高考数学难点突破_难点11__函数中的综合问题 2
高考数学必背知识点及公式归纳总结大全
高考数学必背知识点及公式归纳总结大全高考数学必背知识点及公式归纳总结大全高中数学理科是10本书,其中的数学公式非常多,那么关于高考数学的公式及知识点有哪些呢?以下是小编准备的一些高考数学必背知识点及公式归纳总结,仅供参考。
高考数学必考知识点归纳必修一:1、集合与函数的概念(部分知识抽象,较难理解);2、基本的初等函数(指数函数、对数函数);3、函数的性质及应用(比较抽象,较难理解)。
必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。
这部分知识高考占22---27分。
2、直线方程:高考时不单独命题,易和圆锥曲线结合命题。
3、圆方程:必修三:1、算法初步:高考必考内容,5分(选择或填空);2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。
必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。
09年理科占到5分,文科占到13分。
必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右;2、数列:高考必考,17---22分;3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。
高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
文科:选修1—1、1—2。
选修1--1:重点:高考占30分。
1、逻辑用语:一般不考,若考也是和集合放一块考;2、圆锥曲线;3、导数、导数的应用(高考必考)。
选修1--2:1、统计;2、推理证明:一般不考,若考会是填空题;3、复数:(新课标比老课本难的多,高考必考内容)。
理科:选修2—1、2—2、2—3。
选修2--1:1、逻辑用语;2、圆锥曲线;3、空间向量:(利用空间向量可以把立体几何做题简便化)。
原函数与导函数混合还原问题 (十三大题型)高考数学重难点突破(原卷版)
重难点突破03 原函数与导函数混合还原问题目录1、对于,构造,2、对于,构造()()0(0)xf x f x '+><()()g x x f x =⋅()()0(0)xf x kf x '+><()()k g x x f x =⋅3、对于,构造,4、对于,构造5、对于,构造,6、对于,构造7、对于,构造,8、对于,构造9、对于,构造, 10、对于,构造 11、对于,构造, 12、对于,构造 13、对于,构造14、对于,构造 15、;;; 16、;.题型一:利用构造型例1.(安徽省马鞍山第二中学2022-2023学年高三上学期10月段考数学试题)已知的定义域为,为的导函数,且满足,则不等式的解集是( )A .B .C .D .()()0(0)x f x f x '⋅-><()()f x g x x =()()0(0)x f x kf x '⋅-><()()k f x g x x=()()0(0)f x f x '+><()()x g x e f x =⋅()()0(0)f x kf x '+><()()kx g x e f x =⋅()()0(0)f x f x '-><()()x f x g x e =()()0(0)f x kf x '-><()()bxf xg x e =sin ()cos ()0(0)x f x x f x '⋅+⋅><()()sin g x f x x =⋅sin ()cos ()0(0)x f x x f x '⋅-⋅><()()sin f x g x x=cos ()sin ()0(0)x f x x f x '⋅-⋅><()()cos g x f x x =⋅cos ()sin ()0(0)x f x x f x '⋅+⋅><()()cos f x g x x=()()(0)f x f x k '-><()[()]x g x e f x k =-()()ln 0(0)f x f x x x'+><()ln ()g x x f x =⋅()[()]f x c f x cx ''+=+()()[()()]f x g x f x g x '''+=+()()[()()]f x g x f x g x '''-=-()()()()[()()]f x g x f x g x f x g x '''+=2()()()()()[]()()f xg x f x g x f x g x g x ''-'=()n x f x ()f x ()0,+¥()f x '()f x ()()f x xf x '<-()()()2111f x x f x +>--()0,1()2,+¥()1,2()1,+¥例2.(河南省温县第一高级中学2022-2023学年高三上学期12月月考数学试题)已知函数的定义域为,且满足(是的导函数),则不等式的解集为( ) A . B .C .D .例3.(黑龙江省大庆实验中学2023届高三下学期5月考前得分训练(三)数学试题)已知函数的定义域为,为函数的导函数,若,,则不等式的解集为( ) A . B . C . D .变式1.(2023届高三第七次百校大联考数学试题(新高考))已知定义在上的偶函数的导函数为,当时,,且,则不等式的解集为( ) A .B .C .D .变式2.(四川省绵阳市盐亭中学2023届高三第二次模拟考试数学试题)已知定义在上的函数满足,,则关于的不等式的解集为( )A .B .C .D .变式3.(河南省豫北重点高中2022-2023学年高三下学期4月份模拟考试文科数学试题)已知函数的定义域为,其导函数是,且.若,则不等式的解集是( ) A . B . C .D .变式4.(广西15所名校大联考2023届高三高考精准备考原创模拟卷(一)数学试题)已知是定义在R 上的偶函数,其导函数为,且,则不等式的解集为( ) ()f x ()0,+∞()()0f x xf x '+>()f x ¢()f x ()()()2111x f x f x --<+(),2-∞()1,+∞()1,2()1,2-()f x ()0,∞+()f x '()f x ()()21x f x xf x '+=()10f =()23xf ->0()0,2()2log 3,2()2log 3,∞+()2,+∞R ()y f x =()y f x '=0x >()()0xf x f x x'+>()21f =()22121f x x -<-13,,22⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭3,2⎛⎫+∞ ⎪⎝⎭13,22⎛⎫ ⎪⎝⎭1113,,2222⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭()0,+∞()f x ()()22+<0xf x x f x '()324f =x ()23f x x >()0,4()2,+∞()4,+∞()0,2()f x ()0,∞+()f x '()()2f x xf x x +'>()21f =()2430f x x x -->()0,2()2,+∞20,3⎛⎫⎪⎝⎭2,3⎛⎫+∞ ⎪⎝⎭()f x (),(1)4f x f -='3()()3f x xf x '+>33()1f x x <+A .B .C .D .【解题方法总结】1、对于,构造,2、对于,构造 题型二:利用构造型 例4.(河南省信阳市息县第一高级中学2022-2023学年高三上学期9月月考数学试题)已知定义在的函数满足:,其中为的导函数,则不等式的解集为( )A .B .C .D .例5.已知定义域为{x |x ≠0}的偶函数f (x ),其导函数为f ′(x ),对任意正实数x 满足xf ′(x )>2f (x ),若g (x )=,则不等式g (x )<g (1)的解集是( )A .(-∞,1)B .(-1,1)C .(-∞,0)∪(0,1)D .(-1,0)∪(0,1)例6.(江苏省苏州市2023届高三下学期3月模拟数学试题)已知函数是定义在上的奇函数,,当时,有成立,则不等式的解集是( )A .B .C .D .变式5.(西藏昌都市第四高级中学2023届高三一模数学试题)已知函数是定义在的奇函数,当时,,则不等式的解集为( ) A . B . C . D .【解题方法总结】,1(),)1(-∞-⋃+∞(1,0)(0,1)- (0,1)(1,)+∞()()0(0)xf x f x '+><()()g x x f x =⋅()()0(0)xf x kf x '+><()()k g x x f x =⋅()nf x x ()0,+¥()f x ()()()0,,0x f x x f x '+∞-∀∈<()f x ¢()f x ()()()(231)123x f x x f x -+>+-3,42⎛⎫ ⎪⎝⎭()4,+∞()1,4-(),4-∞()2f x x ()f x R ()20f =0x >()()0xf x f x '->()0xf x >()()22-∞-⋃+∞,,()()202-⋃+∞,,()()202-∞-⋃,,()2+∞,()f x ()()00-¥È+¥,,()0x ∈+∞,()()xf x f x '<()()()52+25<0f x x f --()()33-∞-⋃+∞,,()()3003-⋃,,()()3007-⋃,,()()327-∞-⋃,,1、对于,构造,2、对于,构造 题型三:利用构造型例7.(河南省2022-2023学年高三上学期第五次联考文科数学试题)已知定义在R 上的函数满足,且有,则的解集为( )A .B .C .D .例8.(河南省2022-2023学年高三上学期第五次联考数学试题)已知定义在上的函数满足,且有,则的解集为( )A .B .C .D .例9.(广东省佛山市顺德区北滘镇莘村中学2023届高三模拟仿真数学试题)已知是函数的导函数,对于任意的都有,且,则不等式的解集是( )A .B .C .D .变式6.(宁夏吴忠市2023届高三一轮联考数学试题)函数的定义域是,,对任意,,则不等式:的解集为( )A .B .C .或D .或【解题方法总结】1、对于,构造,2、对于,构造()()0(0)x f x f x '⋅-><()()f x g x x =()()0(0)x f x kf x '⋅-><()()k f x g x x=()nx e f x ()f x ()()0f x f x '+>()33f =()33e x f x ->()3,+∞()1,+∞(),3-∞(),1-∞R ()f x ()()102f x f x '+>()112f =()122x f x e ->(),2-∞()1,+∞(),1-∞()2,+∞()f x '()()y f x x =∈R x ∈R ()()1f x f x '+>()02023f =()e e 2022x x f x >+()2022,+∞()(),02023,∞∞-⋃+()(),00,∞-+∞U ()0,∞+()f x R ()02f =x ∈R ()()1f x f x '+>()e e 1x x f x ⋅>+{}0x x >{}0x x <{1x x <-}1x >{1x x <-}01x <<()()0(0)f x f x '+><()()xg x e f x =⋅()()0(0)f x kf x '+><()()kx g x e f x =⋅题型四:用构造型 例10.(安徽省六安市第一中学2022-2023学年高二下学期期末数学试题)定义在上的函数的导函数为,满足:, ,且当时,,则不等式的解集为( ) A . B .C .D .例11.(广东省汕头市2023届高三三模数学试题)已知定义在R 上的函数的导函数为,且满足,,则不等式)A .B .C .D .例12.(陕西省安康市2023届高三下学期4月三模数学试题)已知函数的定义域为,且对任意,恒成立,则的解集是( )A .B .C .D .变式7.(新疆克拉玛依市2023届高三三模数学试题)定义在R 上的函数的导函数为,,对于任意的实数均有成立,且的图像关于点(,1)对称,则不等式的解集为( )A .(1,+∞)B .(1,+∞)C .(∞,1)D .(∞,1)变式8.(浙江省绍兴市新昌中学2023届高三下学期5月适应性考试数学试题)若定义在R 上的函数的导函数为,且满足,则不等式 )A .B .C .D .变式9.(吉林省长春市吉大附中实验学校2022-2023学年高三上学期第四次摸底考试数学试题)设是函数的导函数,且,(e 为自然对数的底数),则不等式的()nxf x e (2,2)-()f x ()f x '()()40x f x e f x +-=()21f e =0x >()2()f x f x '>24(2)x e f x e -<(1,4)(2,1)-(1,)+∞(0,1)()f x '()f x '()()0f x f x ->2021(2021)f e =1ln f x e ⎛⎫< ⎪⎝⎭()2021,e +∞()20210,e()2021,ee+∞()20210,ee()f x R x R ∈()()0f x f x '-<()()4e 1e 23xf f x x >-+()4,+∞()1,4-(),3-∞(),4-∞()f x ()f x '1(1)3f -=-x ln 3()()f x f x '⋅<1(12y f x =-+122()30x f x -->----()f x ()f x '()()()2022,2022e f x f x f >='1ln 3f x ⎛⎫< ⎪⎝⎭()60660,e ()20220,e()2022e ,∞+()6066e,∞+()f x '()f x ()()()3R f x f x x '>∈1e 3f ⎛⎫= ⎪⎝⎭()3ln f x x <解集为( )A .B .C .D .变式10.(四川省绵阳市南山中学2022-2023学年高三二诊热身考试数学试题)已知定义在上的可导函数的导函数为,满足,且,,则不等式的解集为( ) A . B . C . D .变式11.(山东省烟台市2023届高三二模数学试题)已知函数的定义域为R ,其导函数为,且满足,,则不等式的解集为( ).A .B .C .D .变式12.(江西省九江十校2023届高三第二次联考数学试题)设函数的定义域为,其导函数为,且满足,,则不等式(其中为自然对数的底数)的解集是( ) A . B .C .D .【解题方法总结】1、对于,构造,2、对于,构造题型五:利用、与构造型例13.(江西省2023届高三教学质量监测数学试题)定义在区间上的可导函数关于轴对称,当时,恒成立,则不等式的解集为( ) A .B .C .D .10,3⎛⎫ ⎪⎝⎭1,3⎛⎫+∞ ⎪⎝⎭)+∞R ()f x ()f x '()()f x f x '<()()2f x f x -=+()21f =()e x f x <(),2-∞()2,+∞()1,+∞()0,∞+()f x ()f x '()()e x f x f x -+='()00f =()()21e 1e exf x -<-11,e ⎛⎫- ⎪⎝⎭1e e ⎛⎫⎪⎝⎭,()1,1-()1,e -()f x R ()f x '()()1f x f x >'+(0)2023f =e ()e 2022x x f x -->+e 2022(,)+∞(,2023)-∞(0,2022)(,0)-∞()()0(0)f x f x '-><()()x f x g x e =()()0(0)f x kf x '-><()()bxf xg x e =sin x tan x ()f x ππ,22⎛⎫- ⎪⎝⎭()f x y π0,2x ⎛⎫∈ ⎪⎝⎭()()()cos sin f x x f x x >-'()π20tan f x f x x ⎛⎫- ⎪⎝⎭->ππ,44⎛⎫- ⎪⎝⎭ππ,43⎛⎫ ⎪⎝⎭ππ,42⎛⎫ ⎪⎝⎭π0,2⎛⎫⎪⎝⎭例14.(天津市南开中学2023届高三下学期统练二数学试题)已知可导函数是定义在上的奇函数.当时,,则不等式的解集为( )A .B .C .D .例15.函数对任意的满足(其中是函数的导函数),则下列不等式成立的是( ) A .BC .D变式13.已知可导函数是定义在上的奇函数.当时,,则不等式的解集为( )A .B .C .D .【解题方法总结】1、对于,构造,2、对于,构造3、对于正切型,可以通分(或者去分母)构造正弦或者余弦积商型 题型六:利用与构造型例16.(重庆市九龙坡区2023届高三二模数学试题)已知偶函数的定义域为,其导函数为,当时,有成立,则关于x 的不等式的解集为( )()f x ππ,22⎛⎫- ⎪⎝⎭π0,2x ⎛⎫∈ ⎪⎝⎭()()tan 0f x f x x '+>()πcos sin 02x f x x f x ⎛⎫⋅++⋅-> ⎪⎝⎭ππ,26⎛⎫-- ⎪⎝⎭π,06⎛⎫- ⎪⎝⎭ππ,24⎛⎫-- ⎪⎝⎭π,04⎛⎫- ⎪⎝⎭()y f x =,22x ππ⎛⎫∈- ⎪⎝⎭12()()sin 2x x f x f x x e -'++=()'f x ()f x 43f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭364f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭(2124f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭(52312f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭()f x ππ,22⎛⎫- ⎪⎝⎭π0,2x ⎛⎫∈ ⎪⎝⎭()()tan 0f x f x x '+>()πcos sin 02x f x x f x ⎛⎫⋅++⋅-> ⎪⎝⎭ππ,26⎛⎫-- ⎪⎝⎭π,06⎛⎫- ⎪⎝⎭ππ,24⎛⎫-- ⎪⎝⎭π,04⎛⎫- ⎪⎝⎭sin ()cos ()0(0)x f x x f x '⋅+⋅><()()sin g x f x x =⋅sin ()cos ()0(0)x f x x f x '⋅-⋅><()()sin f x g x x=cos x ()f x ()f x ππ,22⎛⎫- ⎪⎝⎭()f x 'π02x ≤<()()cos sin 0f x x f x x '+>()π2cos 3f x f x ⎛⎫>⋅ ⎪⎝⎭A .B .C .D .例17.已知偶函数的定义域为,其导函数为,当时,有成立,则关于x 的不等式的解集为( )A .B .C .D .例18.设函数在上存在导数,对任意的,有,且在上有,则不等式的解集是( )A .B .C .D .【解题方法总结】1、对于,构造,2、对于,构造3、对于正切型,可以通分(或者去分母)构造正弦或者余弦积商型 题型七:复杂型:与等构造型例19.(广西柳州市2023届高三11月第一次模拟考试数学试题)已知可导函数的导函数为,若对任意的,都有.且为奇函数,则不等式的解集为( ) A . B . C . D .例20.(河南省多校联盟2023届高考终极押题(C 卷)数学试题)已知函数的导函数为,若对任意的,都有,且,则不等式的解集为( )ππ,33⎛⎫- ⎪⎝⎭ππ,32⎛⎫ ⎪⎝⎭ππππ2332⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ ,,πππ0332⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,,()f x ,22ππ⎛⎫- ⎪⎝⎭()'f x 02x π<<()cos ()sin 0f x x f x x '+<()cos 4f x x π⎛⎫<⋅ ⎪⎝⎭,42ππ⎛⎫ ⎪⎝⎭,,2442ππππ⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭,00,44ππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭,0,442πππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭()f x R ()f x 'R x ∈()()2cos f x f x x +-=[)0,+∞()sin f x x '>-()cos sin 2f x f x x x π⎛⎫--≥- ⎪⎝⎭,4π⎛⎤-∞ ⎥⎝⎦,4π⎡⎫+∞⎪⎢⎣⎭,6π⎛⎤-∞ ⎥⎝⎦,6π⎡⎫+∞⎪⎢⎣⎭cos ()sin ()0(0)x f x x f x '⋅-⋅><()()cos g x f x x =⋅cos ()sin ()0(0)x f x x f x '⋅+⋅><()()cos f x g x x=n e ()()af x bg x +()f x ()f x 'x R ∈()()1f x f x '->()2022f x -()2021e 1x f x ->(),0-∞()0,+∞(),e -∞()e,+∞()f x ()f x 'R x ∈()()2f x f x >'+()12022f =()12020e 2x f x --<A .B .C .D .例21.(2023届高三冲刺卷(一)全国卷文科数学试题)已知函数与定义域都为,满足,且有,,则不等式的解集为()A .B .C .D .变式14.(陕西省渭南市华州区咸林中学2022-2023学年高三上学期开学摸底考试数学试题)已知定义在上的函数满足为的导函数,当时,,则不等式的解集为( ) A . B .C .D .变式15.(黑龙江省哈尔滨市第三中学2022-2023学年高三上学期期中考试数学试题)设函数在上的导函数为,若,,,则不等式的解集为( ) A . B .C .D .变式16.(新疆新源县第二中学2022-2023学年高二下学期期末考试数学试题)定义在R 上的函数满足:,,则不等式的解集为( ) A .B .C .D .变式17.(陕西省西安市西北工业大学附属中学2023届高三下学期第十二次适应性考试数学试题)定义在上的函数满足,且,则不等式的解集为( )A .B .C .D .【解题方法总结】 对于,构造题型八:复杂型:与型例22.(专题32盘点构造法在研究函数问题中的应用—备战2022年高考数学二轮复习常考点专题突破)已()0,∞+1,e ⎛⎫-∞ ⎪⎝⎭()1,+∞(),1-∞()f x ()g x R ()()()1e xx g x f x +=()()()0g x xg x xg x ''+-<()12e g =()4f x <()1,4()0,2(),2-∞()1,+∞()3,3-()f x 42()e ()0,(1)e ,()x f x f x f f x '+-==()f x [0,3)x ∈()2()f x f x '>24e (2)e x f x -<(2,1)-(1,5)(1,)+∞(0,1)()f x R ()f x '()()1f x f x '>+()(6)2f x f x +-=(6)5f =()210x f x e ++<(,0)-∞(0,)+∞(0,3)(3,6)()f x ()()'1f x f x +>()04f =()3x x e f x e >+()0,+¥()(),03,∞⋃+∞-()(),00,∞⋃+∞-()3,+∞R()f x ()()280f x f x '-->()02f =-()224xf x e >-()0,2()0,∞+()0,4()4,+∞()()(0)f x f x k'-><()[()]x g x e f x k =-()kx b +()f x知定义在上的函数满足,且当时,有,则不等式的解集是( ) A . B . C . D .例23.(辽宁省实验中学2023届高三第四次模拟考试数学试卷)已知函数是定义在上的可导函数,其导函数为,若对任意有,,且,则不等式的解集为( )A .B .C .D .例24.(山东省泰安肥城市2023届高三下学期5月高考适应性训练数学试题(三))定义在上的函数的导函数为,且对任意恒成立.若,则不等式的解集为( )A .B .C .D .【解题方法总结】写出与的加、减、乘、除各种形式 题型九:复杂型:与结合型例25.(2023届高三数学临考冲刺原创卷(四))已知函数的定义域为,导函数为,且满足,则不等式的解集为( ) A . B . C . D .例26.(华大新高考联盟2023届高三3月教学质量测评文科数学试题)已知函数的定义域为,图象关于原点对称,其导函数为,若当时,则不等式的解集为( )R ()f x ()()22f x f x +=-2x >()()()()2,11xf x f x f x f ''+>=若()12f x x <-(2,3)(),1-∞()()1,22,3⋃()(),13,-∞⋃+∞()f x R ()f x 'x ∈R ()1f x '>()()110f x f x ++-=()02f =-()11f x x ->-()4,+∞()3,+∞()2,+∞()0,∞+()1+¥,()f x ()f x '2(1)()()2x f x f x x x '-->-(1,)x ∈+∞(2)3f =2()1f x x x >-+()1,2()2+∞,()1,3()3+∞,y kx b =+()y f x =ln()kx b +()f x ()0,∞+()f x '()()ln 0f x xf x x '+>()()2020ln 20200f x x --≤()(),20202021,-∞⋃+∞()0,2021(]2020,2021(]2021,2022()f x R ()f x '0x >()()ln 0x x f x f x +⋅'<()()||44x f x f x ⋅>A .B .C .D .例27.(2023届高三数学新高考信息检测原创卷(四))已知是定义在上的奇函数,是的导函数,,且,则不等式的解集是( )A .B .C .D .变式18.(广东省梅州市2023届高三二模数学试题)已知是定义在上的奇函数,是的导函数,当时,,且,则不等式的解集是( ) A . B . C .D .变式19.定义在 上的函数 满足,则不等式 的解集为( )A .B .C .D .【解题方法总结】 1、对于,构造 2、写出与的加、减、乘、除各种结果 题型十:复杂型:基础型添加因式型例28.(辽宁省名校联盟2023届高考模拟调研卷数学(三))已知函数f (x )为定义在R 上的偶函数,当时,,,则不等式的解集为( )A .B .C .D .例29.定义在上的函数满足(为自然对数的底数),其中为的导函数,若,则的解集为( ) A .B . ()(),10,-∞-⋃+∞()()1,00,-⋃+∞()(),10,1-∞-⋃()()1,01,-⋃+∞()f x R ()f x ¢()f x 102f ⎛⎫≠ ⎪⎝⎭()()()ln 20f x f x x x '+<()()220x x f x -->()()1,10,2,2⎛⎫-∞-⋃⋃+∞ ⎪⎝⎭()11,0,22⎛⎫-⋃ ⎪⎝⎭()()1,02,-⋃+∞()(),10,2-∞-⋃()f x R ()f x '()f x 0x >()()()ln 20f x f x x x+>'102f ⎛⎫≠ ⎪⎝⎭()()20x f x -<()(),00,2-∞⋃()0,2()2,+∞()(),02,-∞⋃+∞(0)+∞,()f x ()()110,2ln 2xf x f '+=>)(e 0x f x +>(02ln2),(0,ln2)(ln21),(ln2)+∞,()()ln 0(0)f x f x x x'+><()ln ()g x x f x =⋅ln()y kx b =+()y f x =()0,x ∈+∞()2'>f x x ()24f =()2312xf x x x x -+>+()()103-⋃+∞,,()()1,13,-+∞ ()(),10,3-∞- ()1,3-R ()f x ()()e 0x f x f x '-+<e ()'f x ()f x 3(3)3e f =()e x f x x >(,2)-∞(2,)+∞C.D.例30.定义在上的函数满足,且,则满足不等式的的取值有()A.B.0 C.1 D.2变式20.已知在定义在上的函数满足,且时,恒成立,则不等式的解集为()A.B.C.D.【解题方法总结】在本题型一、二、三、四等基础上,变形或者添加因式,增加复杂度题型十一:复杂型:二次构造例31.(福建省福州第一中学2022-2023学年高二下学期期中考试数学试题)函数满足:时,()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值,又有极小值D.既无极大值,也无极小值例32.(江西省百所名校2022-2023学年高三第四次联考数学试题)已知函数的定义域为,其导函数为,对恒成立,且,则不等式的解集为()A.B.C.D.例33.(河南省濮阳市2023届高三下学期第一次模拟考试数学试题)已知函数为定义域在R上的偶函数,且当时,函数满足,,则的解集是()A.B.C.D.(3),-∞(3,)+∞R()f x()()260f xf x-'-<()21e3=-f()2e3>-xf x x1-R()f x()()62sin0f x f x x x---+=0x≥()3cosf x x'≥-()π3ππ6224f x f x x x⎛⎫⎛⎫≥--++⎪ ⎪⎝⎭⎝⎭π0,4⎛⎤⎥⎝⎦,4π⎡⎫+∞⎪⎢⎣⎭,6π⎛⎤-∞⎥⎝⎦,6π⎡⎫+∞⎪⎢⎣⎭()f x1()'()2x xe f x e f x+=12f⎛⎫=⎪⎝⎭x>()f x()f x()1,+∞()f x'()()()()22x f x xf x xf x'++<⎡⎤⎣⎦()1,x∈+∞()14525f=()()233210x f x x++>+()1,2(),2∞-()2,3-()2,2-()1f x+1x≥()f x()()2ln2xxf x f xx'+=14ef=()4e1f x<(),2-∞⋃+∞(2()(),2e e,-∞-⋃+∞()2e,e-变式21.(宁夏平罗中学2023届高三上学期第一次月考数学试题)已知定义在上的连续偶函数的导函数为,当时,,且,则不等式的解集为( )A .B .C .D .变式22.(江西省九江市2023届高三三模数学(理)试题)已知是定义在上的可导函数,是的导函数,若,,则在上( )A .单调递增B .单调递减C .有极大值D .有极小值变式23.(湖北省鄂东南省级示范高中教育教学改革联盟学校2022-2023学年高二下学期期中理科数学试题)定义在上的函数满足,且,则( ) A .有极大值,无极小值 B .有极小值,无极大值 C .既有极大值又有极小值 D .既无极大值也无极小值变式24.(福建省泉州市2022-2023学年高二下学期期末教学质量跟踪监测数学(理)试题)设函数满足:,,则时,( ) A .有极大值,无极小值 B .有极小值,无极大值 C .既有极大值,又有极小值 D .既无极大值,又无极小值变式25.(辽宁省大连市中山区第二十四中学2022-2023学年高三上学期11月月考数学试题)函数满足:时,A .有极大值,无极小值B .有极小值,无极大值C .既有极大值,又有极小值D .既无极大值,也无极小值变式26.设函数的导数为,且,,,则当时,A .有极大值,无极小值B .无极大值,有极小值C .既有极大值又有极小值D .既无极大值又无极小值 R ()y f x =()y f x '=0x >()()0f x f x x '+<(2)3f =-6(21)21f x x --<-13,,22⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭13,22⎛⎫ ⎪⎝⎭3,2⎛⎫+∞ ⎪⎝⎭1113,,2222⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭()f x ()0,∞+()f x '()f x ()()2xxf x x f x e '+=()1f e =()f x ()0,∞+()0,∞+()f x ()()2ln xf x f x x x '+=12f e =-()f x ()f x ()()2e xxf x f x x '+=()e12f =0x >()f x ()f x ()()2x xe f x e f x +'=1()2f =0x >()f x ()f x ()f x '()e ()x f x x xf x '+=(1)f π=-(2)2f π=-0x >()f x【解题方法总结】二次构造:,其中等 题型十二:综合构造例34.(福建省泉州市泉港区第一中学、厦门外国语学校石狮分校2022-2023学年高二下学期期中联考数学试题)已知函数在上可导,其导函数为,若满足,关于直线对称,则不等式的解集是( )A .B .C .D .例35.(贵州省铜仁市2023届高三适应性考试数学试题(—))已知定义在上的函数,为其导函数,满足①,②当时,.若不等式有实数解,则其解集为( ) A .B .C .D .例36.(黑龙江省哈尔滨市第三中学2022-2023学年高三第一次模拟数学(文科)试题)已知是定义在R 上的偶函数,是的导函数,当时,,且,则的解集是( )A .B .C .D .变式27.(贵州省绥阳县育才中学2023届高三信息压轴卷数学试题)已知函数的定义域为R ,其导函数为,若,且当时,,则的解集为( )()()()f x r x g x ⨯÷±(),,sin ,cos n nx r x x e x x =()f x R ()f x '()f x '()()01f x f x x '->-()e xf x y =1x =()22(0)ex xf x x f --<()1,2-()1,2()()1,01,2- ()(),01,-∞⋃+∞R ()f x ()f x '()()2f x f x x =--0x ≥()210f x x '++≥()()221331f x x x f x +++>+2,3⎛⎫-∞- ⎪⎝⎭()2,0,3∞∞⎛⎫-⋃+ ⎪⎝⎭()0,∞+()2,0,3⎛⎫-∞-⋃+∞ ⎪⎝⎭()f x ()f x '()f x 0x ≥()20f x x '->()13f =()22f x x >+()()1,01,-⋃+∞()(),11,-∞-⋃+∞()()1,00,1-U ()(),10,1-∞-⋃()f x ()f x '()()sin22f x f x x--=0x ≤()2cos 02x f x '+>()()2π1sin 2sin 122x x f x f x ⎛⎫++>++ ⎪⎝⎭A .B .C .D .变式28.(安徽省淮南市2023届二模数学试题)定义在上的函数满足,当时,,则不等式的解集为( )A .B .C .D .变式29.(安徽省蚌埠市2023届高三上学期第一次质量检查数学试题)已知函数的定义域是,若对于任意的都有,则当时,不等式的解集为( )A .B .C .D .【解题方法总结】结合式子,寻找各种综合构造规律,如,或者(为常见函数) 题型十三:找出原函数例37.(甘肃省武威市第六中学2023届高三上学期第二次阶段性过关考试数学(文)试题)已知定义在(0,+∞)上的函数f (x )的导函数f '(x 满足且,其中为自然对数的底数,则不等式的解集是A .(0,e)B .(0,) C .(,e ) D .(e,+∞)例38.设函数是定义在上的连续函数,且在处存在导数,若函数及其导函数满足,则函数A .既有极大值又有极小值B .有极大值 ,无极小值ππ,3⎛⎫- ⎪⎝⎭()π,π,3⎛⎫-∞-+∞ ⎪⎝⎭ ππ,3⎛⎫-- ⎪⎝⎭()π,π,3⎛⎫-∞--+∞ ⎪⎝⎭R ()f x ()()2cos 0f x f x x -++=0x ≥()sin f x x '>()2f x +()cos πx f x >-π,2⎛⎫+∞ ⎪⎝⎭π,2⎛⎫-∞ ⎪⎝⎭ππ,22⎛⎫- ⎪⎝⎭(),π-∞()f x 11,22f ⎛⎫= ⎪⎝⎭R x ∈R ()40f x x '+<[]0,2απ∈()sin cos20f αα-<5,66ππ⎛⎫ ⎪⎝⎭5,33ππ⎛⎫ ⎪⎝⎭50,,266πππ⎛⎫⎛⎫⋃ ⎪⎪⎝⎭⎝⎭50,,233πππ⎛⎫⎛⎫⋃ ⎪⎪⎝⎭⎝⎭cos ()()exx f x g x ⋅=()()f x r x +()r x ()()ln x xf x f x x+='()1f e e =e ()1f x e x e+>+1e1e()f x (1,)-+∞0x =()f x ()f x '()()ln(1)1f x f x x x x +-¢=+()f xC .有极小值,无极大值D .既无极大值也无极小值例39.设函数是定义在上的连续函数,且在处存在导数,若函数及其导函数满足,则函数 A .既有极大值又有极小值 B .有极大值,无极小值 C .既无极大值也无极小值 D .有极小值,无极大值【解题方法总结】 熟悉常见导数的原函数.()f x (0,)+∞1x =()f x ()f x '()()ln f x f x x x x=-'()f x。
2024年高考数学专项练习导数与三角函数结合问题的研究(解析版)
导数与三角函数结合问题的研究有关导数与三角函数交汇的试题在高考与模拟试题中频频出现.在函数与导数试题中加入三角函数,由于三角函数具有周期性,无法通过多次求导使三角函数消失,使得后续问题的处理比较困难,从而造成学生思维上的难度.我们可从以下几个角度来突破此类问题的难点.1.分段讨论①以-π2,0,π2,π,⋯为端点分区间讨论;②以三角函数的最值点为端点分段讨论.2.巧用放缩,消去三角函数①正弦函数:当x >0时,x >sin x >x −12x 2.②余弦函数:cos x ≥1−12x 2.③正切函数:当x ∈0,π2时,sin x <x <tan x . ④数值域:sin x ∈-1,1,cos x ∈ -1,1 .3.分离函数:将含有三角函数的式子放到一起.4.分离参数:转化为函数值域问题.5.半分离参数:将不等式等价转化,化为左右两边函数是一直线与一曲线,考虑端点处的切线斜率.【精选例题】1已知函数f x =e x -ax ,a ∈R ,f x 是f x 的导数.(1)讨论f x 的单调性,并证明:e x >2x ;(2)若函数g x =f x -x cos x 在区间0,+∞ 内有唯一的零点,求a 的取值范围.2024年高考数学专项练习导数与三角函数结合问题的研究(解析版)2已知函数f x =sin x-x-ae x,其中a为实数,e是自然对数的底数.(1)若a=-1,证明:f x ≥0;(2)若f x 在0,π上有唯一的极值点,求实数a的取值范围.3已知函数f x =e x,g x =sin x+cos x.(1)求证:f x ≥x+1;(2)若x≥0,问f x +g x -2-ax≥0a∈R是否恒成立?若恒成立,求a的取值范围;若不恒成立,请说明理由4已知函数f(x)=e x+cos x-a(a∈R).(1)讨论f(x)在[-π,+∞)上的单调性;(2)当x∈[0,+∞)时,e x+sin x≥ax+1恒成立,求a的取值范围.5已知函数f x =a sin x,其中a>0.(1)若f x ≤x在0,+∞上恒成立,求a的取值范围;(2)证明:∀x∈0,+∞,有2e x>x+1 xln x+1+sin x.6已知函数f x =ae x+4sin x-5x.(1)若a=4,判断f x 在0,+∞上的单调性;(2)设函数p x =3sin x-2x+2,若关于x的方程f x =p x 有唯一的实根,求a的取值范围.7已知函数f x =e x,g x =2-sin x-cos x.(1)求证:当x∈0,+∞,x>sin x;(2)若x∈0,+∞,f x >g x +ax恒成立,求实数a的取值范围.8已知函数f (x )=a sin x -ln (1+x )(a ∈R ).(1)若a =-1,求证:∀x >0,f (x )+2x >0;(2)当a ≥1时,对任意x ∈0,k 2 ,都有f (x )≥0,求整数k 的最大值.9已知函数f (x )=(x -1)e x +ax +1.(1)若f (x )有两个极值点,求a 的取值范围;(2)若x ≥0,f (x )≥2sin x ,求a 的取值范围.10已知函数f x =x-sinπ2x-a ln x,x=1为其极小值点.(1)求实数a的值;(2)若存在x1≠x2,使得f x1=f x2,求证:x1+x2>2.11(2023全国新高考2卷)(1)证明:当0<x<1时,x-x2<sin x<x;(2)已知函数f x =cos ax-ln1-x2,若x=0是f x 的极大值点,求a的取值范围.【跟踪训练】1已知函数f x =xe-x+a sin x,e是自然对数的底数,若x=0恰为f(x)的极值点.(1)求实数a的值;上零点的个数.(2)求f(x)在区间-∞,π42已知函数f x =2cos x+ln1+x-1.上零点和极值点的个数,并给出证明;(1)判断函数f x 在区间0,π2(2)若x≥0时,不等式f x <ax+1恒成立,求实数a的取值范围.3已知函数f x =xe x -1,g x =a x +ln x 且f x -g x ≥0恒成立.(1)求a 的值;(2)证明:x 3e x >x 2+3 ln x +2sin x .(注:其中e =2.71828⋯为自然对数的底数)4已知函数f (x )=x +sin x ,x ∈R .(1)设g (x )=f (x )-12x ,求函数g (x )的极大值点;(2)若对∀x ∈0,π2 ,不等式f (x )≥mx cos x (m >0)恒成立,求m 的取值范围.5已知函数f(x)=ax2-a(x sin x+cos x)+cos x+a(x>0).(1)当a=1时,(I)求(π,f(π))处的切线方程;(II)判断f x 的单调性,并给出证明;(2)若f x >1恒成立,求a的取值范围.6已知f(x)=ax2-cos x-x sin x+a(a∈R).(1)当a=14时,求y=f(x)在[-π,π]内的单调区间;(2)若对任意的x∈R时,f(x)≥2恒成立,求实数a的取值范围.7已知函数f(x)=e x-a-x-cos x,x∈(-π,π)其中e=2.71828⋯为自然对数的底数.(1)当a=0时,证明:f x ≥0;(2)当a=1时,求函数y=f x 零点个数.8已知函数f x =x-1e x+ax+1.(1)若a=-e,求f x 的极值;(2)若x≥0,f x ≥2sin x,求a的取值范围.9已知函数f x =2sin x-ln1+x0<x<π.(1)证明:函数f x 有唯一的极值点α,及唯一的零点β;(2)对于(1)问中α,β,比较2α与β的大小,并证明你的结论.10已知函数f x =ax2+x-ln2x.(1)若f x 在1,+∞上单调递增,求a的取值范围;(2)若函数g x =f x -x+ln2xx-sin x在0,π上存在零点,求a的取值范围.11已知函数f x =ln x+sin x. (1)求函数f x 在区间1,e上的最小值;(2)判断函数f x 的零点个数,并证明.12已知函数f(x)=12ax2-(a-2)x-2ln x.(1)当a=2时,证明:f x >sin x.(2)讨论f x 的单调性.13(1)证明:当x<1时,x+1≤e x≤11-x;(2)是否存在正数a,使得f x =2e x+a sin x-ax2-a+2x在R上单调递增,若存在,求出a的取值范围;若不存在,请说明理由.导数与三角函数结合问题的研究有关导数与三角函数交汇的试题在高考与模拟试题中频频出现.在函数与导数试题中加入三角函数,由于三角函数具有周期性,无法通过多次求导使三角函数消失,使得后续问题的处理比较困难,从而造成学生思维上的难度.我们可从以下几个角度来突破此类问题的难点.1.分段讨论①以-π2,0,π2,π,⋯为端点分区间讨论;②以三角函数的最值点为端点分段讨论.2.巧用放缩,消去三角函数①正弦函数:当x>0时,x>sin x>x−12x2. ②余弦函数:cos x≥1−12x2.③正切函数:当x∈0,π2时,sin x<x<tan x. ④数值域:sin x∈-1,1,cos x∈-1,1.3.分离函数:将含有三角函数的式子放到一起.4.分离参数:转化为函数值域问题.5.半分离参数:将不等式等价转化,化为左右两边函数是一直线与一曲线,考虑端点处的切线斜率.【精选例题】1已知函数f x =e x-ax,a∈R,f x 是f x 的导数.(1)讨论f x 的单调性,并证明:e x>2x;(2)若函数g x =f x -x cos x在区间0,+∞内有唯一的零点,求a的取值范围.【答案】(1)答案见解析;(2)a≥1【详解】(1)因为f x =e x-ax,所以f x =e x-a,当a≤0时,f x =e x-a>0,则f x =e x-ax在R上单调递增,当a>0时,令f x =e x-a>0得x>ln a,令f x =e x-a<0得x<ln a,所以函数f x 的增区间为(ln a,+∞),减区间为(-∞,ln a),令F x =e x-2x,则F x =e x-2,令F x =e x-2>0得x>ln2,令F x =e x-2<0得x<ln2,所以函数F x 的增区间为(ln2,+∞),减区间为(-∞,ln2),所以当x=ln2时,F x 取得最小值为F ln2=e ln2-2ln2=2-2ln2>0,所以e x>2x,得证;(2)由(1)知,g x =e x-a-x cos x,因为函数g x 在区间0,+∞内有唯一的零点,所以方程a=e x-x cos x在区间0,+∞内有唯一解,令h(x)=e x-x cos x,x≥0,则函数h(x)=e x -x cos x与y=a在0,+∞上只有一个交点,记m x =e x-x-1,(x≥0),则m x =e x-1≥0,所以m x 在0,+∞上单调递增,所以m x =e x-x-1≥e0-1=0,即e x≥x+1,故h (x)=e x-cos x+x sin x≥1-cos x+x(1+sin x)≥0,所以h(x)=e x-x cos x在0,+∞上单调递增,又h(0)=1,如图:要使方程a=e x-x cos x在区间0,+∞内有唯一解,则a≥1.所以a的取值范围是a≥1.2已知函数f x =sin x -x -ae x ,其中a 为实数,e 是自然对数的底数.(1)若a =-1,证明:f x ≥0;(2)若f x 在0,π 上有唯一的极值点,求实数a 的取值范围.【解析】(1)证明:a =-1时,f x =sin x -x +e x ,令g x =e x -x ,则g x =e x -1,当x <0时,g x <0,g x 在-∞,0 上为减函数,当x >0时,g x >0,g x 在0,+∞ 上为增函数,函数g x 的极小值也是最小值为g 0 =1,所以g x ≥g 0 =1,而-sin x ≤1,所以e x -x ≥-sin x ,即f x ≥0.(2)f x 在0,π 上有唯一的极值点等价于f x =cos x -1-ae x =0在0,π 上有唯一的变号零点,f x =0等价于a =cos x -1e x ,设h x =cos x -1e x,x ∈0,π ,h x =-sin x -cos x +1e x =1-2sin x +π4 e x,因为x ∈0,π ,所以x +π4∈π4,5π4 ,当0<x <π2时,x +π4∈π4,3π4 ,sin x +π4 >22,h x <0,h x 在0,π2 上为减函数,当π2<x <π时,x +π4∈3π4,5π4 ,sin x +π4 22,h x 0,h x 在π2,π 上为增函数,所以函数h x 的极小值也是最小值为h π2 =-1e π2,又h 0 =0,h π =-2e π,所以当-2e π≤a <0时,方程a =cos x -1e x 在0,π 上有唯一的变号零点,所以a 的取值范围是-2e π,0.3已知函数f x =e x ,g x =sin x +cos x .(1)求证:f x ≥x +1;(2)若x ≥0,问f x +g x -2-ax ≥0a ∈R 是否恒成立?若恒成立,求a 的取值范围;若不恒成立,请说明理由【答案】(1)证明见解析;(2)a ≤2【详解】(1)令F x =e x -x -1,F x =e x -1,当x ∈-∞,0 ,F x <0,所以此时F x 单调递减;当x ∈0,+∞ ,F x >0,所以此时F x 单调递增;即当x =0时,F x 取得极小值也是最小值F 0 =0,所以F x ≥0,得证;(2)设h x =f x +g x -2-ax ,即证h x =e x +sin x +cos x -2-ax ≥0在0,+∞ 上恒成立,易得h x =e x +cos x -sin x -a ,当x =0时,若h 0 =2-a ≥0⇒a ≤2,下面证明:当a ≤2时,h x =e x +sin x +cos x -2-ax ≥0,在0,+∞ 上恒成立,因为h x =e x +cos x -sin x -a ,设u x =h x ,令v x =x -sin x ,v x =1-cos x ≥0,所以v x 在0,+∞ 上是单调递增函,所以v x ≥v 0 =0,又因为1-cos x ≥0,则u x =e x -sin x -cos x ≥x +1-sin x -cos x =x -sin x +1-cos x ≥0所以h x 在0,+∞ 上是单调递增函数,所以h x ≥h 0 =2-a ≥0,所以h x 在0,+∞ 上是严格增函数,若a >2时,h 0 <0,即h x 在x =0右侧附近单调递减,此时必存在h x 0 <h 0 =0,不满足f x +g x -2-ax ≥0a ∈R 恒成立,故当a ≤2时,不等式恒成立.4已知函数f (x )=e x +cos x -a (a ∈R ).(1)讨论f (x )在[-π,+∞)上的单调性;(2)当x ∈[0,+∞)时,e x +sin x ≥ax +1恒成立,求a 的取值范围.【答案】(1)f (x )在[-π,+∞)上的单调递增;(2)(-∞,2]【详解】(1)f (x )=e x -sin x ,当-π≤x ≤0时,e x >0,sin x <0,∴f (x )=e x -sin x >0,当x >0时,e x >1,sin x ≤1,∴f (x )=e x -sin x >0,即:f (x )>0在[-π,+∞)上恒成立,所以f (x )在[-π,+∞)上的单调递增.(2)方法一:由e x +sin x ≥ax +1得:e x +sin x -ax -1≥0当x =0时,e x +sin x -ax -1≥0恒成立,符合题意令g (x )=e x +sin x -ax -1,x >0g (x )=e x +cos x -a =f (x ),由(1)得:g (x )在(0,+∞)上的单调递增,∴g (x )>2-a ,①当a ≤2时,g (x )>2-a ≥0,所以g (x )在(0,+∞)上的单调递增,所以g (x )>g (0)=0,符合题意②当a >2时,g (0)=2-a <0,g (ln (2+a ))=2+cos (ln (2+a ))>0,∴存在x 0∈(0,ln (2+a )),使得g (x 0)=0,当0<x <x 0时,g (x )<g (x 0)=0;所以g (x )在(0,x 0)上的单调递减,当0<x <x 0时,g (x )<g (0)=0,这不符合题意综上,a 的取值范围是(-∞,2].方法二:令h (x )=e x +sin x ,s (x )=ax +1,x ≥0则h (0)=s (0)=1,符合题意h(x )=e x +cos x =f (x )+a ,f (x )=e x -sin x 由(1)得:f (x )>0在(0,+∞)上恒成立,h (x )在(0,+∞)上单调递增所以,h (x )>h (0)>0,所以h (x )在(0,+∞)上单调递增,其图象是下凸的,如图: ∵h (0)=2,所以,曲线h (x )在点(0,1)处的切线方程为:y =2x +1,要使得h (x )≥s (x )在[0,+∞)上恒成立,只需a ≤2所以,a 的取值范围是(-∞,2].5已知函数f x =a sin x ,其中a >0.(1)若f x ≤x 在0,+∞ 上恒成立,求a 的取值范围;(2)证明:∀x ∈0,+∞ ,有2e x >x +1x ln x +1 +sin x .【答案】(1)0,1 ;(2)证明见解析【详解】(1)令h x =x -a sin x ,x ∈0,+∞ ,则h x =1-a cos x ,当a ∈0,1 时,h x >0,h x 单调递增,所以h x ≥h 0 =0,当a ∈1,+∞ 时,令m x =h x =1-a cos x ,则m x =a sin x ,所以对∀x ∈0,π2 ,m x >0,则h x 在0,π2 上单调递增,又因为h 0 =1-a <0,h π2 =1>0,所以由零点存在定理可知,∃x 0∈0,π2使得h x 0 =0,所以当x ∈0,x 0 时,h x <0,h x 单调递减,h x <h 0 =0,与题意矛盾,综上所述,a ∈0,1 .(2)由(1)知,当a =1时,sin x ≤x ,∀x ∈0,+∞ . 先证ln x +1 ≤x ,x ∈0,+∞ ,令φx =x -ln x +1 ,则φ x =1-1x +1≥0,所以φx 单调递增,φx >φ0 =0,即ln x +1 ≤x . 所以当x ∈0,+∞ 时,ln x +1 +sin x ≤2x ,x +1x ln x +1 +sin x ≤2x 2+1 .要证∀x ∈0,+∞ ,有2e x >x +1x ln x +1 +sin x ,只需证e x >x 2+1. 令g x =x 2+1 e -x -1,x ∈0,+∞ ,则g x =2x -x 2-1 e -x =-x -1 2e -x ≤0.所以g x 在0,+∞ 上单调递减,所以g x <g 0 =0,即e x >x 2+1.综上可得∀x ∈0,+∞ ,有2e x >x +1xln x +1 +sin x .6已知函数f x =ae x +4sin x -5x .(1)若a =4,判断f x 在0,+∞ 上的单调性;(2)设函数p x =3sin x -2x +2,若关于x 的方程f x =p x 有唯一的实根,求a 的取值范围.【答案】(1)函数f x 在0,+∞ 上单调递增.(2)a ≤0或a =2【详解】(1)当a =4时,f x =4e x +4sin x -5x ,f x =4e x +4cos x -5,令g x =f x =4e x +4cos x -5,则g x =4e x -4sin x .当x ∈0,+∞ 时,4e x ≥4(x =0时等号成立);-4sin x ≥-4(x =π2+2k π,k ∈Z 时等号成立),所以g x =4e x -4sin x >0,即函数f x =4e x +4cos x -5在0,+∞ 上递增,所以f x ≥f 0 =3>0,即函数f x 在0,+∞ 上单调递增.(2)方程f x =p x 即ae x +4sin x -5x =3sin x -2x +2有唯一的实根,则a =3x +2-sin x e x只有一个解,等价于直线y =a 与函数y =3x +2-sin x e x 的图象只有一个交点.令h x =3x +2-sin x ex ,则h x =sin x -cos x +1-3x e x ,因为e x >0,所以h x =sin x -cos x +1-3x e x 的符号由分子决定,令m x =sin x -cos x +1-3x ,则m x =cos x +sin x -3=22sin x +π4-3<0.所以m x =sin x -cos x +1-3x 在R 上递减,因为m 0 =0,所以当x ∈-∞,0 时,m x >m 0 =0;当x ∈0,+∞ 时,m x <m 0 =0.即当x ∈-∞,0 时,h x >0;当x ∈0,+∞ 时,h x <0.所以函数h x =3x +2-sin x e x 在-∞,0 上递增,在0,+∞ 上递减,当x 趋于-∞时,e x 趋于0且大于0,分子3x +2-sin x 趋于-∞,则3x +2-sin x e x趋于-∞;当x =0时,h max x =h 0 =2;当x 趋于+∞时,e x 趋于+∞,分子3x +2-sin x 也趋于+∞,令φx =e x-3x +2-sin x ,则φ x =e x -3+cos x ,当x >2时,φ x =e x -3+cos x >0,则x 趋于+∞时,e x 增长速率大于3x+2-sin x 的增长速率,故x 趋于+∞时,3x +2-sin x e x趋于0.画出函数h x =3x +2-sin x e x 的草图,并画出直线y =a ,要使直线y =a 与函数y =3x +2-sin x e x的图象只有一个交点.则a ≤0或a =2.所以当a ≤0或a =2时,方程f x =p x 有唯一的实根.7已知函数f x =e x ,g x =2-sin x -cos x .(1)求证:当x ∈0,+∞ ,x >sin x ;(2)若x ∈0,+∞ ,f x >g x +ax 恒成立,求实数a 的取值范围.【答案】(1)证明见解析;(2)-∞,2 【详解】(1)证明:设F x =x -sin x ,x >0,则F x =1-cos x >0,所以F x 在区间0,+∞ 上单调递增,所以F x >F 0 =0,即x >sin x .(2)由f x >g x +ax 在区间0,+∞ 上恒成立,即e x +sin x +cos x -ax -2>0在区间0,+∞ 上恒成立,设φx =e x +sin x +cos x -ax -2,则φx >0在区间0,+∞ 上恒成立,而φ x =e x +cos x -sin x -a ,令m x =φ x ,则m x =e x -sin x -cos x ,设h x =e x -x -1,则h x =e x -1,当x >0时,h x >0,所以函数h x 在区间0,+∞ 上单调递增,故在区间0,+∞ 上,h x >h 0 =0,即在区间0,+∞ 上,e x >x +1,由(1)知:在区间0,+∞ 上,e x >x +1>sin x +cos x ,即m x =e x -sin x -cos x >0,所以在区间0,+∞ 上函数φ x 单调递增,当a ≤2时,φ 0 =2-a ≥0,故在区间0,+∞ 上函数φ x >0,所以函数φx 在区间0,+∞ 上单调递增,又φ0 =0,故φx >0,即函数f x >g x +ax 在区间0,+∞ 上恒成立.当a >2时,φ 0 =2-a ,φ ln a +2 =a +2+cos ln a +2 -sin ln a +2 -a =2-2sin ln a +2 -π4 >0,故在区间0,ln a +2 上函数φ x 存在零点x 0,即φ x 0 =0,又在区间0,+∞ 上函数φ x 单调递增,故在区间0,x 0 上函数φ x <φ x 0 =0,所以在区间0,x 0 上函数φx 单调递减,由φ0 =0,所以在区间0,x 0 上φx <φ0 =0,与题设矛盾.综上,a 的取值范围为-∞,2 .8已知函数f (x )=a sin x -ln (1+x )(a ∈R ).(1)若a =-1,求证:∀x >0,f (x )+2x >0;(2)当a ≥1时,对任意x ∈0,k 2,都有f (x )≥0,求整数k 的最大值.【答案】(1)证明见解析;(2)3【详解】(1)a =-1时,设g (x )=f (x )+2x =-sin x -ln (1+x )+2x ,则g (x )=-cos x -11+x +2,∵x >0∴x +1>1∴-1x +1∈(-1,0)∵cos x ∈[-1,1]∴-cos x -1x +1+2>0,即g (x )>0在(0,+∞)上恒成立,∴g (x )在(0,+∞)上单调增, 又g (0)=0∴g (x )>g (0)=0,即∀x >0,f (x )+2x >0;(2)a =1时,当k =4时,f (2)=sin2-ln3<0,所以k <4.下证k =3符合.k =3时,当x ∈0,32时,sin x >0,所以当a ≥1时,f (x )=a sin x -ln (1+x )≥sin x -ln (1+x ).记h (x )=sin x -ln (1+x ),则只需证h (x )=sin x -ln (1+x )≥0对x ∈0,32恒成立.h (x )=cos x -1x +1,令ϕ(x )=cos x -1x +1,则ϕ (x )=-sin x +1(x +1)2在0,π2 递减,又ϕ (0)=1>0,ϕ π2 =-1+1π2+1 2<0,所以存在x 1∈0,π2,使得ϕ x 1 =0,则x ∈0,x 1 ,ϕ x 1 >0,ϕ(x )在0,x 1 递增,x ∈x 1,π2 ,ϕ x 1 <0,ϕ(x )在x 1,π2 递减;又ϕ(0)=0,ϕπ2 =-1π2+1<0,所以存在x 2∈x 1,π2 使得ϕx 2 =0,且x ∈0,x 2 ,ϕ(x )>0,x ∈x 2,π2,ϕ(x )<0,所以h (x )在0,x 2 递增,在x 2,π2递减,又h (0)=0,h π2 =1-ln 1+π2 >0,所以h (x )≥0对x ∈0,π2 恒成立,因为0,32 ⊆0,π2,所以k =3符合.综上,整数k 的最大值为3.9已知函数f (x )=(x -1)e x +ax +1.(1)若f(x)有两个极值点,求a的取值范围;(2)若x≥0,f(x)≥2sin x,求a的取值范围.【答案】(1)0,1 e;(2)2,+∞.【详解】(1)由f(x)=(x-1)e x+ax+1,得f (x)=xe x+a,因为f(x)有两个极值点,则f (x)=0,即方程-a= xe x有两个不等实数根,令g(x)=xe x,则g (x)=(x+1)e x,知x<-1时,g (x)<0,g(x)单调递减,x>-1时,g (x)>0,g(x)单调递增,则x=-1时,g(x)取得极小值g(-1)=-1e,也即为最小值,且x<0时,g(x)<0,x→-∞时,g(x)→0,x>0时,g(x)>0,x→∞时,g(x)→+∞,故-1e<-a<0,即0<a<1e时,方程-a=xe x有两个实数根,不妨设为x1,x2x1<x2.可知x<x1时,f (x)>0,x1<x<x2时,f (x)< 0,x>x2时,f (x)>0,即x1,x2分别为f(x)的极大值和极小值点.所以f(x)有两个极值点时,a的取值范围是0,1 e.(2)令h(x)=(x-1)e x+ax-2sin x+1,原不等式即为h(x)≥0,可得h(0)=0,h (x)=xe x+a-2cos x,h (0)=a-2,令u(x)=h (x)=xe x+a-2cos x,则u (x)=(x+1)e x+2sin x,又设t(x)=(x+1)e x,则t (x)= (x+2)e x,x≥0时,t (x)>0,可知t(x)在0,+∞单调递增,若x∈0,π,有(x+1)e x>0,sin x>0,则u (x)>0;若x∈π,+∞,有(x+1)e x>(π+1)eπ>2,则u (x)>0,所以,x≥0,u (x)>0,则u(x)即h (x)单调递增,①当a-2≥0即a≥2时,h (x)≥h (0)≥0,则h(x)单调递增,所以,h(x)≥h(0)=0恒成立,则a≥2符合题意.②当a-2<0即a<2时,h (0)<0,h (3-a)=(3-a)e(3-a)+a-2cos(3-a)≥3-a+a-2cos(2-a)> 0,存在x0∈(0,3-a),使得h (x0)=0,当0<x<x0时,h (x)<0,则h(x)单调递减,所以h(x)<h(0)=0,与题意不符,综上所述,a的取值范围是2,+∞.10已知函数f x =x-sinπ2x-a ln x,x=1为其极小值点.(1)求实数a的值;(2)若存在x1≠x2,使得f x1=f x2,求证:x1+x2>2.【答案】(1)a=1;(2)证明见解析【详解】(1)f(x)的定义域为(0,+∞),f (x)=1-π2cosπ2x-a x,依题意得f (1)=1-a=0,得a=1,此时f (x)=1-π2cosπ2x-1x,当0<x<1时,0<π2x<π2,0<π2cosπ2x<π2,1x>1,故f (x)<0,f(x)在(0,1)内单调递减,当1<x<2时,π2<π2x<π,π2cosπ2x<0,1x<1,故f (x)>0,f(x)在(1,2)内单调递增,故f(x)在x=1处取得极小值,符合题意.综上所述:a=1.(2)由(1)知,f(x)=x-sinπ2x-ln x,不妨设0<x1<x2,当1≤x1<x2时,不等式x1+x2>2显然成立;当0<x1<1,x2≥2时,不等式x1+x2>2显然成立;当0<x1<1,0<x2<2时,由(1)知f(x)在(0,1)内单调递减,因为存在x 1≠x 2,使得f x 1 =f x 2 ,所以1<x 2<2,要证x 1+x 2>2,只要证x 1>2-x 2,因为1<x 2<2,所以0<2-x 2<1,又f (x )在(0,1)内单调递减,所以只要证f (x 1)<f (2-x 2),又f x 1 =f x 2 ,所以只要证f (x 2)<f (2-x 2),设F (x )=f (x )-f (2-x )(1<x <2),则F (x )=f (x )+f (2-x )=1-π2cos π2x -1x +1-π2cos π2(2-x ) -12-x =2-1x +12-x -π2cos π2x +cos π-π2x =2-1x +12-x -π2cos π2x -cos π2x =2-1x +12-x,令g (x )=2-1x +12-x(1<x <2),则g (x )=1x 2-1(2-x )2=4-4x x 2(2-x )2,因为1<x <2,所以g (x )<0,g (x )在(1,2)上为减函数,所以g (x )<g (1)=0,即F (x )<0,所以F (x )在(1,2)上为减函数,所以F (x )<F (1)=0,即f (x 2)<f (2-x 2).综上所述:x 1+x 2>2.11(2023全国新高考2卷)(1)证明:当0<x <1时,x -x 2<sin x <x ;(2)已知函数f x =cos ax -ln 1-x 2 ,若x =0是f x 的极大值点,求a 的取值范围.【答案】(1)证明见详解(2)-∞,-2 ∪2,+∞【详解】(1)构建F x =x -sin x ,x ∈0,1 ,则F x =1-cos x >0对∀x ∈0,1 恒成立,则F x 在0,1 上单调递增,可得F x >F 0 =0,所以x >sin x ,x ∈0,1 ;构建G x =sin x -x -x 2 =x 2-x +sin x ,x ∈0,1 ,则G x =2x -1+cos x ,x ∈0,1 ,构建g x =G x ,x ∈0,1 ,则g x =2-sin x >0对∀x ∈0,1 恒成立,则g x 在0,1 上单调递增,可得g x >g 0 =0,即G x >0对∀x ∈0,1 恒成立,则G x 在0,1 上单调递增,可得G x >G 0 =0,所以sin x >x -x 2,x ∈0,1 ;综上所述:x -x 2<sin x <x .(2)令1-x 2>0,解得-1<x <1,即函数f x 的定义域为-1,1 ,若a =0,则f x =1-ln 1-x 2 ,x ∈-1,1 ,因为y =-ln u 在定义域内单调递减,y =1-x 2在-1,0 上单调递增,在0,1 上单调递减,则f x =1-ln 1-x 2 在-1,0 上单调递减,在0,1 上单调递增,故x =0是f x 的极小值点,不合题意,所以a ≠0.当a ≠0时,令b =a >0因为f x =cos ax -ln 1-x 2 =cos a x -ln 1-x 2 =cos bx -ln 1-x 2 ,且f -x =cos -bx -ln 1--x 2 =cos bx -ln 1-x 2 =f x ,所以函数f x 在定义域内为偶函数,由题意可得:f x =-b sin bx -2x x 2-1,x ∈-1,1 ,(i )当0<b 2≤2时,取m =min 1b ,1 ,x ∈0,m ,则bx ∈0,1 ,由(1)可得fx =-b sin bx -2x x 2-1>-b 2x -2x x 2-1=x b 2x 2+2-b 2 1-x 2,且b 2x 2>0,2-b 2≥0,1-x 2>0,所以f x >x b 2x 2+2-b 21-x 2>0,即当x ∈0,m ⊆0,1 时,f x >0,则f x 在0,m 上单调递增,结合偶函数的对称性可知:f x 在-m ,0 上单调递减,所以x =0是f x 的极小值点,不合题意;(ⅱ)当b 2>2时,取x ∈0,1b ⊆0,1 ,则bx ∈0,1 ,由(1)可得f x =-b sin bx -2x x 2-1<-b bx -b 2x 2 -2x x 2-1=x 1-x2-b 3x 3+b 2x 2+b 3x +2-b 2 ,构建h x =-b 3x 3+b 2x 2+b 3x +2-b 2,x ∈0,1b ,则h x =-3b 3x 2+2b 2x +b 3,x ∈0,1b,且h 0 =b 3>0,h 1b=b 3-b >0,则hx >0对∀x ∈0,1b 恒成立,可知h x 在0,1b 上单调递增,且h 0 =2-b 2<0,h 1b=2>0,所以h x 在0,1b 内存在唯一的零点n ∈0,1b ,当x ∈0,n 时,则h x <0,且x >0,1-x 2>0,则f x <x1-x 2-b 3x 3+b 2x 2+b 3x +2-b 2 <0,即当x ∈0,n ⊆0,1 时,fx <0,则f x 在0,n 上单调递减,结合偶函数的对称性可知:f x 在-n ,0 上单调递增,所以x =0是f x 的极大值点,符合题意;综上所述:b 2>2,即a 2>2,解得a >2或a <-2,故a 的取值范围为-∞,-2 ∪2,+∞ .【跟踪训练】1已知函数f x =xe -x +a sin x ,e 是自然对数的底数,若x =0恰为f (x )的极值点.(1)求实数a 的值;(2)求f (x )在区间-∞,π4上零点的个数.【答案】(1)-1;(2)1【详解】(1)由题意得f x =1-xex+a cos x ,因为x =0为f (x )的极值点,故f (0)=1+a =0,∴a =-1,此时f x =1-x e x-cos x ,则x <0时,1-xe x >1,故f (x )>0,则f (x )在(-∞,0)上单调递增;由f x =1-x e x -cos x =1-x -e x cos x e x,令g x =1-x -e x cos x ,∴g x =-1-e x cos x -sin x ,当0<x <π4时,cos x -sin x >0,则g (x )<0,则g (x )在0,π4上单调递减,故g (x )<g (0)=0,即f(x )<0,故f (x )在0,π4 上单调递减,则x =0为f (x )的极大值点,符合题意,故a =-1.(2)由(1)知f x =xe -x -sin x ,f x =1-xex-cos x ,x <0时,f (x )>0,f (x )在(-∞,0)上单调递增,则f (x )<f (0)=0,故f x 在(-∞,0)上不存在零点;当0<x <π4时,f (x )<0,故f (x )在0,π4上单调递减,则f (x )<f (0)=0,故f x 在0,π4上不存在零点;当x =0时,f (0)=0,即x =0为f x 的零点,综合上述,f (x )在区间-∞,π4上零点的个数为1.2已知函数f x =2cos x +ln 1+x -1.(1)判断函数f x 在区间0,π2上零点和极值点的个数,并给出证明;(2)若x ≥0时,不等式f x <ax +1恒成立,求实数a 的取值范围.【答案】(1)函数f x 在区间0,π2上只有一个极值点和一个零点,证明见解析;(2)实数a 的取值范围是1,+∞【详解】(1)函数f x 在区间0,π2 上只有一个极值点和一个零点,证明如下,f x =-2sin x +1x +1,设t x =f x =-2sin x +1x +1,t x =-2cos x -1x +12,当x ∈0,π2 时,t x <0,所以f x 单调递减,又f 0 =1>0,f π2=-2+1π2+1=-2+2π+2<0,所以存在唯一的α∈0,π2 ,使得f α =0,所以当x ∈0,α 时,f x >0,当x ∈α,π2 时,f x <0,所以f x 在0,α 单调递增,在α,π2单调递减,所以α是f x 的一个极大值点,因为f 0 =2-1=1>0,f α >f 0 >0,f π2=ln 1+π2 -1<0,所以f x 在0,α 无零点,在α,π2上有唯一零点,所以函数f x 在区间0,π2 上只有一个极值点和一个零点;(2)由f x ≤ax +1,得2cos x +ln 1+x -ax -2≤0,令g x =2cos x +ln 1+x -ax -2,x >0 ,则g 0 =0,g x =-2sin x +11+x-a ,g 0 =1-a ,①若a ≥1,则-a ≤-1,当x ≥0时,-ax ≤-x ,令h x =ln x +1 -x ,则h x =1x +1-1=-xx +1,当x ≥0时,h x ≤0,所以h x 在0,+∞ 上单调递减,又h 0 =0,所以h x ≤h 0 ,所以ln x +1 -x ≤0,即ln x +1 ≤x ,又cos x ≤1,所以g x ≤2+x -x -2=0,即当x ≥0时,f x ≤ax +1恒成立,②若0≤a <1,因为当x ∈0,π2 时,g x 单调递减,且g 0 =1-a >0,g π2 =-2+11+π2-a <0,所以存在唯一的β∈0,π2,使得g β =0,当x ∈0,β 时,g x >0,g x 在0,β 上单调递增,不满足g x ≤0恒成立,③若a <0,因为g e 4-1 =2cos e 4-1 +ln e 4 -a e 4-1 -2=2-2cos e 4-1 -a e 4-1 >0不满足g x ≤0恒成立,综上所述,实数a 的取值范围是1,+∞ .3已知函数f x =xe x -1,g x =a x +ln x 且f x -g x ≥0恒成立. (1)求a 的值;(2)证明:x 3e x >x 2+3 ln x +2sin x .(注:其中e =2.71828⋯为自然对数的底数)【答案】(1)a =1;(2)证明见解析【详解】(1)因为f x -g x ≥0恒成立,所以xe x -a (ln x +x )≥1恒成立,令h (x )=xe x -a (ln x +x ),则h (x )=e x+xe x-a 1x +1 =(x +1)⋅xe x -ax(x >0),当a <0时,h (x )>0,所以h (x )在(0,+∞)上递增,当x→0时,xe x →0,ln x →-∞,所以h (x )→-∞,不合题意,当a =0时,h 12=e2<1,不合题意,当a >0时,令xe x -a =0,得a =xe x ,令p (x )=xe x ,则p (x )=(x +1)e x >0,所以p (x )=xe x 在(0,+∞)上递增,且p (0)=0,所以a =xe x 有唯一实根,即h (x )=0有唯一实根,设为x 0,即a =x 0e x 0,且x ∈(0,x 0)时,h (x )<0,x ∈x 0,+∞ 时,h(x )>0,所以h (x )在0,x 0 上为减函数,在x 0,+∞ 上为增函数,所以h (x )min =f x 0 =x 0e x 0-a ln x0+x 0 =a -a ln a ,所以只需a -a ln a ≥1,令t =1a ,则上式转化为ln t ≥t -1,设φ(t )=ln t -t +1,则φ (t )=1t -1=1-tt,当0<t <1时,φ (t )>0,当t >1时,φ (t )<0,所以φ(t )在(0,1)上递增,在(1,+∞)上递减,所以φ(t )≤φ(1)=0,所以ln t ≤t -1,所以ln t =t -1,得t =1,所以t =1a=1,得a =1,(2)证明:由(1)知,当a =1时,f x ≥g x 对任意x >0恒成立,所以∀x ∈0,+∞ ,xe x ≥x +ln x +1(当且仅当x =1时取等号),则x 3e x ≥x 3+x 2ln x +x 2(x >0),所以要证明x 3e x >x 2+3 ln x +2sin x ,只需证明x 3+x 2ln x +x 2>(x 2+3)ln x +2sin x (x >0),即证x 3+x 2>3ln x +2sin x (x >0),设t (x )=ln x -x +1,m (x )=sin x -x ,则由(1)可知ln x ≤x -1(x >0),m (x )=cos x -1≤0在(0,+∞)上恒成立,所以m (x )在(0,+∞)上递减,所以∀x ∈0,+∞ ,m (x )<m (0)=0,所以sin x <x (x >0),所以要证x 3+x 2>3ln x +2sin x (x >0),只要证x 3+x 2≥3(x -1)+2x (x >0),即x 3+x 2-5x +3≥0(x >0),令H (x )=x 3+x 2-5x +3,则H (x )=3x 2+2x -5=(3x +5)(x -1),当0<x <1时,H (x )<0,当x >1时,H (x )>0,所以H (x )在(0,1)上递减,在(1,+∞)上递增,所以当x ∈0,+∞ 时,H (x )≥H (1)=0,即x 3+x 2-5x +3≥0(x >0)恒成立,所以原命题成立.4已知函数f (x )=x +sin x ,x ∈R .(1)设g (x )=f (x )-12x ,求函数g (x )的极大值点;(2)若对∀x ∈0,π2,不等式f (x )≥mx cos x (m >0)恒成立,求m 的取值范围.【答案】(1)x =2π3+2k π(k ∈Z );(2)(0,2].【详解】(1)函数g (x )=12x +sin x ,求导得g (x )=12+cos x ,由g (x )=0,得cos x =-12,当-2π3+2k π<x<2π3+2k π(k ∈Z )时,cos x >-12,即g (x )>0,函数g (x )单调递增;当2π3+2k π<x <4π3+2k π(k ∈Z )时,cos x <-12,即g (x )<0,函数g (x )单调递减,因此函数g (x )在x =2π3+2k π(k ∈Z )处有极大值,所以函数g (x )的极大值点为x =2π3+2k π(k ∈Z ).(2)依题意,m >0,∀x ∈0,π2 ,不等式f (x )≥mx cos x ⇔x +sin x -mx cos x ≥0,当x =π2时,π2+1≥0成立,则m >0,当x ∈0,π2时,cos x >0,x +sin x -mx cos x ≥0⇔x +sin x cos x-mx ≥0,令h (x )=x +sin x cos x -mx ,x ∈0,π2 ,求导得h(x )=(1+cos x )cos x +(x +sin x )sin x cos 2x -m =cos x +x sin x +1cos 2x -m ,令φx =cos x +x sin x +1cos 2x -m ,x ∈0,π2 ,求导得φ (x )=x cos 2x +2x sin 2x +sin2x +2sin x cos 3x >0,因此φ(x )在0,π2 上单调递增,即有φx ≥φ0 =2-m ,而cos x +x sin x +1cos 2x ≥cos x +1cos 2x >1cos 2x,又函数y =1cos 2x在x ∈0,π2 上的值域是[1,+∞),则函数φ(x ),即h x 在0,π2 上的值域是2-m ,+∞ ,当0<m ≤2时,h (x )≥0,当且仅当m =0,x =0时取等号,于是函数h (x )在0,π2上单调递增,对x ∈0,π2 ,h (x )≥h (0)=0,因此0<m ≤2,当m >2时,存在x 0∈0,π2,使得h (x 0)=0,当x ∈(0,x 0)时,h (x )<0,函数h (x )在(0,x 0)上单调递减,当x ∈(0,x 0)时,h (x )<h (0)=0,不符合题意,所以m 的取值范围为(0,2].5已知函数f (x )=ax 2-a (x sin x +cos x )+cos x +a (x >0).(1)当a =1时,(I )求(π,f (π))处的切线方程;(II )判断f x 的单调性,并给出证明;(2)若f x >1恒成立,求a 的取值范围.【答案】(1)(I )y =3πx -2π2+1;(II )f x 单调递增,证明见解析;(2)a ≥1【详解】(1)当a =1时,f (x )=x 2-x sin x +1,可得f (x )=2x -sin x -x cos x .(I )f (π)=π2+1,f (π)=3π,所以在(π,f (π))处的切线方程为y -π2+1 =3πx -π ,即y =3πx -2π2+1.(II )f (x )=2x -sin x -x cos x =x -sin x +x (1-cos x ),设m (x )=x -sin x (x >0),则m (x )=1-cos x ≥0,m (x )单调递增,所以m (x )>m (0)=0,即x >sin x ,所以当x >0时,f (x )>0,f (x )单调递增.(2)设g (x )=f (x )-1=ax 2-a (x sin x +cos x )+cos x +a -1,由题意g (x )>0恒成立.①当a ≤0时,g π2=a π2π2-1 +a -1<0,g (x )>0不恒成立,不合题意;②当0<a <1时,设h (x )=g(x )=2ax -ax cos x -sin x ,h (0)=0,h (x )=2a -a cos x +ax sin x -cos x ,h (0)=a -1<0,h π2=2a +π2a >0,设r (x )=h (x ),x ∈0,π2,r (x )=2a sin x +ax cos x +sin x >0,h (x )单调递增,由零点存在定理得∃t ∈0,π2,使得h (t )=0.h (x )在(0,t )上h (x )<0,h (x )<h (0)=0,即g (x )<0,所以g (x )在(0,t )上单调递减,g (x )<g (0)=0,g (x )>0不恒成立,不合题意;③当a ≥1时,g(x )=2ax -ax cos x -sin x ,则g (x )x =2a -a cos x -sin x x =a (1-cos x )+a -sin x x,当x>0时,1-cos x ≥0,x >sin x ,即sin xx <1,则g (x )x >0,所以当x >0时,g (x )>0,g (x )单调递增.可得:g (x )>g (0)=0,即f (x )>1,所以a ≥1.综上,a 的取值范围为1,+∞ .6已知f (x )=ax 2-cos x -x sin x +a (a ∈R ).(1)当a =14时,求y =f (x )在[-π,π]内的单调区间;(2)若对任意的x ∈R 时,f (x )≥2恒成立,求实数a 的取值范围.【答案】(1)单调增区间为:-π3,0 ,π3,π ;单调减区间为:0,π3 ,-π,-π3 ;(2)[3,+∞).【详解】(1)当a =14时,f (x )=14x 2-cos x -x sin x +14,求导得f (x )=12x -x cos x =x 12-cos x ,而x ∈[-π,π],由cos x =12,得x =±π3,当x ∈-π3,π3 时,12-cos x <0,当x ∈π3,π ∪-π,-π3时,12-cos x >0,则当x >0时,若f (x )>0,则x ∈π3,π ;若f (x )<0,则x ∈0,π3,当x <0时,若f (x )>0,则x ∈-π3,0 ;若f (x )<0,则x ∈-π,-π3 ,所以函数y =f (x )在[-π,π]内的单调增区间为:-π3,0 ,π3,π ;单调减区间为:0,π3 ,-π,-π3.(2)因为f (-x )=a (-x )2-cos (-x )-(-x )sin (-x )+a =f (x ),于是函数f (x )=ax 2-cos x -x sin x +a (a ∈R )为偶函数,则f (x )≥2对任意x ∈R 恒成立,等价于对任意的x ∈[0,+∞),恒有f (x )≥2成立,求导得f (x )=2ax -x cos x =x (2a -cos x ),当x ∈[0,+∞)时,当2a ≥1,a ≥12成立时,2a -cos x ≥0恒成立,即f (x )≥0恒成立,函数f (x )在[0,+∞)内单调递增,则有f x min =f 0 =a -1,因此a -1≥2,解得a ≥3,则a ≥3;当2a <1,a <12时,函数y =cos x 在[0,π]上单调递减,且-1≤cos x ≤1,因此存在x 0>0,使得当x ∈(0,x 0)时,2a -cos x <0,f (x )<0,函数f (x )在(0,x 0)上递减,此时x ∈0,x 0 ,f x <f 0 =a -1<2,不符合题意,所以实数a 的取值范围为[3,+∞).7已知函数f (x )=e x -a -x -cos x ,x ∈(-π,π)其中e =2.71828⋯为自然对数的底数.(1)当a =0时,证明:f x ≥0;(2)当a =1时,求函数y =f x 零点个数.【答案】(1)证明见解析;(2)2.【详解】(1)当a =0时,f (x )=e x -x -cos x ,x ∈(-π,π),求导得f (x )=e x -1+sin x ,显然f (0)=0,当-π<x <0时,e x -1<0,sin x <0,则f (x )<0,当0<x <π时,e x -1>0,sin x >0,则f (x )>0,因此函数f (x )在(-π,0)上单调递减,在(0,π)上单调递增,则当x ∈(-π,π)时,f (x )≥f (0)=0,所以f x ≥0.(2)当a =1时,f (x )=e x -1-x -cos x ,x ∈(-π,π),求导得f (x )=e x -1-1+sin x ,当-π<x <0时,e x -1-1<0,sin x <0,则f (x )<0,当1<x <π时,e x -1-1>0,sin x >0,则f (x )>0,当0≤x ≤1时,函数y =e x -1-1,y =sin x 都递增,即函数f (x )在(0,1)上单调递增,而f (0)=e -1-1<0,f (1)=sin1>0,因此存在x 0∈(0,1),使得f (x 0)=0,当0≤x <x 0时,f (x )<0,当x 0<x ≤1时,f (x )>0,从而当-π<x <x 0时,f (x )<0,当x 0<x <π时,f (x )>0,即有函数f (x )在(-π,x 0)上单调递减,在(x 0,π)上单调递增,f (x 0)<f (0)=e -1-1<0,而f -π2 =e -π2-1+π2>0,f π2 =e π2-1-π2>e -π2>0,于是函数f (x )在(-π,x 0),(x 0,π)各存在一个零点,所以函数y =f x 零点个数是2.8已知函数f x =x -1 e x +ax +1.(1)若a =-e ,求f x 的极值;(2)若x ≥0,f x ≥2sin x ,求a 的取值范围.【答案】(1)f x 极小值=1-e ,无极大值.(2)2,+∞【详解】(1)当a =-e 时f x =x -1 e x -ex +1,则f x =xe x -e ,令g x =f x =xe x -e ,则g 1 =0,gx =x +1 ex,所以当x <-1时g x <0,g x 单调递减且g x <0,当x >-1时g x >0,g x 单调递增,所以当x <1时g x <0,即f x <0,当x >1时g x >0,即f x >0,所以f x 在-∞,1 上单调递减,在1,+∞ 上单调递增,所以f x 在x =1处取得极小值,即f x 极小值=f 1 =1-e ,无极大值.(2)令h x =f x -2sin x =x -1 e x +ax -2sin x +1,x ∈0,+∞ ,则原不等式即为h x ≥0,可得h 0 =0,h x =xe x +a -2cos x ,h 0 =a -2,令u x =h x =xe x +a -2cos x ,则u x =x +1 e x +2sin x ,令t x =x +1 e x ,x ∈0,+∞ ,则t x =x +2 e x >0,所以t x 在0,+∞ 上单调递增,则t x ≥t 0 =1,则x ∈0,π 时x +1 e x >0,sin x ≥0,所以u x >0,当x ∈π,+∞ 时x +1 e x ≥π+1 e π>2,所以u x >0,所以u x >0在0,+∞ 上恒成立,所以u x 即h x 在0,+∞ 上单调递增,当a -2≥0,即a ≥2时h x ≥h 0 ≥0,所以h x 单调递增,所以h x ≥h 0 =0恒成立,所以a ≥2符合题意,当a -2<0,即a <2时h 0 <0,h 3-a =3-a e 3-a+a -2cos 3-a ≥3-a +a -2cos 3-a >0,所以存在x 0∈0,3-a 使得h x 0 =0,当0<x <x 0时h x <0,则h x 单调递减,所以h x <h 0 =0,与题意不符,综上所述,a 的取值范围是2,+∞ .9已知函数f x =2sin x -ln 1+x 0<x <π .(1)证明:函数f x 有唯一的极值点α,及唯一的零点β;(2)对于(1)问中α,β,比较2α与β的大小,并证明你的结论.【答案】(1)证明见解析;(2)2α>β,证明见解析【详解】(1)当π2<x <π时,由于y =2sin x 单调递减,y =ln 1+x 单调递增,所以f x 单调递减,又f π2=2-ln 1+π2 >0,f π =-ln 1+π <0,所以f x 只有一个零点(设为x 0),无极值点;当0<x <π2时,由f x =2sin x -ln 1+x 得f x =2cos x -1x +1,设g x =2cos x -1x +1,则g x =-2sin x +1x +1 2,由于y =-2sin x 和y =1x +12在0,π2 上均单调递减,所以g x 单调递减,又g 0 =1>0,g π2=-2+1π2+12<0,所以存在x 1∈0,π2,使得g x 1 =0,当0<x <x 1时,g x >0,g x 单调递增,即f x 单调递增,当x 1<x <π2时,g x <0,g x 单调递减,即f x 单调递减,又f π3=1-11+π3>0,f π2 =-1π2+1<0,所以当0<x <x 1时,f x >0恒成立,且存在x 2∈π3,π2 ,使得fx 2 =0,当0<x <x 2时,fx >0,f x 单调递增,当x 2<x <π2时,fx <0,f x 单调递减,所以x 2是f x 的极值点,又f 0 =0,f π2=2-ln 1+π2 >0,所以当0<x <π2时,f x >0恒成立,即函数f x 无零点;综上,函数f x 有唯一的极值点α(α=x 2),及唯一的零点β(β=x 0).(2)2α>β,证明如下:由(1)知α∈π3,π2,2α,β∈π2,π ,由于α为f x 的极值点,所以f α =2cos α-1α+1=0,即2cos α=11+α,所以f 2α =2sin2α-ln 1+2α =4sin αcos α-ln 1+2α =2sin α1+α-ln 1+2α ,设y =x -sin x 0<x <π2,则y =1-cos x >0,所以y =x -sin x 单调递增,所以x -sin x >0,即x >sin x ,所以f2α=2sinα1+α-ln1+2α<2α1+α-ln1+2α,令φ(x)=2x1+x-ln(1+2x)0<x<π2,则φ (x)=-2x21+x21+2x<0,所以φ(x)在0,π2上单调递减,所以φ(x)<φ(0)=0,所以f2α <0=fβ ,又f x在π2,π递减,所以2α>β.10已知函数f x =ax2+x-ln2x.(1)若f x 在1,+∞上单调递增,求a的取值范围;(2)若函数g x =f x -x+ln2xx-sin x在0,π上存在零点,求a的取值范围.【答案】(1)a≥0;(2)0<a<1【详解】(1)由题得f x =2ax+1-1x,因为f x 在1,+∞上单调递增,所以f x =2ax+1-1x≥0在1,+∞上恒成立,即2a≥1x2-1x在1,+∞上恒成立,因为1x2-1x=1x-122-14≤0,所以a≥0.(2)因为g x =ax-sin x,则g x =a-cos x,注意到:g0 =0,g 0 =a-1,若a≥1,则g x =a-cos x≥0,所以g x 在0,π上单调递增,所以g x >g0 =0,g x 在0,π上不存在零点,若a≤-1,则g x =a-cos x≤0,所以g x 在0,π上单调递减,所以g x <g0 =0,g x 在0,π上不存在零点,若-1≤a≤0,显然g x =ax-sin x<0,在0,π上不存在零点,若0<a<1,显然存在t∈0,π,使得g t =0,且g x 在0,π上单调递增,注意到:g 0 =a-1<0,g π =a+1>0,所以g x 在0,t上小于零,在t,π上大于零,所以g x 在0,t上单调递减,在t,π上单调递增,注意到:g0 =0,g t <0,且gπ >0,所以存在唯一β∈t,π使得gβ =0,综上,所以0<a<1.11已知函数f x =ln x+sin x.(1)求函数f x 在区间1,e上的最小值;(2)判断函数f x 的零点个数,并证明.【答案】(1)sin1;(2)f x 有1个零点,证明见解析【详解】(1)f(x)=ln x+sin x的定义域为0,+∞,故f (x)=1x+cos x,令g x =f (x)=1x+cos x,g x =-1 x2-sin x,当x∈1,e时,g x =-1x2-sin x<0,所以g x 在1,e上单调递减,且g1 =1+cos1>0,g e =1e +cos e<1e+cos2π3=1e-12<0,所以由零点存在定理可知,在区间[1,e]存在唯一的a,使g a =f a =0,又当x∈1,a时,g x =f x >0;当x∈a,e时,g x =f x <0;所以f x 在x∈1,a上单调递增,在x∈a,e上单调递减,又因为f1 =ln1+sin1=sin1,f e =ln e+sin e=1+sin e >f1 ,所以函数f(x)在区间[1,e]上的最小值为f1 =sin1.(2)f x 有1个零点,证明如下:因为f(x)=ln x+sin x,x∈0,+∞,若0<x≤1,f (x)=1x+cos x>0,所以f(x)在区间0,1上单调递增,又f1 =sin1>0,f1e=-1+sin1e<0,结合零点存在定理可知,。
2023年高考数学(理科)一轮复习课件——圆锥曲线的综合问题 第二课时 定值问题
索引
(2)若直线 l 交椭圆 E 于 M,N 两点,直线 OM 的斜率为 k1,直线 ON 的斜率 为 k2,且 k1k2=-19,证明:△OMN 的面积是定值,并求此定值.
证明 当直线l的斜率不存在时,
索引
答题模板
第一步 求圆锥曲线的方程 第二步 特殊情况分类讨论 第三步 联立直线和圆锥曲线的方程 第四步 应用根与系数的关系用参数表示点的坐标 第五步 根据相关条件计算推证 第六步 明确结论
索引
训练 2 (2021·大同调研)如图,在平面直角坐标系 xOy 中, 椭圆 C:xa22+by22=1(a>b>0)的左、右顶点分别为 A,B,
已知|AB|=4,且点e,345在椭圆上,其中 e 是椭圆的
离心率.
(1)求椭圆 C 的方程;
解 ∵|AB|=4,∴2a=4,即a=2. 又点e,345在椭圆上,∴ae22+1465b2=1,即1c62 +1465b2=1, 又b2+c2=a2=4,联立方程解得b2=3, ∴椭圆 C 的方程为x42+y32=1.
(1)求动点 M 的轨迹 E 的方程;
[规范解答]
解 设M(x,y),P(x0,y0), 由(1- 3)O→Q=O→P- 3O→M, 得O→Q-O→P= 3O→Q- 3O→M, 即P→Q= 3M→Q,2 分
索引
∴xy00==x,3y,又点 P(x0,y0)在圆 O:x2+y2=6 上, ∴x20+y20=6,∴x2+3y2=6, ∴轨迹 E 的方程为x62+y22=1.4 分
索引
感悟提升
解此类题的要点有两个:一是计算面积,二是恒等变形.如本题,要求△OMN 的面积,则需要计算弦长|MN|和原点 O 到直线 l 的距离 d,然后由面积公式 表达出 S△OMN(如果是其他凸多边形,一般需要分割成三角形分别求解),再 将由已知得到的变量之间的等量关系代入面积关系式中,进行恒等变形, 即得 S△OMN 为定值23.
高考数学难点突破_难点09__指数对数函数
高考数学难点突破_难点09__指数对数函数指数对数函数是高考数学中的一个重要的难点,也是学生普遍认为比较难理解和掌握的内容之一、本文将从基本概念、性质、解题技巧等方面进行详细介绍,帮助学生突破这一难点。
一、基本概念1.指数函数:指数函数是以指数为自变量,以底数为底的函数。
比如y=2^x就是一个指数函数,其中2是底数,x是指数。
2. 对数函数:对数函数是指数函数的逆运算,也就是说,指数函数和对数函数互为反函数。
比如 y = log2(x) 就是一个对数函数,其中 2 是底数,y 是对数。
二、性质1.指数函数的性质:(1)底数为正数且不等于1;(2)指数为任意实数;(3)当底数小于1时,指数函数是递减函数;(4)当底数大于1时,指数函数是递增函数。
2.对数函数的性质:(1)底数为正数且不等于1;(2)对数为任意正数;(3)对数函数的定义域是正数集合,值域是实数集合;(4)对数函数图象是一条过点(1,0)的上凸曲线。
三、解题技巧1.指数函数的解题技巧:(1)利用指数函数的性质进行函数图象的绘制;(2)将指数转化为对数的形式,利用对数的性质简化计算;(3)注意指数函数的定义域和值域,避免出现无解的情况;(4)利用指数函数的性质解决等式、不等式,注意正确应用换底公式。
2.对数函数的解题技巧:(1)利用对数函数的性质进行函数图象的绘制;(2)利用对数函数的反函数性质化简等式、不等式的解;(3)根据定义域和值域限制,判断函数是否有解;(4)注意合理利用换底公式,化简对数运算。
四、经典题型1. 解对数方程:如 log2(x+3) + log2(x-2) = 3,将对数方程转化为指数方程求解。
2.判断函数性质:如f(x)=5^(x-3),要求判断指数函数f(x)的增减性和定义域。
3.运用指数对数函数求最值:如y=3^x-3^(1-x),通过化简求函数的最值。
4. 判断指数函数与对数函数的关系:如 f(x) = 2^x 和 g(x) = log2(x),要求判断两个函数的值域和定义域。
高考数学难点突破与解题方法
高考数学难点突破与解题方法随着高考日益逼近,数学作为一门重要的科目,成为许多考生头疼的难题。
其中,存在着一些难点,对于许多考生来说是必须要突破的难关。
本文将介绍一些高考数学难点的突破方法和解题技巧,帮助考生在考试中取得更好的成绩。
一、代数与函数代数与函数是高考数学中的一大难点,其中包括方程、函数和不等式。
首先,要熟练掌握基本的代数知识,比如一元二次方程、分式方程等,切忌死记硬背,要通过大量的练习来加深理解。
其次,要了解各类函数的性质,包括基本初等函数的图像、性质和变化规律等。
高考中常见的函数类型有线性函数、二次函数和指数函数等,掌握它们的性质和变化规律能够解决不少难题。
最后,对于不等式的解法,要掌握常见的不等式性质,比如绝对值不等式、二次式不等式等,通过画图或代入法来解决。
二、立体几何立体几何也是高考数学中的难点之一。
在解题时,要注重对图形性质的理解和几何关系的把握。
了解常见几何图形的特征和性质,包括正方体、正四面体和圆锥等,会对解题有很大帮助。
同时,还需要掌握立体几何的投影问题,如求柱体、圆柱和圆锥的截面面积和体积等。
通过多做一些相关的题目进行练习,能够提高解决立体几何难题的能力。
三、概率与统计概率与统计在高考数学中占有一定的比重,也是一些考生容易忽视的部分。
在解题时,要注意理解概率与统计的基本概念和原理。
掌握概率计算的方法,包括排列组合、事件的计算和条件概率等。
对于统计的问题,要熟悉常见统计量的计算,如均值、中位数和标准差等。
此外,还要注意对数据的分析与解读,包括直方图和折线图的解读,以及数据的比较和推断分析。
四、解题技巧在考试时,掌握一些解题技巧对于突破数学难点是非常有效的。
首先,要学会研读题目,理解题目所给的条件和要求,抓住关键信息。
其次,学会尝试多种解题方法,从不同的角度入手,比较其优劣并选择最合适的方法。
此外,要善于归纳总结,在做题过程中,记录解题思路和方法,方便日后进行复习和总结。
2025届高考数学热点题型归纳与重难点突破: 基本不等式及其应用【21类题型全归纳】(解析版)
1/45热点题型:基本不等式及其应用【题型1】基本不等式的直接使用...............................................................................................................2【题型2】常规凑配法求最值......................................................................................................................3【题型3】“1”的妙用(1):乘“1”法.........................................................................................................5【题型4】“1”的妙用(2):“1”的代换.......................................................................................................6【题型5】二次比一次型................................................................................................................................8【题型6】分离常数型..................................................................................................................................10【题型7】与指数对数结合的基本不等式问题.........................................................................................11【题型8】利用对勾函数..............................................................................................................................13【题型9】判断不等式是否能成立...........................................................................................................16【题型10】换元法(整体思想)...............................................................................................................19【题型11】基本不等式的实际应用问题....................................................................................................22【题型12】与a +b 、平方和、ab 有关问题的最值(和,积,平方和互相转化)...........................26【题型13】基本不等式恒成立与能成立问题...........................................................................................28【题型14】消元法........................................................................................................................................31【题型15】因式分解型................................................................................................................................33【题型16】同除型(构造齐次式)...........................................................................................................35【题型17】万能“k ”法..................................................................................................................................36【题型18】三角换元法(利用三角函数)...............................................................................................38【题型19】基本不等式与其他知识交汇的最值问题...............................................................................40【题型20】含有根式的配凑(根式平方和为定值型)...........................................................................42【题型21】多次运用基本不等式 (43)2/45【题型1】基本不等式的直接使用如果00a b >>,2a b +≤,当且仅当a b =时,等号成立.其中,2a b+叫作a b ,的算a b ,的几何平均数.即正数a b ,的算术平均数不小于它们的几何平均数.常用不等式:若a b ∈,R,则222a b ab +≥,当且仅当a b =时取等号;基本不等式:若a b ∈,R +,则2a b+≥(或a b +≥),当且仅当a b =时取等号.1.若0a >,0b >,且41a b +=,则2216a b +的最小值是________【答案】12【详解】221624a b ab ≥+⨯,则()()2222221616244a b a b ab a b +≥++⨯=+,所以()222411622a b a b +≥+=,当且仅当142a b ==时,等号成立,所以2216a b +有最小值122.若00>>y x ,,10=xy ,则yx 52+的最小值为______.【答案】2【简析】252x y +≥=【巩固练习1】若00>>y x ,,1410x y+=,则xy 的最小值为______.【答案】425【简析】14441052525xy x y xy +=≥⇒≥⇒≥⇒≥【巩固练习2】已知0x >,0y >,且21x y +=,则24x y +的最小值是________3/45【答案】当且仅当【题型2】常规凑配法求最值配凑法:加上一个数或减去一个数使和(积)为定值,然后利用基本不等式求解.1、通过添项、拆项、变系数等方法凑成和为定值或积为定值的形式.2、注意验证取得条件.常见的配凑法求最值模型(1)模型一:)0,02>>≥+n m mn x n mx ,当且仅当mn x =时等号成立;(2)模型二:)0,0(2)(>>+≥+-+-=-+n m ma mn ma a x n a x m a x n mx ,当且仅当mna x =-时等号成立3.若2x >-,则()12f x x x =++的最小值为.【答案】0【解析】由2x >-,得12002x x +>>,,所以11()222022f x x x x x =+=++-≥=++,当且仅当122x x +=+即=1x -时等号成立.4.已知>2,则2+8K2的最小值是()A .6B .8C .10D .12【解题思路】利用基本不等式性质求解即可.【解答过程】因为>2,所以−2>0所以2+8K2=2−2+8K2+4≥216+4=12,当且仅当2−2=8K2,即=4时,等号成立.所以2+8K2的最小值为12.4/45【巩固练习1】函数()4321x x f x =+++(0x >)的最小值为.【答案】1【解析】因为0x >,所以11x +>,所以()44323311111x x x x x f =++=++-≥-=++,当且仅当()4311x x +=+时,即13x =-时,等号成立,故()f x 的最小值为1.【分析】利用基本不等式中常数代换技巧求最值即可.【详解】因为正数a ,b 满足34a b +=,所以()()1318a b +++=,所以()()()()31311311311311011811811b a a b a b a b a b ⎡⎤++⎛⎫⎡⎤+=+⋅+++=++⎢⎥ ⎪⎣⎦++++++⎝⎭⎣⎦()1110106288⎡⎢≥+=+=⎢⎣,当且仅当()()313111b a a b ++=++即1a b ==时,等号成立,所以1311a b +++的最小值为2.【巩固练习3】已知0t >,则3321t t t +++的最小值为.1【解析】因为0t >,所以()()()33212133221212221231t t t tt t t t +++++=+=+++++11≥+=,当且仅当()()2321221t t +=+,即t =.所以3321t t t +++1.5/45【题型3】“1”的妙用(1):乘“1”法方法总结:乘“1”法就是指凑出1,利用乘“1”后值不变这个性质,使不等式通过变形出来后达到运用基本不等式的条件,即积为定值.主要解决形如“已知x +y =t (t 为常数),求的最值”的问题,先将再用基本不等式求最值注意:验证取得条件.5.(2023·广东广雅中学校考)若正实数a ,b 满足21a b +=,则12a b+的最小值是________【答案】9【详解】121222()(2)5529b a a b a b a b a b +=++=++≥+,当且仅当2213b a a b a b =⇒==时等号成立6.(2024·江苏南通·二模)设0x >,0y >,122y x+=,则1x y+的最小值为()A .32B.C.32D .3【答案】C【分析】由不等式“1”的代换求解即可.【详解】因为122y x+=,所以112y x+=,因为0x >,0y >,所以111111222x x y xy y y xxy ⎛⎫⎛⎫+=++=+++ ⎪⎪⎝⎭⎝⎭313332222222xy xy =++≥+=+⨯=+当且仅当12112xy xy y x⎧=⎪⎪⎨⎪+=⎪⎩,即2x y ⎧=⎪⎨⎪=⎩时取等.6/45【分析】运用“1”的代换及基本不等式即可求得结果.【详解】因为2x y xy +=,所以211x y+=,所以()214222248x y x y x y x y y x ⎛⎫+=++=+++≥+= ⎪⎝⎭,当且仅当4x y y x =,即4,2x y ==时取等号.所以2x y +的最小值为8【巩固练习2】若0,0x y >>,且25x y +=,则92x y+的最小值为.【答案】5【解析】因为0,0x y >>,且25x y +=,则2155x y+=,可得9292218213135555555x y y x x y x y x y ⎛⎫⎛⎫+=++=++≥= ⎪⎪⎝⎭⎝⎭,当且仅当18255y xx y=,即33x y ==时,等号成立,所以92x y+的最小值为5.故答案为:5.【巩固练习3】已知0x >,0y >,且122x y +=,则21x y +的最小值为.【答案】16【解析】()212182228816,y x x y x y x y x y ⎛⎫+=++=++≥+= ⎪⎝⎭当且仅当82y x x y =时等号成立.即当11,48x y ==时,21x y +取得最小值为16.【题型4】“1”的妙用(2):“1”的代换方法总结:通过常数“1”的代换,把求解目标化为可以使用基本不等式求最值的式子,达到解题的目的.7/45【分析】利用基本不等式求得1aa b+的最小值.【详解】依题意1113a a b a b a a b a b a b ++=+=++≥+=.当且仅当12a b ==时等号成立.【分析】根据“1”的变形技巧化简,再运用均值不等式求解即可.【详解】由条件1x y +=可得2212()()232244x y x y y x y y x x xy x xy x y x xy+++=+=++++=++≥+.当且仅当+=13=x y y x x y ⎧⎪⎨⎪⎩,即x y ⎧⎪⎪⎨⎪⎪⎩时等号成立【巩固练习2】正实数x ,y 满足1x y +=,则11y x y++的最小值是()A .3+B .2+C .5D .112【答案】B 【分析】11y x y++中的“1”用“x y +”代替,分离常数后利用基本不等式即可求解.8/45【详解】因为正实数x ,y 满足1x y +=,所以1122y x y y x y y x x y x y x y +++++=+=++22≥+=+当且仅当1x y x +=⎧⎪⎨=⎪⎩,即21==x y 时等号成立.故11y x y ++的最小值是2+.【巩固练习3】(2024·安徽·三模)已知0,0x y >>,且21x y +=,则2y xxy+的最小值为()A .4B.C.1D.1【答案】D【分析】由21x y +=,可得221y x y xxy x y +=++,再利用基本不等式计算即可得.【详解】2122111y x y y x y y x xy x y x y x y ++=+=+=++≥+=,当且仅当2y x x y =,即1,12y x =-=-时,等号成立.【题型5】二次比一次型基本模型:)0,0(2112>>+≤++=++c a b ac xc b ax c bx ax x ,当且仅当acx =时等号成立9.已知>0,则2−r4的最小值为()A .5B .3C .−5D .−5或3【解题思路】由已知可得2−r4=+4−1.【解答过程】由>0,得2−r4=+4−1≥2−1=3,当且仅当=4,即=2时等号成立,所以2−r4的最小值为3.9/4510.函数()2322x x y x x ++=>-的最小值为.【答案】11【分析】将函数化为9252y x x =-++-,利用基本不等式求其最小值,注意取值条件即可.【详解】由2(2)5(2)992522x x y x x x -+-+==-++--,又20x ->,所以511y ≥+=,当且仅当922x x -=-,即5x =时等号成立,所以原函数的最小值为11.【巩固练习1】已知1x >-,则函数241x x y x ++=+的最小值是.【答案】3【分析】将函数化简,分离常数,然后结合基本不等式即可得到结果.【详解】因为1x >-,()()221(1)44411111x x x x y x x x x +-++++===++-+++13≥-=当且仅当()411x x +=+,即1x =时,等号成立.所以函数241x x y x ++=+的最小值是【巩固练习2】已知正数x ,y 满足23x y +=,则8xyx y+的最大值为.【答案】16【解析】∵正数x ,y 满足23x y +=,∴()()181181161121010210863333x y x y y x y xy x ⎛⎛⎫⎛⎫+=++=++≥⨯+=⨯+= ⎪⎪ ⎝⎭⎝⎭⎝.当且仅当16y xx y=,即42x y ==时取等号,则111886xy x y y x=≤++,其最大值为16.10/45【巩固练习3】已知x ,y 为正实数,且+=1,则r6r3B的最小值为()A .24B .25C .6+42D .62−3【解题思路】把r6r3B变为9+4,然后利用基本不等式中常数代换技巧求解最值即可.【解答过程】因为x ,y 为正实数,且+=1,所以r6r3B==4r9B=9+4=+=13+9+4≥13+=25,当且仅当9=4+=1即=35=25时,等号成立,所以r6r3B的最小值为25.【题型6】分离常数型方法总结:对于分子分母中含有相同单一字母时,可以考虑分离常数例1:2121124x x y x x x xxxx+=+=++=++≥(x >0)例2:()()222222212121111x x y x x x x x x x -=+=-++=+++----11.若1x >,则函数221x y x x +=+-的最小值为()A .4B .5C D .9【答案】C【解析】因为1x >,所以10x ->,所以()2142211x x y x x x x -++=+=+--()4421323711x x x x =++=-++≥=--,当且仅当()411x x -=-,即3x =时取等号,所以函数221x y x x +=+-的最小值为7;故选:C【巩固练习1】已知2x >-,0y >,23x y +=,则2272x y x y++++的最小值为()A .4B .6C .8D .10【答案】B【分析】将已知条件等式化为()227x y ++=,整体代入结合基本不等式即可得解.11/45【详解】因为2x >-,0y >,23x y +=,所以()227x y ++=,20x +>,所以()()22722222222222x y x y y x y x x y x y x y +++++=+++=++++++26≥+=,当且仅当2x y +=,即13x =,73y =时等号成立,即2272x y x y ++++的最小值为6,故选:B .【答案】[,]35【分析】将函数变形为2()24xf x x x =+++,当0x =时,()2f x =;当0x ≠时,11()24f x x x=+++,利用对勾函数的性质和不等式的性质可解.【详解】函数()222224238()24442x x x x f x x x x x x x x x ++++===++++++++,当0x =时,()2f x =;当0x ≠时,11()24f x x x=+++,根据对勾函数的性质可知:当0x >时,44x x +≥,则110451x x<≤++,所以112()5f x <£,当0x <时,44x x +≤-,则110431x x -≤<++,所以5()23f x £<,综上所述,函数22238()4x x f x x x ++=++在x ∈R 上的值域是511[,]35.【题型7】与指数对数结合的基本不等式问题方法总结:结合指数对数的计算公式变形得出积为定值或和为定值的形式,再利用基本不等式求解12.(多选)已知2102105ab ==,则下列结论正确的是()12/45【分析】由题意可知lg 2a =,b =,根据对数函数的单调性可知D错误;2101010a b ⋅=,可知A 正确;利用基本不等式可知2a b +B 正确;在根据lg 2b =>,利用不等式的性质,即可判断C 正确.【详解】由题可知lg 2a =,1lg52b ==2>,所以a b <,D 错误;因为2210101010a b a b +⋅==,有21a b +=.所以A 正确;由基本不等式得2a b +≥18ab ≤,当且仅当2a b =时,取等号;又因为lg 2a =,2lg5b =,所以2a b ≠,故18ab <,B 正确;由于lg 20a =>,lg 2b =>,所以2lg 2ab >,C 正确13.(2020·山东·高考真题)(多选)已知a >0,b >0,且a +b =1,则()A .2212a b +≥B .122a b ->C .22log log 2ab +≥-D≤【答案】ABD【分析】根据1a b +=,结合基本不等式及二次函数知识进行求解.【详解】对于A ,()222221221a b a a a a +=+-=-+21211222a ⎛⎫⎪⎭+ ⎝≥-=,当且仅当12a b ==时,等号成立,故A 正确;对于B ,211a b a -=->-,所以11222a b-->=,故B 正确;对于C ,2222221log log log log log 224a b a b ab +⎛⎫+=≤==- ⎪⎝⎭,当且仅当12a b ==时,等号成立,故C 不正确;对于D,因为2112a b =+≤++=,,当且仅当12a b ==时,等号成立,故D 正确【详解】22422a b a b +=+≥=222,a b =即11,24a b ==时等号成立13/45【巩固练习2】已知实数x y ,满足32x y +=,则3271x y z =++的最小值是________.【答案】7【解析】33271331117x y x y z =++=++≥==,当且仅当333x y =,即1x =,13y =时取等号.所以3271x y z =++的最小值为7【分析】对于A ,根据对数函数的性质分析判断,对于C ,由已知可得34log 12,log 12x y ==,从而可得111x y +=,对于D ,利用基本不等式判断,对于B ,由111x y+=,得x y xy +=分析判断.【详解】对于A ,因为3412x y ==,所以34121211log 120,log 120log 3log 4x y ==>==>,因为1212log 4log 30>>,所以121211log 3log 4>,所以x y >,所以A 正确;对于C ,由3412x y ==,得34log 12,log 12x y ==,所以121212341111log 3log4log 121log 12log 12x y +=+=+==,所以C 错误;对于D ,因为0x y >>,所以111x y=+>,得4xy >,所以D 正确;对于B ,因为111x y+=,所以4x y xy +=>,所以B 错误.【题型8】利用对勾函数当无法取等时需要结合对勾函数图像,利用单调性来得出最值14/4514.当2x ≥时,42x x ++的最小值为.【答案】3【分析】根据对勾函数的单调性求最值.【详解】设2x t +=,则4422x t x t+=+-+,又由2x ≥得4t ≥,而函数42y t t=+-在[)4,+∞上是增函数,因此4t =时,y 取得最小值44234+-=15.已知函数()|lg |f x x =.若0a b <<,且()()f a f b =,则4a b +的取值范围是()A .(4,)+∞B .[4,)+∞C .(5,)+∞D .[5,)+∞【答案】C【分析】根据函数图象得lg lg a b -=,则1b a=,令1()44g b a b b b =+=+,利用对勾函数的图象与性质即可求出其范围.【详解】由()()f a f b =得|lg ||lg |a b =.根据函数|lg |y x =的图象及0a b <<,则lg lg a b -=,即lg 1ab =,可得01a b <<<,1b a=,令1()44g b a b b b=+=+,根据对勾函数可得()g b 在(1,)+∞上单调递增,则()(1)5g b g >=.所以4a b +的取值范围是(5,)+∞【巩固练习1】函数y =x +51x +(x ≥2)取得最小值时的x 值为.【答案】2【分析】令x +1=t (t ≥3),则有()f t =t +5t-1在[3,+∞)上单调递增,当t =3时,即可求解.【详解】依题意,y =x +51x +=x +1+51x +-1(x ≥2),15/45设x +1=t (t ≥3).因为f (t )=t +5t-1在[3,+∞)上单调递增,所以当t =3,即x =2时,y =x +51x +(x ≥2)取得最小值.【巩固练习2】已知函数()lg 2f x x =+,若实数,a b 满足0b a >>,且()()f a f b =,则2a b+的取值范围是_______.【答案】(3,+∞)【分析】易知()lg 2lg 2lg lg 11a b a b ab a +=+⇒=⇒=,<22a b a a+=+≥()22=a b a a ++∈+∞3,【巩固练习3】若对任意[]1,2x ∈,()2110mx m x -+-≤恒成立,求实数m 的取值范围法一:对勾函数参变分离后结合对勾函数性质当1x =时,20-<,成立;当(]1,2x ∈时,由题可得21x m x x+≤-对任意(]1,2x ∈恒成立,令21x y x x+=-,则有min m y ≤,(]1,2x ∈,()()21121312131x y x x x x +==+-++++-+,令211t x x =+++,(]12,3x +∈,根据对勾函数的性质可得113,3t ⎛⎤∈ ⎥⎝⎦,所以13,32y t ⎡⎫=∈+∞⎪⎢-⎣⎭,所以当2x =时,min 32y =,故实数m 的取值范围为3,2⎛⎤-∞ ⎥⎝⎦;法二:分类讨论令()()211f x mx m x =-+-,①当0m =时,()1f x x =--,对任意[]1,2x ∈,()()120f x f ≤=-<恒成立;16/45②当0m >时,函数()f x 图象开口向上,若对任意[]1,2x ∈,()0f x ≤恒成立,只需()()1020f f ⎧≤⎪⎨≤⎪⎩,解得32m ≤,故当302m <≤时,对任意[]1,2x ∈,()0f x ≤恒成立;③当0m <时,对任意[]1,2x ∈,10x -≥,10mx -<,()()()11220f x mx x =---≤-<恒成立;综上可知,实数m 的取值范围为3,2⎛⎤-∞ ⎥⎝⎦.【题型9】判断不等式是否能成立(1)基本不等式的前提是“一正”“二定”“三相等”;其中“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指满足等号成立的条件.(2)连续使用不等式要注意取得一致.【分析】根据基本不等式求解最值判断ABC ,根据复合函数最值求法求解判断D .【详解】对于A ,114x y x =++,当4x =-时,104y =-<,不符合要求,错误;对于B,2y ==时取等号,=得241x +=显然不成立,所以等号取不到,即y 的最小值不是2,错误;对于C ,因为01x <<,所以10x ->,211111112212(1)212y x x x x ⎛⎫=+=⋅≥⋅= ⎪--⎝⎭⎛⎫ ⎪⎝⎭,17/45当且仅当12x =时取等号,最小值是2,正确;对于D,y =22x -≤≤,0y ≥,则2224y x x =-+++=+,当240x -=即2x =或2-时,2y 有最小值4,即y 有最小值2,故D 正确.【巩固练习1】下列不等式证明过程正确的是()A .若,R a b ∈,则2b a a b +≥=B .若x >0,y >0,则lg lg x y +≥C .若x <0,则4x x+4≥-=-D .若x <0,则222x x -+>=【答案】D【解析】∵,b a a b 可能为负数,如1b aa b ==-时,2b a a b+=-,∴A 错误;∵lg ,lg x y 可能为负数,如lg lg 1x y ==-时,lg lg 2,2x y +=-=,∴B 错误;∵40,0x x <<,如441,x x =-=-时,544x x+=-<-,∴C 错误;∵0x <,2(0,1)x ∈,21x ->,∴222x x -+>=,当且仅当22-=x x ,即0x =等号成立,∴D 正确.【分析】利用不等式的性质和均值不等式,以及对勾函数的单调性求最值,并根据全称命题与特称命题的真假判断,即可选出真命题.【详解】解:对于A ,()22212110x x x x x x -≥-⇒-+=-≥ 恒成立,则x ∀∈R ,都有21x x x -≥-,A 选项正确;对于B ,当(1,)x ∈+∞时,1(0,)x -∈+∞,18/4544111511x x x x ∴+=-++≥=--(当且仅当3x =时取等号),4[5,)1x x ∴+∈+∞-,(1,)x ∴∃∈+∞,使得461x x +=-,B 选项正确;对于C ,当0a b <<时,0b aa b+<,C 选项错误;对于D ,当(2,)x ∈+∞)+∞,令)t =+∞,4y t t=+在)+∞上单调递增,44t t ∴+>,4,D 选项错误【分析】利用基本不等式求最值判断ABD ,结合二次函数的性质判断C .【详解】12x <时,120x ->.112212xx -+≥=-,当且仅当11212x x -=-,即=0x 时等号成立,所以11212x x -+-的最小值是2,即1212x x-+-的最小值是1,从而1221x x +-的最大值是1-,A 正确;2y ==+≥1=1=无实数解,因此等号不能取得,2不是最小值,B 错;1[,2]2x ∈时,11[,2]2x ∈,y ===,因为1122x ≤≤,所以112x =时,y =,12x=时,y =,19/45154x =时,4y ==.所以值域是4,C 正确;0x >,0y >且2x y +=,13x y ++=,31x y x ++23333311111y y x y x y x-=+=-+=+-+++,则33111(1)()224111x y x y y x y x y x ++=+++=++≥+=+++,当且仅当11x y y x +=+,即1x y =+时等号成立,所以31x y x++的最小值是4-1=3,D 正确.【题型10】换元法(整体思想)对于两个分式的最值问题可以考虑整体法或换元法配凑整体配凑法原理是把目标当作一个整体,然后利用基本不等式求最值.单分母换元:当2个分母的和为定值,可以把其中一个分母进行换元双分母换元:当2个分母均为字母加减常数时,可以把2个分母都换元17.(单分母换元)已知20<<a ,则aa 21421-+的最小值是________A .6B .8C .4D .9【解题思路】可以设12b a =-,则有21a b +=,求142a b+的最小值,用乘“1”法即可【答案】9【解答过程】解:设12b a =-,则有21a b +=,()91414252122a b a a a b ⎛⎫+=++≥+= ⎪-⎝⎭当且仅当1−22=81−2,即a =16时取等号,所以12+41−2的最小值是9.18.(双分母换元)已知正数b a ,满足2=+b a ,则141+++b ba a 的最大值是()A .29B .411C .1D .3720/45【解题思路】设1,1x a y b =+=+,则有4x y +=,求144145x y x y x y ⎛⎫--+=-+ ⎪⎝⎭最小值,结合乘1法即可【解答过程】解:+1+4+1=1−1+1+4−4+1=5﹣(1+1+4+1),∵a +b =2,∴a +1+b +1=4,1+1+4+1=14(1+1+4+1)(a +1+b +1)=14(1+4++1+1+4(+1)+1),+1+1+4(+1)+1≥24=4(当且仅当+1+1=4(+1)+1,即a =13,b =53时,等号成立),故14(1+4++1+1+4(+1)+1)≥14×9,即1+1+4+1≥94,故+1+4+1=5﹣(1+1+4+1)≤11419.已知x ,y 为正实数,则162y x x x y++的最小值为()A .6B .5C .4D .3【答案】A【分析】x ,y 为正实数,利用基本不等式求162y x x x y++的最小值.【详解】x ,y 为正实数,则2161622622yx y xx x x yx x y ++=+-≥=++,当且仅当2162x y xx x y+=+,即2y x =时等号成立.最小值为6【巩固练习1】已知1a b c ++=,其中a ,b ,0c >,则19a b c++的最小值为.【答案】16【解析】因为1a b c ++=,,,0a b c >,则19199[()]()10b c a a b c a b c a b c a b c ++=+++=+++++1016≥+=,当且仅当9b c a a b c +=+,即13,44a b c =+=时取等号,所以19a b c++的最小值为16【巩固练习2】已知实数0,2a b >>,且121123a b +=+-,则2a b +的最小值是.【答案】24【解析】因为0,2a b >>,且121123a b +=+-,所以36112a b +=+-,所以()()()()32121362212661212b a a b a b a b a b -+⎡⎤⎡⎤+=++-+=+++⎣⎦⎢⎥+-+-⎣⎦1224≥+=,当且仅当()()3212112b a a b -+=+-,即22(1)b a -=+,5,14a b ==时等号成立【分析】令2,,(0,0)c m c n m n -==>>,则2m n +=,由此可将4a b a b c +++变形为421m n+-,结合基本不等式,即可求得答案。
重难点11 三角函数的图像与性质—2023年高考数学(原卷版)
重难点11 三角函数的图像与性质1.三角函数定义域的求法①以正切函数为例,应用正切函数y =tan x 的定义域求函数y =A tan(ωx +φ)的定义域. ②求复杂函数的定义域转化为求解简单的三角不等式. (2)简单三角不等式的解法 ①利用三角函数线求解. ②利用三角函数的图象求解.2.求解三角函数的值域(最值)常见到以下几种类型:(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值); (2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);(3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).3.函数y =Asin(ωx +φ)(A>0,ω>0)的图象的两种作法五点法设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象图象变 换法由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径“先平移后伸缩”与“先伸缩后平移”多少值.4.确定y =Asin(ωx +φ)+b(A >0,ω>0)的步骤和方法(1)求A ,b ,确定函数的最大值M 和最小值m , 则A =M -m 2,b =M +m2. (2)求ω,确定函数的最小正周期T ,则可得ω=2πT .(3)求φ,常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上);②特殊点法:确定φ值时,往往以寻找“最值点”为突破口.具体如下:“最大值点”(即图象的“峰点”)时ωx +φ =π2+2k π(k ∈Z );“最小值点”(即图象的“谷点”)时ωx +φ=3π2+2k π(k ∈Z ).2023年高考仍将重点考查三角函数的图像与性质及三角函数变换,特别是这些知识点的组合考查是考查的热点,题型仍为选择题或填空题,难度可以为基础题或中档题,也可以是压轴题.(建议用时:40分钟)一、单选题1.为了得到函数2sin3y x =的图象,只要把函数π2sin 35y x ⎛⎫=+ ⎪⎝⎭图象上所有的点( )A .向左平移π5个单位长度B .向右平移π5个单位长度C .向左平移π15个单位长度 D .向右平移π15个单位长度 2.函数ππ4sin 33cos 344y x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭的最小正周期是( )A .6πB .2πC .2π3 D .π33.函数()cos cos 2f x x x =-是( ) A .奇函数,且最大值为2B .偶函数,且最大值为2C .奇函数,且最大值为98D .偶函数,且最大值为984.函数f (x )=sin x 3x (x ∈[﹣π,0])的单调递增区间是( ) A .[﹣π,﹣56π] B .[﹣56π,﹣6π] C .[﹣3π,0] D .[﹣6π,0] 5.将函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是( ) A .16B .14C .13D .126.为得到函数cos 23y x π⎛⎫=+ ⎪⎝⎭的图象,只需将sin 2y x =的图象( )A .向左平移512π个单位长度 B .向右平移512π个单位长度 C .向左平移56π个单位长度 D .向右平移56π个单位长度 7.下列函数中,图象的一部分如图所示的是( )A .sin 6y x π⎛⎫=+ ⎪⎝⎭B .sin 26y x π⎛⎫=- ⎪⎝⎭C .cos 43y x π⎛⎫=- ⎪⎝⎭D .cos 26y x π⎛⎫=- ⎪⎝⎭8.设函数π()sin 3f x x ω⎛⎫=+ ⎪⎝⎭在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是( ) A .513,36⎫⎡⎪⎢⎣⎭B .519,36⎡⎫⎪⎢⎣⎭C .138,63⎛⎤ ⎥⎝⎦D .1319,66⎛⎤ ⎥⎝⎦9.将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数( ) A .在区间35[,]44ππ上单调递增 B .在区间3[,]4ππ上单调递减 C .在区间53[,]42ππ上单调递增 D .在区间3[,2]2ππ上单调递减 10.下列函数中,以2π为周期且在区间(4π,2π)单调递增的是( ) A .f (x )=│cos 2x │ B .f (x )=│sin 2x │ C .f (x )=cos│x │D .f (x )= sin│x │11.设函数f (x )=cos (x +3π),则下列结论错误的是( ) A .f (x )的一个周期为−2π B .f (x )的图像关于直线x=83π对称 C .f (x +π)的一个零点为x=6π D .f (x )在(2π,π)单调递减 12.已知1()sin 22f x x =,关于该函数有下列四个说法:①()f x 的最小正周期为2π;②()f x 在ππ[,]44-上单调递增;③当ππ,63x ⎡⎤∈-⎢⎥⎣⎦时,()f x 的取值范围为33,44⎡⎤-⎢⎥⎣⎦; ④()f x 的图象可由1πg()sin(2)24x x =+的图象向左平移π8个单位长度得到.以上四个说法中,正确的个数为( ) A .1B .2C .3D .4题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题13.记函数()()cos (0,0π)f x x ωϕωϕ=+><<的最小正周期为T ,若3()2f T =,9x π=为()f x 的零点,则ω的最小值为____________.14.函数()sin 3cos f x x x =+在区间02π⎡⎤⎢⎥⎣⎦,上的最小值为__________.15.已知函数()()2cos f x x ωϕ=+的部分图像如图所示,则2f π⎛⎫= ⎪⎝⎭_______________.16.关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图象关于y 轴对称. ②f (x )的图象关于原点对称. ③f (x )的图象关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 三、解答题17.已知函数22()sin 3cos 2cos ,f x x x x x x =+∈R .(1)求函数()f x 的最小正周期和严格增区间;(2)函数()f x 图像可以由函数sin2()y x x =∈R 的图象经过怎样的变换得到?18.设函数()sin()sin()62f x x x ππωω=-+-,其中03ω<<.已知()06f π=.(1)求ω;(2)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在3[,]44ππ-上的最小值.。
【函数小题突破】第1讲 对数函数、幂函数(教案)高考数学二轮重难点复习专题
对数与对数运算1.在指数函数y =a x (a >0,且a ≠1)中,幂指数x ,又叫做以a 为底y 的对数.2.一般地,对于指数式a b =N ,我们把“以a 为底N 的对数b ”记作log a N ,即b =log a N (a >0,且a ≠1).其中,数a 叫做对数的底数,N 叫做真数.3.对数恒等式a log aN =N .4.对数与指数间的关系:a b =N ⇔b =log a N (a >0,a ≠1).5.常用对数/自然对数以10为底的对数叫做常用对数,通常把log 10N 记作lg N . 以e 为底的对数叫做自然对数,通常把log e N 记作ln N . 6.对数运算性质 (1)对数的运算法则如果a >0,且a ≠1,M >0,N >0,那么 ⇔log a (MN )=log a M +log a N ; ⇔log a MN =log a M -log a N ;⇔log a M n =n log a M (n ⇔R ). (2)对数的性质 ⇔log a Na= N ;⇔log a a N = N (a >0且a ≠1).(3)对数的换底公式log a b =log c blog c a(a >0,且a ≠1;c >0,且c ≠1;b >0).对数函数1.一般地,我们把函数y =log a x (a >0且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域为(0,+∞).2.对数函数的图象与性质y=log a x a >1 0<a <1图象定义域 (1)(0,+∞) 值域(2)R性质(3)过定点(1,0) (4)当x >1时,y >0;当0<x <1时,y <0(5)当x >1时,y <0;当0<x <1时,y >0 (6)在(0,+∞)上是增函数 (7)在(0,+∞)上是减函数习题1.对数式lg(2x -1)中实数x 的取值范围是________;2.对数式log (x -2)(x +2)中实数x 的取值范围是______.3.下列函数表达式中,是对数函数的个数有( )①y =log x 2;②y =log a x (a ∈R );③y =log 8x ;④y =ln x ; ⑤y =log x (x +2);⑥y =2log 4x ; ⑦y =log 2(x +1). A .1个 B .2个 C .3个D .4个4.若对数函数f (x )的图象过点(4,-2),则f (8)=________.5.若函数f (x )=log (a +1)x +(a 2-2a -8)是对数函数,则a =________.6.函数f (x )=log 3(2x -1)的定义域为______.7.函数f (x )=12-x+ln(x +1)的定义域为______. 8.函数y =log 32x -1的定义域为( )A .[1,+∞)B .(1,+∞) C.⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫12,19.已知a >0且a ≠1,函数y =log a x ,y =a x ,y =x +a 在同一坐标系中的图象可能是( )10.当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A.⎝⎛⎭⎫0,22 B.⎝⎛⎭⎫22,1 C .(1,2) D .(2,2)11.函数2()ln(28)f x x x =-- 的单调递增区间是( )A.(,2)-∞-B. (,1)-∞-C. (1,)+∞D. (4,)+∞ 12.若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上递减,则a 的取值范围为________. 13.若实数a ,b ,c 满足log a 2<log b 2<log c 2,则下列关系中不可能成立的是( )A .a <b <cB .b <a <cC .c <b <aD .a <c <b14.设 a =log 36,b =log 48,c =log 510,则 ( )15.设a =log 37,b =21.1,c =0.83.1,则( )A .b <a <cB .c <a <bC .c <b <aD .a <c <b16.已知 log a 13>log b 13>0,则 a ,b 之间的大小关系是 ( )A. 1<b <aB. 1<a <bC. 0<a <b <1D. 0<b <a <117.函数 y =√log 0.5(4x−3) 的定义域为 ( )A. (34,1) B. (34,+∞)C. (1,+∞)D. (34,1)∪(1,+∞)18.函数 y =log a (x +1)+2(a >0且a ≠1) 恒过定点,其坐标为 .幂函数1.一般地,函数y=xα(α⇔R)叫做幂函数,其中x是自变量,α是常数.2.幂函数的图像3.幂函数的性质4.“对号”函数形如f(x)=x+ax(a>0)的函数模型称为“对勾”函数模型:习题1.在函数y =x -2,y =2x 2,y =(x +1)2,y =3x 中,幂函数的个数为( )A .0B .1C .2D .32.已知幂函数y =f (x )的图象过点(2, 2),则f (9)=________.3.若函数f (x )是幂函数,且满足f (4)=3f (2),则f ⎝⎛⎭⎫12的值等于________. 4.当x ∈(1,+∞)时,下列函数中图象全在直线y =x 下方的增函数是( )A. y =x 12 B. y =x 2 C. y =x3 D. y =x −1 5.若(2m +1)21>(m 2+m -1)21,则实数m 的取值范围是 ( )A.⎝ ⎛⎦⎥⎤-∞,-5-12B.⎣⎢⎡⎭⎪⎫5-12,+∞C .(-1,2)D.⎣⎢⎡⎭⎪⎫5-12,26.已知α⇔{-1,1,2,3},则使函数y x α=的值域为R ,且为奇函数的所有α的值为( )A.1,3B.-1,1C.-1,3D.-1,1,37.已知幂函数f (x )=x 12)(-+m m (m ⇔N +)(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若该函数还经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.8.已知f (x )=x 21,若0<a <b <1,则下列各式中正确的是 ( )A .f (a )<f (b )<f (1a )<f (1b )B .f (1a )<f (1b )<f (b )<f (a )C .f (a )<f (b )<f (1b )<f (1a )D .f (1a )<f (a )<f (1b)<f (b ) 9.已知 a =(13)3,b =x 3,c =lnx ,当x >2 时,a,b,c 的大小关系为( )A. a <b <cB. a <c <bC. c <b <aD. c <a <b10.已知函数12)15()(++-=m x m m x h 为幂函数,且为奇函数(1)求m 的值(2)求函数]21,0[,)(21)()(∈-+=x x h x h x g 的值域。
高考数学难点突破数论与排列组合的多重综合应用
高考数学难点突破数论与排列组合的多重综合应用在高考数学中,数论和排列组合是考生们经常遇到的难点,而这两个知识点经常会在一道题目中进行综合应用。
本文将探讨如何突破这些难点,以及如何应对多重综合应用的题目。
一、数论的难点及突破方法数论在高考数学中属于相对较难的部分,主要包括整数性质、最大公约数、最小公倍数等内容。
其中,常见的难点包括同余、递推关系和整数解的判断等。
首先,我们来看同余的应用。
同余是数论中一个重要的概念,它可以解决一些复杂的问题。
在解题过程中,我们可以通过找规律、列方程或者利用性质等方式进行推导。
另外,还要注意掌握同余运算的特性,例如两个数同余于一个数的倍数时,它们的差也是这个倍数。
其次,递推关系是另一个数论的难点。
递推关系的表达形式有多种,例如:Sn = Sn-1 + a(n),其中Sn表示数列的第n项,a(n)为与前面几项相关的式子。
要解决这类问题,关键是找到递推关系的规律,并利用递推公式进行推导和计算。
最后,整数解的判断也是数论的难点之一。
当遇到非常复杂的问题时,我们可以利用最大公约数和最小公倍数的性质进行求解。
同时,还需要注意题目中可能出现的取模运算和质因数分解等技巧。
总之,要突破数论的难点,我们需要掌握各种性质和公式,并进行大量的练习和思考,提高解题能力和思维灵活性。
二、排列组合的难点及突破方法排列组合是高考数学中另一个常见的难点,主要包括排列、组合、重复排列、多重集合等内容。
其中,常见的难点包括计数原理、容斥原理和应用题的解答等。
首先,计数原理是排列组合中的基础知识,涉及到阶乘、乘法原理、加法原理等概念。
在解题时,我们要根据题目的情况选择适用的计数原理,并灵活运用。
其次,容斥原理是排列组合中的一个重要工具。
它可以解决一些重叠计数的问题,例如某些事件同时满足或者互斥的情况。
在应用容斥原理时,我们要注意构造事件的表达式,并进行交集和并集的计算。
最后,应用题的解答是排列组合的难点之一。
高考数学难点突破——函数运用
高考数学难点突破——函数运用函数是高考数学中的一个重要难点,在解题中经常需要运用函数的性质和相关的理论。
下面我将从函数的图像与性质、函数的应用以及函数方程的解法等方面进行详细讲解,以帮助你突破高考数学中的函数难题。
首先,要理解函数的图像与性质。
在高考中,常常会涉及到函数的图像特征、最值、奇偶性、周期性等性质。
对于一元函数,首先要掌握函数的图像画法以及与函数图像有关的性质,如函数与坐标轴的交点、函数的极值点等。
其次,要了解如何通过函数的图像来判断函数的单调性和奇偶性。
对于二元函数,要掌握如何画出函数的等值线图,以及如何根据等值线图来判断函数的最值点等性质。
这些知识点在解题中经常会出现,掌握好这些函数的图像与性质,能够帮助你更好地理解题意和解题思路。
其次,函数的应用也是高考数学中关于函数难点的重要内容。
函数的应用包括函数的实际意义、函数的模型建立和解决实际问题等。
在高考中,经常会出现通过给定的条件,建立函数模型并解决问题的情况。
在解决函数应用问题时,要先明确问题所涉及到的变量和条件,然后建立函数模型,最后通过函数模型进行运算计算出解答。
这里需要特别注意的是实际问题中的函数模型往往需要灵活运用数学知识来进行转化和抽象。
对于这一部分的难点,要多进行实际问题的应用练习,加强练习题的理解和解答,提高解决实际问题的能力。
最后,函数方程的解法也是高考数学中涉及到的一个重要难点。
对于函数方程的解法,要根据题意确定方程的求解方法,如利用函数的性质和图像解方程、利用函数的定义域和值域解方程等。
特别是在高等数学中,对于函数方程的求解方法要更加深入和复杂。
解决这一类问题,我们需要熟练掌握函数方程性质和运算法则,灵活运用函数的性质和等式的性质,确定方程的解的范围和具体的求解方法。
通过多进行函数方程的解一类题目的练习,能够帮助我们对函数方程的解法有更深入的理解。
综上,函数是高考数学中的一个难点,突破函数难题需要在函数的图像与性质、函数的应用以及函数方程的解法等方面进行系统的学习。
高考数学考纲解读与热点难点突破专题02函数的图象与性质教学案(理)
专题02 函数的图象与性质【2019年高考考纲解读】(1)函数的概念和函数的基本性质是B级要求,是重要题型;(2)指数与对数的运算、指数函数与对数函数的图象和性质都是考查热点,要求都是B级;(3)幂函数是A级要求,不是热点题型,但要了解幂函数的概念以及简单幂函数的性质。
【重点、难点剖析】1.函数及其图象(1)定义域、值域和对应关系是确定函数的三要素,是一个整体,研究函数问题时务必须“定义域优先”.(2)对于函数的图象要会作图、识图和用图,作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换和对称变换.2.函数的性质(1)单调性:单调性是函数在其定义域上的局部性质.证明函数的单调性时,规范步骤为取值、作差、变形、判断符号和下结论.复合函数的单调性遵循“同增异减”的原则;(2)奇偶性:奇偶性是函数在定义域上的整体性质.偶函数的图象关于y轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性;(3)周期性:周期性也是函数在定义域上的整体性质.若函数满足f(a+x)=f(x)(a不等于0),则其周期T =ka(k∈Z)的绝对值.3.求函数最值(值域)常用的方法(1)单调性法:适合于已知或能判断单调性的函数;(2)图象法:适合于已知或易作出图象的函数;(3)基本不等式法:特别适合于分式结构或两元的函数;(4)导数法:适合于可求导数的函数.4.指数函数、对数函数和幂函数的图象和性质(1)指数函数y=a x(a>0且a≠1)与对数函数y=log a x(a>0且a≠1)的图象和性质,分0<a<1和a>1两种情况,着重关注两函数图象中的两种情况的公共性质;(2)幂函数y=xα的图象和性质,分幂指数α>0和α<0两种情况.5.函数图象的应用函数的图象和解析式是函数关系的主要表现形式,它们的实质是相同的,在解题时经常要互相转化.在解决函数问题时,尤其是较为繁琐的(如分类讨论,求参数的取值范围等)问题时,要注意充分发挥图象的直观作用. 【题型示例】题型一、函数的性质及其应用【例1】 (2018·全国Ⅱ)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)等于( ) A .-50 B .0 C .2 D .50 答案 C解析 ∵f (x )是奇函数,∴f (-x )=-f (x ), ∴f (1-x )=-f (x -1).∵f (1-x )=f (1+x ), ∴-f (x -1)=f (x +1),∴f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=-[-f (x )]=f (x ), ∴函数f (x )是周期为4的周期函数. 由f (x )为奇函数且定义域为R 得f (0)=0, 又∵f (1-x )=f (1+x ),∴f (x )的图象关于直线x =1对称, ∴f (2)=f (0)=0,∴f (-2)=0. 又f (1)=2,∴f (-1)=-2,∴f (1)+f (2)+f (3)+f (4)=f (1)+f (2)+f (-1)+f (0)=2+0-2+0=0, ∴f (1)+f (2)+f (3)+f (4)+…+f (49)+f (50) =0×12+f (49)+f (50)=f (1)+f (2)=2+0=2. 故选C.【2017北京,理5】已知函数1()3()3x xf x =-,则()f x(A )是奇函数,且在R 上是增函数 (B )是偶函数,且在R 上是增函数 (C )是奇函数,且在R 上是减函数 (D )是偶函数,且在R 上是减函数【答案】A【解析】()()113333xxx x f x f x --⎛⎫⎛⎫-=-=-=- ⎪⎪⎝⎭⎝⎭,所以该函数是奇函数,并且3x y =是增函数, 13xy ⎛⎫= ⎪⎝⎭是减函数,根据增函数−减函数=增函数,可知该函数是增函数,故选A. 【举一反三】【2016年高考四川理数】已知函数()f x 是定义在R 上的周期为2的奇函数,当0<x <1时,()4x f x =,则5()(1)2f f -+= .【答案】-2【举一反三】(1)(2015·重庆卷)函数f (x )=log 2(x 2+2x -3)的定义域是( ) A .[-3,1] B .(-3,1)C .(-∞,-3]∪[1,+∞)D .(-∞,-3)∪(1,+∞)(2)已知函数f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +3,x ≤0.若f (a )+f (1)=0,则实数a 的值为( )A .-3B .-1或3C .1D .-3或1 (1)答案:D解析:要使函数有意义,只需x 2+2x -3>0,即(x +3)(x -1)>0,解得x <-3或x >1.故函数的定义域为(-∞,-3)∪(1,+∞). (2)答案:D解析:f (1)=lg 1=0,所以f (a )=0.当a >0时,则lg a =0,a =1;当a ≤0时,则a +3=0,a =-3.所以a =-3或1.【变式探究】 (1)(2014·江西)函数f (x )=ln(x 2-x )的定义域为( ) A .(0,1) B .[0,1]C .(-∞,0)∪(1,+∞) D.(-∞,0]∪[1,+∞)(2)(2014·浙江)设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2,x ≥0.若f (f (a ))≤2,则实数a 的取值范围是________.【命题意图】(1)本题主要考查函数的定义域求法以及不等式的解法.通过定义域的求法考查考生的运算求解能力及转化意识.(2)本题主要考查分段函数和不等式恒成立问题,可结合函数图象进行分析求解. 【答案】(1)C (2)(-∞,2]【解析】(1)将求函数的定义域问题转化为解不等式问题. 要使f (x )=ln(x 2-x )有意义,只需x 2-x >0, 解得x >1或x <0.∴函数f (x )=ln(x 2-x )的定义域为(-∞,0)∪(1,+∞). (2)结合图形,由f (f (a ))≤2可得f (a )≥-2,解得a ≤ 2. 【方法技巧】1.已知函数解析式,求解函数定义域的主要依据有:(1)分式中分母不为零;(2)偶次方根下的被开方数大于或等于零;(3)对数函数y =log a x (a >0,a ≠1)的真数x >0;(4)零次幂的底数不为零;(5)正切函数y =tan x 中,x ≠k π+π2(k ∈Z ).如果f (x )是由几部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的自变量的集合.根据函数求定义域时:(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.2.函数的值域是由函数的对应关系和函数的定义域所唯一确定的,具有相同对应关系的函数如果定义域不同,函数的值域也可能不相同.函数的值域是在函数的定义域上求出的,求解函数的值域时一定要与函数的定义域联系起来,从函数的对应关系和定义域的整体上处理函数的值域. 题型二、函数的图象及其应用【例2】(2018·全国Ⅱ)函数f (x )=e x-e-xx2的图象大致为( )答案 B【方法技巧】(1)根据函数的解析式判断函数的图象,要从定义域、值域、单调性、奇偶性等方面入手,结合给出的函数图象进行全面分析,有时也可结合特殊的函数值进行辅助推断,这是判断函数图象问题的基本方法.(2)判断复杂函数的图象,常借助导数这一工具,先对原函数进行求导,再利用导数判断函数的单调性、极值或最值,从而对选项进行筛选.要注意函数求导之后,导函数发生了变化,故导函数和原函数定义域会有所不同,我们必须在原函数的定义域内研究函数的极值和最值. 【2016高考新课标1卷】函数22xy x e =-在[]2,2-的图像大致为(A )(B )(C )(D )【答案】D【解析】函数f(x)=2x 2–e |x|在[–2,2]上是偶函数,其图像关于y 轴对称,因为22(2)8e ,08e 1f =-<-<,所以排除A 、B选项;当[]0,2x ∈时,()=4e xf x x '-有一零点,设为0x ,当0(0,)x x ∈时,()f x 为减函数,当0(2)x x ,∈时,()f x 为增函数.故选D 。
高考数学压轴题命题区间探究与突破专题02“三招五法”轻松破解含参零点问题学案
专题02“三招五法”轻松破解含参零点问题一.方法综述函数的含参零点问题是高考热门题型,既能很好地考查函数、导数、方程与不等式等基础知识,又能考查分类讨论、数形结合、转化与化归等思想方法,所以此类题往往能较好地体现试卷的区分度,往往出现在压轴题的位置.正因为如此,根据函数的零点情况,讨论参数的范围成为高考的难点.对于此类题目,我们常利用零点存在定理、函数的性质,特别是函数单调性(可借助于导数)探寻解题思路,或利用数形结合思想、分离参数方法来求解.具体的,(1)分类讨论参数的不同取值情况,研究零点的个数或取值;(2)利用零点存在的判定定理构建不等式求解;(3)分离参数后转化为函数的值域(最值)问题求解,如果涉及由几个零点时,还需考虑函数的图象与参数的交点个数;(4)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.二.解题策略类型一“第一招”带参讨论【例1】【湖南省澧县一中2018届一轮第一次检测】已知函数f(x)=,如果函数f(x)恰有两个零点,那么实数m的取值范围为_____.【答案】【解析】分析:根据与-2,0和4的大小关系逐一判断的零点个数即可得出结论.若,则在上有2个零点0,在上无零点,符合题意;∴或.故答案为:.【指点迷津】1.根据题设要求研究函数的性质,直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;2.由于函数含有参数,通常需要合理地对参数的取值进行分类讨论,并逐一求解.【举一反三】【江苏省扬州中学2019届高三10月月考】已知定义在上的函数可以表示为一个偶函数与一个奇函数之和,设若方程无实根,则实数的取值范围是_________【答案】【解析】∴p(t)=t2+2mt+m2﹣m+1.p(p(t))=[p(t)]2+2mp(t)+m2﹣m+1,若p(p(t))=0无实根,即[p(t)]2+2mp(t)+m2﹣m+1①无实根,方程①的判别式△=4m2﹣4(m2﹣m+1)=4(m﹣1).1°当方程①的判别式△<0,即m<1时,方程①无实根.2°当方程①的判别式△≥0,即m≥1时,方程①有两个实根,即②,只要方程②无实根,故其判别式,即得③,且④,∵m≥1,③恒成立,由④解得m<2,∴③④同时成立得1≤m<2.综上,m的取值范围为m<2.类型二“第二招”数形结合【例2】【2018年天津卷理】已知,函数若关于的方程恰有2个互异的实数解,则的取值范围是______________.【答案】【解析】分析:由题意分类讨论和两种情况,然后绘制函数图像,数形结合即可求得最终结果.令,其中,原问题等价于函数与函数有两个不同的交点,求的取值范围.结合对勾函数和函数图象平移的规律绘制函数的图象,同时绘制函数的图象如图所示,考查临界条件,结合观察可得,实数的取值范围是.【指点迷津】1.由两个基本初等函数组合而得的超越函数f(x)=g(x)-h(x)的零点个数,等价于方程g(x)-h(x)=0的解的个数,亦即g(x)=h(x)的解的个数,进而转化为基本初等函数y=g(x)与y=h(x)的图象的交点个数.2.先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.一是转化为两个函数的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为的交点个数的图象的交点个数问题.交点的横坐标即零点.【举一反三】【2019届同步单元双基双测AB卷】已知函数,若函数有三个零点,则实数的取值范围为____.【答案】.【解析】分析:求出函数|f(x)﹣3x的解析式,画出函数的图象,利用函数的极值,转化求解即可.当x<0时,≥6,当且仅当x=﹣1时取等号,此时﹣b>6,可得b<﹣6;当0≤x≤4时,x﹣x2≤,当x=时取得最大值,满足条件的b∈(﹣,0].综上,范围是.故答案为:.类型三“第三招”分离参数【例3】【广东省惠州市2019届10月调研】已知函数是定义在上的偶函数,且,若函数有6 个零点,则实数的取值范围是()A.B.C.D.【答案】D【解析】函数f(x)是定义在R上的偶函数,函数F(x)=f(x)﹣m有六个零点,则当x≥0时,函数F(x)=f(x)﹣m有三个零点,令F(x)=f(x)﹣m=0,即m=f(x),②当x≥2时,f(x)=<0,且当x→+∞,f(x)→0,∵f′(x)=,令f′(x)==0,解得x=3,当2≤x<3时,f′(x)<0,f(x)单调递减,当x≥3时,f′(x)≥0,f(x)单调递增,∴f(x)min=f(3)=﹣,故f(x)在[2,+∞)上的值域为[﹣,0),∵﹣>﹣2,∴当﹣<m <0时,当x ≥0时,函数F (x )=f (x )﹣m 有三个零点,故当﹣<m <0时,函数F (x )=f (x )﹣m 有六个零点, 故选D. 【指点迷津】1.分离参数法,先将参数分离,转化成求函数值域(最值)问题加以解决;2.通过将原函数中的变参量进行分离后变形成g(x)=l(a),则原函数的零点问题化归为与x 轴平行的直线y =l(a)和函数g(x)的图象的交点问题.【举一反三】【2015年天津卷理】已知函数()()22,2,{2,2,x x f x x x -≤=->函数()()2g x b f x =--,其中b R ∈,若函数()()y f x g x =-恰有4个零点,则b 的取值范围是( )A . 7,4⎛⎫+∞⎪⎝⎭ B . 7,4⎛⎫-∞ ⎪⎝⎭ C . 70,4⎛⎫ ⎪⎝⎭ D . 7,24⎛⎫⎪⎝⎭【答案】D类型四“三招五法”一题多解【例4】【2014年全国卷Ⅰ】已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围为( )A.(2,+∞) B.(-∞,-2)C.(1,+∞) D.(-∞,-1)【答案】B【解析】法一单调性法:利用函数的单调性求解由已知得,a≠0,f′(x)=3ax2-6x,令f′(x)=0,得x=0或x=2a.当a>0时,x∈(-∞,0),f′(x)>0;x∈(0,2a ),f′(x)<0;x∈(2a,+∞),f′(x)>0.所以函数f(x)在(-∞,0)和2a ,+∞上单调递增,在(0,2a)上单调递减,且f(0)=1>0,故f(x)有小于零的零点,不符合题意.当a<0时,x∈(-∞,2a ),f′(x)<0;x∈(2a,0),f′(x)>0;x∈(0,+∞),f′(x)<0.所以函数f(x)在(-∞,2a )和(0,+∞)上单调递减,在(2a,0)上单调递增,所以要使f(x)有唯一的零点x0且x0>0,只需f(2a)>0,即a2>4,解得a<-2.法三 数形结合法:转化为两曲线的交点问题求解令f (x )=0,得ax 3=3x 2-1.问题转化为g (x )=ax 3的图象与h (x )=3x 2-1的图象存在唯一的交点,且交点横坐标大于零.当a =0时,函数g (x )的图象与h (x )的图象存在两个的交点; 当a >0时,如图(1)所示,不合题意;当a <0时,由图(2)知,可先求出函数g (x )=ax 3与h (x )=3x 2-1的图象有公切线时a 的值.由g ′(x )=h ′(x ),g (x )=h (x ),得a =-2.由图形可知当a <-2时,满足题意.法四 分离参数法:参变分离,化繁为简.易知x ≠0,令f (x )=0,则331a x x =-,记331()g x x x=-,2'234333(1)()x g x x x x --=-+=,可知g (x )在(-∞,-1)和(1,+∞)上单调递减,在(-1,0)和(0,1)上单调递增,且g (-1)=-2,画出函数大致图象如图所示,平移直线y =a ,结合图象,可知a <-2.【指点迷津】1.本题的实质是函数f (x )存在唯一的零点x 0∈(0,+∞),因此可利用其代数特征转化为方程有唯一的正根来构思解析,也可以从零点本身的几何特征入手,将其转化为曲线的交点问题来突破,还可以利用选项的唯一性选取特例求解.2. 函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.【举一反三】【2017课标3,理11】已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .1【答案】C 【解析】方法一:函数的零点满足()2112x x x x a e e --+-=-+, 设()11x x g x ee--+=+,则()()211111111x x x x x x e g x eeee e ---+----'=-=-=,当()0g x '=时,1x =,当1x <时,()0g x '<,函数()g x 单调递减, 当1x >时,()0g x '>,函数()g x 单调递增, 当1x =时,函数取得最小值()12g =,设()22h x x x =- ,当1x =时,函数取得最小值1- ,方法二:由函数f (x )有零点,得211(2)0x x x x a ee --+-++=有解,即211()(110)x x x a e e --+--++=有解,令1t x =-,则上式可化为2(10)ttt a e e --++=,即21t tt a e e--+=. 令21t tt e e--+h(t)=,易得h (t )为偶函数, 又由f (x )有唯一零点得函数h (t )的图象与直线y =a 有唯一交点,则此交点的横坐标为0, 所以10122a -==,故选C. 方法三:由()112()02.x x f x a ee x x ⇔--+=+=-+111122x x x x e e e e ≥⋅--+--++=,当且仅当1x =时取“=”. 2221)11(x x x ≤-+=--+,当且仅当1x =时取“=”.若a >0,则112()x x a ee a ≥--++,要使f (x )有唯一零点,则必有21a =,即12a =. 若a ≤0,则f (x )的零点不唯一. 综上所述,12a =. 三.强化训练1.【2018年新课标I 卷理】已知函数 .若g (x )存在2个零点,则a 的取值范围是A.[–1,0)B.[0,+∞)C.[–1,+∞)D.[1,+∞)【答案】C【解析】2.【安徽省肥东县高级中学2019届8月调研】已知函数,若函数有两个零点,则实数的取值范围是()A.B.C.D.【答案】D【解析】若函数有两个零点,则函数的图象与有且仅有两个交点,在同一坐标系内画出函数的图象与的图象如下:3.【黑龙江省2018年仿真模拟(十)】已知函数,若关于的方程有8个不等的实数根,则的取值范围是()A.B.C.D.【答案】D【解析】绘制函数的图象如图所示,令,由题意可知,方程在区间上有两个不同的实数根,令,由题意可知:,据此可得:.即的取值范围是.本题选择D选项.4.【2019届同步单元双基双测AB卷】函数的定义域为实数集,,对于任意的都有,若在区间函数恰有三个不同的零点, 则实数的取值范围是()A.B.C.D.【答案】D【解析】,由K AC=﹣,K BC=﹣,结合图象得:m∈,故选:5.【安徽省肥东县高级中学2019届8月调研】定义在上的函数,满足,且当时,,若函数在上有零点,则实数的a取值范围是()A.B.C.D.【答案】B【解析】因为当时,,所以时,所以,此时,故.所以在上的图象如图,要使函数在上有零点,只要直线与的图象有交点,由图象可得,所以使函数在上有零点,则实数的取值范围是.故选:B.6.【安徽省皖中名校联盟2019届10月联考】设函数若互不相等的实数满足则的取值范围是()A.B.C.D.【答案】B【解析】不妨设,的图像如图所示,7.【安徽省六安市舒城中学2018届仿真(三)】函数,关于方程有三个不同实数解,则实数的取值范围为( )A.B.C.D.【答案】D【解析】当时,,即则大致图象如图所示设,①当有一个根为时,,解得,此时另一个根为,满足条件②根不是时,则满足即综上所述,故实数的取值范围为故选8.【四川省双流中学2018届一模】对于函数和,设,若所有的,都有,则称和互为“零点相邻函数”.与互为“零点相邻函数”,则实数的取值范围是()A.B.C.D.【答案】D【解析】9.【2018年浙江卷】已知λ∈R,函数f(x)=,当λ=2时,不等式f(x)<0的解集是___________.若函数f(x)恰有2个零点,则λ的取值范围是___________.【答案】(1,4)【解析】分析:根据分段函数,转化为两个不等式组,分别求解,最后求并集.先讨论一次函数零点的取法,再对应确定二次函数零点的取法,即得参数的取值范围.详解:由题意得或,所以或,即,不等式f(x)<0的解集是当时,,此时,即在上有两个零点;当时,,由在上只能有一个零点得.综上,的取值范围为.10.【安徽省定远重点中学2019届第一次月考】函数,定义函数,给出下列命题:①;②函数是偶函数;③当a<0时,若0<m<n<1,则有F(m)﹣F(n)<0成立;④当a>0时,函数有4个零点.其中正确命题的序号为________________________ .【答案】②③④【解析】∴F(m)−F(n)<0成立.故③正确对于④,由于,且函数,∴当x>0时,函数在(0,1)上单调递减,在(1,+∞)上单调递增,∴当x>0时,F(x)的最小值为F(1)=1,∴当x>0时,函数F(x)的图象与y=2有2个交点,又函数F(x)是偶函数,∴当x<0时,函数F(x)的图象与y=2也有2个交点,画出图象如下图:********灿若寒星竭诚为您提供优质文档*********故当a>0时,函数y=F(x)−2有4个零点.所以④正确.综上可得②③④正确.灿若寒星。
高考数学二轮复习之函数与导数难点突破方法
高考数学二轮复习之函数与导数难点突破方法
1.导数日益成为解决问题必不可少的工具,利用导数研究函数的单调性与极值(最值)是高考的常见题型,而导数与函数、不等式、方程、数列等的交汇命题,是高考的热点和难点。
2.热点题型有:①利用导数研究函数的单调性、极值、最值;②利用导数证明不等式或探讨方程根;③利用导数求解参数的范围或值。
3.解决本节问题要熟练掌握利用导数研究函数单调性、极值、最值的方法,熟练掌握基本的数学思想,特别是函数与方程思想、数形结合思想和分类讨论思想。
高考数学二轮复习方法
三步解决方程解(或曲线公共点)的个数问题第一步:将问题转化为函数的零点问题,进而转化为函数的图象与x轴(或直线y=k)在该区间上的交点问题;
第二步:利用导数研究该函数在该区间上单调性、极值(最值)、端点值等性质,进而画出其图象;
第三步:结合图象求解。
难点2 充要条件的判定难点突破专题辅导二
2014年高考数学难点突破专题辅导二难点2 充要条件的判定充分条件、必要条件和充要条件是重要的数学概念,主要用来区分命题的条件p和结论q之间的关系.本节主要是通过不同的知识点来剖析充分必要条件的意义,让考生能准确判定给定的两个命题的充要关系.●难点磁场(★★★★★)已知关于x的实系数二次方程x2+ax+b=0有两个实数根α、β,证明:|α|<2且|β|<2是2|a|<4+b且|b|<4的充要条件.●案例探究[例1]已知p:|1-31-x|≤2,q:x2-2x+1-m2≤0(m>0),若⌐p是⌐q的必要而不充分条件,求实数m的取值范围.[例2]已知数列{a n}的前n项S n=p n+q(p≠0,p≠1),求数列{a n}是等比数列的充要条件.●锦囊妙计本难点所涉及的问题及解决方法主要有:(1)要理解“充分条件”“必要条件”的概念:当“若p则q”形式的命题为真时,就记作p⇒q,称p是q的充分条件,同时称q是p的必要条件,因此判断充分条件或必要条件就归结为判断命题的真假.(2)要理解“充要条件”的概念,对于符号“⇔”要熟悉它的各种同义词语:“等价于”,“当且仅当”,“必须并且只需”,“……,反之也真”等.(3)数学概念的定义具有相称性,即数学概念的定义都可以看成是充要条件,既是概念的判断依据,又是概念所具有的性质.(4)从集合观点看,若A⊆B,则A是B的充分条件,B是A的必要条件;若A=B,则A、B互为充要条件.(5)证明命题条件的充要性时,既要证明原命题成立(即条件的充分性),又要证明它的逆命题成立(即条件的必要性).●歼灭难点训练一、选择题1.(★★★★)函数f(x)=x|x+a|+b是奇函数的充要条件是( )A.ab=0B.a+b=0C.a=bD.a2+b2=02.(★★★★)“a=1”是函数y=cos2ax-sin2ax的最小正周期为“π”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分条件也不是必要条件二、填空题3.(★★★★)a=3是直线ax+2y+3a=0和直线3x+(a-1)y=a-7平行且不重合的_________.4.(★★★★)命题A :两曲线F (x ,y )=0和G (x ,y )=0相交于点P (x 0,y 0),命题B :曲线F (x ,y )+λG (x ,y )=0(λ为常数)过点P (x 0,y 0),则A 是B 的__________条件.三、解答题5.(★★★★★)设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α、β均大于1的什么条件?6.(★★★★★)已知数列{a n }、{b n }满足:b n =nna a a n +++++++ 321221,求证:数列{a n }成等差数列的充要条件是数列{b n }也是等差数列.7.(★★★★★)已知抛物线C :y =-x 2+mx -1和点A (3,0),B (0,3),求抛物线C 与线段AB 有两个不同交点的充要条件.8.(★★★★★)p :-2<m <0,0<n <1;q :关于x 的方程x 2+mx +n =0有2个小于1的正根,试分析p 是q 的什么条件.(充要条件)。
重点、难点突破
重点、难点突破重点、难点突破在高考数学复习的第二、三轮中要逐个突破:选择填空题、三角函数、概率、立体几何、导数、解析几何、数列等七种重要的题型;归纳整理出函数与方程、数形结合、分类讨论和化归与转化等重要的数学思想来提高解题能力,力争数学高分。
下面我们主要以“就题型论思想”的方式来重点研究如何突破高考数学中的一些重点和疑难点问题。
—、克服圆锥曲线小题例题1 : [2011年赣州市第一次摸底考试]已知点P{mA)是椭圆* +召=1(小>0)上的一点,许迅是椭圆的两个焦点,若呵朽的内切圆的3半径为则此椭圆的离心率为 ___________ •一命题意图:本题考查椭圆的定义、离心率和内切圆等基础知识,考查学生分析问题和知识迁移的能力,属于中档题。
易错原因:不能准确地找出基本元之间的等量关系。
重难点突破:内切圆半径有什么用呢?检索和内切圆相关联的知识:面积。
技巧与方法:从两个角度刻画鬥的面积从而得出基本元",b,c之间的等量关系。
2 2题型链接:[赣州市第一次摸底考试]椭圆匚+罕=1,M, N是椭圆上关于9 4原点对称的两动点,P为椭圆上任意一点,PM, PN的斜率为k v k2,则比1 + 1込1的最小值为()A、壬B、专C、扌D、扌3 2 3 9[点评]本题属于偏难题,区分度很好,方法多样、灵巧。
1、常规解法,主要考查知识:通法点差法,主要考查能力:分析问题的能力即如何想到点差法;2、解选择题方法:特殊值法、极端法和函数思想,即把M, N特殊为左右顶点,根据椭圆的对称性只要考虑点P在第一象限变化即可,极端化,当P为4上顶点时比1 + 1灯1=亍当P为右顶点时+ 当P从上顶点向右顶点运动时时比1 + 1妬I的值是増大的,所以选C。
二、拿稳三角函数例题2 : [2011年赣州市第一次摸底考试]在Z\ABC中,角A、B、C的对边分别为"、b、c,且a2-(b-c)2 =(2->]3)bcr(1)若sin Asin cos2-,求角A和角B的大小;2(2)求sinBsinC的最大值命题意图:本题考查余弦定理、倍角公式的变形及辅肋角公式等三角函数的核心知识,考查函数的思想。
重难点专题03 根号型函数十二大值域问题汇总(解析版) 备战2024年高考数学重难点突破
换元法解含有根号的函数需要注意x的范围分式与根号结合可以分离参数,再利用基本不等式可以写出a-x2的形式,可以使用三角换元平方之后可以消去x2的式子,之后用y表示x,利用y与x的关系既可以求解值域平方之后可以不能消去x2的式子,可以利用基本不等式。
判断根号函数的单调性,进而求解出值域利用几何意义求解值域问题,擅长与解析几何的知识点进行结合【变式7-1】1. (2022秋f(x)=2x―3――x2+6x 【答案】[3―5,5]由图象知:当直线y=2x―3―此时|3―t|=1,解得t=3±5,由图象知1+4当直线y=2x―3―t过点A(4,0)所以t∈[3―5,5],即f(x)的值域是点睛:本题考查利用三角代换,直线的斜率公式求函数的值域,解决本题的关键有两个,一是利用1―x2的形式和平方关系联想到三角代换,二是由[34,9+178]【点睛】本小题主要考查含有根式的函数的值域的求法,考查化归与转化的数学思想方法,平方后可以消去未知数x即可.【变式8-1】3. (多选)(2021秋·江苏苏州f(x)=|1+sin2x―1―sin2x|,则(A.f(―x)=f(x)B.f(x+π)=f(x)2C.f(x)的值域[0,2]D.f(x)≥2cos【答案】AB【分析】利用函数奇偶性、周期性定义判断选项双根式可以转化为两点间的距离公式,与解析几何进行结合求解.由图知:||CA|―|CB||当C,A,B三点共线且A在当C,A,B三点共线且B在则:①f(x)的图象是中心对称图形;②f(x)的图象是轴对称图形;则APBP′为平行四边形,故|PA对称,故函数是轴对称图形,故②正确;象关于x=32对称,且由图可知∵f(x)的图象关于x=32故④错误.三角换元,构造2θ+cos2θ=1,进行三角换元。
sin平方之后可以不能消去x2的式子,可以利用基本不等式。
【变式12-1】求函数y=【解析】令x―1=a≥0,+b的取值范围。
一元二次方程、不等式(考点串讲课件)高考数学大一轮复习核心题型讲与练+易错重难点专项突破(新高考版)
(2)利用二次函数的单调性比较大小,一定要将待比较的两数通过
二次函数的对称性转化到同一单调区间上比较.
4.二次函数最值问题的类型及解题思路
(1)类型:
①对称轴、区间都是给定的;
②对称轴动、区间固定;
③对称轴定、区间变动.
(2)解决这类问题的思路:抓住“三点一轴”数形结合,“三
例3 [多选/2023山东枣庄调研]已知关于 x 的不等式( x +2)( x -4)+ a <0( a <0)的解
集是( x 1, x 2),则(
ABD
)
A. x1+x2=2
B. x1x2<-8
C. -2<x1<x2<4
D. x2-x1>6
[解析] 解法一 ( x +2)( x -4)+ a <0即( x +2)( x -4)<- a ,作出 f ( x )=( x +2)( x -
=5或 t =-2(舍去);当 t < < t +2,即- < t < 时,函数 f ( x )min= f ( )=- ≠6.
2
2
2
2
4
综上所述, t =-4或 t =5.
命题拓展
[变条件]若函数 f ( x )= x 2-3 x -4在区间[ t , t +2]上的最大值为6,则实数 t = -2
=-1 时,A={1},满足题意.所以 a=0 或 a=±1,故选 D.
1
1
2.已知 P(m,n)是一次函数 y=- x+ 图象上的一个点,且函数 y=x2+mx+n 的两个零点的平方和等于
2
2
1,则 m+n=( B
A.3
)
B.1
C.1 或-错误!
《导数大题压轴题难点突破》公众号:卷洞洞.pdf
(x0 , y0 ) ,过点 P 作曲线的切线
l 与曲线有且只有一个公共点 P,则切线 l 的斜率 k = ______________.
22.已知函数 f (x) ex ax2 ex, a R.
(Ⅰ)若曲线 y f (x) 在点 (1, f (1)) 处的切线平行于 x 轴,求函数 f (x) 的单调区间; (Ⅱ)试确定 a 的取值范围,使得曲线 y f (x) 上存在唯一的点 P ,曲线在该点处的切线 与曲线只有一个公共点 P .
(x 0)
⑧ x 1 ln x 1 (x 1 ) x 1 (x 1)
x
2x
⑨ ln x 1 1
x
x
(x 0)
二、常考题型:
题型一:恒成立求参数的最值或取值范围问题
1.已知函数f (x) 1 ax e x在x 0处的切线方程为x y 1 0. 1 x
(Ⅰ)求 a 的值; (Ⅱ) 若f (x) 1, 求 x 的取值范围.
题型三:导数与函数的零点及零点关系问题
23.已知函数
f
(x)
ax sin
x
3 (a R),
且在[0, ]上的最
-3 大值 为 .
2
2
2
(Ⅰ)求函数 f (x) 的解析式;
(Ⅱ)判断函数 f (x) 在 (0, ) 内的零点个数,并加以证明.
24. 已知函数 f (x) = x - ae x (a Î R)有两个零点 x1, x2 ,且 x1 < x2 .
(Ⅱ)设
g
x
19 6
x
1 3
,是否存在实数
a
,对于任意的
x1
1,1
,存在
x2
0,
2
高考备考破解高考数学难题11大技巧
高考备考破解高考数学难题11大技巧一、调理大脑思绪,提前进入数学情境考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
二、“内紧外松”,集中注意,消除焦虑怯场集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
三、沉着应战,确保旗开得胜,以利振奋精神良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。
四、“六先六后”,因人因卷制宜在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。
1.先易后难。
就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。
2. 先熟后生。
通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的策略,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难点11 函数中的综合问题函数综合问题是历年高考的热点和重点内容之一,一般难度较大,考查内容和形式灵活多样.本节课主要帮助考生在掌握有关函数知识的基础上进一步深化综合运用知识的能力,掌握基本解题技巧和方法,并培养考生的思维和创新能力.●难点磁场(★★★★★)设函数f (x )的定义域为R ,对任意实数x 、y 都有f (x +y )=f (x )+f (y ),当x >0时f (x )<0且f (3)=-4.(1)求证:f (x )为奇函数;(2)在区间[-9,9]上,求f (x )的最值.●案例探究[例1]设f (x )是定义在R 上的偶函数,其图象关于直线x =1对称,对任意x 1、x 2∈[0,21],都有f (x 1+x 2)=f (x 1)·f (x 2),且f (1)=a >0. (1)求f (21)、f (41); (2)证明f (x )是周期函数;(3)记a n =f (n +n21),求).(ln lim n n a ∞→命题意图:本题主要考查函数概念,图象函数的奇偶性和周期性以及数列极限等知识,还考查运算能力和逻辑思维能力.知识依托:认真分析处理好各知识的相互联系,抓住条件f (x 1+x 2)=f (x 1)·f (x 2)找到问题的突破口.错解分析:不会利用f (x 1+x 2)=f (x 1)·f (x 2)进行合理变形.技巧与方法:由f (x 1+x 2)=f (x 1)·f (x 2)变形为)2()2()2()22()(x f x f x f x x f x f ⋅⋅=+=是解决问题的关键.(1) 解:因为对x 1,x 2∈[0,21],都有f (x 1+x 2)=f (x 1)·f (x 2),所以f (x )=)2()22(x f x x f =+≥0,x ∈[0,1]又因为f (1)=f (21+21)=f (21)·f (21)=[f (21)]2 f (21)=f (41+41)=f (41)·f (41)=[f (41)]2 又f (1)=a >0 ∴f (21)=a 21,f (41)=a 41 (2)证明:依题意设y =f (x )关于直线x =1对称,故f (x )=f (1+1-x ),即f (x )=f (2-x ),x ∈R . 又由f (x )是偶函数知f (-x )=f (x ),x ∈R∴f (-x )=f (2-x ),x ∈R .将上式中-x 以x 代换得f (x )=f (x +2),这表明f (x )是R 上的周期函数,且2是它的一个 周期.(3)解:由(1)知f (x )≥0,x ∈[0,1]∵f (21)=f (n ·n 21)=f (n 21+(n -1) n 21)=f (n 21)·f ((n -1)·n21) =……=f (n 21)·f (n 21)·……·f (n 21) =[f (n21)]n =a 21∴f (n21)=a n 21. 又∵f (x )的一个周期是2 ∴f (2n +n 21)=f (n 21),因此a n =a n 21∴.0)ln 21(lim )(ln lim ==∞→∞→a na n n n[例2]甲、乙两地相距S 千米,汽车从甲地匀速驶到乙地,速度不得超过c 千米/小时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成,可变部分与速度v (km/h)的平方成正比,比例系数为b ,固定部分为a 元.(1)把全程运输成本y (元)表示为v (km/h)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶?命题意图:本题考查建立函数的模型、不等式性质、最值等知识,还考查学生综合运用所学数学知识解决实际问题的能力.知识依托:运用建模、函数、数形结合、分类讨论等思想方法.错解分析:不会将实际问题抽象转化为具体的函数问题,易忽略对参变量的限制条件. 技巧与方法:四步法:(1)读题;(2)建模;(3)求解;(4)评价.解法一:(1)依题意知,汽车从甲地匀速行驶到乙地所用时间为vS ,全程运输成本为y =a ·v S +bv 2·v S =S (va +bv ) ∴所求函数及其定义域为y =S (va +bv ),v ∈(0,c ]. (2)依题意知,S 、a 、b 、v 均为正数∴S (v a +bv )≥2S ab ① 当且仅当va =bv ,即v =b a 时,①式中等号成立.若b a ≤c 则当v =b a 时,有y min ; 若b a >c ,则当v ∈(0,c ]时,有S (v a +bv )-S (ca +bc ) =S [(v a -c a )+(bv -bc )]=vcS (c -v )(a -bcv )∵c -v ≥0,且c >bc 2,∴a -bcv ≥a -bc 2>0∴S (v a +bv )≥S (ca +bc ),当且仅当v =c 时等号成立,也即当v =c 时,有y min ; 综上可知,为使全程运输成本y 最小,当b ab ≤c 时,行驶速度应为v =b ab ,当b ab >c 时行驶速度应为v =c .解法二:(1)同解法一.(2)∵函数y =x +xk (k >0),x ∈(0,+∞),当x ∈(0,k )时,y 单调减小,当x ∈(k ,+∞)时y 单调增加,当x =k 时y 取得最小值,而全程运输成本函数为y =Sb (v +vb a),v ∈(0,c ]. ∴当b a ≤c 时,则当v =b a 时,y 最小,若ba >c 时,则当v =c 时,y 最小.结论同上. ●锦囊妙计在解决函数综合问题时,要认真分析、处理好各种关系,把握问题的主线,运用相关的知识和方法逐步化归为基本问题来解决,尤其是注意等价转化、分类讨论、数形结合等思想的综合运用.综合问题的求解往往需要应用多种知识和技能.因此,必须全面掌握有关的函数知识,并且严谨审题,弄清题目的已知条件,尤其要挖掘题目中的隐含条件.●歼灭难点训练一、选择题1.(★★★★)函数y =x +a 与y =log a x 的图象可能是( )2.(★★★★★)定义在区间(-∞,+∞)的奇函数f (x )为增函数,偶函数g (x )在区间[0,+∞)的图象与f (x )的图象重合,设a >b >0,给出下列不等式:①f (b )-f (-a )>g (a )-g (-b ) ②f (b )-f (-a )<g (a )-g (-b ) ③f (a )-f (-b )>g (b )-g (-a ) ④f (a )-f (-b )<g (b )-g (-a )其中成立的是( )A.①与④B.②与③C.①与③D.②与④二、填空题3.(★★★★)若关于x 的方程22x +2x a +a +1=0有实根,则实数a 的取值范围是_________.三、解答题4.(★★★★)设a 为实数,函数f (x )=x 2+|x -a |+1,x ∈R .(1)讨论f (x )的奇偶性;(2)求f (x )的最小值.5.(★★★★★)设f (x )=xx x +-++11lg 11. (1)证明:f (x )在其定义域上的单调性;(2)证明:方程f -1(x )=0有惟一解;(3)解不等式f [x (x -21)]<21. 6.(★★★★★)定义在(-1,1)上的函数f (x )满足①对任意x 、y ∈(-1,1),都有f (x )+f (y )=f (xyy x ++1);②当x ∈(-1,0)时,有f (x )>0. 求证:)21()131()111()51(2f n n f f f >+++++ . 7.(★★★★★)某工厂拟建一座平面图(如下图)为矩形且面积为200平方米的三级污水处理池,由于地形限制,长、宽都不能超过16米,如果池外周壁建造单价为每米400元,中间两条隔墙建造单价为每米248元,池底建造单价为每平方米80元(池壁厚度忽略不计,且池无盖).(1)写出总造价y (元)与污水处理池长x (米)的函数关系式,并指出其定义域.(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求最低总造价.8.(★★★★★)已知函数f (x )在(-∞,0)∪(0,+∞)上有定义,且在(0,+∞)上是增函数,f (1)=0,又g (θ)=sin 2θ-m cos θ-2m ,θ∈[0,2π],设M ={m |g (θ)<0,m ∈R },N ={m |f [g (θ)]<0},求M ∩N .[学法指导]怎样学好函数学习函数要重点解决好四个问题:准确深刻地理解函数的有关概念;揭示并认识函数与其他数学知识的内在联系;把握数形结合的特征和方法;认识函数思想的实质,强化应用意识.(一)准确、深刻理解函数的有关概念概念是数学的基础,而函数是数学中最主要的概念之一,函数概念贯穿在中学代数的始终.数、式、方程、函数、排列组合、数列极限等是以函数为中心的代数.近十年来,高考试题中始终贯穿着函数及其性质这条主线.(二)揭示并认识函数与其他数学知识的内在联系.函数是研究变量及相互联系的数学概念,是变量数学的基础,利用函数观点可以从较高的角度处理式、方程、不等式、数列、曲线与方程等内容.在利用函数和方程的思想进行思维中,动与静、变量与常量如此生动的辩证统一,函数思维实际上是辩证思维的一种特殊表现形式.所谓函数观点,实质是将问题放到动态背景上去加以考虑.高考试题涉及5个方面:(1)原始意义上的函数问题;(2)方程、不等式作为函数性质解决;(3)数列作为特殊的函数成为高考热点;(4)辅助函数法;(5)集合与映射,作为基本语言和工具出现在试题中.(三)把握数形结合的特征和方法函数图象的几何特征与函数性质的数量特征紧密结合,有效地揭示了各类函数和定义域、值域、单调性、奇偶性、周期性等基本属性,体现了数形结合的特征与方法,为此,既要从定形、定性、定理、定位各方面精确地观察图形、绘制图形,又要熟练地掌握函数图象的平移变换、对称变换.(四)认识函数思想的实质,强化应用意识函数思想的实质就是用联系与变化的观点提出数学对象,抽象数量特征,建立函数关系,求得问题的解决.纵观近几年高考题,考查函数思想方法尤其是应用题力度加大,因此一定要认识函数思想实质,强化应用意识.参考答案难点磁场(1)证明:令x=y=0,得f(0)=0令y=-x,得f(0)=f(x)+f(-x),即f(-x)=-f(x)∴f(x)是奇函数(2)解:1°,任取实数x1、x2∈[-9,9]且x1<x2,这时,x2-x1>0,f(x1)-f(x2)=f[(x1-x2)+x2]-f(x2)=f(x1-x2)+f(x2)-f(x1)=-f(x2-x1)因为x>0时f(x)<0,∴f(x1)-f(x2)>0∴f(x)在[-9,9]上是减函数故f(x)的最大值为f(-9),最小值为f(9).而f(9)=f(3+3+3)=3f(3)=-12,f(-9)=-f(9)=12.∴f(x)在区间[-9,9]上的最大值为12,最小值为-12.歼灭难点训练一、1.解析:分类讨论当a>1时和当0<a<1时.答案:C2.解析:用特值法,根据题意,可设f(x)=x,g(x)=|x|,又设a=2,b=1,则f(a)=a,g(a)=|a|,f(b)=b,g(b)=|b|,f(a)-f(b)=f(2)-f(-1)=2+1=3.g(b)-g(-a)=g(1)-g(-2)=1-2=-1.∴f(a)-f(-b)>g(1)-g(-2)=1-2=-1.又f(b)-f(-a)=f(1)-f(-2)=1+2=3.g(a)-g(-b)=g(2)-g(1)=2-1=1,∴f(b)-f(-a)=g(a)-g(-b).即①与③成立.答案:C二、3.解析:设2x =t >0,则原方程可变为t 2+at +a +1=0 ①方程①有两个正实根,则⎪⎩⎪⎨⎧>+=⋅>-=+≥+-=∆0100)1(421212a t t a t t a a解得:a ∈(-1,2-22].答案:(-1,2-22]三、4.解:(1)当a =0时,函数f (-x )=(-x )2+|-x |+1=f (x ),此时f (x )为偶函数;当a ≠0时,f (a )=a 2+1,f (-a )=a 2+2|a |+1,f (-a )≠f (a ),f (-a )≠-f (a ).此时函数f (x )既不是奇函数也不是偶 函数.(2)①当x ≤a 时,函数f (x )=x 2-x +a +1=(x -21)2+a +43,若a ≤21,则函数f (x )在(-∞,a ]上单调递减,从而,函数f (x )在(-∞,a ]上的最小值为f (a )=a 2+1. 若a >21,则函数f (x )在(-∞,a ]上的最小值为f (21)=43+a ,且f (21)≤f (a ). ②当x ≥a 时,函数f (x )=x 2+x -a +1=(x +21)2-a +43;当a ≤-21时,则函数f (x )在[a ,+∞)上的最小值为f (-21)=43-a ,且f (-21)≤f (a ).若a >-21, 则函数f (x )在[a ,+∞)上单调递增,从而,函数f (x )在[a ,+∞]上的最小值为f (a )=a 2+1.综上,当a ≤-21时,函数f (x )的最小值是43-a ,当-21<a ≤21时,函数f (x )的最小值是a 2+1;当a >21时,函数f (x )的最小值是a +43. 5.(1)证明:由⎪⎩⎪⎨⎧≠+>+-02011x x x 得f (x )的定义域为(-1,1),易判断f (x )在(-1,1)内是减函数.(2)证明:∵f (0)=21,∴f --1(21)=0,即x =21是方程f --1(x )=0的一个解.若方程f --1(x )=0还有另一个解x 0≠21,则f --1(x 0)=0,由反函数的定义知f (0)=x 0≠21,与已知矛盾,故方程f --1(x )=0有惟一解.(3)解:f [x (x -21)]<21,即f [x (x -21)]<f (0). .415121041510)21(1)21(1+<<<<-⇒⎪⎪⎩⎪⎪⎨⎧>-<-<-∴x x x x x x 或6.证明:对f (x )+f (y )=f (xyy x ++1)中的x ,y ,令x =y =0,得f (0)=0,再令y =-x ,又得f (x )+f (-x )=f (0)=0,即f (-x )=-f (x ),∴f (x )在x ∈(-1,1)上是奇函数.设-1<x 1<x 2<0,则f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (21211x x x x --),∵-1<x 1<x 2<0,∴x 1-x 2<0,1-x 1x 2>0.∴21211x x x x --<0,于是由②知f (21211x x x x --) >0,从而f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),故f (x )在x ∈(-1,0)上是单调递减函数.根据奇函数的图象关于原点对称,知f (x )在x ∈(0,1)上仍是递减函数,且f (x )<0..),21()21()21(,0)21(,1210),21()21()]21()11([)]41()31([)]31()21([)131()111()51()21()11()211112111(])2)(1(11)2)(1(1[]1)2)(1(1[)131(22故原结论成立有时f n f f n f n n f f n f n f f f f f n n f f f n f n f n n n n f n n n n f n n f n n f >+-∴<+<+<+-=+-+++-+-=+++++∴+-+=+⋅+-+-+=++-++=-++=++ 7.解:(1)因污水处理水池的长为x 米,则宽为x 200米,总造价y =400(2x +2×x 200)+248×x 200×2+80×200=800(x +x324)+1600,由题设条件 ⎪⎩⎪⎨⎧≤<≤<162000,160x x 解得12.5≤x ≤16,即函数定义域为[12.5,16]. (2)先研究函数y =f (x )=800(x +x324)+16000在[12.5,16]上的单调性,对于任意的x 1,x 2∈[12.5,16],不妨设x 1<x 2,则f (x 2)-f (x 1)=800[(x 2-x 1)+324(1211x x -)]=800(x 2-x 1)(1-21324x x ),∵12.5≤x 1≤x 2≤16.∴0<x 1x 2<162<324,∴21324x x >1,即1-21324x x <0.又x 2-x 1>0,∴f (x 2)-f (x 1)<0,即f (x 2)<f (x 1),故函数y =f (x )在[12.5,16]上是减函数.∴当x =16时,y 取得最小值,此时,y min =800(16+16324)+16000=45000(元),16200200=x =12.5(米) 综上,当污水处理池的长为16米,宽为12.5米时,总造价最低,最低为45000元.8.解:∵f (x )是奇函数,且在(0,+∞)上是增函数,∴f (x )在(-∞,0)上也是增函数. 又f (1)=0,∴f (-1)=-f (1)=0,从而,当f (x )<0时,有x <-1或0<x <1,则集合N ={m |f [g (θ)]<θ=}={m |g (θ)<-1或0<g (θ)<1},∴M ∩N ={m |g (θ)<-1}.由g (θ)<-1,得cos 2θ>m (cos θ-2)+2,θ∈[0,2π],令x =cos θ,x ∈[0,1]得:x 2>m (x -2)+2,x ∈[0,1],令①:y 1=x 2,x ∈[0,1]及②y 2=m (m -2)+2,显然①为抛物线一段,②是过(2,2)点的直线系,在同一坐标系内由x ∈[0,1]得y 1>y 2.∴m >4-22,故M ∩N ={m |m >4-22}.。