出圆的方程和直线方程,联立求出在第一象限的交点M 坐标,由两点间距离公式,求出离心率的平方. 涉及的公式有双曲线中222,cb c a e a=-=,两点间距离公式, 求根公式等.【解答】以线段12A A 为直径的圆方程为222x y c += ,双曲线经过第一象限的渐近线方程为by x a = ,联立方程222{x y c by xa+== ,求得(),M a b ,因为122MF MF b -= ,所以有2b =又222,c b c a e a=-= ,平方化简得4210e e --= ,由求根公式有2e = (负值舍去).选D.【说明】本题主要以双曲线的离心率为载体设问,考查双曲线的定义以及双曲线与直线的位置关系.11.把平面图形M 上的所有点在一个平面上的射影构成的图形M '叫做图形M 在这个平面上的射影,如图,在长方体ABCD EFGH -中,5AB =,4AD =,3AE =,则EBD ∆在平面EBC 上的射影的面积是( )A. B.252C. 10D. 30【解析】解决本题的关键找到点D 在平面EBC 上的射影在面EBC 与面CDHG 的交线上,进而利用三角形“等底同高”即等面积法可解决问题.【解答】在长方体ABCD EFGH -中,5AB =,4AD =,3AE =,5DE ==,EB ==DB =由题意可知点D 在平面EBC 上的射影在面EBC 与面CDHG 的交线上,则EBD ∆在平面EBC 上的射影与EBC ∆等底同高,故其面积为12S BC EB =⨯⨯= A. 【说明】本题主要考查了图形M '在图形M 在这个平面上的射影的概念,本质为线面垂直判定的延伸,考查了学生理解转化问题和空间想象的能力.12.函数())(0){0lnx x f x x >=≤与()()112g x x a =++的图象上存在关于y 轴对称的点,则实数a 的取值范围是( )A. (],32ln2-∞-B. [)32ln2,-+∞C. )+∞D.(,-∞【解析】首先转化题意,要使函数与()()112g x x a =++的图象上存在关于y 轴对称的点,只需()g x 关于y 轴的对称的函数()()112h x x a =-+图象与()y f x =的图象有交点,从而利用数形结合即可得到本题的答案.【解答】要使函数与()()112g x x a =++的图象上存在关于y 轴对称的点,只需()g x 关于y 轴的对称的函数()()112h x x a =-+图象与()y f x =的图象有交点即可,即设()112y x a =-+与ln y x =相切时,切点为()00,ln x x ,则0011,22x x ==,又点()2,ln2与1,2a ⎛⎫⎪⎝⎭两点连线斜率1ln212.32ln222a a -=∴=--,由图知a 的取值范围是[)32ln2,-+∞时,函数()()112h x x a =-+图象与()y f x =的图象有交点,即a 范围是[)32ln2,-+∞时,函数())(0){0lnx x f x x >=≤与()()112g x x a =++的图象上存在关于y 轴对称的点,故选B.【说明】本题主要考查数学解题过程中的数形结合思想和化归思想.导数以及直线斜率的灵活应用,属于难题二、填空题(本大题共4小题,每小题5分,共20分).1. 在填空题中常考查的知识点(1)基础题——二项式定理,平面向量. (2)中档题——不等式,线性规划. (3)爬坡题——立体几何,推理与论证.2. 本押题卷严格按照新课标Ⅰ要求的高考考点和题量、分值出题,严格遵照新考纲要求,体现考纲遍变化,注重双基考查,体现数学文化与数学能力的理解与应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.理解平面向量数量积的含义及其物理意义.了解平面向量的数量积与向量投影的关系.2.掌握数量积的坐标表达式,会进行平面向量数量积的运算.3.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.4.会用向量方法解决某些简单的平面几何问题.会用向量方法解决简单的力学问题与其他一些实际问题.1.平面向量的数量积(1)定义:已知两个非零向量a与b,它们的夹角为θ,则数量|a||b|cos__θ叫作a与b 的数量积(或内积),记作a²b,即a²b=|a||b|cos__θ,规定零向量与任一向量的数量积为0,即0²a=0.(2)几何意义:数量积a²b等于a的长度|a|与b在a的方向上的投影|b|cos__θ的乘积.2.平面向量数量积的性质及其坐标表示设向量a=(x1,y1),b=(x2,y2),θ为向量a,b的夹角.(1)数量积:a²b=|a||b|cos θ=x1x2+y1y2.(2)模:|a|=a²a=x21+y21.(3)夹角:cos θ=a²b|a||b|=x1x2+y1y2x21+y21²x22+y22.(4)两非零向量a⊥b的充要条件:a²b=0⇔x1x2+y1y2=0.(5)|a²b|≤|a||b|(当且仅当a∥b时等号成立)⇔|x1x2+y1y2|≤ x21+y21²x22+y22.3.平面向量数量积的运算律(1)a²b=b²a(交换律).(2)λa²b=λ(a²b)=a²(λb)(结合律).(3)(a+b)²c=a²c+b²c(分配律).4.向量在平面几何中的应用向量在平面几何中的应用主要是用向量的线性运算及数量积解决平面几何中的平行、垂直、平移、全等、相似、长度、夹角等问题.(1)证明线段平行或点共线问题,包括相似问题,常用共线向量定理:a∥b(b≠0)⇔a=λb ⇔x 1y 2-x 2y 1=0.(2)证明垂直问题,常用数量积的运算性质a ⊥b ⇔a ²b =0⇔x 1x 2+y 1y 2=0(a ,b 均为非零向量).(3)求夹角问题,利用夹角公式cos θ=a ²b |a ||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22(θ为a 与b 的夹角). 5.向量在三角函数中的应用与三角函数相结合考查向量的数量积的坐标运算及其应用是高考热点题型.解答此类问题,除了要熟练掌握向量数量积的坐标运算公式、向量模、向量夹角的坐标运算公式外,还应掌握三角恒等变换的相关知识. 6.向量在解析几何中的应用向量在解析几何中的应用,是以解析几何中的坐标为背景的一种向量描述.它主要强调向量的坐标问题,进而利用直线和圆锥曲线的位置关系的相关知识来解答,坐标的运算是考查的主体.高频考点一 平面向量数量积的运算例1、(1)(2015²四川)设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →²NM →等于( ) A .20 B.15 C .9 D .6(2)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →²CB →的值为________;DE →²DC →的最大值为________.答案 (1)C (2)1 1(2)方法一 以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),设E (t,0),t ∈,则DE →=(t ,-1),CB →=(0,-1),所以DE →²CB →=(t ,-1)²(0,-1)=1.因为DC →=(1,0),所以DE →²DC →=(t ,-1)²(1,0)=t ≤1, 故DE →²DC →的最大值为1.方法二 由图知,无论E 点在哪个位置,DE →在CB →方向上的投影都是CB =1,∴DE →²CB →=|CB →|²1=1,当E 运动到B 点时,DE →在DC →方向上的投影最大即为DC =1, ∴(DE →²DC →)max =|DC →|²1=1.【感悟提升】(1)求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.(2)解决涉及几何图形的向量数量积运算问题时,可先利用向量的加、减运算或数量积的运算律化简再运算,但一定要注意向量的夹角与已知平面角的关系是相等还是互补.【变式探究】(1)如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →²BP →=2,则AB →²AD →=________.(2)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →²BD →=________. 答案 (1)22 (2)2高频考点二 用数量积求向量的模、夹角例2、(1)已知向量a ,b 均为单位向量,它们的夹角为π3,则|a +b |等于( )A .1 B. 2 C. 3D .2(2)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________. 答案 (1)C (2)7+1【变式探究】(1)(2015²重庆)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4B.π2C.3π4D .π(2)若向量a =(k,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.答案 (1)A (2)⎝⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3 解析 (1)由(a -b )⊥(3a +2b )得(a -b )²(3a +2b )=0,即3a 2-a²b -2b 2=0.又∵|a |=223|b |,设〈a ,b 〉=θ, 即3|a |2-|a |²|b |²cos θ-2|b |2=0,∴83|b |2-223|b |2²cos θ-2|b |2=0,∴cos θ=22. 又∵0≤θ≤π,∴θ=π4.(2)∵2a -3b 与c 的夹角为钝角, ∴(2a -3b )²c <0, 即(2k -3,-6)²(2,1)<0, ∴4k -6-6<0, ∴k <3.又若(2a -3b )∥c ,则2k -3=-12,即k =-92.当k =-92时,2a -3b =(-12,-6)=-6c ,即2a -3b 与c 反向.综上,k 的取值范围为⎝⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3. 【感悟提升】(1)根据平面向量数量积的定义,可以求向量的模、夹角,解决垂直、夹角问题;两向量夹角θ为锐角的充要条件是cos θ>0且两向量不共线;(2)求向量模的最值(范围)的方法:①代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;②几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.【举一反三】(1)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.(2)在△ABC 中,若A =120°,AB →²AC →=-1,则|BC →|的最小值是( ) A. 2B .2C. 6D .6答案 (1)223(2)C高频考点三 平面向量与三角函数例3、(2015²广东)在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎪⎫0,π2.(1)若m ⊥n ,求tan x 的值;(2)若m 与n 的夹角为π3,求x 的值.【感悟提升】平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.【变式探究】已知O 为坐标原点,向量OA →=(3sin α,cos α),OB →=(2sin α,5sin α-4cos α),α∈⎝⎛⎭⎪⎫3π2,2π,且OA→⊥OB →,则tan α的值为( ) A .-43B .-45C.45D.34答案 A解析 由题意知6sin 2α+cos α²(5sin α-4cos α)=0,即6sin 2α+5sin αcos α-4cos 2α=0,上述等式两边同时除以cos 2α,得6tan 2α+5tan α-4=0,由于α∈⎝⎛⎭⎪⎫3π2,2π,则tan α<0,解得tan α=-43,故选A.高频考点四 向量在平面几何中的应用例4、已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( ) A .内心 B .外心 C .重心 D .垂心答案 C解析 由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD (D 为BC 的中点)所对应向量AD →的2倍,所以点P 的轨迹必过△ABC 的重心.【感悟提升】解决向量与平面几何综合问题,可先利用基向量或坐标系建立向量与平面图形的联系,然后通过向量运算研究几何元素之间的关系.【变式探究】(1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →²BE →=1,则AB =________.(2)平面四边形ABCD 中,AB →+CD →=0,(AB →-AD →)²AC →=0,则四边形ABCD 是( ) A .矩形 B .梯形 C .正方形 D .菱形 答案 (1)12(2)D高频考点五、 向量在解析几何中的应用例5、(1)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),且A 、B 、C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________.(2)设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →²CM →=0,则y x=______.答案 (1)2x +y -3=0 (2)± 3 解析 (1)∵AB →=OB →-OA →=(4-k ,-7), BC →=OC →-OB →=(6,k -5),且AB →∥BC →, ∴(4-k )(k -5)+6³7=0, 解得k =-2或k =11.由k <0可知k =-2,则过点(2,-1)且斜率为-2的直线方程为y +1=-2(x -2),即2x +y -3=0.(2)∵OM →²CM →=0,∴OM ⊥CM ,∴OM 是圆的切线,设OM 的方程为y =kx , 由|2k |1+k2=3,得k =±3,即y x=± 3. 【感悟提升】向量在解析几何中的作用:(1)载体作用,向量在解析几何问题中出现,多用于“包装”,解决此类问题关键是利用向量的意义、运算,脱去“向量外衣”;(2)工具作用,利用a ⊥b ⇔a ²b =0; a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题.【变式探究】已知圆C :(x -2)2+y 2=4,圆M :(x -2-5cos θ)2+(y -5sin θ)2=1(θ∈R ),过圆M 上任意一点P 作圆C 的两条切线PE ,PF ,切点分别为E ,F ,则PE →²PF →的最小值是( ) A .5 B .6 C .10 D .12答案 B高频考点六 向量的综合应用例6、(1)已知x ,y 满足⎩⎪⎨⎪⎧y ≥x ,x +y ≤2,x ≥a ,若OA →=(x,1),OB →=(2,y ),且OA →²OB →的最大值是最小值的8倍,则实数a 的值是( ) A .1 B.13 C.14D.18(2)函数y =sin(ωx +φ)在一个周期内的图象如图所示,M 、N 分别是最高点、最低点,O 为坐标原点,且OM →²ON →=0,则函数f (x )的最小正周期是________.答案 (1)D (2)3【感悟提升】利用向量的载体作用,可以将向量与三角函数、不等式结合起来,解题时通过定义或坐标运算进行转化,使问题的条件结论明晰化.【变式探究】在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →²OB →=2,则点集{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }所表示的区域面积是( ) A .2 2 B .2 3 C .4 2 D .4 3答案 D1.【2016高考天津文数】已知△ABC 是边长为1的等边三角形,点E D ,分别是边BC AB ,的中点,连接DE 并延长到点F ,使得EF DE 2=,则⋅的值为( ) (A )85-(B )81 (C )41 (D )811【答案】B【解析】设BA = a ,BC = b ,∴11()22DE AC ==- b a ,33()24DF DE ==- b a ,1353()2444AF AD DF =+=-+-=-+ a b a a b ,∴25353144848AF BC ⋅=-⋅+=-+= a b b ,故选B.2.【2016高考新课标2文数】已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =___________. 【答案】-6【解析】因为a ∥b ,所以2430m --⨯=,解得6m =-.3.【2016高考新课标1文数】设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x = . 【答案】23-【解析】由题意, 20,2(1)0,.3x x x ⋅=++=∴=-a b4【2016高考浙江文数】已知平面向量a ,b ,|a |=1,|b |=2,a ²b =1.若e 为平面单位向量,则|a ²e |+|b ²e |的最大值是______.5.【2016高考山东文数】已知向量1,-()()16,-4a b ==,.若()a tab ⊥+ ,则实数t 的值为________. 【答案】5-【解析】()()()()6,4,6,41,12100ta b t t ta b a t t t +=+--+⋅=+--⋅-=+=,解得5t =-1.【2015高考广东,文9】在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =- ,()D 2,1A =,则D C A ⋅A = ( )A .2B .3C .4D .5 【答案】D【解析】因为四边形CD AB 是平行四边形,所以()()()C D 1,22,13,1A =AB +A =-+=-,所以()D C 23115A ⋅A =⨯+⨯-=,故选D .2.【2015高考重庆,文7】已知非零向量,a b 满足||=4||(+)b a a a b ⊥,且2则a b 与的夹角为( ) (A)3π (B) 2π (C) 32π (D) 65π【答案】C【解析】由已知可得020)2(2=∙+⇒=+∙b a a b a a ,设a b与的夹角为θ,则有21cos 0-==⇒=+θθ,又因为],0[πθ∈,所以32πθ=,故选C.3.【2015高考福建,文7】设(1,2)a = ,(1,1)b =,c a kb =+ .若b c ⊥ ,则实数k 的值等于( ) A .32-B .53-C .53D .32【答案】A4.【2015高考天津,文13】在等腰梯形ABCD 中,已知AB DC ,2,1,60,AB BC ABC ==∠= 点E 和点F 分别在线段BC 和CD 上,且21,,36BE BC DF DC == 则AE AF ⋅的值为 .【答案】2918【解析】在等腰梯形ABCD 中,由AB DC ,2,1,60,AB BC ABC ==∠=得12AD BC ⋅= ,1AB AD ⋅= ,12DC AB = ,所以()()AE AF AB BE AD DF ⋅=+⋅+22121111129131231218331818AB BC AD AB AB AD BC AD AB BC AB ⎛⎫⎛⎫=+⋅+=⋅+⋅++⋅=++-=⎪ ⎪⎝⎭⎝⎭5.【2015高考浙江,文13】已知1e ,2e 是平面单位向量,且1212e e ⋅= .若平面向量b满足121b e b e ⋅=⋅=,则b = .【解析】由题可知,不妨1(1,0)e =,21(2e = ,设(,)b x y = ,则11b e x ⋅==,21122b e x y ⋅=+=,所以(1,3b =,所以b ==1.(2014²北京卷)已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=________.【答案】 5 【解析】∵λa +b =0,∴λa =-b ,∴|λ|=|b ||a |=51= 5.2.(2014²湖北卷)设向量a =(3,3),b =(1,-1).若(a +λb )⊥(a -λb ),则实数λ=________.【答案】±3 【解析】因为a +λb =(3+λ,3-λ),a -λb =(3-λ,3+λ),又(a +λb )⊥(a -λb ),所以(a +λb )²(a -λb )=(3+λ)(3-λ)+(3-λ)(3+λ)=0,解得λ=±3.3.(2014²江西卷)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.【答案】2 234.(2014²全国卷)若向量a ,b 满足:=1,(a +b )⊥a ,(+b )⊥b ,则|=( ) A .2 B. 2 C .1 D.22【答案】B【解析】因为(a +b )⊥a ,所以(a +b )=0,即2+=因为(+b )⊥b ,所以(+b )=0,即b +2=0,与2+=0联立,可得-2=0,所以=2= 2.5.(2014²新课标全国卷Ⅱ] 设向量a ,b 满足|a +b |=10,|a -b |=6,则=( ) A .1 B .2 C .3 D .5 【答案】A【解析】由已知得|a +b |2=10,|a -b |2=6,两式相减,得4a ²b =4,所以a ²b =1.6.(2014²山东卷)在△ABC 中,已知AB →²AC →=tan A ,当A =π6时,△ABC 的面积为______.【答案】16【解析】因为AB ²AC =|AB →|²|AC →|cos A =tan A ,且A =π6,所以|AB →|²|AC →|=23,所以△ABC的面积S =12|AB →|²|AC →|sin A =12³23³sin π6=16.7.(2014²天津卷)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BE =λBC ,DF =μDC .若AE →²AF →=1,CE →²CF →=-23,则λ+μ=( )A.12B.23C.56D.712 【答案】C【解析】建立如图所示的坐标系,则A (-1,0),B (0,-3),C (1,0),D (0,3).设E (x 1,y 1),F (x 2,y 2).由BE =λBC 得(x 1,y 1+3)=λ(1,3),解得⎩⎨⎧x 1=λ,y 1=3(λ-1),即点E (λ,3(λ-1)).由DF →=μDC →得(x 2,y 2-3)=μ(1,-3),解得⎩⎨⎧x 2=μ,y 2=3(1-μ),即点F (μ,3(1-μ)).又∵AE ²AF =(λ+1,3(λ-1))²(μ+1,3(1-μ))=1,①CE →²CF →=(λ-1, 3(λ-1))²(μ-1, 3(1-μ))=-23.②①-②得λ+μ=56.8.(2013年高考湖北卷)已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB →在CD →方向上的投影为( ) A.322 B.3152C .-322D .-3152答案:A9.(2013年高考湖南卷)已知a ,b 是单位向量,a ²b =0.若向量c 满足|c -a -b |=1,则|c |的取值范围是( ) A .[2-1,2+1] B.[]2-1,2+2C .D .解析:由a ,b 为单位向量且a ²b =0,可设a =(1,0),b =(0,1),又设c =(x ,y ),代入|c -a -b |=1得(x -1)2+(y -1)2=1,又|c |= x 2+y 2,故由几何性质得12+12-1≤|c |≤ 12+12+1,即2-1≤|c |≤ 2+1. 答案:A10.(2013年高考辽宁卷)设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈⎣⎢⎡⎦⎥⎤0,π2.(1)若|a |=|b |,求x 的值;(2)设函数f (x )=a²b ,求f (x )的最大值.11.(2013年高考陕西卷)已知向量a =⎝ ⎛⎭⎪⎫cos x ,-12,b = (3sin x ,cos 2x ),x ∈R,设函数f (x )=a²b . (1)求f (x )的最小正周期;(2)求f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.解析:f (x )=⎝ ⎛⎭⎪⎫cos x ,-12²(3sin x ,cos 2x )=3cos x sin x -12cos 2x=32sin 2x -12cos 2x =cos π6sin 2x -sin π6cos 2x=sin ⎝⎛⎭⎪⎫2x -π6.(1)f (x )的最小正周期为T =2πω=2π2=π, 即函数f (x )的最小正周期为π.(2)∵0≤x ≤π2,∴-π6≤2x -π6≤5π6.由正弦函数的性质,知当2x -π6=π2,即x =π3时,f (x )取得最大值1.当2x -π6=-π6,即x =0时,f (x )取得最小值-12.因此,f (x )在上的最大值是1,最小值是-12.1.若向量a ,b 满足|a |=|b |=2,a 与b 的夹角为60°,则|a +b |等于( ) A .22+ 3 B .2 3 C .4 D .12答案 B解析 |a +b |2=|a |2+|b |2+2|a ||b |cos60°=4+4+2³2³2³12=12,|a +b |=2 3.2.已知向量a =(1,3),b =(3,m ).若向量a ,b 的夹角为π6,则实数m 等于( )A .2 3 B. 3 C .0 D .- 3 答案 B3.设e 1,e 2,e 3为单位向量,且e 3=12e 1+k e 2(k >0),若以向量e 1,e 2为邻边的三角形的面积为12,则k 的值为( )A.32 B.22 C.52 D.72答案 A解析 设e 1,e 2的夹角为θ,则由以向量e 1,e 2为邻边的三角形的面积为12,得12³1³1³sin θ=12,得sin θ=1,所以θ=90°,所以e 1²e 2=0.从而对e 3=12e 1+k e 2两边同时平方得1=14+k 2,解得k =32或-32(舍去). 4.若O 为△ABC 所在平面内任一点,且满足(OB →-OC →)²(OB →+OC →-2OA →)=0,则△ABC 的形状为( ) A .正三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形答案 C解析 因为(OB →-OC →)²(OB →+OC →-2OA →)=0, 即CB →²(AB →+AC →)=0,∵AB →-AC →=CB →, ∴(AB →-AC →)²(AB →+AC →)=0,即|AB →|=|AC →|, 所以△ABC 是等腰三角形,故选C.5.在△ABC 中,如图,若|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 边的三等分点,则AE →²AF →等于( )A.89B.109C.259D.269 答案 B6.在△ABC 中,M 是BC 的中点,AM =3,点P 在AM 上,且满足AP →=2PM →,则PA →²(PB →+PC →)的值为________. 答案 -4解析 由题意得,AP =2,PM =1, 所以PA →²(PB →+PC →)=PA →²2PM → =2³2³1³cos180°=-4.7.如图,在△ABC 中,O 为BC 中点,若AB =1,AC =3,〈AB →,AC →〉=60°,则|OA →|=________.答案 132解析 因为〈AB →,AC →〉=60°,所以AB →²AC →=|AB →|²|AC →|cos60°=1³3³12=32,又AO →=12(AB →+AC →),所以AO →2=14(AB →+AC →)2=14(AB →2+2AB →²AC →+AC →2),所以AO →2=14(1+3+9)=134,所以|OA →|=132. 8.在△ABC 中,若OA →²OB →=OB →²OC →=OC →²OA →,则点O 是△ABC 的________(填“重心”、“垂心”、“内心”、“外心”).答案 垂心9.已知|a |=4,|b |=3,(2a -3b )²(2a +b )=61.(1)求a 与b 的夹角θ;(2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积.解 (1)∵(2a -3b )²(2a +b )=61,∴4|a |2-4a ²b -3|b |2=61.又∵|a |=4,|b |=3,∴64-4a ²b -27=61,∴a ²b =-6.∴cos θ=a ²b |a ||b |=-64³3=-12,又∵0≤θ≤π,∴θ=2π3. (2)|a +b |2=(a +b )2=|a |2+2a ²b +|b |2=42+2³(-6)+32=13,∴|a +b |=13.(3)∵AB →与BC →的夹角θ=2π3, ∴∠ABC =π-2π3=π3. 又|AB →|=|a |=4,|BC →|=|b |=3,∴S △ABC =12|AB →||BC →|sin∠ABC =12³4³3³32=3 3. 10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n=(cos B ,-sin B ),且m ²n =-35. (1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影.11.已知点P (0,-3),点A 在x 轴上,点Q 在y 轴的正半轴上,点M 满足PA →²AM →=0,AM →=-32MQ →,当点A 在x 轴上移动时,求动点M 的轨迹方程. 解 设M (x ,y )为所求轨迹上任一点,设A (a,0),Q (0,b )(b >0),则PA →=(a,3),AM →=(x -a ,y ),MQ →=(-x ,b -y ),由PA →²AM →=0,得a (x -a )+3y =0.①由AM →=-32MQ →,得 (x -a ,y )=-32(-x ,b -y )=⎝ ⎛⎭⎪⎫32x ,32 y -b , ∴⎩⎪⎨⎪⎧ x -a =32x ,y =32y -32b ,∴⎩⎪⎨⎪⎧ a =-x 2,b =y 3.∴b >0,y >0, 把a =-x 2代入①,得-x 2⎝ ⎛⎭⎪⎫x +x 2+3y =0, 整理得y =14x 2(x ≠0). 所以动点M 的轨迹方程为y =14x 2(x ≠0). 12.已知向量a =⎝⎛⎭⎪⎫sin x ,34,b =(cos x ,-1). (1)当a ∥b 时,求cos 2x -sin2x 的值;(2)设函数f (x )=2(a +b )²b ,已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a =3,b =2,sin B =63,求f (x )+4cos ⎝ ⎛⎭⎪⎫2A +π6⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π3的取值范围.。

相关文档
最新文档